sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2572 - Precision: 0.3363 - Recall: 0.5110 - F1: 0.4057 - Accuracy: 0.8931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3976 | 0.1405 | 0.3058 | 0.1925 | 0.7921 | | No log | 2.0 | 60 | 0.3511 | 0.2360 | 0.4038 | 0.2979 | 0.8260 | | No log | 3.0 | 90 | 0.3595 | 0.1863 | 0.3827 | 0.2506 | 0.8211 | | No log | 4.0 | 120 | 0.3591 | 0.2144 | 0.4288 | 0.2859 | 0.8299 | | No log | 5.0 | 150 | 0.3605 | 0.1989 | 0.4212 | 0.2702 | 0.8343 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58", "results": []}]}
token-classification
ali2066/distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert\_token\_itr0\_0.0001\_all\_01\_03\_2022-14\_30\_58 ============================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2572 * Precision: 0.3363 * Recall: 0.5110 * F1: 0.4057 * Accuracy: 0.8931 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10642197728157043, 0.0806368738412857, -0.002159995026886463, 0.12315292656421661, 0.17774748802185059, 0.01721199043095112, 0.10565958172082901, 0.1147901862859726, -0.11614246666431427, 0.018769605085253716, 0.12385132908821106, 0.1913568377494812, 0.00020185713947284967, 0.1088767945766449, -0.0505964495241642, -0.2500426769256592, -0.010119659826159477, 0.05762670561671257, -0.0849643424153328, 0.13410170376300812, 0.0967552587389946, -0.13992418348789215, 0.07771382480859756, 0.01313758548349142, -0.23490504920482635, 0.010906589217483997, 0.023510020226240158, -0.06431623548269272, 0.14749270677566528, 0.013776627369225025, 0.13761699199676514, -0.0031708765309304, 0.08671318739652634, -0.1615799367427826, 0.007588760461658239, 0.05438607558608055, 0.016417236998677254, 0.09199408441781998, 0.0557999424636364, -0.0011295642470940948, 0.10259365290403366, -0.07978707551956177, 0.05646459758281708, 0.02293376997113228, -0.11768954247236252, -0.2455117106437683, -0.0874442532658577, 0.03131573647260666, 0.069396011531353, 0.09748612344264984, 0.008998113684356213, 0.144797220826149, -0.09557713568210602, 0.09081944823265076, 0.21866708993911743, -0.2827698588371277, -0.06384451687335968, 0.04615394026041031, -0.0016485546948388219, 0.0562794953584671, -0.11142626404762268, -0.033301737159490585, 0.055520474910736084, 0.04948902502655983, 0.14806494116783142, -0.034286756068468094, -0.12203375995159149, 0.016588671132922173, -0.14632181823253632, -0.029229892417788506, 0.12388894706964493, 0.026832403615117073, -0.03585681691765785, -0.03303510695695877, -0.060998838394880295, -0.17226259410381317, -0.04216780886054039, -0.018482111394405365, 0.045248646289110184, -0.03664354234933853, -0.06187412515282631, 0.014026419259607792, -0.10075470060110092, -0.07143830507993698, -0.07708968222141266, 0.15669283270835876, 0.045696184039115906, 0.01392535399645567, -0.024278346449136734, 0.11325793713331223, 0.01877720095217228, -0.12561964988708496, 0.029600873589515686, 0.030875546857714653, -0.0017427399288862944, -0.055434320122003555, -0.06729809939861298, -0.0430620014667511, 0.0081871272996068, 0.1194748654961586, -0.0564216785132885, 0.044473666697740555, 0.0415678508579731, 0.04057430103421211, -0.10716205090284348, 0.19207040965557098, -0.04079005867242813, 0.0018356195650994778, 0.012689490802586079, 0.03991449624300003, 0.00021044560708105564, 0.0017433579778298736, -0.11042836308479309, 0.00009600869816495106, 0.11936084926128387, 0.016726909205317497, -0.07968652248382568, 0.07116489112377167, -0.05181887745857239, -0.021251097321510315, 0.013967580161988735, -0.09855222702026367, 0.034870851784944534, -0.007950079627335072, -0.08908142149448395, -0.007421370130032301, 0.024219442158937454, 0.009799386374652386, -0.021383505314588547, 0.1190548911690712, -0.09199679642915726, 0.042203884571790695, -0.10262087732553482, -0.10129866003990173, 0.010702410712838173, -0.07892219722270966, 0.02829621732234955, -0.10051078349351883, -0.14643824100494385, -0.010631798766553402, 0.05999758839607239, -0.020771997049450874, -0.05546397715806961, -0.039369847625494, -0.07319030165672302, 0.005762515123933554, -0.013722029514610767, 0.14116325974464417, -0.053422197699546814, 0.10925835371017456, 0.03783286362886429, 0.06316814571619034, -0.04815918207168579, 0.06057431921362877, -0.10541098564863205, 0.009846143424510956, -0.19326241314411163, 0.03507979214191437, -0.05536804720759392, 0.07469504326581955, -0.09502742439508438, -0.11571957170963287, 0.026881903409957886, -0.01673518680036068, 0.07577976584434509, 0.08488377928733826, -0.15670564770698547, -0.07326214015483856, 0.14203199744224548, -0.06418576836585999, -0.10329282283782959, 0.11025664210319519, -0.060865066945552826, 0.04266032576560974, 0.07434357702732086, 0.14787322282791138, 0.08128497004508972, -0.07075675576925278, 0.021088486537337303, 0.0030794155318289995, 0.038851622492074966, -0.08364293724298477, 0.05572796240448952, 0.007534653414040804, -0.014108555391430855, 0.03722996637225151, -0.03022635541856289, 0.06800544261932373, -0.09910567849874496, -0.09595328569412231, -0.047248270362615585, -0.10097375512123108, 0.053415730595588684, 0.07879823446273804, 0.08821000903844833, -0.0857333093881607, -0.06828410923480988, 0.0953301340341568, 0.0805881917476654, -0.05229131504893303, 0.029997434467077255, -0.05823447182774544, 0.06670793890953064, -0.049927856773138046, -0.028225893154740334, -0.19592712819576263, -0.011387172155082226, 0.009590706788003445, -0.015048367902636528, 0.01948690228164196, 0.016801364719867706, 0.07090839743614197, 0.06370800733566284, -0.0530400276184082, -0.01763346418738365, -0.022091127932071686, -0.0014966714661568403, -0.14181092381477356, -0.19069881737232208, -0.03435736149549484, -0.015433235093951225, 0.10534448176622391, -0.1876228153705597, 0.033242158591747284, -0.021412141621112823, 0.07980745285749435, 0.00033605037606321275, -0.0080591831356287, -0.0486212894320488, 0.09008373320102692, -0.03299018368124962, -0.052470188587903976, 0.07431439310312271, 0.0020016974303871393, -0.07735317200422287, -0.05469830706715584, -0.07933057099580765, 0.18418990075588226, 0.13679435849189758, -0.12457533180713654, -0.08478862047195435, -0.006390437949448824, -0.06165078654885292, -0.03359179571270943, -0.03916654363274574, 0.055369649082422256, 0.1702347993850708, -0.016587745398283005, 0.1541943997144699, -0.06715813279151917, -0.05128573253750801, 0.025324122980237007, -0.03324294462800026, 0.03579578548669815, 0.11033322662115097, 0.1218176782131195, -0.07472293823957443, 0.14611394703388214, 0.15135131776332855, -0.10790013521909714, 0.10663606971502304, -0.04979291558265686, -0.06737012416124344, -0.015265297144651413, -0.017192304134368896, -0.00029556985828094184, 0.09612281620502472, -0.12930749356746674, -0.00014852994354441762, 0.022662585601210594, 0.024978723376989365, 0.01687215082347393, -0.22909264266490936, -0.034789882600307465, 0.026999035850167274, -0.03438306227326393, 0.00040411646477878094, -0.014942781999707222, 0.01046334020793438, 0.1059366911649704, 0.0002113805676344782, -0.09560658782720566, 0.046034038066864014, 0.013653857633471489, -0.07201802730560303, 0.21730849146842957, -0.08857396990060806, -0.13465580344200134, -0.12117026001214981, -0.07987070083618164, -0.045920345932245255, 0.008811667561531067, 0.05197679623961449, -0.09639322757720947, -0.026572590693831444, -0.04320399463176727, 0.01322698313742876, -0.0032516249921172857, 0.04857247322797775, 0.00210588495247066, 0.002365820575505495, 0.08337977528572083, -0.10970554500818253, -0.006200198549777269, -0.05490412935614586, -0.060877736657857895, 0.04409176856279373, 0.04997747391462326, 0.10359205305576324, 0.1657811999320984, -0.030013397336006165, 0.007690906524658203, -0.02665860950946808, 0.22984328866004944, -0.058948129415512085, -0.03143809363245964, 0.13477177917957306, -0.00311281974427402, 0.057491790503263474, 0.10392285138368607, 0.08022818714380264, -0.09000279754400253, 0.0056921509094536304, 0.03291616216301918, -0.035943277180194855, -0.21612362563610077, -0.049496304243803024, -0.05552466958761215, -0.03592395782470703, 0.09803950041532516, 0.02965014986693859, 0.05570453405380249, 0.07505131512880325, 0.047963667660951614, 0.0931525006890297, -0.05767332762479782, 0.05430040508508682, 0.11814349889755249, 0.05084504559636116, 0.12234245985746384, -0.04562394320964813, -0.07239838689565659, 0.026420261710882187, -0.009969804435968399, 0.2303503453731537, 0.005009873304516077, 0.11171027272939682, 0.05781112238764763, 0.20679593086242676, 0.003378115128725767, 0.08969332277774811, -0.004374974872916937, -0.0471482127904892, -0.005900565534830093, -0.03785870596766472, -0.036957889795303345, 0.009631228633224964, -0.06461365520954132, 0.06448239088058472, -0.11361868679523468, -0.015138017013669014, 0.04873877763748169, 0.263700932264328, 0.023885872215032578, -0.3319370746612549, -0.08774808049201965, -0.011776471510529518, -0.03618720918893814, -0.025594037026166916, 0.018674716353416443, 0.07578340172767639, -0.09492015093564987, 0.019251054152846336, -0.07525717467069626, 0.0912272110581398, -0.0359991230070591, 0.038477689027786255, 0.08129331469535828, 0.0957411378622055, 0.014857104979455471, 0.08006548881530762, -0.3174518644809723, 0.2644921839237213, 0.0014692615950480103, 0.07277961820363998, -0.07542786002159119, 0.005658863577991724, 0.03372998535633087, 0.07048989087343216, 0.05428673326969147, -0.011959199793636799, -0.03245672956109047, -0.21390868723392487, -0.0485198050737381, 0.02551267296075821, 0.0831860601902008, -0.01927117258310318, 0.08398624509572983, -0.03170628845691681, 0.007364724297076464, 0.07818973064422607, -0.04055079072713852, -0.05036721006035805, -0.08491332083940506, -0.016001766547560692, 0.021518295630812645, -0.0354548804461956, -0.060849159955978394, -0.11359904706478119, -0.1277770847082138, 0.14754384756088257, -0.022447790950536728, -0.037387292832136154, -0.11703361570835114, 0.08114976435899734, 0.08468421548604965, -0.08336744457483292, 0.06139373406767845, -0.0005027693114243448, 0.05503999814391136, 0.03729251027107239, -0.07599281519651413, 0.10564571619033813, -0.06336747109889984, -0.15713489055633545, -0.05512285232543945, 0.10092545300722122, 0.037563733756542206, 0.06142852082848549, -0.012843911536037922, 0.013707328587770462, -0.03399709612131119, -0.0947030782699585, 0.017863892018795013, -0.02356313355267048, 0.08217833936214447, 0.014129571616649628, -0.055586084723472595, 0.01094060018658638, -0.06144791841506958, -0.025837097316980362, 0.17862646281719208, 0.22006957232952118, -0.1032891646027565, 0.015431669540703297, 0.035652194172143936, -0.06635039299726486, -0.19465410709381104, 0.04545610770583153, 0.06270504742860794, -0.0015181078342720866, 0.02879992499947548, -0.1760801076889038, 0.145940899848938, 0.10473848134279251, -0.013032279908657074, 0.10805955529212952, -0.33251291513442993, -0.12538324296474457, 0.1300402283668518, 0.1522536724805832, 0.12434671074151993, -0.1317143738269806, -0.01771557703614235, -0.012731589376926422, -0.11697752773761749, 0.09842481464147568, -0.06379164755344391, 0.11831814050674438, -0.03681009262800217, 0.08283697813749313, 0.0018068531062453985, -0.06384485214948654, 0.1138698011636734, 0.028959952294826508, 0.10775374621152878, -0.05638962239027023, -0.035316139459609985, 0.040284063667058945, -0.03386791795492172, 0.014614908955991268, -0.06536146998405457, 0.034150149673223495, -0.08356151729822159, -0.017155537381768227, -0.08383142948150635, 0.05412478744983673, -0.030293958261609077, -0.06286447495222092, -0.04537579417228699, 0.025806138291954994, 0.04284123331308365, -0.021486829966306686, 0.12743809819221497, 0.03928428143262863, 0.15188024938106537, 0.1145322173833847, 0.05563624948263168, -0.06720959395170212, -0.08156141638755798, -0.012731019407510757, -0.015665767714381218, 0.06767193228006363, -0.13930295407772064, 0.03079124167561531, 0.14729072153568268, 0.023085981607437134, 0.11764563620090485, 0.08522552996873856, -0.012942219153046608, 0.0034729144535958767, 0.060412418097257614, -0.15940985083580017, -0.06919152289628983, 0.0030041439458727837, -0.058372605592012405, -0.09763586521148682, 0.0660339742898941, 0.07713475823402405, -0.08041878789663315, -0.01251720730215311, -0.004740365780889988, -0.005059708841145039, -0.06818174570798874, 0.2155681848526001, 0.06552042812108994, 0.04907570406794548, -0.11003068834543228, 0.07195505499839783, 0.05874781683087349, -0.07705859839916229, -0.009446308016777039, 0.05999067798256874, -0.08978907018899918, -0.03919056057929993, 0.11357227712869644, 0.16443990170955658, -0.07066237181425095, -0.04069869592785835, -0.13879062235355377, -0.12257283926010132, 0.0834277793765068, 0.16222389042377472, 0.12415403127670288, 0.023381225764751434, -0.06260699033737183, 0.009554402902722359, -0.12878592312335968, 0.07857507467269897, 0.0422884039580822, 0.07590018212795258, -0.15305843949317932, 0.17925727367401123, 0.011278838850557804, 0.05193524807691574, -0.024209938943386078, 0.025456978008151054, -0.09771829843521118, 0.018867628648877144, -0.11797846853733063, -0.034785591065883636, -0.02562020532786846, 0.00946708396077156, -0.0036573277320712805, -0.061492957174777985, -0.0507616326212883, 0.025232793763279915, -0.12095125019550323, -0.0171198733150959, 0.0390964075922966, 0.051427893340587616, -0.11231425404548645, -0.04031272232532501, 0.023162467405200005, -0.05587002635002136, 0.05814896151423454, 0.050859708338975906, 0.016293596476316452, 0.06209540367126465, -0.12308700382709503, -0.0008032650221139193, 0.08018733561038971, 0.010354900732636452, 0.07302812486886978, -0.09104878455400467, -0.0016281697899103165, 0.005451591219753027, 0.06646733731031418, 0.017158815637230873, 0.07401449233293533, -0.14909708499908447, -0.015510931611061096, -0.03759904205799103, -0.07508689165115356, -0.07004636526107788, 0.020335037261247635, 0.10058354586362839, 0.010895323939621449, 0.19906099140644073, -0.07333192229270935, 0.03704462945461273, -0.20715796947479248, -0.003986832220107317, -0.024124233052134514, -0.11702682822942734, -0.13567842543125153, -0.06185914948582649, 0.060058481991291046, -0.04526861384510994, 0.1305076628923416, 0.027127878740429878, 0.03971228376030922, 0.02707240730524063, -0.018037419766187668, 0.010644347406923771, 0.025861984118819237, 0.21547840535640717, 0.037619929760694504, -0.03236144781112671, 0.07353518158197403, 0.059199120849370956, 0.09384708851575851, 0.11018799990415573, 0.18525294959545135, 0.15621857345104218, -0.02045270800590515, 0.08969154953956604, 0.022613534703850746, -0.05358171835541725, -0.17049670219421387, 0.04146922379732132, -0.050995782017707825, 0.09168317168951035, -0.025103582069277763, 0.21529793739318848, 0.05736444517970085, -0.16399390995502472, 0.05295206978917122, -0.04649275168776512, -0.08929777145385742, -0.10197371244430542, -0.039358049631118774, -0.07635226845741272, -0.14606305956840515, -0.0011712402338162065, -0.09557542949914932, 0.012721898965537548, 0.119169682264328, 0.004957615863531828, -0.02676703967154026, 0.1690824031829834, 0.03042316623032093, 0.027101023122668266, 0.047162532806396484, 0.0025262110866606236, -0.03328021615743637, -0.10295607149600983, -0.06779789924621582, -0.02331424690783024, -0.020573804154992104, 0.03634469583630562, -0.06381815671920776, -0.06542767584323883, 0.038340721279382706, -0.02201825939118862, -0.09058184176683426, 0.019181083887815475, 0.019199350848793983, 0.062458816915750504, 0.04207158088684082, 0.0045153009705245495, 0.018917538225650787, -0.02213028445839882, 0.2047090381383896, -0.08072357624769211, -0.08070977032184601, -0.09444835036993027, 0.28655779361724854, 0.04946059733629227, -0.009039490483701229, 0.03511008992791176, -0.05506746470928192, 0.0010565684642642736, 0.24820195138454437, 0.17845788598060608, -0.07736119627952576, -0.012436122633516788, 0.0029203053563833237, -0.017919739708304405, -0.029839688912034035, 0.12653081119060516, 0.1432712972164154, 0.040923360735177994, -0.1039264127612114, -0.04480703920125961, -0.06590892374515533, -0.0114896884188056, -0.051545508205890656, 0.057388078421354294, 0.0325462706387043, 0.004070464987307787, -0.04066535085439682, 0.051140908151865005, -0.06627732515335083, -0.09265190362930298, 0.08060463517904282, -0.18210844695568085, -0.16120128333568573, -0.013426109217107296, 0.10374443978071213, -0.0002997753908857703, 0.054771069437265396, -0.02546822279691696, 0.008488019928336143, 0.07227987051010132, -0.020360063761472702, -0.08607625961303711, -0.09148003906011581, 0.10188344120979309, -0.09852469712495804, 0.1950952410697937, -0.03926479071378708, 0.0744066834449768, 0.12385247647762299, 0.0720522329211235, -0.07893555611371994, 0.054499708116054535, 0.03719250112771988, -0.08146428316831589, 0.03207303211092949, 0.08452323824167252, -0.020542606711387634, 0.057006362825632095, 0.023581407964229584, -0.11902414262294769, 0.02180391736328602, -0.08250737935304642, -0.04340645670890808, -0.045692842453718185, -0.04979778826236725, -0.04939041659235954, 0.12236732989549637, 0.21493510901927948, -0.024952631443738937, 0.011184592731297016, -0.08421122282743454, 0.01154602412134409, 0.0547843761742115, 0.00580676831305027, -0.0808432549238205, -0.23142723739147186, 0.01644044555723667, 0.05043918266892433, -0.030325284227728844, -0.19333955645561218, -0.09752756357192993, 0.005504303611814976, -0.08358802646398544, -0.09430815279483795, 0.07814131677150726, 0.06659179925918579, 0.05669460445642471, -0.053308386355638504, -0.07503464072942734, -0.08732836693525314, 0.14917001128196716, -0.15210561454296112, -0.08376465737819672 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3255 - Precision: 0.1412 - Recall: 0.25 - F1: 0.1805 - Accuracy: 0.8491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.4549 | 0.0228 | 0.0351 | 0.0276 | 0.7734 | | No log | 2.0 | 60 | 0.3577 | 0.0814 | 0.1260 | 0.0989 | 0.8355 | | No log | 3.0 | 90 | 0.3116 | 0.1534 | 0.2648 | 0.1943 | 0.8611 | | No log | 4.0 | 120 | 0.2975 | 0.1792 | 0.2967 | 0.2234 | 0.8690 | | No log | 5.0 | 150 | 0.2935 | 0.1873 | 0.2998 | 0.2305 | 0.8715 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33", "results": []}]}
token-classification
ali2066/distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert\_token\_itr0\_1e-05\_all\_01\_03\_2022-14\_33\_33 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3255 * Precision: 0.1412 * Recall: 0.25 * F1: 0.1805 * Accuracy: 0.8491 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-token-argumentative This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1573 - Precision: 0.3777 - Recall: 0.3919 - F1: 0.3847 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 75 | 0.3241 | 0.1109 | 0.2178 | 0.1470 | 0.8488 | | No log | 2.0 | 150 | 0.3145 | 0.1615 | 0.2462 | 0.1950 | 0.8606 | | No log | 3.0 | 225 | 0.3035 | 0.1913 | 0.3258 | 0.2411 | 0.8590 | | No log | 4.0 | 300 | 0.3080 | 0.2199 | 0.3220 | 0.2613 | 0.8612 | | No log | 5.0 | 375 | 0.3038 | 0.2209 | 0.3277 | 0.2639 | 0.8630 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned-token-argumentative", "results": []}]}
token-classification
ali2066/finetuned-token-argumentative
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned-token-argumentative ============================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1573 * Precision: 0.3777 * Recall: 0.3919 * F1: 0.3847 * Accuracy: 0.9497 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10773668438196182, 0.07799779623746872, -0.0019943690858781338, 0.12250668555498123, 0.18174265325069427, 0.014800473116338253, 0.10021749138832092, 0.1161719560623169, -0.11661830544471741, 0.020499687641859055, 0.12710922956466675, 0.19055455923080444, -0.00092306052101776, 0.12900462746620178, -0.05536016821861267, -0.2503369450569153, -0.006709644570946693, 0.059796154499053955, -0.07764703780412674, 0.13395482301712036, 0.10011111199855804, -0.14258769154548645, 0.08224303275346756, 0.014507669024169445, -0.2414294332265854, 0.008049133233726025, 0.019428405910730362, -0.06771465390920639, 0.1433870494365692, 0.01450139656662941, 0.13501311838626862, -0.004984709434211254, 0.08384381234645844, -0.15403303503990173, 0.004779896233230829, 0.05112559348344803, 0.019104279577732086, 0.09162133187055588, 0.05434626340866089, 0.001772460644133389, 0.10009153932332993, -0.08277644217014313, 0.052145637571811676, 0.015998704358935356, -0.11650490760803223, -0.2380663901567459, -0.08712788671255112, 0.0330808088183403, 0.07160554081201553, 0.09935654699802399, 0.006889511365443468, 0.1462526023387909, -0.09328772127628326, 0.09289874881505966, 0.2261466234922409, -0.28299224376678467, -0.0627145916223526, 0.03850260376930237, -0.002517047803848982, 0.045767106115818024, -0.10816483199596405, -0.03847392648458481, 0.06118128448724747, 0.04843403398990631, 0.14707133173942566, -0.036229606717824936, -0.1221783310174942, 0.01388626080006361, -0.14715707302093506, -0.03276181221008301, 0.12433423101902008, 0.027320142835378647, -0.03484160453081131, -0.03569086268544197, -0.05837932974100113, -0.17001545429229736, -0.04079248011112213, -0.0126109030097723, 0.04454537108540535, -0.04151887819170952, -0.06565636396408081, 0.02074160799384117, -0.10241976380348206, -0.06334447860717773, -0.0841624066233635, 0.14950188994407654, 0.04480374604463577, 0.013483245857059956, -0.027436038479208946, 0.10776633769273758, 0.011399665847420692, -0.12595048546791077, 0.025553442537784576, 0.029614215716719627, 0.0006352672353386879, -0.06028275936841965, -0.06964186578989029, -0.037460196763277054, 0.0031536826863884926, 0.12292677909135818, -0.06683196127414703, 0.04013791307806969, 0.043429065495729446, 0.040399324148893356, -0.09881772845983505, 0.19935189187526703, -0.04309636726975441, 0.011051039211452007, 0.013506598770618439, 0.03284064680337906, -0.0018694031750783324, 0.005568745080381632, -0.11134355515241623, -0.002667047083377838, 0.12648174166679382, 0.014837236143648624, -0.08011084794998169, 0.07470644265413284, -0.050708457827568054, -0.02534446120262146, 0.02414027601480484, -0.09865739196538925, 0.03631344437599182, -0.013285697437822819, -0.08832219243049622, -0.007252837065607309, 0.02224590629339218, 0.009285880252718925, -0.023098429664969444, 0.12765023112297058, -0.09138010442256927, 0.04141013324260712, -0.10202695429325104, -0.10074637830257416, 0.013553986325860023, -0.0854516550898552, 0.035248227417469025, -0.10698027163743973, -0.15384609997272491, -0.01163974404335022, 0.05459373816847801, -0.017461638897657394, -0.059685178101062775, -0.03697336092591286, -0.07482916861772537, -0.0008173894020728767, -0.019269738346338272, 0.14215487241744995, -0.05389520525932312, 0.10869479924440384, 0.03989556431770325, 0.06612636148929596, -0.045122455805540085, 0.059900250285863876, -0.10727264732122421, 0.009182951413094997, -0.20363973081111908, 0.03377639129757881, -0.04942423850297928, 0.08477148413658142, -0.09542735666036606, -0.12078239023685455, 0.031129317358136177, -0.014682508073747158, 0.07461152970790863, 0.0800381600856781, -0.14970603585243225, -0.07152239978313446, 0.14450903236865997, -0.06547054648399353, -0.10887187719345093, 0.11069785058498383, -0.06066761910915375, 0.04399184510111809, 0.07314391434192657, 0.1515636295080185, 0.07443515211343765, -0.07525071501731873, 0.016211651265621185, -0.004813562612980604, 0.03751368075609207, -0.0879639983177185, 0.05366860330104828, 0.014415964484214783, -0.010951600968837738, 0.038462236523628235, -0.0297110453248024, 0.0702952891588211, -0.10144132375717163, -0.08954400569200516, -0.046174630522727966, -0.10365036875009537, 0.048762839287519455, 0.07705550640821457, 0.0944593995809555, -0.08846153318881989, -0.062416937202215195, 0.09412726014852524, 0.08124633133411407, -0.052688803523778915, 0.028438188135623932, -0.062853142619133, 0.06852246075868607, -0.05047931149601936, -0.028791720047593117, -0.19720391929149628, -0.0006065854104235768, 0.009488102979958057, -0.008877402171492577, 0.014215271919965744, 0.009820308536291122, 0.06734869629144669, 0.055594973266124725, -0.049918822944164276, -0.015662821009755135, -0.009842433035373688, -0.0014313324354588985, -0.14069119095802307, -0.18108633160591125, -0.031967643648386, -0.01648022048175335, 0.10282907634973526, -0.18693123757839203, 0.03063029982149601, -0.023806506767868996, 0.0839913934469223, 0.0028714509680867195, -0.003963577561080456, -0.047563087195158005, 0.09130341559648514, -0.03206179663538933, -0.05228807032108307, 0.07113996148109436, 0.00664856843650341, -0.07208165526390076, -0.05189811810851097, -0.07986591756343842, 0.18630003929138184, 0.1409476101398468, -0.1264318972826004, -0.08771906048059464, -0.0037998242769390345, -0.061982832849025726, -0.03255529701709747, -0.04069280996918678, 0.05526566877961159, 0.1720617264509201, -0.01891070045530796, 0.1554354876279831, -0.06875139474868774, -0.05587819963693619, 0.028477614745497704, -0.03417380899190903, 0.03307304158806801, 0.11051290482282639, 0.11856880784034729, -0.08689327538013458, 0.1454504132270813, 0.15436957776546478, -0.10601241141557693, 0.10381358116865158, -0.051811181008815765, -0.06924853473901749, -0.013027174398303032, -0.019171226769685745, -0.0005334792076610029, 0.09039845317602158, -0.11990757286548615, -0.0032400116324424744, 0.023948391899466515, 0.026211891323328018, 0.018856311216950417, -0.22473669052124023, -0.03316609933972359, 0.026385236531496048, -0.02840239554643631, -0.0026025748811662197, -0.014009606093168259, 0.014969393610954285, 0.10250017046928406, 0.0029792680870741606, -0.09422013908624649, 0.047389332205057144, 0.016477519646286964, -0.07454060018062592, 0.2171708345413208, -0.09011487662792206, -0.1438896805047989, -0.1149149090051651, -0.08241482824087143, -0.03965530917048454, 0.010260508395731449, 0.05962543189525604, -0.09027063101530075, -0.030275942757725716, -0.0437566302716732, 0.010006171651184559, -0.0034666967112571, 0.04933999106287956, 0.01367360819131136, 0.002428633626550436, 0.08037392050027847, -0.10386406630277634, -0.007420698180794716, -0.05436992645263672, -0.05988670140504837, 0.05150288715958595, 0.04012351483106613, 0.10607545077800751, 0.15802621841430664, -0.035076674073934555, 0.008067264221608639, -0.03211088851094246, 0.23801937699317932, -0.05690300464630127, -0.03607277199625969, 0.13753174245357513, -0.0005488931201398373, 0.05526875704526901, 0.10561719536781311, 0.07074777036905289, -0.08937770873308182, 0.0070543717592954636, 0.024775415658950806, -0.03427910804748535, -0.21347381174564362, -0.05207416042685509, -0.053588006645441055, -0.033234916627407074, 0.10416308045387268, 0.02748533897101879, 0.05317685753107071, 0.07654234766960144, 0.04828892648220062, 0.09958919882774353, -0.057452086359262466, 0.05930963158607483, 0.12431292980909348, 0.05191225931048393, 0.12323275208473206, -0.04438846930861473, -0.07438788563013077, 0.02976469323039055, -0.011111367493867874, 0.23406149446964264, -0.0010351777309551835, 0.10951933264732361, 0.05332140624523163, 0.19818218052387238, 0.005049480590969324, 0.09327036142349243, -0.005812007933855057, -0.04457904025912285, -0.009106936864554882, -0.03317122906446457, -0.0413176529109478, 0.010121277533471584, -0.06483841687440872, 0.05401104316115379, -0.11949758976697922, -0.011756747029721737, 0.05028266832232475, 0.26283708214759827, 0.022024329751729965, -0.3360409736633301, -0.09249301254749298, -0.011643213219940662, -0.03609831631183624, -0.028574302792549133, 0.021530210971832275, 0.0732513815164566, -0.09578052163124084, 0.024177299812436104, -0.07301881164312363, 0.09365169703960419, -0.0393260195851326, 0.04376581311225891, 0.07874749600887299, 0.08986295014619827, 0.018289608880877495, 0.07994744926691055, -0.32165786623954773, 0.2684958279132843, 0.0005250233807601035, 0.07394051551818848, -0.07805868238210678, 0.0007899928605183959, 0.02881278656423092, 0.06833403557538986, 0.05723009258508682, -0.01113054621964693, -0.05114264413714409, -0.2135203778743744, -0.04613962396979332, 0.024897495284676552, 0.07757073640823364, -0.011273575015366077, 0.08438252657651901, -0.029722731560468674, 0.005383867304772139, 0.07384852319955826, -0.04487279802560806, -0.04384467378258705, -0.08222143352031708, -0.014257394708693027, 0.02504100650548935, -0.03631937503814697, -0.059199556708335876, -0.11173930764198303, -0.13425903022289276, 0.14970636367797852, -0.01264446135610342, -0.03899116441607475, -0.1176968365907669, 0.08380327373743057, 0.08875130116939545, -0.08705876022577286, 0.0623580664396286, 0.003528319066390395, 0.060624849051237106, 0.03831348940730095, -0.07684637606143951, 0.10796120017766953, -0.06434907019138336, -0.15662628412246704, -0.052269648760557175, 0.09093125909566879, 0.03244980424642563, 0.058541592210531235, -0.009128068573772907, 0.014541554264724255, -0.04065811261534691, -0.09309510886669159, 0.014267063699662685, -0.018689440563321114, 0.0881430134177208, 0.015564057976007462, -0.05564136803150177, 0.009862753562629223, -0.060846444219350815, -0.026743976399302483, 0.17904137074947357, 0.2181946486234665, -0.10398806631565094, 0.011226678267121315, 0.03526739031076431, -0.06298578530550003, -0.1938479095697403, 0.04262940585613251, 0.06646429002285004, 0.0008949427283369005, 0.025433292612433434, -0.16878613829612732, 0.14506196975708008, 0.10550759732723236, -0.01451737992465496, 0.10226728767156601, -0.3162599503993988, -0.12623681128025055, 0.13184283673763275, 0.146680548787117, 0.1315118819475174, -0.12973295152187347, -0.013457286171615124, -0.015031528659164906, -0.12668687105178833, 0.09490158408880234, -0.05629969388246536, 0.11452603340148926, -0.03626143932342529, 0.09320920705795288, 0.002776817651465535, -0.0626971572637558, 0.10759124159812927, 0.03618989884853363, 0.10393473505973816, -0.057132788002491, -0.038880474865436554, 0.029878729954361916, -0.036996033042669296, 0.01697373203933239, -0.0533483512699604, 0.03857411816716194, -0.09000856429338455, -0.01629650592803955, -0.0816541388630867, 0.04933443292975426, -0.025789089500904083, -0.05807606130838394, -0.043641820549964905, 0.026951661333441734, 0.04635335132479668, -0.01818273589015007, 0.1274443417787552, 0.04025253280997276, 0.1435563564300537, 0.11179451644420624, 0.05434269458055496, -0.07816654443740845, -0.072258360683918, -0.013063697144389153, -0.016701390966773033, 0.0664544627070427, -0.13401195406913757, 0.03446252644062042, 0.15080386400222778, 0.022300025448203087, 0.11671920120716095, 0.0853772908449173, -0.011668629013001919, 0.00336927711032331, 0.06122386455535889, -0.1633501648902893, -0.05747343599796295, 0.0026202797889709473, -0.0522882379591465, -0.09408567100763321, 0.06612014770507812, 0.07893354445695877, -0.07642733305692673, -0.016477853059768677, -0.008783240802586079, -0.0033258763141930103, -0.06315773725509644, 0.2114851474761963, 0.061663590371608734, 0.04806046187877655, -0.11257091909646988, 0.06495198607444763, 0.06238666921854019, -0.07751958817243576, -0.007277389522641897, 0.05998164787888527, -0.09162898361682892, -0.04075215756893158, 0.10907168686389923, 0.1612458974123001, -0.08047827333211899, -0.043841421604156494, -0.1341785490512848, -0.12294645607471466, 0.08794526755809784, 0.1623106300830841, 0.12624940276145935, 0.021138450130820274, -0.055036090314388275, 0.0062815723940730095, -0.13407547771930695, 0.07440529763698578, 0.04722639173269272, 0.08032224327325821, -0.15573835372924805, 0.1718715876340866, 0.004574262071400881, 0.05749090015888214, -0.024745004251599312, 0.03119945339858532, -0.09963200241327286, 0.018968045711517334, -0.11145712435245514, -0.02683742716908455, -0.02999192848801613, 0.00795822311192751, 0.00019980274373665452, -0.060522519052028656, -0.04965748265385628, 0.023462627083063126, -0.12150150537490845, -0.013776947744190693, 0.03685235232114792, 0.050994377583265305, -0.11065716296434402, -0.04301391541957855, 0.021627722308039665, -0.056174807250499725, 0.06238776072859764, 0.051684923470020294, 0.014937429688870907, 0.057991694658994675, -0.12214489281177521, -0.010519014671444893, 0.08397502452135086, 0.008717012591660023, 0.0786859542131424, -0.09543965756893158, -0.0002313766599399969, 0.014015069231390953, 0.06563317775726318, 0.01672324910759926, 0.06634431332349777, -0.15008413791656494, -0.013540226966142654, -0.031261932104825974, -0.07185987383127213, -0.071070596575737, 0.016442980617284775, 0.09629705548286438, 0.009697923436760902, 0.1955089420080185, -0.07242245972156525, 0.03434354439377785, -0.20070084929466248, -0.0050812214612960815, -0.02548137493431568, -0.11965122073888779, -0.13038162887096405, -0.0562359057366848, 0.061511293053627014, -0.04420316219329834, 0.13621786236763, 0.02876446582376957, 0.04375428333878517, 0.02844066359102726, -0.025212077423930168, 0.002933576935902238, 0.02831798419356346, 0.2157655954360962, 0.030910566449165344, -0.03386610746383667, 0.07327628880739212, 0.05956922844052315, 0.09441977739334106, 0.11482931673526764, 0.18489448726177216, 0.15362797677516937, -0.021392738446593285, 0.08839598298072815, 0.01654950901865959, -0.047665953636169434, -0.1711440086364746, 0.035915084183216095, -0.05572369322180748, 0.09451257437467575, -0.020603632554411888, 0.20701733231544495, 0.05772880092263222, -0.16704615950584412, 0.04817844554781914, -0.0523119792342186, -0.08675950020551682, -0.0977662056684494, -0.03451205790042877, -0.08101487159729004, -0.1437961906194687, 0.0015270860167220235, -0.10140654444694519, 0.011884964071214199, 0.11429881304502487, 0.006500130984932184, -0.027682263404130936, 0.15910211205482483, 0.027133312076330185, 0.031321894377470016, 0.050645098090171814, 0.0011273619020357728, -0.030068589374423027, -0.09960179030895233, -0.0634102150797844, -0.02343621663749218, -0.013637538999319077, 0.039984237402677536, -0.06404637545347214, -0.06384232640266418, 0.03798366338014603, -0.021077221259474754, -0.08792327344417572, 0.017171507701277733, 0.02332347072660923, 0.06098063662648201, 0.04137074574828148, 0.0025832399260252714, 0.019871186465024948, -0.020682817324995995, 0.20397715270519257, -0.07989313453435898, -0.08382869511842728, -0.09979995340108871, 0.28678593039512634, 0.05394703894853592, -0.010545304976403713, 0.03599926456809044, -0.05589047446846962, -0.0021847570315003395, 0.25719454884529114, 0.1776779145002365, -0.07471127063035965, -0.012450242415070534, 0.00009263537504011765, -0.01666703261435032, -0.02575591206550598, 0.12283337116241455, 0.14787892997264862, 0.045776478946208954, -0.10169849544763565, -0.04802558943629265, -0.06391215324401855, -0.009671705774962902, -0.05655831843614578, 0.04805377870798111, 0.032166097313165665, 0.0020316161680966616, -0.03976399824023247, 0.04970340430736542, -0.06755624711513519, -0.09308473020792007, 0.0716148391366005, -0.1872633397579193, -0.15932515263557434, -0.007569650653749704, 0.10483415424823761, 0.0014290843391790986, 0.05579664185643196, -0.028896179050207138, 0.0051842681132256985, 0.07190446555614471, -0.02460269071161747, -0.08232317864894867, -0.08147631585597992, 0.09660171717405319, -0.09363266080617905, 0.19242238998413086, -0.038619257509708405, 0.07805164158344269, 0.12386422604322433, 0.0717543289065361, -0.0841449424624443, 0.052285563200712204, 0.032828398048877716, -0.07841610163450241, 0.03725052997469902, 0.08784297108650208, -0.02479017898440361, 0.049727700650691986, 0.023932507261633873, -0.1284312605857849, 0.01833396591246128, -0.08112061023712158, -0.03393596410751343, -0.04548482969403267, -0.05014102905988693, -0.04872645437717438, 0.12364733964204788, 0.2130483090877533, -0.025836307555437088, 0.010310606099665165, -0.0803104117512703, 0.015077426098287106, 0.051322091370821, 0.00392180448397994, -0.08205073326826096, -0.2268492430448532, 0.013808323070406914, 0.05757368728518486, -0.028052637353539467, -0.19029569625854492, -0.09040527790784836, 0.0011879241792485118, -0.08520545810461044, -0.0965476855635643, 0.08253896236419678, 0.06227514520287514, 0.054487548768520355, -0.05510344356298447, -0.06479091197252274, -0.08978940546512604, 0.14640897512435913, -0.14923152327537537, -0.09018415212631226 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8144 - F1: 0.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 | | No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 | | 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 | | 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 | | 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-17\_55\_43 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7600 * Accuracy: 0.8144 * F1: 0.8788 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4064 - Accuracy: 0.8289 - F1: 0.8901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4163 | 0.8085 | 0.8780 | | No log | 2.0 | 390 | 0.4098 | 0.8268 | 0.8878 | | 0.312 | 3.0 | 585 | 0.5892 | 0.8244 | 0.8861 | | 0.312 | 4.0 | 780 | 0.7580 | 0.8232 | 0.8845 | | 0.312 | 5.0 | 975 | 0.9028 | 0.8183 | 0.8824 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-19\_11\_17 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4064 * Accuracy: 0.8289 * F1: 0.8901 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3825 - Accuracy: 0.8144 - F1: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3975 | 0.8122 | 0.8795 | | No log | 2.0 | 390 | 0.4376 | 0.8085 | 0.8673 | | 0.3169 | 3.0 | 585 | 0.5736 | 0.8171 | 0.8790 | | 0.3169 | 4.0 | 780 | 0.8178 | 0.8098 | 0.8754 | | 0.3169 | 5.0 | 975 | 0.9244 | 0.8073 | 0.8738 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-22\_30\_53 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3825 * Accuracy: 0.8144 * F1: 0.8833 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0926 - Accuracy: 0.9772 - F1: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 104 | 0.0539 | 0.9885 | 0.9942 | | No log | 2.0 | 208 | 0.0282 | 0.9885 | 0.9942 | | No log | 3.0 | 312 | 0.0317 | 0.9914 | 0.9956 | | No log | 4.0 | 416 | 0.0462 | 0.9885 | 0.9942 | | 0.0409 | 5.0 | 520 | 0.0517 | 0.9885 | 0.9942 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_editorials\_27\_02\_2022-19\_42\_36 ====================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0926 * Accuracy: 0.9772 * F1: 0.9883 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3358 - Accuracy: 0.8688 - F1: 0.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 81 | 0.4116 | 0.8382 | 0.9027 | | No log | 2.0 | 162 | 0.4360 | 0.8382 | 0.8952 | | No log | 3.0 | 243 | 0.5719 | 0.8382 | 0.8995 | | No log | 4.0 | 324 | 0.7251 | 0.8493 | 0.9021 | | No log | 5.0 | 405 | 0.8384 | 0.8456 | 0.9019 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_essays\_27\_02\_2022-19\_33\_10 ================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3358 * Accuracy: 0.8688 * F1: 0.9225 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5777 - Accuracy: 0.6794 - F1: 0.5010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.6059 | 0.63 | 0.4932 | | No log | 2.0 | 96 | 0.6327 | 0.705 | 0.5630 | | No log | 3.0 | 144 | 0.7003 | 0.695 | 0.5197 | | No log | 4.0 | 192 | 0.9368 | 0.69 | 0.4655 | | No log | 5.0 | 240 | 1.1935 | 0.685 | 0.4425 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_0.0002\_webDiscourse\_27\_02\_2022-19\_25\_06 ======================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5777 * Accuracy: 0.6794 * F1: 0.5010 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4787 - Accuracy: 0.8138 - F1: 0.8785 - Precision: 0.8489 - Recall: 0.9101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 390 | 0.4335 | 0.7732 | 0.8533 | 0.8209 | 0.8883 | | 0.5141 | 2.0 | 780 | 0.4196 | 0.8037 | 0.8721 | 0.8446 | 0.9015 | | 0.3368 | 3.0 | 1170 | 0.4519 | 0.8098 | 0.8779 | 0.8386 | 0.9212 | | 0.2677 | 4.0 | 1560 | 0.4787 | 0.8122 | 0.8785 | 0.8452 | 0.9146 | | 0.2677 | 5.0 | 1950 | 0.4912 | 0.8146 | 0.8794 | 0.8510 | 0.9097 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_1e-05\_all\_01\_03\_2022-13\_25\_32 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4787 * Accuracy: 0.8138 * F1: 0.8785 * Precision: 0.8489 * Recall: 0.9101 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09939631819725037, 0.06643826514482498, -0.0018496735719963908, 0.11666039377450943, 0.18245002627372742, 0.01867694780230522, 0.10718491673469543, 0.12340208888053894, -0.11937568336725235, 0.016116583719849586, 0.12205053120851517, 0.18724165856838226, 0.004543099086731672, 0.11884872615337372, -0.06330148875713348, -0.2574038505554199, -0.012200475670397282, 0.053906504064798355, -0.06343834102153778, 0.14001090824604034, 0.09724333137273788, -0.13304844498634338, 0.07671298831701279, 0.004488223232328892, -0.22888387739658356, 0.009854009374976158, 0.014739379286766052, -0.06846042722463608, 0.14621755480766296, 0.021742671728134155, 0.12856179475784302, 0.003422001376748085, 0.07682719081640244, -0.17444269359111786, 0.010080191306769848, 0.04977518320083618, 0.004845036659389734, 0.08477891236543655, 0.05059918761253357, -0.016107600182294846, 0.12602101266384125, -0.0956273004412651, 0.053846802562475204, 0.018980439752340317, -0.12089496105909348, -0.2203506976366043, -0.0795954018831253, 0.02389313280582428, 0.07232831418514252, 0.1133250817656517, -0.001236355397850275, 0.13475188612937927, -0.09294452518224716, 0.10078395903110504, 0.21688906848430634, -0.28553393483161926, -0.06485544145107269, 0.02446719817817211, 0.005330102983862162, 0.06961293518543243, -0.11012151092290878, -0.026752231642603874, 0.05852426216006279, 0.05390282720327377, 0.14034457504749298, -0.0328521765768528, -0.1253749430179596, 0.010758702643215656, -0.14160914719104767, -0.034578047692775726, 0.13970430195331573, 0.021392052993178368, -0.029107537120580673, -0.0484321266412735, -0.05831008404493332, -0.1621948629617691, -0.044257987290620804, -0.00614148797467351, 0.04140747711062431, -0.0340258963406086, -0.054228246212005615, 0.008985639549791813, -0.10918068140745163, -0.06042470410466194, -0.07824975997209549, 0.14435693621635437, 0.0401889905333519, 0.00976969301700592, -0.03844326734542847, 0.10573378205299377, 0.022423839196562767, -0.13400140404701233, 0.026682080700993538, 0.028153670951724052, 0.009009519591927528, -0.052668649703264236, -0.07267162203788757, -0.06355571001768112, 0.004300130996853113, 0.10936717689037323, -0.06425356864929199, 0.054365821182727814, 0.022615263238549232, 0.041544072329998016, -0.09722599387168884, 0.19377994537353516, -0.022581880912184715, -0.0006323347915895283, 0.016070205718278885, 0.03994133695960045, 0.007502324879169464, -0.008073779754340649, -0.11584227532148361, 0.0009648760315030813, 0.11619973927736282, 0.01775997318327427, -0.07474526017904282, 0.0776810273528099, -0.0489695742726326, -0.020027026534080505, 0.018899863585829735, -0.10417144000530243, 0.034542981535196304, -0.002466370817273855, -0.08223917335271835, -0.011595271527767181, 0.03050532378256321, 0.00962282158434391, -0.03811008110642433, 0.11989861726760864, -0.07773193717002869, 0.044830452650785446, -0.10022363066673279, -0.10667164623737335, 0.017784880474209785, -0.07707305997610092, 0.025179505348205566, -0.10481013357639313, -0.15897518396377563, -0.020532527938485146, 0.05655290558934212, -0.022007497027516365, -0.056188471615314484, -0.054894160479307175, -0.07511124759912491, 0.017381614074110985, -0.019002392888069153, 0.146974116563797, -0.05854745954275131, 0.10973220318555832, 0.04023904353380203, 0.06611816585063934, -0.05139247700572014, 0.06302906572818756, -0.09748391807079315, -0.001963807502761483, -0.19534265995025635, 0.05452103540301323, -0.045429617166519165, 0.08415937423706055, -0.08721685409545898, -0.11650712788105011, 0.01319244783371687, -0.004516612272709608, 0.07094745337963104, 0.0917680636048317, -0.16083811223506927, -0.07747369259595871, 0.15751923620700836, -0.06789692491292953, -0.11092343926429749, 0.11152855306863785, -0.06247439980506897, 0.05266224592924118, 0.08375564962625504, 0.16478124260902405, 0.0768776684999466, -0.06845397502183914, 0.02248658984899521, 0.0033963529858738184, 0.04250364750623703, -0.08370649814605713, 0.050938680768013, 0.011027664877474308, -0.007805954664945602, 0.03893293812870979, -0.018888307735323906, 0.06898169964551926, -0.09138195961713791, -0.09263373166322708, -0.046071857213974, -0.09434918314218521, 0.046568915247917175, 0.08176182955503464, 0.09666293859481812, -0.09384263306856155, -0.06815822422504425, 0.07958313077688217, 0.07027283310890198, -0.06208339333534241, 0.03727351501584053, -0.05350267514586449, 0.05732179805636406, -0.02785385400056839, -0.017494067549705505, -0.20759205520153046, 0.005561329424381256, 0.005728711374104023, 0.010282827541232109, 0.01725820079445839, 0.006049386225640774, 0.06954268366098404, 0.04679064825177193, -0.05747184529900551, -0.013655352406203747, -0.0061741843819618225, -0.008075524121522903, -0.14064466953277588, -0.18577055633068085, -0.015156948007643223, -0.021106822416186333, 0.11622247099876404, -0.19669927656650543, 0.03863425552845001, -0.012089415453374386, 0.0634363442659378, -0.003630895633250475, -0.0010399206075817347, -0.04373970627784729, 0.09074059128761292, -0.035127900540828705, -0.044440917670726776, 0.08050248771905899, 0.010106999427080154, -0.0818880945444107, -0.03863277658820152, -0.0909748300909996, 0.16670724749565125, 0.14521759748458862, -0.127992182970047, -0.08237253129482269, -0.005091926082968712, -0.0576346255838871, -0.02936345711350441, -0.03853853791952133, 0.04690150171518326, 0.19146856665611267, -0.015738599002361298, 0.16197337210178375, -0.0691574215888977, -0.05250604823231697, 0.021976647898554802, -0.03030974790453911, 0.03337259590625763, 0.12148851156234741, 0.10887966305017471, -0.0836123377084732, 0.14041537046432495, 0.14715883135795593, -0.10087694227695465, 0.12208538502454758, -0.04703138396143913, -0.0624673031270504, -0.002678940538316965, -0.01785493642091751, -0.0003996878513135016, 0.07468820363283157, -0.14380742609500885, -0.01031734049320221, 0.019278816878795624, 0.02457175776362419, 0.02748013474047184, -0.22610238194465637, -0.03146892786026001, 0.02643146552145481, -0.03591850399971008, -0.012697561644017696, -0.017331982031464577, 0.011742300353944302, 0.10721001029014587, -0.00026772156707011163, -0.08017098903656006, 0.0450986884534359, 0.00705321878194809, -0.08599100261926651, 0.22495236992835999, -0.09305578470230103, -0.16859421133995056, -0.11808321624994278, -0.08184535801410675, -0.035525038838386536, 0.0081650884822011, 0.06634660065174103, -0.10127722471952438, -0.026166081428527832, -0.05262279510498047, 0.012558451853692532, -0.0035687177442014217, 0.0421447716653347, 0.013163466937839985, 0.007543323095887899, 0.0686100423336029, -0.10888204723596573, -0.012295243330299854, -0.054668113589286804, -0.053048595786094666, 0.0553838387131691, 0.028635738417506218, 0.10429894924163818, 0.16450335085391998, -0.02687138505280018, 0.011709627695381641, -0.035191576927900314, 0.22405597567558289, -0.06644267588853836, -0.03148128464818001, 0.13282446563243866, -0.0051660556346178055, 0.053942229598760605, 0.1045345664024353, 0.06845107674598694, -0.09120184928178787, 0.01574166864156723, 0.019537413492798805, -0.036768339574337006, -0.23124849796295166, -0.05520810931921005, -0.06253663450479507, -0.028255706652998924, 0.09848671406507492, 0.029855169355869293, 0.0516011044383049, 0.0662369504570961, 0.045206550508737564, 0.08997229486703873, -0.0349477119743824, 0.052885983139276505, 0.1287238746881485, 0.047371216118335724, 0.12607251107692719, -0.053328875452280045, -0.06864850223064423, 0.028909897431731224, -0.025640249252319336, 0.2220560610294342, 0.002315905410796404, 0.1209593415260315, 0.052247773855924606, 0.17521803081035614, 0.007191754877567291, 0.0928226038813591, -0.003835137467831373, -0.04585348442196846, -0.005067302379757166, -0.03759430721402168, -0.04949343577027321, 0.012465076521039009, -0.07411599904298782, 0.04966907948255539, -0.12624503672122955, -0.015200634486973286, 0.05652743577957153, 0.25506341457366943, 0.02330962009727955, -0.3273555636405945, -0.08588787168264389, -0.0008696442237123847, -0.0389535017311573, -0.02642572857439518, 0.020864922553300858, 0.07719563692808151, -0.09785076230764389, 0.03625655174255371, -0.0690244659781456, 0.09987080842256546, -0.04299610108137131, 0.04636121913790703, 0.06495773792266846, 0.07580525428056717, 0.011982535943388939, 0.08440867066383362, -0.33339741826057434, 0.2679048180580139, 0.0021934269461780787, 0.07641754299402237, -0.0860496237874031, 0.0017560614505782723, 0.03255860507488251, 0.07124457508325577, 0.05828561261296272, -0.01575894095003605, -0.04096392169594765, -0.1850750744342804, -0.05449315905570984, 0.030008774250745773, 0.08631981909275055, -0.011280528269708157, 0.08403293788433075, -0.026077980175614357, 0.006968691013753414, 0.07634156197309494, -0.042057596147060394, -0.049744799733161926, -0.10237818956375122, -0.015019838698208332, 0.024809906259179115, -0.04023199900984764, -0.05623335763812065, -0.11583346873521805, -0.12623785436153412, 0.15347877144813538, -0.017090434208512306, -0.04181893542408943, -0.11300364136695862, 0.08780024200677872, 0.06768523156642914, -0.08655678480863571, 0.05214938521385193, 0.00543516268953681, 0.05785032734274864, 0.027771776542067528, -0.08263970166444778, 0.10488361120223999, -0.06053762137889862, -0.1478910595178604, -0.049088623374700546, 0.10801302641630173, 0.035790544003248215, 0.06138893589377403, -0.007895156741142273, 0.011828109622001648, -0.0392376147210598, -0.0944761261343956, 0.011526723392307758, -0.016990024596452713, 0.09287332743406296, 0.018869148567318916, -0.06644237041473389, -0.009603723883628845, -0.06621103733778, -0.03144204244017601, 0.202467143535614, 0.20515389740467072, -0.09616801887750626, 0.026531800627708435, 0.029119528830051422, -0.07317329943180084, -0.20608802139759064, 0.0465574637055397, 0.06743951886892319, 0.0062062921933829784, 0.01994800567626953, -0.17963042855262756, 0.1320527046918869, 0.09133625030517578, -0.009230810217559338, 0.10164877027273178, -0.32802850008010864, -0.12956547737121582, 0.12495116889476776, 0.1405867040157318, 0.13199633359909058, -0.14084230363368988, -0.018506141379475594, -0.03080754168331623, -0.11759945005178452, 0.10092306137084961, -0.07775645703077316, 0.11926206201314926, -0.032507043331861496, 0.0811850056052208, 0.001378860673867166, -0.062381669878959656, 0.10944359004497528, 0.02787739410996437, 0.09711454063653946, -0.06584014743566513, -0.030302129685878754, 0.03875505179166794, -0.03777817264199257, 0.01926436461508274, -0.08167462795972824, 0.027966333553195, -0.10391419380903244, -0.02144858054816723, -0.0832298994064331, 0.04250330850481987, -0.032732173800468445, -0.04825172573328018, -0.034043364226818085, 0.017012370750308037, 0.053776249289512634, -0.01468745619058609, 0.13392122089862823, 0.020675450563430786, 0.1515301614999771, 0.11634228378534317, 0.07896780222654343, -0.06909093260765076, -0.05562853813171387, -0.01242771465331316, -0.015340793877840042, 0.05612244829535484, -0.1568794548511505, 0.032129283994436264, 0.14808563888072968, 0.01905711367726326, 0.12904028594493866, 0.08737681061029434, -0.007611658424139023, 0.003353649517521262, 0.06938890367746353, -0.16207022964954376, -0.07155163586139679, -0.004099973011761904, -0.05804051086306572, -0.09940055012702942, 0.05244665592908859, 0.07963821291923523, -0.06944833695888519, -0.013501094654202461, -0.00984368659555912, 0.0017250041710212827, -0.061234939843416214, 0.2054818868637085, 0.05937422439455986, 0.047022078186273575, -0.11267773807048798, 0.07190082967281342, 0.05905025452375412, -0.08440224826335907, 0.00719457259401679, 0.08394651114940643, -0.09168234467506409, -0.04907999187707901, 0.12020838260650635, 0.16938036680221558, -0.05466226115822792, -0.04522737115621567, -0.13496534526348114, -0.12918905913829803, 0.0871843621134758, 0.1696317195892334, 0.12227386981248856, 0.014547971077263355, -0.06388670951128006, 0.0060466621071100235, -0.12907826900482178, 0.0776589885354042, 0.04217648133635521, 0.064481221139431, -0.1333063244819641, 0.1734534353017807, 0.012272845953702927, 0.04972882196307182, -0.024670468643307686, 0.024204423651099205, -0.10045918822288513, 0.023487241938710213, -0.11988607048988342, -0.019662633538246155, -0.0224592424929142, 0.007297920528799295, -0.00858729612082243, -0.04773963242769241, -0.04985332116484642, 0.01805162988603115, -0.12088461220264435, -0.018060529604554176, 0.02343190461397171, 0.05180661007761955, -0.11329394578933716, -0.04141618683934212, 0.019696949049830437, -0.06033404916524887, 0.061653707176446915, 0.059022821485996246, 0.005423716269433498, 0.067607082426548, -0.1310867816209793, -0.005461925640702248, 0.08627529442310333, 0.01174108125269413, 0.06469744443893433, -0.08592614531517029, 0.00045015677460469306, 0.018625786527991295, 0.06679503619670868, 0.02818775177001953, 0.07880891859531403, -0.14439892768859863, 0.005627295933663845, -0.03427711874246597, -0.07868339866399765, -0.0700397863984108, 0.033177174627780914, 0.08750488609075546, 0.010668536648154259, 0.195419579744339, -0.08144134283065796, 0.03785155341029167, -0.20488034188747406, 0.0006423257873393595, -0.020846057683229446, -0.12214206159114838, -0.12625543773174286, -0.06768596172332764, 0.06764601171016693, -0.04640987515449524, 0.13346725702285767, 0.03722982853651047, 0.04288788139820099, 0.030375167727470398, -0.012886326760053635, 0.0012928546639159322, 0.026988377794623375, 0.21529695391654968, 0.032537806779146194, -0.03861275315284729, 0.07780669629573822, 0.05741429328918457, 0.10029538720846176, 0.12414675951004028, 0.20089887082576752, 0.15574419498443604, -0.014400866813957691, 0.097690649330616, 0.01430444698780775, -0.044885020703077316, -0.15601150691509247, 0.03756477311253548, -0.05599700286984444, 0.1011013463139534, -0.0274411141872406, 0.20353488624095917, 0.05445646867156029, -0.1651713103055954, 0.052106838673353195, -0.058583129197359085, -0.09525315463542938, -0.10621818900108337, -0.03825855255126953, -0.08276199549436569, -0.13949714601039886, -0.001428490737453103, -0.10834579914808273, 0.013977828435599804, 0.10226256400346756, 0.006766230333596468, -0.030170395970344543, 0.15841789543628693, 0.03183523193001747, 0.016351798549294472, 0.06968379020690918, -0.003358106128871441, -0.02574421465396881, -0.10423403978347778, -0.0564228855073452, -0.02055197022855282, -0.015466444194316864, 0.03880814462900162, -0.05085541307926178, -0.06508412957191467, 0.04130364954471588, -0.031775254756212234, -0.09337720274925232, 0.016172301024198532, 0.029321789741516113, 0.07099729776382446, 0.06095554307103157, 0.00988683383911848, 0.009027427062392235, -0.012602854520082474, 0.21621206402778625, -0.07703279703855515, -0.09030803292989731, -0.09616175293922424, 0.2740306556224823, 0.057876236736774445, -0.01027040183544159, 0.02962125837802887, -0.059152424335479736, -0.0007473984733223915, 0.2633533775806427, 0.19538408517837524, -0.07769670337438583, -0.006720329634845257, -0.0003305276622995734, -0.008791331201791763, -0.006754583213478327, 0.12630265951156616, 0.15334486961364746, 0.04998461529612541, -0.10555771738290787, -0.046740543097257614, -0.057316653430461884, -0.015570278279483318, -0.05213107541203499, 0.06396165490150452, 0.03356803581118584, -0.002641354687511921, -0.03344380483031273, 0.06239970773458481, -0.07192107290029526, -0.08668918162584305, 0.05266602337360382, -0.20590801537036896, -0.15926618874073029, -0.011552850715816021, 0.10727479308843613, 0.000304406916256994, 0.057967741042375565, -0.01885034888982773, 0.0034854356199502945, 0.07165331393480301, -0.024232544004917145, -0.08711849898099899, -0.07164552062749863, 0.09106307476758957, -0.12249097228050232, 0.17517127096652985, -0.03927332162857056, 0.07233863323926926, 0.12231544405221939, 0.07634696364402771, -0.06872250139713287, 0.06116446852684021, 0.026352304965257645, -0.06378137320280075, 0.0443057045340538, 0.0867534726858139, -0.031264420598745346, 0.03381531685590744, 0.03461022302508354, -0.11689795553684235, 0.028958527371287346, -0.08233334869146347, -0.046630751341581345, -0.04502896964550018, -0.04463717341423035, -0.05565062165260315, 0.11894699186086655, 0.22129806876182556, -0.023605894297361374, 0.014330752193927765, -0.07740893214941025, 0.0017525126459077, 0.041217103600502014, 0.015399201773107052, -0.08295624703168869, -0.23651903867721558, 0.0057052141055464745, 0.06195129081606865, -0.02045348286628723, -0.22358933091163635, -0.0886700302362442, -0.0022758259437978268, -0.07667022943496704, -0.10175494104623795, 0.0829833373427391, 0.07160118967294693, 0.04799985885620117, -0.05524880439043045, -0.07519536465406418, -0.07723598182201385, 0.1576392501592636, -0.15040704607963562, -0.08822241425514221 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4563 - Accuracy: 0.8440 - F1: 0.8954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4302 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3970 | 0.8220 | 0.8875 | | 0.3703 | 3.0 | 585 | 0.3972 | 0.8402 | 0.8934 | | 0.3703 | 4.0 | 780 | 0.4945 | 0.8390 | 0.8935 | | 0.3703 | 5.0 | 975 | 0.5354 | 0.8305 | 0.8898 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-02\_53\_51 ============================================================== This model is a fine-tuned version of siebert/sentiment-roberta-large-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4563 * Accuracy: 0.8440 * F1: 0.8954 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.08928936719894409, 0.04074569419026375, -0.0015670070424675941, 0.11692076921463013, 0.21406088769435883, 0.030764013528823853, 0.10318399965763092, 0.10817193239927292, -0.12420768290758133, 0.029993176460266113, 0.11862944811582565, 0.17398862540721893, 0.004029403906315565, 0.10242834687232971, -0.06507757306098938, -0.2756783068180084, -0.03446369245648384, 0.04150739312171936, -0.07881177961826324, 0.12800143659114838, 0.08028393238782883, -0.1548319309949875, 0.07693406939506531, -0.01643727719783783, -0.25883495807647705, 0.0219773780554533, 0.02971610426902771, -0.06053803116083145, 0.1455990970134735, 0.014711366966366768, 0.16518573462963104, -0.004753699526190758, 0.09446607530117035, -0.1561141461133957, 0.014813823625445366, 0.06235310807824135, 0.013452722690999508, 0.08542929589748383, 0.0616794154047966, -0.014044827781617641, 0.11218386143445969, -0.10382533818483353, 0.062192533165216446, 0.0014311986742541194, -0.13006852567195892, -0.19075801968574524, -0.06932415068149567, -0.010737995617091656, 0.053043514490127563, 0.10238324850797653, -0.011482457630336285, 0.15754227340221405, -0.10616462677717209, 0.10426275432109833, 0.21143430471420288, -0.26839521527290344, -0.08568459004163742, 0.0489635206758976, -0.007733824197202921, 0.09171898663043976, -0.12144012004137039, -0.013894741423428059, 0.05914901942014694, 0.05653630197048187, 0.11919235438108444, -0.032012417912483215, -0.12853313982486725, 0.023935938253998756, -0.14618654549121857, 0.002318690763786435, 0.06730134040117264, 0.014267896302044392, -0.013596735894680023, -0.01866111531853676, -0.06339198350906372, -0.16339394450187683, -0.04309813305735588, -0.023349152877926826, 0.04438662901520729, -0.05446048825979233, -0.10450693964958191, 0.008697064593434334, -0.10196641087532043, -0.057031918317079544, -0.08514624834060669, 0.15346351265907288, 0.037091393023729324, 0.014627247117459774, -0.04231157526373863, 0.10116012394428253, -0.01126047596335411, -0.13120155036449432, 0.05179940164089203, 0.025910569354891777, -0.029978550970554352, -0.0703551396727562, -0.07523497939109802, -0.11072512716054916, -0.002775781322270632, 0.07562324404716492, -0.054235924035310745, 0.056716255843639374, 0.02103925682604313, 0.03724898025393486, -0.08811008185148239, 0.19984741508960724, -0.043090783059597015, -0.028626367449760437, 0.005389281548559666, 0.04504159092903137, -0.0065927160903811455, -0.013101025484502316, -0.11183660477399826, 0.0021622199565172195, 0.1154719740152359, 0.0014182303566485643, -0.07986700534820557, 0.07064376771450043, -0.03631141781806946, -0.018493063747882843, -0.041019171476364136, -0.0978321060538292, 0.04923109710216522, -0.012900403700768948, -0.09362265467643738, 0.0016617054352536798, 0.011691353283822536, 0.01309688575565815, -0.02097616158425808, 0.16687744855880737, -0.09287359565496445, 0.05264317989349365, -0.12067888677120209, -0.12313289940357208, 0.005747644230723381, -0.07784688472747803, 0.02032722719013691, -0.09810752421617508, -0.14229880273342133, -0.0284261517226696, 0.052327435463666916, -0.04078645259141922, -0.03352312743663788, -0.055587515234947205, -0.07404863834381104, 0.009703096933662891, -0.012918848544359207, 0.17634683847427368, -0.04971274361014366, 0.11420904099941254, 0.053369857370853424, 0.07912240922451019, -0.05552211403846741, 0.05202409252524376, -0.08958224207162857, -0.008416145108640194, -0.21446271240711212, 0.055995289236307144, -0.045758772641420364, 0.07865558564662933, -0.06335946172475815, -0.1134418249130249, -0.002404864178970456, 0.00038166504236869514, 0.09316833317279816, 0.07938235253095627, -0.17510798573493958, -0.08376767486333847, 0.15996959805488586, -0.05676067993044853, -0.08268243819475174, 0.11465924978256226, -0.073927141726017, 0.037401601672172546, 0.08634346723556519, 0.16817815601825714, 0.05031817778944969, -0.0733514353632927, 0.0218220092356205, -0.03243395686149597, 0.04528959468007088, -0.06300914287567139, 0.031973034143447876, 0.025147097185254097, 0.005099697504192591, 0.03350605443120003, -0.003933618310838938, 0.06631708145141602, -0.11775626987218857, -0.08671979606151581, -0.038468312472105026, -0.10778957605361938, 0.05110067501664162, 0.09083864092826843, 0.11065490543842316, -0.10276857763528824, -0.06266064941883087, 0.09391002357006073, 0.053857333958148956, -0.05086854100227356, 0.02362775057554245, -0.051545239984989166, 0.057015955448150635, -0.05380362272262573, -0.02571680024266243, -0.2127273827791214, -0.02537420764565468, 0.0005009531159885228, 0.05269033834338188, 0.03662126511335373, 0.027132360264658928, 0.08634430915117264, 0.05713961645960808, -0.06821830570697784, 0.006697080563753843, -0.010343313217163086, -0.010443542152643204, -0.1582690179347992, -0.19556055963039398, -0.007740714121609926, -0.01769300550222397, 0.09585119783878326, -0.2182457447052002, 0.02337036095559597, -0.03510576859116554, 0.08304418623447418, 0.014063914306461811, -0.007654091808944941, -0.05602242425084114, 0.11239565163850784, -0.02390071004629135, -0.044712357223033905, 0.07470417022705078, -0.012562698684632778, -0.06799978017807007, -0.07791638374328613, -0.1104632094502449, 0.18006417155265808, 0.14406104385852814, -0.15857836604118347, -0.10481419414281845, 0.014167580753564835, -0.05447922646999359, -0.021326135843992233, -0.06100431829690933, 0.05212721601128578, 0.1939965933561325, -0.013996351510286331, 0.15659891068935394, -0.05627366527915001, -0.04197161644697189, 0.016993572935461998, -0.028987446799874306, 0.04389503225684166, 0.11762112379074097, 0.12624084949493408, -0.07961162179708481, 0.13168752193450928, 0.12176373600959778, -0.13220174610614777, 0.15129055082798004, -0.021055983379483223, -0.07446331530809402, -0.010597722604870796, -0.03304244950413704, 0.0062745725736021996, 0.09134908765554428, -0.11679821461439133, -0.021531326696276665, 0.0011449205921962857, 0.01778114028275013, 0.03303123265504837, -0.2274339646100998, -0.04669754579663277, 0.02417774498462677, -0.009083726443350315, 0.0052313595078885555, -0.021503131836652756, 0.02704264409840107, 0.12473800033330917, 0.0037691625766456127, -0.0664125606417656, 0.02452288568019867, 0.0026631427463144064, -0.06890250742435455, 0.21482406556606293, -0.07169332355260849, -0.1321277916431427, -0.09720388054847717, -0.07911964505910873, -0.039252568036317825, 0.013820930384099483, 0.03754555806517601, -0.12508413195610046, -0.014930839650332928, -0.036415692418813705, 0.02569741941988468, 0.0041243769228458405, 0.054590847343206406, 0.002877304796129465, 0.007242812775075436, 0.060854196548461914, -0.09680032730102539, -0.0039007982704788446, -0.08017005771398544, -0.07472598552703857, 0.06132436543703079, 0.05192813277244568, 0.12056354433298111, 0.172372505068779, -0.050249043852090836, 0.007636487018316984, -0.031924374401569366, 0.23014815151691437, -0.07624414563179016, -0.03571537509560585, 0.10018374025821686, -0.018425041809678078, 0.04732858017086983, 0.10543905198574066, 0.0756559744477272, -0.09711914509534836, 0.020288841798901558, 0.04232322797179222, -0.0468004010617733, -0.21456387639045715, -0.03743364289402962, -0.057260662317276, -0.04130076989531517, 0.0847679153084755, 0.01806752197444439, 0.034948062151670456, 0.06977425515651703, 0.06976873427629471, 0.09713681787252426, -0.061411112546920776, 0.045247308909893036, 0.09736918658018112, 0.050219617784023285, 0.13574473559856415, -0.04491911455988884, -0.09700345993041992, 0.026317013427615166, -0.03373006731271744, 0.22192879021167755, -0.008272948674857616, 0.07180635631084442, 0.03596251457929611, 0.17164850234985352, 0.011553775519132614, 0.07939556241035461, 0.0018054164247587323, -0.06787273287773132, -0.002118730917572975, -0.031009715050458908, -0.045881252735853195, 0.009397114627063274, -0.035107262432575226, 0.04921361804008484, -0.11894399672746658, -0.011504041031002998, 0.06045865640044212, 0.22120048105716705, 0.02287142723798752, -0.31843867897987366, -0.06869467347860336, -0.0006449749344028533, -0.03191684931516647, -0.010410109534859657, 0.0076470510102808475, 0.11250578612089157, -0.09855024516582489, 0.027714204043149948, -0.07478446513414383, 0.0940910205245018, -0.043632011860609055, 0.0469108521938324, 0.05458149313926697, 0.11491991579532623, -0.009057223796844482, 0.0658935010433197, -0.32449233531951904, 0.2666137218475342, 0.010096242651343346, 0.08825305849313736, -0.08039254695177078, -0.013803204521536827, 0.0350356288254261, 0.038498468697071075, 0.029280290007591248, -0.021932953968644142, -0.04688353091478348, -0.20754417777061462, -0.02745838463306427, 0.03339908644556999, 0.1249910369515419, -0.0007393290288746357, 0.09827516227960587, -0.017864296212792397, 0.003870629705488682, 0.07814204692840576, -0.04307763651013374, -0.04881379380822182, -0.08319652080535889, -0.02912954054772854, 0.014752120710909367, -0.0748680830001831, -0.04313680902123451, -0.12191873788833618, -0.13325592875480652, 0.15176185965538025, 0.005637635476887226, -0.014180315658450127, -0.12084534764289856, 0.13633699715137482, 0.0693710595369339, -0.08084498345851898, 0.03468519449234009, 0.014900757931172848, 0.05361105129122734, 0.027974674478173256, -0.06995583325624466, 0.11386750638484955, -0.052120599895715714, -0.1497063934803009, -0.06472549587488174, 0.08218042552471161, 0.039774857461452484, 0.06827995181083679, -0.020016366615891457, 0.02147332951426506, -0.023064840584993362, -0.08828530460596085, 0.03888435661792755, -0.030643774196505547, 0.06987438350915909, 0.03797375410795212, -0.058109063655138016, -0.020258933305740356, -0.05644003674387932, -0.016959911212325096, 0.1986081600189209, 0.21551474928855896, -0.09182050824165344, -0.007226760499179363, 0.025861401110887527, -0.06708703190088272, -0.20520257949829102, 0.10326003283262253, 0.08579898625612259, 0.013197715394198895, 0.04229619726538658, -0.16851043701171875, 0.14798611402511597, 0.1016215905547142, 0.0006637254264205694, 0.11383093148469925, -0.3071560859680176, -0.13219225406646729, 0.09505701065063477, 0.1664009839296341, 0.15180909633636475, -0.14744330942630768, -0.008949107490479946, -0.02611568570137024, -0.0899697095155716, 0.103156678378582, -0.08798165619373322, 0.12552623450756073, -0.019198652356863022, 0.10409305989742279, 0.013113191351294518, -0.06638259440660477, 0.09314276278018951, 0.004838480148464441, 0.11170189082622528, -0.0723709687590599, -0.056710269302129745, 0.042661476880311966, -0.028542567044496536, -0.01473460253328085, -0.03516995906829834, 0.01593647710978985, -0.07594215869903564, -0.020388958975672722, -0.09514039754867554, 0.033454738557338715, -0.027367686852812767, -0.06204432249069214, -0.03293808177113533, 0.030194519087672234, 0.03812273219227791, -0.017790662124753, 0.11606922000646591, -0.00004268712655175477, 0.1755426824092865, 0.0906750038266182, 0.07849319279193878, -0.05123475193977356, -0.024286111816763878, 0.008237706497311592, -0.009858455508947372, 0.05445405840873718, -0.13691964745521545, 0.02055935002863407, 0.15597006678581238, 0.020270202308893204, 0.12013930827379227, 0.096052385866642, -0.013560215942561626, 0.021081402897834778, 0.08182418346405029, -0.16433551907539368, -0.06534916907548904, 0.003650193801149726, -0.0855725109577179, -0.09686407446861267, 0.04774491861462593, 0.08173831552267075, -0.0678216814994812, -0.009507553651928902, -0.011718151159584522, -0.015909617766737938, -0.06433779746294022, 0.22031807899475098, 0.07637738436460495, 0.039512600749731064, -0.10189227014780045, 0.06245722249150276, 0.06179178133606911, -0.09014180302619934, 0.009090879000723362, 0.09717390686273575, -0.07525899261236191, -0.02466542460024357, 0.11632250994443893, 0.21282216906547546, -0.0631910115480423, -0.016994813457131386, -0.14600835740566254, -0.10818597674369812, 0.06957124173641205, 0.19365018606185913, 0.1088397353887558, -0.008053505793213844, -0.06267277151346207, 0.02968120016157627, -0.15307696163654327, 0.07391631603240967, 0.045453887432813644, 0.07950340211391449, -0.13170742988586426, 0.19839417934417725, 0.0007810224778950214, 0.04049481824040413, -0.03584117069840431, 0.03274907171726227, -0.12378358095884323, 0.024161679670214653, -0.11265844106674194, -0.04812927916646004, 0.0001724843605188653, -0.01066632941365242, -0.00380240217782557, -0.0653105154633522, -0.06392020732164383, 0.0004242652212269604, -0.12525852024555206, -0.013932263478636742, 0.03519497439265251, 0.020731713622808456, -0.10973809659481049, -0.03960033506155014, 0.01603337749838829, -0.04493735358119011, 0.048976439982652664, 0.05082525312900543, 0.01614520698785782, 0.0760069489479065, -0.1665770411491394, -0.01453516073524952, 0.06838200241327286, -0.007151085417717695, 0.09008833020925522, -0.04528585076332092, 0.0006648687995038927, -0.003275070572271943, 0.11276952922344208, 0.03475077450275421, 0.083197221159935, -0.13592220842838287, 0.022208981215953827, -0.03444214165210724, -0.1007632464170456, -0.06462264060974121, 0.035915542393922806, 0.07528949528932571, 0.014193732291460037, 0.1775585114955902, -0.0920194610953331, 0.05244719237089157, -0.21303927898406982, -0.008287637494504452, -0.016163401305675507, -0.11430445313453674, -0.099685899913311, -0.06115734949707985, 0.08218313753604889, -0.053202129900455475, 0.12681709229946136, 0.05609762296080589, 0.06397122144699097, 0.03281603381037712, -0.026304982602596283, -0.004601167049258947, 0.03648565709590912, 0.19719263911247253, 0.045796189457178116, -0.04946191608905792, 0.0634351596236229, 0.0816115066409111, 0.10697510838508606, 0.1288481056690216, 0.22411860525608063, 0.1475895345211029, -0.026283079758286476, 0.09114573150873184, 0.022426966577768326, -0.04624319449067116, -0.14164893329143524, 0.03574628382921219, -0.07773997634649277, 0.08427394926548004, -0.03778909146785736, 0.1868889331817627, 0.058447808027267456, -0.1574873924255371, 0.04708492010831833, -0.07484058290719986, -0.10561677068471909, -0.10425470769405365, -0.00843860674649477, -0.0901743620634079, -0.13512122631072998, 0.014899404719471931, -0.11051713675260544, 0.02224755473434925, 0.12182725220918655, 0.013952165842056274, -0.0268477164208889, 0.18625979125499725, 0.03741181269288063, 0.037437669932842255, 0.07555782794952393, 0.00822204165160656, -0.012242534197866917, -0.09027690440416336, -0.061322636902332306, -0.04111279919743538, -0.01085412222892046, 0.036672912538051605, -0.06435183435678482, -0.08931402862071991, 0.032227467745542526, -0.01809820532798767, -0.10318969935178757, 0.026540763676166534, 0.031114231795072556, 0.07471497356891632, 0.036601316183805466, -0.0026208164636045694, 0.010610667057335377, -0.030564354732632637, 0.23346363008022308, -0.08651891350746155, -0.07590658217668533, -0.09949280321598053, 0.27284812927246094, 0.04617435112595558, 0.006755131296813488, 0.00930632185190916, -0.07187994569540024, 0.010236028581857681, 0.25291451811790466, 0.20396894216537476, -0.12239488959312439, -0.008951465599238873, 0.0019076504977419972, -0.009194917045533657, -0.01971057429909706, 0.13767719268798828, 0.12983348965644836, 0.050774797797203064, -0.11262739449739456, -0.03782148286700249, -0.0519663542509079, -0.015943970531225204, -0.03599003329873085, 0.0568426251411438, 0.062247321009635925, 0.019526181742548943, -0.05736880004405975, 0.0659865066409111, -0.07908719778060913, -0.10647724568843842, 0.06789838522672653, -0.2321578413248062, -0.17627471685409546, -0.008740495890378952, 0.1088290587067604, -0.013092662207782269, 0.07256418466567993, -0.027104586362838745, -0.0002696726005524397, 0.026148583739995956, -0.0294872485101223, -0.06884244084358215, -0.08651674538850784, 0.08968936651945114, -0.11768196523189545, 0.1655983179807663, -0.05139731243252754, 0.06402743607759476, 0.12750965356826782, 0.06476852297782898, -0.04731322079896927, 0.05910797044634819, 0.034097641706466675, -0.09774884581565857, 0.029660683125257492, 0.12970152497291565, -0.03730965033173561, 0.043190695345401764, 0.04573366045951843, -0.13299858570098877, 0.037650760263204575, -0.10647614300251007, -0.040626414120197296, -0.04450332745909691, -0.04440129175782204, -0.058220990002155304, 0.12285936623811722, 0.2426961064338684, -0.006978270132094622, 0.03769964724779129, -0.08243783563375473, 0.0006213283631950617, 0.043355792760849, 0.06069037318229675, -0.1056135892868042, -0.25504326820373535, 0.005829702131450176, 0.0861487165093422, -0.03574245423078537, -0.2437354177236557, -0.08251968771219254, 0.0003221278893761337, -0.07338874787092209, -0.09443666785955429, 0.09208223968744278, 0.0790509283542633, 0.05580151826143265, -0.05060512572526932, -0.11476757377386093, -0.07149647921323776, 0.16202589869499207, -0.15072226524353027, -0.08869671076536179 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4208 - Accuracy: 0.8283 - F1: 0.8915 - Precision: 0.8487 - Recall: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 390 | 0.4443 | 0.7768 | 0.8589 | 0.8072 | 0.9176 | | 0.4532 | 2.0 | 780 | 0.4603 | 0.8098 | 0.8791 | 0.8302 | 0.9341 | | 0.2608 | 3.0 | 1170 | 0.5284 | 0.8061 | 0.8713 | 0.8567 | 0.8863 | | 0.1577 | 4.0 | 1560 | 0.6398 | 0.8085 | 0.8749 | 0.8472 | 0.9044 | | 0.1577 | 5.0 | 1950 | 0.7089 | 0.8085 | 0.8741 | 0.8516 | 0.8979 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-05\_32\_03 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4208 * Accuracy: 0.8283 * F1: 0.8915 * Precision: 0.8487 * Recall: 0.9389 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09892356395721436, 0.06828578561544418, -0.0018669433193281293, 0.11662468314170837, 0.18159808218479156, 0.01864708960056305, 0.1077749952673912, 0.1236564964056015, -0.11956749111413956, 0.015575956553220749, 0.12124811857938766, 0.1870347261428833, 0.005007258616387844, 0.11856607347726822, -0.06337916851043701, -0.25743356347084045, -0.0123788146302104, 0.05414464697241783, -0.06413814425468445, 0.14017942547798157, 0.09716640412807465, -0.13286736607551575, 0.07636048644781113, 0.004369963891804218, -0.2301385998725891, 0.010079368017613888, 0.015124987810850143, -0.06858930736780167, 0.1459932178258896, 0.021547723561525345, 0.1281767636537552, 0.003768098307773471, 0.0768422856926918, -0.17451612651348114, 0.010082121938467026, 0.0495646595954895, 0.004733002744615078, 0.08508624136447906, 0.05166555941104889, -0.01551130972802639, 0.12704330682754517, -0.09535092860460281, 0.053311463445425034, 0.018611349165439606, -0.12008577585220337, -0.21967710554599762, -0.07977542281150818, 0.02423970401287079, 0.07237328588962555, 0.11278099566698074, -0.0008546730387024581, 0.13555492460727692, -0.09272836893796921, 0.10032197088003159, 0.2170390486717224, -0.2859991788864136, -0.06468649953603745, 0.023037659004330635, 0.005594783462584019, 0.06953819841146469, -0.10988732427358627, -0.026469016447663307, 0.05787323787808418, 0.05412770435214043, 0.14022418856620789, -0.033035337924957275, -0.1252802163362503, 0.010683293454349041, -0.14129123091697693, -0.03434412181377411, 0.13942058384418488, 0.021310027688741684, -0.029123475775122643, -0.0486987940967083, -0.05877148360013962, -0.15980865061283112, -0.04394703358411789, -0.006772208027541637, 0.04155817627906799, -0.03365162014961243, -0.05464443564414978, 0.008549241349101067, -0.10955806821584702, -0.060651227831840515, -0.07827972620725632, 0.14447318017482758, 0.04015294462442398, 0.01026794221252203, -0.038606882095336914, 0.10573375225067139, 0.02322809398174286, -0.1340928077697754, 0.026355043053627014, 0.02750086970627308, 0.009415841661393642, -0.0523519404232502, -0.07262396067380905, -0.06396599113941193, 0.004224840551614761, 0.10917910933494568, -0.06432180106639862, 0.05409908667206764, 0.022191105410456657, 0.041704606264829636, -0.097503662109375, 0.193377286195755, -0.022109637036919594, -0.0008275578147731721, 0.01601167768239975, 0.03949899226427078, 0.0077890874817967415, -0.008044997230172157, -0.11617852002382278, 0.0006396729149855673, 0.11642380803823471, 0.017610257491469383, -0.0745861753821373, 0.07679497450590134, -0.049077197909355164, -0.020653853192925453, 0.018902581185102463, -0.10394029319286346, 0.03500066325068474, -0.0024838983081281185, -0.08230633288621902, -0.011067385785281658, 0.030534133315086365, 0.01006010640412569, -0.03800736740231514, 0.11940915882587433, -0.07694396376609802, 0.0448591411113739, -0.10005740821361542, -0.10639902204275131, 0.018132183700799942, -0.0765577033162117, 0.024950681254267693, -0.10552388429641724, -0.15836301445960999, -0.019717806950211525, 0.056400056928396225, -0.0221269354224205, -0.05596224591135979, -0.05399803817272186, -0.07463804632425308, 0.017420999705791473, -0.019021011888980865, 0.1459519863128662, -0.05853498354554176, 0.10951010137796402, 0.0400451235473156, 0.06624731421470642, -0.052160341292619705, 0.06250672787427902, -0.09771274775266647, -0.001973402453586459, -0.19403761625289917, 0.05398593097925186, -0.044428810477256775, 0.08296746015548706, -0.087582528591156, -0.1165587529540062, 0.013045201078057289, -0.004885385744273663, 0.07053527235984802, 0.09173068404197693, -0.16152863204479218, -0.07746971398591995, 0.15776920318603516, -0.06818390637636185, -0.11037921160459518, 0.11139746755361557, -0.0621139332652092, 0.05257800966501236, 0.0838426873087883, 0.16470400989055634, 0.07702379673719406, -0.06806129962205887, 0.022950299084186554, 0.0034466285724192858, 0.04275607690215111, -0.08360697329044342, 0.05166235566139221, 0.01098666898906231, -0.007351338863372803, 0.03887256234884262, -0.01938772015273571, 0.06898655742406845, -0.0909404531121254, -0.09261903911828995, -0.04595122113823891, -0.09410391747951508, 0.047451701015233994, 0.08138851821422577, 0.0966312363743782, -0.0937415361404419, -0.06763112545013428, 0.08115442842245102, 0.07039292901754379, -0.06213019788265228, 0.03735671564936638, -0.05408628284931183, 0.057275496423244476, -0.02803077921271324, -0.01772673800587654, -0.20710813999176025, 0.005971471779048443, 0.0060882847756147385, 0.010014637373387814, 0.017311561852693558, 0.0067389970645308495, 0.06962665915489197, 0.047385502606630325, -0.05749650299549103, -0.013798011466860771, -0.006806382909417152, -0.008036812767386436, -0.14051027595996857, -0.1855926364660263, -0.01527104526758194, -0.02072557620704174, 0.11601945012807846, -0.19640138745307922, 0.03834466263651848, -0.011339114978909492, 0.06466999650001526, -0.003308930667117238, -0.0007656294037587941, -0.04403923824429512, 0.0902370885014534, -0.0351264514029026, -0.044334955513477325, 0.08074035495519638, 0.010333183221518993, -0.08137381076812744, -0.03814482316374779, -0.09104716777801514, 0.16723378002643585, 0.14520220458507538, -0.12682783603668213, -0.08113718777894974, -0.005393319763243198, -0.05767086520791054, -0.029646776616573334, -0.03840647637844086, 0.046802859753370285, 0.1908678263425827, -0.015552831813693047, 0.16186435520648956, -0.06937813013792038, -0.052661117166280746, 0.02135862596333027, -0.030524151399731636, 0.032876960933208466, 0.12023788690567017, 0.1086682379245758, -0.08496463298797607, 0.14000055193901062, 0.1484859138727188, -0.10090513527393341, 0.12248250097036362, -0.046659503132104874, -0.0625375509262085, -0.002917378442361951, -0.0179485771805048, -0.00038107408909127116, 0.07473159581422806, -0.1420665830373764, -0.00997298676520586, 0.01950932666659355, 0.024260401725769043, 0.027566473931074142, -0.22595006227493286, -0.03122752532362938, 0.026482241228222847, -0.035714615136384964, -0.012177844531834126, -0.017066774889826775, 0.01154145784676075, 0.10733138024806976, -0.000010914245649473742, -0.08027346432209015, 0.045453913509845734, 0.00695415772497654, -0.0864105224609375, 0.22422701120376587, -0.09332414716482162, -0.16965292394161224, -0.11802548915147781, -0.08080240339040756, -0.03565260395407677, 0.008362879045307636, 0.0658731609582901, -0.1007581353187561, -0.026165567338466644, -0.05259951949119568, 0.012389592826366425, -0.003503688145428896, 0.04259806126356125, 0.012791539542376995, 0.008192860521376133, 0.06915899366140366, -0.10861200839281082, -0.012052717618644238, -0.05454942211508751, -0.05296964943408966, 0.055032018572092056, 0.028820164501667023, 0.10430888831615448, 0.16431492567062378, -0.026906028389930725, 0.01158151961863041, -0.03465733304619789, 0.2229580134153366, -0.06583850085735321, -0.0314316488802433, 0.13388092815876007, -0.005553050898015499, 0.05396491289138794, 0.10450905561447144, 0.0680980458855629, -0.09060895442962646, 0.01563413254916668, 0.019022764638066292, -0.03658035397529602, -0.2310389280319214, -0.05534845590591431, -0.06264391541481018, -0.02878793701529503, 0.0987526923418045, 0.029812267050147057, 0.05121267959475517, 0.06579340994358063, 0.04484053701162338, 0.08992094546556473, -0.034772247076034546, 0.053050968796014786, 0.12805399298667908, 0.0479956790804863, 0.1262262612581253, -0.05303249508142471, -0.06866279989480972, 0.029458897188305855, -0.025675391778349876, 0.22069427371025085, 0.0021210352424532175, 0.11999083310365677, 0.05211194232106209, 0.17592455446720123, 0.007590819150209427, 0.09240149706602097, -0.0032449911814182997, -0.04521207883954048, -0.005303115118294954, -0.037717629224061966, -0.04979989305138588, 0.013416139408946037, -0.07315313816070557, 0.04968646913766861, -0.125452920794487, -0.014608497731387615, 0.05684986710548401, 0.255770206451416, 0.023599911481142044, -0.32791459560394287, -0.08584330230951309, -0.0002580628788564354, -0.03924960643053055, -0.02624484710395336, 0.02051556669175625, 0.07859232276678085, -0.09820344299077988, 0.03648009151220322, -0.069453164935112, 0.09933728724718094, -0.04304727911949158, 0.0462537445127964, 0.06534399092197418, 0.07562147825956345, 0.01288361195474863, 0.08438948541879654, -0.3329317569732666, 0.26656001806259155, 0.002188591519370675, 0.07582922279834747, -0.08609799295663834, 0.0018146632937714458, 0.032578688114881516, 0.07062642276287079, 0.05769859999418259, -0.015698282048106194, -0.04169844463467598, -0.18409718573093414, -0.05456647649407387, 0.030208522453904152, 0.08682730048894882, -0.011477028951048851, 0.08360619097948074, -0.026448648422956467, 0.006844181567430496, 0.07626580446958542, -0.0430176705121994, -0.050258126109838486, -0.10242374241352081, -0.014593346044421196, 0.024269593879580498, -0.040319912135601044, -0.05641968548297882, -0.11596956849098206, -0.12480363994836807, 0.1552482694387436, -0.018240060657262802, -0.0418098084628582, -0.11314183473587036, 0.08736852556467056, 0.06727200001478195, -0.08643344044685364, 0.05189736187458038, 0.005892945919185877, 0.05982488393783569, 0.02793489396572113, -0.08343946933746338, 0.10482683032751083, -0.06086035817861557, -0.14828166365623474, -0.0489431656897068, 0.10872708261013031, 0.03613218292593956, 0.06136623024940491, -0.007236347068101168, 0.011740732938051224, -0.03848370164632797, -0.09413015842437744, 0.011448164470493793, -0.015240040607750416, 0.09295953810214996, 0.018390489742159843, -0.06590814143419266, -0.009296304546296597, -0.06577984988689423, -0.03112478367984295, 0.2024797648191452, 0.2039552628993988, -0.09624188393354416, 0.027797341346740723, 0.028375063091516495, -0.07320811599493027, -0.20633123815059662, 0.04675798490643501, 0.0675080344080925, 0.006287538446485996, 0.02068033255636692, -0.17913129925727844, 0.131445974111557, 0.09072411060333252, -0.009309222921729088, 0.10007993876934052, -0.3283577859401703, -0.1294780671596527, 0.12426232546567917, 0.14054661989212036, 0.13082371652126312, -0.13991408050060272, -0.01884259656071663, -0.03160578012466431, -0.11691220104694366, 0.10196135938167572, -0.0799000933766365, 0.11829624325037003, -0.033104512840509415, 0.08138609677553177, 0.0016047388780862093, -0.06211809068918228, 0.10988330841064453, 0.026966195553541183, 0.09635473787784576, -0.0658794566988945, -0.029049672186374664, 0.03917498514056206, -0.03784941881895065, 0.01857183873653412, -0.08210089802742004, 0.02808363363146782, -0.10310684889554977, -0.021249134093523026, -0.08327429741621017, 0.04250934720039368, -0.032204851508140564, -0.04809209704399109, -0.033662378787994385, 0.016819795593619347, 0.053839270025491714, -0.014544487930834293, 0.1329784244298935, 0.021230384707450867, 0.15080633759498596, 0.11720656603574753, 0.08012447506189346, -0.0682801678776741, -0.05554803088307381, -0.012830105610191822, -0.01517587061971426, 0.05632001906633377, -0.1561805009841919, 0.03249131515622139, 0.14775311946868896, 0.018993157893419266, 0.12852245569229126, 0.08721036463975906, -0.008069274015724659, 0.0035404551308602095, 0.06969519704580307, -0.16287648677825928, -0.0713014304637909, -0.004204288590699434, -0.056751105934381485, -0.09938259422779083, 0.05215727165341377, 0.08013320714235306, -0.06934516876935959, -0.013660447672009468, -0.009408247657120228, 0.0018440276617184281, -0.06181428208947182, 0.2053852528333664, 0.05863206833600998, 0.04641583934426308, -0.11246389895677567, 0.07191067188978195, 0.05818420648574829, -0.08318319171667099, 0.007495964877307415, 0.0838179960846901, -0.09160830080509186, -0.0488286130130291, 0.12095886468887329, 0.1675696223974228, -0.05455131456255913, -0.045999858528375626, -0.13454975187778473, -0.12876708805561066, 0.08639004081487656, 0.16836465895175934, 0.12230107933282852, 0.014557951129972935, -0.06425745785236359, 0.005502650979906321, -0.12866181135177612, 0.07713403552770615, 0.04231419786810875, 0.06468465924263, -0.13372714817523956, 0.17388604581356049, 0.011871619150042534, 0.049746524542570114, -0.024860983714461327, 0.024486560374498367, -0.10003884136676788, 0.023265114054083824, -0.12066227942705154, -0.019719090312719345, -0.022415120154619217, 0.007192742545157671, -0.009050151333212852, -0.0477185882627964, -0.05008373409509659, 0.018144994974136353, -0.12100429087877274, -0.018079830333590508, 0.023186955600976944, 0.05158894881606102, -0.11343889683485031, -0.041305061429739, 0.020123789086937904, -0.0606292188167572, 0.06160982325673103, 0.05903024598956108, 0.005738450679928064, 0.06813960522413254, -0.13029153645038605, -0.006664049345999956, 0.08689263463020325, 0.012299971655011177, 0.0643555074930191, -0.08576901257038116, 0.0002691706467885524, 0.019402876496315002, 0.06644769757986069, 0.02824874222278595, 0.08019901067018509, -0.1439761072397232, 0.00519295409321785, -0.035300713032484055, -0.07868777215480804, -0.0700196698307991, 0.033244937658309937, 0.08777879178524017, 0.011421027593314648, 0.19557024538516998, -0.08154481649398804, 0.037339042872190475, -0.20450636744499207, 0.0005770482821390033, -0.020733706653118134, -0.12170521169900894, -0.12692277133464813, -0.06707888096570969, 0.06736958026885986, -0.04637790098786354, 0.13291417062282562, 0.037012819200754166, 0.04262583702802658, 0.030524609610438347, -0.012923507019877434, 0.001980635803192854, 0.02689863182604313, 0.21501368284225464, 0.03222443535923958, -0.03835617005825043, 0.07805454730987549, 0.05698101967573166, 0.10018155723810196, 0.1234179437160492, 0.2013041079044342, 0.1559697389602661, -0.01445884257555008, 0.09768584370613098, 0.014925622381269932, -0.04425685107707977, -0.15720680356025696, 0.037544406950473785, -0.05594926327466965, 0.100979745388031, -0.02742409147322178, 0.2040175348520279, 0.05496908724308014, -0.16594403982162476, 0.05125734582543373, -0.058352913707494736, -0.09520746767520905, -0.10622960329055786, -0.038642819970846176, -0.08295217156410217, -0.1392723172903061, -0.0015610517002642155, -0.10798842459917068, 0.014049514196813107, 0.10186319053173065, 0.006197968497872353, -0.030451109632849693, 0.15748749673366547, 0.03167233243584633, 0.015765748918056488, 0.06951384991407394, -0.0033967832569032907, -0.026029767468571663, -0.10288800299167633, -0.05673276260495186, -0.020690133795142174, -0.014676152728497982, 0.03940350189805031, -0.05103066936135292, -0.06474915146827698, 0.040849290788173676, -0.03221234306693077, -0.09328248351812363, 0.016166942194104195, 0.02942357212305069, 0.07092206180095673, 0.05982378497719765, 0.01062663085758686, 0.008471602573990822, -0.012334014289081097, 0.21595078706741333, -0.07746214419603348, -0.08995415270328522, -0.0960998609662056, 0.2740768492221832, 0.057652588933706284, -0.010026750154793262, 0.03003084845840931, -0.05917017161846161, -0.0013757928973063827, 0.2619768977165222, 0.19526983797550201, -0.07823815941810608, -0.006640335079282522, -0.0009600825724191964, -0.008808005601167679, -0.007110840640962124, 0.12675118446350098, 0.1532115638256073, 0.049999333918094635, -0.10532790422439575, -0.04725150018930435, -0.05712836608290672, -0.01558744814246893, -0.05200648307800293, 0.06447633355855942, 0.03263295069336891, -0.0029580502305179834, -0.033312540501356125, 0.062371015548706055, -0.07146099954843521, -0.08667363226413727, 0.05185528099536896, -0.20555222034454346, -0.15962405502796173, -0.010813402943313122, 0.10709302127361298, -0.0004991641617380083, 0.05807570368051529, -0.019332673400640488, 0.003597373142838478, 0.07214387506246567, -0.024073613807559013, -0.08791398257017136, -0.07068557292222977, 0.09161393344402313, -0.12329666316509247, 0.17450998723506927, -0.03908886760473251, 0.07324470579624176, 0.12204049527645111, 0.07692236453294754, -0.06837611645460129, 0.06050488352775574, 0.026498543098568916, -0.06461787223815918, 0.0442020520567894, 0.08746451884508133, -0.031312040984630585, 0.03410092368721962, 0.03558971732854843, -0.11671197414398193, 0.028274931013584137, -0.08347763121128082, -0.046666525304317474, -0.04506177455186844, -0.04435454681515694, -0.055823296308517456, 0.11881238222122192, 0.220828577876091, -0.023710520938038826, 0.014306100085377693, -0.07728137075901031, 0.0020072953775525093, 0.04124779999256134, 0.015474149025976658, -0.08243750780820847, -0.23606890439987183, 0.005306802690029144, 0.06129783019423485, -0.020173970609903336, -0.22315889596939087, -0.08925675600767136, -0.0027443773578852415, -0.07691134512424469, -0.10195668786764145, 0.08359095454216003, 0.0710597112774849, 0.047202639281749725, -0.055254314094781876, -0.0757962018251419, -0.0774897038936615, 0.15702751278877258, -0.15081237256526947, -0.08792164921760559 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6168 - Accuracy: 0.8286 - F1: 0.8887 - Precision: 0.8628 - Recall: 0.9162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 390 | 0.3890 | 0.8110 | 0.8749 | 0.8631 | 0.8871 | | 0.4535 | 2.0 | 780 | 0.3921 | 0.8439 | 0.8984 | 0.8721 | 0.9264 | | 0.266 | 3.0 | 1170 | 0.4454 | 0.8415 | 0.8947 | 0.8860 | 0.9034 | | 0.16 | 4.0 | 1560 | 0.5610 | 0.8427 | 0.8957 | 0.8850 | 0.9067 | | 0.16 | 5.0 | 1950 | 0.6180 | 0.8488 | 0.9010 | 0.8799 | 0.9231 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-13\_11\_55 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6168 * Accuracy: 0.8286 * F1: 0.8887 * Precision: 0.8628 * Recall: 0.9162 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09892356395721436, 0.06828578561544418, -0.0018669433193281293, 0.11662468314170837, 0.18159808218479156, 0.01864708960056305, 0.1077749952673912, 0.1236564964056015, -0.11956749111413956, 0.015575956553220749, 0.12124811857938766, 0.1870347261428833, 0.005007258616387844, 0.11856607347726822, -0.06337916851043701, -0.25743356347084045, -0.0123788146302104, 0.05414464697241783, -0.06413814425468445, 0.14017942547798157, 0.09716640412807465, -0.13286736607551575, 0.07636048644781113, 0.004369963891804218, -0.2301385998725891, 0.010079368017613888, 0.015124987810850143, -0.06858930736780167, 0.1459932178258896, 0.021547723561525345, 0.1281767636537552, 0.003768098307773471, 0.0768422856926918, -0.17451612651348114, 0.010082121938467026, 0.0495646595954895, 0.004733002744615078, 0.08508624136447906, 0.05166555941104889, -0.01551130972802639, 0.12704330682754517, -0.09535092860460281, 0.053311463445425034, 0.018611349165439606, -0.12008577585220337, -0.21967710554599762, -0.07977542281150818, 0.02423970401287079, 0.07237328588962555, 0.11278099566698074, -0.0008546730387024581, 0.13555492460727692, -0.09272836893796921, 0.10032197088003159, 0.2170390486717224, -0.2859991788864136, -0.06468649953603745, 0.023037659004330635, 0.005594783462584019, 0.06953819841146469, -0.10988732427358627, -0.026469016447663307, 0.05787323787808418, 0.05412770435214043, 0.14022418856620789, -0.033035337924957275, -0.1252802163362503, 0.010683293454349041, -0.14129123091697693, -0.03434412181377411, 0.13942058384418488, 0.021310027688741684, -0.029123475775122643, -0.0486987940967083, -0.05877148360013962, -0.15980865061283112, -0.04394703358411789, -0.006772208027541637, 0.04155817627906799, -0.03365162014961243, -0.05464443564414978, 0.008549241349101067, -0.10955806821584702, -0.060651227831840515, -0.07827972620725632, 0.14447318017482758, 0.04015294462442398, 0.01026794221252203, -0.038606882095336914, 0.10573375225067139, 0.02322809398174286, -0.1340928077697754, 0.026355043053627014, 0.02750086970627308, 0.009415841661393642, -0.0523519404232502, -0.07262396067380905, -0.06396599113941193, 0.004224840551614761, 0.10917910933494568, -0.06432180106639862, 0.05409908667206764, 0.022191105410456657, 0.041704606264829636, -0.097503662109375, 0.193377286195755, -0.022109637036919594, -0.0008275578147731721, 0.01601167768239975, 0.03949899226427078, 0.0077890874817967415, -0.008044997230172157, -0.11617852002382278, 0.0006396729149855673, 0.11642380803823471, 0.017610257491469383, -0.0745861753821373, 0.07679497450590134, -0.049077197909355164, -0.020653853192925453, 0.018902581185102463, -0.10394029319286346, 0.03500066325068474, -0.0024838983081281185, -0.08230633288621902, -0.011067385785281658, 0.030534133315086365, 0.01006010640412569, -0.03800736740231514, 0.11940915882587433, -0.07694396376609802, 0.0448591411113739, -0.10005740821361542, -0.10639902204275131, 0.018132183700799942, -0.0765577033162117, 0.024950681254267693, -0.10552388429641724, -0.15836301445960999, -0.019717806950211525, 0.056400056928396225, -0.0221269354224205, -0.05596224591135979, -0.05399803817272186, -0.07463804632425308, 0.017420999705791473, -0.019021011888980865, 0.1459519863128662, -0.05853498354554176, 0.10951010137796402, 0.0400451235473156, 0.06624731421470642, -0.052160341292619705, 0.06250672787427902, -0.09771274775266647, -0.001973402453586459, -0.19403761625289917, 0.05398593097925186, -0.044428810477256775, 0.08296746015548706, -0.087582528591156, -0.1165587529540062, 0.013045201078057289, -0.004885385744273663, 0.07053527235984802, 0.09173068404197693, -0.16152863204479218, -0.07746971398591995, 0.15776920318603516, -0.06818390637636185, -0.11037921160459518, 0.11139746755361557, -0.0621139332652092, 0.05257800966501236, 0.0838426873087883, 0.16470400989055634, 0.07702379673719406, -0.06806129962205887, 0.022950299084186554, 0.0034466285724192858, 0.04275607690215111, -0.08360697329044342, 0.05166235566139221, 0.01098666898906231, -0.007351338863372803, 0.03887256234884262, -0.01938772015273571, 0.06898655742406845, -0.0909404531121254, -0.09261903911828995, -0.04595122113823891, -0.09410391747951508, 0.047451701015233994, 0.08138851821422577, 0.0966312363743782, -0.0937415361404419, -0.06763112545013428, 0.08115442842245102, 0.07039292901754379, -0.06213019788265228, 0.03735671564936638, -0.05408628284931183, 0.057275496423244476, -0.02803077921271324, -0.01772673800587654, -0.20710813999176025, 0.005971471779048443, 0.0060882847756147385, 0.010014637373387814, 0.017311561852693558, 0.0067389970645308495, 0.06962665915489197, 0.047385502606630325, -0.05749650299549103, -0.013798011466860771, -0.006806382909417152, -0.008036812767386436, -0.14051027595996857, -0.1855926364660263, -0.01527104526758194, -0.02072557620704174, 0.11601945012807846, -0.19640138745307922, 0.03834466263651848, -0.011339114978909492, 0.06466999650001526, -0.003308930667117238, -0.0007656294037587941, -0.04403923824429512, 0.0902370885014534, -0.0351264514029026, -0.044334955513477325, 0.08074035495519638, 0.010333183221518993, -0.08137381076812744, -0.03814482316374779, -0.09104716777801514, 0.16723378002643585, 0.14520220458507538, -0.12682783603668213, -0.08113718777894974, -0.005393319763243198, -0.05767086520791054, -0.029646776616573334, -0.03840647637844086, 0.046802859753370285, 0.1908678263425827, -0.015552831813693047, 0.16186435520648956, -0.06937813013792038, -0.052661117166280746, 0.02135862596333027, -0.030524151399731636, 0.032876960933208466, 0.12023788690567017, 0.1086682379245758, -0.08496463298797607, 0.14000055193901062, 0.1484859138727188, -0.10090513527393341, 0.12248250097036362, -0.046659503132104874, -0.0625375509262085, -0.002917378442361951, -0.0179485771805048, -0.00038107408909127116, 0.07473159581422806, -0.1420665830373764, -0.00997298676520586, 0.01950932666659355, 0.024260401725769043, 0.027566473931074142, -0.22595006227493286, -0.03122752532362938, 0.026482241228222847, -0.035714615136384964, -0.012177844531834126, -0.017066774889826775, 0.01154145784676075, 0.10733138024806976, -0.000010914245649473742, -0.08027346432209015, 0.045453913509845734, 0.00695415772497654, -0.0864105224609375, 0.22422701120376587, -0.09332414716482162, -0.16965292394161224, -0.11802548915147781, -0.08080240339040756, -0.03565260395407677, 0.008362879045307636, 0.0658731609582901, -0.1007581353187561, -0.026165567338466644, -0.05259951949119568, 0.012389592826366425, -0.003503688145428896, 0.04259806126356125, 0.012791539542376995, 0.008192860521376133, 0.06915899366140366, -0.10861200839281082, -0.012052717618644238, -0.05454942211508751, -0.05296964943408966, 0.055032018572092056, 0.028820164501667023, 0.10430888831615448, 0.16431492567062378, -0.026906028389930725, 0.01158151961863041, -0.03465733304619789, 0.2229580134153366, -0.06583850085735321, -0.0314316488802433, 0.13388092815876007, -0.005553050898015499, 0.05396491289138794, 0.10450905561447144, 0.0680980458855629, -0.09060895442962646, 0.01563413254916668, 0.019022764638066292, -0.03658035397529602, -0.2310389280319214, -0.05534845590591431, -0.06264391541481018, -0.02878793701529503, 0.0987526923418045, 0.029812267050147057, 0.05121267959475517, 0.06579340994358063, 0.04484053701162338, 0.08992094546556473, -0.034772247076034546, 0.053050968796014786, 0.12805399298667908, 0.0479956790804863, 0.1262262612581253, -0.05303249508142471, -0.06866279989480972, 0.029458897188305855, -0.025675391778349876, 0.22069427371025085, 0.0021210352424532175, 0.11999083310365677, 0.05211194232106209, 0.17592455446720123, 0.007590819150209427, 0.09240149706602097, -0.0032449911814182997, -0.04521207883954048, -0.005303115118294954, -0.037717629224061966, -0.04979989305138588, 0.013416139408946037, -0.07315313816070557, 0.04968646913766861, -0.125452920794487, -0.014608497731387615, 0.05684986710548401, 0.255770206451416, 0.023599911481142044, -0.32791459560394287, -0.08584330230951309, -0.0002580628788564354, -0.03924960643053055, -0.02624484710395336, 0.02051556669175625, 0.07859232276678085, -0.09820344299077988, 0.03648009151220322, -0.069453164935112, 0.09933728724718094, -0.04304727911949158, 0.0462537445127964, 0.06534399092197418, 0.07562147825956345, 0.01288361195474863, 0.08438948541879654, -0.3329317569732666, 0.26656001806259155, 0.002188591519370675, 0.07582922279834747, -0.08609799295663834, 0.0018146632937714458, 0.032578688114881516, 0.07062642276287079, 0.05769859999418259, -0.015698282048106194, -0.04169844463467598, -0.18409718573093414, -0.05456647649407387, 0.030208522453904152, 0.08682730048894882, -0.011477028951048851, 0.08360619097948074, -0.026448648422956467, 0.006844181567430496, 0.07626580446958542, -0.0430176705121994, -0.050258126109838486, -0.10242374241352081, -0.014593346044421196, 0.024269593879580498, -0.040319912135601044, -0.05641968548297882, -0.11596956849098206, -0.12480363994836807, 0.1552482694387436, -0.018240060657262802, -0.0418098084628582, -0.11314183473587036, 0.08736852556467056, 0.06727200001478195, -0.08643344044685364, 0.05189736187458038, 0.005892945919185877, 0.05982488393783569, 0.02793489396572113, -0.08343946933746338, 0.10482683032751083, -0.06086035817861557, -0.14828166365623474, -0.0489431656897068, 0.10872708261013031, 0.03613218292593956, 0.06136623024940491, -0.007236347068101168, 0.011740732938051224, -0.03848370164632797, -0.09413015842437744, 0.011448164470493793, -0.015240040607750416, 0.09295953810214996, 0.018390489742159843, -0.06590814143419266, -0.009296304546296597, -0.06577984988689423, -0.03112478367984295, 0.2024797648191452, 0.2039552628993988, -0.09624188393354416, 0.027797341346740723, 0.028375063091516495, -0.07320811599493027, -0.20633123815059662, 0.04675798490643501, 0.0675080344080925, 0.006287538446485996, 0.02068033255636692, -0.17913129925727844, 0.131445974111557, 0.09072411060333252, -0.009309222921729088, 0.10007993876934052, -0.3283577859401703, -0.1294780671596527, 0.12426232546567917, 0.14054661989212036, 0.13082371652126312, -0.13991408050060272, -0.01884259656071663, -0.03160578012466431, -0.11691220104694366, 0.10196135938167572, -0.0799000933766365, 0.11829624325037003, -0.033104512840509415, 0.08138609677553177, 0.0016047388780862093, -0.06211809068918228, 0.10988330841064453, 0.026966195553541183, 0.09635473787784576, -0.0658794566988945, -0.029049672186374664, 0.03917498514056206, -0.03784941881895065, 0.01857183873653412, -0.08210089802742004, 0.02808363363146782, -0.10310684889554977, -0.021249134093523026, -0.08327429741621017, 0.04250934720039368, -0.032204851508140564, -0.04809209704399109, -0.033662378787994385, 0.016819795593619347, 0.053839270025491714, -0.014544487930834293, 0.1329784244298935, 0.021230384707450867, 0.15080633759498596, 0.11720656603574753, 0.08012447506189346, -0.0682801678776741, -0.05554803088307381, -0.012830105610191822, -0.01517587061971426, 0.05632001906633377, -0.1561805009841919, 0.03249131515622139, 0.14775311946868896, 0.018993157893419266, 0.12852245569229126, 0.08721036463975906, -0.008069274015724659, 0.0035404551308602095, 0.06969519704580307, -0.16287648677825928, -0.0713014304637909, -0.004204288590699434, -0.056751105934381485, -0.09938259422779083, 0.05215727165341377, 0.08013320714235306, -0.06934516876935959, -0.013660447672009468, -0.009408247657120228, 0.0018440276617184281, -0.06181428208947182, 0.2053852528333664, 0.05863206833600998, 0.04641583934426308, -0.11246389895677567, 0.07191067188978195, 0.05818420648574829, -0.08318319171667099, 0.007495964877307415, 0.0838179960846901, -0.09160830080509186, -0.0488286130130291, 0.12095886468887329, 0.1675696223974228, -0.05455131456255913, -0.045999858528375626, -0.13454975187778473, -0.12876708805561066, 0.08639004081487656, 0.16836465895175934, 0.12230107933282852, 0.014557951129972935, -0.06425745785236359, 0.005502650979906321, -0.12866181135177612, 0.07713403552770615, 0.04231419786810875, 0.06468465924263, -0.13372714817523956, 0.17388604581356049, 0.011871619150042534, 0.049746524542570114, -0.024860983714461327, 0.024486560374498367, -0.10003884136676788, 0.023265114054083824, -0.12066227942705154, -0.019719090312719345, -0.022415120154619217, 0.007192742545157671, -0.009050151333212852, -0.0477185882627964, -0.05008373409509659, 0.018144994974136353, -0.12100429087877274, -0.018079830333590508, 0.023186955600976944, 0.05158894881606102, -0.11343889683485031, -0.041305061429739, 0.020123789086937904, -0.0606292188167572, 0.06160982325673103, 0.05903024598956108, 0.005738450679928064, 0.06813960522413254, -0.13029153645038605, -0.006664049345999956, 0.08689263463020325, 0.012299971655011177, 0.0643555074930191, -0.08576901257038116, 0.0002691706467885524, 0.019402876496315002, 0.06644769757986069, 0.02824874222278595, 0.08019901067018509, -0.1439761072397232, 0.00519295409321785, -0.035300713032484055, -0.07868777215480804, -0.0700196698307991, 0.033244937658309937, 0.08777879178524017, 0.011421027593314648, 0.19557024538516998, -0.08154481649398804, 0.037339042872190475, -0.20450636744499207, 0.0005770482821390033, -0.020733706653118134, -0.12170521169900894, -0.12692277133464813, -0.06707888096570969, 0.06736958026885986, -0.04637790098786354, 0.13291417062282562, 0.037012819200754166, 0.04262583702802658, 0.030524609610438347, -0.012923507019877434, 0.001980635803192854, 0.02689863182604313, 0.21501368284225464, 0.03222443535923958, -0.03835617005825043, 0.07805454730987549, 0.05698101967573166, 0.10018155723810196, 0.1234179437160492, 0.2013041079044342, 0.1559697389602661, -0.01445884257555008, 0.09768584370613098, 0.014925622381269932, -0.04425685107707977, -0.15720680356025696, 0.037544406950473785, -0.05594926327466965, 0.100979745388031, -0.02742409147322178, 0.2040175348520279, 0.05496908724308014, -0.16594403982162476, 0.05125734582543373, -0.058352913707494736, -0.09520746767520905, -0.10622960329055786, -0.038642819970846176, -0.08295217156410217, -0.1392723172903061, -0.0015610517002642155, -0.10798842459917068, 0.014049514196813107, 0.10186319053173065, 0.006197968497872353, -0.030451109632849693, 0.15748749673366547, 0.03167233243584633, 0.015765748918056488, 0.06951384991407394, -0.0033967832569032907, -0.026029767468571663, -0.10288800299167633, -0.05673276260495186, -0.020690133795142174, -0.014676152728497982, 0.03940350189805031, -0.05103066936135292, -0.06474915146827698, 0.040849290788173676, -0.03221234306693077, -0.09328248351812363, 0.016166942194104195, 0.02942357212305069, 0.07092206180095673, 0.05982378497719765, 0.01062663085758686, 0.008471602573990822, -0.012334014289081097, 0.21595078706741333, -0.07746214419603348, -0.08995415270328522, -0.0960998609662056, 0.2740768492221832, 0.057652588933706284, -0.010026750154793262, 0.03003084845840931, -0.05917017161846161, -0.0013757928973063827, 0.2619768977165222, 0.19526983797550201, -0.07823815941810608, -0.006640335079282522, -0.0009600825724191964, -0.008808005601167679, -0.007110840640962124, 0.12675118446350098, 0.1532115638256073, 0.049999333918094635, -0.10532790422439575, -0.04725150018930435, -0.05712836608290672, -0.01558744814246893, -0.05200648307800293, 0.06447633355855942, 0.03263295069336891, -0.0029580502305179834, -0.033312540501356125, 0.062371015548706055, -0.07146099954843521, -0.08667363226413727, 0.05185528099536896, -0.20555222034454346, -0.15962405502796173, -0.010813402943313122, 0.10709302127361298, -0.0004991641617380083, 0.05807570368051529, -0.019332673400640488, 0.003597373142838478, 0.07214387506246567, -0.024073613807559013, -0.08791398257017136, -0.07068557292222977, 0.09161393344402313, -0.12329666316509247, 0.17450998723506927, -0.03908886760473251, 0.07324470579624176, 0.12204049527645111, 0.07692236453294754, -0.06837611645460129, 0.06050488352775574, 0.026498543098568916, -0.06461787223815918, 0.0442020520567894, 0.08746451884508133, -0.031312040984630585, 0.03410092368721962, 0.03558971732854843, -0.11671197414398193, 0.028274931013584137, -0.08347763121128082, -0.046666525304317474, -0.04506177455186844, -0.04435454681515694, -0.055823296308517456, 0.11881238222122192, 0.220828577876091, -0.023710520938038826, 0.014306100085377693, -0.07728137075901031, 0.0020072953775525093, 0.04124779999256134, 0.015474149025976658, -0.08243750780820847, -0.23606890439987183, 0.005306802690029144, 0.06129783019423485, -0.020173970609903336, -0.22315889596939087, -0.08925675600767136, -0.0027443773578852415, -0.07691134512424469, -0.10195668786764145, 0.08359095454216003, 0.0710597112774849, 0.047202639281749725, -0.055254314094781876, -0.0757962018251419, -0.0774897038936615, 0.15702751278877258, -0.15081237256526947, -0.08792164921760559 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4345 - Accuracy: 0.8321 - F1: 0.8904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3922 | 0.8061 | 0.8747 | | No log | 2.0 | 390 | 0.3764 | 0.8171 | 0.8837 | | 0.4074 | 3.0 | 585 | 0.3873 | 0.8220 | 0.8843 | | 0.4074 | 4.0 | 780 | 0.4361 | 0.8232 | 0.8854 | | 0.4074 | 5.0 | 975 | 0.4555 | 0.8159 | 0.8793 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_26\_02\_2022-03\_57\_45 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4345 * Accuracy: 0.8321 * F1: 0.8904 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5002 - Accuracy: 0.8103 - F1: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4178 | 0.7963 | 0.8630 | | No log | 2.0 | 390 | 0.3935 | 0.8061 | 0.8770 | | 0.4116 | 3.0 | 585 | 0.4037 | 0.8085 | 0.8735 | | 0.4116 | 4.0 | 780 | 0.4696 | 0.8146 | 0.8796 | | 0.4116 | 5.0 | 975 | 0.4849 | 0.8207 | 0.8823 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-17\_27\_47 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5002 * Accuracy: 0.8103 * F1: 0.8764 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4917 - Accuracy: 0.8231 - F1: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3883 | 0.8146 | 0.8833 | | No log | 2.0 | 390 | 0.3607 | 0.8390 | 0.8964 | | 0.4085 | 3.0 | 585 | 0.3812 | 0.8488 | 0.9042 | | 0.4085 | 4.0 | 780 | 0.3977 | 0.8549 | 0.9077 | | 0.4085 | 5.0 | 975 | 0.4233 | 0.8573 | 0.9092 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-19\_05\_42 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4917 * Accuracy: 0.8231 * F1: 0.8833 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4638 - Accuracy: 0.8247 - F1: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4069 | 0.7976 | 0.875 | | No log | 2.0 | 390 | 0.4061 | 0.8134 | 0.8838 | | 0.4074 | 3.0 | 585 | 0.4075 | 0.8134 | 0.8798 | | 0.4074 | 4.0 | 780 | 0.4746 | 0.8256 | 0.8885 | | 0.4074 | 5.0 | 975 | 0.4881 | 0.8220 | 0.8845 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-22\_25\_09 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4638 * Accuracy: 0.8247 * F1: 0.8867 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0914 - Accuracy: 0.9746 - F1: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 104 | 0.0501 | 0.9828 | 0.9913 | | No log | 2.0 | 208 | 0.0435 | 0.9828 | 0.9913 | | No log | 3.0 | 312 | 0.0414 | 0.9828 | 0.9913 | | No log | 4.0 | 416 | 0.0424 | 0.9799 | 0.9898 | | 0.0547 | 5.0 | 520 | 0.0482 | 0.9828 | 0.9913 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_editorials\_27\_02\_2022-19\_38\_42 ===================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0914 * Accuracy: 0.9746 * F1: 0.9870 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3455 - Accuracy: 0.8609 - F1: 0.9156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 81 | 0.4468 | 0.8235 | 0.8929 | | No log | 2.0 | 162 | 0.4497 | 0.8382 | 0.9 | | No log | 3.0 | 243 | 0.4861 | 0.8309 | 0.8940 | | No log | 4.0 | 324 | 0.5087 | 0.8235 | 0.8879 | | No log | 5.0 | 405 | 0.5228 | 0.8199 | 0.8858 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_essays\_27\_02\_2022-19\_30\_22 ================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3455 * Accuracy: 0.8609 * F1: 0.9156 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7224 - Accuracy: 0.6979 - F1: 0.4736 - Precision: 0.5074 - Recall: 0.4440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 95 | 0.6009 | 0.65 | 0.2222 | 0.625 | 0.1351 | | No log | 2.0 | 190 | 0.6140 | 0.675 | 0.3689 | 0.6552 | 0.2568 | | No log | 3.0 | 285 | 0.6580 | 0.67 | 0.4590 | 0.5833 | 0.3784 | | No log | 4.0 | 380 | 0.7560 | 0.665 | 0.4806 | 0.5636 | 0.4189 | | No log | 5.0 | 475 | 0.8226 | 0.665 | 0.464 | 0.5686 | 0.3919 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_01\_03\_2022-13\_17\_55 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7224 * Accuracy: 0.6979 * F1: 0.4736 * Precision: 0.5074 * Recall: 0.4440 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09892356395721436, 0.06828578561544418, -0.0018669433193281293, 0.11662468314170837, 0.18159808218479156, 0.01864708960056305, 0.1077749952673912, 0.1236564964056015, -0.11956749111413956, 0.015575956553220749, 0.12124811857938766, 0.1870347261428833, 0.005007258616387844, 0.11856607347726822, -0.06337916851043701, -0.25743356347084045, -0.0123788146302104, 0.05414464697241783, -0.06413814425468445, 0.14017942547798157, 0.09716640412807465, -0.13286736607551575, 0.07636048644781113, 0.004369963891804218, -0.2301385998725891, 0.010079368017613888, 0.015124987810850143, -0.06858930736780167, 0.1459932178258896, 0.021547723561525345, 0.1281767636537552, 0.003768098307773471, 0.0768422856926918, -0.17451612651348114, 0.010082121938467026, 0.0495646595954895, 0.004733002744615078, 0.08508624136447906, 0.05166555941104889, -0.01551130972802639, 0.12704330682754517, -0.09535092860460281, 0.053311463445425034, 0.018611349165439606, -0.12008577585220337, -0.21967710554599762, -0.07977542281150818, 0.02423970401287079, 0.07237328588962555, 0.11278099566698074, -0.0008546730387024581, 0.13555492460727692, -0.09272836893796921, 0.10032197088003159, 0.2170390486717224, -0.2859991788864136, -0.06468649953603745, 0.023037659004330635, 0.005594783462584019, 0.06953819841146469, -0.10988732427358627, -0.026469016447663307, 0.05787323787808418, 0.05412770435214043, 0.14022418856620789, -0.033035337924957275, -0.1252802163362503, 0.010683293454349041, -0.14129123091697693, -0.03434412181377411, 0.13942058384418488, 0.021310027688741684, -0.029123475775122643, -0.0486987940967083, -0.05877148360013962, -0.15980865061283112, -0.04394703358411789, -0.006772208027541637, 0.04155817627906799, -0.03365162014961243, -0.05464443564414978, 0.008549241349101067, -0.10955806821584702, -0.060651227831840515, -0.07827972620725632, 0.14447318017482758, 0.04015294462442398, 0.01026794221252203, -0.038606882095336914, 0.10573375225067139, 0.02322809398174286, -0.1340928077697754, 0.026355043053627014, 0.02750086970627308, 0.009415841661393642, -0.0523519404232502, -0.07262396067380905, -0.06396599113941193, 0.004224840551614761, 0.10917910933494568, -0.06432180106639862, 0.05409908667206764, 0.022191105410456657, 0.041704606264829636, -0.097503662109375, 0.193377286195755, -0.022109637036919594, -0.0008275578147731721, 0.01601167768239975, 0.03949899226427078, 0.0077890874817967415, -0.008044997230172157, -0.11617852002382278, 0.0006396729149855673, 0.11642380803823471, 0.017610257491469383, -0.0745861753821373, 0.07679497450590134, -0.049077197909355164, -0.020653853192925453, 0.018902581185102463, -0.10394029319286346, 0.03500066325068474, -0.0024838983081281185, -0.08230633288621902, -0.011067385785281658, 0.030534133315086365, 0.01006010640412569, -0.03800736740231514, 0.11940915882587433, -0.07694396376609802, 0.0448591411113739, -0.10005740821361542, -0.10639902204275131, 0.018132183700799942, -0.0765577033162117, 0.024950681254267693, -0.10552388429641724, -0.15836301445960999, -0.019717806950211525, 0.056400056928396225, -0.0221269354224205, -0.05596224591135979, -0.05399803817272186, -0.07463804632425308, 0.017420999705791473, -0.019021011888980865, 0.1459519863128662, -0.05853498354554176, 0.10951010137796402, 0.0400451235473156, 0.06624731421470642, -0.052160341292619705, 0.06250672787427902, -0.09771274775266647, -0.001973402453586459, -0.19403761625289917, 0.05398593097925186, -0.044428810477256775, 0.08296746015548706, -0.087582528591156, -0.1165587529540062, 0.013045201078057289, -0.004885385744273663, 0.07053527235984802, 0.09173068404197693, -0.16152863204479218, -0.07746971398591995, 0.15776920318603516, -0.06818390637636185, -0.11037921160459518, 0.11139746755361557, -0.0621139332652092, 0.05257800966501236, 0.0838426873087883, 0.16470400989055634, 0.07702379673719406, -0.06806129962205887, 0.022950299084186554, 0.0034466285724192858, 0.04275607690215111, -0.08360697329044342, 0.05166235566139221, 0.01098666898906231, -0.007351338863372803, 0.03887256234884262, -0.01938772015273571, 0.06898655742406845, -0.0909404531121254, -0.09261903911828995, -0.04595122113823891, -0.09410391747951508, 0.047451701015233994, 0.08138851821422577, 0.0966312363743782, -0.0937415361404419, -0.06763112545013428, 0.08115442842245102, 0.07039292901754379, -0.06213019788265228, 0.03735671564936638, -0.05408628284931183, 0.057275496423244476, -0.02803077921271324, -0.01772673800587654, -0.20710813999176025, 0.005971471779048443, 0.0060882847756147385, 0.010014637373387814, 0.017311561852693558, 0.0067389970645308495, 0.06962665915489197, 0.047385502606630325, -0.05749650299549103, -0.013798011466860771, -0.006806382909417152, -0.008036812767386436, -0.14051027595996857, -0.1855926364660263, -0.01527104526758194, -0.02072557620704174, 0.11601945012807846, -0.19640138745307922, 0.03834466263651848, -0.011339114978909492, 0.06466999650001526, -0.003308930667117238, -0.0007656294037587941, -0.04403923824429512, 0.0902370885014534, -0.0351264514029026, -0.044334955513477325, 0.08074035495519638, 0.010333183221518993, -0.08137381076812744, -0.03814482316374779, -0.09104716777801514, 0.16723378002643585, 0.14520220458507538, -0.12682783603668213, -0.08113718777894974, -0.005393319763243198, -0.05767086520791054, -0.029646776616573334, -0.03840647637844086, 0.046802859753370285, 0.1908678263425827, -0.015552831813693047, 0.16186435520648956, -0.06937813013792038, -0.052661117166280746, 0.02135862596333027, -0.030524151399731636, 0.032876960933208466, 0.12023788690567017, 0.1086682379245758, -0.08496463298797607, 0.14000055193901062, 0.1484859138727188, -0.10090513527393341, 0.12248250097036362, -0.046659503132104874, -0.0625375509262085, -0.002917378442361951, -0.0179485771805048, -0.00038107408909127116, 0.07473159581422806, -0.1420665830373764, -0.00997298676520586, 0.01950932666659355, 0.024260401725769043, 0.027566473931074142, -0.22595006227493286, -0.03122752532362938, 0.026482241228222847, -0.035714615136384964, -0.012177844531834126, -0.017066774889826775, 0.01154145784676075, 0.10733138024806976, -0.000010914245649473742, -0.08027346432209015, 0.045453913509845734, 0.00695415772497654, -0.0864105224609375, 0.22422701120376587, -0.09332414716482162, -0.16965292394161224, -0.11802548915147781, -0.08080240339040756, -0.03565260395407677, 0.008362879045307636, 0.0658731609582901, -0.1007581353187561, -0.026165567338466644, -0.05259951949119568, 0.012389592826366425, -0.003503688145428896, 0.04259806126356125, 0.012791539542376995, 0.008192860521376133, 0.06915899366140366, -0.10861200839281082, -0.012052717618644238, -0.05454942211508751, -0.05296964943408966, 0.055032018572092056, 0.028820164501667023, 0.10430888831615448, 0.16431492567062378, -0.026906028389930725, 0.01158151961863041, -0.03465733304619789, 0.2229580134153366, -0.06583850085735321, -0.0314316488802433, 0.13388092815876007, -0.005553050898015499, 0.05396491289138794, 0.10450905561447144, 0.0680980458855629, -0.09060895442962646, 0.01563413254916668, 0.019022764638066292, -0.03658035397529602, -0.2310389280319214, -0.05534845590591431, -0.06264391541481018, -0.02878793701529503, 0.0987526923418045, 0.029812267050147057, 0.05121267959475517, 0.06579340994358063, 0.04484053701162338, 0.08992094546556473, -0.034772247076034546, 0.053050968796014786, 0.12805399298667908, 0.0479956790804863, 0.1262262612581253, -0.05303249508142471, -0.06866279989480972, 0.029458897188305855, -0.025675391778349876, 0.22069427371025085, 0.0021210352424532175, 0.11999083310365677, 0.05211194232106209, 0.17592455446720123, 0.007590819150209427, 0.09240149706602097, -0.0032449911814182997, -0.04521207883954048, -0.005303115118294954, -0.037717629224061966, -0.04979989305138588, 0.013416139408946037, -0.07315313816070557, 0.04968646913766861, -0.125452920794487, -0.014608497731387615, 0.05684986710548401, 0.255770206451416, 0.023599911481142044, -0.32791459560394287, -0.08584330230951309, -0.0002580628788564354, -0.03924960643053055, -0.02624484710395336, 0.02051556669175625, 0.07859232276678085, -0.09820344299077988, 0.03648009151220322, -0.069453164935112, 0.09933728724718094, -0.04304727911949158, 0.0462537445127964, 0.06534399092197418, 0.07562147825956345, 0.01288361195474863, 0.08438948541879654, -0.3329317569732666, 0.26656001806259155, 0.002188591519370675, 0.07582922279834747, -0.08609799295663834, 0.0018146632937714458, 0.032578688114881516, 0.07062642276287079, 0.05769859999418259, -0.015698282048106194, -0.04169844463467598, -0.18409718573093414, -0.05456647649407387, 0.030208522453904152, 0.08682730048894882, -0.011477028951048851, 0.08360619097948074, -0.026448648422956467, 0.006844181567430496, 0.07626580446958542, -0.0430176705121994, -0.050258126109838486, -0.10242374241352081, -0.014593346044421196, 0.024269593879580498, -0.040319912135601044, -0.05641968548297882, -0.11596956849098206, -0.12480363994836807, 0.1552482694387436, -0.018240060657262802, -0.0418098084628582, -0.11314183473587036, 0.08736852556467056, 0.06727200001478195, -0.08643344044685364, 0.05189736187458038, 0.005892945919185877, 0.05982488393783569, 0.02793489396572113, -0.08343946933746338, 0.10482683032751083, -0.06086035817861557, -0.14828166365623474, -0.0489431656897068, 0.10872708261013031, 0.03613218292593956, 0.06136623024940491, -0.007236347068101168, 0.011740732938051224, -0.03848370164632797, -0.09413015842437744, 0.011448164470493793, -0.015240040607750416, 0.09295953810214996, 0.018390489742159843, -0.06590814143419266, -0.009296304546296597, -0.06577984988689423, -0.03112478367984295, 0.2024797648191452, 0.2039552628993988, -0.09624188393354416, 0.027797341346740723, 0.028375063091516495, -0.07320811599493027, -0.20633123815059662, 0.04675798490643501, 0.0675080344080925, 0.006287538446485996, 0.02068033255636692, -0.17913129925727844, 0.131445974111557, 0.09072411060333252, -0.009309222921729088, 0.10007993876934052, -0.3283577859401703, -0.1294780671596527, 0.12426232546567917, 0.14054661989212036, 0.13082371652126312, -0.13991408050060272, -0.01884259656071663, -0.03160578012466431, -0.11691220104694366, 0.10196135938167572, -0.0799000933766365, 0.11829624325037003, -0.033104512840509415, 0.08138609677553177, 0.0016047388780862093, -0.06211809068918228, 0.10988330841064453, 0.026966195553541183, 0.09635473787784576, -0.0658794566988945, -0.029049672186374664, 0.03917498514056206, -0.03784941881895065, 0.01857183873653412, -0.08210089802742004, 0.02808363363146782, -0.10310684889554977, -0.021249134093523026, -0.08327429741621017, 0.04250934720039368, -0.032204851508140564, -0.04809209704399109, -0.033662378787994385, 0.016819795593619347, 0.053839270025491714, -0.014544487930834293, 0.1329784244298935, 0.021230384707450867, 0.15080633759498596, 0.11720656603574753, 0.08012447506189346, -0.0682801678776741, -0.05554803088307381, -0.012830105610191822, -0.01517587061971426, 0.05632001906633377, -0.1561805009841919, 0.03249131515622139, 0.14775311946868896, 0.018993157893419266, 0.12852245569229126, 0.08721036463975906, -0.008069274015724659, 0.0035404551308602095, 0.06969519704580307, -0.16287648677825928, -0.0713014304637909, -0.004204288590699434, -0.056751105934381485, -0.09938259422779083, 0.05215727165341377, 0.08013320714235306, -0.06934516876935959, -0.013660447672009468, -0.009408247657120228, 0.0018440276617184281, -0.06181428208947182, 0.2053852528333664, 0.05863206833600998, 0.04641583934426308, -0.11246389895677567, 0.07191067188978195, 0.05818420648574829, -0.08318319171667099, 0.007495964877307415, 0.0838179960846901, -0.09160830080509186, -0.0488286130130291, 0.12095886468887329, 0.1675696223974228, -0.05455131456255913, -0.045999858528375626, -0.13454975187778473, -0.12876708805561066, 0.08639004081487656, 0.16836465895175934, 0.12230107933282852, 0.014557951129972935, -0.06425745785236359, 0.005502650979906321, -0.12866181135177612, 0.07713403552770615, 0.04231419786810875, 0.06468465924263, -0.13372714817523956, 0.17388604581356049, 0.011871619150042534, 0.049746524542570114, -0.024860983714461327, 0.024486560374498367, -0.10003884136676788, 0.023265114054083824, -0.12066227942705154, -0.019719090312719345, -0.022415120154619217, 0.007192742545157671, -0.009050151333212852, -0.0477185882627964, -0.05008373409509659, 0.018144994974136353, -0.12100429087877274, -0.018079830333590508, 0.023186955600976944, 0.05158894881606102, -0.11343889683485031, -0.041305061429739, 0.020123789086937904, -0.0606292188167572, 0.06160982325673103, 0.05903024598956108, 0.005738450679928064, 0.06813960522413254, -0.13029153645038605, -0.006664049345999956, 0.08689263463020325, 0.012299971655011177, 0.0643555074930191, -0.08576901257038116, 0.0002691706467885524, 0.019402876496315002, 0.06644769757986069, 0.02824874222278595, 0.08019901067018509, -0.1439761072397232, 0.00519295409321785, -0.035300713032484055, -0.07868777215480804, -0.0700196698307991, 0.033244937658309937, 0.08777879178524017, 0.011421027593314648, 0.19557024538516998, -0.08154481649398804, 0.037339042872190475, -0.20450636744499207, 0.0005770482821390033, -0.020733706653118134, -0.12170521169900894, -0.12692277133464813, -0.06707888096570969, 0.06736958026885986, -0.04637790098786354, 0.13291417062282562, 0.037012819200754166, 0.04262583702802658, 0.030524609610438347, -0.012923507019877434, 0.001980635803192854, 0.02689863182604313, 0.21501368284225464, 0.03222443535923958, -0.03835617005825043, 0.07805454730987549, 0.05698101967573166, 0.10018155723810196, 0.1234179437160492, 0.2013041079044342, 0.1559697389602661, -0.01445884257555008, 0.09768584370613098, 0.014925622381269932, -0.04425685107707977, -0.15720680356025696, 0.037544406950473785, -0.05594926327466965, 0.100979745388031, -0.02742409147322178, 0.2040175348520279, 0.05496908724308014, -0.16594403982162476, 0.05125734582543373, -0.058352913707494736, -0.09520746767520905, -0.10622960329055786, -0.038642819970846176, -0.08295217156410217, -0.1392723172903061, -0.0015610517002642155, -0.10798842459917068, 0.014049514196813107, 0.10186319053173065, 0.006197968497872353, -0.030451109632849693, 0.15748749673366547, 0.03167233243584633, 0.015765748918056488, 0.06951384991407394, -0.0033967832569032907, -0.026029767468571663, -0.10288800299167633, -0.05673276260495186, -0.020690133795142174, -0.014676152728497982, 0.03940350189805031, -0.05103066936135292, -0.06474915146827698, 0.040849290788173676, -0.03221234306693077, -0.09328248351812363, 0.016166942194104195, 0.02942357212305069, 0.07092206180095673, 0.05982378497719765, 0.01062663085758686, 0.008471602573990822, -0.012334014289081097, 0.21595078706741333, -0.07746214419603348, -0.08995415270328522, -0.0960998609662056, 0.2740768492221832, 0.057652588933706284, -0.010026750154793262, 0.03003084845840931, -0.05917017161846161, -0.0013757928973063827, 0.2619768977165222, 0.19526983797550201, -0.07823815941810608, -0.006640335079282522, -0.0009600825724191964, -0.008808005601167679, -0.007110840640962124, 0.12675118446350098, 0.1532115638256073, 0.049999333918094635, -0.10532790422439575, -0.04725150018930435, -0.05712836608290672, -0.01558744814246893, -0.05200648307800293, 0.06447633355855942, 0.03263295069336891, -0.0029580502305179834, -0.033312540501356125, 0.062371015548706055, -0.07146099954843521, -0.08667363226413727, 0.05185528099536896, -0.20555222034454346, -0.15962405502796173, -0.010813402943313122, 0.10709302127361298, -0.0004991641617380083, 0.05807570368051529, -0.019332673400640488, 0.003597373142838478, 0.07214387506246567, -0.024073613807559013, -0.08791398257017136, -0.07068557292222977, 0.09161393344402313, -0.12329666316509247, 0.17450998723506927, -0.03908886760473251, 0.07324470579624176, 0.12204049527645111, 0.07692236453294754, -0.06837611645460129, 0.06050488352775574, 0.026498543098568916, -0.06461787223815918, 0.0442020520567894, 0.08746451884508133, -0.031312040984630585, 0.03410092368721962, 0.03558971732854843, -0.11671197414398193, 0.028274931013584137, -0.08347763121128082, -0.046666525304317474, -0.04506177455186844, -0.04435454681515694, -0.055823296308517456, 0.11881238222122192, 0.220828577876091, -0.023710520938038826, 0.014306100085377693, -0.07728137075901031, 0.0020072953775525093, 0.04124779999256134, 0.015474149025976658, -0.08243750780820847, -0.23606890439987183, 0.005306802690029144, 0.06129783019423485, -0.020173970609903336, -0.22315889596939087, -0.08925675600767136, -0.0027443773578852415, -0.07691134512424469, -0.10195668786764145, 0.08359095454216003, 0.0710597112774849, 0.047202639281749725, -0.055254314094781876, -0.0757962018251419, -0.0774897038936615, 0.15702751278877258, -0.15081237256526947, -0.08792164921760559 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6049 - Accuracy: 0.6926 - F1: 0.4160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 | | No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 | | No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 | | No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 | | No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_27\_02\_2022-18\_51\_55 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6049 * Accuracy: 0.6926 * F1: 0.4160 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5819 - Accuracy: 0.7058 - F1: 0.4267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.6110 | 0.665 | 0.0 | | No log | 2.0 | 96 | 0.5706 | 0.685 | 0.2588 | | No log | 3.0 | 144 | 0.5484 | 0.725 | 0.5299 | | No log | 4.0 | 192 | 0.5585 | 0.71 | 0.4727 | | No log | 5.0 | 240 | 0.5616 | 0.725 | 0.5133 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_27\_02\_2022-19\_22\_29 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5819 * Accuracy: 0.7058 * F1: 0.4267 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-18\_23\_48 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3962 * Accuracy: 0.8231 * F1: 0.8873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3944 - Accuracy: 0.8279 - F1: 0.8901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3946 | 0.8012 | 0.8743 | | No log | 2.0 | 390 | 0.3746 | 0.8329 | 0.8929 | | 0.3644 | 3.0 | 585 | 0.4288 | 0.8268 | 0.8849 | | 0.3644 | 4.0 | 780 | 0.5352 | 0.8232 | 0.8841 | | 0.3644 | 5.0 | 975 | 0.5768 | 0.8268 | 0.8864 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-19\_16\_53 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3944 * Accuracy: 0.8279 * F1: 0.8901 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6071 - Accuracy: 0.8337 - F1: 0.8922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3920 | 0.7988 | 0.8624 | | No log | 2.0 | 390 | 0.3873 | 0.8171 | 0.8739 | | 0.3673 | 3.0 | 585 | 0.4354 | 0.8256 | 0.8835 | | 0.3673 | 4.0 | 780 | 0.5358 | 0.8293 | 0.8887 | | 0.3673 | 5.0 | 975 | 0.5616 | 0.8366 | 0.8923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-22\_36\_26 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6071 * Accuracy: 0.8337 * F1: 0.8922 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0890 - Accuracy: 0.9750 - F1: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 104 | 0.0485 | 0.9885 | 0.9942 | | No log | 2.0 | 208 | 0.0558 | 0.9857 | 0.9927 | | No log | 3.0 | 312 | 0.0501 | 0.9828 | 0.9913 | | No log | 4.0 | 416 | 0.0593 | 0.9828 | 0.9913 | | 0.04 | 5.0 | 520 | 0.0653 | 0.9828 | 0.9913 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_editorials\_27\_02\_2022-19\_46\_22 ===================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0890 * Accuracy: 0.9750 * F1: 0.9873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3767 - Accuracy: 0.8638 - F1: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 81 | 0.4489 | 0.8309 | 0.8969 | | No log | 2.0 | 162 | 0.4429 | 0.8272 | 0.8915 | | No log | 3.0 | 243 | 0.5154 | 0.8529 | 0.9083 | | No log | 4.0 | 324 | 0.5552 | 0.8309 | 0.8925 | | No log | 5.0 | 405 | 0.5896 | 0.8309 | 0.8940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_essays\_27\_02\_2022-19\_35\_56 ================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3767 * Accuracy: 0.8638 * F1: 0.9165 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6020 - Accuracy: 0.7032 - F1: 0.4851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.5914 | 0.67 | 0.0294 | | No log | 2.0 | 96 | 0.5616 | 0.695 | 0.2824 | | No log | 3.0 | 144 | 0.5596 | 0.73 | 0.5909 | | No log | 4.0 | 192 | 0.6273 | 0.73 | 0.5 | | No log | 5.0 | 240 | 0.6370 | 0.71 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr0\_3e-05\_webDiscourse\_27\_02\_2022-19\_27\_41 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6020 * Accuracy: 0.7032 * F1: 0.4851 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8144 - F1: 0.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 | | No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 | | 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 | | 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 | | 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr1\_0.0002\_all\_27\_02\_2022-18\_01\_22 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7600 * Accuracy: 0.8144 * F1: 0.8788 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr1\_2e-05\_all\_26\_02\_2022-04\_03\_26 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4095 - Accuracy: 0.8263 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 | | No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 | | 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 | | 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 | | 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr1\_2e-05\_all\_27\_02\_2022-17\_33\_22 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4095 * Accuracy: 0.8263 * F1: 0.8865 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6049 - Accuracy: 0.6926 - F1: 0.4160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 | | No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 | | No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 | | No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 | | No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr1\_2e-05\_webDiscourse\_27\_02\_2022-18\_54\_09 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6049 * Accuracy: 0.6926 * F1: 0.4160 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr1\_3e-05\_all\_27\_02\_2022-18\_29\_24 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3962 * Accuracy: 0.8231 * F1: 0.8873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8144 - F1: 0.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 | | No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 | | 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 | | 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 | | 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr2\_0.0002\_all\_27\_02\_2022-18\_06\_59 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7600 * Accuracy: 0.8144 * F1: 0.8788 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr2\_2e-05\_all\_26\_02\_2022-04\_09\_01 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4095 - Accuracy: 0.8263 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 | | No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 | | 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 | | 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 | | 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr2\_2e-05\_all\_27\_02\_2022-17\_38\_58 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4095 * Accuracy: 0.8263 * F1: 0.8865 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6049 - Accuracy: 0.6926 - F1: 0.4160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 | | No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 | | No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 | | No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 | | No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr2\_2e-05\_webDiscourse\_27\_02\_2022-18\_56\_32 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6049 * Accuracy: 0.6926 * F1: 0.4160 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr2\_3e-05\_all\_27\_02\_2022-18\_35\_02 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3962 * Accuracy: 0.8231 * F1: 0.8873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8144 - F1: 0.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 | | No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 | | 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 | | 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 | | 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr3\_0.0002\_all\_27\_02\_2022-18\_12\_34 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7600 * Accuracy: 0.8144 * F1: 0.8788 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr3\_2e-05\_all\_26\_02\_2022-04\_14\_37 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4095 - Accuracy: 0.8263 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 | | No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 | | 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 | | 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 | | 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr3\_2e-05\_all\_27\_02\_2022-17\_44\_32 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4095 * Accuracy: 0.8263 * F1: 0.8865 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6049 - Accuracy: 0.6926 - F1: 0.4160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 | | No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 | | No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 | | No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 | | No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr3\_2e-05\_webDiscourse\_27\_02\_2022-18\_59\_05 ======================================================================= This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6049 * Accuracy: 0.6926 * F1: 0.4160 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr3\_3e-05\_all\_27\_02\_2022-18\_40\_40 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3962 * Accuracy: 0.8231 * F1: 0.8873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8144 - F1: 0.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 | | No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 | | 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 | | 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 | | 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr4\_0.0002\_all\_27\_02\_2022-18\_18\_11 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7600 * Accuracy: 0.8144 * F1: 0.8788 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09993704408407211, 0.07634809613227844, -0.0018183437641710043, 0.12156227976083755, 0.18219831585884094, 0.01741635799407959, 0.10828865319490433, 0.12610726058483124, -0.11324328184127808, 0.0162727739661932, 0.12355384975671768, 0.18539290130138397, 0.005849879700690508, 0.10766882449388504, -0.06264838576316833, -0.25251659750938416, -0.013895770534873009, 0.05205785483121872, -0.07295230776071548, 0.1376955509185791, 0.09595555812120438, -0.13098865747451782, 0.0787491500377655, -0.001088312012143433, -0.22812548279762268, 0.014710339717566967, 0.021560069173574448, -0.06568725407123566, 0.1475069224834442, 0.026142947375774384, 0.12584762275218964, 0.005526839289814234, 0.07575727999210358, -0.1716475635766983, 0.009670632891356945, 0.0513889417052269, 0.007117842324078083, 0.08914083987474442, 0.055573489516973495, -0.010906688868999481, 0.11475393921136856, -0.09493295103311539, 0.047627609223127365, 0.022859087213873863, -0.11889128386974335, -0.2189822494983673, -0.08109071850776672, 0.01907634548842907, 0.06302895396947861, 0.10826907306909561, -0.0018408935284242034, 0.12602096796035767, -0.08980809897184372, 0.10053421556949615, 0.2154638022184372, -0.28154894709587097, -0.06122579798102379, 0.03974486514925957, 0.0044303592294454575, 0.08139961957931519, -0.10914386808872223, -0.017723271623253822, 0.0639190599322319, 0.045911334455013275, 0.13717752695083618, -0.032350003719329834, -0.12178374081850052, 0.01714928261935711, -0.14035367965698242, -0.03364574909210205, 0.1404644101858139, 0.021315908059477806, -0.029518378898501396, -0.035761792212724686, -0.06037687137722969, -0.1640584021806717, -0.038732241839170456, -0.007591539993882179, 0.04715368151664734, -0.03060346283018589, -0.060925181955099106, -0.0033795686904340982, -0.10727804899215698, -0.05916711688041687, -0.08402073383331299, 0.13786619901657104, 0.03896921128034592, 0.011790384538471699, -0.031273532658815384, 0.10561948269605637, 0.011564160697162151, -0.12932874262332916, 0.03123858943581581, 0.03455984964966774, 0.0068471552804112434, -0.047286175191402435, -0.07760073989629745, -0.06562892347574234, 0.006758527830243111, 0.09864083677530289, -0.0651712492108345, 0.052843861281871796, 0.021793078631162643, 0.047208648175001144, -0.10285656154155731, 0.19985616207122803, -0.03193828463554382, -0.0010997680947184563, 0.018287966027855873, 0.03929344564676285, 0.01026515569537878, -0.010590988211333752, -0.12519532442092896, -0.0035321791656315327, 0.12057860940694809, 0.017354076728224754, -0.07249793410301208, 0.07704278081655502, -0.04724196717143059, -0.022497054189443588, 0.00556688429787755, -0.1049358919262886, 0.03404327854514122, -0.0031917693559080362, -0.0860530436038971, -0.012039361521601677, 0.03437526151537895, 0.006473449058830738, -0.03747095540165901, 0.11106712371110916, -0.0806291252374649, 0.04497366026043892, -0.10367986559867859, -0.11028114706277847, 0.014128029346466064, -0.07438969612121582, 0.019975215196609497, -0.10523832589387894, -0.15944579243659973, -0.0192857775837183, 0.05491485074162483, -0.02162988856434822, -0.058595553040504456, -0.0549161359667778, -0.0736510157585144, 0.012645300477743149, -0.019505344331264496, 0.14971701800823212, -0.05648522824048996, 0.112159863114357, 0.0369875505566597, 0.06439358741044998, -0.058815013617277145, 0.06574265658855438, -0.09392407536506653, -0.00032563949935138226, -0.18573278188705444, 0.05699478089809418, -0.04639027267694473, 0.07434099912643433, -0.08748895674943924, -0.11471999436616898, 0.01676749438047409, -0.006641999818384647, 0.07358443737030029, 0.09069926291704178, -0.16240431368350983, -0.07618249207735062, 0.14834319055080414, -0.060339804738759995, -0.10632426291704178, 0.11683771014213562, -0.062325913459062576, 0.04969722032546997, 0.08301197737455368, 0.1710497885942459, 0.0739341452717781, -0.060616347938776016, 0.025400662794709206, 0.0063217077404260635, 0.04651382565498352, -0.083373062312603, 0.05219778046011925, 0.0072181797586381435, -0.016441047191619873, 0.03964695706963539, -0.025250323116779327, 0.06802895665168762, -0.0914519652724266, -0.09447839111089706, -0.046936988830566406, -0.09805145114660263, 0.05452340841293335, 0.07971806079149246, 0.09686189144849777, -0.09343625605106354, -0.06641221046447754, 0.08368616551160812, 0.07079020887613297, -0.06501804292201996, 0.038948237895965576, -0.04997681453824043, 0.06233087182044983, -0.03661887347698212, -0.017274564132094383, -0.20244468748569489, 0.003656539600342512, 0.007101310882717371, 0.00898595992475748, 0.025381386280059814, 0.015469585545361042, 0.06835295259952545, 0.04926507547497749, -0.06193498894572258, -0.009692365303635597, -0.010029012337327003, -0.008296520449221134, -0.14275643229484558, -0.18311774730682373, -0.014875601045787334, -0.016052087768912315, 0.12551644444465637, -0.19843342900276184, 0.0402526892721653, -0.01814316026866436, 0.05820292979478836, -0.005279435310512781, 0.00024185844813473523, -0.04289330542087555, 0.09063763916492462, -0.038748327642679214, -0.046592045575380325, 0.08266987651586533, 0.005941650364547968, -0.08672892302274704, -0.03821325674653053, -0.09203866124153137, 0.1667701005935669, 0.14492344856262207, -0.13167479634284973, -0.07842563837766647, 0.0006858371780253947, -0.05221274122595787, -0.030709633603692055, -0.03959445282816887, 0.04035211354494095, 0.19613395631313324, -0.016911908984184265, 0.16490042209625244, -0.0719529241323471, -0.04871896281838417, 0.01692659966647625, -0.033140771090984344, 0.03397321701049805, 0.12338437885046005, 0.10937961935997009, -0.07322616875171661, 0.14254435896873474, 0.1489122360944748, -0.11230386793613434, 0.12102802842855453, -0.04667182266712189, -0.06410008668899536, -0.0037516443990170956, -0.017496325075626373, 0.0005817461642436683, 0.07378552854061127, -0.13935981690883636, -0.007629883475601673, 0.01943168230354786, 0.021184101700782776, 0.029110245406627655, -0.22743023931980133, -0.031253620982170105, 0.02607666328549385, -0.04400775581598282, 0.0020758239552378654, -0.02005130983889103, 0.011511684395372868, 0.11036466807126999, 0.0005089554470032454, -0.08535879105329514, 0.047965142875909805, 0.005218684207648039, -0.08316197246313095, 0.22352074086666107, -0.09429506212472916, -0.16885966062545776, -0.12550751864910126, -0.0752640813589096, -0.04796893149614334, 0.012433505617082119, 0.06089215725660324, -0.09943220019340515, -0.0257036741822958, -0.05798666551709175, 0.012869620695710182, -0.008657754398882389, 0.040460944175720215, 0.0032098519150167704, 0.0058782510459423065, 0.07455948740243912, -0.11167395114898682, -0.009282663464546204, -0.05507470667362213, -0.06423351913690567, 0.05383233353495598, 0.030925327911973, 0.10352946817874908, 0.17203135788440704, -0.0330016128718853, 0.008674352429807186, -0.03289930149912834, 0.21574553847312927, -0.06203211843967438, -0.030814891681075096, 0.13370831310749054, -0.001604330027475953, 0.055302150547504425, 0.10269840806722641, 0.06812629848718643, -0.09000733494758606, 0.01563919335603714, 0.022001396864652634, -0.03716341778635979, -0.23208455741405487, -0.05223987251520157, -0.06103052571415901, -0.026067746803164482, 0.09440625458955765, 0.03201395645737648, 0.05214797332882881, 0.06705470383167267, 0.050327908247709274, 0.08931846916675568, -0.03841210529208183, 0.050838373601436615, 0.13539481163024902, 0.04389658197760582, 0.12860646843910217, -0.050987645983695984, -0.0649951621890068, 0.03465239331126213, -0.021583864465355873, 0.22261828184127808, 0.00029354591970331967, 0.127747043967247, 0.049494434148073196, 0.1836334615945816, 0.007016962394118309, 0.08674938231706619, -0.004398684483021498, -0.0390295647084713, -0.00944316666573286, -0.038525160402059555, -0.05120197683572769, 0.008671795018017292, -0.0672888457775116, 0.04998939111828804, -0.12052032351493835, -0.022532157599925995, 0.05300494283437729, 0.24721553921699524, 0.024257825687527657, -0.32633519172668457, -0.08555281907320023, 0.0021079496946185827, -0.03465856984257698, -0.02478613518178463, 0.0204145610332489, 0.08596764504909515, -0.09566525369882584, 0.028013266623020172, -0.07078015059232712, 0.10037858784198761, -0.04495173320174217, 0.04548144340515137, 0.05798757076263428, 0.08370143920183182, 0.011319546960294247, 0.0871899202466011, -0.33397307991981506, 0.259814590215683, 0.0027425989974290133, 0.06913731247186661, -0.07902030646800995, 0.0007304620812647045, 0.037362776696681976, 0.07605744898319244, 0.04824148863554001, -0.012617294676601887, -0.030826594680547714, -0.18590906262397766, -0.05454228073358536, 0.02902051992714405, 0.08434770256280899, -0.01560116931796074, 0.07867102324962616, -0.028684616088867188, 0.008469438180327415, 0.07748205959796906, -0.0379149466753006, -0.04976646602153778, -0.09806707501411438, -0.013419760391116142, 0.02690490335226059, -0.033734411001205444, -0.056226298213005066, -0.11660168319940567, -0.13340429961681366, 0.16600748896598816, -0.02356545627117157, -0.042179714888334274, -0.11165371537208557, 0.09070459753274918, 0.06819584965705872, -0.08707381784915924, 0.05018936097621918, 0.004575371276587248, 0.056302301585674286, 0.029122401028871536, -0.08286766707897186, 0.10433231294155121, -0.05488185957074165, -0.15132111310958862, -0.048239029943943024, 0.10238174349069595, 0.02793174423277378, 0.06310482323169708, -0.01211627572774887, 0.01089091133326292, -0.038733236491680145, -0.09398140758275986, 0.008660739287734032, -0.009016869589686394, 0.08393843472003937, 0.02780167944729328, -0.06819804012775421, -0.01224347110837698, -0.06639081239700317, -0.03352894261479378, 0.20222890377044678, 0.21120081841945648, -0.09776786714792252, 0.023207133635878563, 0.03797703608870506, -0.0750173032283783, -0.21054509282112122, 0.04892401397228241, 0.0625595897436142, 0.006003696471452713, 0.02306511066854, -0.17799727618694305, 0.12890686094760895, 0.09660560637712479, -0.011413903906941414, 0.10887881368398666, -0.3311988115310669, -0.1337774693965912, 0.12274713814258575, 0.14641103148460388, 0.1387551873922348, -0.1424672156572342, -0.021701619029045105, -0.031818315386772156, -0.10155202448368073, 0.1011328250169754, -0.07733777165412903, 0.12492727488279343, -0.030789192765951157, 0.09084641188383102, 0.0037821775767952204, -0.058287978172302246, 0.11683916300535202, 0.02152402326464653, 0.0987713634967804, -0.06657344847917557, -0.0264076329767704, 0.042988765984773636, -0.03638650104403496, 0.02001350186765194, -0.0857282429933548, 0.030448639765381813, -0.09720540791749954, -0.018870724365115166, -0.07986369729042053, 0.04606813192367554, -0.031896159052848816, -0.05359257385134697, -0.041914910078048706, 0.015437361784279346, 0.049846913665533066, -0.013641889207065105, 0.12921003997325897, 0.017506344243884087, 0.14422065019607544, 0.12658542394638062, 0.07388923317193985, -0.06619976460933685, -0.05740135535597801, -0.009185327216982841, -0.015618974342942238, 0.05711031332612038, -0.15654052793979645, 0.031630851328372955, 0.14654818177223206, 0.015811700373888016, 0.134033665060997, 0.08602607250213623, -0.009984644129872322, 0.004843095783144236, 0.06463469564914703, -0.1619630604982376, -0.07432545721530914, -0.005062824580818415, -0.06143920123577118, -0.09814468026161194, 0.051080964505672455, 0.0828443169593811, -0.07267234474420547, -0.01189375389367342, -0.00821862556040287, 0.003378053428605199, -0.060351524502038956, 0.2052650898694992, 0.06706508249044418, 0.04512094706296921, -0.11021525412797928, 0.08002855628728867, 0.0639791190624237, -0.0868431106209755, 0.005018984898924828, 0.08171840757131577, -0.08621133863925934, -0.048127107322216034, 0.11375115066766739, 0.17571820318698883, -0.06103270500898361, -0.04516229033470154, -0.13761508464813232, -0.12487198412418365, 0.08344460278749466, 0.15873679518699646, 0.12124048173427582, 0.01672382466495037, -0.06335049867630005, 0.00005818299905513413, -0.1273186057806015, 0.08057316392660141, 0.041437212377786636, 0.06771791726350784, -0.1304132342338562, 0.17217928171157837, 0.012102767825126648, 0.0533130057156086, -0.027071919292211533, 0.02205016277730465, -0.09788395464420319, 0.02125205472111702, -0.1217862069606781, -0.014992550015449524, -0.0132747208699584, 0.006417693104594946, -0.0082729896530509, -0.05429864674806595, -0.052009958773851395, 0.020261593163013458, -0.12198732048273087, -0.02010960876941681, 0.024485761299729347, 0.05194124951958656, -0.11125800013542175, -0.04575418308377266, 0.01992986723780632, -0.05598343536257744, 0.06436120718717575, 0.05108489468693733, 0.0039370376616716385, 0.06764145195484161, -0.1424497365951538, -0.00221728952601552, 0.08002077788114548, 0.013903957791626453, 0.061538707464933395, -0.08552666753530502, 0.0003498673904687166, 0.014627213589847088, 0.07027976214885712, 0.02731509506702423, 0.08333230763673782, -0.14377526938915253, 0.00236395257525146, -0.03926058113574982, -0.07474160194396973, -0.07029347121715546, 0.03691108152270317, 0.0808749720454216, 0.020867954939603806, 0.19376768171787262, -0.08525793254375458, 0.0346200168132782, -0.20246942341327667, 0.0016217594966292381, -0.021282555535435677, -0.1245603933930397, -0.12708386778831482, -0.06851939857006073, 0.06651222705841064, -0.04809477925300598, 0.13213025033473969, 0.03953832760453224, 0.038076646625995636, 0.028859129175543785, -0.015178591012954712, 0.00873824767768383, 0.02531491033732891, 0.21945326030254364, 0.03348206728696823, -0.03444245457649231, 0.0746501162648201, 0.06073315814137459, 0.1003439873456955, 0.12830694019794464, 0.1963653713464737, 0.15362071990966797, -0.024894341826438904, 0.09950272738933563, 0.010821939446032047, -0.04399215430021286, -0.14628565311431885, 0.0477016307413578, -0.054411981254816055, 0.10156921297311783, -0.0292530357837677, 0.2082989364862442, 0.055221620947122574, -0.16478808224201202, 0.054458070546388626, -0.05545034632086754, -0.09596963226795197, -0.10743838548660278, -0.037470996379852295, -0.08497928082942963, -0.1420678198337555, -0.004149851854890585, -0.10663339495658875, 0.01786651648581028, 0.1100006178021431, 0.007196679711341858, -0.033915162086486816, 0.15179023146629333, 0.02392789162695408, 0.010257081128656864, 0.06720193475484848, -0.005087174940854311, -0.02479458414018154, -0.10541334003210068, -0.06690609455108643, -0.017543137073516846, -0.01048072800040245, 0.04037455841898918, -0.04663936421275139, -0.05688035115599632, 0.039544180035591125, -0.03440208360552788, -0.09454146027565002, 0.015437263064086437, 0.029097439721226692, 0.07151520252227783, 0.06267064064741135, 0.010617628693580627, 0.006470897234976292, -0.012613124214112759, 0.2192801833152771, -0.07859808951616287, -0.0850004330277443, -0.08715658634901047, 0.2761111259460449, 0.0538238026201725, -0.010424751788377762, 0.026300225406885147, -0.06262709945440292, -0.0016572304302826524, 0.26334190368652344, 0.19865953922271729, -0.08486241847276688, -0.009962351061403751, -0.0031431540846824646, -0.009679028764367104, -0.006380152888596058, 0.13127267360687256, 0.14410439133644104, 0.04111618176102638, -0.10467185080051422, -0.04355710372328758, -0.052766017615795135, -0.011844651773571968, -0.059149306267499924, 0.06559483706951141, 0.026894977316260338, -0.0020557709503918886, -0.03826281800866127, 0.05756831169128418, -0.07124979794025421, -0.09635833650827408, 0.05588143318891525, -0.2031499594449997, -0.15937891602516174, -0.010640193708240986, 0.10970897227525711, -0.002333675278350711, 0.056752387434244156, -0.02219730243086815, 0.012004055082798004, 0.060798462480306625, -0.025362489745020866, -0.09063995629549026, -0.07017694413661957, 0.08884229511022568, -0.122380331158638, 0.1777316927909851, -0.037374820560216904, 0.06994634121656418, 0.12093184143304825, 0.07371971756219864, -0.06912583857774734, 0.06733047962188721, 0.02770097926259041, -0.06512342393398285, 0.04680295288562775, 0.08785022050142288, -0.029367204755544662, 0.03641267120838165, 0.034941982477903366, -0.10661624372005463, 0.024066582322120667, -0.08444593101739883, -0.048473894596099854, -0.045638956129550934, -0.05194979906082153, -0.0585201270878315, 0.1193775162100792, 0.21808888018131256, -0.023005573078989983, 0.013493296690285206, -0.08217470347881317, -0.0038648860063403845, 0.04241365194320679, 0.009477180428802967, -0.08053776621818542, -0.230995312333107, 0.007195152807980776, 0.06380107253789902, -0.01984870806336403, -0.23002174496650696, -0.08451680094003677, -0.0053710490465164185, -0.07406932860612869, -0.09902454912662506, 0.08912277966737747, 0.07196874171495438, 0.045899856835603714, -0.05145890638232231, -0.08076421916484833, -0.07933831959962845, 0.15554751455783844, -0.15399283170700073, -0.08994875103235245 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr4\_2e-05\_all\_26\_02\_2022-04\_20\_09 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4095 - Accuracy: 0.8263 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 | | No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 | | 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 | | 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 | | 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr4\_2e-05\_all\_27\_02\_2022-17\_50\_05 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4095 * Accuracy: 0.8263 * F1: 0.8865 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr4\_3e-05\_all\_27\_02\_2022-18\_46\_19 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3962 * Accuracy: 0.8231 * F1: 0.8873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.09941770881414413, 0.0673636794090271, -0.0017911065369844437, 0.11817209422588348, 0.1824268251657486, 0.02012927643954754, 0.1044352576136589, 0.12498457729816437, -0.11973512172698975, 0.014552962966263294, 0.12247280031442642, 0.18677452206611633, 0.005638427101075649, 0.11972761899232864, -0.06272431463003159, -0.25518515706062317, -0.013434460386633873, 0.05508628115057945, -0.061160311102867126, 0.13976207375526428, 0.09713026136159897, -0.1329992413520813, 0.07788939028978348, 0.003264185506850481, -0.22977015376091003, 0.01095654908567667, 0.01524150650948286, -0.06842859089374542, 0.14486008882522583, 0.022560978308320045, 0.12630824744701385, 0.0026685127522796392, 0.07517979294061661, -0.172694593667984, 0.010221494361758232, 0.050419144332408905, 0.005277637392282486, 0.08530781418085098, 0.050322726368904114, -0.012914635241031647, 0.12213468551635742, -0.09365437179803848, 0.05297645926475525, 0.018639085814356804, -0.12030338495969772, -0.22346997261047363, -0.08070874214172363, 0.022088438272476196, 0.07097186893224716, 0.11183485388755798, -0.0003881032462231815, 0.13475562632083893, -0.09146605432033539, 0.10126490145921707, 0.21363966166973114, -0.2817559242248535, -0.06504024565219879, 0.02612324431538582, 0.005096153821796179, 0.07144863158464432, -0.10896545648574829, -0.025551678612828255, 0.05763929337263107, 0.053061965852975845, 0.14059850573539734, -0.03158526122570038, -0.12703415751457214, 0.011996781453490257, -0.14056813716888428, -0.035421449691057205, 0.14037571847438812, 0.020326124504208565, -0.028704781085252762, -0.0472356379032135, -0.059318553656339645, -0.1614558845758438, -0.04541909322142601, -0.006096940953284502, 0.04179280623793602, -0.03301531821489334, -0.05608121678233147, 0.006604752503335476, -0.10808632522821426, -0.06009029969573021, -0.08018001914024353, 0.14057733118534088, 0.038710203021764755, 0.011127540841698647, -0.03575162589550018, 0.10653727501630783, 0.01968105509877205, -0.13330458104610443, 0.026525121182203293, 0.027184568345546722, 0.00905002560466528, -0.05197439715266228, -0.073875792324543, -0.05769403278827667, 0.004635267425328493, 0.11225715279579163, -0.06572724878787994, 0.05427388846874237, 0.022434497252106667, 0.041442159563302994, -0.09813554584980011, 0.19385600090026855, -0.024323394522070885, -0.0009011137299239635, 0.01913573406636715, 0.03988352417945862, 0.008140219375491142, -0.0083277253434062, -0.11794852465391159, 0.00007359252049354836, 0.11907436698675156, 0.016124527901411057, -0.07520418614149094, 0.07869632542133331, -0.049695856869220734, -0.02144896239042282, 0.021507341414690018, -0.10415149480104446, 0.03544577211141586, -0.002932250266894698, -0.08171520382165909, -0.013749388977885246, 0.030019011348485947, 0.009557895362377167, -0.037476859986782074, 0.11745309084653854, -0.0766320452094078, 0.0433325469493866, -0.1035882979631424, -0.10616321861743927, 0.016858113929629326, -0.07564199715852737, 0.025805331766605377, -0.10526753216981888, -0.16208399832248688, -0.019326284527778625, 0.05674716457724571, -0.023630134761333466, -0.05677046999335289, -0.05181832239031792, -0.07469695806503296, 0.017012184485793114, -0.019228842109441757, 0.15290607511997223, -0.05891523137688637, 0.11003714799880981, 0.0423479825258255, 0.06645044684410095, -0.053493235260248184, 0.06320437788963318, -0.09705144166946411, -0.0019237309461459517, -0.19664683938026428, 0.0548095665872097, -0.04514896124601364, 0.08166859298944473, -0.08586118370294571, -0.11568653583526611, 0.013131605461239815, -0.004891047719866037, 0.07119008153676987, 0.0905003622174263, -0.16014771163463593, -0.0755782499909401, 0.15265733003616333, -0.06686630845069885, -0.11100440472364426, 0.11325295269489288, -0.0624827966094017, 0.050880301743745804, 0.08264835178852081, 0.1658559888601303, 0.07503942400217056, -0.06772340834140778, 0.023931536823511124, 0.0046364073641598225, 0.04326244816184044, -0.08307861536741257, 0.050857722759246826, 0.011803315952420235, -0.011310147121548653, 0.04016697779297829, -0.020992564037442207, 0.06794414669275284, -0.09085142612457275, -0.0930594876408577, -0.04696005582809448, -0.09474809467792511, 0.04560478776693344, 0.08239720016717911, 0.0963045060634613, -0.09307976067066193, -0.06707477569580078, 0.07835634797811508, 0.06967619061470032, -0.06140289083123207, 0.03666992485523224, -0.05444952845573425, 0.059432320296764374, -0.027295006439089775, -0.016880756244063377, -0.20566627383232117, 0.00734093738719821, 0.006631164345890284, 0.01191815547645092, 0.014736863784492016, 0.003552190726622939, 0.06995224207639694, 0.04791867360472679, -0.059081584215164185, -0.012726143933832645, -0.00596010684967041, -0.008398645557463169, -0.14126268029212952, -0.1839374303817749, -0.01619097776710987, -0.020400725305080414, 0.11748082935810089, -0.1958387792110443, 0.03867413476109505, -0.012013348750770092, 0.0634542927145958, -0.004835308529436588, -0.0003344656724948436, -0.04394396394491196, 0.09115031361579895, -0.035228315740823746, -0.04491022974252701, 0.08147357404232025, 0.010811221785843372, -0.08117996156215668, -0.04001179337501526, -0.09089405834674835, 0.17187416553497314, 0.14508742094039917, -0.1270103007555008, -0.0808824822306633, -0.006651192903518677, -0.05676357448101044, -0.030227750539779663, -0.03697920963168144, 0.044099632650613785, 0.19055822491645813, -0.017497366294264793, 0.16188545525074005, -0.06994716823101044, -0.05325048416852951, 0.02134878560900688, -0.028721388429403305, 0.03363035246729851, 0.11955977231264114, 0.10802477598190308, -0.08236051350831985, 0.14099469780921936, 0.1468600034713745, -0.10277563333511353, 0.12418175488710403, -0.046839501708745956, -0.061858516186475754, -0.0012920021545141935, -0.019458327442407608, 0.0002748678089119494, 0.07586031407117844, -0.14488616585731506, -0.008969618007540703, 0.020314384251832962, 0.022553518414497375, 0.027616145089268684, -0.22408194839954376, -0.03139106556773186, 0.02476075477898121, -0.036749180406332016, -0.009928734041750431, -0.018175344914197922, 0.012283695861697197, 0.1073029562830925, 0.0005807380075566471, -0.07854965329170227, 0.04713403061032295, 0.007208810653537512, -0.08445069938898087, 0.22464460134506226, -0.09411011636257172, -0.16863282024860382, -0.11806545406579971, -0.08401228487491608, -0.03558630868792534, 0.009257549419999123, 0.06525550782680511, -0.10032487660646439, -0.026759788393974304, -0.05451066792011261, 0.010748879052698612, -0.005680082831531763, 0.04281359165906906, 0.012340640649199486, 0.006191663444042206, 0.07075069099664688, -0.10882724821567535, -0.011371808126568794, -0.054877180606126785, -0.055647559463977814, 0.05648357421159744, 0.028457997366786003, 0.10545480251312256, 0.16172000765800476, -0.026844916865229607, 0.010674710385501385, -0.03451060503721237, 0.22557392716407776, -0.06619347631931305, -0.02992931939661503, 0.13360249996185303, -0.004970382433384657, 0.05362730473279953, 0.10350709408521652, 0.06789558380842209, -0.09149779379367828, 0.015982912853360176, 0.017800254747271538, -0.03769110143184662, -0.2282828837633133, -0.05417097359895706, -0.06340649724006653, -0.029950985684990883, 0.09807837754487991, 0.030261263251304626, 0.051016971468925476, 0.06649085134267807, 0.04396525025367737, 0.09036827832460403, -0.035272371023893356, 0.05255909264087677, 0.13219612836837769, 0.04738488048315048, 0.12736889719963074, -0.05097578465938568, -0.06743952631950378, 0.030445681884884834, -0.021658632904291153, 0.22070202231407166, 0.000057601428125053644, 0.12114080786705017, 0.05094438046216965, 0.17878584563732147, 0.008413695730268955, 0.09227845072746277, -0.006237128749489784, -0.04450559616088867, -0.006423750892281532, -0.03677980601787567, -0.04979827627539635, 0.010045027360320091, -0.0751904845237732, 0.04827943444252014, -0.12259315699338913, -0.01857919991016388, 0.0560876689851284, 0.25344958901405334, 0.01872653141617775, -0.3300761282444, -0.08569174259901047, -0.0001594430359546095, -0.03733871132135391, -0.02810848318040371, 0.018535561859607697, 0.07737389951944351, -0.0973510667681694, 0.03631390258669853, -0.06888838112354279, 0.10020513087511063, -0.04250903055071831, 0.04631998762488365, 0.06605195999145508, 0.07825800031423569, 0.012002882547676563, 0.08511673659086227, -0.33443886041641235, 0.26262396574020386, 0.0033341976813971996, 0.07816421985626221, -0.08621369302272797, 0.0025602795649319887, 0.033565372228622437, 0.07115789502859116, 0.055997516959905624, -0.015599949285387993, -0.041715554893016815, -0.18551328778266907, -0.054855186492204666, 0.029978035017848015, 0.08342697471380234, -0.010821274481713772, 0.08231616765260696, -0.02603781409561634, 0.006703030318021774, 0.07569234073162079, -0.04257819429039955, -0.049191318452358246, -0.1040109246969223, -0.015964126214385033, 0.02392323687672615, -0.039299800992012024, -0.056312285363674164, -0.11508509516716003, -0.12471243739128113, 0.15467716753482819, -0.020566096529364586, -0.043094586580991745, -0.11393439769744873, 0.08838886767625809, 0.06845005601644516, -0.08465123921632767, 0.05263732373714447, 0.004081892780959606, 0.059377651661634445, 0.028785912320017815, -0.08359916508197784, 0.10520149767398834, -0.062311913818120956, -0.15033838152885437, -0.04943235218524933, 0.10562258958816528, 0.034415844827890396, 0.060635071247816086, -0.007608731277287006, 0.012938061729073524, -0.04172137379646301, -0.09475374221801758, 0.01257709413766861, -0.014847591519355774, 0.09352315962314606, 0.017916729673743248, -0.06825371086597443, -0.010358914732933044, -0.06481071561574936, -0.03183186054229736, 0.19883860647678375, 0.204651340842247, -0.09627682715654373, 0.027594678103923798, 0.031725842505693436, -0.07355204969644547, -0.20712628960609436, 0.0459565743803978, 0.0675375685095787, 0.006464047823101282, 0.019398774951696396, -0.1813763529062271, 0.13248033821582794, 0.09332387149333954, -0.010370714589953423, 0.1039399728178978, -0.3232014775276184, -0.12992048263549805, 0.12271637469530106, 0.14067313075065613, 0.13474306464195251, -0.14061294496059418, -0.017468811944127083, -0.030215248465538025, -0.1112796813249588, 0.09966621547937393, -0.07907572388648987, 0.11861191689968109, -0.03451475501060486, 0.08066756278276443, 0.0007216309895738959, -0.06208265200257301, 0.1099751889705658, 0.025384679436683655, 0.09749522805213928, -0.06641561537981033, -0.026001587510108948, 0.04300116002559662, -0.03755564242601395, 0.016715774312615395, -0.08137208223342896, 0.029519103467464447, -0.1052812933921814, -0.021923480555415154, -0.082269087433815, 0.04369023069739342, -0.03285270929336548, -0.048238545656204224, -0.03434324637055397, 0.015918463468551636, 0.051822662353515625, -0.014865173026919365, 0.12894220650196075, 0.021815616637468338, 0.14976540207862854, 0.12189505994319916, 0.07901187241077423, -0.07025182247161865, -0.05287402495741844, -0.009922039695084095, -0.015739964321255684, 0.05698690190911293, -0.15039126574993134, 0.03155703842639923, 0.1460125744342804, 0.01749943383038044, 0.12593868374824524, 0.08834922313690186, -0.0083702951669693, 0.004320763982832432, 0.06906942278146744, -0.16397255659103394, -0.06908147037029266, -0.0032021026127040386, -0.05746787041425705, -0.09987681359052658, 0.05005362257361412, 0.07785119861364365, -0.06812124699354172, -0.01346555631607771, -0.008787606842815876, 0.0027295739855617285, -0.0593775250017643, 0.20599396526813507, 0.05882428586483002, 0.04655909538269043, -0.11364411562681198, 0.07217516005039215, 0.05794761702418327, -0.08345387876033783, 0.0071569341234862804, 0.08341794461011887, -0.0937829539179802, -0.04910624399781227, 0.11724572628736496, 0.16930730640888214, -0.05567464977502823, -0.04621579125523567, -0.13334038853645325, -0.12728014588356018, 0.08747180551290512, 0.16452999413013458, 0.12255537509918213, 0.014211953617632389, -0.06309055536985397, 0.005600504111498594, -0.1285267323255539, 0.07860107719898224, 0.040194135159254074, 0.06597518175840378, -0.1305488646030426, 0.16686515510082245, 0.012123133055865765, 0.04891153797507286, -0.02641204185783863, 0.025232233107089996, -0.10025057196617126, 0.023012295365333557, -0.11720412969589233, -0.018993135541677475, -0.020473787561058998, 0.0072194654494524, -0.009231891483068466, -0.04954623058438301, -0.05089055374264717, 0.01901114545762539, -0.12010017782449722, -0.01787104643881321, 0.023493854328989983, 0.05076291784644127, -0.11184288561344147, -0.041797250509262085, 0.02062111161649227, -0.06086824834346771, 0.06298249214887619, 0.05934242159128189, 0.00563413742929697, 0.06580447405576706, -0.13188843429088593, -0.007525366265326738, 0.08433640003204346, 0.012515162117779255, 0.06327620148658752, -0.08625468611717224, 0.0010018619941547513, 0.020256325602531433, 0.06597545742988586, 0.027881862595677376, 0.08255840092897415, -0.1451435536146164, 0.00659572146832943, -0.03387114778161049, -0.0769529864192009, -0.07031000405550003, 0.03422671929001808, 0.08871195465326309, 0.012832491658627987, 0.19467779994010925, -0.08210896700620651, 0.03394835814833641, -0.20473028719425201, 0.0012432195944711566, -0.020543262362480164, -0.12365416437387466, -0.12799106538295746, -0.06609576940536499, 0.06862631440162659, -0.04470737650990486, 0.14086735248565674, 0.036296430975198746, 0.04029948264360428, 0.029908686876296997, -0.014647304080426693, 0.004214779939502478, 0.02600555308163166, 0.21969370543956757, 0.03256433457136154, -0.03809664025902748, 0.07942268252372742, 0.05774136632680893, 0.09950319677591324, 0.12724098563194275, 0.19689548015594482, 0.1562875509262085, -0.015315989963710308, 0.09637638926506042, 0.012969223782420158, -0.044549256563186646, -0.15509475767612457, 0.04065656289458275, -0.05731744319200516, 0.10212332010269165, -0.029199711978435516, 0.20346997678279877, 0.05702509731054306, -0.16519634425640106, 0.05176452174782753, -0.05858853831887245, -0.09486329555511475, -0.10493017733097076, -0.037316661328077316, -0.0843997672200203, -0.14165958762168884, -0.0010800921590998769, -0.10937708616256714, 0.01448913011699915, 0.10425157845020294, 0.006698913872241974, -0.0304980780929327, 0.156586691737175, 0.03669434413313866, 0.015669045969843864, 0.06850177049636841, -0.003909571561962366, -0.026412732899188995, -0.100712351500988, -0.06009860336780548, -0.020036587491631508, -0.015479100868105888, 0.04044732823967934, -0.050066057592630386, -0.06401664763689041, 0.04015862196683884, -0.031633198261260986, -0.09348678588867188, 0.015779608860611916, 0.02999947965145111, 0.06998741626739502, 0.06039859727025032, 0.00900204572826624, 0.008200764656066895, -0.01219083834439516, 0.21689757704734802, -0.07641638070344925, -0.08825225383043289, -0.09439420700073242, 0.27340471744537354, 0.05717521160840988, -0.010592245496809483, 0.029655292630195618, -0.05802354961633682, -0.000028213904442964122, 0.26345294713974, 0.19494296610355377, -0.07860084623098373, -0.008622698485851288, -0.0002162014861823991, -0.009174428880214691, -0.006888973992317915, 0.12913846969604492, 0.15354208648204803, 0.04700218886137009, -0.10541214048862457, -0.04758632555603981, -0.05604114755988121, -0.015415727160871029, -0.05332513898611069, 0.06412999331951141, 0.0330226793885231, -0.0031902797054499388, -0.034613728523254395, 0.0607643723487854, -0.07107920199632645, -0.08857869356870651, 0.05299460142850876, -0.2035195529460907, -0.1595066338777542, -0.01062526274472475, 0.10634221136569977, -0.0012369529576972127, 0.05723918229341507, -0.01931174471974373, 0.0063592311926186085, 0.06758242100477219, -0.02569141983985901, -0.08708769083023071, -0.07149536907672882, 0.09140531718730927, -0.12021251767873764, 0.17597883939743042, -0.039646949619054794, 0.0728922113776207, 0.12249209731817245, 0.07473335415124893, -0.06958827376365662, 0.062033139169216156, 0.025824787095189095, -0.06428726017475128, 0.04584059491753578, 0.08754641562700272, -0.030488373711705208, 0.03353550657629967, 0.03482748940587044, -0.1142256036400795, 0.027728555724024773, -0.0842500776052475, -0.04689094424247742, -0.045309919863939285, -0.045407433062791824, -0.05645053833723068, 0.11940252780914307, 0.22056876122951508, -0.02342352084815502, 0.014091591350734234, -0.07915771007537842, 0.0027665519155561924, 0.04131954535841942, 0.013850308023393154, -0.08289261162281036, -0.23691393435001373, 0.005062120035290718, 0.06535433232784271, -0.021599330008029938, -0.22169068455696106, -0.08719440549612045, -0.004838224966078997, -0.07546185702085495, -0.10150620341300964, 0.08357097953557968, 0.07028165459632874, 0.04765557870268822, -0.0548330657184124, -0.07435166090726852, -0.07830853760242462, 0.15599685907363892, -0.15222004055976868, -0.0873161032795906 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr5\_2e-05\_all\_26\_02\_2022-04\_25\_39 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13", "results": []}]}
text-classification
ali2066/finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_sentence\_itr6\_2e-05\_all\_26\_02\_2022-04\_31\_13 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4676 * Accuracy: 0.8299 * F1: 0.8892 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0989740788936615, 0.06835827231407166, -0.0018014144152402878, 0.11813290417194366, 0.18204769492149353, 0.019894888624548912, 0.10478955507278442, 0.12532196938991547, -0.11883316189050674, 0.014661679044365883, 0.12234491854906082, 0.18645930290222168, 0.00548493443056941, 0.11941986531019211, -0.06270615011453629, -0.25614407658576965, -0.01339053362607956, 0.05514086037874222, -0.06249043717980385, 0.13980869948863983, 0.09688450396060944, -0.13288135826587677, 0.07771801948547363, 0.0034537019673734903, -0.2307567447423935, 0.011191495694220066, 0.01577211730182171, -0.06829927116632462, 0.14542065560817719, 0.022581521421670914, 0.1264665126800537, 0.0029019711073487997, 0.07521743327379227, -0.17272092401981354, 0.010035466402769089, 0.05027636140584946, 0.005140699911862612, 0.08538255095481873, 0.050718944519758224, -0.012811917811632156, 0.12261953949928284, -0.09374929219484329, 0.05249154195189476, 0.01842275634407997, -0.12018781900405884, -0.22417891025543213, -0.08000272512435913, 0.02227506786584854, 0.07109670341014862, 0.11132337898015976, -0.0005549470661208034, 0.13464850187301636, -0.09141957014799118, 0.10074593126773834, 0.21316948533058167, -0.2823718786239624, -0.06479279696941376, 0.02398228831589222, 0.004551627207547426, 0.07119831442832947, -0.10933642834424973, -0.025599470362067223, 0.05793017894029617, 0.052859023213386536, 0.14024314284324646, -0.03195891156792641, -0.12789286673069, 0.012007936835289001, -0.14003638923168182, -0.0358642153441906, 0.13983575999736786, 0.020307127386331558, -0.028774216771125793, -0.04602578654885292, -0.05994017794728279, -0.16118066012859344, -0.044993381947278976, -0.0064376350492239, 0.041821546852588654, -0.03243163973093033, -0.05574997141957283, 0.0060061137191951275, -0.10893799364566803, -0.060412947088479996, -0.08078733831644058, 0.1414753496646881, 0.03889235481619835, 0.011175480671226978, -0.03604871779680252, 0.10634912550449371, 0.019901033490896225, -0.1334998905658722, 0.02659083716571331, 0.0278655756264925, 0.00855282973498106, -0.05121457949280739, -0.07400534301996231, -0.05767528712749481, 0.004545626230537891, 0.1115875318646431, -0.06576123833656311, 0.05418035015463829, 0.02192789502441883, 0.04188742861151695, -0.09818967431783676, 0.19378243386745453, -0.023949861526489258, 0.0001916031469590962, 0.01906335912644863, 0.039136797189712524, 0.008247231133282185, -0.008528766222298145, -0.118565633893013, -0.00013029568071942776, 0.12009821087121964, 0.015634072944521904, -0.07552091032266617, 0.07816922664642334, -0.04993562772870064, -0.02115545980632305, 0.019864752888679504, -0.10427980124950409, 0.03594484552741051, -0.0026313436683267355, -0.0817013755440712, -0.014190122485160828, 0.02976977825164795, 0.009721122682094574, -0.03756503760814667, 0.11733448505401611, -0.07673028856515884, 0.0435975044965744, -0.10309988260269165, -0.10623560100793839, 0.017383739352226257, -0.07652264088392258, 0.02591083012521267, -0.10547727346420288, -0.1617424041032791, -0.018860381096601486, 0.05698045343160629, -0.023517703637480736, -0.05695571377873421, -0.05188611149787903, -0.07480201125144958, 0.016940953209996223, -0.018978113308548927, 0.1522711217403412, -0.058804940432310104, 0.10974299162626266, 0.04167185351252556, 0.06660835444927216, -0.05382087826728821, 0.06296168267726898, -0.09741432964801788, -0.0016139318468049169, -0.19632618129253387, 0.05465393513441086, -0.044671084731817245, 0.08093741536140442, -0.08630482107400894, -0.11523228883743286, 0.012700188905000687, -0.004893500357866287, 0.07088451087474823, 0.09080401062965393, -0.16137449443340302, -0.07606822997331619, 0.15358076989650726, -0.06749184429645538, -0.11013370007276535, 0.11351925134658813, -0.06262318789958954, 0.051814623177051544, 0.08287959545850754, 0.16699795424938202, 0.07490786910057068, -0.06718524545431137, 0.0239421296864748, 0.004518431611359119, 0.04318011552095413, -0.08229409158229828, 0.051331859081983566, 0.011869675479829311, -0.01066555455327034, 0.039881423115730286, -0.020669303834438324, 0.06747538596391678, -0.09072889387607574, -0.09305330365896225, -0.047114964574575424, -0.0943286195397377, 0.04640979319810867, 0.08193136006593704, 0.09680316597223282, -0.09299083799123764, -0.06741674989461899, 0.07994264364242554, 0.06962275505065918, -0.06164079159498215, 0.037048399448394775, -0.05486983805894852, 0.05883169546723366, -0.02718281000852585, -0.016811994835734367, -0.20561525225639343, 0.008102905936539173, 0.0067236050963401794, 0.010952075943350792, 0.015057999640703201, 0.0043557737953960896, 0.0699174553155899, 0.04789256677031517, -0.05890124291181564, -0.012737667188048363, -0.006748109590262175, -0.008169186301529408, -0.14148107171058655, -0.18435050547122955, -0.015900224447250366, -0.020300017669796944, 0.11881417781114578, -0.19643384218215942, 0.03849129378795624, -0.010850008577108383, 0.06407646089792252, -0.004388316534459591, -0.000019890883777406998, -0.044491589069366455, 0.09047476202249527, -0.03531637415289879, -0.0448206290602684, 0.08098532259464264, 0.010925104841589928, -0.08158215880393982, -0.03929102420806885, -0.09052562713623047, 0.171918123960495, 0.14526110887527466, -0.12683454155921936, -0.08044607937335968, -0.005878053605556488, -0.05676768720149994, -0.030620381236076355, -0.03730364143848419, 0.04391290247440338, 0.19136983156204224, -0.017083682119846344, 0.16197174787521362, -0.0700141042470932, -0.05285249277949333, 0.021560631692409515, -0.029126901179552078, 0.03350362554192543, 0.11956069618463516, 0.10785893350839615, -0.08367367833852768, 0.14089874923229218, 0.14713364839553833, -0.10345865041017532, 0.12428149580955505, -0.04679219424724579, -0.06210563704371452, -0.0018863790901377797, -0.019422469660639763, 0.00011957062088185921, 0.07608889043331146, -0.14488734304904938, -0.009008955210447311, 0.020221326500177383, 0.022568700835108757, 0.027749087661504745, -0.2248573750257492, -0.031079458072781563, 0.02479865401983261, -0.03673648461699486, -0.010694274678826332, -0.018659278750419617, 0.012530033476650715, 0.10762166231870651, 0.0003622023796197027, -0.07836019992828369, 0.04727677255868912, 0.007436850108206272, -0.08457975089550018, 0.22466467320919037, -0.09441468864679337, -0.16925877332687378, -0.11819688975811005, -0.08197271823883057, -0.034878265112638474, 0.009655035100877285, 0.0654485821723938, -0.09990047663450241, -0.026291601359844208, -0.054485466331243515, 0.010912437923252583, -0.006031278055161238, 0.04324425384402275, 0.012084423564374447, 0.006764135789126158, 0.07081300020217896, -0.1088155210018158, -0.01135028712451458, -0.05454573407769203, -0.05597857013344765, 0.056514959782361984, 0.028370533138513565, 0.10494537651538849, 0.16219769418239594, -0.027161216363310814, 0.010565443895757198, -0.03432704880833626, 0.2244962900876999, -0.06615771353244781, -0.029705248773097992, 0.13328365981578827, -0.005937248468399048, 0.05374959111213684, 0.10402829945087433, 0.06753350049257278, -0.09114833921194077, 0.01561013050377369, 0.017958717420697212, -0.03732139989733696, -0.2284477800130844, -0.05401673540472984, -0.0630260780453682, -0.029919523745775223, 0.09859524667263031, 0.030502932146191597, 0.050371043384075165, 0.06599421054124832, 0.04408208653330803, 0.09062671661376953, -0.03545569255948067, 0.052660126239061356, 0.13213883340358734, 0.047470852732658386, 0.12702976167201996, -0.05106839910149574, -0.06762097775936127, 0.030676065012812614, -0.02178085595369339, 0.22120152413845062, 0.0003977484011556953, 0.121807761490345, 0.05075198411941528, 0.17875516414642334, 0.008732077665627003, 0.0919271856546402, -0.005618656054139137, -0.04415610805153847, -0.006734775844961405, -0.03657308220863342, -0.049998536705970764, 0.01115701999515295, -0.07537171989679337, 0.04768658056855202, -0.12250608950853348, -0.018091680482029915, 0.056214120239019394, 0.25302186608314514, 0.01968422159552574, -0.3296101987361908, -0.08591752499341965, 0.0004614796198438853, -0.03806869685649872, -0.028118446469306946, 0.018422208726406097, 0.07910475134849548, -0.09740324318408966, 0.035688139498233795, -0.06899664551019669, 0.1001453772187233, -0.04270526021718979, 0.04646199941635132, 0.06531159579753876, 0.07719875872135162, 0.012440892867743969, 0.08543821424245834, -0.3335217535495758, 0.2634105980396271, 0.003285347716882825, 0.07784020155668259, -0.08630727231502533, 0.002355041680857539, 0.033159833401441574, 0.07080304622650146, 0.05576872453093529, -0.015273112803697586, -0.04356124997138977, -0.1849251538515091, -0.05488424748182297, 0.030370840802788734, 0.08381810784339905, -0.0112729137763381, 0.08218877017498016, -0.026177939027547836, 0.006803635973483324, 0.07595789432525635, -0.042887892574071884, -0.04906507581472397, -0.1036621704697609, -0.015734221786260605, 0.02381955087184906, -0.038500573486089706, -0.05656691640615463, -0.11516062170267105, -0.12261014431715012, 0.15468791127204895, -0.021114762872457504, -0.043024711310863495, -0.11373057961463928, 0.08907102048397064, 0.06845145672559738, -0.08519218116998672, 0.052701685577631, 0.004720133729279041, 0.06025732308626175, 0.029051166027784348, -0.08347100019454956, 0.10533488541841507, -0.06186806410551071, -0.15075281262397766, -0.04934506118297577, 0.10581465810537338, 0.0344986766576767, 0.06065209582448006, -0.007089108228683472, 0.012866698205471039, -0.04143251106142998, -0.09453604370355606, 0.012919153086841106, -0.014487768523395061, 0.09343898296356201, 0.017004188150167465, -0.06809407472610474, -0.009684084914624691, -0.06467930972576141, -0.03201856464147568, 0.19951294362545013, 0.20489147305488586, -0.096754290163517, 0.028030380606651306, 0.03194167837500572, -0.07397793233394623, -0.20735639333724976, 0.04606207460165024, 0.06822992861270905, 0.006655873730778694, 0.0190877728164196, -0.18178118765354156, 0.13229742646217346, 0.09355080872774124, -0.01039063185453415, 0.10381343215703964, -0.3240593671798706, -0.12991681694984436, 0.12261810898780823, 0.14031967520713806, 0.1355155110359192, -0.1402914971113205, -0.0178601685911417, -0.030744018033146858, -0.11103474348783493, 0.10053560882806778, -0.07984603941440582, 0.11835777759552002, -0.03400998190045357, 0.08157792687416077, 0.0009252945310436189, -0.06149941682815552, 0.11028452962636948, 0.02527216076850891, 0.09703342616558075, -0.06589982658624649, -0.026915526017546654, 0.04324362054467201, -0.037489064037799835, 0.01614711806178093, -0.08135341852903366, 0.0292270015925169, -0.10504329204559326, -0.02181168645620346, -0.08214490115642548, 0.04385027289390564, -0.032554760575294495, -0.04834893345832825, -0.03384395316243172, 0.01546354591846466, 0.05185224115848541, -0.014743490144610405, 0.12879164516925812, 0.022134019061923027, 0.1485820859670639, 0.12283491343259811, 0.07821936905384064, -0.07018183171749115, -0.05282147228717804, -0.009745870716869831, -0.015593396499752998, 0.05727449059486389, -0.15125802159309387, 0.032280854880809784, 0.1460486650466919, 0.017940057441592216, 0.12598378956317902, 0.08839431405067444, -0.008374459110200405, 0.004749265965074301, 0.06899158656597137, -0.1643214374780655, -0.07049793004989624, -0.0030424585565924644, -0.05657615512609482, -0.09926388412714005, 0.050175268203020096, 0.07870614528656006, -0.06856219470500946, -0.013709778897464275, -0.008725768886506557, 0.0025450419634580612, -0.05976426973938942, 0.20582376420497894, 0.058638934046030045, 0.04635850712656975, -0.11325999349355698, 0.07240666449069977, 0.05803855136036873, -0.0843905657529831, 0.007780454587191343, 0.08273693174123764, -0.09345600754022598, -0.04917211830615997, 0.11733493953943253, 0.1691841185092926, -0.0552038848400116, -0.04684097319841385, -0.13330255448818207, -0.12706777453422546, 0.08730541169643402, 0.16477787494659424, 0.12265084683895111, 0.014785602688789368, -0.06337085366249084, 0.0057121687568724155, -0.1285216510295868, 0.07844696938991547, 0.04097484424710274, 0.06584877520799637, -0.13127535581588745, 0.1682848036289215, 0.01183136273175478, 0.049413666129112244, -0.02641463093459606, 0.025035221129655838, -0.10031426697969437, 0.022936755791306496, -0.11794525384902954, -0.01791485957801342, -0.019918397068977356, 0.006832301616668701, -0.008764293044805527, -0.050049953162670135, -0.051316406577825546, 0.018675651401281357, -0.12063993513584137, -0.017837101593613625, 0.023255163803696632, 0.050622325390577316, -0.1120942234992981, -0.042147133499383926, 0.021356822922825813, -0.06103493645787239, 0.06308165192604065, 0.06001199409365654, 0.005767610389739275, 0.06636889278888702, -0.13094064593315125, -0.007390205282717943, 0.08482437580823898, 0.012476474978029728, 0.06361813098192215, -0.08654730767011642, 0.0008468502201139927, 0.020257389172911644, 0.06623560935258865, 0.027626074850559235, 0.08358921110630035, -0.14491067826747894, 0.006201211828738451, -0.03429802507162094, -0.07788342237472534, -0.07040490210056305, 0.03404367342591286, 0.0881294310092926, 0.012914231047034264, 0.195071741938591, -0.08172376453876495, 0.03411489725112915, -0.20462457835674286, 0.001394592341966927, -0.020381154492497444, -0.12331956624984741, -0.12725362181663513, -0.06623335182666779, 0.06819941103458405, -0.04510639235377312, 0.139524906873703, 0.03618153929710388, 0.04049002379179001, 0.029873177409172058, -0.015161143615841866, 0.003201344283297658, 0.02636263519525528, 0.22011764347553253, 0.032857537269592285, -0.038180939853191376, 0.07869260758161545, 0.057197459042072296, 0.09951962530612946, 0.12751515209674835, 0.19709116220474243, 0.15646636486053467, -0.01569092459976673, 0.09679500758647919, 0.013065255247056484, -0.04448871314525604, -0.15677297115325928, 0.04166759178042412, -0.057431284338235855, 0.10212825983762741, -0.029060617089271545, 0.20517362654209137, 0.05757233873009682, -0.16551260650157928, 0.051521409302949905, -0.05823493003845215, -0.09498078376054764, -0.1052035540342331, -0.03804755583405495, -0.08509183675050735, -0.14190763235092163, -0.001201682724058628, -0.1089630201458931, 0.01485436875373125, 0.10383538901805878, 0.006404666230082512, -0.030237533152103424, 0.15574361383914948, 0.036316435784101486, 0.015139908529818058, 0.0684613585472107, -0.0036438247188925743, -0.026432765647768974, -0.1004655584692955, -0.060062166303396225, -0.0200649444013834, -0.014910558238625526, 0.040262266993522644, -0.049953751266002655, -0.06341900676488876, 0.039684418588876724, -0.03250553831458092, -0.09317851811647415, 0.015660330653190613, 0.029953353106975555, 0.06957235187292099, 0.058633022010326385, 0.009404957294464111, 0.007885435596108437, -0.011944252997636795, 0.21805672347545624, -0.07671892642974854, -0.08851530402898788, -0.09428589046001434, 0.27357980608940125, 0.057095304131507874, -0.01021662075072527, 0.03009716607630253, -0.05847102776169777, -0.0002318289189133793, 0.2630098760128021, 0.19469977915287018, -0.07829947024583817, -0.008462879806756973, -0.00040867269854061306, -0.009288988076150417, -0.007094101049005985, 0.12895068526268005, 0.1531362384557724, 0.04748225584626198, -0.10568288713693619, -0.04783911630511284, -0.056000009179115295, -0.01524894218891859, -0.054042406380176544, 0.06536383181810379, 0.0320485383272171, -0.003206087974831462, -0.035010162740945816, 0.060556717216968536, -0.07073884457349777, -0.089557945728302, 0.05272866412997246, -0.20372501015663147, -0.15953317284584045, -0.010092382319271564, 0.10723774135112762, -0.0015553035773336887, 0.05765628442168236, -0.019707370549440384, 0.006166541017591953, 0.06772980093955994, -0.02533484436571598, -0.0876937210559845, -0.0709386020898819, 0.09144868701696396, -0.12113767862319946, 0.17597326636314392, -0.03982556238770485, 0.07342014461755753, 0.12230867892503738, 0.07519441097974777, -0.0695907473564148, 0.06132553517818451, 0.025974400341510773, -0.06448778510093689, 0.04549944028258324, 0.08802928030490875, -0.030731210485100746, 0.03301481157541275, 0.03541096672415733, -0.1147034764289856, 0.027095835655927658, -0.08479557931423187, -0.046767447143793106, -0.04526926949620247, -0.04578935727477074, -0.05683230981230736, 0.11871986091136932, 0.2201368361711502, -0.02361880987882614, 0.014395543374121189, -0.07935819774866104, 0.002594099612906575, 0.04173986241221428, 0.01399563904851675, -0.08233017474412918, -0.2371227741241455, 0.004930680617690086, 0.06645713001489639, -0.02133401855826378, -0.2210077941417694, -0.08735497295856476, -0.004849676042795181, -0.07564949244260788, -0.10103825479745865, 0.08378273993730545, 0.07051634043455124, 0.047200758010149, -0.05506410077214241, -0.0762009397149086, -0.07815675437450409, 0.15602999925613403, -0.1516193300485611, -0.0877496674656868 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-01_30_30 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - Precision: 0.3384 - Recall: 0.3492 - F1: 0.3437 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3180 | 0.0985 | 0.1648 | 0.1233 | 0.8643 | | No log | 2.0 | 76 | 0.2667 | 0.1962 | 0.2698 | 0.2272 | 0.8926 | | No log | 3.0 | 114 | 0.2374 | 0.2268 | 0.3005 | 0.2585 | 0.9062 | | No log | 4.0 | 152 | 0.2305 | 0.2248 | 0.3247 | 0.2657 | 0.9099 | | No log | 5.0 | 190 | 0.2289 | 0.2322 | 0.3166 | 0.2679 | 0.9102 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-01_30_30", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-01_30_30
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-01\_30\_30 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1748 * Precision: 0.3384 * Recall: 0.3492 * F1: 0.3437 * Accuracy: 0.9442 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-01_55_54 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-01_55_54", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-01_55_54
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-01\_55\_54 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_15_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1746 - Precision: 0.3191 - Recall: 0.3382 - F1: 0.3284 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2908 | 0.1104 | 0.1905 | 0.1398 | 0.8731 | | No log | 2.0 | 76 | 0.2253 | 0.1682 | 0.3206 | 0.2206 | 0.9114 | | No log | 3.0 | 114 | 0.2041 | 0.2069 | 0.3444 | 0.2585 | 0.9249 | | No log | 4.0 | 152 | 0.1974 | 0.2417 | 0.3603 | 0.2894 | 0.9269 | | No log | 5.0 | 190 | 0.1958 | 0.2707 | 0.3683 | 0.3120 | 0.9299 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_15_41", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_15_41
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_15\_41 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1746 * Precision: 0.3191 * Recall: 0.3382 * F1: 0.3284 * Accuracy: 0.9439 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_18_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_18_19", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_18_19
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_18\_19 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_20_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_20_41", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_20_41
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_20\_41 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_23_23 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_23_23", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_23_23
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_23\_23 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_25_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_25_47", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_25_47
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_25\_47 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_28_10 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_28_10", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_28_10
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_28\_10 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_30_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_30_32", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_30_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_30\_32 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_32_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_32_56", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_32_56
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_32\_56 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_35_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_35_19", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_35_19
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_35\_19 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_37_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_37_42", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_16_02_2022-14_37_42
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_16\_02\_2022-14\_37\_42 ================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1722 * Precision: 0.3378 * Recall: 0.3615 * F1: 0.3492 * Accuracy: 0.9448 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_41_15 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - Precision: 0.3447 - Recall: 0.3410 - F1: 0.3428 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3692 | 0.0868 | 0.2030 | 0.1216 | 0.8238 | | No log | 2.0 | 76 | 0.3198 | 0.1674 | 0.3029 | 0.2157 | 0.8567 | | No log | 3.0 | 114 | 0.3156 | 0.1520 | 0.3096 | 0.2039 | 0.8510 | | No log | 4.0 | 152 | 0.3129 | 0.1753 | 0.3266 | 0.2281 | 0.8500 | | No log | 5.0 | 190 | 0.3038 | 0.1716 | 0.3401 | 0.2281 | 0.8595 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_41_15", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_41_15
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_41\_15 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1742 * Precision: 0.3447 * Recall: 0.3410 * F1: 0.3428 * Accuracy: 0.9455 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_43_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_43_42", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_43_42
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_43\_42 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_46_07 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_46_07", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_46_07
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_46\_07 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_48_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_48_32", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_48_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_48\_32 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_50_54 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_50_54", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_50_54
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_50\_54 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_53_17 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_53_17", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_53_17
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_53\_17 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_56_33 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_56_33", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_56_33
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_56\_33 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_59_50 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_59_50", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-15_59_50
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_59\_50 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-16_03_05 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-16_03_05", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-16_03_05
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-16\_03\_05 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-16_06_20 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-16_06_20", "results": []}]}
token-classification
ali2066/finetuned_token_2e-05_all_16_02_2022-16_06_20
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_2e-05\_all\_16\_02\_2022-16\_06\_20 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1750 * Precision: 0.3286 * Recall: 0.3334 * F1: 0.3310 * Accuracy: 0.9447 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_09_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_09_36", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_09_36
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_09\_36 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_12_51 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_12_51", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_12_51
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_12\_51 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_16_08 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_16_08", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_16_08
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_16\_08 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_19_24 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_19_24", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_19_24
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_19\_24 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_22_39 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_22_39", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_22_39
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_22\_39 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_25_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_25_56", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_25_56
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_25\_56 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_29_13 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_29_13", "results": []}]}
token-classification
ali2066/finetuned_token_3e-05_all_16_02_2022-16_29_13
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_29\_13 ===================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1630 * Precision: 0.3684 * Recall: 0.3714 * F1: 0.3699 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1588 - Precision: 0.4510 - Recall: 0.5622 - F1: 0.5005 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2896 | 0.1483 | 0.1981 | 0.1696 | 0.8745 | | No log | 2.0 | 76 | 0.2553 | 0.2890 | 0.3604 | 0.3207 | 0.8918 | | No log | 3.0 | 114 | 0.2507 | 0.246 | 0.4642 | 0.3216 | 0.8925 | | No log | 4.0 | 152 | 0.2540 | 0.2428 | 0.4792 | 0.3223 | 0.8922 | | No log | 5.0 | 190 | 0.2601 | 0.2747 | 0.4717 | 0.3472 | 0.8965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_14\_27 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1588 * Precision: 0.4510 * Recall: 0.5622 * F1: 0.5005 * Accuracy: 0.9477 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1577 - Precision: 0.4469 - Recall: 0.5280 - F1: 0.4841 - Accuracy: 0.9513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3553 | 0.1068 | 0.0810 | 0.0922 | 0.8412 | | No log | 2.0 | 76 | 0.2812 | 0.2790 | 0.4017 | 0.3293 | 0.8684 | | No log | 3.0 | 114 | 0.2793 | 0.3086 | 0.4586 | 0.3689 | 0.8747 | | No log | 4.0 | 152 | 0.2766 | 0.3057 | 0.4190 | 0.3535 | 0.8763 | | No log | 5.0 | 190 | 0.2805 | 0.2699 | 0.4845 | 0.3467 | 0.8793 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_30\_01 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1577 * Precision: 0.4469 * Recall: 0.5280 * F1: 0.4841 * Accuracy: 0.9513 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1500 - Precision: 0.4739 - Recall: 0.5250 - F1: 0.4981 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3183 | 0.2024 | 0.2909 | 0.2387 | 0.8499 | | No log | 2.0 | 76 | 0.3092 | 0.2909 | 0.4181 | 0.3431 | 0.8548 | | No log | 3.0 | 114 | 0.2928 | 0.2923 | 0.4855 | 0.3650 | 0.8647 | | No log | 4.0 | 152 | 0.3098 | 0.2832 | 0.4605 | 0.3507 | 0.8641 | | No log | 5.0 | 190 | 0.3120 | 0.2470 | 0.4374 | 0.3157 | 0.8654 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_45\_27 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1500 * Precision: 0.4739 * Recall: 0.5250 * F1: 0.4981 * Accuracy: 0.9551 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3057 - Precision: 0.2857 - Recall: 0.4508 - F1: 0.3497 - Accuracy: 0.8741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3018 | 0.2097 | 0.2546 | 0.2300 | 0.8727 | | No log | 2.0 | 60 | 0.2337 | 0.3444 | 0.3652 | 0.3545 | 0.9024 | | No log | 3.0 | 90 | 0.2198 | 0.3463 | 0.3869 | 0.3655 | 0.9070 | | No log | 4.0 | 120 | 0.2112 | 0.3757 | 0.4405 | 0.4056 | 0.9173 | | No log | 5.0 | 150 | 0.2131 | 0.4163 | 0.5126 | 0.4595 | 0.9212 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-21\_13\_10 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3057 * Precision: 0.2857 * Recall: 0.4508 * F1: 0.3497 * Accuracy: 0.8741 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1146 - Precision: 0.4662 - Recall: 0.4718 - F1: 0.4690 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0756 | 0.2960 | 0.4505 | 0.3573 | 0.9775 | | No log | 2.0 | 30 | 0.0626 | 0.3615 | 0.4231 | 0.3899 | 0.9808 | | No log | 3.0 | 45 | 0.0602 | 0.4898 | 0.5275 | 0.5079 | 0.9833 | | No log | 4.0 | 60 | 0.0719 | 0.5517 | 0.5275 | 0.5393 | 0.9849 | | No log | 5.0 | 75 | 0.0754 | 0.5765 | 0.5385 | 0.5568 | 0.9849 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_editorials\_16\_02\_2022-21\_07\_38 =================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1146 * Precision: 0.4662 * Recall: 0.4718 * F1: 0.4690 * Accuracy: 0.9773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Precision: 0.5814 - Recall: 0.7073 - F1: 0.6382 - Accuracy: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.3920 | 0.4392 | 0.6069 | 0.5096 | 0.8593 | | No log | 2.0 | 22 | 0.3304 | 0.4282 | 0.6260 | 0.5085 | 0.8672 | | No log | 3.0 | 33 | 0.3361 | 0.4840 | 0.6336 | 0.5488 | 0.8685 | | No log | 4.0 | 44 | 0.3258 | 0.5163 | 0.6641 | 0.5810 | 0.8722 | | No log | 5.0 | 55 | 0.3472 | 0.5192 | 0.6718 | 0.5857 | 0.8743 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_essays\_16\_02\_2022-21\_04\_02 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2158 * Precision: 0.5814 * Recall: 0.7073 * F1: 0.6382 * Accuracy: 0.9248 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5530 - Precision: 0.0044 - Recall: 0.0182 - F1: 0.0071 - Accuracy: 0.7268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.7051 | 0.0645 | 0.0323 | 0.0430 | 0.4465 | | No log | 2.0 | 20 | 0.6928 | 0.0476 | 0.0161 | 0.0241 | 0.5546 | | No log | 3.0 | 30 | 0.6875 | 0.0069 | 0.0484 | 0.0120 | 0.5533 | | No log | 4.0 | 40 | 0.6966 | 0.0064 | 0.0323 | 0.0107 | 0.5832 | | No log | 5.0 | 50 | 0.7093 | 0.0061 | 0.0323 | 0.0102 | 0.5742 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_0.0002\_webDiscourse\_16\_02\_2022-21\_00\_50 ===================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5530 * Precision: 0.0044 * Recall: 0.0182 * F1: 0.0071 * Accuracy: 0.7268 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1062958836555481, 0.0816681832075119, -0.0021937433630228043, 0.12327482551336288, 0.17721518874168396, 0.01711355894804001, 0.10583840310573578, 0.1151847094297409, -0.11626552045345306, 0.019183292984962463, 0.12410728633403778, 0.1914329081773758, 0.0004389523237477988, 0.10859446972608566, -0.050513699650764465, -0.24995064735412598, -0.01017807424068451, 0.05789189413189888, -0.08510799705982208, 0.13397160172462463, 0.09687737375497818, -0.13977684080600739, 0.07785656303167343, 0.013246459886431694, -0.23487482964992523, 0.010883119888603687, 0.023516898974776268, -0.06412053108215332, 0.14720365405082703, 0.01388674695044756, 0.13728035986423492, -0.002939473604783416, 0.08666792511940002, -0.16141532361507416, 0.007353014312684536, 0.05403486639261246, 0.01594122312963009, 0.09210824221372604, 0.05636027082800865, -0.0008434746996499598, 0.10323715209960938, -0.07985610514879227, 0.05604954808950424, 0.022976065054535866, -0.11748865991830826, -0.24513709545135498, -0.0874004065990448, 0.03180430829524994, 0.0695914626121521, 0.09751560539007187, 0.009048104286193848, 0.14503535628318787, -0.09518185257911682, 0.09080979973077774, 0.21919962763786316, -0.2830764353275299, -0.06428217142820358, 0.04559071362018585, -0.0014310135738924146, 0.055978838354349136, -0.11152496188879013, -0.033303555101156235, 0.05567139387130737, 0.04963004216551781, 0.1481420397758484, -0.03438490629196167, -0.12113828957080841, 0.016618261113762856, -0.14607052505016327, -0.029333099722862244, 0.12375163286924362, 0.026828402653336525, -0.035742610692977905, -0.03243543580174446, -0.06140463799238205, -0.17210330069065094, -0.04207577928900719, -0.018943283706903458, 0.0452832393348217, -0.03684547543525696, -0.06143651530146599, 0.013457080349326134, -0.10093370079994202, -0.07158719003200531, -0.07676896452903748, 0.15744474530220032, 0.04556426405906677, 0.013955974951386452, -0.024101821705698967, 0.11331266164779663, 0.01948009803891182, -0.1261189579963684, 0.029297882691025734, 0.03127496317028999, -0.0015174765139818192, -0.05504210665822029, -0.06624065339565277, -0.04285947233438492, 0.008095803670585155, 0.11936056613922119, -0.05704759061336517, 0.044649913907051086, 0.04122081398963928, 0.04048307240009308, -0.10707226395606995, 0.19225139915943146, -0.04128667339682579, 0.001986805582419038, 0.012318206019699574, 0.040122561156749725, 0.00045016620424576104, 0.0014797981129959226, -0.11068408191204071, -0.00006267012213356793, 0.11945563554763794, 0.01670391857624054, -0.07876703888177872, 0.07078011333942413, -0.05159766972064972, -0.02106216736137867, 0.014242388308048248, -0.09878045320510864, 0.03503376245498657, -0.008061236701905727, -0.08943118155002594, -0.007102127652615309, 0.02455124631524086, 0.009806819260120392, -0.021286966279149055, 0.11901063472032547, -0.09215670078992844, 0.042120397090911865, -0.10209237039089203, -0.10062617063522339, 0.010823073796927929, -0.07884477823972702, 0.0282865259796381, -0.10071340203285217, -0.14631974697113037, -0.010439188219606876, 0.05969803035259247, -0.021344367414712906, -0.05588337779045105, -0.03953355550765991, -0.0737864077091217, 0.006286134012043476, -0.01377126295119524, 0.1411828100681305, -0.05347280949354172, 0.10939139127731323, 0.03830947354435921, 0.06295150518417358, -0.0484158992767334, 0.06040601432323456, -0.10519679635763168, 0.010281488299369812, -0.19304855167865753, 0.034614816308021545, -0.055524155497550964, 0.07410118728876114, -0.0953134298324585, -0.11581164598464966, 0.027174217626452446, -0.01690000481903553, 0.07614202052354813, 0.08516824245452881, -0.1573493927717209, -0.07307638227939606, 0.1416173130273819, -0.06398080289363861, -0.10335274040699005, 0.11018697917461395, -0.0604427307844162, 0.042588010430336, 0.0736861452460289, 0.14790523052215576, 0.08105957508087158, -0.07087402790784836, 0.020238665863871574, 0.002928901929408312, 0.038314178586006165, -0.08306026458740234, 0.055818673223257065, 0.007595918141305447, -0.01384645327925682, 0.0371524952352047, -0.030592190101742744, 0.0675201565027237, -0.09899937361478806, -0.09583667665719986, -0.04719085618853569, -0.10125665366649628, 0.053663868457078934, 0.07864963263273239, 0.08784312754869461, -0.08558478951454163, -0.06849148124456406, 0.0959709882736206, 0.0808914378285408, -0.052039653062820435, 0.030264442786574364, -0.058742422610521317, 0.06716214865446091, -0.050201576203107834, -0.028312882408499718, -0.19581401348114014, -0.01117982529103756, 0.009814130142331123, -0.015220101922750473, 0.0196123868227005, 0.01643178053200245, 0.07122457027435303, 0.06392794847488403, -0.05305693671107292, -0.018427927047014236, -0.022435227409005165, -0.0015043391613289714, -0.14157630503177643, -0.1910429745912552, -0.03425688296556473, -0.015185022726655006, 0.10528045892715454, -0.18801110982894897, 0.03279360756278038, -0.02117072232067585, 0.08025072515010834, 0.00008929429895943031, -0.008036572486162186, -0.048941660672426224, 0.08945214748382568, -0.03315909579396248, -0.05260728672146797, 0.07394621521234512, 0.002175713889300823, -0.07715904712677002, -0.0540909618139267, -0.07954894006252289, 0.18367208540439606, 0.1366460919380188, -0.12395061552524567, -0.08427537232637405, -0.005778363905847073, -0.061974700540304184, -0.033981531858444214, -0.03887596353888512, 0.055184248834848404, 0.16997069120407104, -0.016667546704411507, 0.1540667563676834, -0.06733424216508865, -0.05112937465310097, 0.025390619412064552, -0.03340492770075798, 0.03507232293486595, 0.11068645864725113, 0.12205082178115845, -0.07521631568670273, 0.14595556259155273, 0.15123441815376282, -0.10758961737155914, 0.10670115798711777, -0.04913630709052086, -0.0673537403345108, -0.0158416535705328, -0.01714879460632801, -0.00017008540453389287, 0.09644794464111328, -0.12868128716945648, 0.0006714507471770048, 0.022877365350723267, 0.02474150061607361, 0.0171233918517828, -0.22883330285549164, -0.034601420164108276, 0.026618096977472305, -0.03440267965197563, 0.0008583770832046866, -0.014748903922736645, 0.010502120479941368, 0.10627653449773788, 0.00044344711932353675, -0.09584946185350418, 0.04588431119918823, 0.013781159184873104, -0.07213873416185379, 0.2169886976480484, -0.08874508738517761, -0.13467000424861908, -0.12078187614679337, -0.08004257082939148, -0.045789480209350586, 0.008987348526716232, 0.05196644365787506, -0.09552288055419922, -0.02657676488161087, -0.04336646571755409, 0.012934111058712006, -0.0034108352847397327, 0.04858553037047386, 0.0025003813207149506, 0.0025168952997773886, 0.0836692601442337, -0.109525166451931, -0.006102345418184996, -0.05441344901919365, -0.06080017238855362, 0.04363051801919937, 0.05041130632162094, 0.10381017625331879, 0.1655469685792923, -0.029774919152259827, 0.007877124473452568, -0.02633114531636238, 0.22934915125370026, -0.05913766473531723, -0.031079689040780067, 0.13472728431224823, -0.0032426437828689814, 0.057606883347034454, 0.10394468158483505, 0.07978811115026474, -0.089966781437397, 0.0055557731539011, 0.03267893195152283, -0.03571808710694313, -0.21633948385715485, -0.04960830882191658, -0.055057402700185776, -0.03451886400580406, 0.09789717942476273, 0.02974247746169567, 0.055463775992393494, 0.07448487728834152, 0.048258863389492035, 0.09328494966030121, -0.058176711201667786, 0.0542997345328331, 0.11707484722137451, 0.050902385264635086, 0.12194884568452835, -0.045774079859256744, -0.07182664424180984, 0.02664630115032196, -0.010216053575277328, 0.22870782017707825, 0.004783532582223415, 0.11133424937725067, 0.057796213775873184, 0.20687848329544067, 0.0028193872421979904, 0.08910240232944489, -0.0037996675819158554, -0.04721337929368019, -0.005540414713323116, -0.037963297218084335, -0.03703758865594864, 0.010063037276268005, -0.06375467032194138, 0.06468678265810013, -0.11343920230865479, -0.014110995456576347, 0.04860827326774597, 0.26368796825408936, 0.02383333630859852, -0.33197903633117676, -0.08804196119308472, -0.011602357029914856, -0.03592793643474579, -0.026036877185106277, 0.018547844141721725, 0.07635410130023956, -0.09445381909608841, 0.01923731528222561, -0.07509282231330872, 0.09083473682403564, -0.03603120148181915, 0.03822421282529831, 0.08122165501117706, 0.09578953683376312, 0.01519691664725542, 0.08048021793365479, -0.31699082255363464, 0.26473748683929443, 0.0014894501073285937, 0.0726313441991806, -0.07495249807834625, 0.005461432505398989, 0.03312666714191437, 0.07025405019521713, 0.05467003583908081, -0.01195070706307888, -0.032840579748153687, -0.21325156092643738, -0.049305155873298645, 0.02524949423968792, 0.08334264159202576, -0.01936160959303379, 0.0843096375465393, -0.03180589899420738, 0.007234062999486923, 0.07787400484085083, -0.041614845395088196, -0.05042176693677902, -0.08444197475910187, -0.015618673525750637, 0.021157464012503624, -0.03575249761343002, -0.06095174700021744, -0.11350332945585251, -0.1275799423456192, 0.14785081148147583, -0.022914139553904533, -0.03698914870619774, -0.11698843538761139, 0.08106502890586853, 0.08512414991855621, -0.0837860107421875, 0.06088786572217941, -0.000016253214198513888, 0.05580981820821762, 0.037408553063869476, -0.07546675205230713, 0.10547076165676117, -0.06358563154935837, -0.15728604793548584, -0.05461892858147621, 0.10135161876678467, 0.037992797791957855, 0.06144943833351135, -0.012649203650653362, 0.013184178620576859, -0.03370646387338638, -0.09455900639295578, 0.018450886011123657, -0.023525675758719444, 0.08198326826095581, 0.013825016096234322, -0.05461467429995537, 0.01115359365940094, -0.06160734221339226, -0.026081698015332222, 0.17825347185134888, 0.22115391492843628, -0.10322453081607819, 0.015454601496458054, 0.035474590957164764, -0.06627925485372543, -0.19468152523040771, 0.0450257770717144, 0.06274747848510742, -0.0015004280721768737, 0.028740454465150833, -0.175616055727005, 0.14507727324962616, 0.10417648404836655, -0.01318532694131136, 0.10726473480463028, -0.33314552903175354, -0.12535127997398376, 0.1296948343515396, 0.15203917026519775, 0.12251231074333191, -0.13153624534606934, -0.01812133565545082, -0.012988962233066559, -0.11702804267406464, 0.09822510927915573, -0.06405875831842422, 0.11796661466360092, -0.036847956478595734, 0.08281330019235611, 0.0018355028005316854, -0.0637383982539177, 0.11426042765378952, 0.02844563126564026, 0.1071740984916687, -0.05641331523656845, -0.03540258854627609, 0.03970176726579666, -0.03403369337320328, 0.01463537197560072, -0.06473153829574585, 0.034474290907382965, -0.0834275558590889, -0.01677911914885044, -0.08401098102331161, 0.05419176444411278, -0.030605515465140343, -0.06261899322271347, -0.04508029669523239, 0.025703420862555504, 0.042642559856176376, -0.021096473559737206, 0.12716560065746307, 0.039409611374139786, 0.15049897134304047, 0.11539162695407867, 0.05594073608517647, -0.06654832512140274, -0.08136548846960068, -0.012677570804953575, -0.01548402663320303, 0.06720399856567383, -0.13946644961833954, 0.030752819031476974, 0.1473679393529892, 0.022928182035684586, 0.1171717643737793, 0.08518730103969574, -0.013375318609178066, 0.0033098123967647552, 0.06063464656472206, -0.16021333634853363, -0.06956654787063599, 0.002851591445505619, -0.05761979892849922, -0.09775111079216003, 0.06555898487567902, 0.07753188163042068, -0.08052567392587662, -0.012419497594237328, -0.004607468843460083, -0.004891088232398033, -0.06826094537973404, 0.21517601609230042, 0.0651710107922554, 0.048936717212200165, -0.10939738154411316, 0.07196147739887238, 0.05864165723323822, -0.0765247568488121, -0.009273387491703033, 0.06038850173354149, -0.08907447755336761, -0.03912315145134926, 0.11340246349573135, 0.16375428438186646, -0.07087120413780212, -0.04103744775056839, -0.1386856585741043, -0.12179677188396454, 0.08348643034696579, 0.16231636703014374, 0.1237775906920433, 0.023386722430586815, -0.06266750395298004, 0.009604094550013542, -0.12896761298179626, 0.0789092630147934, 0.04248238727450371, 0.07607921957969666, -0.1532067507505417, 0.17947642505168915, 0.011031564325094223, 0.05260298773646355, -0.024128157645463943, 0.02584674581885338, -0.09766557067632675, 0.018851250410079956, -0.1178751215338707, -0.03461315855383873, -0.025399301201105118, 0.009167296811938286, -0.0037059197202324867, -0.061782173812389374, -0.05126906931400299, 0.02507084235548973, -0.12076374143362045, -0.017286384478211403, 0.039300158619880676, 0.05135134235024452, -0.11217202991247177, -0.04030318558216095, 0.02352825179696083, -0.05596388503909111, 0.05850658193230629, 0.05129330977797508, 0.016513893380761147, 0.06236230954527855, -0.1225786805152893, -0.0009420083952136338, 0.08008383959531784, 0.010246244259178638, 0.07332056760787964, -0.09179368615150452, -0.0021279104985296726, 0.005201793275773525, 0.06642542779445648, 0.01705167442560196, 0.0740417018532753, -0.1489357203245163, -0.01495896652340889, -0.03785691410303116, -0.07517904043197632, -0.07003594189882278, 0.020496075972914696, 0.10045674443244934, 0.010805226862430573, 0.1986706405878067, -0.07321055233478546, 0.03724273294210434, -0.20697276294231415, -0.0037952132988721132, -0.024195877835154533, -0.11697054654359818, -0.13532547652721405, -0.06157240271568298, 0.060023464262485504, -0.04563366249203682, 0.1290515810251236, 0.026270627975463867, 0.03988095372915268, 0.027188334614038467, -0.018568716943264008, 0.010229441337287426, 0.025893591344356537, 0.2147493213415146, 0.03730049729347229, -0.032437991350889206, 0.07408474385738373, 0.05916425585746765, 0.09392127394676208, 0.11002594977617264, 0.18549971282482147, 0.15552647411823273, -0.02040426805615425, 0.09049457311630249, 0.0228885468095541, -0.0540047325193882, -0.1716742068529129, 0.04168889299035072, -0.051673948764801025, 0.0914938822388649, -0.024821314960718155, 0.21557405591011047, 0.057789262384176254, -0.16391722857952118, 0.05266812443733215, -0.04638555645942688, -0.089522585272789, -0.10194596648216248, -0.03896666690707207, -0.07634913921356201, -0.14569546282291412, -0.001079253270290792, -0.09556860476732254, 0.013263868167996407, 0.11837853491306305, 0.004555365536361933, -0.0267738439142704, 0.1691916286945343, 0.030776558443903923, 0.027371184900403023, 0.04677005857229233, 0.002639311831444502, -0.03331896662712097, -0.10266590118408203, -0.06756484508514404, -0.023665204644203186, -0.020219039171934128, 0.03647777810692787, -0.06396940350532532, -0.06535283476114273, 0.038618165999650955, -0.021801017224788666, -0.09048988670110703, 0.019153712317347527, 0.019238466396927834, 0.06261783838272095, 0.04145730286836624, 0.004683063831180334, 0.019192231819033623, -0.022123653441667557, 0.20529593527317047, -0.08125718683004379, -0.08044787496328354, -0.09409096837043762, 0.28666195273399353, 0.04953465983271599, -0.008963622152805328, 0.03500794246792793, -0.055024974048137665, 0.0007194274803623557, 0.24800893664360046, 0.17756302654743195, -0.07735852152109146, -0.012607567012310028, 0.0027546293567866087, -0.017671003937721252, -0.030233532190322876, 0.12587563693523407, 0.1436719000339508, 0.04115845635533333, -0.10394136607646942, -0.045136723667383194, -0.06641902774572372, -0.011247419752180576, -0.05119169130921364, 0.05768876522779465, 0.03254196047782898, 0.004398391116410494, -0.04046294093132019, 0.05084151774644852, -0.06659743934869766, -0.09265193343162537, 0.07947636395692825, -0.181966632604599, -0.16137458384037018, -0.012945758178830147, 0.10398866981267929, -0.0006210430874489248, 0.055020496249198914, -0.02551005780696869, 0.007928002625703812, 0.07260404527187347, -0.020300425589084625, -0.08622332662343979, -0.09022516757249832, 0.10137572884559631, -0.09869951754808426, 0.19568724930286407, -0.03933277353644371, 0.07450808584690094, 0.12392613291740417, 0.07207821309566498, -0.07942798733711243, 0.05406298488378525, 0.03728843107819557, -0.08181625604629517, 0.03199510648846626, 0.08530569076538086, -0.020361008122563362, 0.0568399615585804, 0.023766081780195236, -0.11892826855182648, 0.021528299897909164, -0.08239170908927917, -0.04297157749533653, -0.04525555297732353, -0.05003496631979942, -0.04945962876081467, 0.1225385069847107, 0.21470271050930023, -0.025127267464995384, 0.010823231190443039, -0.08401543647050858, 0.012024522759020329, 0.054341018199920654, 0.007156674284487963, -0.08034637570381165, -0.2311721295118332, 0.016383633017539978, 0.04968631640076637, -0.030280111357569695, -0.19325020909309387, -0.0974658653140068, 0.006010034121572971, -0.08388251066207886, -0.09432855993509293, 0.07825267314910889, 0.06601440906524658, 0.05629947781562805, -0.053540319204330444, -0.07454057037830353, -0.08755829930305481, 0.14934109151363373, -0.1521672010421753, -0.08402780443429947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1743 - Precision: 0.3429 - Recall: 0.3430 - F1: 0.3430 - Accuracy: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3322 | 0.0703 | 0.1790 | 0.1010 | 0.8318 | | No log | 2.0 | 76 | 0.2644 | 0.1180 | 0.2343 | 0.1570 | 0.8909 | | No log | 3.0 | 114 | 0.2457 | 0.1624 | 0.2583 | 0.1994 | 0.8980 | | No log | 4.0 | 152 | 0.2487 | 0.1486 | 0.2583 | 0.1887 | 0.8931 | | No log | 5.0 | 190 | 0.2395 | 0.1670 | 0.2694 | 0.2062 | 0.8988 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_09\_36 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1743 * Precision: 0.3429 * Recall: 0.3430 * F1: 0.3430 * Accuracy: 0.9446 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 - Precision: 0.3270 - Recall: 0.3348 - F1: 0.3309 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.4023 | 0.1050 | 0.2331 | 0.1448 | 0.8121 | | No log | 2.0 | 76 | 0.3629 | 0.1856 | 0.3414 | 0.2405 | 0.8368 | | No log | 3.0 | 114 | 0.3329 | 0.1794 | 0.3594 | 0.2394 | 0.8504 | | No log | 4.0 | 152 | 0.3261 | 0.1786 | 0.3684 | 0.2405 | 0.8503 | | No log | 5.0 | 190 | 0.3244 | 0.1872 | 0.3684 | 0.2482 | 0.8534 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_25\_06 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1778 * Precision: 0.3270 * Recall: 0.3348 * F1: 0.3309 * Accuracy: 0.9439 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1736 - Precision: 0.3358 - Recall: 0.3447 - F1: 0.3402 - Accuracy: 0.9452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3058 | 0.1200 | 0.2102 | 0.1528 | 0.8629 | | No log | 2.0 | 76 | 0.2488 | 0.1605 | 0.2774 | 0.2034 | 0.9003 | | No log | 3.0 | 114 | 0.2296 | 0.1947 | 0.2880 | 0.2324 | 0.9057 | | No log | 4.0 | 152 | 0.2208 | 0.2201 | 0.2986 | 0.2534 | 0.9113 | | No log | 5.0 | 190 | 0.2235 | 0.2110 | 0.3039 | 0.2491 | 0.9101 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_40\_28 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1736 * Precision: 0.3358 * Recall: 0.3447 * F1: 0.3402 * Accuracy: 0.9452 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2853 - Precision: 0.1677 - Recall: 0.3106 - F1: 0.2178 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3452 | 0.0526 | 0.1055 | 0.0702 | 0.8507 | | No log | 2.0 | 60 | 0.2598 | 0.1575 | 0.2680 | 0.1984 | 0.8909 | | No log | 3.0 | 90 | 0.2398 | 0.1866 | 0.2982 | 0.2295 | 0.9007 | | No log | 4.0 | 120 | 0.2354 | 0.1949 | 0.3049 | 0.2378 | 0.9002 | | No log | 5.0 | 150 | 0.2314 | 0.2026 | 0.3166 | 0.2471 | 0.9004 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-21\_08\_55 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2853 * Precision: 0.1677 * Recall: 0.3106 * F1: 0.2178 * Accuracy: 0.8755 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1114 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0921 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 2.0 | 30 | 0.0816 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 3.0 | 45 | 0.0781 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 4.0 | 60 | 0.0746 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 5.0 | 75 | 0.0737 | 0.08 | 0.0110 | 0.0193 | 0.9801 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_editorials\_16\_02\_2022-21\_05\_05 ================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1114 * Precision: 0.0637 * Recall: 0.0080 * F1: 0.0141 * Accuracy: 0.9707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2525 - Precision: 0.3997 - Recall: 0.5117 - F1: 0.4488 - Accuracy: 0.9115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.4652 | 0.1528 | 0.3588 | 0.2144 | 0.7851 | | No log | 2.0 | 22 | 0.3646 | 0.2913 | 0.4847 | 0.3639 | 0.8521 | | No log | 3.0 | 33 | 0.3453 | 0.3789 | 0.5611 | 0.4523 | 0.8708 | | No log | 4.0 | 44 | 0.3270 | 0.3673 | 0.5496 | 0.4404 | 0.8729 | | No log | 5.0 | 55 | 0.3268 | 0.4011 | 0.5725 | 0.4717 | 0.8760 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_essays\_16\_02\_2022-21\_01\_51 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2525 * Precision: 0.3997 * Recall: 0.5117 * F1: 0.4488 * Accuracy: 0.9115 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6373 - Precision: 0.0024 - Recall: 0.0072 - F1: 0.0036 - Accuracy: 0.6329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 10 | 0.5913 | 0.0 | 0.0 | 0.0 | 0.7023 | | No log | 2.0 | 20 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.7062 | | No log | 3.0 | 30 | 0.5717 | 0.0 | 0.0 | 0.0 | 0.7059 | | No log | 4.0 | 40 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.7008 | | No log | 5.0 | 50 | 0.5669 | 0.0 | 0.0 | 0.0 | 0.7010 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_2e-05\_webDiscourse\_16\_02\_2022-20\_58\_45 ==================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6373 * Precision: 0.0024 * Recall: 0.0072 * F1: 0.0036 * Accuracy: 0.6329 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1073998287320137, 0.08210621029138565, -0.0020050478633493185, 0.12253231555223465, 0.1814965009689331, 0.0156874842941761, 0.10453984886407852, 0.11538700759410858, -0.11682835966348648, 0.019494690001010895, 0.12559698522090912, 0.19104868173599243, -0.0009140230249613523, 0.12755320966243744, -0.0553579181432724, -0.25167855620384216, -0.006845478899776936, 0.0593942254781723, -0.07694444805383682, 0.13469356298446655, 0.09952619671821594, -0.14159248769283295, 0.08131030946969986, 0.012526876293122768, -0.2413611114025116, 0.008981042541563511, 0.019705455750226974, -0.06841833889484406, 0.14422830939292908, 0.013032506220042706, 0.13542473316192627, -0.005466840695589781, 0.08649254590272903, -0.15635007619857788, 0.005056057590991259, 0.05107644945383072, 0.018504977226257324, 0.09019548445940018, 0.052272964268922806, 0.0027814581990242004, 0.10176009684801102, -0.08294053375720978, 0.05135563388466835, 0.015681128948926926, -0.11602283269166946, -0.23894283175468445, -0.08786126971244812, 0.034314271062612534, 0.07048649340867996, 0.09983741492033005, 0.007416107226163149, 0.1484970599412918, -0.09107107669115067, 0.09299879521131516, 0.22687718272209167, -0.28566908836364746, -0.06193207949399948, 0.03767530992627144, -0.0021332695614546537, 0.04743755981326103, -0.1071169376373291, -0.039141733199357986, 0.0598626583814621, 0.04902968555688858, 0.14519302546977997, -0.03714378923177719, -0.11843735724687576, 0.012944321148097515, -0.14692744612693787, -0.03203599900007248, 0.12408686429262161, 0.028300756588578224, -0.035701051354408264, -0.03529717028141022, -0.058402203023433685, -0.16820767521858215, -0.04086872562766075, -0.011760429479181767, 0.04426199197769165, -0.04104437679052353, -0.06696541607379913, 0.022503305226564407, -0.10214146226644516, -0.06366997212171555, -0.08305384963750839, 0.1505788266658783, 0.04581883177161217, 0.013651503250002861, -0.02849850244820118, 0.1084582731127739, 0.013702205382287502, -0.12658396363258362, 0.025882549583911896, 0.02822299487888813, 0.001082436996512115, -0.059777695685625076, -0.06968507915735245, -0.03690088912844658, 0.003487430280074477, 0.12360064685344696, -0.06519242376089096, 0.04161682724952698, 0.04302080348134041, 0.03987909108400345, -0.09890346229076385, 0.19675619900226593, -0.03999633714556694, 0.006996849551796913, 0.012432354502379894, 0.033308226615190506, -0.0004262874135747552, 0.0054526375606656075, -0.1109107956290245, -0.0031564123928546906, 0.12541264295578003, 0.014754539355635643, -0.08154645562171936, 0.07273469120264053, -0.050018489360809326, -0.024551069363951683, 0.02239961177110672, -0.09802132844924927, 0.036364711821079254, -0.012965560890734196, -0.08844594657421112, -0.0071087852120399475, 0.021859098225831985, 0.00979327317327261, -0.022872531786561012, 0.12486153841018677, -0.09011885523796082, 0.04172133281826973, -0.10182351619005203, -0.10081470012664795, 0.014447750523686409, -0.0847434252500534, 0.03442869707942009, -0.10667547583580017, -0.15320494771003723, -0.01258139032870531, 0.05449026823043823, -0.016683345660567284, -0.05763763561844826, -0.03630056232213974, -0.07323262840509415, -0.00016925169620662928, -0.019660672172904015, 0.13900795578956604, -0.05414900928735733, 0.10898248106241226, 0.03978698328137398, 0.06604740768671036, -0.048069391399621964, 0.058745838701725006, -0.1062636598944664, 0.00819803774356842, -0.19825409352779388, 0.03368942812085152, -0.0497000589966774, 0.0820726677775383, -0.09539473801851273, -0.12134591490030289, 0.032690297812223434, -0.014617815613746643, 0.07463650405406952, 0.07915516942739487, -0.15190599858760834, -0.07145797461271286, 0.14897547662258148, -0.06612351536750793, -0.10799883306026459, 0.10802268981933594, -0.06155109405517578, 0.04392287880182266, 0.07415946573019028, 0.14803241193294525, 0.07458919286727905, -0.07231234759092331, 0.015959864482283592, -0.005952552892267704, 0.039755482226610184, -0.08943791687488556, 0.05396892502903938, 0.014293225482106209, -0.01142923440784216, 0.0374344103038311, -0.030494948849081993, 0.07098665833473206, -0.10122686624526978, -0.08942614495754242, -0.04554819315671921, -0.10283107310533524, 0.04763132333755493, 0.07676276564598083, 0.09432146698236465, -0.08822723478078842, -0.062043897807598114, 0.09538153558969498, 0.0820833370089531, -0.0541178435087204, 0.028046784922480583, -0.06308972835540771, 0.06612741202116013, -0.04866132512688637, -0.02955797128379345, -0.19781546294689178, -0.0024168933741748333, 0.010202581994235516, -0.009308822453022003, 0.016232730820775032, 0.009592997841536999, 0.06748713552951813, 0.05659940093755722, -0.04954119399189949, -0.015849672257900238, -0.011249469593167305, -0.0015059850411489606, -0.13953447341918945, -0.18118464946746826, -0.032951097935438156, -0.017077527940273285, 0.1020972952246666, -0.18482188880443573, 0.030957231298089027, -0.024537844583392143, 0.08447914570569992, 0.003315307665616274, -0.005398913752287626, -0.048118945211172104, 0.09376800805330276, -0.03139962628483772, -0.05292005091905594, 0.07202956080436707, 0.00673709437251091, -0.07266796380281448, -0.05380416661500931, -0.08088641613721848, 0.18428939580917358, 0.13975684344768524, -0.12416388094425201, -0.08739370107650757, -0.004974758252501488, -0.061886388808488846, -0.032789599150419235, -0.040545135736465454, 0.05616145581007004, 0.16990533471107483, -0.017959261313080788, 0.15464121103286743, -0.06766363233327866, -0.05475306510925293, 0.027411814779043198, -0.03448822349309921, 0.033951710909605026, 0.10926599055528641, 0.12084067612886429, -0.09039339423179626, 0.14437837898731232, 0.15368534624576569, -0.10623326152563095, 0.10462266206741333, -0.05248720571398735, -0.06896854192018509, -0.013850543648004532, -0.019581535831093788, -0.000611248251516372, 0.09083160012960434, -0.11849500238895416, -0.0033148671500384808, 0.022922614589333534, 0.02585393562912941, 0.018331211060285568, -0.22587145864963531, -0.03379996120929718, 0.026456322520971298, -0.02822231315076351, -0.0036753537133336067, -0.013201922178268433, 0.014152334071695805, 0.10203229635953903, 0.0019058166071772575, -0.0958704873919487, 0.047338418662548065, 0.015623431652784348, -0.07501160353422165, 0.21656639873981476, -0.090121328830719, -0.14239037036895752, -0.11597412824630737, -0.08412567526102066, -0.03878311812877655, 0.009785751812160015, 0.059367697685956955, -0.0899730995297432, -0.029000243172049522, -0.04281480982899666, 0.008819502778351307, -0.00044473502202890813, 0.050540097057819366, 0.014865233562886715, 0.0024690134450793266, 0.08018633723258972, -0.10400436818599701, -0.007972312159836292, -0.05457920581102371, -0.05782028287649155, 0.051172494888305664, 0.0397665798664093, 0.10540972650051117, 0.15823625028133392, -0.03460326045751572, 0.008441311307251453, -0.031403958797454834, 0.23752574622631073, -0.05635116621851921, -0.03591134399175644, 0.13830409944057465, -0.0009279283112846315, 0.05590762570500374, 0.10391312837600708, 0.07221212983131409, -0.08917023241519928, 0.008441555313766003, 0.02583245187997818, -0.034613750874996185, -0.21304112672805786, -0.05171193927526474, -0.0529978983104229, -0.0348745696246624, 0.1043381467461586, 0.027450835332274437, 0.051584839820861816, 0.07645764946937561, 0.05026925355195999, 0.09914746880531311, -0.05771338939666748, 0.05969248339533806, 0.12164872884750366, 0.05274380370974541, 0.12282031774520874, -0.044976718723773956, -0.0749380886554718, 0.02971760742366314, -0.01079458836466074, 0.23345217108726501, 0.00015175856242422014, 0.10744724422693253, 0.053325802087783813, 0.19828292727470398, 0.004933028016239405, 0.09317997097969055, -0.004388675559312105, -0.043584030121564865, -0.008801867254078388, -0.033327825367450714, -0.041656460613012314, 0.011634807102382183, -0.06528903543949127, 0.0533982515335083, -0.11865264177322388, -0.010945825837552547, 0.04806148633360863, 0.26492008566856384, 0.023214828222990036, -0.33629781007766724, -0.09142658114433289, -0.010890605859458447, -0.03653693571686745, -0.027971770614385605, 0.021646646782755852, 0.0728873759508133, -0.09582874178886414, 0.02503952570259571, -0.07347872108221054, 0.09276053309440613, -0.04076296091079712, 0.042649198323488235, 0.0790848582983017, 0.08871336281299591, 0.01901685819029808, 0.07772376388311386, -0.31936269998550415, 0.2662719786167145, -0.0008365110261365771, 0.07262834906578064, -0.07805647701025009, 0.0022087751422077417, 0.029944825917482376, 0.0674659013748169, 0.05600637197494507, -0.011950202286243439, -0.050361860543489456, -0.21271762251853943, -0.04648974537849426, 0.02614353969693184, 0.07916489988565445, -0.010984723456203938, 0.08566297590732574, -0.03004094399511814, 0.005770597141236067, 0.07442748546600342, -0.04672442749142647, -0.04547062888741493, -0.08223980665206909, -0.013859737664461136, 0.027852598577737808, -0.035015299916267395, -0.060186177492141724, -0.11288580298423767, -0.1320960521697998, 0.1495550274848938, -0.012988640926778316, -0.03848838806152344, -0.11706217378377914, 0.08315098285675049, 0.08880260586738586, -0.08654254674911499, 0.06126163527369499, 0.004220716655254364, 0.05970887467265129, 0.03936260566115379, -0.07665430009365082, 0.10740067064762115, -0.06301677227020264, -0.1557924747467041, -0.05249806120991707, 0.09072501212358475, 0.03451450541615486, 0.05851515009999275, -0.009107463993132114, 0.013482796959578991, -0.038986243307590485, -0.09362740069627762, 0.013825149275362492, -0.018323039636015892, 0.087923564016819, 0.01707838848233223, -0.056506119668483734, 0.010026993229985237, -0.05995853990316391, -0.026326801627874374, 0.17984558641910553, 0.21756577491760254, -0.10361506044864655, 0.010357270948588848, 0.03322061896324158, -0.06330840289592743, -0.1923273503780365, 0.04228800907731056, 0.06623269617557526, 0.0012530406238511205, 0.02573590911924839, -0.17091414332389832, 0.144363135099411, 0.10482452064752579, -0.013725435361266136, 0.1018730029463768, -0.3189634680747986, -0.12499048560857773, 0.13184642791748047, 0.14766667783260345, 0.13242217898368835, -0.13002623617649078, -0.013871020637452602, -0.015128492377698421, -0.12810219824314117, 0.09667343646287918, -0.05752349644899368, 0.1156991496682167, -0.03609966114163399, 0.0925522893667221, 0.0017912205075845122, -0.06335917115211487, 0.10773494839668274, 0.03650404512882233, 0.10398434102535248, -0.05695787072181702, -0.037103377282619476, 0.029366934671998024, -0.03698781132698059, 0.016608305275440216, -0.05543321371078491, 0.038082536309957504, -0.0895574539899826, -0.016126926988363266, -0.08164289593696594, 0.048357464373111725, -0.025264691561460495, -0.057303301990032196, -0.041996799409389496, 0.026955554261803627, 0.04674655944108963, -0.018666289746761322, 0.12920089066028595, 0.04015813022851944, 0.14435571432113647, 0.10992732644081116, 0.05442257598042488, -0.07410380244255066, -0.07204597443342209, -0.015076260082423687, -0.017299102619290352, 0.06607452034950256, -0.13370263576507568, 0.03401520103216171, 0.15035754442214966, 0.02186749130487442, 0.11762301623821259, 0.08519741147756577, -0.010065433569252491, 0.004346068948507309, 0.062073964625597, -0.16220839321613312, -0.056325141340494156, 0.003806754481047392, -0.05275222286581993, -0.09300944209098816, 0.06760900467634201, 0.08161292970180511, -0.07484649866819382, -0.01595151051878929, -0.008621358312666416, -0.00427408330142498, -0.06363356858491898, 0.21159563958644867, 0.061346959322690964, 0.04703696817159653, -0.11222773790359497, 0.06456587463617325, 0.060019850730895996, -0.07421763241291046, -0.0059995208866894245, 0.06150934100151062, -0.0916953757405281, -0.03953633829951286, 0.10922392457723618, 0.16032704710960388, -0.08373581618070602, -0.04417682811617851, -0.13558591902256012, -0.12109571695327759, 0.08656022697687149, 0.16398654878139496, 0.12552782893180847, 0.021475963294506073, -0.05736688897013664, 0.006068089511245489, -0.1336309164762497, 0.07204068452119827, 0.048035576939582825, 0.08092194050550461, -0.1553393006324768, 0.17245064675807953, 0.005128638818860054, 0.054641079157590866, -0.024127423763275146, 0.030635790899395943, -0.09894777834415436, 0.01891358755528927, -0.1171143651008606, -0.02850722335278988, -0.0303144883364439, 0.008180930279195309, -0.00013528020645026118, -0.05889850854873657, -0.04868198558688164, 0.024567250162363052, -0.12125735729932785, -0.014927064999938011, 0.03671359643340111, 0.050986599177122116, -0.11117547005414963, -0.0413929708302021, 0.021100111305713654, -0.05604187399148941, 0.06202559918165207, 0.051315825432538986, 0.014756056480109692, 0.05773146077990532, -0.11899574100971222, -0.009873787872493267, 0.0853024274110794, 0.009094460867345333, 0.07704100012779236, -0.09462173283100128, 0.00008197593706427142, 0.013821755535900593, 0.06594178825616837, 0.01738104782998562, 0.06879975646734238, -0.14873580634593964, -0.012869077734649181, -0.032031185925006866, -0.07207459211349487, -0.07071630656719208, 0.01615596003830433, 0.09830307960510254, 0.010532584972679615, 0.1946217566728592, -0.07262880355119705, 0.033792492002248764, -0.1993618905544281, -0.004783593583852053, -0.024775700643658638, -0.11841615289449692, -0.13094422221183777, -0.056784819811582565, 0.061064526438713074, -0.043502189218997955, 0.13494151830673218, 0.02652793936431408, 0.043804071843624115, 0.027256280183792114, -0.02629978395998478, 0.004789683502167463, 0.027772393077611923, 0.21655519306659698, 0.0314902700483799, -0.03462948650121689, 0.07424721866846085, 0.059329308569431305, 0.09353601932525635, 0.111327163875103, 0.18506401777267456, 0.1540050208568573, -0.019467337056994438, 0.08763955533504486, 0.01784883625805378, -0.04724188894033432, -0.1723865121603012, 0.033835913985967636, -0.05434132739901543, 0.09317569434642792, -0.021693043410778046, 0.20936767756938934, 0.05326254293322563, -0.1654500961303711, 0.04627137631177902, -0.050534989684820175, -0.0874713882803917, -0.09791871160268784, -0.03261534869670868, -0.08071227371692657, -0.14260852336883545, 0.0022389127407222986, -0.10063130408525467, 0.011305995285511017, 0.11359747499227524, 0.00611851504072547, -0.027145378291606903, 0.15785899758338928, 0.026407381519675255, 0.029858311638236046, 0.05134345963597298, 0.0019301908323541284, -0.03070494532585144, -0.09913622587919235, -0.06381121277809143, -0.02413235418498516, -0.013568517751991749, 0.03979763761162758, -0.06418821960687637, -0.06356706470251083, 0.0379914864897728, -0.021054349839687347, -0.08679784834384918, 0.017031481489539146, 0.023905262351036072, 0.06166454777121544, 0.04266756400465965, 0.0037281401455402374, 0.01955142430961132, -0.020195692777633667, 0.20181815326213837, -0.08121553063392639, -0.08452973514795303, -0.10013803094625473, 0.2872646152973175, 0.05275267735123634, -0.010076425969600677, 0.03615431860089302, -0.055526793003082275, -0.002073989948257804, 0.25169193744659424, 0.17595943808555603, -0.07584311068058014, -0.011614820919930935, 0.0009684087126515806, -0.017010929062962532, -0.027412092313170433, 0.12415412813425064, 0.14827466011047363, 0.04721226170659065, -0.10119011998176575, -0.04847201704978943, -0.06410049647092819, -0.009588358923792839, -0.055573321878910065, 0.04722244665026665, 0.031111815944314003, 0.0014503411948680878, -0.04029959440231323, 0.05069956183433533, -0.06760535389184952, -0.09281300753355026, 0.07342161983251572, -0.18613658845424652, -0.16039890050888062, -0.00588934076949954, 0.10490676760673523, 0.000041560739191481844, 0.054713912308216095, -0.02873564325273037, 0.005802821833640337, 0.0746462270617485, -0.023865971714258194, -0.0825599730014801, -0.0813475176692009, 0.09710150212049484, -0.09594035148620605, 0.19031529128551483, -0.03848811984062195, 0.07940537482500076, 0.12373442202806473, 0.07223255932331085, -0.0831029862165451, 0.053511131554841995, 0.03294835984706879, -0.07910160720348358, 0.03526637330651283, 0.08726534992456436, -0.0251485425978899, 0.05382315814495087, 0.023804347962141037, -0.1265377551317215, 0.017606789246201515, -0.08010400831699371, -0.03477926552295685, -0.04672449827194214, -0.051541753113269806, -0.04943041503429413, 0.12453833222389221, 0.21279138326644897, -0.02546665444970131, 0.011269456706941128, -0.07915253192186356, 0.015369734726846218, 0.05242529138922691, 0.0033136396668851376, -0.083539679646492, -0.2267501950263977, 0.013521086424589157, 0.056664902716875076, -0.027322400361299515, -0.19102056324481964, -0.09264279901981354, 0.0016309416387230158, -0.08474386483430862, -0.09641391783952713, 0.08232689648866653, 0.061473164707422256, 0.054381392896175385, -0.05472034960985184, -0.06750770658254623, -0.08981794118881226, 0.14658477902412415, -0.15045954287052155, -0.09038986265659332 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1620 - Precision: 0.3509 - Recall: 0.3793 - F1: 0.3646 - Accuracy: 0.9468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2997 | 0.1125 | 0.2057 | 0.1454 | 0.8669 | | No log | 2.0 | 76 | 0.2620 | 0.1928 | 0.2849 | 0.2300 | 0.8899 | | No log | 3.0 | 114 | 0.2497 | 0.1923 | 0.2906 | 0.2314 | 0.8918 | | No log | 4.0 | 152 | 0.2474 | 0.1819 | 0.3377 | 0.2365 | 0.8905 | | No log | 5.0 | 190 | 0.2418 | 0.2128 | 0.3264 | 0.2576 | 0.8997 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_12\_04 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1620 * Precision: 0.3509 * Recall: 0.3793 * F1: 0.3646 * Accuracy: 0.9468 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1633 - Precision: 0.3632 - Recall: 0.3786 - F1: 0.3707 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3227 | 0.1237 | 0.2397 | 0.1631 | 0.8566 | | No log | 2.0 | 76 | 0.2874 | 0.2128 | 0.3328 | 0.2596 | 0.8721 | | No log | 3.0 | 114 | 0.2762 | 0.2170 | 0.3603 | 0.2709 | 0.8844 | | No log | 4.0 | 152 | 0.2770 | 0.2274 | 0.3690 | 0.2814 | 0.8819 | | No log | 5.0 | 190 | 0.2771 | 0.2113 | 0.3741 | 0.2701 | 0.8823 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_27\_36 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1633 * Precision: 0.3632 * Recall: 0.3786 * F1: 0.3707 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - Precision: 0.3811 - Recall: 0.3865 - F1: 0.3838 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3697 | 0.0933 | 0.2235 | 0.1317 | 0.8259 | | No log | 2.0 | 76 | 0.3193 | 0.1266 | 0.2948 | 0.1771 | 0.8494 | | No log | 3.0 | 114 | 0.3025 | 0.1606 | 0.3160 | 0.2130 | 0.8540 | | No log | 4.0 | 152 | 0.2978 | 0.1867 | 0.3449 | 0.2422 | 0.8605 | | No log | 5.0 | 190 | 0.2984 | 0.1706 | 0.3507 | 0.2295 | 0.8551 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_43\_00 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1626 * Precision: 0.3811 * Recall: 0.3865 * F1: 0.3838 * Accuracy: 0.9482 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2731 - Precision: 0.1928 - Recall: 0.3457 - F1: 0.2475 - Accuracy: 0.8826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3010 | 0.1330 | 0.2345 | 0.1697 | 0.8707 | | No log | 2.0 | 60 | 0.2446 | 0.1739 | 0.2948 | 0.2188 | 0.8949 | | No log | 3.0 | 90 | 0.2235 | 0.2446 | 0.3032 | 0.2708 | 0.9080 | | No log | 4.0 | 120 | 0.2226 | 0.2670 | 0.3350 | 0.2972 | 0.9058 | | No log | 5.0 | 150 | 0.2166 | 0.2779 | 0.3417 | 0.3065 | 0.9063 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-21\_11\_08 =========================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2731 * Precision: 0.1928 * Recall: 0.3457 * F1: 0.2475 * Accuracy: 0.8826 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1060 - Precision: 0.2003 - Recall: 0.1154 - F1: 0.1464 - Accuracy: 0.9712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0897 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 2.0 | 30 | 0.0798 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 3.0 | 45 | 0.0743 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 4.0 | 60 | 0.0707 | 0.0741 | 0.0110 | 0.0191 | 0.9802 | | No log | 5.0 | 75 | 0.0696 | 0.2727 | 0.1648 | 0.2055 | 0.9805 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_editorials\_16\_02\_2022-21\_06\_22 ================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1060 * Precision: 0.2003 * Recall: 0.1154 * F1: 0.1464 * Accuracy: 0.9712 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2374 - Precision: 0.4766 - Recall: 0.5549 - F1: 0.5127 - Accuracy: 0.9173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.4155 | 0.1569 | 0.3168 | 0.2099 | 0.8163 | | No log | 2.0 | 22 | 0.3584 | 0.3827 | 0.5725 | 0.4587 | 0.8691 | | No log | 3.0 | 33 | 0.3483 | 0.4353 | 0.5649 | 0.4917 | 0.8737 | | No log | 4.0 | 44 | 0.3187 | 0.4403 | 0.5916 | 0.5049 | 0.8770 | | No log | 5.0 | 55 | 0.3188 | 0.4463 | 0.6031 | 0.5130 | 0.8806 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_essays\_16\_02\_2022-21\_02\_59 ============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2374 * Precision: 0.4766 * Recall: 0.5549 * F1: 0.5127 * Accuracy: 0.9173 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5450 - Precision: 0.0049 - Recall: 0.0146 - F1: 0.0074 - Accuracy: 0.7431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.6830 | 0.0109 | 0.0323 | 0.0163 | 0.5685 | | No log | 2.0 | 20 | 0.7187 | 0.0256 | 0.0323 | 0.0286 | 0.5668 | | No log | 3.0 | 30 | 0.6839 | 0.0076 | 0.0484 | 0.0131 | 0.5848 | | No log | 4.0 | 40 | 0.6988 | 0.0092 | 0.0484 | 0.0155 | 0.5918 | | No log | 5.0 | 50 | 0.7055 | 0.0100 | 0.0484 | 0.0165 | 0.5946 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50", "results": []}]}
token-classification
ali2066/finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned\_token\_itr0\_3e-05\_webDiscourse\_16\_02\_2022-20\_59\_50 ==================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5450 * Precision: 0.0049 * Recall: 0.0146 * F1: 0.0074 * Accuracy: 0.7431 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10780386626720428, 0.08135806024074554, -0.0019977749325335026, 0.1225561797618866, 0.18173600733280182, 0.015939990058541298, 0.1043737605214119, 0.11513571441173553, -0.11740895360708237, 0.019440874457359314, 0.12570637464523315, 0.19138909876346588, -0.0007414013962261379, 0.12780068814754486, -0.05536404624581337, -0.25077953934669495, -0.006888475734740496, 0.05937104672193527, -0.07571731507778168, 0.134678453207016, 0.09979171305894852, -0.14165915548801422, 0.08140864223241806, 0.012437066063284874, -0.2405797690153122, 0.008807661011815071, 0.019377104938030243, -0.06848607212305069, 0.14377720654010773, 0.012953546829521656, 0.13538555800914764, -0.005632925312966108, 0.08648057281970978, -0.15634408593177795, 0.005213876720517874, 0.05123648792505264, 0.0185471773147583, 0.09018685668706894, 0.05187875032424927, 0.0026620784774422646, 0.1015123501420021, -0.08288609981536865, 0.05170625075697899, 0.015830835327506065, -0.11609601974487305, -0.2386653870344162, -0.08849553763866425, 0.034153733402490616, 0.0703657865524292, 0.10020653903484344, 0.007515658624470234, 0.1486203521490097, -0.09107852727174759, 0.09336888790130615, 0.22696922719478607, -0.2854035198688507, -0.06208287179470062, 0.03930922597646713, -0.0016678052488714457, 0.04754987359046936, -0.10678931325674057, -0.039095859974622726, 0.05954604595899582, 0.049160104244947433, 0.14534892141819, -0.03682439401745796, -0.11778544634580612, 0.012948760762810707, -0.14728249609470367, -0.03167489916086197, 0.12452704459428787, 0.028299035504460335, -0.035700298845767975, -0.03628649562597275, -0.0578681156039238, -0.16830432415008545, -0.04117676243185997, -0.011475862935185432, 0.04425552114844322, -0.04138588160276413, -0.06723581254482269, 0.023073460906744003, -0.10146031528711319, -0.06343509256839752, -0.0826311707496643, 0.14977790415287018, 0.045623134821653366, 0.013686781749129295, -0.028347494080662727, 0.10857497900724411, 0.013363409787416458, -0.1264246553182602, 0.025839313864707947, 0.0277398731559515, 0.0014961721608415246, -0.060350675135850906, -0.06959391385316849, -0.03686502203345299, 0.0036393343470990658, 0.12419439852237701, -0.06518585234880447, 0.04157133027911186, 0.04338385909795761, 0.039512328803539276, -0.09892862290143967, 0.19685524702072144, -0.04032088443636894, 0.005973195657134056, 0.012515341863036156, 0.033741362392902374, -0.00047897399053908885, 0.0056077041663229465, -0.11040788888931274, -0.002990704495459795, 0.12449601292610168, 0.015020692721009254, -0.08128915727138519, 0.07312092185020447, -0.049902353435754776, -0.024732088670134544, 0.02359446883201599, -0.0978589802980423, 0.03599648177623749, -0.013216333463788033, -0.0884271115064621, -0.006763367913663387, 0.022116417065262794, 0.009671911597251892, -0.02280067466199398, 0.12490334361791611, -0.09003884345293045, 0.04149405658245087, -0.10220324248075485, -0.10075251758098602, 0.014028368517756462, -0.08411122113466263, 0.034419167786836624, -0.10635349154472351, -0.15351004898548126, -0.012995101511478424, 0.0542655773460865, -0.016826672479510307, -0.057425059378147125, -0.036165740340948105, -0.07308220118284225, -0.000015284733308362775, -0.019863123074173927, 0.13945390284061432, -0.054211486130952835, 0.10924504697322845, 0.0403817743062973, 0.06596124917268753, -0.04792344197630882, 0.05894266068935394, -0.10599468648433685, 0.007912622764706612, -0.19826345145702362, 0.03384622558951378, -0.04999667778611183, 0.08255069702863693, -0.09498593956232071, -0.12168007344007492, 0.03302967548370361, -0.014548259787261486, 0.07492416352033615, 0.07887506484985352, -0.15092794597148895, -0.07106415927410126, 0.148457333445549, -0.06568174809217453, -0.10869578272104263, 0.10782712697982788, -0.06147918105125427, 0.04319724440574646, 0.07403045892715454, 0.14712004363536835, 0.07458898425102234, -0.07272546738386154, 0.01584780402481556, -0.005818364676088095, 0.03981269523501396, -0.09008139371871948, 0.05365840718150139, 0.014245828613638878, -0.011852237395942211, 0.037643082439899445, -0.030743593350052834, 0.07130242139101028, -0.10130415856838226, -0.08942616730928421, -0.045443084090948105, -0.10317239910364151, 0.04697820916771889, 0.0771637111902237, 0.09390993416309357, -0.0883287712931633, -0.061839908361434937, 0.09406987577676773, 0.08209806680679321, -0.05389213189482689, 0.027651295065879822, -0.06291189789772034, 0.06651891022920609, -0.048801489174366, -0.029630443081259727, -0.19786548614501953, -0.002889832481741905, 0.010087883099913597, -0.008518066257238388, 0.016017558053135872, 0.00900217704474926, 0.06757698953151703, 0.056552987545728683, -0.04965068772435188, -0.015781929716467857, -0.010613913647830486, -0.0017095474759116769, -0.1393592208623886, -0.1808321177959442, -0.03317476063966751, -0.017164941877126694, 0.1012755036354065, -0.18433833122253418, 0.031106675043702126, -0.02539553865790367, 0.08395697176456451, 0.0029307452496141195, -0.005653124302625656, -0.04771876335144043, 0.0943293496966362, -0.031321845948696136, -0.052948858588933945, 0.07245181500911713, 0.006652952637523413, -0.07249361276626587, -0.05438800901174545, -0.08114130049943924, 0.18415692448616028, 0.13963408768177032, -0.1243567019701004, -0.08769536018371582, -0.005607388447970152, -0.06183994188904762, -0.0324249193072319, -0.04023582115769386, 0.05633904039859772, 0.16927753388881683, -0.01835610345005989, 0.15449541807174683, -0.06757251918315887, -0.05503475293517113, 0.027239663526415825, -0.034222085028886795, 0.03413810953497887, 0.10922146588563919, 0.12079417705535889, -0.0893481969833374, 0.14455954730510712, 0.15348388254642487, -0.1056639701128006, 0.10449334979057312, -0.052568551152944565, -0.06881970912218094, -0.013496781699359417, -0.01963173598051071, -0.0004437449970282614, 0.0906413346529007, -0.1185559332370758, -0.003296730574220419, 0.023048430681228638, 0.025734659284353256, 0.018137933686375618, -0.22529065608978271, -0.034069083631038666, 0.026414336636662483, -0.02826208993792534, -0.003288564272224903, -0.012848583050072193, 0.013939234428107738, 0.10181588679552078, 0.002023879671469331, -0.09588360041379929, 0.047239676117897034, 0.015422130934894085, -0.07486361265182495, 0.21649034321308136, -0.08988916128873825, -0.14176341891288757, -0.1159023717045784, -0.0858193188905716, -0.03932875767350197, 0.009520499035716057, 0.059171464294195175, -0.09042034298181534, -0.02933063916862011, -0.04270714148879051, 0.00856263842433691, 0.000019349932699697092, 0.0501767061650753, 0.015109824948012829, 0.0019506544340401888, 0.08021438866853714, -0.10394728928804398, -0.008070746436715126, -0.05488026887178421, -0.057500872761011124, 0.051178280264139175, 0.0398920476436615, 0.10573442280292511, 0.1577954888343811, -0.03439083322882652, 0.008530151098966599, -0.031489621847867966, 0.23834571242332458, -0.056413743644952774, -0.036072466522455215, 0.13872694969177246, -0.00017103870050050318, 0.05574948713183403, 0.10348375141620636, 0.07251743227243423, -0.08945895731449127, 0.008653412573039532, 0.025626467540860176, -0.03498977795243263, -0.2129097580909729, -0.05179885774850845, -0.0533674992620945, -0.034986380487680435, 0.10388665646314621, 0.0271742045879364, 0.05213341489434242, 0.07695842534303665, 0.050102174282073975, 0.09911181032657623, -0.05758382007479668, 0.05949776619672775, 0.12161944061517715, 0.05273371562361717, 0.12312933802604675, -0.04493079334497452, -0.07481184601783752, 0.029616720974445343, -0.010678710415959358, 0.23281699419021606, -0.000096432602731511, 0.10705618560314178, 0.053500253707170486, 0.19839859008789062, 0.004714127629995346, 0.0934394970536232, -0.004894952289760113, -0.043854016810655594, -0.008579310029745102, -0.03352591395378113, -0.04162251204252243, 0.010748087428510189, -0.06526454538106918, 0.05385715514421463, -0.11862806230783463, -0.01132581103593111, 0.047952745109796524, 0.26519832015037537, 0.022550063207745552, -0.33669745922088623, -0.09131860733032227, -0.011359735392034054, -0.03583338111639023, -0.028081484138965607, 0.021662268787622452, 0.07142133265733719, -0.09566187113523483, 0.02558676153421402, -0.0733642429113388, 0.09277606010437012, -0.04058288037776947, 0.04255722090601921, 0.07966171950101852, 0.08956659585237503, 0.01870894245803356, 0.07747678458690643, -0.3200472295284271, 0.2655748724937439, -0.0007870702538639307, 0.07289084047079086, -0.07798688858747482, 0.002450778381898999, 0.030273471027612686, 0.06767696887254715, 0.05632384121417999, -0.012208337895572186, -0.04894056171178818, -0.2130582630634308, -0.046391263604164124, 0.02580726146697998, 0.078786201775074, -0.010614067316055298, 0.0858069509267807, -0.029949713498353958, 0.005756430793553591, 0.07418590784072876, -0.04653802514076233, -0.04538092762231827, -0.08257448673248291, -0.01406907569617033, 0.028050431981682777, -0.03565613925457001, -0.059983182698488235, -0.11272013187408447, -0.13366462290287018, 0.1495659351348877, -0.012616882100701332, -0.03858501836657524, -0.11726520955562592, 0.08274003863334656, 0.08874335139989853, -0.08609464764595032, 0.06109185889363289, 0.003713468089699745, 0.05900980532169342, 0.03917788341641426, -0.07672705501317978, 0.10728137195110321, -0.06332328170537949, -0.15540704131126404, -0.05263194441795349, 0.09053011238574982, 0.03438861295580864, 0.05854928866028786, -0.00947805866599083, 0.013583460822701454, -0.03930928185582161, -0.0937843918800354, 0.013621087186038494, -0.018771428614854813, 0.08800429850816727, 0.017807433381676674, -0.056586217135190964, 0.009494788944721222, -0.05997411534190178, -0.02612341195344925, 0.1792614609003067, 0.21737967431545258, -0.10327181965112686, 0.010020465590059757, 0.03301936015486717, -0.06296369433403015, -0.1921236217021942, 0.04204457625746727, 0.06559539586305618, 0.0011711368570104241, 0.025970127433538437, -0.17060424387454987, 0.1446073353290558, 0.104672871530056, -0.013719296082854271, 0.10187851637601852, -0.31801751255989075, -0.1249890848994255, 0.13199461996555328, 0.1479077786207199, 0.13198357820510864, -0.1303076297044754, -0.013566206209361553, -0.014731746166944504, -0.12826354801654816, 0.09595617651939392, -0.05710664764046669, 0.1158486157655716, -0.03652849420905113, 0.09188519418239594, 0.0016503125661984086, -0.06383445858955383, 0.10751068592071533, 0.03653336688876152, 0.10438194125890732, -0.057433538138866425, -0.03633765131235123, 0.029264558106660843, -0.03695882111787796, 0.017084509134292603, -0.055517226457595825, 0.038277894258499146, -0.0898505374789238, -0.016233745962381363, -0.08172290772199631, 0.04822961986064911, -0.02551288716495037, -0.057217516005039215, -0.04233046993613243, 0.027323398739099503, 0.04666689410805702, -0.01883748732507229, 0.12921254336833954, 0.03992860019207001, 0.14549009501934052, 0.10914436727762222, 0.05512187257409096, -0.0739736557006836, -0.0719662755727768, -0.015226379036903381, -0.0174039788544178, 0.06585398316383362, -0.1331123560667038, 0.03344995900988579, 0.15029986202716827, 0.02154925838112831, 0.11765798926353455, 0.08512337505817413, -0.010047666728496552, 0.004006912000477314, 0.0621761754155159, -0.16185875236988068, -0.055151328444480896, 0.0037096659652888775, -0.053524408489465714, -0.09347608685493469, 0.06746672838926315, 0.08094829320907593, -0.07444384694099426, -0.01577129401266575, -0.008677768521010876, -0.004112862516194582, -0.06339193880558014, 0.2116699069738388, 0.06148940697312355, 0.04717578366398811, -0.11260301619768143, 0.06433659046888351, 0.05991563946008682, -0.07340233027935028, -0.006489656865596771, 0.061860863119363785, -0.09194988012313843, -0.039468564093112946, 0.10909619182348251, 0.160379096865654, -0.08411018550395966, -0.043739933520555496, -0.13560180366039276, -0.12132100760936737, 0.08660734444856644, 0.16364336013793945, 0.12545360624790192, 0.021073125302791595, -0.057090144604444504, 0.005854903254657984, -0.13363541662693024, 0.07217995077371597, 0.04733011871576309, 0.08088090270757675, -0.15466010570526123, 0.17130988836288452, 0.005327948834747076, 0.05414257571101189, -0.024139054119586945, 0.03084219992160797, -0.09883354604244232, 0.01890902779996395, -0.11659783869981766, -0.029361188411712646, -0.030772749334573746, 0.008483249694108963, -0.00048776500625535846, -0.05852380767464638, -0.048326525837183, 0.024856658652424812, -0.12085786461830139, -0.014910325407981873, 0.03692556917667389, 0.05114690959453583, -0.11096780747175217, -0.041116729378700256, 0.020571136847138405, -0.055851131677627563, 0.06192551925778389, 0.05090705305337906, 0.01469819899648428, 0.05730292573571205, -0.11985322833061218, -0.009908370673656464, 0.08486630767583847, 0.009130984544754028, 0.07675738632678986, -0.09437822550535202, 0.0002569468051660806, 0.013860481791198254, 0.06557785719633102, 0.01760769635438919, 0.0680561512708664, -0.14886388182640076, -0.012584415264427662, -0.03159100562334061, -0.07129718363285065, -0.07073157280683517, 0.016355734318494797, 0.09892422705888748, 0.010477889329195023, 0.19432352483272552, -0.07293868064880371, 0.03357716649770737, -0.1995411217212677, -0.004861529916524887, -0.024936702102422714, -0.11860329657793045, -0.13159474730491638, -0.05672862008213997, 0.06135683134198189, -0.04309392720460892, 0.13614711165428162, 0.02654721401631832, 0.04362393543124199, 0.02725403755903244, -0.02584167756140232, 0.005558451637625694, 0.027455933392047882, 0.2162487804889679, 0.031222593039274216, -0.03456292673945427, 0.07481777667999268, 0.05978840962052345, 0.09346615523099899, 0.11116290092468262, 0.18470638990402222, 0.15390516817569733, -0.01896120235323906, 0.08729198575019836, 0.017776070162653923, -0.047176606953144073, -0.17102132737636566, 0.033049073070287704, -0.05434751883149147, 0.09303144365549088, -0.02179264836013317, 0.20815986394882202, 0.05278501659631729, -0.165188267827034, 0.046529434621334076, -0.05083546042442322, -0.0873342901468277, -0.097758449614048, -0.0320209376513958, -0.08012567460536957, -0.14235042035579681, 0.0023173950612545013, -0.10096190124750137, 0.011071575805544853, 0.113917775452137, 0.0062962668016552925, -0.027438925579190254, 0.1585211604833603, 0.02654469944536686, 0.030350929126143456, 0.051300037652254105, 0.001722844666801393, -0.030747495591640472, -0.09927742928266525, -0.06388244777917862, -0.024059470742940903, -0.013972561806440353, 0.040034521371126175, -0.06430207937955856, -0.06395409256219864, 0.03836492821574211, -0.02037494257092476, -0.08709577471017838, 0.017096417024731636, 0.02397029846906662, 0.06204751878976822, 0.04405065253376961, 0.0033082463778555393, 0.019869115203619003, -0.020410241559147835, 0.20079053938388824, -0.08094979077577591, -0.08422740548849106, -0.10033047944307327, 0.2871081829071045, 0.0528130903840065, -0.010422115214169025, 0.03578982874751091, -0.055106449872255325, -0.0017893280601128936, 0.25197136402130127, 0.17613667249679565, -0.07606545835733414, -0.011759242042899132, 0.0011456954525783658, -0.01691812463104725, -0.027222998440265656, 0.12419448792934418, 0.1485523283481598, 0.04675488546490669, -0.10094397515058517, -0.048196934163570404, -0.06414656341075897, -0.009735765866935253, -0.05483759939670563, 0.04631907492876053, 0.031873125582933426, 0.0014280816540122032, -0.03997102379798889, 0.05086725577712059, -0.06781334429979324, -0.09225709736347198, 0.07382495701313019, -0.1860627681016922, -0.16039180755615234, -0.0062262630090117455, 0.10418093949556351, 0.0003449959622230381, 0.05439579486846924, -0.028398221358656883, 0.0059807319194078445, 0.07454386353492737, -0.02410769648849964, -0.08210506290197372, -0.0816088318824768, 0.09706878662109375, -0.09534770250320435, 0.1903756558895111, -0.038341719657182693, 0.07896971702575684, 0.12391943484544754, 0.0718766376376152, -0.08305420726537704, 0.05411684885621071, 0.03275473043322563, -0.07902685552835464, 0.03552934154868126, 0.08687062561511993, -0.024995336309075356, 0.05406798794865608, 0.023392101749777794, -0.12622854113578796, 0.018097173422574997, -0.07968153804540634, -0.03501368314027786, -0.046764954924583435, -0.05118923261761665, -0.04915216937661171, 0.1251029074192047, 0.21323595941066742, -0.025307785719633102, 0.011001919396221638, -0.0789838656783104, 0.015510743483901024, 0.05206305906176567, 0.003198214340955019, -0.08401475846767426, -0.2264130711555481, 0.013688324950635433, 0.05585003271698952, -0.02753879502415657, -0.1916183978319168, -0.09242858737707138, 0.0016467540990561247, -0.0846264511346817, -0.09678208082914352, 0.08210644870996475, 0.0613701231777668, 0.05483696237206459, -0.05450870469212532, -0.06611204147338867, -0.0898379534482956, 0.14650508761405945, -0.1508610099554062, -0.09003931283950806 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2858 - Precision: 0.3206 - Recall: 0.4721 - F1: 0.3819 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3772 | 0.0269 | 0.0326 | 0.0294 | 0.8143 | | No log | 2.0 | 60 | 0.3052 | 0.2015 | 0.3596 | 0.2583 | 0.8537 | | No log | 3.0 | 90 | 0.2937 | 0.2737 | 0.4273 | 0.3337 | 0.8722 | | No log | 4.0 | 120 | 0.2852 | 0.2728 | 0.4348 | 0.3353 | 0.8750 | | No log | 5.0 | 150 | 0.2676 | 0.2851 | 0.4474 | 0.3483 | 0.8797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45", "results": []}]}
token-classification
ali2066/twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
twitter-roberta-base-sentiment\_token\_itr0\_2e-05\_all\_01\_03\_2022-04\_19\_45 ================================================================================ This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2858 * Precision: 0.3206 * Recall: 0.4721 * F1: 0.3819 * Accuracy: 0.8762 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 49, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0948643758893013, 0.04581434652209282, -0.001630293671041727, 0.11686672270298004, 0.21261990070343018, 0.029393285512924194, 0.10317487269639969, 0.10154455155134201, -0.12134837359189987, 0.025618793442845345, 0.12055003643035889, 0.18265849351882935, -0.002852482721209526, 0.09668806940317154, -0.05567420274019241, -0.2746132016181946, -0.030390562489628792, 0.046089984476566315, -0.10410096496343613, 0.1254369616508484, 0.08378373086452484, -0.15759681165218353, 0.07496330142021179, -0.0019213224295526743, -0.2688581943511963, 0.02011888660490513, 0.034848958253860474, -0.06062149628996849, 0.14748266339302063, 0.009422088973224163, 0.17318056523799896, -0.011515225283801556, 0.10551261156797409, -0.14462892711162567, 0.012220455333590508, 0.061182960867881775, 0.022780809551477432, 0.09012746810913086, 0.06414694339036942, -0.00689596077427268, 0.09573107212781906, -0.09494950622320175, 0.06477311998605728, 0.002530347788706422, -0.12428382784128189, -0.2121906280517578, -0.07138938456773758, -0.001659552683122456, 0.05400359258055687, 0.09716690331697464, -0.003939867950975895, 0.17458990216255188, -0.10897684842348099, 0.09706144034862518, 0.2116614580154419, -0.26719531416893005, -0.08334353566169739, 0.053829923272132874, -0.008676491677761078, 0.07513760030269623, -0.12314248830080032, -0.023049691691994667, 0.057228848338127136, 0.053233493119478226, 0.12950094044208527, -0.034645430743694305, -0.1205618754029274, 0.025631871074438095, -0.15188764035701752, -0.0003206430992577225, 0.06528346240520477, 0.01630103401839733, -0.020995771512389183, -0.015461578965187073, -0.06662477552890778, -0.16127972304821014, -0.04072488471865654, -0.028570035472512245, 0.04046601057052612, -0.057102564722299576, -0.1086321622133255, 0.010900715366005898, -0.10168574750423431, -0.06268737465143204, -0.07617110759019852, 0.1817924827337265, 0.043915245682001114, 0.0182024072855711, -0.03632977232336998, 0.10821577161550522, -0.0029419248457998037, -0.12857362627983093, 0.05639190971851349, 0.023844921961426735, -0.037836723029613495, -0.07078578323125839, -0.06974578648805618, -0.10001678019762039, 0.000015330759197240695, 0.08936288207769394, -0.04386984929442406, 0.048572998493909836, 0.04093151539564133, 0.036131877452135086, -0.09057271480560303, 0.19998279213905334, -0.04960770905017853, -0.01737036556005478, 0.003946000710129738, 0.04353543370962143, -0.017194515094161034, -0.002033616416156292, -0.10797014832496643, 0.002968686632812023, 0.11983420699834824, 0.0028561982326209545, -0.07581640034914017, 0.06851780414581299, -0.03552001342177391, -0.022112315520644188, -0.0325101800262928, -0.09385998547077179, 0.047111738473176956, -0.017935607582330704, -0.09557073563337326, 0.004736271221190691, 0.007665232755243778, 0.012444913387298584, -0.009322592057287693, 0.1657855063676834, -0.10272499918937683, 0.049854785203933716, -0.1188562884926796, -0.11931601166725159, -0.0010413851123303175, -0.0773697942495346, 0.026368876919150352, -0.10167135298252106, -0.1259731501340866, -0.020056044682860374, 0.05659870430827141, -0.03570985794067383, -0.03762304037809372, -0.040279436856508255, -0.07406239956617355, 0.006099210120737553, -0.011066229082643986, 0.17041580379009247, -0.046203065663576126, 0.11528220772743225, 0.0503886453807354, 0.07258568704128265, -0.04292316734790802, 0.04914867505431175, -0.09458951652050018, -0.0014114177320152521, -0.20950093865394592, 0.039552200585603714, -0.05580097436904907, 0.08305526524782181, -0.07231532782316208, -0.11584538966417313, 0.010331738740205765, -0.005505256354808807, 0.09144242107868195, 0.07726765424013138, -0.1561690866947174, -0.08288555592298508, 0.15163101255893707, -0.055827055126428604, -0.07664741575717926, 0.11664056777954102, -0.07318096607923508, 0.03337736427783966, 0.07516386359930038, 0.15124574303627014, 0.0637160912156105, -0.07893093675374985, 0.02369588427245617, -0.029794733971357346, 0.03850612789392471, -0.0684489980340004, 0.03496313467621803, 0.025337429717183113, -0.007015915121883154, 0.03206251934170723, -0.016221847385168076, 0.07436635345220566, -0.11874024569988251, -0.08571802079677582, -0.040072884410619736, -0.10980819910764694, 0.05741502717137337, 0.08821354806423187, 0.10524823516607285, -0.09596681594848633, -0.07011483609676361, 0.10072591155767441, 0.06225096806883812, -0.04718197137117386, 0.015947561711072922, -0.05344301462173462, 0.0592205636203289, -0.07664112001657486, -0.03380771726369858, -0.2070063352584839, -0.041566718369722366, 0.0023472614120692015, 0.03729076683521271, 0.03594337776303291, 0.03737068921327591, 0.08729536086320877, 0.06326307356357574, -0.06267210096120834, -0.0038810751866549253, -0.016317512840032578, -0.007077397778630257, -0.15147079527378082, -0.1926833689212799, -0.02548353746533394, -0.019833121448755264, 0.08833871781826019, -0.20405681431293488, 0.01946154609322548, -0.04215741157531738, 0.09449215233325958, 0.01740393601357937, -0.009009250439703465, -0.05566170811653137, 0.1071028932929039, -0.022996487095952034, -0.048820849508047104, 0.0666293352842331, -0.014804983511567116, -0.06345962733030319, -0.0806574821472168, -0.10107271373271942, 0.18697227537631989, 0.1388881504535675, -0.15068034827709198, -0.10800860822200775, 0.015283594839274883, -0.06123432144522667, -0.02244204469025135, -0.05723806470632553, 0.05593469366431236, 0.1797017604112625, -0.015547075308859348, 0.15162670612335205, -0.053179461508989334, -0.047303229570388794, 0.02053520269691944, -0.03345615416765213, 0.04279784858226776, 0.1074448749423027, 0.13522671163082123, -0.08562581241130829, 0.1357564479112625, 0.12339135259389877, -0.13153524696826935, 0.137314110994339, -0.02540581300854683, -0.0781324952840805, -0.018876761198043823, -0.030728433281183243, 0.007451851852238178, 0.10681284219026566, -0.1061854138970375, -0.019137538969516754, 0.007290733512490988, 0.020144181326031685, 0.02606985904276371, -0.2311961054801941, -0.046707697212696075, 0.024248791858553886, -0.0031531129498034716, 0.018734166398644447, -0.019333485513925552, 0.02541189268231392, 0.1187889501452446, 0.002474432811141014, -0.07763870060443878, 0.024382684379816055, 0.008838987909257412, -0.06421761959791183, 0.2139994502067566, -0.06969884783029556, -0.1136295422911644, -0.10220303386449814, -0.07550517469644547, -0.04245505854487419, 0.013537119142711163, 0.031110700219869614, -0.11973733454942703, -0.02128857560455799, -0.021783575415611267, 0.03234745189547539, 0.0031262512784451246, 0.06336375325918198, -0.005282337311655283, 0.002983235055580735, 0.07169783115386963, -0.09881510585546494, -0.000326587789459154, -0.07578474283218384, -0.07250203937292099, 0.05814047530293465, 0.06275839358568192, 0.1205090582370758, 0.169474795460701, -0.04752881079912186, 0.005159624852240086, -0.023884424939751625, 0.2374337762594223, -0.07452915608882904, -0.03991229832172394, 0.09788655489683151, -0.019902434200048447, 0.04950111359357834, 0.10445913672447205, 0.08315841853618622, -0.0934228003025055, 0.015603112056851387, 0.04642453417181969, -0.043512750416994095, -0.2015766054391861, -0.03840094804763794, -0.05178138613700867, -0.048346664756536484, 0.09224815666675568, 0.021334374323487282, 0.039875391870737076, 0.0788189098238945, 0.06674309819936752, 0.0971815437078476, -0.07474236935377121, 0.051097724586725235, 0.0877576693892479, 0.05395406484603882, 0.13299857079982758, -0.04103801026940346, -0.10523229092359543, 0.021539490669965744, -0.02402377314865589, 0.23008453845977783, -0.003923655021935701, 0.07157545536756516, 0.03850210830569267, 0.19328561425209045, 0.01065826416015625, 0.08674764633178711, 0.004011486656963825, -0.06679777801036835, 0.00016818662697914988, -0.028634563088417053, -0.036542512476444244, 0.011539367027580738, -0.025145897641777992, 0.054014891386032104, -0.11130587756633759, -0.010507493279874325, 0.05711068585515022, 0.2310478538274765, 0.02472015842795372, -0.322691947221756, -0.07367837429046631, -0.009978468529880047, -0.03622289001941681, -0.012980668805539608, 0.0074546984396874905, 0.1076570674777031, -0.0988098531961441, 0.01220608875155449, -0.0829499214887619, 0.08743161708116531, -0.04227037727832794, 0.036833662539720535, 0.06782909482717514, 0.12572380900382996, -0.004566233139485121, 0.06409724801778793, -0.30529680848121643, 0.27295994758605957, 0.009592893533408642, 0.08034022897481918, -0.0760527104139328, -0.007151909172534943, 0.0364086739718914, 0.03666793927550316, 0.03265470266342163, -0.019934799522161484, -0.043439559638500214, -0.22490046918392181, -0.03014565259218216, 0.028867488726973534, 0.12148915231227875, -0.00808426458388567, 0.10367205739021301, -0.024588488042354584, -0.00010941336222458631, 0.08034437149763107, -0.045694828033447266, -0.04500705003738403, -0.07406040281057358, -0.027313847094774246, 0.00974243227392435, -0.07506455481052399, -0.048503417521715164, -0.12055011838674545, -0.1336289495229721, 0.15029895305633545, 0.012040955014526844, -0.016020609065890312, -0.12779182195663452, 0.12549389898777008, 0.08058901131153107, -0.08064548671245575, 0.044248372316360474, 0.012061342597007751, 0.055072344839572906, 0.03229621797800064, -0.06856683641672134, 0.11520359665155411, -0.05854954570531845, -0.1527584195137024, -0.06388039141893387, 0.08023566752672195, 0.04244997724890709, 0.06549736112356186, -0.022133201360702515, 0.022729074582457542, -0.024138592183589935, -0.09001503884792328, 0.03952024132013321, -0.03830036148428917, 0.0644330233335495, 0.02956113964319229, -0.05086758732795715, -0.005502054467797279, -0.05658023804426193, -0.010956823825836182, 0.18672387301921844, 0.2200131118297577, -0.09739802777767181, -0.0162198469042778, 0.025655262172222137, -0.059498656541109085, -0.19856862723827362, 0.09632505476474762, 0.08565674722194672, 0.007697532884776592, 0.046168211847543716, -0.16232961416244507, 0.1539815068244934, 0.099558524787426, -0.0014670685632154346, 0.10654739290475845, -0.3051668703556061, -0.12826897203922272, 0.10506083816289902, 0.17202512919902802, 0.13560201227664948, -0.13683485984802246, -0.007695924956351519, -0.009862217120826244, -0.09692876785993576, 0.10411307215690613, -0.06699183583259583, 0.12009675800800323, -0.0194843802601099, 0.10906043648719788, 0.013904480263590813, -0.07120979577302933, 0.09434845298528671, 0.006334394216537476, 0.11565837264060974, -0.0641108900308609, -0.0599924772977829, 0.04327516257762909, -0.02513393945991993, -0.012603556737303734, -0.02429954521358013, 0.01863659918308258, -0.06655554473400116, -0.020380061119794846, -0.09729310125112534, 0.04249975457787514, -0.022845672443509102, -0.07215605676174164, -0.03798982873558998, 0.034486591815948486, 0.0347672663629055, -0.025408290326595306, 0.11631406843662262, 0.020474771037697792, 0.17357058823108673, 0.08708459883928299, 0.06479399651288986, -0.04912528023123741, -0.047987163066864014, 0.0031172367744147778, -0.010042194277048111, 0.06336687505245209, -0.12954935431480408, 0.021299181506037712, 0.1548917442560196, 0.02259223349392414, 0.11389923095703125, 0.09221676737070084, -0.019381247460842133, 0.016354786232113838, 0.07670716196298599, -0.16417500376701355, -0.06515072286128998, 0.003931096754968166, -0.08489454537630081, -0.09275737404823303, 0.052891772240400314, 0.08091950416564941, -0.0745406523346901, -0.01143818162381649, -0.008374009281396866, -0.02357483096420765, -0.06725141406059265, 0.22621916234493256, 0.08041004836559296, 0.04312139004468918, -0.0999101847410202, 0.057771891355514526, 0.06371386349201202, -0.08609388023614883, -0.004832268226891756, 0.08025909215211868, -0.07662060111761093, -0.020290790125727654, 0.11775277554988861, 0.20120371878147125, -0.07671817392110825, -0.012768716551363468, -0.1491883248090744, -0.10546629130840302, 0.06394967436790466, 0.18146945536136627, 0.11174897849559784, -0.005746394395828247, -0.05898333713412285, 0.03549402207136154, -0.15716321766376495, 0.07804688811302185, 0.04985138773918152, 0.08610734343528748, -0.15088306367397308, 0.20125648379325867, -0.0008145252359099686, 0.044585175812244415, -0.03423246741294861, 0.032826900482177734, -0.11945797502994537, 0.021768270060420036, -0.11086944490671158, -0.05751108005642891, -0.0070248995907604694, -0.006887249648571014, -0.0017724940553307533, -0.07418118417263031, -0.059812262654304504, 0.005638316739350557, -0.12948912382125854, -0.015566032379865646, 0.046069059520959854, 0.016512660309672356, -0.1068277582526207, -0.04147090017795563, 0.02092311903834343, -0.047368936240673065, 0.0480099581182003, 0.0498148575425148, 0.023248901590704918, 0.07366267591714859, -0.14372731745243073, -0.015195529907941818, 0.07291853427886963, -0.005608049686998129, 0.09769507497549057, -0.05470888689160347, -0.0005538896075449884, -0.010496788658201694, 0.11068644374608994, 0.024043062701821327, 0.08016267418861389, -0.13879990577697754, 0.008863130584359169, -0.03443152457475662, -0.09479279071092606, -0.06926314532756805, 0.02087808959186077, 0.0775085985660553, 0.01358357910066843, 0.18310385942459106, -0.08565045148134232, 0.05392558500170708, -0.2103486806154251, -0.012335194274783134, -0.019992126151919365, -0.11216119676828384, -0.10019932687282562, -0.055610138922929764, 0.0748644471168518, -0.052375003695487976, 0.11737731844186783, 0.04977351427078247, 0.064247265458107, 0.03170337900519371, -0.02435336634516716, 0.005201812833547592, 0.03507564589381218, 0.19384288787841797, 0.0445544458925724, -0.04285910725593567, 0.05763338878750801, 0.08178278058767319, 0.10580673813819885, 0.11292116343975067, 0.21202906966209412, 0.1439947634935379, -0.02532072179019451, 0.0831497460603714, 0.0295761339366436, -0.054273273795843124, -0.16208545863628387, 0.02384331077337265, -0.07622946798801422, 0.08083697408437729, -0.033068813383579254, 0.19470880925655365, 0.06325560063123703, -0.15578582882881165, 0.04556700587272644, -0.06432455778121948, -0.10116644948720932, -0.09978976845741272, -0.01707560382783413, -0.08219102770090103, -0.1386982798576355, 0.015715889632701874, -0.10060658305883408, 0.012696845456957817, 0.12409891933202744, 0.013584802858531475, -0.024686595425009727, 0.1988857537508011, 0.03971971571445465, 0.042158354073762894, 0.0560331866145134, 0.012747431173920631, -0.01824902556836605, -0.09046297520399094, -0.05972641706466675, -0.047912709414958954, -0.014301790855824947, 0.033574461936950684, -0.07752802222967148, -0.09452049434185028, 0.03602764010429382, -0.010265081189572811, -0.10168483108282089, 0.02344057895243168, 0.02420823834836483, 0.06851383298635483, 0.02411331795156002, -0.006386794149875641, 0.017144443467259407, -0.03837822750210762, 0.22251245379447937, -0.08971256017684937, -0.07508094608783722, -0.10328809171915054, 0.27766153216362, 0.035309549421072006, 0.005398862529546022, 0.01875901035964489, -0.0693800076842308, 0.01019220519810915, 0.24764244258403778, 0.1949744075536728, -0.1108095571398735, -0.005140852648764849, 0.0034067535307258368, -0.017039380967617035, -0.0369071364402771, 0.13558796048164368, 0.12677976489067078, 0.05373919755220413, -0.1120881661772728, -0.04366685822606087, -0.05857709050178528, -0.013856849633157253, -0.036774590611457825, 0.04978007823228836, 0.05895340070128441, 0.021156257018446922, -0.06064862385392189, 0.05809765309095383, -0.0711965411901474, -0.11137676984071732, 0.08470019698143005, -0.21013998985290527, -0.1719648689031601, -0.011832508258521557, 0.10823098570108414, -0.013186563737690449, 0.07196928560733795, -0.030912313610315323, -0.002855669939890504, 0.03767279535531998, -0.024354422464966774, -0.07221914082765579, -0.09673845022916794, 0.09894837439060211, -0.10468140989542007, 0.17761120200157166, -0.04928198829293251, 0.06770119816064835, 0.12587232887744904, 0.061686377972364426, -0.06134488061070442, 0.04757951200008392, 0.04550354182720184, -0.11256099492311478, 0.022502778097987175, 0.1296653002500534, -0.030518945306539536, 0.05770569667220116, 0.03278255835175514, -0.13991902768611908, 0.0329594649374485, -0.10627151280641556, -0.031079551205039024, -0.04404055327177048, -0.04851794242858887, -0.053718794137239456, 0.12481997162103653, 0.2340480089187622, -0.0068182614631950855, 0.03247760236263275, -0.08736881613731384, 0.009014744311571121, 0.05398697033524513, 0.053898029029369354, -0.10539843142032623, -0.2563309073448181, 0.008755529299378395, 0.07601438462734222, -0.03989158198237419, -0.21808438003063202, -0.09259103238582611, 0.008729842491447926, -0.07869910448789597, -0.08929599821567535, 0.08910216391086578, 0.07688698172569275, 0.06154398247599602, -0.05100591480731964, -0.103232242166996, -0.08358746021986008, 0.15338730812072754, -0.15332265198230743, -0.08302705734968185 ]