sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2572
- Precision: 0.3363
- Recall: 0.5110
- F1: 0.4057
- Accuracy: 0.8931
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3976 | 0.1405 | 0.3058 | 0.1925 | 0.7921 |
| No log | 2.0 | 60 | 0.3511 | 0.2360 | 0.4038 | 0.2979 | 0.8260 |
| No log | 3.0 | 90 | 0.3595 | 0.1863 | 0.3827 | 0.2506 | 0.8211 |
| No log | 4.0 | 120 | 0.3591 | 0.2144 | 0.4288 | 0.2859 | 0.8299 |
| No log | 5.0 | 150 | 0.3605 | 0.1989 | 0.4212 | 0.2702 | 0.8343 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58", "results": []}]}
|
token-classification
|
ali2066/distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert\_token\_itr0\_0.0001\_all\_01\_03\_2022-14\_30\_58
=============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2572
* Precision: 0.3363
* Recall: 0.5110
* F1: 0.4057
* Accuracy: 0.8931
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10642197728157043,
0.0806368738412857,
-0.002159995026886463,
0.12315292656421661,
0.17774748802185059,
0.01721199043095112,
0.10565958172082901,
0.1147901862859726,
-0.11614246666431427,
0.018769605085253716,
0.12385132908821106,
0.1913568377494812,
0.00020185713947284967,
0.1088767945766449,
-0.0505964495241642,
-0.2500426769256592,
-0.010119659826159477,
0.05762670561671257,
-0.0849643424153328,
0.13410170376300812,
0.0967552587389946,
-0.13992418348789215,
0.07771382480859756,
0.01313758548349142,
-0.23490504920482635,
0.010906589217483997,
0.023510020226240158,
-0.06431623548269272,
0.14749270677566528,
0.013776627369225025,
0.13761699199676514,
-0.0031708765309304,
0.08671318739652634,
-0.1615799367427826,
0.007588760461658239,
0.05438607558608055,
0.016417236998677254,
0.09199408441781998,
0.0557999424636364,
-0.0011295642470940948,
0.10259365290403366,
-0.07978707551956177,
0.05646459758281708,
0.02293376997113228,
-0.11768954247236252,
-0.2455117106437683,
-0.0874442532658577,
0.03131573647260666,
0.069396011531353,
0.09748612344264984,
0.008998113684356213,
0.144797220826149,
-0.09557713568210602,
0.09081944823265076,
0.21866708993911743,
-0.2827698588371277,
-0.06384451687335968,
0.04615394026041031,
-0.0016485546948388219,
0.0562794953584671,
-0.11142626404762268,
-0.033301737159490585,
0.055520474910736084,
0.04948902502655983,
0.14806494116783142,
-0.034286756068468094,
-0.12203375995159149,
0.016588671132922173,
-0.14632181823253632,
-0.029229892417788506,
0.12388894706964493,
0.026832403615117073,
-0.03585681691765785,
-0.03303510695695877,
-0.060998838394880295,
-0.17226259410381317,
-0.04216780886054039,
-0.018482111394405365,
0.045248646289110184,
-0.03664354234933853,
-0.06187412515282631,
0.014026419259607792,
-0.10075470060110092,
-0.07143830507993698,
-0.07708968222141266,
0.15669283270835876,
0.045696184039115906,
0.01392535399645567,
-0.024278346449136734,
0.11325793713331223,
0.01877720095217228,
-0.12561964988708496,
0.029600873589515686,
0.030875546857714653,
-0.0017427399288862944,
-0.055434320122003555,
-0.06729809939861298,
-0.0430620014667511,
0.0081871272996068,
0.1194748654961586,
-0.0564216785132885,
0.044473666697740555,
0.0415678508579731,
0.04057430103421211,
-0.10716205090284348,
0.19207040965557098,
-0.04079005867242813,
0.0018356195650994778,
0.012689490802586079,
0.03991449624300003,
0.00021044560708105564,
0.0017433579778298736,
-0.11042836308479309,
0.00009600869816495106,
0.11936084926128387,
0.016726909205317497,
-0.07968652248382568,
0.07116489112377167,
-0.05181887745857239,
-0.021251097321510315,
0.013967580161988735,
-0.09855222702026367,
0.034870851784944534,
-0.007950079627335072,
-0.08908142149448395,
-0.007421370130032301,
0.024219442158937454,
0.009799386374652386,
-0.021383505314588547,
0.1190548911690712,
-0.09199679642915726,
0.042203884571790695,
-0.10262087732553482,
-0.10129866003990173,
0.010702410712838173,
-0.07892219722270966,
0.02829621732234955,
-0.10051078349351883,
-0.14643824100494385,
-0.010631798766553402,
0.05999758839607239,
-0.020771997049450874,
-0.05546397715806961,
-0.039369847625494,
-0.07319030165672302,
0.005762515123933554,
-0.013722029514610767,
0.14116325974464417,
-0.053422197699546814,
0.10925835371017456,
0.03783286362886429,
0.06316814571619034,
-0.04815918207168579,
0.06057431921362877,
-0.10541098564863205,
0.009846143424510956,
-0.19326241314411163,
0.03507979214191437,
-0.05536804720759392,
0.07469504326581955,
-0.09502742439508438,
-0.11571957170963287,
0.026881903409957886,
-0.01673518680036068,
0.07577976584434509,
0.08488377928733826,
-0.15670564770698547,
-0.07326214015483856,
0.14203199744224548,
-0.06418576836585999,
-0.10329282283782959,
0.11025664210319519,
-0.060865066945552826,
0.04266032576560974,
0.07434357702732086,
0.14787322282791138,
0.08128497004508972,
-0.07075675576925278,
0.021088486537337303,
0.0030794155318289995,
0.038851622492074966,
-0.08364293724298477,
0.05572796240448952,
0.007534653414040804,
-0.014108555391430855,
0.03722996637225151,
-0.03022635541856289,
0.06800544261932373,
-0.09910567849874496,
-0.09595328569412231,
-0.047248270362615585,
-0.10097375512123108,
0.053415730595588684,
0.07879823446273804,
0.08821000903844833,
-0.0857333093881607,
-0.06828410923480988,
0.0953301340341568,
0.0805881917476654,
-0.05229131504893303,
0.029997434467077255,
-0.05823447182774544,
0.06670793890953064,
-0.049927856773138046,
-0.028225893154740334,
-0.19592712819576263,
-0.011387172155082226,
0.009590706788003445,
-0.015048367902636528,
0.01948690228164196,
0.016801364719867706,
0.07090839743614197,
0.06370800733566284,
-0.0530400276184082,
-0.01763346418738365,
-0.022091127932071686,
-0.0014966714661568403,
-0.14181092381477356,
-0.19069881737232208,
-0.03435736149549484,
-0.015433235093951225,
0.10534448176622391,
-0.1876228153705597,
0.033242158591747284,
-0.021412141621112823,
0.07980745285749435,
0.00033605037606321275,
-0.0080591831356287,
-0.0486212894320488,
0.09008373320102692,
-0.03299018368124962,
-0.052470188587903976,
0.07431439310312271,
0.0020016974303871393,
-0.07735317200422287,
-0.05469830706715584,
-0.07933057099580765,
0.18418990075588226,
0.13679435849189758,
-0.12457533180713654,
-0.08478862047195435,
-0.006390437949448824,
-0.06165078654885292,
-0.03359179571270943,
-0.03916654363274574,
0.055369649082422256,
0.1702347993850708,
-0.016587745398283005,
0.1541943997144699,
-0.06715813279151917,
-0.05128573253750801,
0.025324122980237007,
-0.03324294462800026,
0.03579578548669815,
0.11033322662115097,
0.1218176782131195,
-0.07472293823957443,
0.14611394703388214,
0.15135131776332855,
-0.10790013521909714,
0.10663606971502304,
-0.04979291558265686,
-0.06737012416124344,
-0.015265297144651413,
-0.017192304134368896,
-0.00029556985828094184,
0.09612281620502472,
-0.12930749356746674,
-0.00014852994354441762,
0.022662585601210594,
0.024978723376989365,
0.01687215082347393,
-0.22909264266490936,
-0.034789882600307465,
0.026999035850167274,
-0.03438306227326393,
0.00040411646477878094,
-0.014942781999707222,
0.01046334020793438,
0.1059366911649704,
0.0002113805676344782,
-0.09560658782720566,
0.046034038066864014,
0.013653857633471489,
-0.07201802730560303,
0.21730849146842957,
-0.08857396990060806,
-0.13465580344200134,
-0.12117026001214981,
-0.07987070083618164,
-0.045920345932245255,
0.008811667561531067,
0.05197679623961449,
-0.09639322757720947,
-0.026572590693831444,
-0.04320399463176727,
0.01322698313742876,
-0.0032516249921172857,
0.04857247322797775,
0.00210588495247066,
0.002365820575505495,
0.08337977528572083,
-0.10970554500818253,
-0.006200198549777269,
-0.05490412935614586,
-0.060877736657857895,
0.04409176856279373,
0.04997747391462326,
0.10359205305576324,
0.1657811999320984,
-0.030013397336006165,
0.007690906524658203,
-0.02665860950946808,
0.22984328866004944,
-0.058948129415512085,
-0.03143809363245964,
0.13477177917957306,
-0.00311281974427402,
0.057491790503263474,
0.10392285138368607,
0.08022818714380264,
-0.09000279754400253,
0.0056921509094536304,
0.03291616216301918,
-0.035943277180194855,
-0.21612362563610077,
-0.049496304243803024,
-0.05552466958761215,
-0.03592395782470703,
0.09803950041532516,
0.02965014986693859,
0.05570453405380249,
0.07505131512880325,
0.047963667660951614,
0.0931525006890297,
-0.05767332762479782,
0.05430040508508682,
0.11814349889755249,
0.05084504559636116,
0.12234245985746384,
-0.04562394320964813,
-0.07239838689565659,
0.026420261710882187,
-0.009969804435968399,
0.2303503453731537,
0.005009873304516077,
0.11171027272939682,
0.05781112238764763,
0.20679593086242676,
0.003378115128725767,
0.08969332277774811,
-0.004374974872916937,
-0.0471482127904892,
-0.005900565534830093,
-0.03785870596766472,
-0.036957889795303345,
0.009631228633224964,
-0.06461365520954132,
0.06448239088058472,
-0.11361868679523468,
-0.015138017013669014,
0.04873877763748169,
0.263700932264328,
0.023885872215032578,
-0.3319370746612549,
-0.08774808049201965,
-0.011776471510529518,
-0.03618720918893814,
-0.025594037026166916,
0.018674716353416443,
0.07578340172767639,
-0.09492015093564987,
0.019251054152846336,
-0.07525717467069626,
0.0912272110581398,
-0.0359991230070591,
0.038477689027786255,
0.08129331469535828,
0.0957411378622055,
0.014857104979455471,
0.08006548881530762,
-0.3174518644809723,
0.2644921839237213,
0.0014692615950480103,
0.07277961820363998,
-0.07542786002159119,
0.005658863577991724,
0.03372998535633087,
0.07048989087343216,
0.05428673326969147,
-0.011959199793636799,
-0.03245672956109047,
-0.21390868723392487,
-0.0485198050737381,
0.02551267296075821,
0.0831860601902008,
-0.01927117258310318,
0.08398624509572983,
-0.03170628845691681,
0.007364724297076464,
0.07818973064422607,
-0.04055079072713852,
-0.05036721006035805,
-0.08491332083940506,
-0.016001766547560692,
0.021518295630812645,
-0.0354548804461956,
-0.060849159955978394,
-0.11359904706478119,
-0.1277770847082138,
0.14754384756088257,
-0.022447790950536728,
-0.037387292832136154,
-0.11703361570835114,
0.08114976435899734,
0.08468421548604965,
-0.08336744457483292,
0.06139373406767845,
-0.0005027693114243448,
0.05503999814391136,
0.03729251027107239,
-0.07599281519651413,
0.10564571619033813,
-0.06336747109889984,
-0.15713489055633545,
-0.05512285232543945,
0.10092545300722122,
0.037563733756542206,
0.06142852082848549,
-0.012843911536037922,
0.013707328587770462,
-0.03399709612131119,
-0.0947030782699585,
0.017863892018795013,
-0.02356313355267048,
0.08217833936214447,
0.014129571616649628,
-0.055586084723472595,
0.01094060018658638,
-0.06144791841506958,
-0.025837097316980362,
0.17862646281719208,
0.22006957232952118,
-0.1032891646027565,
0.015431669540703297,
0.035652194172143936,
-0.06635039299726486,
-0.19465410709381104,
0.04545610770583153,
0.06270504742860794,
-0.0015181078342720866,
0.02879992499947548,
-0.1760801076889038,
0.145940899848938,
0.10473848134279251,
-0.013032279908657074,
0.10805955529212952,
-0.33251291513442993,
-0.12538324296474457,
0.1300402283668518,
0.1522536724805832,
0.12434671074151993,
-0.1317143738269806,
-0.01771557703614235,
-0.012731589376926422,
-0.11697752773761749,
0.09842481464147568,
-0.06379164755344391,
0.11831814050674438,
-0.03681009262800217,
0.08283697813749313,
0.0018068531062453985,
-0.06384485214948654,
0.1138698011636734,
0.028959952294826508,
0.10775374621152878,
-0.05638962239027023,
-0.035316139459609985,
0.040284063667058945,
-0.03386791795492172,
0.014614908955991268,
-0.06536146998405457,
0.034150149673223495,
-0.08356151729822159,
-0.017155537381768227,
-0.08383142948150635,
0.05412478744983673,
-0.030293958261609077,
-0.06286447495222092,
-0.04537579417228699,
0.025806138291954994,
0.04284123331308365,
-0.021486829966306686,
0.12743809819221497,
0.03928428143262863,
0.15188024938106537,
0.1145322173833847,
0.05563624948263168,
-0.06720959395170212,
-0.08156141638755798,
-0.012731019407510757,
-0.015665767714381218,
0.06767193228006363,
-0.13930295407772064,
0.03079124167561531,
0.14729072153568268,
0.023085981607437134,
0.11764563620090485,
0.08522552996873856,
-0.012942219153046608,
0.0034729144535958767,
0.060412418097257614,
-0.15940985083580017,
-0.06919152289628983,
0.0030041439458727837,
-0.058372605592012405,
-0.09763586521148682,
0.0660339742898941,
0.07713475823402405,
-0.08041878789663315,
-0.01251720730215311,
-0.004740365780889988,
-0.005059708841145039,
-0.06818174570798874,
0.2155681848526001,
0.06552042812108994,
0.04907570406794548,
-0.11003068834543228,
0.07195505499839783,
0.05874781683087349,
-0.07705859839916229,
-0.009446308016777039,
0.05999067798256874,
-0.08978907018899918,
-0.03919056057929993,
0.11357227712869644,
0.16443990170955658,
-0.07066237181425095,
-0.04069869592785835,
-0.13879062235355377,
-0.12257283926010132,
0.0834277793765068,
0.16222389042377472,
0.12415403127670288,
0.023381225764751434,
-0.06260699033737183,
0.009554402902722359,
-0.12878592312335968,
0.07857507467269897,
0.0422884039580822,
0.07590018212795258,
-0.15305843949317932,
0.17925727367401123,
0.011278838850557804,
0.05193524807691574,
-0.024209938943386078,
0.025456978008151054,
-0.09771829843521118,
0.018867628648877144,
-0.11797846853733063,
-0.034785591065883636,
-0.02562020532786846,
0.00946708396077156,
-0.0036573277320712805,
-0.061492957174777985,
-0.0507616326212883,
0.025232793763279915,
-0.12095125019550323,
-0.0171198733150959,
0.0390964075922966,
0.051427893340587616,
-0.11231425404548645,
-0.04031272232532501,
0.023162467405200005,
-0.05587002635002136,
0.05814896151423454,
0.050859708338975906,
0.016293596476316452,
0.06209540367126465,
-0.12308700382709503,
-0.0008032650221139193,
0.08018733561038971,
0.010354900732636452,
0.07302812486886978,
-0.09104878455400467,
-0.0016281697899103165,
0.005451591219753027,
0.06646733731031418,
0.017158815637230873,
0.07401449233293533,
-0.14909708499908447,
-0.015510931611061096,
-0.03759904205799103,
-0.07508689165115356,
-0.07004636526107788,
0.020335037261247635,
0.10058354586362839,
0.010895323939621449,
0.19906099140644073,
-0.07333192229270935,
0.03704462945461273,
-0.20715796947479248,
-0.003986832220107317,
-0.024124233052134514,
-0.11702682822942734,
-0.13567842543125153,
-0.06185914948582649,
0.060058481991291046,
-0.04526861384510994,
0.1305076628923416,
0.027127878740429878,
0.03971228376030922,
0.02707240730524063,
-0.018037419766187668,
0.010644347406923771,
0.025861984118819237,
0.21547840535640717,
0.037619929760694504,
-0.03236144781112671,
0.07353518158197403,
0.059199120849370956,
0.09384708851575851,
0.11018799990415573,
0.18525294959545135,
0.15621857345104218,
-0.02045270800590515,
0.08969154953956604,
0.022613534703850746,
-0.05358171835541725,
-0.17049670219421387,
0.04146922379732132,
-0.050995782017707825,
0.09168317168951035,
-0.025103582069277763,
0.21529793739318848,
0.05736444517970085,
-0.16399390995502472,
0.05295206978917122,
-0.04649275168776512,
-0.08929777145385742,
-0.10197371244430542,
-0.039358049631118774,
-0.07635226845741272,
-0.14606305956840515,
-0.0011712402338162065,
-0.09557542949914932,
0.012721898965537548,
0.119169682264328,
0.004957615863531828,
-0.02676703967154026,
0.1690824031829834,
0.03042316623032093,
0.027101023122668266,
0.047162532806396484,
0.0025262110866606236,
-0.03328021615743637,
-0.10295607149600983,
-0.06779789924621582,
-0.02331424690783024,
-0.020573804154992104,
0.03634469583630562,
-0.06381815671920776,
-0.06542767584323883,
0.038340721279382706,
-0.02201825939118862,
-0.09058184176683426,
0.019181083887815475,
0.019199350848793983,
0.062458816915750504,
0.04207158088684082,
0.0045153009705245495,
0.018917538225650787,
-0.02213028445839882,
0.2047090381383896,
-0.08072357624769211,
-0.08070977032184601,
-0.09444835036993027,
0.28655779361724854,
0.04946059733629227,
-0.009039490483701229,
0.03511008992791176,
-0.05506746470928192,
0.0010565684642642736,
0.24820195138454437,
0.17845788598060608,
-0.07736119627952576,
-0.012436122633516788,
0.0029203053563833237,
-0.017919739708304405,
-0.029839688912034035,
0.12653081119060516,
0.1432712972164154,
0.040923360735177994,
-0.1039264127612114,
-0.04480703920125961,
-0.06590892374515533,
-0.0114896884188056,
-0.051545508205890656,
0.057388078421354294,
0.0325462706387043,
0.004070464987307787,
-0.04066535085439682,
0.051140908151865005,
-0.06627732515335083,
-0.09265190362930298,
0.08060463517904282,
-0.18210844695568085,
-0.16120128333568573,
-0.013426109217107296,
0.10374443978071213,
-0.0002997753908857703,
0.054771069437265396,
-0.02546822279691696,
0.008488019928336143,
0.07227987051010132,
-0.020360063761472702,
-0.08607625961303711,
-0.09148003906011581,
0.10188344120979309,
-0.09852469712495804,
0.1950952410697937,
-0.03926479071378708,
0.0744066834449768,
0.12385247647762299,
0.0720522329211235,
-0.07893555611371994,
0.054499708116054535,
0.03719250112771988,
-0.08146428316831589,
0.03207303211092949,
0.08452323824167252,
-0.020542606711387634,
0.057006362825632095,
0.023581407964229584,
-0.11902414262294769,
0.02180391736328602,
-0.08250737935304642,
-0.04340645670890808,
-0.045692842453718185,
-0.04979778826236725,
-0.04939041659235954,
0.12236732989549637,
0.21493510901927948,
-0.024952631443738937,
0.011184592731297016,
-0.08421122282743454,
0.01154602412134409,
0.0547843761742115,
0.00580676831305027,
-0.0808432549238205,
-0.23142723739147186,
0.01644044555723667,
0.05043918266892433,
-0.030325284227728844,
-0.19333955645561218,
-0.09752756357192993,
0.005504303611814976,
-0.08358802646398544,
-0.09430815279483795,
0.07814131677150726,
0.06659179925918579,
0.05669460445642471,
-0.053308386355638504,
-0.07503464072942734,
-0.08732836693525314,
0.14917001128196716,
-0.15210561454296112,
-0.08376465737819672
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3255
- Precision: 0.1412
- Recall: 0.25
- F1: 0.1805
- Accuracy: 0.8491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4549 | 0.0228 | 0.0351 | 0.0276 | 0.7734 |
| No log | 2.0 | 60 | 0.3577 | 0.0814 | 0.1260 | 0.0989 | 0.8355 |
| No log | 3.0 | 90 | 0.3116 | 0.1534 | 0.2648 | 0.1943 | 0.8611 |
| No log | 4.0 | 120 | 0.2975 | 0.1792 | 0.2967 | 0.2234 | 0.8690 |
| No log | 5.0 | 150 | 0.2935 | 0.1873 | 0.2998 | 0.2305 | 0.8715 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33", "results": []}]}
|
token-classification
|
ali2066/distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert\_token\_itr0\_1e-05\_all\_01\_03\_2022-14\_33\_33
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3255
* Precision: 0.1412
* Recall: 0.25
* F1: 0.1805
* Accuracy: 0.8491
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-token-argumentative
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1573
- Precision: 0.3777
- Recall: 0.3919
- F1: 0.3847
- Accuracy: 0.9497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 75 | 0.3241 | 0.1109 | 0.2178 | 0.1470 | 0.8488 |
| No log | 2.0 | 150 | 0.3145 | 0.1615 | 0.2462 | 0.1950 | 0.8606 |
| No log | 3.0 | 225 | 0.3035 | 0.1913 | 0.3258 | 0.2411 | 0.8590 |
| No log | 4.0 | 300 | 0.3080 | 0.2199 | 0.3220 | 0.2613 | 0.8612 |
| No log | 5.0 | 375 | 0.3038 | 0.2209 | 0.3277 | 0.2639 | 0.8630 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned-token-argumentative", "results": []}]}
|
token-classification
|
ali2066/finetuned-token-argumentative
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned-token-argumentative
=============================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1573
* Precision: 0.3777
* Recall: 0.3919
* F1: 0.3847
* Accuracy: 0.9497
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10773668438196182,
0.07799779623746872,
-0.0019943690858781338,
0.12250668555498123,
0.18174265325069427,
0.014800473116338253,
0.10021749138832092,
0.1161719560623169,
-0.11661830544471741,
0.020499687641859055,
0.12710922956466675,
0.19055455923080444,
-0.00092306052101776,
0.12900462746620178,
-0.05536016821861267,
-0.2503369450569153,
-0.006709644570946693,
0.059796154499053955,
-0.07764703780412674,
0.13395482301712036,
0.10011111199855804,
-0.14258769154548645,
0.08224303275346756,
0.014507669024169445,
-0.2414294332265854,
0.008049133233726025,
0.019428405910730362,
-0.06771465390920639,
0.1433870494365692,
0.01450139656662941,
0.13501311838626862,
-0.004984709434211254,
0.08384381234645844,
-0.15403303503990173,
0.004779896233230829,
0.05112559348344803,
0.019104279577732086,
0.09162133187055588,
0.05434626340866089,
0.001772460644133389,
0.10009153932332993,
-0.08277644217014313,
0.052145637571811676,
0.015998704358935356,
-0.11650490760803223,
-0.2380663901567459,
-0.08712788671255112,
0.0330808088183403,
0.07160554081201553,
0.09935654699802399,
0.006889511365443468,
0.1462526023387909,
-0.09328772127628326,
0.09289874881505966,
0.2261466234922409,
-0.28299224376678467,
-0.0627145916223526,
0.03850260376930237,
-0.002517047803848982,
0.045767106115818024,
-0.10816483199596405,
-0.03847392648458481,
0.06118128448724747,
0.04843403398990631,
0.14707133173942566,
-0.036229606717824936,
-0.1221783310174942,
0.01388626080006361,
-0.14715707302093506,
-0.03276181221008301,
0.12433423101902008,
0.027320142835378647,
-0.03484160453081131,
-0.03569086268544197,
-0.05837932974100113,
-0.17001545429229736,
-0.04079248011112213,
-0.0126109030097723,
0.04454537108540535,
-0.04151887819170952,
-0.06565636396408081,
0.02074160799384117,
-0.10241976380348206,
-0.06334447860717773,
-0.0841624066233635,
0.14950188994407654,
0.04480374604463577,
0.013483245857059956,
-0.027436038479208946,
0.10776633769273758,
0.011399665847420692,
-0.12595048546791077,
0.025553442537784576,
0.029614215716719627,
0.0006352672353386879,
-0.06028275936841965,
-0.06964186578989029,
-0.037460196763277054,
0.0031536826863884926,
0.12292677909135818,
-0.06683196127414703,
0.04013791307806969,
0.043429065495729446,
0.040399324148893356,
-0.09881772845983505,
0.19935189187526703,
-0.04309636726975441,
0.011051039211452007,
0.013506598770618439,
0.03284064680337906,
-0.0018694031750783324,
0.005568745080381632,
-0.11134355515241623,
-0.002667047083377838,
0.12648174166679382,
0.014837236143648624,
-0.08011084794998169,
0.07470644265413284,
-0.050708457827568054,
-0.02534446120262146,
0.02414027601480484,
-0.09865739196538925,
0.03631344437599182,
-0.013285697437822819,
-0.08832219243049622,
-0.007252837065607309,
0.02224590629339218,
0.009285880252718925,
-0.023098429664969444,
0.12765023112297058,
-0.09138010442256927,
0.04141013324260712,
-0.10202695429325104,
-0.10074637830257416,
0.013553986325860023,
-0.0854516550898552,
0.035248227417469025,
-0.10698027163743973,
-0.15384609997272491,
-0.01163974404335022,
0.05459373816847801,
-0.017461638897657394,
-0.059685178101062775,
-0.03697336092591286,
-0.07482916861772537,
-0.0008173894020728767,
-0.019269738346338272,
0.14215487241744995,
-0.05389520525932312,
0.10869479924440384,
0.03989556431770325,
0.06612636148929596,
-0.045122455805540085,
0.059900250285863876,
-0.10727264732122421,
0.009182951413094997,
-0.20363973081111908,
0.03377639129757881,
-0.04942423850297928,
0.08477148413658142,
-0.09542735666036606,
-0.12078239023685455,
0.031129317358136177,
-0.014682508073747158,
0.07461152970790863,
0.0800381600856781,
-0.14970603585243225,
-0.07152239978313446,
0.14450903236865997,
-0.06547054648399353,
-0.10887187719345093,
0.11069785058498383,
-0.06066761910915375,
0.04399184510111809,
0.07314391434192657,
0.1515636295080185,
0.07443515211343765,
-0.07525071501731873,
0.016211651265621185,
-0.004813562612980604,
0.03751368075609207,
-0.0879639983177185,
0.05366860330104828,
0.014415964484214783,
-0.010951600968837738,
0.038462236523628235,
-0.0297110453248024,
0.0702952891588211,
-0.10144132375717163,
-0.08954400569200516,
-0.046174630522727966,
-0.10365036875009537,
0.048762839287519455,
0.07705550640821457,
0.0944593995809555,
-0.08846153318881989,
-0.062416937202215195,
0.09412726014852524,
0.08124633133411407,
-0.052688803523778915,
0.028438188135623932,
-0.062853142619133,
0.06852246075868607,
-0.05047931149601936,
-0.028791720047593117,
-0.19720391929149628,
-0.0006065854104235768,
0.009488102979958057,
-0.008877402171492577,
0.014215271919965744,
0.009820308536291122,
0.06734869629144669,
0.055594973266124725,
-0.049918822944164276,
-0.015662821009755135,
-0.009842433035373688,
-0.0014313324354588985,
-0.14069119095802307,
-0.18108633160591125,
-0.031967643648386,
-0.01648022048175335,
0.10282907634973526,
-0.18693123757839203,
0.03063029982149601,
-0.023806506767868996,
0.0839913934469223,
0.0028714509680867195,
-0.003963577561080456,
-0.047563087195158005,
0.09130341559648514,
-0.03206179663538933,
-0.05228807032108307,
0.07113996148109436,
0.00664856843650341,
-0.07208165526390076,
-0.05189811810851097,
-0.07986591756343842,
0.18630003929138184,
0.1409476101398468,
-0.1264318972826004,
-0.08771906048059464,
-0.0037998242769390345,
-0.061982832849025726,
-0.03255529701709747,
-0.04069280996918678,
0.05526566877961159,
0.1720617264509201,
-0.01891070045530796,
0.1554354876279831,
-0.06875139474868774,
-0.05587819963693619,
0.028477614745497704,
-0.03417380899190903,
0.03307304158806801,
0.11051290482282639,
0.11856880784034729,
-0.08689327538013458,
0.1454504132270813,
0.15436957776546478,
-0.10601241141557693,
0.10381358116865158,
-0.051811181008815765,
-0.06924853473901749,
-0.013027174398303032,
-0.019171226769685745,
-0.0005334792076610029,
0.09039845317602158,
-0.11990757286548615,
-0.0032400116324424744,
0.023948391899466515,
0.026211891323328018,
0.018856311216950417,
-0.22473669052124023,
-0.03316609933972359,
0.026385236531496048,
-0.02840239554643631,
-0.0026025748811662197,
-0.014009606093168259,
0.014969393610954285,
0.10250017046928406,
0.0029792680870741606,
-0.09422013908624649,
0.047389332205057144,
0.016477519646286964,
-0.07454060018062592,
0.2171708345413208,
-0.09011487662792206,
-0.1438896805047989,
-0.1149149090051651,
-0.08241482824087143,
-0.03965530917048454,
0.010260508395731449,
0.05962543189525604,
-0.09027063101530075,
-0.030275942757725716,
-0.0437566302716732,
0.010006171651184559,
-0.0034666967112571,
0.04933999106287956,
0.01367360819131136,
0.002428633626550436,
0.08037392050027847,
-0.10386406630277634,
-0.007420698180794716,
-0.05436992645263672,
-0.05988670140504837,
0.05150288715958595,
0.04012351483106613,
0.10607545077800751,
0.15802621841430664,
-0.035076674073934555,
0.008067264221608639,
-0.03211088851094246,
0.23801937699317932,
-0.05690300464630127,
-0.03607277199625969,
0.13753174245357513,
-0.0005488931201398373,
0.05526875704526901,
0.10561719536781311,
0.07074777036905289,
-0.08937770873308182,
0.0070543717592954636,
0.024775415658950806,
-0.03427910804748535,
-0.21347381174564362,
-0.05207416042685509,
-0.053588006645441055,
-0.033234916627407074,
0.10416308045387268,
0.02748533897101879,
0.05317685753107071,
0.07654234766960144,
0.04828892648220062,
0.09958919882774353,
-0.057452086359262466,
0.05930963158607483,
0.12431292980909348,
0.05191225931048393,
0.12323275208473206,
-0.04438846930861473,
-0.07438788563013077,
0.02976469323039055,
-0.011111367493867874,
0.23406149446964264,
-0.0010351777309551835,
0.10951933264732361,
0.05332140624523163,
0.19818218052387238,
0.005049480590969324,
0.09327036142349243,
-0.005812007933855057,
-0.04457904025912285,
-0.009106936864554882,
-0.03317122906446457,
-0.0413176529109478,
0.010121277533471584,
-0.06483841687440872,
0.05401104316115379,
-0.11949758976697922,
-0.011756747029721737,
0.05028266832232475,
0.26283708214759827,
0.022024329751729965,
-0.3360409736633301,
-0.09249301254749298,
-0.011643213219940662,
-0.03609831631183624,
-0.028574302792549133,
0.021530210971832275,
0.0732513815164566,
-0.09578052163124084,
0.024177299812436104,
-0.07301881164312363,
0.09365169703960419,
-0.0393260195851326,
0.04376581311225891,
0.07874749600887299,
0.08986295014619827,
0.018289608880877495,
0.07994744926691055,
-0.32165786623954773,
0.2684958279132843,
0.0005250233807601035,
0.07394051551818848,
-0.07805868238210678,
0.0007899928605183959,
0.02881278656423092,
0.06833403557538986,
0.05723009258508682,
-0.01113054621964693,
-0.05114264413714409,
-0.2135203778743744,
-0.04613962396979332,
0.024897495284676552,
0.07757073640823364,
-0.011273575015366077,
0.08438252657651901,
-0.029722731560468674,
0.005383867304772139,
0.07384852319955826,
-0.04487279802560806,
-0.04384467378258705,
-0.08222143352031708,
-0.014257394708693027,
0.02504100650548935,
-0.03631937503814697,
-0.059199556708335876,
-0.11173930764198303,
-0.13425903022289276,
0.14970636367797852,
-0.01264446135610342,
-0.03899116441607475,
-0.1176968365907669,
0.08380327373743057,
0.08875130116939545,
-0.08705876022577286,
0.0623580664396286,
0.003528319066390395,
0.060624849051237106,
0.03831348940730095,
-0.07684637606143951,
0.10796120017766953,
-0.06434907019138336,
-0.15662628412246704,
-0.052269648760557175,
0.09093125909566879,
0.03244980424642563,
0.058541592210531235,
-0.009128068573772907,
0.014541554264724255,
-0.04065811261534691,
-0.09309510886669159,
0.014267063699662685,
-0.018689440563321114,
0.0881430134177208,
0.015564057976007462,
-0.05564136803150177,
0.009862753562629223,
-0.060846444219350815,
-0.026743976399302483,
0.17904137074947357,
0.2181946486234665,
-0.10398806631565094,
0.011226678267121315,
0.03526739031076431,
-0.06298578530550003,
-0.1938479095697403,
0.04262940585613251,
0.06646429002285004,
0.0008949427283369005,
0.025433292612433434,
-0.16878613829612732,
0.14506196975708008,
0.10550759732723236,
-0.01451737992465496,
0.10226728767156601,
-0.3162599503993988,
-0.12623681128025055,
0.13184283673763275,
0.146680548787117,
0.1315118819475174,
-0.12973295152187347,
-0.013457286171615124,
-0.015031528659164906,
-0.12668687105178833,
0.09490158408880234,
-0.05629969388246536,
0.11452603340148926,
-0.03626143932342529,
0.09320920705795288,
0.002776817651465535,
-0.0626971572637558,
0.10759124159812927,
0.03618989884853363,
0.10393473505973816,
-0.057132788002491,
-0.038880474865436554,
0.029878729954361916,
-0.036996033042669296,
0.01697373203933239,
-0.0533483512699604,
0.03857411816716194,
-0.09000856429338455,
-0.01629650592803955,
-0.0816541388630867,
0.04933443292975426,
-0.025789089500904083,
-0.05807606130838394,
-0.043641820549964905,
0.026951661333441734,
0.04635335132479668,
-0.01818273589015007,
0.1274443417787552,
0.04025253280997276,
0.1435563564300537,
0.11179451644420624,
0.05434269458055496,
-0.07816654443740845,
-0.072258360683918,
-0.013063697144389153,
-0.016701390966773033,
0.0664544627070427,
-0.13401195406913757,
0.03446252644062042,
0.15080386400222778,
0.022300025448203087,
0.11671920120716095,
0.0853772908449173,
-0.011668629013001919,
0.00336927711032331,
0.06122386455535889,
-0.1633501648902893,
-0.05747343599796295,
0.0026202797889709473,
-0.0522882379591465,
-0.09408567100763321,
0.06612014770507812,
0.07893354445695877,
-0.07642733305692673,
-0.016477853059768677,
-0.008783240802586079,
-0.0033258763141930103,
-0.06315773725509644,
0.2114851474761963,
0.061663590371608734,
0.04806046187877655,
-0.11257091909646988,
0.06495198607444763,
0.06238666921854019,
-0.07751958817243576,
-0.007277389522641897,
0.05998164787888527,
-0.09162898361682892,
-0.04075215756893158,
0.10907168686389923,
0.1612458974123001,
-0.08047827333211899,
-0.043841421604156494,
-0.1341785490512848,
-0.12294645607471466,
0.08794526755809784,
0.1623106300830841,
0.12624940276145935,
0.021138450130820274,
-0.055036090314388275,
0.0062815723940730095,
-0.13407547771930695,
0.07440529763698578,
0.04722639173269272,
0.08032224327325821,
-0.15573835372924805,
0.1718715876340866,
0.004574262071400881,
0.05749090015888214,
-0.024745004251599312,
0.03119945339858532,
-0.09963200241327286,
0.018968045711517334,
-0.11145712435245514,
-0.02683742716908455,
-0.02999192848801613,
0.00795822311192751,
0.00019980274373665452,
-0.060522519052028656,
-0.04965748265385628,
0.023462627083063126,
-0.12150150537490845,
-0.013776947744190693,
0.03685235232114792,
0.050994377583265305,
-0.11065716296434402,
-0.04301391541957855,
0.021627722308039665,
-0.056174807250499725,
0.06238776072859764,
0.051684923470020294,
0.014937429688870907,
0.057991694658994675,
-0.12214489281177521,
-0.010519014671444893,
0.08397502452135086,
0.008717012591660023,
0.0786859542131424,
-0.09543965756893158,
-0.0002313766599399969,
0.014015069231390953,
0.06563317775726318,
0.01672324910759926,
0.06634431332349777,
-0.15008413791656494,
-0.013540226966142654,
-0.031261932104825974,
-0.07185987383127213,
-0.071070596575737,
0.016442980617284775,
0.09629705548286438,
0.009697923436760902,
0.1955089420080185,
-0.07242245972156525,
0.03434354439377785,
-0.20070084929466248,
-0.0050812214612960815,
-0.02548137493431568,
-0.11965122073888779,
-0.13038162887096405,
-0.0562359057366848,
0.061511293053627014,
-0.04420316219329834,
0.13621786236763,
0.02876446582376957,
0.04375428333878517,
0.02844066359102726,
-0.025212077423930168,
0.002933576935902238,
0.02831798419356346,
0.2157655954360962,
0.030910566449165344,
-0.03386610746383667,
0.07327628880739212,
0.05956922844052315,
0.09441977739334106,
0.11482931673526764,
0.18489448726177216,
0.15362797677516937,
-0.021392738446593285,
0.08839598298072815,
0.01654950901865959,
-0.047665953636169434,
-0.1711440086364746,
0.035915084183216095,
-0.05572369322180748,
0.09451257437467575,
-0.020603632554411888,
0.20701733231544495,
0.05772880092263222,
-0.16704615950584412,
0.04817844554781914,
-0.0523119792342186,
-0.08675950020551682,
-0.0977662056684494,
-0.03451205790042877,
-0.08101487159729004,
-0.1437961906194687,
0.0015270860167220235,
-0.10140654444694519,
0.011884964071214199,
0.11429881304502487,
0.006500130984932184,
-0.027682263404130936,
0.15910211205482483,
0.027133312076330185,
0.031321894377470016,
0.050645098090171814,
0.0011273619020357728,
-0.030068589374423027,
-0.09960179030895233,
-0.0634102150797844,
-0.02343621663749218,
-0.013637538999319077,
0.039984237402677536,
-0.06404637545347214,
-0.06384232640266418,
0.03798366338014603,
-0.021077221259474754,
-0.08792327344417572,
0.017171507701277733,
0.02332347072660923,
0.06098063662648201,
0.04137074574828148,
0.0025832399260252714,
0.019871186465024948,
-0.020682817324995995,
0.20397715270519257,
-0.07989313453435898,
-0.08382869511842728,
-0.09979995340108871,
0.28678593039512634,
0.05394703894853592,
-0.010545304976403713,
0.03599926456809044,
-0.05589047446846962,
-0.0021847570315003395,
0.25719454884529114,
0.1776779145002365,
-0.07471127063035965,
-0.012450242415070534,
0.00009263537504011765,
-0.01666703261435032,
-0.02575591206550598,
0.12283337116241455,
0.14787892997264862,
0.045776478946208954,
-0.10169849544763565,
-0.04802558943629265,
-0.06391215324401855,
-0.009671705774962902,
-0.05655831843614578,
0.04805377870798111,
0.032166097313165665,
0.0020316161680966616,
-0.03976399824023247,
0.04970340430736542,
-0.06755624711513519,
-0.09308473020792007,
0.0716148391366005,
-0.1872633397579193,
-0.15932515263557434,
-0.007569650653749704,
0.10483415424823761,
0.0014290843391790986,
0.05579664185643196,
-0.028896179050207138,
0.0051842681132256985,
0.07190446555614471,
-0.02460269071161747,
-0.08232317864894867,
-0.08147631585597992,
0.09660171717405319,
-0.09363266080617905,
0.19242238998413086,
-0.038619257509708405,
0.07805164158344269,
0.12386422604322433,
0.0717543289065361,
-0.0841449424624443,
0.052285563200712204,
0.032828398048877716,
-0.07841610163450241,
0.03725052997469902,
0.08784297108650208,
-0.02479017898440361,
0.049727700650691986,
0.023932507261633873,
-0.1284312605857849,
0.01833396591246128,
-0.08112061023712158,
-0.03393596410751343,
-0.04548482969403267,
-0.05014102905988693,
-0.04872645437717438,
0.12364733964204788,
0.2130483090877533,
-0.025836307555437088,
0.010310606099665165,
-0.0803104117512703,
0.015077426098287106,
0.051322091370821,
0.00392180448397994,
-0.08205073326826096,
-0.2268492430448532,
0.013808323070406914,
0.05757368728518486,
-0.028052637353539467,
-0.19029569625854492,
-0.09040527790784836,
0.0011879241792485118,
-0.08520545810461044,
-0.0965476855635643,
0.08253896236419678,
0.06227514520287514,
0.054487548768520355,
-0.05510344356298447,
-0.06479091197252274,
-0.08978940546512604,
0.14640897512435913,
-0.14923152327537537,
-0.09018415212631226
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-17\_55\_43
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7600
* Accuracy: 0.8144
* F1: 0.8788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4064
- Accuracy: 0.8289
- F1: 0.8901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4163 | 0.8085 | 0.8780 |
| No log | 2.0 | 390 | 0.4098 | 0.8268 | 0.8878 |
| 0.312 | 3.0 | 585 | 0.5892 | 0.8244 | 0.8861 |
| 0.312 | 4.0 | 780 | 0.7580 | 0.8232 | 0.8845 |
| 0.312 | 5.0 | 975 | 0.9028 | 0.8183 | 0.8824 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-19\_11\_17
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4064
* Accuracy: 0.8289
* F1: 0.8901
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3825
- Accuracy: 0.8144
- F1: 0.8833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3975 | 0.8122 | 0.8795 |
| No log | 2.0 | 390 | 0.4376 | 0.8085 | 0.8673 |
| 0.3169 | 3.0 | 585 | 0.5736 | 0.8171 | 0.8790 |
| 0.3169 | 4.0 | 780 | 0.8178 | 0.8098 | 0.8754 |
| 0.3169 | 5.0 | 975 | 0.9244 | 0.8073 | 0.8738 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_all\_27\_02\_2022-22\_30\_53
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3825
* Accuracy: 0.8144
* F1: 0.8833
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0926
- Accuracy: 0.9772
- F1: 0.9883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0539 | 0.9885 | 0.9942 |
| No log | 2.0 | 208 | 0.0282 | 0.9885 | 0.9942 |
| No log | 3.0 | 312 | 0.0317 | 0.9914 | 0.9956 |
| No log | 4.0 | 416 | 0.0462 | 0.9885 | 0.9942 |
| 0.0409 | 5.0 | 520 | 0.0517 | 0.9885 | 0.9942 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_editorials\_27\_02\_2022-19\_42\_36
======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0926
* Accuracy: 0.9772
* F1: 0.9883
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3358
- Accuracy: 0.8688
- F1: 0.9225
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4116 | 0.8382 | 0.9027 |
| No log | 2.0 | 162 | 0.4360 | 0.8382 | 0.8952 |
| No log | 3.0 | 243 | 0.5719 | 0.8382 | 0.8995 |
| No log | 4.0 | 324 | 0.7251 | 0.8493 | 0.9021 |
| No log | 5.0 | 405 | 0.8384 | 0.8456 | 0.9019 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_essays\_27\_02\_2022-19\_33\_10
==================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3358
* Accuracy: 0.8688
* F1: 0.9225
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5777
- Accuracy: 0.6794
- F1: 0.5010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.6059 | 0.63 | 0.4932 |
| No log | 2.0 | 96 | 0.6327 | 0.705 | 0.5630 |
| No log | 3.0 | 144 | 0.7003 | 0.695 | 0.5197 |
| No log | 4.0 | 192 | 0.9368 | 0.69 | 0.4655 |
| No log | 5.0 | 240 | 1.1935 | 0.685 | 0.4425 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_0.0002\_webDiscourse\_27\_02\_2022-19\_25\_06
========================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5777
* Accuracy: 0.6794
* F1: 0.5010
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4787
- Accuracy: 0.8138
- F1: 0.8785
- Precision: 0.8489
- Recall: 0.9101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.4335 | 0.7732 | 0.8533 | 0.8209 | 0.8883 |
| 0.5141 | 2.0 | 780 | 0.4196 | 0.8037 | 0.8721 | 0.8446 | 0.9015 |
| 0.3368 | 3.0 | 1170 | 0.4519 | 0.8098 | 0.8779 | 0.8386 | 0.9212 |
| 0.2677 | 4.0 | 1560 | 0.4787 | 0.8122 | 0.8785 | 0.8452 | 0.9146 |
| 0.2677 | 5.0 | 1950 | 0.4912 | 0.8146 | 0.8794 | 0.8510 | 0.9097 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_1e-05\_all\_01\_03\_2022-13\_25\_32
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4787
* Accuracy: 0.8138
* F1: 0.8785
* Precision: 0.8489
* Recall: 0.9101
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09939631819725037,
0.06643826514482498,
-0.0018496735719963908,
0.11666039377450943,
0.18245002627372742,
0.01867694780230522,
0.10718491673469543,
0.12340208888053894,
-0.11937568336725235,
0.016116583719849586,
0.12205053120851517,
0.18724165856838226,
0.004543099086731672,
0.11884872615337372,
-0.06330148875713348,
-0.2574038505554199,
-0.012200475670397282,
0.053906504064798355,
-0.06343834102153778,
0.14001090824604034,
0.09724333137273788,
-0.13304844498634338,
0.07671298831701279,
0.004488223232328892,
-0.22888387739658356,
0.009854009374976158,
0.014739379286766052,
-0.06846042722463608,
0.14621755480766296,
0.021742671728134155,
0.12856179475784302,
0.003422001376748085,
0.07682719081640244,
-0.17444269359111786,
0.010080191306769848,
0.04977518320083618,
0.004845036659389734,
0.08477891236543655,
0.05059918761253357,
-0.016107600182294846,
0.12602101266384125,
-0.0956273004412651,
0.053846802562475204,
0.018980439752340317,
-0.12089496105909348,
-0.2203506976366043,
-0.0795954018831253,
0.02389313280582428,
0.07232831418514252,
0.1133250817656517,
-0.001236355397850275,
0.13475188612937927,
-0.09294452518224716,
0.10078395903110504,
0.21688906848430634,
-0.28553393483161926,
-0.06485544145107269,
0.02446719817817211,
0.005330102983862162,
0.06961293518543243,
-0.11012151092290878,
-0.026752231642603874,
0.05852426216006279,
0.05390282720327377,
0.14034457504749298,
-0.0328521765768528,
-0.1253749430179596,
0.010758702643215656,
-0.14160914719104767,
-0.034578047692775726,
0.13970430195331573,
0.021392052993178368,
-0.029107537120580673,
-0.0484321266412735,
-0.05831008404493332,
-0.1621948629617691,
-0.044257987290620804,
-0.00614148797467351,
0.04140747711062431,
-0.0340258963406086,
-0.054228246212005615,
0.008985639549791813,
-0.10918068140745163,
-0.06042470410466194,
-0.07824975997209549,
0.14435693621635437,
0.0401889905333519,
0.00976969301700592,
-0.03844326734542847,
0.10573378205299377,
0.022423839196562767,
-0.13400140404701233,
0.026682080700993538,
0.028153670951724052,
0.009009519591927528,
-0.052668649703264236,
-0.07267162203788757,
-0.06355571001768112,
0.004300130996853113,
0.10936717689037323,
-0.06425356864929199,
0.054365821182727814,
0.022615263238549232,
0.041544072329998016,
-0.09722599387168884,
0.19377994537353516,
-0.022581880912184715,
-0.0006323347915895283,
0.016070205718278885,
0.03994133695960045,
0.007502324879169464,
-0.008073779754340649,
-0.11584227532148361,
0.0009648760315030813,
0.11619973927736282,
0.01775997318327427,
-0.07474526017904282,
0.0776810273528099,
-0.0489695742726326,
-0.020027026534080505,
0.018899863585829735,
-0.10417144000530243,
0.034542981535196304,
-0.002466370817273855,
-0.08223917335271835,
-0.011595271527767181,
0.03050532378256321,
0.00962282158434391,
-0.03811008110642433,
0.11989861726760864,
-0.07773193717002869,
0.044830452650785446,
-0.10022363066673279,
-0.10667164623737335,
0.017784880474209785,
-0.07707305997610092,
0.025179505348205566,
-0.10481013357639313,
-0.15897518396377563,
-0.020532527938485146,
0.05655290558934212,
-0.022007497027516365,
-0.056188471615314484,
-0.054894160479307175,
-0.07511124759912491,
0.017381614074110985,
-0.019002392888069153,
0.146974116563797,
-0.05854745954275131,
0.10973220318555832,
0.04023904353380203,
0.06611816585063934,
-0.05139247700572014,
0.06302906572818756,
-0.09748391807079315,
-0.001963807502761483,
-0.19534265995025635,
0.05452103540301323,
-0.045429617166519165,
0.08415937423706055,
-0.08721685409545898,
-0.11650712788105011,
0.01319244783371687,
-0.004516612272709608,
0.07094745337963104,
0.0917680636048317,
-0.16083811223506927,
-0.07747369259595871,
0.15751923620700836,
-0.06789692491292953,
-0.11092343926429749,
0.11152855306863785,
-0.06247439980506897,
0.05266224592924118,
0.08375564962625504,
0.16478124260902405,
0.0768776684999466,
-0.06845397502183914,
0.02248658984899521,
0.0033963529858738184,
0.04250364750623703,
-0.08370649814605713,
0.050938680768013,
0.011027664877474308,
-0.007805954664945602,
0.03893293812870979,
-0.018888307735323906,
0.06898169964551926,
-0.09138195961713791,
-0.09263373166322708,
-0.046071857213974,
-0.09434918314218521,
0.046568915247917175,
0.08176182955503464,
0.09666293859481812,
-0.09384263306856155,
-0.06815822422504425,
0.07958313077688217,
0.07027283310890198,
-0.06208339333534241,
0.03727351501584053,
-0.05350267514586449,
0.05732179805636406,
-0.02785385400056839,
-0.017494067549705505,
-0.20759205520153046,
0.005561329424381256,
0.005728711374104023,
0.010282827541232109,
0.01725820079445839,
0.006049386225640774,
0.06954268366098404,
0.04679064825177193,
-0.05747184529900551,
-0.013655352406203747,
-0.0061741843819618225,
-0.008075524121522903,
-0.14064466953277588,
-0.18577055633068085,
-0.015156948007643223,
-0.021106822416186333,
0.11622247099876404,
-0.19669927656650543,
0.03863425552845001,
-0.012089415453374386,
0.0634363442659378,
-0.003630895633250475,
-0.0010399206075817347,
-0.04373970627784729,
0.09074059128761292,
-0.035127900540828705,
-0.044440917670726776,
0.08050248771905899,
0.010106999427080154,
-0.0818880945444107,
-0.03863277658820152,
-0.0909748300909996,
0.16670724749565125,
0.14521759748458862,
-0.127992182970047,
-0.08237253129482269,
-0.005091926082968712,
-0.0576346255838871,
-0.02936345711350441,
-0.03853853791952133,
0.04690150171518326,
0.19146856665611267,
-0.015738599002361298,
0.16197337210178375,
-0.0691574215888977,
-0.05250604823231697,
0.021976647898554802,
-0.03030974790453911,
0.03337259590625763,
0.12148851156234741,
0.10887966305017471,
-0.0836123377084732,
0.14041537046432495,
0.14715883135795593,
-0.10087694227695465,
0.12208538502454758,
-0.04703138396143913,
-0.0624673031270504,
-0.002678940538316965,
-0.01785493642091751,
-0.0003996878513135016,
0.07468820363283157,
-0.14380742609500885,
-0.01031734049320221,
0.019278816878795624,
0.02457175776362419,
0.02748013474047184,
-0.22610238194465637,
-0.03146892786026001,
0.02643146552145481,
-0.03591850399971008,
-0.012697561644017696,
-0.017331982031464577,
0.011742300353944302,
0.10721001029014587,
-0.00026772156707011163,
-0.08017098903656006,
0.0450986884534359,
0.00705321878194809,
-0.08599100261926651,
0.22495236992835999,
-0.09305578470230103,
-0.16859421133995056,
-0.11808321624994278,
-0.08184535801410675,
-0.035525038838386536,
0.0081650884822011,
0.06634660065174103,
-0.10127722471952438,
-0.026166081428527832,
-0.05262279510498047,
0.012558451853692532,
-0.0035687177442014217,
0.0421447716653347,
0.013163466937839985,
0.007543323095887899,
0.0686100423336029,
-0.10888204723596573,
-0.012295243330299854,
-0.054668113589286804,
-0.053048595786094666,
0.0553838387131691,
0.028635738417506218,
0.10429894924163818,
0.16450335085391998,
-0.02687138505280018,
0.011709627695381641,
-0.035191576927900314,
0.22405597567558289,
-0.06644267588853836,
-0.03148128464818001,
0.13282446563243866,
-0.0051660556346178055,
0.053942229598760605,
0.1045345664024353,
0.06845107674598694,
-0.09120184928178787,
0.01574166864156723,
0.019537413492798805,
-0.036768339574337006,
-0.23124849796295166,
-0.05520810931921005,
-0.06253663450479507,
-0.028255706652998924,
0.09848671406507492,
0.029855169355869293,
0.0516011044383049,
0.0662369504570961,
0.045206550508737564,
0.08997229486703873,
-0.0349477119743824,
0.052885983139276505,
0.1287238746881485,
0.047371216118335724,
0.12607251107692719,
-0.053328875452280045,
-0.06864850223064423,
0.028909897431731224,
-0.025640249252319336,
0.2220560610294342,
0.002315905410796404,
0.1209593415260315,
0.052247773855924606,
0.17521803081035614,
0.007191754877567291,
0.0928226038813591,
-0.003835137467831373,
-0.04585348442196846,
-0.005067302379757166,
-0.03759430721402168,
-0.04949343577027321,
0.012465076521039009,
-0.07411599904298782,
0.04966907948255539,
-0.12624503672122955,
-0.015200634486973286,
0.05652743577957153,
0.25506341457366943,
0.02330962009727955,
-0.3273555636405945,
-0.08588787168264389,
-0.0008696442237123847,
-0.0389535017311573,
-0.02642572857439518,
0.020864922553300858,
0.07719563692808151,
-0.09785076230764389,
0.03625655174255371,
-0.0690244659781456,
0.09987080842256546,
-0.04299610108137131,
0.04636121913790703,
0.06495773792266846,
0.07580525428056717,
0.011982535943388939,
0.08440867066383362,
-0.33339741826057434,
0.2679048180580139,
0.0021934269461780787,
0.07641754299402237,
-0.0860496237874031,
0.0017560614505782723,
0.03255860507488251,
0.07124457508325577,
0.05828561261296272,
-0.01575894095003605,
-0.04096392169594765,
-0.1850750744342804,
-0.05449315905570984,
0.030008774250745773,
0.08631981909275055,
-0.011280528269708157,
0.08403293788433075,
-0.026077980175614357,
0.006968691013753414,
0.07634156197309494,
-0.042057596147060394,
-0.049744799733161926,
-0.10237818956375122,
-0.015019838698208332,
0.024809906259179115,
-0.04023199900984764,
-0.05623335763812065,
-0.11583346873521805,
-0.12623785436153412,
0.15347877144813538,
-0.017090434208512306,
-0.04181893542408943,
-0.11300364136695862,
0.08780024200677872,
0.06768523156642914,
-0.08655678480863571,
0.05214938521385193,
0.00543516268953681,
0.05785032734274864,
0.027771776542067528,
-0.08263970166444778,
0.10488361120223999,
-0.06053762137889862,
-0.1478910595178604,
-0.049088623374700546,
0.10801302641630173,
0.035790544003248215,
0.06138893589377403,
-0.007895156741142273,
0.011828109622001648,
-0.0392376147210598,
-0.0944761261343956,
0.011526723392307758,
-0.016990024596452713,
0.09287332743406296,
0.018869148567318916,
-0.06644237041473389,
-0.009603723883628845,
-0.06621103733778,
-0.03144204244017601,
0.202467143535614,
0.20515389740467072,
-0.09616801887750626,
0.026531800627708435,
0.029119528830051422,
-0.07317329943180084,
-0.20608802139759064,
0.0465574637055397,
0.06743951886892319,
0.0062062921933829784,
0.01994800567626953,
-0.17963042855262756,
0.1320527046918869,
0.09133625030517578,
-0.009230810217559338,
0.10164877027273178,
-0.32802850008010864,
-0.12956547737121582,
0.12495116889476776,
0.1405867040157318,
0.13199633359909058,
-0.14084230363368988,
-0.018506141379475594,
-0.03080754168331623,
-0.11759945005178452,
0.10092306137084961,
-0.07775645703077316,
0.11926206201314926,
-0.032507043331861496,
0.0811850056052208,
0.001378860673867166,
-0.062381669878959656,
0.10944359004497528,
0.02787739410996437,
0.09711454063653946,
-0.06584014743566513,
-0.030302129685878754,
0.03875505179166794,
-0.03777817264199257,
0.01926436461508274,
-0.08167462795972824,
0.027966333553195,
-0.10391419380903244,
-0.02144858054816723,
-0.0832298994064331,
0.04250330850481987,
-0.032732173800468445,
-0.04825172573328018,
-0.034043364226818085,
0.017012370750308037,
0.053776249289512634,
-0.01468745619058609,
0.13392122089862823,
0.020675450563430786,
0.1515301614999771,
0.11634228378534317,
0.07896780222654343,
-0.06909093260765076,
-0.05562853813171387,
-0.01242771465331316,
-0.015340793877840042,
0.05612244829535484,
-0.1568794548511505,
0.032129283994436264,
0.14808563888072968,
0.01905711367726326,
0.12904028594493866,
0.08737681061029434,
-0.007611658424139023,
0.003353649517521262,
0.06938890367746353,
-0.16207022964954376,
-0.07155163586139679,
-0.004099973011761904,
-0.05804051086306572,
-0.09940055012702942,
0.05244665592908859,
0.07963821291923523,
-0.06944833695888519,
-0.013501094654202461,
-0.00984368659555912,
0.0017250041710212827,
-0.061234939843416214,
0.2054818868637085,
0.05937422439455986,
0.047022078186273575,
-0.11267773807048798,
0.07190082967281342,
0.05905025452375412,
-0.08440224826335907,
0.00719457259401679,
0.08394651114940643,
-0.09168234467506409,
-0.04907999187707901,
0.12020838260650635,
0.16938036680221558,
-0.05466226115822792,
-0.04522737115621567,
-0.13496534526348114,
-0.12918905913829803,
0.0871843621134758,
0.1696317195892334,
0.12227386981248856,
0.014547971077263355,
-0.06388670951128006,
0.0060466621071100235,
-0.12907826900482178,
0.0776589885354042,
0.04217648133635521,
0.064481221139431,
-0.1333063244819641,
0.1734534353017807,
0.012272845953702927,
0.04972882196307182,
-0.024670468643307686,
0.024204423651099205,
-0.10045918822288513,
0.023487241938710213,
-0.11988607048988342,
-0.019662633538246155,
-0.0224592424929142,
0.007297920528799295,
-0.00858729612082243,
-0.04773963242769241,
-0.04985332116484642,
0.01805162988603115,
-0.12088461220264435,
-0.018060529604554176,
0.02343190461397171,
0.05180661007761955,
-0.11329394578933716,
-0.04141618683934212,
0.019696949049830437,
-0.06033404916524887,
0.061653707176446915,
0.059022821485996246,
0.005423716269433498,
0.067607082426548,
-0.1310867816209793,
-0.005461925640702248,
0.08627529442310333,
0.01174108125269413,
0.06469744443893433,
-0.08592614531517029,
0.00045015677460469306,
0.018625786527991295,
0.06679503619670868,
0.02818775177001953,
0.07880891859531403,
-0.14439892768859863,
0.005627295933663845,
-0.03427711874246597,
-0.07868339866399765,
-0.0700397863984108,
0.033177174627780914,
0.08750488609075546,
0.010668536648154259,
0.195419579744339,
-0.08144134283065796,
0.03785155341029167,
-0.20488034188747406,
0.0006423257873393595,
-0.020846057683229446,
-0.12214206159114838,
-0.12625543773174286,
-0.06768596172332764,
0.06764601171016693,
-0.04640987515449524,
0.13346725702285767,
0.03722982853651047,
0.04288788139820099,
0.030375167727470398,
-0.012886326760053635,
0.0012928546639159322,
0.026988377794623375,
0.21529695391654968,
0.032537806779146194,
-0.03861275315284729,
0.07780669629573822,
0.05741429328918457,
0.10029538720846176,
0.12414675951004028,
0.20089887082576752,
0.15574419498443604,
-0.014400866813957691,
0.097690649330616,
0.01430444698780775,
-0.044885020703077316,
-0.15601150691509247,
0.03756477311253548,
-0.05599700286984444,
0.1011013463139534,
-0.0274411141872406,
0.20353488624095917,
0.05445646867156029,
-0.1651713103055954,
0.052106838673353195,
-0.058583129197359085,
-0.09525315463542938,
-0.10621818900108337,
-0.03825855255126953,
-0.08276199549436569,
-0.13949714601039886,
-0.001428490737453103,
-0.10834579914808273,
0.013977828435599804,
0.10226256400346756,
0.006766230333596468,
-0.030170395970344543,
0.15841789543628693,
0.03183523193001747,
0.016351798549294472,
0.06968379020690918,
-0.003358106128871441,
-0.02574421465396881,
-0.10423403978347778,
-0.0564228855073452,
-0.02055197022855282,
-0.015466444194316864,
0.03880814462900162,
-0.05085541307926178,
-0.06508412957191467,
0.04130364954471588,
-0.031775254756212234,
-0.09337720274925232,
0.016172301024198532,
0.029321789741516113,
0.07099729776382446,
0.06095554307103157,
0.00988683383911848,
0.009027427062392235,
-0.012602854520082474,
0.21621206402778625,
-0.07703279703855515,
-0.09030803292989731,
-0.09616175293922424,
0.2740306556224823,
0.057876236736774445,
-0.01027040183544159,
0.02962125837802887,
-0.059152424335479736,
-0.0007473984733223915,
0.2633533775806427,
0.19538408517837524,
-0.07769670337438583,
-0.006720329634845257,
-0.0003305276622995734,
-0.008791331201791763,
-0.006754583213478327,
0.12630265951156616,
0.15334486961364746,
0.04998461529612541,
-0.10555771738290787,
-0.046740543097257614,
-0.057316653430461884,
-0.015570278279483318,
-0.05213107541203499,
0.06396165490150452,
0.03356803581118584,
-0.002641354687511921,
-0.03344380483031273,
0.06239970773458481,
-0.07192107290029526,
-0.08668918162584305,
0.05266602337360382,
-0.20590801537036896,
-0.15926618874073029,
-0.011552850715816021,
0.10727479308843613,
0.000304406916256994,
0.057967741042375565,
-0.01885034888982773,
0.0034854356199502945,
0.07165331393480301,
-0.024232544004917145,
-0.08711849898099899,
-0.07164552062749863,
0.09106307476758957,
-0.12249097228050232,
0.17517127096652985,
-0.03927332162857056,
0.07233863323926926,
0.12231544405221939,
0.07634696364402771,
-0.06872250139713287,
0.06116446852684021,
0.026352304965257645,
-0.06378137320280075,
0.0443057045340538,
0.0867534726858139,
-0.031264420598745346,
0.03381531685590744,
0.03461022302508354,
-0.11689795553684235,
0.028958527371287346,
-0.08233334869146347,
-0.046630751341581345,
-0.04502896964550018,
-0.04463717341423035,
-0.05565062165260315,
0.11894699186086655,
0.22129806876182556,
-0.023605894297361374,
0.014330752193927765,
-0.07740893214941025,
0.0017525126459077,
0.041217103600502014,
0.015399201773107052,
-0.08295624703168869,
-0.23651903867721558,
0.0057052141055464745,
0.06195129081606865,
-0.02045348286628723,
-0.22358933091163635,
-0.0886700302362442,
-0.0022758259437978268,
-0.07667022943496704,
-0.10175494104623795,
0.0829833373427391,
0.07160118967294693,
0.04799985885620117,
-0.05524880439043045,
-0.07519536465406418,
-0.07723598182201385,
0.1576392501592636,
-0.15040704607963562,
-0.08822241425514221
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51
This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4563
- Accuracy: 0.8440
- F1: 0.8954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4302 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3970 | 0.8220 | 0.8875 |
| 0.3703 | 3.0 | 585 | 0.3972 | 0.8402 | 0.8934 |
| 0.3703 | 4.0 | 780 | 0.4945 | 0.8390 | 0.8935 |
| 0.3703 | 5.0 | 975 | 0.5354 | 0.8305 | 0.8898 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-02\_53\_51
==============================================================
This model is a fine-tuned version of siebert/sentiment-roberta-large-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4563
* Accuracy: 0.8440
* F1: 0.8954
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
48,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.08928936719894409,
0.04074569419026375,
-0.0015670070424675941,
0.11692076921463013,
0.21406088769435883,
0.030764013528823853,
0.10318399965763092,
0.10817193239927292,
-0.12420768290758133,
0.029993176460266113,
0.11862944811582565,
0.17398862540721893,
0.004029403906315565,
0.10242834687232971,
-0.06507757306098938,
-0.2756783068180084,
-0.03446369245648384,
0.04150739312171936,
-0.07881177961826324,
0.12800143659114838,
0.08028393238782883,
-0.1548319309949875,
0.07693406939506531,
-0.01643727719783783,
-0.25883495807647705,
0.0219773780554533,
0.02971610426902771,
-0.06053803116083145,
0.1455990970134735,
0.014711366966366768,
0.16518573462963104,
-0.004753699526190758,
0.09446607530117035,
-0.1561141461133957,
0.014813823625445366,
0.06235310807824135,
0.013452722690999508,
0.08542929589748383,
0.0616794154047966,
-0.014044827781617641,
0.11218386143445969,
-0.10382533818483353,
0.062192533165216446,
0.0014311986742541194,
-0.13006852567195892,
-0.19075801968574524,
-0.06932415068149567,
-0.010737995617091656,
0.053043514490127563,
0.10238324850797653,
-0.011482457630336285,
0.15754227340221405,
-0.10616462677717209,
0.10426275432109833,
0.21143430471420288,
-0.26839521527290344,
-0.08568459004163742,
0.0489635206758976,
-0.007733824197202921,
0.09171898663043976,
-0.12144012004137039,
-0.013894741423428059,
0.05914901942014694,
0.05653630197048187,
0.11919235438108444,
-0.032012417912483215,
-0.12853313982486725,
0.023935938253998756,
-0.14618654549121857,
0.002318690763786435,
0.06730134040117264,
0.014267896302044392,
-0.013596735894680023,
-0.01866111531853676,
-0.06339198350906372,
-0.16339394450187683,
-0.04309813305735588,
-0.023349152877926826,
0.04438662901520729,
-0.05446048825979233,
-0.10450693964958191,
0.008697064593434334,
-0.10196641087532043,
-0.057031918317079544,
-0.08514624834060669,
0.15346351265907288,
0.037091393023729324,
0.014627247117459774,
-0.04231157526373863,
0.10116012394428253,
-0.01126047596335411,
-0.13120155036449432,
0.05179940164089203,
0.025910569354891777,
-0.029978550970554352,
-0.0703551396727562,
-0.07523497939109802,
-0.11072512716054916,
-0.002775781322270632,
0.07562324404716492,
-0.054235924035310745,
0.056716255843639374,
0.02103925682604313,
0.03724898025393486,
-0.08811008185148239,
0.19984741508960724,
-0.043090783059597015,
-0.028626367449760437,
0.005389281548559666,
0.04504159092903137,
-0.0065927160903811455,
-0.013101025484502316,
-0.11183660477399826,
0.0021622199565172195,
0.1154719740152359,
0.0014182303566485643,
-0.07986700534820557,
0.07064376771450043,
-0.03631141781806946,
-0.018493063747882843,
-0.041019171476364136,
-0.0978321060538292,
0.04923109710216522,
-0.012900403700768948,
-0.09362265467643738,
0.0016617054352536798,
0.011691353283822536,
0.01309688575565815,
-0.02097616158425808,
0.16687744855880737,
-0.09287359565496445,
0.05264317989349365,
-0.12067888677120209,
-0.12313289940357208,
0.005747644230723381,
-0.07784688472747803,
0.02032722719013691,
-0.09810752421617508,
-0.14229880273342133,
-0.0284261517226696,
0.052327435463666916,
-0.04078645259141922,
-0.03352312743663788,
-0.055587515234947205,
-0.07404863834381104,
0.009703096933662891,
-0.012918848544359207,
0.17634683847427368,
-0.04971274361014366,
0.11420904099941254,
0.053369857370853424,
0.07912240922451019,
-0.05552211403846741,
0.05202409252524376,
-0.08958224207162857,
-0.008416145108640194,
-0.21446271240711212,
0.055995289236307144,
-0.045758772641420364,
0.07865558564662933,
-0.06335946172475815,
-0.1134418249130249,
-0.002404864178970456,
0.00038166504236869514,
0.09316833317279816,
0.07938235253095627,
-0.17510798573493958,
-0.08376767486333847,
0.15996959805488586,
-0.05676067993044853,
-0.08268243819475174,
0.11465924978256226,
-0.073927141726017,
0.037401601672172546,
0.08634346723556519,
0.16817815601825714,
0.05031817778944969,
-0.0733514353632927,
0.0218220092356205,
-0.03243395686149597,
0.04528959468007088,
-0.06300914287567139,
0.031973034143447876,
0.025147097185254097,
0.005099697504192591,
0.03350605443120003,
-0.003933618310838938,
0.06631708145141602,
-0.11775626987218857,
-0.08671979606151581,
-0.038468312472105026,
-0.10778957605361938,
0.05110067501664162,
0.09083864092826843,
0.11065490543842316,
-0.10276857763528824,
-0.06266064941883087,
0.09391002357006073,
0.053857333958148956,
-0.05086854100227356,
0.02362775057554245,
-0.051545239984989166,
0.057015955448150635,
-0.05380362272262573,
-0.02571680024266243,
-0.2127273827791214,
-0.02537420764565468,
0.0005009531159885228,
0.05269033834338188,
0.03662126511335373,
0.027132360264658928,
0.08634430915117264,
0.05713961645960808,
-0.06821830570697784,
0.006697080563753843,
-0.010343313217163086,
-0.010443542152643204,
-0.1582690179347992,
-0.19556055963039398,
-0.007740714121609926,
-0.01769300550222397,
0.09585119783878326,
-0.2182457447052002,
0.02337036095559597,
-0.03510576859116554,
0.08304418623447418,
0.014063914306461811,
-0.007654091808944941,
-0.05602242425084114,
0.11239565163850784,
-0.02390071004629135,
-0.044712357223033905,
0.07470417022705078,
-0.012562698684632778,
-0.06799978017807007,
-0.07791638374328613,
-0.1104632094502449,
0.18006417155265808,
0.14406104385852814,
-0.15857836604118347,
-0.10481419414281845,
0.014167580753564835,
-0.05447922646999359,
-0.021326135843992233,
-0.06100431829690933,
0.05212721601128578,
0.1939965933561325,
-0.013996351510286331,
0.15659891068935394,
-0.05627366527915001,
-0.04197161644697189,
0.016993572935461998,
-0.028987446799874306,
0.04389503225684166,
0.11762112379074097,
0.12624084949493408,
-0.07961162179708481,
0.13168752193450928,
0.12176373600959778,
-0.13220174610614777,
0.15129055082798004,
-0.021055983379483223,
-0.07446331530809402,
-0.010597722604870796,
-0.03304244950413704,
0.0062745725736021996,
0.09134908765554428,
-0.11679821461439133,
-0.021531326696276665,
0.0011449205921962857,
0.01778114028275013,
0.03303123265504837,
-0.2274339646100998,
-0.04669754579663277,
0.02417774498462677,
-0.009083726443350315,
0.0052313595078885555,
-0.021503131836652756,
0.02704264409840107,
0.12473800033330917,
0.0037691625766456127,
-0.0664125606417656,
0.02452288568019867,
0.0026631427463144064,
-0.06890250742435455,
0.21482406556606293,
-0.07169332355260849,
-0.1321277916431427,
-0.09720388054847717,
-0.07911964505910873,
-0.039252568036317825,
0.013820930384099483,
0.03754555806517601,
-0.12508413195610046,
-0.014930839650332928,
-0.036415692418813705,
0.02569741941988468,
0.0041243769228458405,
0.054590847343206406,
0.002877304796129465,
0.007242812775075436,
0.060854196548461914,
-0.09680032730102539,
-0.0039007982704788446,
-0.08017005771398544,
-0.07472598552703857,
0.06132436543703079,
0.05192813277244568,
0.12056354433298111,
0.172372505068779,
-0.050249043852090836,
0.007636487018316984,
-0.031924374401569366,
0.23014815151691437,
-0.07624414563179016,
-0.03571537509560585,
0.10018374025821686,
-0.018425041809678078,
0.04732858017086983,
0.10543905198574066,
0.0756559744477272,
-0.09711914509534836,
0.020288841798901558,
0.04232322797179222,
-0.0468004010617733,
-0.21456387639045715,
-0.03743364289402962,
-0.057260662317276,
-0.04130076989531517,
0.0847679153084755,
0.01806752197444439,
0.034948062151670456,
0.06977425515651703,
0.06976873427629471,
0.09713681787252426,
-0.061411112546920776,
0.045247308909893036,
0.09736918658018112,
0.050219617784023285,
0.13574473559856415,
-0.04491911455988884,
-0.09700345993041992,
0.026317013427615166,
-0.03373006731271744,
0.22192879021167755,
-0.008272948674857616,
0.07180635631084442,
0.03596251457929611,
0.17164850234985352,
0.011553775519132614,
0.07939556241035461,
0.0018054164247587323,
-0.06787273287773132,
-0.002118730917572975,
-0.031009715050458908,
-0.045881252735853195,
0.009397114627063274,
-0.035107262432575226,
0.04921361804008484,
-0.11894399672746658,
-0.011504041031002998,
0.06045865640044212,
0.22120048105716705,
0.02287142723798752,
-0.31843867897987366,
-0.06869467347860336,
-0.0006449749344028533,
-0.03191684931516647,
-0.010410109534859657,
0.0076470510102808475,
0.11250578612089157,
-0.09855024516582489,
0.027714204043149948,
-0.07478446513414383,
0.0940910205245018,
-0.043632011860609055,
0.0469108521938324,
0.05458149313926697,
0.11491991579532623,
-0.009057223796844482,
0.0658935010433197,
-0.32449233531951904,
0.2666137218475342,
0.010096242651343346,
0.08825305849313736,
-0.08039254695177078,
-0.013803204521536827,
0.0350356288254261,
0.038498468697071075,
0.029280290007591248,
-0.021932953968644142,
-0.04688353091478348,
-0.20754417777061462,
-0.02745838463306427,
0.03339908644556999,
0.1249910369515419,
-0.0007393290288746357,
0.09827516227960587,
-0.017864296212792397,
0.003870629705488682,
0.07814204692840576,
-0.04307763651013374,
-0.04881379380822182,
-0.08319652080535889,
-0.02912954054772854,
0.014752120710909367,
-0.0748680830001831,
-0.04313680902123451,
-0.12191873788833618,
-0.13325592875480652,
0.15176185965538025,
0.005637635476887226,
-0.014180315658450127,
-0.12084534764289856,
0.13633699715137482,
0.0693710595369339,
-0.08084498345851898,
0.03468519449234009,
0.014900757931172848,
0.05361105129122734,
0.027974674478173256,
-0.06995583325624466,
0.11386750638484955,
-0.052120599895715714,
-0.1497063934803009,
-0.06472549587488174,
0.08218042552471161,
0.039774857461452484,
0.06827995181083679,
-0.020016366615891457,
0.02147332951426506,
-0.023064840584993362,
-0.08828530460596085,
0.03888435661792755,
-0.030643774196505547,
0.06987438350915909,
0.03797375410795212,
-0.058109063655138016,
-0.020258933305740356,
-0.05644003674387932,
-0.016959911212325096,
0.1986081600189209,
0.21551474928855896,
-0.09182050824165344,
-0.007226760499179363,
0.025861401110887527,
-0.06708703190088272,
-0.20520257949829102,
0.10326003283262253,
0.08579898625612259,
0.013197715394198895,
0.04229619726538658,
-0.16851043701171875,
0.14798611402511597,
0.1016215905547142,
0.0006637254264205694,
0.11383093148469925,
-0.3071560859680176,
-0.13219225406646729,
0.09505701065063477,
0.1664009839296341,
0.15180909633636475,
-0.14744330942630768,
-0.008949107490479946,
-0.02611568570137024,
-0.0899697095155716,
0.103156678378582,
-0.08798165619373322,
0.12552623450756073,
-0.019198652356863022,
0.10409305989742279,
0.013113191351294518,
-0.06638259440660477,
0.09314276278018951,
0.004838480148464441,
0.11170189082622528,
-0.0723709687590599,
-0.056710269302129745,
0.042661476880311966,
-0.028542567044496536,
-0.01473460253328085,
-0.03516995906829834,
0.01593647710978985,
-0.07594215869903564,
-0.020388958975672722,
-0.09514039754867554,
0.033454738557338715,
-0.027367686852812767,
-0.06204432249069214,
-0.03293808177113533,
0.030194519087672234,
0.03812273219227791,
-0.017790662124753,
0.11606922000646591,
-0.00004268712655175477,
0.1755426824092865,
0.0906750038266182,
0.07849319279193878,
-0.05123475193977356,
-0.024286111816763878,
0.008237706497311592,
-0.009858455508947372,
0.05445405840873718,
-0.13691964745521545,
0.02055935002863407,
0.15597006678581238,
0.020270202308893204,
0.12013930827379227,
0.096052385866642,
-0.013560215942561626,
0.021081402897834778,
0.08182418346405029,
-0.16433551907539368,
-0.06534916907548904,
0.003650193801149726,
-0.0855725109577179,
-0.09686407446861267,
0.04774491861462593,
0.08173831552267075,
-0.0678216814994812,
-0.009507553651928902,
-0.011718151159584522,
-0.015909617766737938,
-0.06433779746294022,
0.22031807899475098,
0.07637738436460495,
0.039512600749731064,
-0.10189227014780045,
0.06245722249150276,
0.06179178133606911,
-0.09014180302619934,
0.009090879000723362,
0.09717390686273575,
-0.07525899261236191,
-0.02466542460024357,
0.11632250994443893,
0.21282216906547546,
-0.0631910115480423,
-0.016994813457131386,
-0.14600835740566254,
-0.10818597674369812,
0.06957124173641205,
0.19365018606185913,
0.1088397353887558,
-0.008053505793213844,
-0.06267277151346207,
0.02968120016157627,
-0.15307696163654327,
0.07391631603240967,
0.045453887432813644,
0.07950340211391449,
-0.13170742988586426,
0.19839417934417725,
0.0007810224778950214,
0.04049481824040413,
-0.03584117069840431,
0.03274907171726227,
-0.12378358095884323,
0.024161679670214653,
-0.11265844106674194,
-0.04812927916646004,
0.0001724843605188653,
-0.01066632941365242,
-0.00380240217782557,
-0.0653105154633522,
-0.06392020732164383,
0.0004242652212269604,
-0.12525852024555206,
-0.013932263478636742,
0.03519497439265251,
0.020731713622808456,
-0.10973809659481049,
-0.03960033506155014,
0.01603337749838829,
-0.04493735358119011,
0.048976439982652664,
0.05082525312900543,
0.01614520698785782,
0.0760069489479065,
-0.1665770411491394,
-0.01453516073524952,
0.06838200241327286,
-0.007151085417717695,
0.09008833020925522,
-0.04528585076332092,
0.0006648687995038927,
-0.003275070572271943,
0.11276952922344208,
0.03475077450275421,
0.083197221159935,
-0.13592220842838287,
0.022208981215953827,
-0.03444214165210724,
-0.1007632464170456,
-0.06462264060974121,
0.035915542393922806,
0.07528949528932571,
0.014193732291460037,
0.1775585114955902,
-0.0920194610953331,
0.05244719237089157,
-0.21303927898406982,
-0.008287637494504452,
-0.016163401305675507,
-0.11430445313453674,
-0.099685899913311,
-0.06115734949707985,
0.08218313753604889,
-0.053202129900455475,
0.12681709229946136,
0.05609762296080589,
0.06397122144699097,
0.03281603381037712,
-0.026304982602596283,
-0.004601167049258947,
0.03648565709590912,
0.19719263911247253,
0.045796189457178116,
-0.04946191608905792,
0.0634351596236229,
0.0816115066409111,
0.10697510838508606,
0.1288481056690216,
0.22411860525608063,
0.1475895345211029,
-0.026283079758286476,
0.09114573150873184,
0.022426966577768326,
-0.04624319449067116,
-0.14164893329143524,
0.03574628382921219,
-0.07773997634649277,
0.08427394926548004,
-0.03778909146785736,
0.1868889331817627,
0.058447808027267456,
-0.1574873924255371,
0.04708492010831833,
-0.07484058290719986,
-0.10561677068471909,
-0.10425470769405365,
-0.00843860674649477,
-0.0901743620634079,
-0.13512122631072998,
0.014899404719471931,
-0.11051713675260544,
0.02224755473434925,
0.12182725220918655,
0.013952165842056274,
-0.0268477164208889,
0.18625979125499725,
0.03741181269288063,
0.037437669932842255,
0.07555782794952393,
0.00822204165160656,
-0.012242534197866917,
-0.09027690440416336,
-0.061322636902332306,
-0.04111279919743538,
-0.01085412222892046,
0.036672912538051605,
-0.06435183435678482,
-0.08931402862071991,
0.032227467745542526,
-0.01809820532798767,
-0.10318969935178757,
0.026540763676166534,
0.031114231795072556,
0.07471497356891632,
0.036601316183805466,
-0.0026208164636045694,
0.010610667057335377,
-0.030564354732632637,
0.23346363008022308,
-0.08651891350746155,
-0.07590658217668533,
-0.09949280321598053,
0.27284812927246094,
0.04617435112595558,
0.006755131296813488,
0.00930632185190916,
-0.07187994569540024,
0.010236028581857681,
0.25291451811790466,
0.20396894216537476,
-0.12239488959312439,
-0.008951465599238873,
0.0019076504977419972,
-0.009194917045533657,
-0.01971057429909706,
0.13767719268798828,
0.12983348965644836,
0.050774797797203064,
-0.11262739449739456,
-0.03782148286700249,
-0.0519663542509079,
-0.015943970531225204,
-0.03599003329873085,
0.0568426251411438,
0.062247321009635925,
0.019526181742548943,
-0.05736880004405975,
0.0659865066409111,
-0.07908719778060913,
-0.10647724568843842,
0.06789838522672653,
-0.2321578413248062,
-0.17627471685409546,
-0.008740495890378952,
0.1088290587067604,
-0.013092662207782269,
0.07256418466567993,
-0.027104586362838745,
-0.0002696726005524397,
0.026148583739995956,
-0.0294872485101223,
-0.06884244084358215,
-0.08651674538850784,
0.08968936651945114,
-0.11768196523189545,
0.1655983179807663,
-0.05139731243252754,
0.06402743607759476,
0.12750965356826782,
0.06476852297782898,
-0.04731322079896927,
0.05910797044634819,
0.034097641706466675,
-0.09774884581565857,
0.029660683125257492,
0.12970152497291565,
-0.03730965033173561,
0.043190695345401764,
0.04573366045951843,
-0.13299858570098877,
0.037650760263204575,
-0.10647614300251007,
-0.040626414120197296,
-0.04450332745909691,
-0.04440129175782204,
-0.058220990002155304,
0.12285936623811722,
0.2426961064338684,
-0.006978270132094622,
0.03769964724779129,
-0.08243783563375473,
0.0006213283631950617,
0.043355792760849,
0.06069037318229675,
-0.1056135892868042,
-0.25504326820373535,
0.005829702131450176,
0.0861487165093422,
-0.03574245423078537,
-0.2437354177236557,
-0.08251968771219254,
0.0003221278893761337,
-0.07338874787092209,
-0.09443666785955429,
0.09208223968744278,
0.0790509283542633,
0.05580151826143265,
-0.05060512572526932,
-0.11476757377386093,
-0.07149647921323776,
0.16202589869499207,
-0.15072226524353027,
-0.08869671076536179
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4208
- Accuracy: 0.8283
- F1: 0.8915
- Precision: 0.8487
- Recall: 0.9389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.4443 | 0.7768 | 0.8589 | 0.8072 | 0.9176 |
| 0.4532 | 2.0 | 780 | 0.4603 | 0.8098 | 0.8791 | 0.8302 | 0.9341 |
| 0.2608 | 3.0 | 1170 | 0.5284 | 0.8061 | 0.8713 | 0.8567 | 0.8863 |
| 0.1577 | 4.0 | 1560 | 0.6398 | 0.8085 | 0.8749 | 0.8472 | 0.9044 |
| 0.1577 | 5.0 | 1950 | 0.7089 | 0.8085 | 0.8741 | 0.8516 | 0.8979 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-05\_32\_03
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4208
* Accuracy: 0.8283
* F1: 0.8915
* Precision: 0.8487
* Recall: 0.9389
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09892356395721436,
0.06828578561544418,
-0.0018669433193281293,
0.11662468314170837,
0.18159808218479156,
0.01864708960056305,
0.1077749952673912,
0.1236564964056015,
-0.11956749111413956,
0.015575956553220749,
0.12124811857938766,
0.1870347261428833,
0.005007258616387844,
0.11856607347726822,
-0.06337916851043701,
-0.25743356347084045,
-0.0123788146302104,
0.05414464697241783,
-0.06413814425468445,
0.14017942547798157,
0.09716640412807465,
-0.13286736607551575,
0.07636048644781113,
0.004369963891804218,
-0.2301385998725891,
0.010079368017613888,
0.015124987810850143,
-0.06858930736780167,
0.1459932178258896,
0.021547723561525345,
0.1281767636537552,
0.003768098307773471,
0.0768422856926918,
-0.17451612651348114,
0.010082121938467026,
0.0495646595954895,
0.004733002744615078,
0.08508624136447906,
0.05166555941104889,
-0.01551130972802639,
0.12704330682754517,
-0.09535092860460281,
0.053311463445425034,
0.018611349165439606,
-0.12008577585220337,
-0.21967710554599762,
-0.07977542281150818,
0.02423970401287079,
0.07237328588962555,
0.11278099566698074,
-0.0008546730387024581,
0.13555492460727692,
-0.09272836893796921,
0.10032197088003159,
0.2170390486717224,
-0.2859991788864136,
-0.06468649953603745,
0.023037659004330635,
0.005594783462584019,
0.06953819841146469,
-0.10988732427358627,
-0.026469016447663307,
0.05787323787808418,
0.05412770435214043,
0.14022418856620789,
-0.033035337924957275,
-0.1252802163362503,
0.010683293454349041,
-0.14129123091697693,
-0.03434412181377411,
0.13942058384418488,
0.021310027688741684,
-0.029123475775122643,
-0.0486987940967083,
-0.05877148360013962,
-0.15980865061283112,
-0.04394703358411789,
-0.006772208027541637,
0.04155817627906799,
-0.03365162014961243,
-0.05464443564414978,
0.008549241349101067,
-0.10955806821584702,
-0.060651227831840515,
-0.07827972620725632,
0.14447318017482758,
0.04015294462442398,
0.01026794221252203,
-0.038606882095336914,
0.10573375225067139,
0.02322809398174286,
-0.1340928077697754,
0.026355043053627014,
0.02750086970627308,
0.009415841661393642,
-0.0523519404232502,
-0.07262396067380905,
-0.06396599113941193,
0.004224840551614761,
0.10917910933494568,
-0.06432180106639862,
0.05409908667206764,
0.022191105410456657,
0.041704606264829636,
-0.097503662109375,
0.193377286195755,
-0.022109637036919594,
-0.0008275578147731721,
0.01601167768239975,
0.03949899226427078,
0.0077890874817967415,
-0.008044997230172157,
-0.11617852002382278,
0.0006396729149855673,
0.11642380803823471,
0.017610257491469383,
-0.0745861753821373,
0.07679497450590134,
-0.049077197909355164,
-0.020653853192925453,
0.018902581185102463,
-0.10394029319286346,
0.03500066325068474,
-0.0024838983081281185,
-0.08230633288621902,
-0.011067385785281658,
0.030534133315086365,
0.01006010640412569,
-0.03800736740231514,
0.11940915882587433,
-0.07694396376609802,
0.0448591411113739,
-0.10005740821361542,
-0.10639902204275131,
0.018132183700799942,
-0.0765577033162117,
0.024950681254267693,
-0.10552388429641724,
-0.15836301445960999,
-0.019717806950211525,
0.056400056928396225,
-0.0221269354224205,
-0.05596224591135979,
-0.05399803817272186,
-0.07463804632425308,
0.017420999705791473,
-0.019021011888980865,
0.1459519863128662,
-0.05853498354554176,
0.10951010137796402,
0.0400451235473156,
0.06624731421470642,
-0.052160341292619705,
0.06250672787427902,
-0.09771274775266647,
-0.001973402453586459,
-0.19403761625289917,
0.05398593097925186,
-0.044428810477256775,
0.08296746015548706,
-0.087582528591156,
-0.1165587529540062,
0.013045201078057289,
-0.004885385744273663,
0.07053527235984802,
0.09173068404197693,
-0.16152863204479218,
-0.07746971398591995,
0.15776920318603516,
-0.06818390637636185,
-0.11037921160459518,
0.11139746755361557,
-0.0621139332652092,
0.05257800966501236,
0.0838426873087883,
0.16470400989055634,
0.07702379673719406,
-0.06806129962205887,
0.022950299084186554,
0.0034466285724192858,
0.04275607690215111,
-0.08360697329044342,
0.05166235566139221,
0.01098666898906231,
-0.007351338863372803,
0.03887256234884262,
-0.01938772015273571,
0.06898655742406845,
-0.0909404531121254,
-0.09261903911828995,
-0.04595122113823891,
-0.09410391747951508,
0.047451701015233994,
0.08138851821422577,
0.0966312363743782,
-0.0937415361404419,
-0.06763112545013428,
0.08115442842245102,
0.07039292901754379,
-0.06213019788265228,
0.03735671564936638,
-0.05408628284931183,
0.057275496423244476,
-0.02803077921271324,
-0.01772673800587654,
-0.20710813999176025,
0.005971471779048443,
0.0060882847756147385,
0.010014637373387814,
0.017311561852693558,
0.0067389970645308495,
0.06962665915489197,
0.047385502606630325,
-0.05749650299549103,
-0.013798011466860771,
-0.006806382909417152,
-0.008036812767386436,
-0.14051027595996857,
-0.1855926364660263,
-0.01527104526758194,
-0.02072557620704174,
0.11601945012807846,
-0.19640138745307922,
0.03834466263651848,
-0.011339114978909492,
0.06466999650001526,
-0.003308930667117238,
-0.0007656294037587941,
-0.04403923824429512,
0.0902370885014534,
-0.0351264514029026,
-0.044334955513477325,
0.08074035495519638,
0.010333183221518993,
-0.08137381076812744,
-0.03814482316374779,
-0.09104716777801514,
0.16723378002643585,
0.14520220458507538,
-0.12682783603668213,
-0.08113718777894974,
-0.005393319763243198,
-0.05767086520791054,
-0.029646776616573334,
-0.03840647637844086,
0.046802859753370285,
0.1908678263425827,
-0.015552831813693047,
0.16186435520648956,
-0.06937813013792038,
-0.052661117166280746,
0.02135862596333027,
-0.030524151399731636,
0.032876960933208466,
0.12023788690567017,
0.1086682379245758,
-0.08496463298797607,
0.14000055193901062,
0.1484859138727188,
-0.10090513527393341,
0.12248250097036362,
-0.046659503132104874,
-0.0625375509262085,
-0.002917378442361951,
-0.0179485771805048,
-0.00038107408909127116,
0.07473159581422806,
-0.1420665830373764,
-0.00997298676520586,
0.01950932666659355,
0.024260401725769043,
0.027566473931074142,
-0.22595006227493286,
-0.03122752532362938,
0.026482241228222847,
-0.035714615136384964,
-0.012177844531834126,
-0.017066774889826775,
0.01154145784676075,
0.10733138024806976,
-0.000010914245649473742,
-0.08027346432209015,
0.045453913509845734,
0.00695415772497654,
-0.0864105224609375,
0.22422701120376587,
-0.09332414716482162,
-0.16965292394161224,
-0.11802548915147781,
-0.08080240339040756,
-0.03565260395407677,
0.008362879045307636,
0.0658731609582901,
-0.1007581353187561,
-0.026165567338466644,
-0.05259951949119568,
0.012389592826366425,
-0.003503688145428896,
0.04259806126356125,
0.012791539542376995,
0.008192860521376133,
0.06915899366140366,
-0.10861200839281082,
-0.012052717618644238,
-0.05454942211508751,
-0.05296964943408966,
0.055032018572092056,
0.028820164501667023,
0.10430888831615448,
0.16431492567062378,
-0.026906028389930725,
0.01158151961863041,
-0.03465733304619789,
0.2229580134153366,
-0.06583850085735321,
-0.0314316488802433,
0.13388092815876007,
-0.005553050898015499,
0.05396491289138794,
0.10450905561447144,
0.0680980458855629,
-0.09060895442962646,
0.01563413254916668,
0.019022764638066292,
-0.03658035397529602,
-0.2310389280319214,
-0.05534845590591431,
-0.06264391541481018,
-0.02878793701529503,
0.0987526923418045,
0.029812267050147057,
0.05121267959475517,
0.06579340994358063,
0.04484053701162338,
0.08992094546556473,
-0.034772247076034546,
0.053050968796014786,
0.12805399298667908,
0.0479956790804863,
0.1262262612581253,
-0.05303249508142471,
-0.06866279989480972,
0.029458897188305855,
-0.025675391778349876,
0.22069427371025085,
0.0021210352424532175,
0.11999083310365677,
0.05211194232106209,
0.17592455446720123,
0.007590819150209427,
0.09240149706602097,
-0.0032449911814182997,
-0.04521207883954048,
-0.005303115118294954,
-0.037717629224061966,
-0.04979989305138588,
0.013416139408946037,
-0.07315313816070557,
0.04968646913766861,
-0.125452920794487,
-0.014608497731387615,
0.05684986710548401,
0.255770206451416,
0.023599911481142044,
-0.32791459560394287,
-0.08584330230951309,
-0.0002580628788564354,
-0.03924960643053055,
-0.02624484710395336,
0.02051556669175625,
0.07859232276678085,
-0.09820344299077988,
0.03648009151220322,
-0.069453164935112,
0.09933728724718094,
-0.04304727911949158,
0.0462537445127964,
0.06534399092197418,
0.07562147825956345,
0.01288361195474863,
0.08438948541879654,
-0.3329317569732666,
0.26656001806259155,
0.002188591519370675,
0.07582922279834747,
-0.08609799295663834,
0.0018146632937714458,
0.032578688114881516,
0.07062642276287079,
0.05769859999418259,
-0.015698282048106194,
-0.04169844463467598,
-0.18409718573093414,
-0.05456647649407387,
0.030208522453904152,
0.08682730048894882,
-0.011477028951048851,
0.08360619097948074,
-0.026448648422956467,
0.006844181567430496,
0.07626580446958542,
-0.0430176705121994,
-0.050258126109838486,
-0.10242374241352081,
-0.014593346044421196,
0.024269593879580498,
-0.040319912135601044,
-0.05641968548297882,
-0.11596956849098206,
-0.12480363994836807,
0.1552482694387436,
-0.018240060657262802,
-0.0418098084628582,
-0.11314183473587036,
0.08736852556467056,
0.06727200001478195,
-0.08643344044685364,
0.05189736187458038,
0.005892945919185877,
0.05982488393783569,
0.02793489396572113,
-0.08343946933746338,
0.10482683032751083,
-0.06086035817861557,
-0.14828166365623474,
-0.0489431656897068,
0.10872708261013031,
0.03613218292593956,
0.06136623024940491,
-0.007236347068101168,
0.011740732938051224,
-0.03848370164632797,
-0.09413015842437744,
0.011448164470493793,
-0.015240040607750416,
0.09295953810214996,
0.018390489742159843,
-0.06590814143419266,
-0.009296304546296597,
-0.06577984988689423,
-0.03112478367984295,
0.2024797648191452,
0.2039552628993988,
-0.09624188393354416,
0.027797341346740723,
0.028375063091516495,
-0.07320811599493027,
-0.20633123815059662,
0.04675798490643501,
0.0675080344080925,
0.006287538446485996,
0.02068033255636692,
-0.17913129925727844,
0.131445974111557,
0.09072411060333252,
-0.009309222921729088,
0.10007993876934052,
-0.3283577859401703,
-0.1294780671596527,
0.12426232546567917,
0.14054661989212036,
0.13082371652126312,
-0.13991408050060272,
-0.01884259656071663,
-0.03160578012466431,
-0.11691220104694366,
0.10196135938167572,
-0.0799000933766365,
0.11829624325037003,
-0.033104512840509415,
0.08138609677553177,
0.0016047388780862093,
-0.06211809068918228,
0.10988330841064453,
0.026966195553541183,
0.09635473787784576,
-0.0658794566988945,
-0.029049672186374664,
0.03917498514056206,
-0.03784941881895065,
0.01857183873653412,
-0.08210089802742004,
0.02808363363146782,
-0.10310684889554977,
-0.021249134093523026,
-0.08327429741621017,
0.04250934720039368,
-0.032204851508140564,
-0.04809209704399109,
-0.033662378787994385,
0.016819795593619347,
0.053839270025491714,
-0.014544487930834293,
0.1329784244298935,
0.021230384707450867,
0.15080633759498596,
0.11720656603574753,
0.08012447506189346,
-0.0682801678776741,
-0.05554803088307381,
-0.012830105610191822,
-0.01517587061971426,
0.05632001906633377,
-0.1561805009841919,
0.03249131515622139,
0.14775311946868896,
0.018993157893419266,
0.12852245569229126,
0.08721036463975906,
-0.008069274015724659,
0.0035404551308602095,
0.06969519704580307,
-0.16287648677825928,
-0.0713014304637909,
-0.004204288590699434,
-0.056751105934381485,
-0.09938259422779083,
0.05215727165341377,
0.08013320714235306,
-0.06934516876935959,
-0.013660447672009468,
-0.009408247657120228,
0.0018440276617184281,
-0.06181428208947182,
0.2053852528333664,
0.05863206833600998,
0.04641583934426308,
-0.11246389895677567,
0.07191067188978195,
0.05818420648574829,
-0.08318319171667099,
0.007495964877307415,
0.0838179960846901,
-0.09160830080509186,
-0.0488286130130291,
0.12095886468887329,
0.1675696223974228,
-0.05455131456255913,
-0.045999858528375626,
-0.13454975187778473,
-0.12876708805561066,
0.08639004081487656,
0.16836465895175934,
0.12230107933282852,
0.014557951129972935,
-0.06425745785236359,
0.005502650979906321,
-0.12866181135177612,
0.07713403552770615,
0.04231419786810875,
0.06468465924263,
-0.13372714817523956,
0.17388604581356049,
0.011871619150042534,
0.049746524542570114,
-0.024860983714461327,
0.024486560374498367,
-0.10003884136676788,
0.023265114054083824,
-0.12066227942705154,
-0.019719090312719345,
-0.022415120154619217,
0.007192742545157671,
-0.009050151333212852,
-0.0477185882627964,
-0.05008373409509659,
0.018144994974136353,
-0.12100429087877274,
-0.018079830333590508,
0.023186955600976944,
0.05158894881606102,
-0.11343889683485031,
-0.041305061429739,
0.020123789086937904,
-0.0606292188167572,
0.06160982325673103,
0.05903024598956108,
0.005738450679928064,
0.06813960522413254,
-0.13029153645038605,
-0.006664049345999956,
0.08689263463020325,
0.012299971655011177,
0.0643555074930191,
-0.08576901257038116,
0.0002691706467885524,
0.019402876496315002,
0.06644769757986069,
0.02824874222278595,
0.08019901067018509,
-0.1439761072397232,
0.00519295409321785,
-0.035300713032484055,
-0.07868777215480804,
-0.0700196698307991,
0.033244937658309937,
0.08777879178524017,
0.011421027593314648,
0.19557024538516998,
-0.08154481649398804,
0.037339042872190475,
-0.20450636744499207,
0.0005770482821390033,
-0.020733706653118134,
-0.12170521169900894,
-0.12692277133464813,
-0.06707888096570969,
0.06736958026885986,
-0.04637790098786354,
0.13291417062282562,
0.037012819200754166,
0.04262583702802658,
0.030524609610438347,
-0.012923507019877434,
0.001980635803192854,
0.02689863182604313,
0.21501368284225464,
0.03222443535923958,
-0.03835617005825043,
0.07805454730987549,
0.05698101967573166,
0.10018155723810196,
0.1234179437160492,
0.2013041079044342,
0.1559697389602661,
-0.01445884257555008,
0.09768584370613098,
0.014925622381269932,
-0.04425685107707977,
-0.15720680356025696,
0.037544406950473785,
-0.05594926327466965,
0.100979745388031,
-0.02742409147322178,
0.2040175348520279,
0.05496908724308014,
-0.16594403982162476,
0.05125734582543373,
-0.058352913707494736,
-0.09520746767520905,
-0.10622960329055786,
-0.038642819970846176,
-0.08295217156410217,
-0.1392723172903061,
-0.0015610517002642155,
-0.10798842459917068,
0.014049514196813107,
0.10186319053173065,
0.006197968497872353,
-0.030451109632849693,
0.15748749673366547,
0.03167233243584633,
0.015765748918056488,
0.06951384991407394,
-0.0033967832569032907,
-0.026029767468571663,
-0.10288800299167633,
-0.05673276260495186,
-0.020690133795142174,
-0.014676152728497982,
0.03940350189805031,
-0.05103066936135292,
-0.06474915146827698,
0.040849290788173676,
-0.03221234306693077,
-0.09328248351812363,
0.016166942194104195,
0.02942357212305069,
0.07092206180095673,
0.05982378497719765,
0.01062663085758686,
0.008471602573990822,
-0.012334014289081097,
0.21595078706741333,
-0.07746214419603348,
-0.08995415270328522,
-0.0960998609662056,
0.2740768492221832,
0.057652588933706284,
-0.010026750154793262,
0.03003084845840931,
-0.05917017161846161,
-0.0013757928973063827,
0.2619768977165222,
0.19526983797550201,
-0.07823815941810608,
-0.006640335079282522,
-0.0009600825724191964,
-0.008808005601167679,
-0.007110840640962124,
0.12675118446350098,
0.1532115638256073,
0.049999333918094635,
-0.10532790422439575,
-0.04725150018930435,
-0.05712836608290672,
-0.01558744814246893,
-0.05200648307800293,
0.06447633355855942,
0.03263295069336891,
-0.0029580502305179834,
-0.033312540501356125,
0.062371015548706055,
-0.07146099954843521,
-0.08667363226413727,
0.05185528099536896,
-0.20555222034454346,
-0.15962405502796173,
-0.010813402943313122,
0.10709302127361298,
-0.0004991641617380083,
0.05807570368051529,
-0.019332673400640488,
0.003597373142838478,
0.07214387506246567,
-0.024073613807559013,
-0.08791398257017136,
-0.07068557292222977,
0.09161393344402313,
-0.12329666316509247,
0.17450998723506927,
-0.03908886760473251,
0.07324470579624176,
0.12204049527645111,
0.07692236453294754,
-0.06837611645460129,
0.06050488352775574,
0.026498543098568916,
-0.06461787223815918,
0.0442020520567894,
0.08746451884508133,
-0.031312040984630585,
0.03410092368721962,
0.03558971732854843,
-0.11671197414398193,
0.028274931013584137,
-0.08347763121128082,
-0.046666525304317474,
-0.04506177455186844,
-0.04435454681515694,
-0.055823296308517456,
0.11881238222122192,
0.220828577876091,
-0.023710520938038826,
0.014306100085377693,
-0.07728137075901031,
0.0020072953775525093,
0.04124779999256134,
0.015474149025976658,
-0.08243750780820847,
-0.23606890439987183,
0.005306802690029144,
0.06129783019423485,
-0.020173970609903336,
-0.22315889596939087,
-0.08925675600767136,
-0.0027443773578852415,
-0.07691134512424469,
-0.10195668786764145,
0.08359095454216003,
0.0710597112774849,
0.047202639281749725,
-0.055254314094781876,
-0.0757962018251419,
-0.0774897038936615,
0.15702751278877258,
-0.15081237256526947,
-0.08792164921760559
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6168
- Accuracy: 0.8286
- F1: 0.8887
- Precision: 0.8628
- Recall: 0.9162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.3890 | 0.8110 | 0.8749 | 0.8631 | 0.8871 |
| 0.4535 | 2.0 | 780 | 0.3921 | 0.8439 | 0.8984 | 0.8721 | 0.9264 |
| 0.266 | 3.0 | 1170 | 0.4454 | 0.8415 | 0.8947 | 0.8860 | 0.9034 |
| 0.16 | 4.0 | 1560 | 0.5610 | 0.8427 | 0.8957 | 0.8850 | 0.9067 |
| 0.16 | 5.0 | 1950 | 0.6180 | 0.8488 | 0.9010 | 0.8799 | 0.9231 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_01\_03\_2022-13\_11\_55
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6168
* Accuracy: 0.8286
* F1: 0.8887
* Precision: 0.8628
* Recall: 0.9162
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09892356395721436,
0.06828578561544418,
-0.0018669433193281293,
0.11662468314170837,
0.18159808218479156,
0.01864708960056305,
0.1077749952673912,
0.1236564964056015,
-0.11956749111413956,
0.015575956553220749,
0.12124811857938766,
0.1870347261428833,
0.005007258616387844,
0.11856607347726822,
-0.06337916851043701,
-0.25743356347084045,
-0.0123788146302104,
0.05414464697241783,
-0.06413814425468445,
0.14017942547798157,
0.09716640412807465,
-0.13286736607551575,
0.07636048644781113,
0.004369963891804218,
-0.2301385998725891,
0.010079368017613888,
0.015124987810850143,
-0.06858930736780167,
0.1459932178258896,
0.021547723561525345,
0.1281767636537552,
0.003768098307773471,
0.0768422856926918,
-0.17451612651348114,
0.010082121938467026,
0.0495646595954895,
0.004733002744615078,
0.08508624136447906,
0.05166555941104889,
-0.01551130972802639,
0.12704330682754517,
-0.09535092860460281,
0.053311463445425034,
0.018611349165439606,
-0.12008577585220337,
-0.21967710554599762,
-0.07977542281150818,
0.02423970401287079,
0.07237328588962555,
0.11278099566698074,
-0.0008546730387024581,
0.13555492460727692,
-0.09272836893796921,
0.10032197088003159,
0.2170390486717224,
-0.2859991788864136,
-0.06468649953603745,
0.023037659004330635,
0.005594783462584019,
0.06953819841146469,
-0.10988732427358627,
-0.026469016447663307,
0.05787323787808418,
0.05412770435214043,
0.14022418856620789,
-0.033035337924957275,
-0.1252802163362503,
0.010683293454349041,
-0.14129123091697693,
-0.03434412181377411,
0.13942058384418488,
0.021310027688741684,
-0.029123475775122643,
-0.0486987940967083,
-0.05877148360013962,
-0.15980865061283112,
-0.04394703358411789,
-0.006772208027541637,
0.04155817627906799,
-0.03365162014961243,
-0.05464443564414978,
0.008549241349101067,
-0.10955806821584702,
-0.060651227831840515,
-0.07827972620725632,
0.14447318017482758,
0.04015294462442398,
0.01026794221252203,
-0.038606882095336914,
0.10573375225067139,
0.02322809398174286,
-0.1340928077697754,
0.026355043053627014,
0.02750086970627308,
0.009415841661393642,
-0.0523519404232502,
-0.07262396067380905,
-0.06396599113941193,
0.004224840551614761,
0.10917910933494568,
-0.06432180106639862,
0.05409908667206764,
0.022191105410456657,
0.041704606264829636,
-0.097503662109375,
0.193377286195755,
-0.022109637036919594,
-0.0008275578147731721,
0.01601167768239975,
0.03949899226427078,
0.0077890874817967415,
-0.008044997230172157,
-0.11617852002382278,
0.0006396729149855673,
0.11642380803823471,
0.017610257491469383,
-0.0745861753821373,
0.07679497450590134,
-0.049077197909355164,
-0.020653853192925453,
0.018902581185102463,
-0.10394029319286346,
0.03500066325068474,
-0.0024838983081281185,
-0.08230633288621902,
-0.011067385785281658,
0.030534133315086365,
0.01006010640412569,
-0.03800736740231514,
0.11940915882587433,
-0.07694396376609802,
0.0448591411113739,
-0.10005740821361542,
-0.10639902204275131,
0.018132183700799942,
-0.0765577033162117,
0.024950681254267693,
-0.10552388429641724,
-0.15836301445960999,
-0.019717806950211525,
0.056400056928396225,
-0.0221269354224205,
-0.05596224591135979,
-0.05399803817272186,
-0.07463804632425308,
0.017420999705791473,
-0.019021011888980865,
0.1459519863128662,
-0.05853498354554176,
0.10951010137796402,
0.0400451235473156,
0.06624731421470642,
-0.052160341292619705,
0.06250672787427902,
-0.09771274775266647,
-0.001973402453586459,
-0.19403761625289917,
0.05398593097925186,
-0.044428810477256775,
0.08296746015548706,
-0.087582528591156,
-0.1165587529540062,
0.013045201078057289,
-0.004885385744273663,
0.07053527235984802,
0.09173068404197693,
-0.16152863204479218,
-0.07746971398591995,
0.15776920318603516,
-0.06818390637636185,
-0.11037921160459518,
0.11139746755361557,
-0.0621139332652092,
0.05257800966501236,
0.0838426873087883,
0.16470400989055634,
0.07702379673719406,
-0.06806129962205887,
0.022950299084186554,
0.0034466285724192858,
0.04275607690215111,
-0.08360697329044342,
0.05166235566139221,
0.01098666898906231,
-0.007351338863372803,
0.03887256234884262,
-0.01938772015273571,
0.06898655742406845,
-0.0909404531121254,
-0.09261903911828995,
-0.04595122113823891,
-0.09410391747951508,
0.047451701015233994,
0.08138851821422577,
0.0966312363743782,
-0.0937415361404419,
-0.06763112545013428,
0.08115442842245102,
0.07039292901754379,
-0.06213019788265228,
0.03735671564936638,
-0.05408628284931183,
0.057275496423244476,
-0.02803077921271324,
-0.01772673800587654,
-0.20710813999176025,
0.005971471779048443,
0.0060882847756147385,
0.010014637373387814,
0.017311561852693558,
0.0067389970645308495,
0.06962665915489197,
0.047385502606630325,
-0.05749650299549103,
-0.013798011466860771,
-0.006806382909417152,
-0.008036812767386436,
-0.14051027595996857,
-0.1855926364660263,
-0.01527104526758194,
-0.02072557620704174,
0.11601945012807846,
-0.19640138745307922,
0.03834466263651848,
-0.011339114978909492,
0.06466999650001526,
-0.003308930667117238,
-0.0007656294037587941,
-0.04403923824429512,
0.0902370885014534,
-0.0351264514029026,
-0.044334955513477325,
0.08074035495519638,
0.010333183221518993,
-0.08137381076812744,
-0.03814482316374779,
-0.09104716777801514,
0.16723378002643585,
0.14520220458507538,
-0.12682783603668213,
-0.08113718777894974,
-0.005393319763243198,
-0.05767086520791054,
-0.029646776616573334,
-0.03840647637844086,
0.046802859753370285,
0.1908678263425827,
-0.015552831813693047,
0.16186435520648956,
-0.06937813013792038,
-0.052661117166280746,
0.02135862596333027,
-0.030524151399731636,
0.032876960933208466,
0.12023788690567017,
0.1086682379245758,
-0.08496463298797607,
0.14000055193901062,
0.1484859138727188,
-0.10090513527393341,
0.12248250097036362,
-0.046659503132104874,
-0.0625375509262085,
-0.002917378442361951,
-0.0179485771805048,
-0.00038107408909127116,
0.07473159581422806,
-0.1420665830373764,
-0.00997298676520586,
0.01950932666659355,
0.024260401725769043,
0.027566473931074142,
-0.22595006227493286,
-0.03122752532362938,
0.026482241228222847,
-0.035714615136384964,
-0.012177844531834126,
-0.017066774889826775,
0.01154145784676075,
0.10733138024806976,
-0.000010914245649473742,
-0.08027346432209015,
0.045453913509845734,
0.00695415772497654,
-0.0864105224609375,
0.22422701120376587,
-0.09332414716482162,
-0.16965292394161224,
-0.11802548915147781,
-0.08080240339040756,
-0.03565260395407677,
0.008362879045307636,
0.0658731609582901,
-0.1007581353187561,
-0.026165567338466644,
-0.05259951949119568,
0.012389592826366425,
-0.003503688145428896,
0.04259806126356125,
0.012791539542376995,
0.008192860521376133,
0.06915899366140366,
-0.10861200839281082,
-0.012052717618644238,
-0.05454942211508751,
-0.05296964943408966,
0.055032018572092056,
0.028820164501667023,
0.10430888831615448,
0.16431492567062378,
-0.026906028389930725,
0.01158151961863041,
-0.03465733304619789,
0.2229580134153366,
-0.06583850085735321,
-0.0314316488802433,
0.13388092815876007,
-0.005553050898015499,
0.05396491289138794,
0.10450905561447144,
0.0680980458855629,
-0.09060895442962646,
0.01563413254916668,
0.019022764638066292,
-0.03658035397529602,
-0.2310389280319214,
-0.05534845590591431,
-0.06264391541481018,
-0.02878793701529503,
0.0987526923418045,
0.029812267050147057,
0.05121267959475517,
0.06579340994358063,
0.04484053701162338,
0.08992094546556473,
-0.034772247076034546,
0.053050968796014786,
0.12805399298667908,
0.0479956790804863,
0.1262262612581253,
-0.05303249508142471,
-0.06866279989480972,
0.029458897188305855,
-0.025675391778349876,
0.22069427371025085,
0.0021210352424532175,
0.11999083310365677,
0.05211194232106209,
0.17592455446720123,
0.007590819150209427,
0.09240149706602097,
-0.0032449911814182997,
-0.04521207883954048,
-0.005303115118294954,
-0.037717629224061966,
-0.04979989305138588,
0.013416139408946037,
-0.07315313816070557,
0.04968646913766861,
-0.125452920794487,
-0.014608497731387615,
0.05684986710548401,
0.255770206451416,
0.023599911481142044,
-0.32791459560394287,
-0.08584330230951309,
-0.0002580628788564354,
-0.03924960643053055,
-0.02624484710395336,
0.02051556669175625,
0.07859232276678085,
-0.09820344299077988,
0.03648009151220322,
-0.069453164935112,
0.09933728724718094,
-0.04304727911949158,
0.0462537445127964,
0.06534399092197418,
0.07562147825956345,
0.01288361195474863,
0.08438948541879654,
-0.3329317569732666,
0.26656001806259155,
0.002188591519370675,
0.07582922279834747,
-0.08609799295663834,
0.0018146632937714458,
0.032578688114881516,
0.07062642276287079,
0.05769859999418259,
-0.015698282048106194,
-0.04169844463467598,
-0.18409718573093414,
-0.05456647649407387,
0.030208522453904152,
0.08682730048894882,
-0.011477028951048851,
0.08360619097948074,
-0.026448648422956467,
0.006844181567430496,
0.07626580446958542,
-0.0430176705121994,
-0.050258126109838486,
-0.10242374241352081,
-0.014593346044421196,
0.024269593879580498,
-0.040319912135601044,
-0.05641968548297882,
-0.11596956849098206,
-0.12480363994836807,
0.1552482694387436,
-0.018240060657262802,
-0.0418098084628582,
-0.11314183473587036,
0.08736852556467056,
0.06727200001478195,
-0.08643344044685364,
0.05189736187458038,
0.005892945919185877,
0.05982488393783569,
0.02793489396572113,
-0.08343946933746338,
0.10482683032751083,
-0.06086035817861557,
-0.14828166365623474,
-0.0489431656897068,
0.10872708261013031,
0.03613218292593956,
0.06136623024940491,
-0.007236347068101168,
0.011740732938051224,
-0.03848370164632797,
-0.09413015842437744,
0.011448164470493793,
-0.015240040607750416,
0.09295953810214996,
0.018390489742159843,
-0.06590814143419266,
-0.009296304546296597,
-0.06577984988689423,
-0.03112478367984295,
0.2024797648191452,
0.2039552628993988,
-0.09624188393354416,
0.027797341346740723,
0.028375063091516495,
-0.07320811599493027,
-0.20633123815059662,
0.04675798490643501,
0.0675080344080925,
0.006287538446485996,
0.02068033255636692,
-0.17913129925727844,
0.131445974111557,
0.09072411060333252,
-0.009309222921729088,
0.10007993876934052,
-0.3283577859401703,
-0.1294780671596527,
0.12426232546567917,
0.14054661989212036,
0.13082371652126312,
-0.13991408050060272,
-0.01884259656071663,
-0.03160578012466431,
-0.11691220104694366,
0.10196135938167572,
-0.0799000933766365,
0.11829624325037003,
-0.033104512840509415,
0.08138609677553177,
0.0016047388780862093,
-0.06211809068918228,
0.10988330841064453,
0.026966195553541183,
0.09635473787784576,
-0.0658794566988945,
-0.029049672186374664,
0.03917498514056206,
-0.03784941881895065,
0.01857183873653412,
-0.08210089802742004,
0.02808363363146782,
-0.10310684889554977,
-0.021249134093523026,
-0.08327429741621017,
0.04250934720039368,
-0.032204851508140564,
-0.04809209704399109,
-0.033662378787994385,
0.016819795593619347,
0.053839270025491714,
-0.014544487930834293,
0.1329784244298935,
0.021230384707450867,
0.15080633759498596,
0.11720656603574753,
0.08012447506189346,
-0.0682801678776741,
-0.05554803088307381,
-0.012830105610191822,
-0.01517587061971426,
0.05632001906633377,
-0.1561805009841919,
0.03249131515622139,
0.14775311946868896,
0.018993157893419266,
0.12852245569229126,
0.08721036463975906,
-0.008069274015724659,
0.0035404551308602095,
0.06969519704580307,
-0.16287648677825928,
-0.0713014304637909,
-0.004204288590699434,
-0.056751105934381485,
-0.09938259422779083,
0.05215727165341377,
0.08013320714235306,
-0.06934516876935959,
-0.013660447672009468,
-0.009408247657120228,
0.0018440276617184281,
-0.06181428208947182,
0.2053852528333664,
0.05863206833600998,
0.04641583934426308,
-0.11246389895677567,
0.07191067188978195,
0.05818420648574829,
-0.08318319171667099,
0.007495964877307415,
0.0838179960846901,
-0.09160830080509186,
-0.0488286130130291,
0.12095886468887329,
0.1675696223974228,
-0.05455131456255913,
-0.045999858528375626,
-0.13454975187778473,
-0.12876708805561066,
0.08639004081487656,
0.16836465895175934,
0.12230107933282852,
0.014557951129972935,
-0.06425745785236359,
0.005502650979906321,
-0.12866181135177612,
0.07713403552770615,
0.04231419786810875,
0.06468465924263,
-0.13372714817523956,
0.17388604581356049,
0.011871619150042534,
0.049746524542570114,
-0.024860983714461327,
0.024486560374498367,
-0.10003884136676788,
0.023265114054083824,
-0.12066227942705154,
-0.019719090312719345,
-0.022415120154619217,
0.007192742545157671,
-0.009050151333212852,
-0.0477185882627964,
-0.05008373409509659,
0.018144994974136353,
-0.12100429087877274,
-0.018079830333590508,
0.023186955600976944,
0.05158894881606102,
-0.11343889683485031,
-0.041305061429739,
0.020123789086937904,
-0.0606292188167572,
0.06160982325673103,
0.05903024598956108,
0.005738450679928064,
0.06813960522413254,
-0.13029153645038605,
-0.006664049345999956,
0.08689263463020325,
0.012299971655011177,
0.0643555074930191,
-0.08576901257038116,
0.0002691706467885524,
0.019402876496315002,
0.06644769757986069,
0.02824874222278595,
0.08019901067018509,
-0.1439761072397232,
0.00519295409321785,
-0.035300713032484055,
-0.07868777215480804,
-0.0700196698307991,
0.033244937658309937,
0.08777879178524017,
0.011421027593314648,
0.19557024538516998,
-0.08154481649398804,
0.037339042872190475,
-0.20450636744499207,
0.0005770482821390033,
-0.020733706653118134,
-0.12170521169900894,
-0.12692277133464813,
-0.06707888096570969,
0.06736958026885986,
-0.04637790098786354,
0.13291417062282562,
0.037012819200754166,
0.04262583702802658,
0.030524609610438347,
-0.012923507019877434,
0.001980635803192854,
0.02689863182604313,
0.21501368284225464,
0.03222443535923958,
-0.03835617005825043,
0.07805454730987549,
0.05698101967573166,
0.10018155723810196,
0.1234179437160492,
0.2013041079044342,
0.1559697389602661,
-0.01445884257555008,
0.09768584370613098,
0.014925622381269932,
-0.04425685107707977,
-0.15720680356025696,
0.037544406950473785,
-0.05594926327466965,
0.100979745388031,
-0.02742409147322178,
0.2040175348520279,
0.05496908724308014,
-0.16594403982162476,
0.05125734582543373,
-0.058352913707494736,
-0.09520746767520905,
-0.10622960329055786,
-0.038642819970846176,
-0.08295217156410217,
-0.1392723172903061,
-0.0015610517002642155,
-0.10798842459917068,
0.014049514196813107,
0.10186319053173065,
0.006197968497872353,
-0.030451109632849693,
0.15748749673366547,
0.03167233243584633,
0.015765748918056488,
0.06951384991407394,
-0.0033967832569032907,
-0.026029767468571663,
-0.10288800299167633,
-0.05673276260495186,
-0.020690133795142174,
-0.014676152728497982,
0.03940350189805031,
-0.05103066936135292,
-0.06474915146827698,
0.040849290788173676,
-0.03221234306693077,
-0.09328248351812363,
0.016166942194104195,
0.02942357212305069,
0.07092206180095673,
0.05982378497719765,
0.01062663085758686,
0.008471602573990822,
-0.012334014289081097,
0.21595078706741333,
-0.07746214419603348,
-0.08995415270328522,
-0.0960998609662056,
0.2740768492221832,
0.057652588933706284,
-0.010026750154793262,
0.03003084845840931,
-0.05917017161846161,
-0.0013757928973063827,
0.2619768977165222,
0.19526983797550201,
-0.07823815941810608,
-0.006640335079282522,
-0.0009600825724191964,
-0.008808005601167679,
-0.007110840640962124,
0.12675118446350098,
0.1532115638256073,
0.049999333918094635,
-0.10532790422439575,
-0.04725150018930435,
-0.05712836608290672,
-0.01558744814246893,
-0.05200648307800293,
0.06447633355855942,
0.03263295069336891,
-0.0029580502305179834,
-0.033312540501356125,
0.062371015548706055,
-0.07146099954843521,
-0.08667363226413727,
0.05185528099536896,
-0.20555222034454346,
-0.15962405502796173,
-0.010813402943313122,
0.10709302127361298,
-0.0004991641617380083,
0.05807570368051529,
-0.019332673400640488,
0.003597373142838478,
0.07214387506246567,
-0.024073613807559013,
-0.08791398257017136,
-0.07068557292222977,
0.09161393344402313,
-0.12329666316509247,
0.17450998723506927,
-0.03908886760473251,
0.07324470579624176,
0.12204049527645111,
0.07692236453294754,
-0.06837611645460129,
0.06050488352775574,
0.026498543098568916,
-0.06461787223815918,
0.0442020520567894,
0.08746451884508133,
-0.031312040984630585,
0.03410092368721962,
0.03558971732854843,
-0.11671197414398193,
0.028274931013584137,
-0.08347763121128082,
-0.046666525304317474,
-0.04506177455186844,
-0.04435454681515694,
-0.055823296308517456,
0.11881238222122192,
0.220828577876091,
-0.023710520938038826,
0.014306100085377693,
-0.07728137075901031,
0.0020072953775525093,
0.04124779999256134,
0.015474149025976658,
-0.08243750780820847,
-0.23606890439987183,
0.005306802690029144,
0.06129783019423485,
-0.020173970609903336,
-0.22315889596939087,
-0.08925675600767136,
-0.0027443773578852415,
-0.07691134512424469,
-0.10195668786764145,
0.08359095454216003,
0.0710597112774849,
0.047202639281749725,
-0.055254314094781876,
-0.0757962018251419,
-0.0774897038936615,
0.15702751278877258,
-0.15081237256526947,
-0.08792164921760559
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4345
- Accuracy: 0.8321
- F1: 0.8904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3922 | 0.8061 | 0.8747 |
| No log | 2.0 | 390 | 0.3764 | 0.8171 | 0.8837 |
| 0.4074 | 3.0 | 585 | 0.3873 | 0.8220 | 0.8843 |
| 0.4074 | 4.0 | 780 | 0.4361 | 0.8232 | 0.8854 |
| 0.4074 | 5.0 | 975 | 0.4555 | 0.8159 | 0.8793 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_26\_02\_2022-03\_57\_45
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4345
* Accuracy: 0.8321
* F1: 0.8904
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5002
- Accuracy: 0.8103
- F1: 0.8764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4178 | 0.7963 | 0.8630 |
| No log | 2.0 | 390 | 0.3935 | 0.8061 | 0.8770 |
| 0.4116 | 3.0 | 585 | 0.4037 | 0.8085 | 0.8735 |
| 0.4116 | 4.0 | 780 | 0.4696 | 0.8146 | 0.8796 |
| 0.4116 | 5.0 | 975 | 0.4849 | 0.8207 | 0.8823 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-17\_27\_47
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5002
* Accuracy: 0.8103
* F1: 0.8764
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4917
- Accuracy: 0.8231
- F1: 0.8833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3883 | 0.8146 | 0.8833 |
| No log | 2.0 | 390 | 0.3607 | 0.8390 | 0.8964 |
| 0.4085 | 3.0 | 585 | 0.3812 | 0.8488 | 0.9042 |
| 0.4085 | 4.0 | 780 | 0.3977 | 0.8549 | 0.9077 |
| 0.4085 | 5.0 | 975 | 0.4233 | 0.8573 | 0.9092 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-19\_05\_42
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4917
* Accuracy: 0.8231
* F1: 0.8833
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4638
- Accuracy: 0.8247
- F1: 0.8867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4069 | 0.7976 | 0.875 |
| No log | 2.0 | 390 | 0.4061 | 0.8134 | 0.8838 |
| 0.4074 | 3.0 | 585 | 0.4075 | 0.8134 | 0.8798 |
| 0.4074 | 4.0 | 780 | 0.4746 | 0.8256 | 0.8885 |
| 0.4074 | 5.0 | 975 | 0.4881 | 0.8220 | 0.8845 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_all\_27\_02\_2022-22\_25\_09
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4638
* Accuracy: 0.8247
* F1: 0.8867
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0914
- Accuracy: 0.9746
- F1: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0501 | 0.9828 | 0.9913 |
| No log | 2.0 | 208 | 0.0435 | 0.9828 | 0.9913 |
| No log | 3.0 | 312 | 0.0414 | 0.9828 | 0.9913 |
| No log | 4.0 | 416 | 0.0424 | 0.9799 | 0.9898 |
| 0.0547 | 5.0 | 520 | 0.0482 | 0.9828 | 0.9913 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_editorials\_27\_02\_2022-19\_38\_42
=====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0914
* Accuracy: 0.9746
* F1: 0.9870
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3455
- Accuracy: 0.8609
- F1: 0.9156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4468 | 0.8235 | 0.8929 |
| No log | 2.0 | 162 | 0.4497 | 0.8382 | 0.9 |
| No log | 3.0 | 243 | 0.4861 | 0.8309 | 0.8940 |
| No log | 4.0 | 324 | 0.5087 | 0.8235 | 0.8879 |
| No log | 5.0 | 405 | 0.5228 | 0.8199 | 0.8858 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_essays\_27\_02\_2022-19\_30\_22
=================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3455
* Accuracy: 0.8609
* F1: 0.9156
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7224
- Accuracy: 0.6979
- F1: 0.4736
- Precision: 0.5074
- Recall: 0.4440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 95 | 0.6009 | 0.65 | 0.2222 | 0.625 | 0.1351 |
| No log | 2.0 | 190 | 0.6140 | 0.675 | 0.3689 | 0.6552 | 0.2568 |
| No log | 3.0 | 285 | 0.6580 | 0.67 | 0.4590 | 0.5833 | 0.3784 |
| No log | 4.0 | 380 | 0.7560 | 0.665 | 0.4806 | 0.5636 | 0.4189 |
| No log | 5.0 | 475 | 0.8226 | 0.665 | 0.464 | 0.5686 | 0.3919 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_01\_03\_2022-13\_17\_55
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7224
* Accuracy: 0.6979
* F1: 0.4736
* Precision: 0.5074
* Recall: 0.4440
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09892356395721436,
0.06828578561544418,
-0.0018669433193281293,
0.11662468314170837,
0.18159808218479156,
0.01864708960056305,
0.1077749952673912,
0.1236564964056015,
-0.11956749111413956,
0.015575956553220749,
0.12124811857938766,
0.1870347261428833,
0.005007258616387844,
0.11856607347726822,
-0.06337916851043701,
-0.25743356347084045,
-0.0123788146302104,
0.05414464697241783,
-0.06413814425468445,
0.14017942547798157,
0.09716640412807465,
-0.13286736607551575,
0.07636048644781113,
0.004369963891804218,
-0.2301385998725891,
0.010079368017613888,
0.015124987810850143,
-0.06858930736780167,
0.1459932178258896,
0.021547723561525345,
0.1281767636537552,
0.003768098307773471,
0.0768422856926918,
-0.17451612651348114,
0.010082121938467026,
0.0495646595954895,
0.004733002744615078,
0.08508624136447906,
0.05166555941104889,
-0.01551130972802639,
0.12704330682754517,
-0.09535092860460281,
0.053311463445425034,
0.018611349165439606,
-0.12008577585220337,
-0.21967710554599762,
-0.07977542281150818,
0.02423970401287079,
0.07237328588962555,
0.11278099566698074,
-0.0008546730387024581,
0.13555492460727692,
-0.09272836893796921,
0.10032197088003159,
0.2170390486717224,
-0.2859991788864136,
-0.06468649953603745,
0.023037659004330635,
0.005594783462584019,
0.06953819841146469,
-0.10988732427358627,
-0.026469016447663307,
0.05787323787808418,
0.05412770435214043,
0.14022418856620789,
-0.033035337924957275,
-0.1252802163362503,
0.010683293454349041,
-0.14129123091697693,
-0.03434412181377411,
0.13942058384418488,
0.021310027688741684,
-0.029123475775122643,
-0.0486987940967083,
-0.05877148360013962,
-0.15980865061283112,
-0.04394703358411789,
-0.006772208027541637,
0.04155817627906799,
-0.03365162014961243,
-0.05464443564414978,
0.008549241349101067,
-0.10955806821584702,
-0.060651227831840515,
-0.07827972620725632,
0.14447318017482758,
0.04015294462442398,
0.01026794221252203,
-0.038606882095336914,
0.10573375225067139,
0.02322809398174286,
-0.1340928077697754,
0.026355043053627014,
0.02750086970627308,
0.009415841661393642,
-0.0523519404232502,
-0.07262396067380905,
-0.06396599113941193,
0.004224840551614761,
0.10917910933494568,
-0.06432180106639862,
0.05409908667206764,
0.022191105410456657,
0.041704606264829636,
-0.097503662109375,
0.193377286195755,
-0.022109637036919594,
-0.0008275578147731721,
0.01601167768239975,
0.03949899226427078,
0.0077890874817967415,
-0.008044997230172157,
-0.11617852002382278,
0.0006396729149855673,
0.11642380803823471,
0.017610257491469383,
-0.0745861753821373,
0.07679497450590134,
-0.049077197909355164,
-0.020653853192925453,
0.018902581185102463,
-0.10394029319286346,
0.03500066325068474,
-0.0024838983081281185,
-0.08230633288621902,
-0.011067385785281658,
0.030534133315086365,
0.01006010640412569,
-0.03800736740231514,
0.11940915882587433,
-0.07694396376609802,
0.0448591411113739,
-0.10005740821361542,
-0.10639902204275131,
0.018132183700799942,
-0.0765577033162117,
0.024950681254267693,
-0.10552388429641724,
-0.15836301445960999,
-0.019717806950211525,
0.056400056928396225,
-0.0221269354224205,
-0.05596224591135979,
-0.05399803817272186,
-0.07463804632425308,
0.017420999705791473,
-0.019021011888980865,
0.1459519863128662,
-0.05853498354554176,
0.10951010137796402,
0.0400451235473156,
0.06624731421470642,
-0.052160341292619705,
0.06250672787427902,
-0.09771274775266647,
-0.001973402453586459,
-0.19403761625289917,
0.05398593097925186,
-0.044428810477256775,
0.08296746015548706,
-0.087582528591156,
-0.1165587529540062,
0.013045201078057289,
-0.004885385744273663,
0.07053527235984802,
0.09173068404197693,
-0.16152863204479218,
-0.07746971398591995,
0.15776920318603516,
-0.06818390637636185,
-0.11037921160459518,
0.11139746755361557,
-0.0621139332652092,
0.05257800966501236,
0.0838426873087883,
0.16470400989055634,
0.07702379673719406,
-0.06806129962205887,
0.022950299084186554,
0.0034466285724192858,
0.04275607690215111,
-0.08360697329044342,
0.05166235566139221,
0.01098666898906231,
-0.007351338863372803,
0.03887256234884262,
-0.01938772015273571,
0.06898655742406845,
-0.0909404531121254,
-0.09261903911828995,
-0.04595122113823891,
-0.09410391747951508,
0.047451701015233994,
0.08138851821422577,
0.0966312363743782,
-0.0937415361404419,
-0.06763112545013428,
0.08115442842245102,
0.07039292901754379,
-0.06213019788265228,
0.03735671564936638,
-0.05408628284931183,
0.057275496423244476,
-0.02803077921271324,
-0.01772673800587654,
-0.20710813999176025,
0.005971471779048443,
0.0060882847756147385,
0.010014637373387814,
0.017311561852693558,
0.0067389970645308495,
0.06962665915489197,
0.047385502606630325,
-0.05749650299549103,
-0.013798011466860771,
-0.006806382909417152,
-0.008036812767386436,
-0.14051027595996857,
-0.1855926364660263,
-0.01527104526758194,
-0.02072557620704174,
0.11601945012807846,
-0.19640138745307922,
0.03834466263651848,
-0.011339114978909492,
0.06466999650001526,
-0.003308930667117238,
-0.0007656294037587941,
-0.04403923824429512,
0.0902370885014534,
-0.0351264514029026,
-0.044334955513477325,
0.08074035495519638,
0.010333183221518993,
-0.08137381076812744,
-0.03814482316374779,
-0.09104716777801514,
0.16723378002643585,
0.14520220458507538,
-0.12682783603668213,
-0.08113718777894974,
-0.005393319763243198,
-0.05767086520791054,
-0.029646776616573334,
-0.03840647637844086,
0.046802859753370285,
0.1908678263425827,
-0.015552831813693047,
0.16186435520648956,
-0.06937813013792038,
-0.052661117166280746,
0.02135862596333027,
-0.030524151399731636,
0.032876960933208466,
0.12023788690567017,
0.1086682379245758,
-0.08496463298797607,
0.14000055193901062,
0.1484859138727188,
-0.10090513527393341,
0.12248250097036362,
-0.046659503132104874,
-0.0625375509262085,
-0.002917378442361951,
-0.0179485771805048,
-0.00038107408909127116,
0.07473159581422806,
-0.1420665830373764,
-0.00997298676520586,
0.01950932666659355,
0.024260401725769043,
0.027566473931074142,
-0.22595006227493286,
-0.03122752532362938,
0.026482241228222847,
-0.035714615136384964,
-0.012177844531834126,
-0.017066774889826775,
0.01154145784676075,
0.10733138024806976,
-0.000010914245649473742,
-0.08027346432209015,
0.045453913509845734,
0.00695415772497654,
-0.0864105224609375,
0.22422701120376587,
-0.09332414716482162,
-0.16965292394161224,
-0.11802548915147781,
-0.08080240339040756,
-0.03565260395407677,
0.008362879045307636,
0.0658731609582901,
-0.1007581353187561,
-0.026165567338466644,
-0.05259951949119568,
0.012389592826366425,
-0.003503688145428896,
0.04259806126356125,
0.012791539542376995,
0.008192860521376133,
0.06915899366140366,
-0.10861200839281082,
-0.012052717618644238,
-0.05454942211508751,
-0.05296964943408966,
0.055032018572092056,
0.028820164501667023,
0.10430888831615448,
0.16431492567062378,
-0.026906028389930725,
0.01158151961863041,
-0.03465733304619789,
0.2229580134153366,
-0.06583850085735321,
-0.0314316488802433,
0.13388092815876007,
-0.005553050898015499,
0.05396491289138794,
0.10450905561447144,
0.0680980458855629,
-0.09060895442962646,
0.01563413254916668,
0.019022764638066292,
-0.03658035397529602,
-0.2310389280319214,
-0.05534845590591431,
-0.06264391541481018,
-0.02878793701529503,
0.0987526923418045,
0.029812267050147057,
0.05121267959475517,
0.06579340994358063,
0.04484053701162338,
0.08992094546556473,
-0.034772247076034546,
0.053050968796014786,
0.12805399298667908,
0.0479956790804863,
0.1262262612581253,
-0.05303249508142471,
-0.06866279989480972,
0.029458897188305855,
-0.025675391778349876,
0.22069427371025085,
0.0021210352424532175,
0.11999083310365677,
0.05211194232106209,
0.17592455446720123,
0.007590819150209427,
0.09240149706602097,
-0.0032449911814182997,
-0.04521207883954048,
-0.005303115118294954,
-0.037717629224061966,
-0.04979989305138588,
0.013416139408946037,
-0.07315313816070557,
0.04968646913766861,
-0.125452920794487,
-0.014608497731387615,
0.05684986710548401,
0.255770206451416,
0.023599911481142044,
-0.32791459560394287,
-0.08584330230951309,
-0.0002580628788564354,
-0.03924960643053055,
-0.02624484710395336,
0.02051556669175625,
0.07859232276678085,
-0.09820344299077988,
0.03648009151220322,
-0.069453164935112,
0.09933728724718094,
-0.04304727911949158,
0.0462537445127964,
0.06534399092197418,
0.07562147825956345,
0.01288361195474863,
0.08438948541879654,
-0.3329317569732666,
0.26656001806259155,
0.002188591519370675,
0.07582922279834747,
-0.08609799295663834,
0.0018146632937714458,
0.032578688114881516,
0.07062642276287079,
0.05769859999418259,
-0.015698282048106194,
-0.04169844463467598,
-0.18409718573093414,
-0.05456647649407387,
0.030208522453904152,
0.08682730048894882,
-0.011477028951048851,
0.08360619097948074,
-0.026448648422956467,
0.006844181567430496,
0.07626580446958542,
-0.0430176705121994,
-0.050258126109838486,
-0.10242374241352081,
-0.014593346044421196,
0.024269593879580498,
-0.040319912135601044,
-0.05641968548297882,
-0.11596956849098206,
-0.12480363994836807,
0.1552482694387436,
-0.018240060657262802,
-0.0418098084628582,
-0.11314183473587036,
0.08736852556467056,
0.06727200001478195,
-0.08643344044685364,
0.05189736187458038,
0.005892945919185877,
0.05982488393783569,
0.02793489396572113,
-0.08343946933746338,
0.10482683032751083,
-0.06086035817861557,
-0.14828166365623474,
-0.0489431656897068,
0.10872708261013031,
0.03613218292593956,
0.06136623024940491,
-0.007236347068101168,
0.011740732938051224,
-0.03848370164632797,
-0.09413015842437744,
0.011448164470493793,
-0.015240040607750416,
0.09295953810214996,
0.018390489742159843,
-0.06590814143419266,
-0.009296304546296597,
-0.06577984988689423,
-0.03112478367984295,
0.2024797648191452,
0.2039552628993988,
-0.09624188393354416,
0.027797341346740723,
0.028375063091516495,
-0.07320811599493027,
-0.20633123815059662,
0.04675798490643501,
0.0675080344080925,
0.006287538446485996,
0.02068033255636692,
-0.17913129925727844,
0.131445974111557,
0.09072411060333252,
-0.009309222921729088,
0.10007993876934052,
-0.3283577859401703,
-0.1294780671596527,
0.12426232546567917,
0.14054661989212036,
0.13082371652126312,
-0.13991408050060272,
-0.01884259656071663,
-0.03160578012466431,
-0.11691220104694366,
0.10196135938167572,
-0.0799000933766365,
0.11829624325037003,
-0.033104512840509415,
0.08138609677553177,
0.0016047388780862093,
-0.06211809068918228,
0.10988330841064453,
0.026966195553541183,
0.09635473787784576,
-0.0658794566988945,
-0.029049672186374664,
0.03917498514056206,
-0.03784941881895065,
0.01857183873653412,
-0.08210089802742004,
0.02808363363146782,
-0.10310684889554977,
-0.021249134093523026,
-0.08327429741621017,
0.04250934720039368,
-0.032204851508140564,
-0.04809209704399109,
-0.033662378787994385,
0.016819795593619347,
0.053839270025491714,
-0.014544487930834293,
0.1329784244298935,
0.021230384707450867,
0.15080633759498596,
0.11720656603574753,
0.08012447506189346,
-0.0682801678776741,
-0.05554803088307381,
-0.012830105610191822,
-0.01517587061971426,
0.05632001906633377,
-0.1561805009841919,
0.03249131515622139,
0.14775311946868896,
0.018993157893419266,
0.12852245569229126,
0.08721036463975906,
-0.008069274015724659,
0.0035404551308602095,
0.06969519704580307,
-0.16287648677825928,
-0.0713014304637909,
-0.004204288590699434,
-0.056751105934381485,
-0.09938259422779083,
0.05215727165341377,
0.08013320714235306,
-0.06934516876935959,
-0.013660447672009468,
-0.009408247657120228,
0.0018440276617184281,
-0.06181428208947182,
0.2053852528333664,
0.05863206833600998,
0.04641583934426308,
-0.11246389895677567,
0.07191067188978195,
0.05818420648574829,
-0.08318319171667099,
0.007495964877307415,
0.0838179960846901,
-0.09160830080509186,
-0.0488286130130291,
0.12095886468887329,
0.1675696223974228,
-0.05455131456255913,
-0.045999858528375626,
-0.13454975187778473,
-0.12876708805561066,
0.08639004081487656,
0.16836465895175934,
0.12230107933282852,
0.014557951129972935,
-0.06425745785236359,
0.005502650979906321,
-0.12866181135177612,
0.07713403552770615,
0.04231419786810875,
0.06468465924263,
-0.13372714817523956,
0.17388604581356049,
0.011871619150042534,
0.049746524542570114,
-0.024860983714461327,
0.024486560374498367,
-0.10003884136676788,
0.023265114054083824,
-0.12066227942705154,
-0.019719090312719345,
-0.022415120154619217,
0.007192742545157671,
-0.009050151333212852,
-0.0477185882627964,
-0.05008373409509659,
0.018144994974136353,
-0.12100429087877274,
-0.018079830333590508,
0.023186955600976944,
0.05158894881606102,
-0.11343889683485031,
-0.041305061429739,
0.020123789086937904,
-0.0606292188167572,
0.06160982325673103,
0.05903024598956108,
0.005738450679928064,
0.06813960522413254,
-0.13029153645038605,
-0.006664049345999956,
0.08689263463020325,
0.012299971655011177,
0.0643555074930191,
-0.08576901257038116,
0.0002691706467885524,
0.019402876496315002,
0.06644769757986069,
0.02824874222278595,
0.08019901067018509,
-0.1439761072397232,
0.00519295409321785,
-0.035300713032484055,
-0.07868777215480804,
-0.0700196698307991,
0.033244937658309937,
0.08777879178524017,
0.011421027593314648,
0.19557024538516998,
-0.08154481649398804,
0.037339042872190475,
-0.20450636744499207,
0.0005770482821390033,
-0.020733706653118134,
-0.12170521169900894,
-0.12692277133464813,
-0.06707888096570969,
0.06736958026885986,
-0.04637790098786354,
0.13291417062282562,
0.037012819200754166,
0.04262583702802658,
0.030524609610438347,
-0.012923507019877434,
0.001980635803192854,
0.02689863182604313,
0.21501368284225464,
0.03222443535923958,
-0.03835617005825043,
0.07805454730987549,
0.05698101967573166,
0.10018155723810196,
0.1234179437160492,
0.2013041079044342,
0.1559697389602661,
-0.01445884257555008,
0.09768584370613098,
0.014925622381269932,
-0.04425685107707977,
-0.15720680356025696,
0.037544406950473785,
-0.05594926327466965,
0.100979745388031,
-0.02742409147322178,
0.2040175348520279,
0.05496908724308014,
-0.16594403982162476,
0.05125734582543373,
-0.058352913707494736,
-0.09520746767520905,
-0.10622960329055786,
-0.038642819970846176,
-0.08295217156410217,
-0.1392723172903061,
-0.0015610517002642155,
-0.10798842459917068,
0.014049514196813107,
0.10186319053173065,
0.006197968497872353,
-0.030451109632849693,
0.15748749673366547,
0.03167233243584633,
0.015765748918056488,
0.06951384991407394,
-0.0033967832569032907,
-0.026029767468571663,
-0.10288800299167633,
-0.05673276260495186,
-0.020690133795142174,
-0.014676152728497982,
0.03940350189805031,
-0.05103066936135292,
-0.06474915146827698,
0.040849290788173676,
-0.03221234306693077,
-0.09328248351812363,
0.016166942194104195,
0.02942357212305069,
0.07092206180095673,
0.05982378497719765,
0.01062663085758686,
0.008471602573990822,
-0.012334014289081097,
0.21595078706741333,
-0.07746214419603348,
-0.08995415270328522,
-0.0960998609662056,
0.2740768492221832,
0.057652588933706284,
-0.010026750154793262,
0.03003084845840931,
-0.05917017161846161,
-0.0013757928973063827,
0.2619768977165222,
0.19526983797550201,
-0.07823815941810608,
-0.006640335079282522,
-0.0009600825724191964,
-0.008808005601167679,
-0.007110840640962124,
0.12675118446350098,
0.1532115638256073,
0.049999333918094635,
-0.10532790422439575,
-0.04725150018930435,
-0.05712836608290672,
-0.01558744814246893,
-0.05200648307800293,
0.06447633355855942,
0.03263295069336891,
-0.0029580502305179834,
-0.033312540501356125,
0.062371015548706055,
-0.07146099954843521,
-0.08667363226413727,
0.05185528099536896,
-0.20555222034454346,
-0.15962405502796173,
-0.010813402943313122,
0.10709302127361298,
-0.0004991641617380083,
0.05807570368051529,
-0.019332673400640488,
0.003597373142838478,
0.07214387506246567,
-0.024073613807559013,
-0.08791398257017136,
-0.07068557292222977,
0.09161393344402313,
-0.12329666316509247,
0.17450998723506927,
-0.03908886760473251,
0.07324470579624176,
0.12204049527645111,
0.07692236453294754,
-0.06837611645460129,
0.06050488352775574,
0.026498543098568916,
-0.06461787223815918,
0.0442020520567894,
0.08746451884508133,
-0.031312040984630585,
0.03410092368721962,
0.03558971732854843,
-0.11671197414398193,
0.028274931013584137,
-0.08347763121128082,
-0.046666525304317474,
-0.04506177455186844,
-0.04435454681515694,
-0.055823296308517456,
0.11881238222122192,
0.220828577876091,
-0.023710520938038826,
0.014306100085377693,
-0.07728137075901031,
0.0020072953775525093,
0.04124779999256134,
0.015474149025976658,
-0.08243750780820847,
-0.23606890439987183,
0.005306802690029144,
0.06129783019423485,
-0.020173970609903336,
-0.22315889596939087,
-0.08925675600767136,
-0.0027443773578852415,
-0.07691134512424469,
-0.10195668786764145,
0.08359095454216003,
0.0710597112774849,
0.047202639281749725,
-0.055254314094781876,
-0.0757962018251419,
-0.0774897038936615,
0.15702751278877258,
-0.15081237256526947,
-0.08792164921760559
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_27\_02\_2022-18\_51\_55
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6049
* Accuracy: 0.6926
* F1: 0.4160
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5819
- Accuracy: 0.7058
- F1: 0.4267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.6110 | 0.665 | 0.0 |
| No log | 2.0 | 96 | 0.5706 | 0.685 | 0.2588 |
| No log | 3.0 | 144 | 0.5484 | 0.725 | 0.5299 |
| No log | 4.0 | 192 | 0.5585 | 0.71 | 0.4727 |
| No log | 5.0 | 240 | 0.5616 | 0.725 | 0.5133 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_2e-05\_webDiscourse\_27\_02\_2022-19\_22\_29
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5819
* Accuracy: 0.7058
* F1: 0.4267
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-18\_23\_48
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3962
* Accuracy: 0.8231
* F1: 0.8873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3944
- Accuracy: 0.8279
- F1: 0.8901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3946 | 0.8012 | 0.8743 |
| No log | 2.0 | 390 | 0.3746 | 0.8329 | 0.8929 |
| 0.3644 | 3.0 | 585 | 0.4288 | 0.8268 | 0.8849 |
| 0.3644 | 4.0 | 780 | 0.5352 | 0.8232 | 0.8841 |
| 0.3644 | 5.0 | 975 | 0.5768 | 0.8268 | 0.8864 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-19\_16\_53
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3944
* Accuracy: 0.8279
* F1: 0.8901
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6071
- Accuracy: 0.8337
- F1: 0.8922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3920 | 0.7988 | 0.8624 |
| No log | 2.0 | 390 | 0.3873 | 0.8171 | 0.8739 |
| 0.3673 | 3.0 | 585 | 0.4354 | 0.8256 | 0.8835 |
| 0.3673 | 4.0 | 780 | 0.5358 | 0.8293 | 0.8887 |
| 0.3673 | 5.0 | 975 | 0.5616 | 0.8366 | 0.8923 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_all\_27\_02\_2022-22\_36\_26
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6071
* Accuracy: 0.8337
* F1: 0.8922
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0890
- Accuracy: 0.9750
- F1: 0.9873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0485 | 0.9885 | 0.9942 |
| No log | 2.0 | 208 | 0.0558 | 0.9857 | 0.9927 |
| No log | 3.0 | 312 | 0.0501 | 0.9828 | 0.9913 |
| No log | 4.0 | 416 | 0.0593 | 0.9828 | 0.9913 |
| 0.04 | 5.0 | 520 | 0.0653 | 0.9828 | 0.9913 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_editorials\_27\_02\_2022-19\_46\_22
=====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0890
* Accuracy: 0.9750
* F1: 0.9873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3767
- Accuracy: 0.8638
- F1: 0.9165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4489 | 0.8309 | 0.8969 |
| No log | 2.0 | 162 | 0.4429 | 0.8272 | 0.8915 |
| No log | 3.0 | 243 | 0.5154 | 0.8529 | 0.9083 |
| No log | 4.0 | 324 | 0.5552 | 0.8309 | 0.8925 |
| No log | 5.0 | 405 | 0.5896 | 0.8309 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_essays\_27\_02\_2022-19\_35\_56
=================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3767
* Accuracy: 0.8638
* F1: 0.9165
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6020
- Accuracy: 0.7032
- F1: 0.4851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5914 | 0.67 | 0.0294 |
| No log | 2.0 | 96 | 0.5616 | 0.695 | 0.2824 |
| No log | 3.0 | 144 | 0.5596 | 0.73 | 0.5909 |
| No log | 4.0 | 192 | 0.6273 | 0.73 | 0.5 |
| No log | 5.0 | 240 | 0.6370 | 0.71 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr0\_3e-05\_webDiscourse\_27\_02\_2022-19\_27\_41
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6020
* Accuracy: 0.7032
* F1: 0.4851
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr1\_0.0002\_all\_27\_02\_2022-18\_01\_22
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7600
* Accuracy: 0.8144
* F1: 0.8788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr1\_2e-05\_all\_26\_02\_2022-04\_03\_26
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr1\_2e-05\_all\_27\_02\_2022-17\_33\_22
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4095
* Accuracy: 0.8263
* F1: 0.8865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr1\_2e-05\_webDiscourse\_27\_02\_2022-18\_54\_09
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6049
* Accuracy: 0.6926
* F1: 0.4160
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr1\_3e-05\_all\_27\_02\_2022-18\_29\_24
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3962
* Accuracy: 0.8231
* F1: 0.8873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr2\_0.0002\_all\_27\_02\_2022-18\_06\_59
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7600
* Accuracy: 0.8144
* F1: 0.8788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr2\_2e-05\_all\_26\_02\_2022-04\_09\_01
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr2\_2e-05\_all\_27\_02\_2022-17\_38\_58
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4095
* Accuracy: 0.8263
* F1: 0.8865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr2\_2e-05\_webDiscourse\_27\_02\_2022-18\_56\_32
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6049
* Accuracy: 0.6926
* F1: 0.4160
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr2\_3e-05\_all\_27\_02\_2022-18\_35\_02
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3962
* Accuracy: 0.8231
* F1: 0.8873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr3\_0.0002\_all\_27\_02\_2022-18\_12\_34
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7600
* Accuracy: 0.8144
* F1: 0.8788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr3\_2e-05\_all\_26\_02\_2022-04\_14\_37
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr3\_2e-05\_all\_27\_02\_2022-17\_44\_32
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4095
* Accuracy: 0.8263
* F1: 0.8865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr3\_2e-05\_webDiscourse\_27\_02\_2022-18\_59\_05
=======================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6049
* Accuracy: 0.6926
* F1: 0.4160
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr3\_3e-05\_all\_27\_02\_2022-18\_40\_40
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3962
* Accuracy: 0.8231
* F1: 0.8873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr4\_0.0002\_all\_27\_02\_2022-18\_18\_11
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7600
* Accuracy: 0.8144
* F1: 0.8788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09993704408407211,
0.07634809613227844,
-0.0018183437641710043,
0.12156227976083755,
0.18219831585884094,
0.01741635799407959,
0.10828865319490433,
0.12610726058483124,
-0.11324328184127808,
0.0162727739661932,
0.12355384975671768,
0.18539290130138397,
0.005849879700690508,
0.10766882449388504,
-0.06264838576316833,
-0.25251659750938416,
-0.013895770534873009,
0.05205785483121872,
-0.07295230776071548,
0.1376955509185791,
0.09595555812120438,
-0.13098865747451782,
0.0787491500377655,
-0.001088312012143433,
-0.22812548279762268,
0.014710339717566967,
0.021560069173574448,
-0.06568725407123566,
0.1475069224834442,
0.026142947375774384,
0.12584762275218964,
0.005526839289814234,
0.07575727999210358,
-0.1716475635766983,
0.009670632891356945,
0.0513889417052269,
0.007117842324078083,
0.08914083987474442,
0.055573489516973495,
-0.010906688868999481,
0.11475393921136856,
-0.09493295103311539,
0.047627609223127365,
0.022859087213873863,
-0.11889128386974335,
-0.2189822494983673,
-0.08109071850776672,
0.01907634548842907,
0.06302895396947861,
0.10826907306909561,
-0.0018408935284242034,
0.12602096796035767,
-0.08980809897184372,
0.10053421556949615,
0.2154638022184372,
-0.28154894709587097,
-0.06122579798102379,
0.03974486514925957,
0.0044303592294454575,
0.08139961957931519,
-0.10914386808872223,
-0.017723271623253822,
0.0639190599322319,
0.045911334455013275,
0.13717752695083618,
-0.032350003719329834,
-0.12178374081850052,
0.01714928261935711,
-0.14035367965698242,
-0.03364574909210205,
0.1404644101858139,
0.021315908059477806,
-0.029518378898501396,
-0.035761792212724686,
-0.06037687137722969,
-0.1640584021806717,
-0.038732241839170456,
-0.007591539993882179,
0.04715368151664734,
-0.03060346283018589,
-0.060925181955099106,
-0.0033795686904340982,
-0.10727804899215698,
-0.05916711688041687,
-0.08402073383331299,
0.13786619901657104,
0.03896921128034592,
0.011790384538471699,
-0.031273532658815384,
0.10561948269605637,
0.011564160697162151,
-0.12932874262332916,
0.03123858943581581,
0.03455984964966774,
0.0068471552804112434,
-0.047286175191402435,
-0.07760073989629745,
-0.06562892347574234,
0.006758527830243111,
0.09864083677530289,
-0.0651712492108345,
0.052843861281871796,
0.021793078631162643,
0.047208648175001144,
-0.10285656154155731,
0.19985616207122803,
-0.03193828463554382,
-0.0010997680947184563,
0.018287966027855873,
0.03929344564676285,
0.01026515569537878,
-0.010590988211333752,
-0.12519532442092896,
-0.0035321791656315327,
0.12057860940694809,
0.017354076728224754,
-0.07249793410301208,
0.07704278081655502,
-0.04724196717143059,
-0.022497054189443588,
0.00556688429787755,
-0.1049358919262886,
0.03404327854514122,
-0.0031917693559080362,
-0.0860530436038971,
-0.012039361521601677,
0.03437526151537895,
0.006473449058830738,
-0.03747095540165901,
0.11106712371110916,
-0.0806291252374649,
0.04497366026043892,
-0.10367986559867859,
-0.11028114706277847,
0.014128029346466064,
-0.07438969612121582,
0.019975215196609497,
-0.10523832589387894,
-0.15944579243659973,
-0.0192857775837183,
0.05491485074162483,
-0.02162988856434822,
-0.058595553040504456,
-0.0549161359667778,
-0.0736510157585144,
0.012645300477743149,
-0.019505344331264496,
0.14971701800823212,
-0.05648522824048996,
0.112159863114357,
0.0369875505566597,
0.06439358741044998,
-0.058815013617277145,
0.06574265658855438,
-0.09392407536506653,
-0.00032563949935138226,
-0.18573278188705444,
0.05699478089809418,
-0.04639027267694473,
0.07434099912643433,
-0.08748895674943924,
-0.11471999436616898,
0.01676749438047409,
-0.006641999818384647,
0.07358443737030029,
0.09069926291704178,
-0.16240431368350983,
-0.07618249207735062,
0.14834319055080414,
-0.060339804738759995,
-0.10632426291704178,
0.11683771014213562,
-0.062325913459062576,
0.04969722032546997,
0.08301197737455368,
0.1710497885942459,
0.0739341452717781,
-0.060616347938776016,
0.025400662794709206,
0.0063217077404260635,
0.04651382565498352,
-0.083373062312603,
0.05219778046011925,
0.0072181797586381435,
-0.016441047191619873,
0.03964695706963539,
-0.025250323116779327,
0.06802895665168762,
-0.0914519652724266,
-0.09447839111089706,
-0.046936988830566406,
-0.09805145114660263,
0.05452340841293335,
0.07971806079149246,
0.09686189144849777,
-0.09343625605106354,
-0.06641221046447754,
0.08368616551160812,
0.07079020887613297,
-0.06501804292201996,
0.038948237895965576,
-0.04997681453824043,
0.06233087182044983,
-0.03661887347698212,
-0.017274564132094383,
-0.20244468748569489,
0.003656539600342512,
0.007101310882717371,
0.00898595992475748,
0.025381386280059814,
0.015469585545361042,
0.06835295259952545,
0.04926507547497749,
-0.06193498894572258,
-0.009692365303635597,
-0.010029012337327003,
-0.008296520449221134,
-0.14275643229484558,
-0.18311774730682373,
-0.014875601045787334,
-0.016052087768912315,
0.12551644444465637,
-0.19843342900276184,
0.0402526892721653,
-0.01814316026866436,
0.05820292979478836,
-0.005279435310512781,
0.00024185844813473523,
-0.04289330542087555,
0.09063763916492462,
-0.038748327642679214,
-0.046592045575380325,
0.08266987651586533,
0.005941650364547968,
-0.08672892302274704,
-0.03821325674653053,
-0.09203866124153137,
0.1667701005935669,
0.14492344856262207,
-0.13167479634284973,
-0.07842563837766647,
0.0006858371780253947,
-0.05221274122595787,
-0.030709633603692055,
-0.03959445282816887,
0.04035211354494095,
0.19613395631313324,
-0.016911908984184265,
0.16490042209625244,
-0.0719529241323471,
-0.04871896281838417,
0.01692659966647625,
-0.033140771090984344,
0.03397321701049805,
0.12338437885046005,
0.10937961935997009,
-0.07322616875171661,
0.14254435896873474,
0.1489122360944748,
-0.11230386793613434,
0.12102802842855453,
-0.04667182266712189,
-0.06410008668899536,
-0.0037516443990170956,
-0.017496325075626373,
0.0005817461642436683,
0.07378552854061127,
-0.13935981690883636,
-0.007629883475601673,
0.01943168230354786,
0.021184101700782776,
0.029110245406627655,
-0.22743023931980133,
-0.031253620982170105,
0.02607666328549385,
-0.04400775581598282,
0.0020758239552378654,
-0.02005130983889103,
0.011511684395372868,
0.11036466807126999,
0.0005089554470032454,
-0.08535879105329514,
0.047965142875909805,
0.005218684207648039,
-0.08316197246313095,
0.22352074086666107,
-0.09429506212472916,
-0.16885966062545776,
-0.12550751864910126,
-0.0752640813589096,
-0.04796893149614334,
0.012433505617082119,
0.06089215725660324,
-0.09943220019340515,
-0.0257036741822958,
-0.05798666551709175,
0.012869620695710182,
-0.008657754398882389,
0.040460944175720215,
0.0032098519150167704,
0.0058782510459423065,
0.07455948740243912,
-0.11167395114898682,
-0.009282663464546204,
-0.05507470667362213,
-0.06423351913690567,
0.05383233353495598,
0.030925327911973,
0.10352946817874908,
0.17203135788440704,
-0.0330016128718853,
0.008674352429807186,
-0.03289930149912834,
0.21574553847312927,
-0.06203211843967438,
-0.030814891681075096,
0.13370831310749054,
-0.001604330027475953,
0.055302150547504425,
0.10269840806722641,
0.06812629848718643,
-0.09000733494758606,
0.01563919335603714,
0.022001396864652634,
-0.03716341778635979,
-0.23208455741405487,
-0.05223987251520157,
-0.06103052571415901,
-0.026067746803164482,
0.09440625458955765,
0.03201395645737648,
0.05214797332882881,
0.06705470383167267,
0.050327908247709274,
0.08931846916675568,
-0.03841210529208183,
0.050838373601436615,
0.13539481163024902,
0.04389658197760582,
0.12860646843910217,
-0.050987645983695984,
-0.0649951621890068,
0.03465239331126213,
-0.021583864465355873,
0.22261828184127808,
0.00029354591970331967,
0.127747043967247,
0.049494434148073196,
0.1836334615945816,
0.007016962394118309,
0.08674938231706619,
-0.004398684483021498,
-0.0390295647084713,
-0.00944316666573286,
-0.038525160402059555,
-0.05120197683572769,
0.008671795018017292,
-0.0672888457775116,
0.04998939111828804,
-0.12052032351493835,
-0.022532157599925995,
0.05300494283437729,
0.24721553921699524,
0.024257825687527657,
-0.32633519172668457,
-0.08555281907320023,
0.0021079496946185827,
-0.03465856984257698,
-0.02478613518178463,
0.0204145610332489,
0.08596764504909515,
-0.09566525369882584,
0.028013266623020172,
-0.07078015059232712,
0.10037858784198761,
-0.04495173320174217,
0.04548144340515137,
0.05798757076263428,
0.08370143920183182,
0.011319546960294247,
0.0871899202466011,
-0.33397307991981506,
0.259814590215683,
0.0027425989974290133,
0.06913731247186661,
-0.07902030646800995,
0.0007304620812647045,
0.037362776696681976,
0.07605744898319244,
0.04824148863554001,
-0.012617294676601887,
-0.030826594680547714,
-0.18590906262397766,
-0.05454228073358536,
0.02902051992714405,
0.08434770256280899,
-0.01560116931796074,
0.07867102324962616,
-0.028684616088867188,
0.008469438180327415,
0.07748205959796906,
-0.0379149466753006,
-0.04976646602153778,
-0.09806707501411438,
-0.013419760391116142,
0.02690490335226059,
-0.033734411001205444,
-0.056226298213005066,
-0.11660168319940567,
-0.13340429961681366,
0.16600748896598816,
-0.02356545627117157,
-0.042179714888334274,
-0.11165371537208557,
0.09070459753274918,
0.06819584965705872,
-0.08707381784915924,
0.05018936097621918,
0.004575371276587248,
0.056302301585674286,
0.029122401028871536,
-0.08286766707897186,
0.10433231294155121,
-0.05488185957074165,
-0.15132111310958862,
-0.048239029943943024,
0.10238174349069595,
0.02793174423277378,
0.06310482323169708,
-0.01211627572774887,
0.01089091133326292,
-0.038733236491680145,
-0.09398140758275986,
0.008660739287734032,
-0.009016869589686394,
0.08393843472003937,
0.02780167944729328,
-0.06819804012775421,
-0.01224347110837698,
-0.06639081239700317,
-0.03352894261479378,
0.20222890377044678,
0.21120081841945648,
-0.09776786714792252,
0.023207133635878563,
0.03797703608870506,
-0.0750173032283783,
-0.21054509282112122,
0.04892401397228241,
0.0625595897436142,
0.006003696471452713,
0.02306511066854,
-0.17799727618694305,
0.12890686094760895,
0.09660560637712479,
-0.011413903906941414,
0.10887881368398666,
-0.3311988115310669,
-0.1337774693965912,
0.12274713814258575,
0.14641103148460388,
0.1387551873922348,
-0.1424672156572342,
-0.021701619029045105,
-0.031818315386772156,
-0.10155202448368073,
0.1011328250169754,
-0.07733777165412903,
0.12492727488279343,
-0.030789192765951157,
0.09084641188383102,
0.0037821775767952204,
-0.058287978172302246,
0.11683916300535202,
0.02152402326464653,
0.0987713634967804,
-0.06657344847917557,
-0.0264076329767704,
0.042988765984773636,
-0.03638650104403496,
0.02001350186765194,
-0.0857282429933548,
0.030448639765381813,
-0.09720540791749954,
-0.018870724365115166,
-0.07986369729042053,
0.04606813192367554,
-0.031896159052848816,
-0.05359257385134697,
-0.041914910078048706,
0.015437361784279346,
0.049846913665533066,
-0.013641889207065105,
0.12921003997325897,
0.017506344243884087,
0.14422065019607544,
0.12658542394638062,
0.07388923317193985,
-0.06619976460933685,
-0.05740135535597801,
-0.009185327216982841,
-0.015618974342942238,
0.05711031332612038,
-0.15654052793979645,
0.031630851328372955,
0.14654818177223206,
0.015811700373888016,
0.134033665060997,
0.08602607250213623,
-0.009984644129872322,
0.004843095783144236,
0.06463469564914703,
-0.1619630604982376,
-0.07432545721530914,
-0.005062824580818415,
-0.06143920123577118,
-0.09814468026161194,
0.051080964505672455,
0.0828443169593811,
-0.07267234474420547,
-0.01189375389367342,
-0.00821862556040287,
0.003378053428605199,
-0.060351524502038956,
0.2052650898694992,
0.06706508249044418,
0.04512094706296921,
-0.11021525412797928,
0.08002855628728867,
0.0639791190624237,
-0.0868431106209755,
0.005018984898924828,
0.08171840757131577,
-0.08621133863925934,
-0.048127107322216034,
0.11375115066766739,
0.17571820318698883,
-0.06103270500898361,
-0.04516229033470154,
-0.13761508464813232,
-0.12487198412418365,
0.08344460278749466,
0.15873679518699646,
0.12124048173427582,
0.01672382466495037,
-0.06335049867630005,
0.00005818299905513413,
-0.1273186057806015,
0.08057316392660141,
0.041437212377786636,
0.06771791726350784,
-0.1304132342338562,
0.17217928171157837,
0.012102767825126648,
0.0533130057156086,
-0.027071919292211533,
0.02205016277730465,
-0.09788395464420319,
0.02125205472111702,
-0.1217862069606781,
-0.014992550015449524,
-0.0132747208699584,
0.006417693104594946,
-0.0082729896530509,
-0.05429864674806595,
-0.052009958773851395,
0.020261593163013458,
-0.12198732048273087,
-0.02010960876941681,
0.024485761299729347,
0.05194124951958656,
-0.11125800013542175,
-0.04575418308377266,
0.01992986723780632,
-0.05598343536257744,
0.06436120718717575,
0.05108489468693733,
0.0039370376616716385,
0.06764145195484161,
-0.1424497365951538,
-0.00221728952601552,
0.08002077788114548,
0.013903957791626453,
0.061538707464933395,
-0.08552666753530502,
0.0003498673904687166,
0.014627213589847088,
0.07027976214885712,
0.02731509506702423,
0.08333230763673782,
-0.14377526938915253,
0.00236395257525146,
-0.03926058113574982,
-0.07474160194396973,
-0.07029347121715546,
0.03691108152270317,
0.0808749720454216,
0.020867954939603806,
0.19376768171787262,
-0.08525793254375458,
0.0346200168132782,
-0.20246942341327667,
0.0016217594966292381,
-0.021282555535435677,
-0.1245603933930397,
-0.12708386778831482,
-0.06851939857006073,
0.06651222705841064,
-0.04809477925300598,
0.13213025033473969,
0.03953832760453224,
0.038076646625995636,
0.028859129175543785,
-0.015178591012954712,
0.00873824767768383,
0.02531491033732891,
0.21945326030254364,
0.03348206728696823,
-0.03444245457649231,
0.0746501162648201,
0.06073315814137459,
0.1003439873456955,
0.12830694019794464,
0.1963653713464737,
0.15362071990966797,
-0.024894341826438904,
0.09950272738933563,
0.010821939446032047,
-0.04399215430021286,
-0.14628565311431885,
0.0477016307413578,
-0.054411981254816055,
0.10156921297311783,
-0.0292530357837677,
0.2082989364862442,
0.055221620947122574,
-0.16478808224201202,
0.054458070546388626,
-0.05545034632086754,
-0.09596963226795197,
-0.10743838548660278,
-0.037470996379852295,
-0.08497928082942963,
-0.1420678198337555,
-0.004149851854890585,
-0.10663339495658875,
0.01786651648581028,
0.1100006178021431,
0.007196679711341858,
-0.033915162086486816,
0.15179023146629333,
0.02392789162695408,
0.010257081128656864,
0.06720193475484848,
-0.005087174940854311,
-0.02479458414018154,
-0.10541334003210068,
-0.06690609455108643,
-0.017543137073516846,
-0.01048072800040245,
0.04037455841898918,
-0.04663936421275139,
-0.05688035115599632,
0.039544180035591125,
-0.03440208360552788,
-0.09454146027565002,
0.015437263064086437,
0.029097439721226692,
0.07151520252227783,
0.06267064064741135,
0.010617628693580627,
0.006470897234976292,
-0.012613124214112759,
0.2192801833152771,
-0.07859808951616287,
-0.0850004330277443,
-0.08715658634901047,
0.2761111259460449,
0.0538238026201725,
-0.010424751788377762,
0.026300225406885147,
-0.06262709945440292,
-0.0016572304302826524,
0.26334190368652344,
0.19865953922271729,
-0.08486241847276688,
-0.009962351061403751,
-0.0031431540846824646,
-0.009679028764367104,
-0.006380152888596058,
0.13127267360687256,
0.14410439133644104,
0.04111618176102638,
-0.10467185080051422,
-0.04355710372328758,
-0.052766017615795135,
-0.011844651773571968,
-0.059149306267499924,
0.06559483706951141,
0.026894977316260338,
-0.0020557709503918886,
-0.03826281800866127,
0.05756831169128418,
-0.07124979794025421,
-0.09635833650827408,
0.05588143318891525,
-0.2031499594449997,
-0.15937891602516174,
-0.010640193708240986,
0.10970897227525711,
-0.002333675278350711,
0.056752387434244156,
-0.02219730243086815,
0.012004055082798004,
0.060798462480306625,
-0.025362489745020866,
-0.09063995629549026,
-0.07017694413661957,
0.08884229511022568,
-0.122380331158638,
0.1777316927909851,
-0.037374820560216904,
0.06994634121656418,
0.12093184143304825,
0.07371971756219864,
-0.06912583857774734,
0.06733047962188721,
0.02770097926259041,
-0.06512342393398285,
0.04680295288562775,
0.08785022050142288,
-0.029367204755544662,
0.03641267120838165,
0.034941982477903366,
-0.10661624372005463,
0.024066582322120667,
-0.08444593101739883,
-0.048473894596099854,
-0.045638956129550934,
-0.05194979906082153,
-0.0585201270878315,
0.1193775162100792,
0.21808888018131256,
-0.023005573078989983,
0.013493296690285206,
-0.08217470347881317,
-0.0038648860063403845,
0.04241365194320679,
0.009477180428802967,
-0.08053776621818542,
-0.230995312333107,
0.007195152807980776,
0.06380107253789902,
-0.01984870806336403,
-0.23002174496650696,
-0.08451680094003677,
-0.0053710490465164185,
-0.07406932860612869,
-0.09902454912662506,
0.08912277966737747,
0.07196874171495438,
0.045899856835603714,
-0.05145890638232231,
-0.08076421916484833,
-0.07933831959962845,
0.15554751455783844,
-0.15399283170700073,
-0.08994875103235245
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr4\_2e-05\_all\_26\_02\_2022-04\_20\_09
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr4\_2e-05\_all\_27\_02\_2022-17\_50\_05
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4095
* Accuracy: 0.8263
* F1: 0.8865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr4\_3e-05\_all\_27\_02\_2022-18\_46\_19
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3962
* Accuracy: 0.8231
* F1: 0.8873
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09941770881414413,
0.0673636794090271,
-0.0017911065369844437,
0.11817209422588348,
0.1824268251657486,
0.02012927643954754,
0.1044352576136589,
0.12498457729816437,
-0.11973512172698975,
0.014552962966263294,
0.12247280031442642,
0.18677452206611633,
0.005638427101075649,
0.11972761899232864,
-0.06272431463003159,
-0.25518515706062317,
-0.013434460386633873,
0.05508628115057945,
-0.061160311102867126,
0.13976207375526428,
0.09713026136159897,
-0.1329992413520813,
0.07788939028978348,
0.003264185506850481,
-0.22977015376091003,
0.01095654908567667,
0.01524150650948286,
-0.06842859089374542,
0.14486008882522583,
0.022560978308320045,
0.12630824744701385,
0.0026685127522796392,
0.07517979294061661,
-0.172694593667984,
0.010221494361758232,
0.050419144332408905,
0.005277637392282486,
0.08530781418085098,
0.050322726368904114,
-0.012914635241031647,
0.12213468551635742,
-0.09365437179803848,
0.05297645926475525,
0.018639085814356804,
-0.12030338495969772,
-0.22346997261047363,
-0.08070874214172363,
0.022088438272476196,
0.07097186893224716,
0.11183485388755798,
-0.0003881032462231815,
0.13475562632083893,
-0.09146605432033539,
0.10126490145921707,
0.21363966166973114,
-0.2817559242248535,
-0.06504024565219879,
0.02612324431538582,
0.005096153821796179,
0.07144863158464432,
-0.10896545648574829,
-0.025551678612828255,
0.05763929337263107,
0.053061965852975845,
0.14059850573539734,
-0.03158526122570038,
-0.12703415751457214,
0.011996781453490257,
-0.14056813716888428,
-0.035421449691057205,
0.14037571847438812,
0.020326124504208565,
-0.028704781085252762,
-0.0472356379032135,
-0.059318553656339645,
-0.1614558845758438,
-0.04541909322142601,
-0.006096940953284502,
0.04179280623793602,
-0.03301531821489334,
-0.05608121678233147,
0.006604752503335476,
-0.10808632522821426,
-0.06009029969573021,
-0.08018001914024353,
0.14057733118534088,
0.038710203021764755,
0.011127540841698647,
-0.03575162589550018,
0.10653727501630783,
0.01968105509877205,
-0.13330458104610443,
0.026525121182203293,
0.027184568345546722,
0.00905002560466528,
-0.05197439715266228,
-0.073875792324543,
-0.05769403278827667,
0.004635267425328493,
0.11225715279579163,
-0.06572724878787994,
0.05427388846874237,
0.022434497252106667,
0.041442159563302994,
-0.09813554584980011,
0.19385600090026855,
-0.024323394522070885,
-0.0009011137299239635,
0.01913573406636715,
0.03988352417945862,
0.008140219375491142,
-0.0083277253434062,
-0.11794852465391159,
0.00007359252049354836,
0.11907436698675156,
0.016124527901411057,
-0.07520418614149094,
0.07869632542133331,
-0.049695856869220734,
-0.02144896239042282,
0.021507341414690018,
-0.10415149480104446,
0.03544577211141586,
-0.002932250266894698,
-0.08171520382165909,
-0.013749388977885246,
0.030019011348485947,
0.009557895362377167,
-0.037476859986782074,
0.11745309084653854,
-0.0766320452094078,
0.0433325469493866,
-0.1035882979631424,
-0.10616321861743927,
0.016858113929629326,
-0.07564199715852737,
0.025805331766605377,
-0.10526753216981888,
-0.16208399832248688,
-0.019326284527778625,
0.05674716457724571,
-0.023630134761333466,
-0.05677046999335289,
-0.05181832239031792,
-0.07469695806503296,
0.017012184485793114,
-0.019228842109441757,
0.15290607511997223,
-0.05891523137688637,
0.11003714799880981,
0.0423479825258255,
0.06645044684410095,
-0.053493235260248184,
0.06320437788963318,
-0.09705144166946411,
-0.0019237309461459517,
-0.19664683938026428,
0.0548095665872097,
-0.04514896124601364,
0.08166859298944473,
-0.08586118370294571,
-0.11568653583526611,
0.013131605461239815,
-0.004891047719866037,
0.07119008153676987,
0.0905003622174263,
-0.16014771163463593,
-0.0755782499909401,
0.15265733003616333,
-0.06686630845069885,
-0.11100440472364426,
0.11325295269489288,
-0.0624827966094017,
0.050880301743745804,
0.08264835178852081,
0.1658559888601303,
0.07503942400217056,
-0.06772340834140778,
0.023931536823511124,
0.0046364073641598225,
0.04326244816184044,
-0.08307861536741257,
0.050857722759246826,
0.011803315952420235,
-0.011310147121548653,
0.04016697779297829,
-0.020992564037442207,
0.06794414669275284,
-0.09085142612457275,
-0.0930594876408577,
-0.04696005582809448,
-0.09474809467792511,
0.04560478776693344,
0.08239720016717911,
0.0963045060634613,
-0.09307976067066193,
-0.06707477569580078,
0.07835634797811508,
0.06967619061470032,
-0.06140289083123207,
0.03666992485523224,
-0.05444952845573425,
0.059432320296764374,
-0.027295006439089775,
-0.016880756244063377,
-0.20566627383232117,
0.00734093738719821,
0.006631164345890284,
0.01191815547645092,
0.014736863784492016,
0.003552190726622939,
0.06995224207639694,
0.04791867360472679,
-0.059081584215164185,
-0.012726143933832645,
-0.00596010684967041,
-0.008398645557463169,
-0.14126268029212952,
-0.1839374303817749,
-0.01619097776710987,
-0.020400725305080414,
0.11748082935810089,
-0.1958387792110443,
0.03867413476109505,
-0.012013348750770092,
0.0634542927145958,
-0.004835308529436588,
-0.0003344656724948436,
-0.04394396394491196,
0.09115031361579895,
-0.035228315740823746,
-0.04491022974252701,
0.08147357404232025,
0.010811221785843372,
-0.08117996156215668,
-0.04001179337501526,
-0.09089405834674835,
0.17187416553497314,
0.14508742094039917,
-0.1270103007555008,
-0.0808824822306633,
-0.006651192903518677,
-0.05676357448101044,
-0.030227750539779663,
-0.03697920963168144,
0.044099632650613785,
0.19055822491645813,
-0.017497366294264793,
0.16188545525074005,
-0.06994716823101044,
-0.05325048416852951,
0.02134878560900688,
-0.028721388429403305,
0.03363035246729851,
0.11955977231264114,
0.10802477598190308,
-0.08236051350831985,
0.14099469780921936,
0.1468600034713745,
-0.10277563333511353,
0.12418175488710403,
-0.046839501708745956,
-0.061858516186475754,
-0.0012920021545141935,
-0.019458327442407608,
0.0002748678089119494,
0.07586031407117844,
-0.14488616585731506,
-0.008969618007540703,
0.020314384251832962,
0.022553518414497375,
0.027616145089268684,
-0.22408194839954376,
-0.03139106556773186,
0.02476075477898121,
-0.036749180406332016,
-0.009928734041750431,
-0.018175344914197922,
0.012283695861697197,
0.1073029562830925,
0.0005807380075566471,
-0.07854965329170227,
0.04713403061032295,
0.007208810653537512,
-0.08445069938898087,
0.22464460134506226,
-0.09411011636257172,
-0.16863282024860382,
-0.11806545406579971,
-0.08401228487491608,
-0.03558630868792534,
0.009257549419999123,
0.06525550782680511,
-0.10032487660646439,
-0.026759788393974304,
-0.05451066792011261,
0.010748879052698612,
-0.005680082831531763,
0.04281359165906906,
0.012340640649199486,
0.006191663444042206,
0.07075069099664688,
-0.10882724821567535,
-0.011371808126568794,
-0.054877180606126785,
-0.055647559463977814,
0.05648357421159744,
0.028457997366786003,
0.10545480251312256,
0.16172000765800476,
-0.026844916865229607,
0.010674710385501385,
-0.03451060503721237,
0.22557392716407776,
-0.06619347631931305,
-0.02992931939661503,
0.13360249996185303,
-0.004970382433384657,
0.05362730473279953,
0.10350709408521652,
0.06789558380842209,
-0.09149779379367828,
0.015982912853360176,
0.017800254747271538,
-0.03769110143184662,
-0.2282828837633133,
-0.05417097359895706,
-0.06340649724006653,
-0.029950985684990883,
0.09807837754487991,
0.030261263251304626,
0.051016971468925476,
0.06649085134267807,
0.04396525025367737,
0.09036827832460403,
-0.035272371023893356,
0.05255909264087677,
0.13219612836837769,
0.04738488048315048,
0.12736889719963074,
-0.05097578465938568,
-0.06743952631950378,
0.030445681884884834,
-0.021658632904291153,
0.22070202231407166,
0.000057601428125053644,
0.12114080786705017,
0.05094438046216965,
0.17878584563732147,
0.008413695730268955,
0.09227845072746277,
-0.006237128749489784,
-0.04450559616088867,
-0.006423750892281532,
-0.03677980601787567,
-0.04979827627539635,
0.010045027360320091,
-0.0751904845237732,
0.04827943444252014,
-0.12259315699338913,
-0.01857919991016388,
0.0560876689851284,
0.25344958901405334,
0.01872653141617775,
-0.3300761282444,
-0.08569174259901047,
-0.0001594430359546095,
-0.03733871132135391,
-0.02810848318040371,
0.018535561859607697,
0.07737389951944351,
-0.0973510667681694,
0.03631390258669853,
-0.06888838112354279,
0.10020513087511063,
-0.04250903055071831,
0.04631998762488365,
0.06605195999145508,
0.07825800031423569,
0.012002882547676563,
0.08511673659086227,
-0.33443886041641235,
0.26262396574020386,
0.0033341976813971996,
0.07816421985626221,
-0.08621369302272797,
0.0025602795649319887,
0.033565372228622437,
0.07115789502859116,
0.055997516959905624,
-0.015599949285387993,
-0.041715554893016815,
-0.18551328778266907,
-0.054855186492204666,
0.029978035017848015,
0.08342697471380234,
-0.010821274481713772,
0.08231616765260696,
-0.02603781409561634,
0.006703030318021774,
0.07569234073162079,
-0.04257819429039955,
-0.049191318452358246,
-0.1040109246969223,
-0.015964126214385033,
0.02392323687672615,
-0.039299800992012024,
-0.056312285363674164,
-0.11508509516716003,
-0.12471243739128113,
0.15467716753482819,
-0.020566096529364586,
-0.043094586580991745,
-0.11393439769744873,
0.08838886767625809,
0.06845005601644516,
-0.08465123921632767,
0.05263732373714447,
0.004081892780959606,
0.059377651661634445,
0.028785912320017815,
-0.08359916508197784,
0.10520149767398834,
-0.062311913818120956,
-0.15033838152885437,
-0.04943235218524933,
0.10562258958816528,
0.034415844827890396,
0.060635071247816086,
-0.007608731277287006,
0.012938061729073524,
-0.04172137379646301,
-0.09475374221801758,
0.01257709413766861,
-0.014847591519355774,
0.09352315962314606,
0.017916729673743248,
-0.06825371086597443,
-0.010358914732933044,
-0.06481071561574936,
-0.03183186054229736,
0.19883860647678375,
0.204651340842247,
-0.09627682715654373,
0.027594678103923798,
0.031725842505693436,
-0.07355204969644547,
-0.20712628960609436,
0.0459565743803978,
0.0675375685095787,
0.006464047823101282,
0.019398774951696396,
-0.1813763529062271,
0.13248033821582794,
0.09332387149333954,
-0.010370714589953423,
0.1039399728178978,
-0.3232014775276184,
-0.12992048263549805,
0.12271637469530106,
0.14067313075065613,
0.13474306464195251,
-0.14061294496059418,
-0.017468811944127083,
-0.030215248465538025,
-0.1112796813249588,
0.09966621547937393,
-0.07907572388648987,
0.11861191689968109,
-0.03451475501060486,
0.08066756278276443,
0.0007216309895738959,
-0.06208265200257301,
0.1099751889705658,
0.025384679436683655,
0.09749522805213928,
-0.06641561537981033,
-0.026001587510108948,
0.04300116002559662,
-0.03755564242601395,
0.016715774312615395,
-0.08137208223342896,
0.029519103467464447,
-0.1052812933921814,
-0.021923480555415154,
-0.082269087433815,
0.04369023069739342,
-0.03285270929336548,
-0.048238545656204224,
-0.03434324637055397,
0.015918463468551636,
0.051822662353515625,
-0.014865173026919365,
0.12894220650196075,
0.021815616637468338,
0.14976540207862854,
0.12189505994319916,
0.07901187241077423,
-0.07025182247161865,
-0.05287402495741844,
-0.009922039695084095,
-0.015739964321255684,
0.05698690190911293,
-0.15039126574993134,
0.03155703842639923,
0.1460125744342804,
0.01749943383038044,
0.12593868374824524,
0.08834922313690186,
-0.0083702951669693,
0.004320763982832432,
0.06906942278146744,
-0.16397255659103394,
-0.06908147037029266,
-0.0032021026127040386,
-0.05746787041425705,
-0.09987681359052658,
0.05005362257361412,
0.07785119861364365,
-0.06812124699354172,
-0.01346555631607771,
-0.008787606842815876,
0.0027295739855617285,
-0.0593775250017643,
0.20599396526813507,
0.05882428586483002,
0.04655909538269043,
-0.11364411562681198,
0.07217516005039215,
0.05794761702418327,
-0.08345387876033783,
0.0071569341234862804,
0.08341794461011887,
-0.0937829539179802,
-0.04910624399781227,
0.11724572628736496,
0.16930730640888214,
-0.05567464977502823,
-0.04621579125523567,
-0.13334038853645325,
-0.12728014588356018,
0.08747180551290512,
0.16452999413013458,
0.12255537509918213,
0.014211953617632389,
-0.06309055536985397,
0.005600504111498594,
-0.1285267323255539,
0.07860107719898224,
0.040194135159254074,
0.06597518175840378,
-0.1305488646030426,
0.16686515510082245,
0.012123133055865765,
0.04891153797507286,
-0.02641204185783863,
0.025232233107089996,
-0.10025057196617126,
0.023012295365333557,
-0.11720412969589233,
-0.018993135541677475,
-0.020473787561058998,
0.0072194654494524,
-0.009231891483068466,
-0.04954623058438301,
-0.05089055374264717,
0.01901114545762539,
-0.12010017782449722,
-0.01787104643881321,
0.023493854328989983,
0.05076291784644127,
-0.11184288561344147,
-0.041797250509262085,
0.02062111161649227,
-0.06086824834346771,
0.06298249214887619,
0.05934242159128189,
0.00563413742929697,
0.06580447405576706,
-0.13188843429088593,
-0.007525366265326738,
0.08433640003204346,
0.012515162117779255,
0.06327620148658752,
-0.08625468611717224,
0.0010018619941547513,
0.020256325602531433,
0.06597545742988586,
0.027881862595677376,
0.08255840092897415,
-0.1451435536146164,
0.00659572146832943,
-0.03387114778161049,
-0.0769529864192009,
-0.07031000405550003,
0.03422671929001808,
0.08871195465326309,
0.012832491658627987,
0.19467779994010925,
-0.08210896700620651,
0.03394835814833641,
-0.20473028719425201,
0.0012432195944711566,
-0.020543262362480164,
-0.12365416437387466,
-0.12799106538295746,
-0.06609576940536499,
0.06862631440162659,
-0.04470737650990486,
0.14086735248565674,
0.036296430975198746,
0.04029948264360428,
0.029908686876296997,
-0.014647304080426693,
0.004214779939502478,
0.02600555308163166,
0.21969370543956757,
0.03256433457136154,
-0.03809664025902748,
0.07942268252372742,
0.05774136632680893,
0.09950319677591324,
0.12724098563194275,
0.19689548015594482,
0.1562875509262085,
-0.015315989963710308,
0.09637638926506042,
0.012969223782420158,
-0.044549256563186646,
-0.15509475767612457,
0.04065656289458275,
-0.05731744319200516,
0.10212332010269165,
-0.029199711978435516,
0.20346997678279877,
0.05702509731054306,
-0.16519634425640106,
0.05176452174782753,
-0.05858853831887245,
-0.09486329555511475,
-0.10493017733097076,
-0.037316661328077316,
-0.0843997672200203,
-0.14165958762168884,
-0.0010800921590998769,
-0.10937708616256714,
0.01448913011699915,
0.10425157845020294,
0.006698913872241974,
-0.0304980780929327,
0.156586691737175,
0.03669434413313866,
0.015669045969843864,
0.06850177049636841,
-0.003909571561962366,
-0.026412732899188995,
-0.100712351500988,
-0.06009860336780548,
-0.020036587491631508,
-0.015479100868105888,
0.04044732823967934,
-0.050066057592630386,
-0.06401664763689041,
0.04015862196683884,
-0.031633198261260986,
-0.09348678588867188,
0.015779608860611916,
0.02999947965145111,
0.06998741626739502,
0.06039859727025032,
0.00900204572826624,
0.008200764656066895,
-0.01219083834439516,
0.21689757704734802,
-0.07641638070344925,
-0.08825225383043289,
-0.09439420700073242,
0.27340471744537354,
0.05717521160840988,
-0.010592245496809483,
0.029655292630195618,
-0.05802354961633682,
-0.000028213904442964122,
0.26345294713974,
0.19494296610355377,
-0.07860084623098373,
-0.008622698485851288,
-0.0002162014861823991,
-0.009174428880214691,
-0.006888973992317915,
0.12913846969604492,
0.15354208648204803,
0.04700218886137009,
-0.10541214048862457,
-0.04758632555603981,
-0.05604114755988121,
-0.015415727160871029,
-0.05332513898611069,
0.06412999331951141,
0.0330226793885231,
-0.0031902797054499388,
-0.034613728523254395,
0.0607643723487854,
-0.07107920199632645,
-0.08857869356870651,
0.05299460142850876,
-0.2035195529460907,
-0.1595066338777542,
-0.01062526274472475,
0.10634221136569977,
-0.0012369529576972127,
0.05723918229341507,
-0.01931174471974373,
0.0063592311926186085,
0.06758242100477219,
-0.02569141983985901,
-0.08708769083023071,
-0.07149536907672882,
0.09140531718730927,
-0.12021251767873764,
0.17597883939743042,
-0.039646949619054794,
0.0728922113776207,
0.12249209731817245,
0.07473335415124893,
-0.06958827376365662,
0.062033139169216156,
0.025824787095189095,
-0.06428726017475128,
0.04584059491753578,
0.08754641562700272,
-0.030488373711705208,
0.03353550657629967,
0.03482748940587044,
-0.1142256036400795,
0.027728555724024773,
-0.0842500776052475,
-0.04689094424247742,
-0.045309919863939285,
-0.045407433062791824,
-0.05645053833723068,
0.11940252780914307,
0.22056876122951508,
-0.02342352084815502,
0.014091591350734234,
-0.07915771007537842,
0.0027665519155561924,
0.04131954535841942,
0.013850308023393154,
-0.08289261162281036,
-0.23691393435001373,
0.005062120035290718,
0.06535433232784271,
-0.021599330008029938,
-0.22169068455696106,
-0.08719440549612045,
-0.004838224966078997,
-0.07546185702085495,
-0.10150620341300964,
0.08357097953557968,
0.07028165459632874,
0.04765557870268822,
-0.0548330657184124,
-0.07435166090726852,
-0.07830853760242462,
0.15599685907363892,
-0.15222004055976868,
-0.0873161032795906
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr5\_2e-05\_all\_26\_02\_2022-04\_25\_39
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13", "results": []}]}
|
text-classification
|
ali2066/finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_sentence\_itr6\_2e-05\_all\_26\_02\_2022-04\_31\_13
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4676
* Accuracy: 0.8299
* F1: 0.8892
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0989740788936615,
0.06835827231407166,
-0.0018014144152402878,
0.11813290417194366,
0.18204769492149353,
0.019894888624548912,
0.10478955507278442,
0.12532196938991547,
-0.11883316189050674,
0.014661679044365883,
0.12234491854906082,
0.18645930290222168,
0.00548493443056941,
0.11941986531019211,
-0.06270615011453629,
-0.25614407658576965,
-0.01339053362607956,
0.05514086037874222,
-0.06249043717980385,
0.13980869948863983,
0.09688450396060944,
-0.13288135826587677,
0.07771801948547363,
0.0034537019673734903,
-0.2307567447423935,
0.011191495694220066,
0.01577211730182171,
-0.06829927116632462,
0.14542065560817719,
0.022581521421670914,
0.1264665126800537,
0.0029019711073487997,
0.07521743327379227,
-0.17272092401981354,
0.010035466402769089,
0.05027636140584946,
0.005140699911862612,
0.08538255095481873,
0.050718944519758224,
-0.012811917811632156,
0.12261953949928284,
-0.09374929219484329,
0.05249154195189476,
0.01842275634407997,
-0.12018781900405884,
-0.22417891025543213,
-0.08000272512435913,
0.02227506786584854,
0.07109670341014862,
0.11132337898015976,
-0.0005549470661208034,
0.13464850187301636,
-0.09141957014799118,
0.10074593126773834,
0.21316948533058167,
-0.2823718786239624,
-0.06479279696941376,
0.02398228831589222,
0.004551627207547426,
0.07119831442832947,
-0.10933642834424973,
-0.025599470362067223,
0.05793017894029617,
0.052859023213386536,
0.14024314284324646,
-0.03195891156792641,
-0.12789286673069,
0.012007936835289001,
-0.14003638923168182,
-0.0358642153441906,
0.13983575999736786,
0.020307127386331558,
-0.028774216771125793,
-0.04602578654885292,
-0.05994017794728279,
-0.16118066012859344,
-0.044993381947278976,
-0.0064376350492239,
0.041821546852588654,
-0.03243163973093033,
-0.05574997141957283,
0.0060061137191951275,
-0.10893799364566803,
-0.060412947088479996,
-0.08078733831644058,
0.1414753496646881,
0.03889235481619835,
0.011175480671226978,
-0.03604871779680252,
0.10634912550449371,
0.019901033490896225,
-0.1334998905658722,
0.02659083716571331,
0.0278655756264925,
0.00855282973498106,
-0.05121457949280739,
-0.07400534301996231,
-0.05767528712749481,
0.004545626230537891,
0.1115875318646431,
-0.06576123833656311,
0.05418035015463829,
0.02192789502441883,
0.04188742861151695,
-0.09818967431783676,
0.19378243386745453,
-0.023949861526489258,
0.0001916031469590962,
0.01906335912644863,
0.039136797189712524,
0.008247231133282185,
-0.008528766222298145,
-0.118565633893013,
-0.00013029568071942776,
0.12009821087121964,
0.015634072944521904,
-0.07552091032266617,
0.07816922664642334,
-0.04993562772870064,
-0.02115545980632305,
0.019864752888679504,
-0.10427980124950409,
0.03594484552741051,
-0.0026313436683267355,
-0.0817013755440712,
-0.014190122485160828,
0.02976977825164795,
0.009721122682094574,
-0.03756503760814667,
0.11733448505401611,
-0.07673028856515884,
0.0435975044965744,
-0.10309988260269165,
-0.10623560100793839,
0.017383739352226257,
-0.07652264088392258,
0.02591083012521267,
-0.10547727346420288,
-0.1617424041032791,
-0.018860381096601486,
0.05698045343160629,
-0.023517703637480736,
-0.05695571377873421,
-0.05188611149787903,
-0.07480201125144958,
0.016940953209996223,
-0.018978113308548927,
0.1522711217403412,
-0.058804940432310104,
0.10974299162626266,
0.04167185351252556,
0.06660835444927216,
-0.05382087826728821,
0.06296168267726898,
-0.09741432964801788,
-0.0016139318468049169,
-0.19632618129253387,
0.05465393513441086,
-0.044671084731817245,
0.08093741536140442,
-0.08630482107400894,
-0.11523228883743286,
0.012700188905000687,
-0.004893500357866287,
0.07088451087474823,
0.09080401062965393,
-0.16137449443340302,
-0.07606822997331619,
0.15358076989650726,
-0.06749184429645538,
-0.11013370007276535,
0.11351925134658813,
-0.06262318789958954,
0.051814623177051544,
0.08287959545850754,
0.16699795424938202,
0.07490786910057068,
-0.06718524545431137,
0.0239421296864748,
0.004518431611359119,
0.04318011552095413,
-0.08229409158229828,
0.051331859081983566,
0.011869675479829311,
-0.01066555455327034,
0.039881423115730286,
-0.020669303834438324,
0.06747538596391678,
-0.09072889387607574,
-0.09305330365896225,
-0.047114964574575424,
-0.0943286195397377,
0.04640979319810867,
0.08193136006593704,
0.09680316597223282,
-0.09299083799123764,
-0.06741674989461899,
0.07994264364242554,
0.06962275505065918,
-0.06164079159498215,
0.037048399448394775,
-0.05486983805894852,
0.05883169546723366,
-0.02718281000852585,
-0.016811994835734367,
-0.20561525225639343,
0.008102905936539173,
0.0067236050963401794,
0.010952075943350792,
0.015057999640703201,
0.0043557737953960896,
0.0699174553155899,
0.04789256677031517,
-0.05890124291181564,
-0.012737667188048363,
-0.006748109590262175,
-0.008169186301529408,
-0.14148107171058655,
-0.18435050547122955,
-0.015900224447250366,
-0.020300017669796944,
0.11881417781114578,
-0.19643384218215942,
0.03849129378795624,
-0.010850008577108383,
0.06407646089792252,
-0.004388316534459591,
-0.000019890883777406998,
-0.044491589069366455,
0.09047476202249527,
-0.03531637415289879,
-0.0448206290602684,
0.08098532259464264,
0.010925104841589928,
-0.08158215880393982,
-0.03929102420806885,
-0.09052562713623047,
0.171918123960495,
0.14526110887527466,
-0.12683454155921936,
-0.08044607937335968,
-0.005878053605556488,
-0.05676768720149994,
-0.030620381236076355,
-0.03730364143848419,
0.04391290247440338,
0.19136983156204224,
-0.017083682119846344,
0.16197174787521362,
-0.0700141042470932,
-0.05285249277949333,
0.021560631692409515,
-0.029126901179552078,
0.03350362554192543,
0.11956069618463516,
0.10785893350839615,
-0.08367367833852768,
0.14089874923229218,
0.14713364839553833,
-0.10345865041017532,
0.12428149580955505,
-0.04679219424724579,
-0.06210563704371452,
-0.0018863790901377797,
-0.019422469660639763,
0.00011957062088185921,
0.07608889043331146,
-0.14488734304904938,
-0.009008955210447311,
0.020221326500177383,
0.022568700835108757,
0.027749087661504745,
-0.2248573750257492,
-0.031079458072781563,
0.02479865401983261,
-0.03673648461699486,
-0.010694274678826332,
-0.018659278750419617,
0.012530033476650715,
0.10762166231870651,
0.0003622023796197027,
-0.07836019992828369,
0.04727677255868912,
0.007436850108206272,
-0.08457975089550018,
0.22466467320919037,
-0.09441468864679337,
-0.16925877332687378,
-0.11819688975811005,
-0.08197271823883057,
-0.034878265112638474,
0.009655035100877285,
0.0654485821723938,
-0.09990047663450241,
-0.026291601359844208,
-0.054485466331243515,
0.010912437923252583,
-0.006031278055161238,
0.04324425384402275,
0.012084423564374447,
0.006764135789126158,
0.07081300020217896,
-0.1088155210018158,
-0.01135028712451458,
-0.05454573407769203,
-0.05597857013344765,
0.056514959782361984,
0.028370533138513565,
0.10494537651538849,
0.16219769418239594,
-0.027161216363310814,
0.010565443895757198,
-0.03432704880833626,
0.2244962900876999,
-0.06615771353244781,
-0.029705248773097992,
0.13328365981578827,
-0.005937248468399048,
0.05374959111213684,
0.10402829945087433,
0.06753350049257278,
-0.09114833921194077,
0.01561013050377369,
0.017958717420697212,
-0.03732139989733696,
-0.2284477800130844,
-0.05401673540472984,
-0.0630260780453682,
-0.029919523745775223,
0.09859524667263031,
0.030502932146191597,
0.050371043384075165,
0.06599421054124832,
0.04408208653330803,
0.09062671661376953,
-0.03545569255948067,
0.052660126239061356,
0.13213883340358734,
0.047470852732658386,
0.12702976167201996,
-0.05106839910149574,
-0.06762097775936127,
0.030676065012812614,
-0.02178085595369339,
0.22120152413845062,
0.0003977484011556953,
0.121807761490345,
0.05075198411941528,
0.17875516414642334,
0.008732077665627003,
0.0919271856546402,
-0.005618656054139137,
-0.04415610805153847,
-0.006734775844961405,
-0.03657308220863342,
-0.049998536705970764,
0.01115701999515295,
-0.07537171989679337,
0.04768658056855202,
-0.12250608950853348,
-0.018091680482029915,
0.056214120239019394,
0.25302186608314514,
0.01968422159552574,
-0.3296101987361908,
-0.08591752499341965,
0.0004614796198438853,
-0.03806869685649872,
-0.028118446469306946,
0.018422208726406097,
0.07910475134849548,
-0.09740324318408966,
0.035688139498233795,
-0.06899664551019669,
0.1001453772187233,
-0.04270526021718979,
0.04646199941635132,
0.06531159579753876,
0.07719875872135162,
0.012440892867743969,
0.08543821424245834,
-0.3335217535495758,
0.2634105980396271,
0.003285347716882825,
0.07784020155668259,
-0.08630727231502533,
0.002355041680857539,
0.033159833401441574,
0.07080304622650146,
0.05576872453093529,
-0.015273112803697586,
-0.04356124997138977,
-0.1849251538515091,
-0.05488424748182297,
0.030370840802788734,
0.08381810784339905,
-0.0112729137763381,
0.08218877017498016,
-0.026177939027547836,
0.006803635973483324,
0.07595789432525635,
-0.042887892574071884,
-0.04906507581472397,
-0.1036621704697609,
-0.015734221786260605,
0.02381955087184906,
-0.038500573486089706,
-0.05656691640615463,
-0.11516062170267105,
-0.12261014431715012,
0.15468791127204895,
-0.021114762872457504,
-0.043024711310863495,
-0.11373057961463928,
0.08907102048397064,
0.06845145672559738,
-0.08519218116998672,
0.052701685577631,
0.004720133729279041,
0.06025732308626175,
0.029051166027784348,
-0.08347100019454956,
0.10533488541841507,
-0.06186806410551071,
-0.15075281262397766,
-0.04934506118297577,
0.10581465810537338,
0.0344986766576767,
0.06065209582448006,
-0.007089108228683472,
0.012866698205471039,
-0.04143251106142998,
-0.09453604370355606,
0.012919153086841106,
-0.014487768523395061,
0.09343898296356201,
0.017004188150167465,
-0.06809407472610474,
-0.009684084914624691,
-0.06467930972576141,
-0.03201856464147568,
0.19951294362545013,
0.20489147305488586,
-0.096754290163517,
0.028030380606651306,
0.03194167837500572,
-0.07397793233394623,
-0.20735639333724976,
0.04606207460165024,
0.06822992861270905,
0.006655873730778694,
0.0190877728164196,
-0.18178118765354156,
0.13229742646217346,
0.09355080872774124,
-0.01039063185453415,
0.10381343215703964,
-0.3240593671798706,
-0.12991681694984436,
0.12261810898780823,
0.14031967520713806,
0.1355155110359192,
-0.1402914971113205,
-0.0178601685911417,
-0.030744018033146858,
-0.11103474348783493,
0.10053560882806778,
-0.07984603941440582,
0.11835777759552002,
-0.03400998190045357,
0.08157792687416077,
0.0009252945310436189,
-0.06149941682815552,
0.11028452962636948,
0.02527216076850891,
0.09703342616558075,
-0.06589982658624649,
-0.026915526017546654,
0.04324362054467201,
-0.037489064037799835,
0.01614711806178093,
-0.08135341852903366,
0.0292270015925169,
-0.10504329204559326,
-0.02181168645620346,
-0.08214490115642548,
0.04385027289390564,
-0.032554760575294495,
-0.04834893345832825,
-0.03384395316243172,
0.01546354591846466,
0.05185224115848541,
-0.014743490144610405,
0.12879164516925812,
0.022134019061923027,
0.1485820859670639,
0.12283491343259811,
0.07821936905384064,
-0.07018183171749115,
-0.05282147228717804,
-0.009745870716869831,
-0.015593396499752998,
0.05727449059486389,
-0.15125802159309387,
0.032280854880809784,
0.1460486650466919,
0.017940057441592216,
0.12598378956317902,
0.08839431405067444,
-0.008374459110200405,
0.004749265965074301,
0.06899158656597137,
-0.1643214374780655,
-0.07049793004989624,
-0.0030424585565924644,
-0.05657615512609482,
-0.09926388412714005,
0.050175268203020096,
0.07870614528656006,
-0.06856219470500946,
-0.013709778897464275,
-0.008725768886506557,
0.0025450419634580612,
-0.05976426973938942,
0.20582376420497894,
0.058638934046030045,
0.04635850712656975,
-0.11325999349355698,
0.07240666449069977,
0.05803855136036873,
-0.0843905657529831,
0.007780454587191343,
0.08273693174123764,
-0.09345600754022598,
-0.04917211830615997,
0.11733493953943253,
0.1691841185092926,
-0.0552038848400116,
-0.04684097319841385,
-0.13330255448818207,
-0.12706777453422546,
0.08730541169643402,
0.16477787494659424,
0.12265084683895111,
0.014785602688789368,
-0.06337085366249084,
0.0057121687568724155,
-0.1285216510295868,
0.07844696938991547,
0.04097484424710274,
0.06584877520799637,
-0.13127535581588745,
0.1682848036289215,
0.01183136273175478,
0.049413666129112244,
-0.02641463093459606,
0.025035221129655838,
-0.10031426697969437,
0.022936755791306496,
-0.11794525384902954,
-0.01791485957801342,
-0.019918397068977356,
0.006832301616668701,
-0.008764293044805527,
-0.050049953162670135,
-0.051316406577825546,
0.018675651401281357,
-0.12063993513584137,
-0.017837101593613625,
0.023255163803696632,
0.050622325390577316,
-0.1120942234992981,
-0.042147133499383926,
0.021356822922825813,
-0.06103493645787239,
0.06308165192604065,
0.06001199409365654,
0.005767610389739275,
0.06636889278888702,
-0.13094064593315125,
-0.007390205282717943,
0.08482437580823898,
0.012476474978029728,
0.06361813098192215,
-0.08654730767011642,
0.0008468502201139927,
0.020257389172911644,
0.06623560935258865,
0.027626074850559235,
0.08358921110630035,
-0.14491067826747894,
0.006201211828738451,
-0.03429802507162094,
-0.07788342237472534,
-0.07040490210056305,
0.03404367342591286,
0.0881294310092926,
0.012914231047034264,
0.195071741938591,
-0.08172376453876495,
0.03411489725112915,
-0.20462457835674286,
0.001394592341966927,
-0.020381154492497444,
-0.12331956624984741,
-0.12725362181663513,
-0.06623335182666779,
0.06819941103458405,
-0.04510639235377312,
0.139524906873703,
0.03618153929710388,
0.04049002379179001,
0.029873177409172058,
-0.015161143615841866,
0.003201344283297658,
0.02636263519525528,
0.22011764347553253,
0.032857537269592285,
-0.038180939853191376,
0.07869260758161545,
0.057197459042072296,
0.09951962530612946,
0.12751515209674835,
0.19709116220474243,
0.15646636486053467,
-0.01569092459976673,
0.09679500758647919,
0.013065255247056484,
-0.04448871314525604,
-0.15677297115325928,
0.04166759178042412,
-0.057431284338235855,
0.10212825983762741,
-0.029060617089271545,
0.20517362654209137,
0.05757233873009682,
-0.16551260650157928,
0.051521409302949905,
-0.05823493003845215,
-0.09498078376054764,
-0.1052035540342331,
-0.03804755583405495,
-0.08509183675050735,
-0.14190763235092163,
-0.001201682724058628,
-0.1089630201458931,
0.01485436875373125,
0.10383538901805878,
0.006404666230082512,
-0.030237533152103424,
0.15574361383914948,
0.036316435784101486,
0.015139908529818058,
0.0684613585472107,
-0.0036438247188925743,
-0.026432765647768974,
-0.1004655584692955,
-0.060062166303396225,
-0.0200649444013834,
-0.014910558238625526,
0.040262266993522644,
-0.049953751266002655,
-0.06341900676488876,
0.039684418588876724,
-0.03250553831458092,
-0.09317851811647415,
0.015660330653190613,
0.029953353106975555,
0.06957235187292099,
0.058633022010326385,
0.009404957294464111,
0.007885435596108437,
-0.011944252997636795,
0.21805672347545624,
-0.07671892642974854,
-0.08851530402898788,
-0.09428589046001434,
0.27357980608940125,
0.057095304131507874,
-0.01021662075072527,
0.03009716607630253,
-0.05847102776169777,
-0.0002318289189133793,
0.2630098760128021,
0.19469977915287018,
-0.07829947024583817,
-0.008462879806756973,
-0.00040867269854061306,
-0.009288988076150417,
-0.007094101049005985,
0.12895068526268005,
0.1531362384557724,
0.04748225584626198,
-0.10568288713693619,
-0.04783911630511284,
-0.056000009179115295,
-0.01524894218891859,
-0.054042406380176544,
0.06536383181810379,
0.0320485383272171,
-0.003206087974831462,
-0.035010162740945816,
0.060556717216968536,
-0.07073884457349777,
-0.089557945728302,
0.05272866412997246,
-0.20372501015663147,
-0.15953317284584045,
-0.010092382319271564,
0.10723774135112762,
-0.0015553035773336887,
0.05765628442168236,
-0.019707370549440384,
0.006166541017591953,
0.06772980093955994,
-0.02533484436571598,
-0.0876937210559845,
-0.0709386020898819,
0.09144868701696396,
-0.12113767862319946,
0.17597326636314392,
-0.03982556238770485,
0.07342014461755753,
0.12230867892503738,
0.07519441097974777,
-0.0695907473564148,
0.06132553517818451,
0.025974400341510773,
-0.06448778510093689,
0.04549944028258324,
0.08802928030490875,
-0.030731210485100746,
0.03301481157541275,
0.03541096672415733,
-0.1147034764289856,
0.027095835655927658,
-0.08479557931423187,
-0.046767447143793106,
-0.04526926949620247,
-0.04578935727477074,
-0.05683230981230736,
0.11871986091136932,
0.2201368361711502,
-0.02361880987882614,
0.014395543374121189,
-0.07935819774866104,
0.002594099612906575,
0.04173986241221428,
0.01399563904851675,
-0.08233017474412918,
-0.2371227741241455,
0.004930680617690086,
0.06645713001489639,
-0.02133401855826378,
-0.2210077941417694,
-0.08735497295856476,
-0.004849676042795181,
-0.07564949244260788,
-0.10103825479745865,
0.08378273993730545,
0.07051634043455124,
0.047200758010149,
-0.05506410077214241,
-0.0762009397149086,
-0.07815675437450409,
0.15602999925613403,
-0.1516193300485611,
-0.0877496674656868
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-01_30_30
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1748
- Precision: 0.3384
- Recall: 0.3492
- F1: 0.3437
- Accuracy: 0.9442
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3180 | 0.0985 | 0.1648 | 0.1233 | 0.8643 |
| No log | 2.0 | 76 | 0.2667 | 0.1962 | 0.2698 | 0.2272 | 0.8926 |
| No log | 3.0 | 114 | 0.2374 | 0.2268 | 0.3005 | 0.2585 | 0.9062 |
| No log | 4.0 | 152 | 0.2305 | 0.2248 | 0.3247 | 0.2657 | 0.9099 |
| No log | 5.0 | 190 | 0.2289 | 0.2322 | 0.3166 | 0.2679 | 0.9102 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-01_30_30", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-01_30_30
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-01\_30\_30
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1748
* Precision: 0.3384
* Recall: 0.3492
* F1: 0.3437
* Accuracy: 0.9442
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-01_55_54
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-01_55_54", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-01_55_54
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-01\_55\_54
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_15_41
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1746
- Precision: 0.3191
- Recall: 0.3382
- F1: 0.3284
- Accuracy: 0.9439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2908 | 0.1104 | 0.1905 | 0.1398 | 0.8731 |
| No log | 2.0 | 76 | 0.2253 | 0.1682 | 0.3206 | 0.2206 | 0.9114 |
| No log | 3.0 | 114 | 0.2041 | 0.2069 | 0.3444 | 0.2585 | 0.9249 |
| No log | 4.0 | 152 | 0.1974 | 0.2417 | 0.3603 | 0.2894 | 0.9269 |
| No log | 5.0 | 190 | 0.1958 | 0.2707 | 0.3683 | 0.3120 | 0.9299 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_15_41", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_15_41
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_15\_41
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1746
* Precision: 0.3191
* Recall: 0.3382
* F1: 0.3284
* Accuracy: 0.9439
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_18_19
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_18_19", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_18_19
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_18\_19
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_20_41
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_20_41", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_20_41
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_20\_41
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_23_23
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_23_23", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_23_23
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_23\_23
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_25_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_25_47", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_25_47
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_25\_47
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_28_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_28_10", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_28_10
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_28\_10
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_30_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_30_32", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_30_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_30\_32
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_32_56
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_32_56", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_32_56
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_32\_56
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_35_19
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_35_19", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_35_19
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_35\_19
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_37_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-14_37_42", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_16_02_2022-14_37_42
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_16\_02\_2022-14\_37\_42
================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1722
* Precision: 0.3378
* Recall: 0.3615
* F1: 0.3492
* Accuracy: 0.9448
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_41_15
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1742
- Precision: 0.3447
- Recall: 0.3410
- F1: 0.3428
- Accuracy: 0.9455
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3692 | 0.0868 | 0.2030 | 0.1216 | 0.8238 |
| No log | 2.0 | 76 | 0.3198 | 0.1674 | 0.3029 | 0.2157 | 0.8567 |
| No log | 3.0 | 114 | 0.3156 | 0.1520 | 0.3096 | 0.2039 | 0.8510 |
| No log | 4.0 | 152 | 0.3129 | 0.1753 | 0.3266 | 0.2281 | 0.8500 |
| No log | 5.0 | 190 | 0.3038 | 0.1716 | 0.3401 | 0.2281 | 0.8595 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_41_15", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_41_15
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_41\_15
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1742
* Precision: 0.3447
* Recall: 0.3410
* F1: 0.3428
* Accuracy: 0.9455
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_43_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_43_42", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_43_42
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_43\_42
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_46_07
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_46_07", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_46_07
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_46\_07
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_48_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_48_32", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_48_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_48\_32
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_50_54
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_50_54", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_50_54
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_50\_54
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_53_17
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_53_17", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_53_17
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_53\_17
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_56_33
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_56_33", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_56_33
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_56\_33
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_59_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-15_59_50", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_59_50
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-15\_59\_50
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-16_03_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-16_03_05", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-16_03_05
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-16\_03\_05
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-16_06_20
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_all_16_02_2022-16_06_20", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_2e-05_all_16_02_2022-16_06_20
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_2e-05\_all\_16\_02\_2022-16\_06\_20
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1750
* Precision: 0.3286
* Recall: 0.3334
* F1: 0.3310
* Accuracy: 0.9447
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_09_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_09_36", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_09_36
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_09\_36
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_12_51
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_12_51", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_12_51
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_12\_51
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_16_08
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_16_08", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_16_08
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_16\_08
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_19_24
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_19_24", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_19_24
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_19\_24
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_22_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_22_39", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_22_39
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_22\_39
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_25_56
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_25_56", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_25_56
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_25\_56
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_29_13
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_3e-05_all_16_02_2022-16_29_13", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_29_13
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_3e-05\_all\_16\_02\_2022-16\_29\_13
=====================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1630
* Precision: 0.3684
* Recall: 0.3714
* F1: 0.3699
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1588
- Precision: 0.4510
- Recall: 0.5622
- F1: 0.5005
- Accuracy: 0.9477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2896 | 0.1483 | 0.1981 | 0.1696 | 0.8745 |
| No log | 2.0 | 76 | 0.2553 | 0.2890 | 0.3604 | 0.3207 | 0.8918 |
| No log | 3.0 | 114 | 0.2507 | 0.246 | 0.4642 | 0.3216 | 0.8925 |
| No log | 4.0 | 152 | 0.2540 | 0.2428 | 0.4792 | 0.3223 | 0.8922 |
| No log | 5.0 | 190 | 0.2601 | 0.2747 | 0.4717 | 0.3472 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_14\_27
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1588
* Precision: 0.4510
* Recall: 0.5622
* F1: 0.5005
* Accuracy: 0.9477
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1577
- Precision: 0.4469
- Recall: 0.5280
- F1: 0.4841
- Accuracy: 0.9513
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3553 | 0.1068 | 0.0810 | 0.0922 | 0.8412 |
| No log | 2.0 | 76 | 0.2812 | 0.2790 | 0.4017 | 0.3293 | 0.8684 |
| No log | 3.0 | 114 | 0.2793 | 0.3086 | 0.4586 | 0.3689 | 0.8747 |
| No log | 4.0 | 152 | 0.2766 | 0.3057 | 0.4190 | 0.3535 | 0.8763 |
| No log | 5.0 | 190 | 0.2805 | 0.2699 | 0.4845 | 0.3467 | 0.8793 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_30\_01
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1577
* Precision: 0.4469
* Recall: 0.5280
* F1: 0.4841
* Accuracy: 0.9513
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1500
- Precision: 0.4739
- Recall: 0.5250
- F1: 0.4981
- Accuracy: 0.9551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3183 | 0.2024 | 0.2909 | 0.2387 | 0.8499 |
| No log | 2.0 | 76 | 0.3092 | 0.2909 | 0.4181 | 0.3431 | 0.8548 |
| No log | 3.0 | 114 | 0.2928 | 0.2923 | 0.4855 | 0.3650 | 0.8647 |
| No log | 4.0 | 152 | 0.3098 | 0.2832 | 0.4605 | 0.3507 | 0.8641 |
| No log | 5.0 | 190 | 0.3120 | 0.2470 | 0.4374 | 0.3157 | 0.8654 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-20\_45\_27
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1500
* Precision: 0.4739
* Recall: 0.5250
* F1: 0.4981
* Accuracy: 0.9551
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3057
- Precision: 0.2857
- Recall: 0.4508
- F1: 0.3497
- Accuracy: 0.8741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3018 | 0.2097 | 0.2546 | 0.2300 | 0.8727 |
| No log | 2.0 | 60 | 0.2337 | 0.3444 | 0.3652 | 0.3545 | 0.9024 |
| No log | 3.0 | 90 | 0.2198 | 0.3463 | 0.3869 | 0.3655 | 0.9070 |
| No log | 4.0 | 120 | 0.2112 | 0.3757 | 0.4405 | 0.4056 | 0.9173 |
| No log | 5.0 | 150 | 0.2131 | 0.4163 | 0.5126 | 0.4595 | 0.9212 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_all\_16\_02\_2022-21\_13\_10
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3057
* Precision: 0.2857
* Recall: 0.4508
* F1: 0.3497
* Accuracy: 0.8741
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1146
- Precision: 0.4662
- Recall: 0.4718
- F1: 0.4690
- Accuracy: 0.9773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0756 | 0.2960 | 0.4505 | 0.3573 | 0.9775 |
| No log | 2.0 | 30 | 0.0626 | 0.3615 | 0.4231 | 0.3899 | 0.9808 |
| No log | 3.0 | 45 | 0.0602 | 0.4898 | 0.5275 | 0.5079 | 0.9833 |
| No log | 4.0 | 60 | 0.0719 | 0.5517 | 0.5275 | 0.5393 | 0.9849 |
| No log | 5.0 | 75 | 0.0754 | 0.5765 | 0.5385 | 0.5568 | 0.9849 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_editorials\_16\_02\_2022-21\_07\_38
===================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1146
* Precision: 0.4662
* Recall: 0.4718
* F1: 0.4690
* Accuracy: 0.9773
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Precision: 0.5814
- Recall: 0.7073
- F1: 0.6382
- Accuracy: 0.9248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.3920 | 0.4392 | 0.6069 | 0.5096 | 0.8593 |
| No log | 2.0 | 22 | 0.3304 | 0.4282 | 0.6260 | 0.5085 | 0.8672 |
| No log | 3.0 | 33 | 0.3361 | 0.4840 | 0.6336 | 0.5488 | 0.8685 |
| No log | 4.0 | 44 | 0.3258 | 0.5163 | 0.6641 | 0.5810 | 0.8722 |
| No log | 5.0 | 55 | 0.3472 | 0.5192 | 0.6718 | 0.5857 | 0.8743 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_essays\_16\_02\_2022-21\_04\_02
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2158
* Precision: 0.5814
* Recall: 0.7073
* F1: 0.6382
* Accuracy: 0.9248
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5530
- Precision: 0.0044
- Recall: 0.0182
- F1: 0.0071
- Accuracy: 0.7268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.7051 | 0.0645 | 0.0323 | 0.0430 | 0.4465 |
| No log | 2.0 | 20 | 0.6928 | 0.0476 | 0.0161 | 0.0241 | 0.5546 |
| No log | 3.0 | 30 | 0.6875 | 0.0069 | 0.0484 | 0.0120 | 0.5533 |
| No log | 4.0 | 40 | 0.6966 | 0.0064 | 0.0323 | 0.0107 | 0.5832 |
| No log | 5.0 | 50 | 0.7093 | 0.0061 | 0.0323 | 0.0102 | 0.5742 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_0.0002\_webDiscourse\_16\_02\_2022-21\_00\_50
=====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5530
* Precision: 0.0044
* Recall: 0.0182
* F1: 0.0071
* Accuracy: 0.7268
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1062958836555481,
0.0816681832075119,
-0.0021937433630228043,
0.12327482551336288,
0.17721518874168396,
0.01711355894804001,
0.10583840310573578,
0.1151847094297409,
-0.11626552045345306,
0.019183292984962463,
0.12410728633403778,
0.1914329081773758,
0.0004389523237477988,
0.10859446972608566,
-0.050513699650764465,
-0.24995064735412598,
-0.01017807424068451,
0.05789189413189888,
-0.08510799705982208,
0.13397160172462463,
0.09687737375497818,
-0.13977684080600739,
0.07785656303167343,
0.013246459886431694,
-0.23487482964992523,
0.010883119888603687,
0.023516898974776268,
-0.06412053108215332,
0.14720365405082703,
0.01388674695044756,
0.13728035986423492,
-0.002939473604783416,
0.08666792511940002,
-0.16141532361507416,
0.007353014312684536,
0.05403486639261246,
0.01594122312963009,
0.09210824221372604,
0.05636027082800865,
-0.0008434746996499598,
0.10323715209960938,
-0.07985610514879227,
0.05604954808950424,
0.022976065054535866,
-0.11748865991830826,
-0.24513709545135498,
-0.0874004065990448,
0.03180430829524994,
0.0695914626121521,
0.09751560539007187,
0.009048104286193848,
0.14503535628318787,
-0.09518185257911682,
0.09080979973077774,
0.21919962763786316,
-0.2830764353275299,
-0.06428217142820358,
0.04559071362018585,
-0.0014310135738924146,
0.055978838354349136,
-0.11152496188879013,
-0.033303555101156235,
0.05567139387130737,
0.04963004216551781,
0.1481420397758484,
-0.03438490629196167,
-0.12113828957080841,
0.016618261113762856,
-0.14607052505016327,
-0.029333099722862244,
0.12375163286924362,
0.026828402653336525,
-0.035742610692977905,
-0.03243543580174446,
-0.06140463799238205,
-0.17210330069065094,
-0.04207577928900719,
-0.018943283706903458,
0.0452832393348217,
-0.03684547543525696,
-0.06143651530146599,
0.013457080349326134,
-0.10093370079994202,
-0.07158719003200531,
-0.07676896452903748,
0.15744474530220032,
0.04556426405906677,
0.013955974951386452,
-0.024101821705698967,
0.11331266164779663,
0.01948009803891182,
-0.1261189579963684,
0.029297882691025734,
0.03127496317028999,
-0.0015174765139818192,
-0.05504210665822029,
-0.06624065339565277,
-0.04285947233438492,
0.008095803670585155,
0.11936056613922119,
-0.05704759061336517,
0.044649913907051086,
0.04122081398963928,
0.04048307240009308,
-0.10707226395606995,
0.19225139915943146,
-0.04128667339682579,
0.001986805582419038,
0.012318206019699574,
0.040122561156749725,
0.00045016620424576104,
0.0014797981129959226,
-0.11068408191204071,
-0.00006267012213356793,
0.11945563554763794,
0.01670391857624054,
-0.07876703888177872,
0.07078011333942413,
-0.05159766972064972,
-0.02106216736137867,
0.014242388308048248,
-0.09878045320510864,
0.03503376245498657,
-0.008061236701905727,
-0.08943118155002594,
-0.007102127652615309,
0.02455124631524086,
0.009806819260120392,
-0.021286966279149055,
0.11901063472032547,
-0.09215670078992844,
0.042120397090911865,
-0.10209237039089203,
-0.10062617063522339,
0.010823073796927929,
-0.07884477823972702,
0.0282865259796381,
-0.10071340203285217,
-0.14631974697113037,
-0.010439188219606876,
0.05969803035259247,
-0.021344367414712906,
-0.05588337779045105,
-0.03953355550765991,
-0.0737864077091217,
0.006286134012043476,
-0.01377126295119524,
0.1411828100681305,
-0.05347280949354172,
0.10939139127731323,
0.03830947354435921,
0.06295150518417358,
-0.0484158992767334,
0.06040601432323456,
-0.10519679635763168,
0.010281488299369812,
-0.19304855167865753,
0.034614816308021545,
-0.055524155497550964,
0.07410118728876114,
-0.0953134298324585,
-0.11581164598464966,
0.027174217626452446,
-0.01690000481903553,
0.07614202052354813,
0.08516824245452881,
-0.1573493927717209,
-0.07307638227939606,
0.1416173130273819,
-0.06398080289363861,
-0.10335274040699005,
0.11018697917461395,
-0.0604427307844162,
0.042588010430336,
0.0736861452460289,
0.14790523052215576,
0.08105957508087158,
-0.07087402790784836,
0.020238665863871574,
0.002928901929408312,
0.038314178586006165,
-0.08306026458740234,
0.055818673223257065,
0.007595918141305447,
-0.01384645327925682,
0.0371524952352047,
-0.030592190101742744,
0.0675201565027237,
-0.09899937361478806,
-0.09583667665719986,
-0.04719085618853569,
-0.10125665366649628,
0.053663868457078934,
0.07864963263273239,
0.08784312754869461,
-0.08558478951454163,
-0.06849148124456406,
0.0959709882736206,
0.0808914378285408,
-0.052039653062820435,
0.030264442786574364,
-0.058742422610521317,
0.06716214865446091,
-0.050201576203107834,
-0.028312882408499718,
-0.19581401348114014,
-0.01117982529103756,
0.009814130142331123,
-0.015220101922750473,
0.0196123868227005,
0.01643178053200245,
0.07122457027435303,
0.06392794847488403,
-0.05305693671107292,
-0.018427927047014236,
-0.022435227409005165,
-0.0015043391613289714,
-0.14157630503177643,
-0.1910429745912552,
-0.03425688296556473,
-0.015185022726655006,
0.10528045892715454,
-0.18801110982894897,
0.03279360756278038,
-0.02117072232067585,
0.08025072515010834,
0.00008929429895943031,
-0.008036572486162186,
-0.048941660672426224,
0.08945214748382568,
-0.03315909579396248,
-0.05260728672146797,
0.07394621521234512,
0.002175713889300823,
-0.07715904712677002,
-0.0540909618139267,
-0.07954894006252289,
0.18367208540439606,
0.1366460919380188,
-0.12395061552524567,
-0.08427537232637405,
-0.005778363905847073,
-0.061974700540304184,
-0.033981531858444214,
-0.03887596353888512,
0.055184248834848404,
0.16997069120407104,
-0.016667546704411507,
0.1540667563676834,
-0.06733424216508865,
-0.05112937465310097,
0.025390619412064552,
-0.03340492770075798,
0.03507232293486595,
0.11068645864725113,
0.12205082178115845,
-0.07521631568670273,
0.14595556259155273,
0.15123441815376282,
-0.10758961737155914,
0.10670115798711777,
-0.04913630709052086,
-0.0673537403345108,
-0.0158416535705328,
-0.01714879460632801,
-0.00017008540453389287,
0.09644794464111328,
-0.12868128716945648,
0.0006714507471770048,
0.022877365350723267,
0.02474150061607361,
0.0171233918517828,
-0.22883330285549164,
-0.034601420164108276,
0.026618096977472305,
-0.03440267965197563,
0.0008583770832046866,
-0.014748903922736645,
0.010502120479941368,
0.10627653449773788,
0.00044344711932353675,
-0.09584946185350418,
0.04588431119918823,
0.013781159184873104,
-0.07213873416185379,
0.2169886976480484,
-0.08874508738517761,
-0.13467000424861908,
-0.12078187614679337,
-0.08004257082939148,
-0.045789480209350586,
0.008987348526716232,
0.05196644365787506,
-0.09552288055419922,
-0.02657676488161087,
-0.04336646571755409,
0.012934111058712006,
-0.0034108352847397327,
0.04858553037047386,
0.0025003813207149506,
0.0025168952997773886,
0.0836692601442337,
-0.109525166451931,
-0.006102345418184996,
-0.05441344901919365,
-0.06080017238855362,
0.04363051801919937,
0.05041130632162094,
0.10381017625331879,
0.1655469685792923,
-0.029774919152259827,
0.007877124473452568,
-0.02633114531636238,
0.22934915125370026,
-0.05913766473531723,
-0.031079689040780067,
0.13472728431224823,
-0.0032426437828689814,
0.057606883347034454,
0.10394468158483505,
0.07978811115026474,
-0.089966781437397,
0.0055557731539011,
0.03267893195152283,
-0.03571808710694313,
-0.21633948385715485,
-0.04960830882191658,
-0.055057402700185776,
-0.03451886400580406,
0.09789717942476273,
0.02974247746169567,
0.055463775992393494,
0.07448487728834152,
0.048258863389492035,
0.09328494966030121,
-0.058176711201667786,
0.0542997345328331,
0.11707484722137451,
0.050902385264635086,
0.12194884568452835,
-0.045774079859256744,
-0.07182664424180984,
0.02664630115032196,
-0.010216053575277328,
0.22870782017707825,
0.004783532582223415,
0.11133424937725067,
0.057796213775873184,
0.20687848329544067,
0.0028193872421979904,
0.08910240232944489,
-0.0037996675819158554,
-0.04721337929368019,
-0.005540414713323116,
-0.037963297218084335,
-0.03703758865594864,
0.010063037276268005,
-0.06375467032194138,
0.06468678265810013,
-0.11343920230865479,
-0.014110995456576347,
0.04860827326774597,
0.26368796825408936,
0.02383333630859852,
-0.33197903633117676,
-0.08804196119308472,
-0.011602357029914856,
-0.03592793643474579,
-0.026036877185106277,
0.018547844141721725,
0.07635410130023956,
-0.09445381909608841,
0.01923731528222561,
-0.07509282231330872,
0.09083473682403564,
-0.03603120148181915,
0.03822421282529831,
0.08122165501117706,
0.09578953683376312,
0.01519691664725542,
0.08048021793365479,
-0.31699082255363464,
0.26473748683929443,
0.0014894501073285937,
0.0726313441991806,
-0.07495249807834625,
0.005461432505398989,
0.03312666714191437,
0.07025405019521713,
0.05467003583908081,
-0.01195070706307888,
-0.032840579748153687,
-0.21325156092643738,
-0.049305155873298645,
0.02524949423968792,
0.08334264159202576,
-0.01936160959303379,
0.0843096375465393,
-0.03180589899420738,
0.007234062999486923,
0.07787400484085083,
-0.041614845395088196,
-0.05042176693677902,
-0.08444197475910187,
-0.015618673525750637,
0.021157464012503624,
-0.03575249761343002,
-0.06095174700021744,
-0.11350332945585251,
-0.1275799423456192,
0.14785081148147583,
-0.022914139553904533,
-0.03698914870619774,
-0.11698843538761139,
0.08106502890586853,
0.08512414991855621,
-0.0837860107421875,
0.06088786572217941,
-0.000016253214198513888,
0.05580981820821762,
0.037408553063869476,
-0.07546675205230713,
0.10547076165676117,
-0.06358563154935837,
-0.15728604793548584,
-0.05461892858147621,
0.10135161876678467,
0.037992797791957855,
0.06144943833351135,
-0.012649203650653362,
0.013184178620576859,
-0.03370646387338638,
-0.09455900639295578,
0.018450886011123657,
-0.023525675758719444,
0.08198326826095581,
0.013825016096234322,
-0.05461467429995537,
0.01115359365940094,
-0.06160734221339226,
-0.026081698015332222,
0.17825347185134888,
0.22115391492843628,
-0.10322453081607819,
0.015454601496458054,
0.035474590957164764,
-0.06627925485372543,
-0.19468152523040771,
0.0450257770717144,
0.06274747848510742,
-0.0015004280721768737,
0.028740454465150833,
-0.175616055727005,
0.14507727324962616,
0.10417648404836655,
-0.01318532694131136,
0.10726473480463028,
-0.33314552903175354,
-0.12535127997398376,
0.1296948343515396,
0.15203917026519775,
0.12251231074333191,
-0.13153624534606934,
-0.01812133565545082,
-0.012988962233066559,
-0.11702804267406464,
0.09822510927915573,
-0.06405875831842422,
0.11796661466360092,
-0.036847956478595734,
0.08281330019235611,
0.0018355028005316854,
-0.0637383982539177,
0.11426042765378952,
0.02844563126564026,
0.1071740984916687,
-0.05641331523656845,
-0.03540258854627609,
0.03970176726579666,
-0.03403369337320328,
0.01463537197560072,
-0.06473153829574585,
0.034474290907382965,
-0.0834275558590889,
-0.01677911914885044,
-0.08401098102331161,
0.05419176444411278,
-0.030605515465140343,
-0.06261899322271347,
-0.04508029669523239,
0.025703420862555504,
0.042642559856176376,
-0.021096473559737206,
0.12716560065746307,
0.039409611374139786,
0.15049897134304047,
0.11539162695407867,
0.05594073608517647,
-0.06654832512140274,
-0.08136548846960068,
-0.012677570804953575,
-0.01548402663320303,
0.06720399856567383,
-0.13946644961833954,
0.030752819031476974,
0.1473679393529892,
0.022928182035684586,
0.1171717643737793,
0.08518730103969574,
-0.013375318609178066,
0.0033098123967647552,
0.06063464656472206,
-0.16021333634853363,
-0.06956654787063599,
0.002851591445505619,
-0.05761979892849922,
-0.09775111079216003,
0.06555898487567902,
0.07753188163042068,
-0.08052567392587662,
-0.012419497594237328,
-0.004607468843460083,
-0.004891088232398033,
-0.06826094537973404,
0.21517601609230042,
0.0651710107922554,
0.048936717212200165,
-0.10939738154411316,
0.07196147739887238,
0.05864165723323822,
-0.0765247568488121,
-0.009273387491703033,
0.06038850173354149,
-0.08907447755336761,
-0.03912315145134926,
0.11340246349573135,
0.16375428438186646,
-0.07087120413780212,
-0.04103744775056839,
-0.1386856585741043,
-0.12179677188396454,
0.08348643034696579,
0.16231636703014374,
0.1237775906920433,
0.023386722430586815,
-0.06266750395298004,
0.009604094550013542,
-0.12896761298179626,
0.0789092630147934,
0.04248238727450371,
0.07607921957969666,
-0.1532067507505417,
0.17947642505168915,
0.011031564325094223,
0.05260298773646355,
-0.024128157645463943,
0.02584674581885338,
-0.09766557067632675,
0.018851250410079956,
-0.1178751215338707,
-0.03461315855383873,
-0.025399301201105118,
0.009167296811938286,
-0.0037059197202324867,
-0.061782173812389374,
-0.05126906931400299,
0.02507084235548973,
-0.12076374143362045,
-0.017286384478211403,
0.039300158619880676,
0.05135134235024452,
-0.11217202991247177,
-0.04030318558216095,
0.02352825179696083,
-0.05596388503909111,
0.05850658193230629,
0.05129330977797508,
0.016513893380761147,
0.06236230954527855,
-0.1225786805152893,
-0.0009420083952136338,
0.08008383959531784,
0.010246244259178638,
0.07332056760787964,
-0.09179368615150452,
-0.0021279104985296726,
0.005201793275773525,
0.06642542779445648,
0.01705167442560196,
0.0740417018532753,
-0.1489357203245163,
-0.01495896652340889,
-0.03785691410303116,
-0.07517904043197632,
-0.07003594189882278,
0.020496075972914696,
0.10045674443244934,
0.010805226862430573,
0.1986706405878067,
-0.07321055233478546,
0.03724273294210434,
-0.20697276294231415,
-0.0037952132988721132,
-0.024195877835154533,
-0.11697054654359818,
-0.13532547652721405,
-0.06157240271568298,
0.060023464262485504,
-0.04563366249203682,
0.1290515810251236,
0.026270627975463867,
0.03988095372915268,
0.027188334614038467,
-0.018568716943264008,
0.010229441337287426,
0.025893591344356537,
0.2147493213415146,
0.03730049729347229,
-0.032437991350889206,
0.07408474385738373,
0.05916425585746765,
0.09392127394676208,
0.11002594977617264,
0.18549971282482147,
0.15552647411823273,
-0.02040426805615425,
0.09049457311630249,
0.0228885468095541,
-0.0540047325193882,
-0.1716742068529129,
0.04168889299035072,
-0.051673948764801025,
0.0914938822388649,
-0.024821314960718155,
0.21557405591011047,
0.057789262384176254,
-0.16391722857952118,
0.05266812443733215,
-0.04638555645942688,
-0.089522585272789,
-0.10194596648216248,
-0.03896666690707207,
-0.07634913921356201,
-0.14569546282291412,
-0.001079253270290792,
-0.09556860476732254,
0.013263868167996407,
0.11837853491306305,
0.004555365536361933,
-0.0267738439142704,
0.1691916286945343,
0.030776558443903923,
0.027371184900403023,
0.04677005857229233,
0.002639311831444502,
-0.03331896662712097,
-0.10266590118408203,
-0.06756484508514404,
-0.023665204644203186,
-0.020219039171934128,
0.03647777810692787,
-0.06396940350532532,
-0.06535283476114273,
0.038618165999650955,
-0.021801017224788666,
-0.09048988670110703,
0.019153712317347527,
0.019238466396927834,
0.06261783838272095,
0.04145730286836624,
0.004683063831180334,
0.019192231819033623,
-0.022123653441667557,
0.20529593527317047,
-0.08125718683004379,
-0.08044787496328354,
-0.09409096837043762,
0.28666195273399353,
0.04953465983271599,
-0.008963622152805328,
0.03500794246792793,
-0.055024974048137665,
0.0007194274803623557,
0.24800893664360046,
0.17756302654743195,
-0.07735852152109146,
-0.012607567012310028,
0.0027546293567866087,
-0.017671003937721252,
-0.030233532190322876,
0.12587563693523407,
0.1436719000339508,
0.04115845635533333,
-0.10394136607646942,
-0.045136723667383194,
-0.06641902774572372,
-0.011247419752180576,
-0.05119169130921364,
0.05768876522779465,
0.03254196047782898,
0.004398391116410494,
-0.04046294093132019,
0.05084151774644852,
-0.06659743934869766,
-0.09265193343162537,
0.07947636395692825,
-0.181966632604599,
-0.16137458384037018,
-0.012945758178830147,
0.10398866981267929,
-0.0006210430874489248,
0.055020496249198914,
-0.02551005780696869,
0.007928002625703812,
0.07260404527187347,
-0.020300425589084625,
-0.08622332662343979,
-0.09022516757249832,
0.10137572884559631,
-0.09869951754808426,
0.19568724930286407,
-0.03933277353644371,
0.07450808584690094,
0.12392613291740417,
0.07207821309566498,
-0.07942798733711243,
0.05406298488378525,
0.03728843107819557,
-0.08181625604629517,
0.03199510648846626,
0.08530569076538086,
-0.020361008122563362,
0.0568399615585804,
0.023766081780195236,
-0.11892826855182648,
0.021528299897909164,
-0.08239170908927917,
-0.04297157749533653,
-0.04525555297732353,
-0.05003496631979942,
-0.04945962876081467,
0.1225385069847107,
0.21470271050930023,
-0.025127267464995384,
0.010823231190443039,
-0.08401543647050858,
0.012024522759020329,
0.054341018199920654,
0.007156674284487963,
-0.08034637570381165,
-0.2311721295118332,
0.016383633017539978,
0.04968631640076637,
-0.030280111357569695,
-0.19325020909309387,
-0.0974658653140068,
0.006010034121572971,
-0.08388251066207886,
-0.09432855993509293,
0.07825267314910889,
0.06601440906524658,
0.05629947781562805,
-0.053540319204330444,
-0.07454057037830353,
-0.08755829930305481,
0.14934109151363373,
-0.1521672010421753,
-0.08402780443429947
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1743
- Precision: 0.3429
- Recall: 0.3430
- F1: 0.3430
- Accuracy: 0.9446
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3322 | 0.0703 | 0.1790 | 0.1010 | 0.8318 |
| No log | 2.0 | 76 | 0.2644 | 0.1180 | 0.2343 | 0.1570 | 0.8909 |
| No log | 3.0 | 114 | 0.2457 | 0.1624 | 0.2583 | 0.1994 | 0.8980 |
| No log | 4.0 | 152 | 0.2487 | 0.1486 | 0.2583 | 0.1887 | 0.8931 |
| No log | 5.0 | 190 | 0.2395 | 0.1670 | 0.2694 | 0.2062 | 0.8988 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_09\_36
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1743
* Precision: 0.3429
* Recall: 0.3430
* F1: 0.3430
* Accuracy: 0.9446
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1778
- Precision: 0.3270
- Recall: 0.3348
- F1: 0.3309
- Accuracy: 0.9439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.4023 | 0.1050 | 0.2331 | 0.1448 | 0.8121 |
| No log | 2.0 | 76 | 0.3629 | 0.1856 | 0.3414 | 0.2405 | 0.8368 |
| No log | 3.0 | 114 | 0.3329 | 0.1794 | 0.3594 | 0.2394 | 0.8504 |
| No log | 4.0 | 152 | 0.3261 | 0.1786 | 0.3684 | 0.2405 | 0.8503 |
| No log | 5.0 | 190 | 0.3244 | 0.1872 | 0.3684 | 0.2482 | 0.8534 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_25\_06
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1778
* Precision: 0.3270
* Recall: 0.3348
* F1: 0.3309
* Accuracy: 0.9439
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1736
- Precision: 0.3358
- Recall: 0.3447
- F1: 0.3402
- Accuracy: 0.9452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3058 | 0.1200 | 0.2102 | 0.1528 | 0.8629 |
| No log | 2.0 | 76 | 0.2488 | 0.1605 | 0.2774 | 0.2034 | 0.9003 |
| No log | 3.0 | 114 | 0.2296 | 0.1947 | 0.2880 | 0.2324 | 0.9057 |
| No log | 4.0 | 152 | 0.2208 | 0.2201 | 0.2986 | 0.2534 | 0.9113 |
| No log | 5.0 | 190 | 0.2235 | 0.2110 | 0.3039 | 0.2491 | 0.9101 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-20\_40\_28
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1736
* Precision: 0.3358
* Recall: 0.3447
* F1: 0.3402
* Accuracy: 0.9452
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2853
- Precision: 0.1677
- Recall: 0.3106
- F1: 0.2178
- Accuracy: 0.8755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3452 | 0.0526 | 0.1055 | 0.0702 | 0.8507 |
| No log | 2.0 | 60 | 0.2598 | 0.1575 | 0.2680 | 0.1984 | 0.8909 |
| No log | 3.0 | 90 | 0.2398 | 0.1866 | 0.2982 | 0.2295 | 0.9007 |
| No log | 4.0 | 120 | 0.2354 | 0.1949 | 0.3049 | 0.2378 | 0.9002 |
| No log | 5.0 | 150 | 0.2314 | 0.2026 | 0.3166 | 0.2471 | 0.9004 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_all\_16\_02\_2022-21\_08\_55
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2853
* Precision: 0.1677
* Recall: 0.3106
* F1: 0.2178
* Accuracy: 0.8755
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1114
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0921 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 2.0 | 30 | 0.0816 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 3.0 | 45 | 0.0781 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 4.0 | 60 | 0.0746 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 5.0 | 75 | 0.0737 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_editorials\_16\_02\_2022-21\_05\_05
==================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1114
* Precision: 0.0637
* Recall: 0.0080
* F1: 0.0141
* Accuracy: 0.9707
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2525
- Precision: 0.3997
- Recall: 0.5117
- F1: 0.4488
- Accuracy: 0.9115
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4652 | 0.1528 | 0.3588 | 0.2144 | 0.7851 |
| No log | 2.0 | 22 | 0.3646 | 0.2913 | 0.4847 | 0.3639 | 0.8521 |
| No log | 3.0 | 33 | 0.3453 | 0.3789 | 0.5611 | 0.4523 | 0.8708 |
| No log | 4.0 | 44 | 0.3270 | 0.3673 | 0.5496 | 0.4404 | 0.8729 |
| No log | 5.0 | 55 | 0.3268 | 0.4011 | 0.5725 | 0.4717 | 0.8760 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_essays\_16\_02\_2022-21\_01\_51
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2525
* Precision: 0.3997
* Recall: 0.5117
* F1: 0.4488
* Accuracy: 0.9115
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6373
- Precision: 0.0024
- Recall: 0.0072
- F1: 0.0036
- Accuracy: 0.6329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 10 | 0.5913 | 0.0 | 0.0 | 0.0 | 0.7023 |
| No log | 2.0 | 20 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.7062 |
| No log | 3.0 | 30 | 0.5717 | 0.0 | 0.0 | 0.0 | 0.7059 |
| No log | 4.0 | 40 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.7008 |
| No log | 5.0 | 50 | 0.5669 | 0.0 | 0.0 | 0.0 | 0.7010 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_2e-05\_webDiscourse\_16\_02\_2022-20\_58\_45
====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6373
* Precision: 0.0024
* Recall: 0.0072
* F1: 0.0036
* Accuracy: 0.6329
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.1073998287320137,
0.08210621029138565,
-0.0020050478633493185,
0.12253231555223465,
0.1814965009689331,
0.0156874842941761,
0.10453984886407852,
0.11538700759410858,
-0.11682835966348648,
0.019494690001010895,
0.12559698522090912,
0.19104868173599243,
-0.0009140230249613523,
0.12755320966243744,
-0.0553579181432724,
-0.25167855620384216,
-0.006845478899776936,
0.0593942254781723,
-0.07694444805383682,
0.13469356298446655,
0.09952619671821594,
-0.14159248769283295,
0.08131030946969986,
0.012526876293122768,
-0.2413611114025116,
0.008981042541563511,
0.019705455750226974,
-0.06841833889484406,
0.14422830939292908,
0.013032506220042706,
0.13542473316192627,
-0.005466840695589781,
0.08649254590272903,
-0.15635007619857788,
0.005056057590991259,
0.05107644945383072,
0.018504977226257324,
0.09019548445940018,
0.052272964268922806,
0.0027814581990242004,
0.10176009684801102,
-0.08294053375720978,
0.05135563388466835,
0.015681128948926926,
-0.11602283269166946,
-0.23894283175468445,
-0.08786126971244812,
0.034314271062612534,
0.07048649340867996,
0.09983741492033005,
0.007416107226163149,
0.1484970599412918,
-0.09107107669115067,
0.09299879521131516,
0.22687718272209167,
-0.28566908836364746,
-0.06193207949399948,
0.03767530992627144,
-0.0021332695614546537,
0.04743755981326103,
-0.1071169376373291,
-0.039141733199357986,
0.0598626583814621,
0.04902968555688858,
0.14519302546977997,
-0.03714378923177719,
-0.11843735724687576,
0.012944321148097515,
-0.14692744612693787,
-0.03203599900007248,
0.12408686429262161,
0.028300756588578224,
-0.035701051354408264,
-0.03529717028141022,
-0.058402203023433685,
-0.16820767521858215,
-0.04086872562766075,
-0.011760429479181767,
0.04426199197769165,
-0.04104437679052353,
-0.06696541607379913,
0.022503305226564407,
-0.10214146226644516,
-0.06366997212171555,
-0.08305384963750839,
0.1505788266658783,
0.04581883177161217,
0.013651503250002861,
-0.02849850244820118,
0.1084582731127739,
0.013702205382287502,
-0.12658396363258362,
0.025882549583911896,
0.02822299487888813,
0.001082436996512115,
-0.059777695685625076,
-0.06968507915735245,
-0.03690088912844658,
0.003487430280074477,
0.12360064685344696,
-0.06519242376089096,
0.04161682724952698,
0.04302080348134041,
0.03987909108400345,
-0.09890346229076385,
0.19675619900226593,
-0.03999633714556694,
0.006996849551796913,
0.012432354502379894,
0.033308226615190506,
-0.0004262874135747552,
0.0054526375606656075,
-0.1109107956290245,
-0.0031564123928546906,
0.12541264295578003,
0.014754539355635643,
-0.08154645562171936,
0.07273469120264053,
-0.050018489360809326,
-0.024551069363951683,
0.02239961177110672,
-0.09802132844924927,
0.036364711821079254,
-0.012965560890734196,
-0.08844594657421112,
-0.0071087852120399475,
0.021859098225831985,
0.00979327317327261,
-0.022872531786561012,
0.12486153841018677,
-0.09011885523796082,
0.04172133281826973,
-0.10182351619005203,
-0.10081470012664795,
0.014447750523686409,
-0.0847434252500534,
0.03442869707942009,
-0.10667547583580017,
-0.15320494771003723,
-0.01258139032870531,
0.05449026823043823,
-0.016683345660567284,
-0.05763763561844826,
-0.03630056232213974,
-0.07323262840509415,
-0.00016925169620662928,
-0.019660672172904015,
0.13900795578956604,
-0.05414900928735733,
0.10898248106241226,
0.03978698328137398,
0.06604740768671036,
-0.048069391399621964,
0.058745838701725006,
-0.1062636598944664,
0.00819803774356842,
-0.19825409352779388,
0.03368942812085152,
-0.0497000589966774,
0.0820726677775383,
-0.09539473801851273,
-0.12134591490030289,
0.032690297812223434,
-0.014617815613746643,
0.07463650405406952,
0.07915516942739487,
-0.15190599858760834,
-0.07145797461271286,
0.14897547662258148,
-0.06612351536750793,
-0.10799883306026459,
0.10802268981933594,
-0.06155109405517578,
0.04392287880182266,
0.07415946573019028,
0.14803241193294525,
0.07458919286727905,
-0.07231234759092331,
0.015959864482283592,
-0.005952552892267704,
0.039755482226610184,
-0.08943791687488556,
0.05396892502903938,
0.014293225482106209,
-0.01142923440784216,
0.0374344103038311,
-0.030494948849081993,
0.07098665833473206,
-0.10122686624526978,
-0.08942614495754242,
-0.04554819315671921,
-0.10283107310533524,
0.04763132333755493,
0.07676276564598083,
0.09432146698236465,
-0.08822723478078842,
-0.062043897807598114,
0.09538153558969498,
0.0820833370089531,
-0.0541178435087204,
0.028046784922480583,
-0.06308972835540771,
0.06612741202116013,
-0.04866132512688637,
-0.02955797128379345,
-0.19781546294689178,
-0.0024168933741748333,
0.010202581994235516,
-0.009308822453022003,
0.016232730820775032,
0.009592997841536999,
0.06748713552951813,
0.05659940093755722,
-0.04954119399189949,
-0.015849672257900238,
-0.011249469593167305,
-0.0015059850411489606,
-0.13953447341918945,
-0.18118464946746826,
-0.032951097935438156,
-0.017077527940273285,
0.1020972952246666,
-0.18482188880443573,
0.030957231298089027,
-0.024537844583392143,
0.08447914570569992,
0.003315307665616274,
-0.005398913752287626,
-0.048118945211172104,
0.09376800805330276,
-0.03139962628483772,
-0.05292005091905594,
0.07202956080436707,
0.00673709437251091,
-0.07266796380281448,
-0.05380416661500931,
-0.08088641613721848,
0.18428939580917358,
0.13975684344768524,
-0.12416388094425201,
-0.08739370107650757,
-0.004974758252501488,
-0.061886388808488846,
-0.032789599150419235,
-0.040545135736465454,
0.05616145581007004,
0.16990533471107483,
-0.017959261313080788,
0.15464121103286743,
-0.06766363233327866,
-0.05475306510925293,
0.027411814779043198,
-0.03448822349309921,
0.033951710909605026,
0.10926599055528641,
0.12084067612886429,
-0.09039339423179626,
0.14437837898731232,
0.15368534624576569,
-0.10623326152563095,
0.10462266206741333,
-0.05248720571398735,
-0.06896854192018509,
-0.013850543648004532,
-0.019581535831093788,
-0.000611248251516372,
0.09083160012960434,
-0.11849500238895416,
-0.0033148671500384808,
0.022922614589333534,
0.02585393562912941,
0.018331211060285568,
-0.22587145864963531,
-0.03379996120929718,
0.026456322520971298,
-0.02822231315076351,
-0.0036753537133336067,
-0.013201922178268433,
0.014152334071695805,
0.10203229635953903,
0.0019058166071772575,
-0.0958704873919487,
0.047338418662548065,
0.015623431652784348,
-0.07501160353422165,
0.21656639873981476,
-0.090121328830719,
-0.14239037036895752,
-0.11597412824630737,
-0.08412567526102066,
-0.03878311812877655,
0.009785751812160015,
0.059367697685956955,
-0.0899730995297432,
-0.029000243172049522,
-0.04281480982899666,
0.008819502778351307,
-0.00044473502202890813,
0.050540097057819366,
0.014865233562886715,
0.0024690134450793266,
0.08018633723258972,
-0.10400436818599701,
-0.007972312159836292,
-0.05457920581102371,
-0.05782028287649155,
0.051172494888305664,
0.0397665798664093,
0.10540972650051117,
0.15823625028133392,
-0.03460326045751572,
0.008441311307251453,
-0.031403958797454834,
0.23752574622631073,
-0.05635116621851921,
-0.03591134399175644,
0.13830409944057465,
-0.0009279283112846315,
0.05590762570500374,
0.10391312837600708,
0.07221212983131409,
-0.08917023241519928,
0.008441555313766003,
0.02583245187997818,
-0.034613750874996185,
-0.21304112672805786,
-0.05171193927526474,
-0.0529978983104229,
-0.0348745696246624,
0.1043381467461586,
0.027450835332274437,
0.051584839820861816,
0.07645764946937561,
0.05026925355195999,
0.09914746880531311,
-0.05771338939666748,
0.05969248339533806,
0.12164872884750366,
0.05274380370974541,
0.12282031774520874,
-0.044976718723773956,
-0.0749380886554718,
0.02971760742366314,
-0.01079458836466074,
0.23345217108726501,
0.00015175856242422014,
0.10744724422693253,
0.053325802087783813,
0.19828292727470398,
0.004933028016239405,
0.09317997097969055,
-0.004388675559312105,
-0.043584030121564865,
-0.008801867254078388,
-0.033327825367450714,
-0.041656460613012314,
0.011634807102382183,
-0.06528903543949127,
0.0533982515335083,
-0.11865264177322388,
-0.010945825837552547,
0.04806148633360863,
0.26492008566856384,
0.023214828222990036,
-0.33629781007766724,
-0.09142658114433289,
-0.010890605859458447,
-0.03653693571686745,
-0.027971770614385605,
0.021646646782755852,
0.0728873759508133,
-0.09582874178886414,
0.02503952570259571,
-0.07347872108221054,
0.09276053309440613,
-0.04076296091079712,
0.042649198323488235,
0.0790848582983017,
0.08871336281299591,
0.01901685819029808,
0.07772376388311386,
-0.31936269998550415,
0.2662719786167145,
-0.0008365110261365771,
0.07262834906578064,
-0.07805647701025009,
0.0022087751422077417,
0.029944825917482376,
0.0674659013748169,
0.05600637197494507,
-0.011950202286243439,
-0.050361860543489456,
-0.21271762251853943,
-0.04648974537849426,
0.02614353969693184,
0.07916489988565445,
-0.010984723456203938,
0.08566297590732574,
-0.03004094399511814,
0.005770597141236067,
0.07442748546600342,
-0.04672442749142647,
-0.04547062888741493,
-0.08223980665206909,
-0.013859737664461136,
0.027852598577737808,
-0.035015299916267395,
-0.060186177492141724,
-0.11288580298423767,
-0.1320960521697998,
0.1495550274848938,
-0.012988640926778316,
-0.03848838806152344,
-0.11706217378377914,
0.08315098285675049,
0.08880260586738586,
-0.08654254674911499,
0.06126163527369499,
0.004220716655254364,
0.05970887467265129,
0.03936260566115379,
-0.07665430009365082,
0.10740067064762115,
-0.06301677227020264,
-0.1557924747467041,
-0.05249806120991707,
0.09072501212358475,
0.03451450541615486,
0.05851515009999275,
-0.009107463993132114,
0.013482796959578991,
-0.038986243307590485,
-0.09362740069627762,
0.013825149275362492,
-0.018323039636015892,
0.087923564016819,
0.01707838848233223,
-0.056506119668483734,
0.010026993229985237,
-0.05995853990316391,
-0.026326801627874374,
0.17984558641910553,
0.21756577491760254,
-0.10361506044864655,
0.010357270948588848,
0.03322061896324158,
-0.06330840289592743,
-0.1923273503780365,
0.04228800907731056,
0.06623269617557526,
0.0012530406238511205,
0.02573590911924839,
-0.17091414332389832,
0.144363135099411,
0.10482452064752579,
-0.013725435361266136,
0.1018730029463768,
-0.3189634680747986,
-0.12499048560857773,
0.13184642791748047,
0.14766667783260345,
0.13242217898368835,
-0.13002623617649078,
-0.013871020637452602,
-0.015128492377698421,
-0.12810219824314117,
0.09667343646287918,
-0.05752349644899368,
0.1156991496682167,
-0.03609966114163399,
0.0925522893667221,
0.0017912205075845122,
-0.06335917115211487,
0.10773494839668274,
0.03650404512882233,
0.10398434102535248,
-0.05695787072181702,
-0.037103377282619476,
0.029366934671998024,
-0.03698781132698059,
0.016608305275440216,
-0.05543321371078491,
0.038082536309957504,
-0.0895574539899826,
-0.016126926988363266,
-0.08164289593696594,
0.048357464373111725,
-0.025264691561460495,
-0.057303301990032196,
-0.041996799409389496,
0.026955554261803627,
0.04674655944108963,
-0.018666289746761322,
0.12920089066028595,
0.04015813022851944,
0.14435571432113647,
0.10992732644081116,
0.05442257598042488,
-0.07410380244255066,
-0.07204597443342209,
-0.015076260082423687,
-0.017299102619290352,
0.06607452034950256,
-0.13370263576507568,
0.03401520103216171,
0.15035754442214966,
0.02186749130487442,
0.11762301623821259,
0.08519741147756577,
-0.010065433569252491,
0.004346068948507309,
0.062073964625597,
-0.16220839321613312,
-0.056325141340494156,
0.003806754481047392,
-0.05275222286581993,
-0.09300944209098816,
0.06760900467634201,
0.08161292970180511,
-0.07484649866819382,
-0.01595151051878929,
-0.008621358312666416,
-0.00427408330142498,
-0.06363356858491898,
0.21159563958644867,
0.061346959322690964,
0.04703696817159653,
-0.11222773790359497,
0.06456587463617325,
0.060019850730895996,
-0.07421763241291046,
-0.0059995208866894245,
0.06150934100151062,
-0.0916953757405281,
-0.03953633829951286,
0.10922392457723618,
0.16032704710960388,
-0.08373581618070602,
-0.04417682811617851,
-0.13558591902256012,
-0.12109571695327759,
0.08656022697687149,
0.16398654878139496,
0.12552782893180847,
0.021475963294506073,
-0.05736688897013664,
0.006068089511245489,
-0.1336309164762497,
0.07204068452119827,
0.048035576939582825,
0.08092194050550461,
-0.1553393006324768,
0.17245064675807953,
0.005128638818860054,
0.054641079157590866,
-0.024127423763275146,
0.030635790899395943,
-0.09894777834415436,
0.01891358755528927,
-0.1171143651008606,
-0.02850722335278988,
-0.0303144883364439,
0.008180930279195309,
-0.00013528020645026118,
-0.05889850854873657,
-0.04868198558688164,
0.024567250162363052,
-0.12125735729932785,
-0.014927064999938011,
0.03671359643340111,
0.050986599177122116,
-0.11117547005414963,
-0.0413929708302021,
0.021100111305713654,
-0.05604187399148941,
0.06202559918165207,
0.051315825432538986,
0.014756056480109692,
0.05773146077990532,
-0.11899574100971222,
-0.009873787872493267,
0.0853024274110794,
0.009094460867345333,
0.07704100012779236,
-0.09462173283100128,
0.00008197593706427142,
0.013821755535900593,
0.06594178825616837,
0.01738104782998562,
0.06879975646734238,
-0.14873580634593964,
-0.012869077734649181,
-0.032031185925006866,
-0.07207459211349487,
-0.07071630656719208,
0.01615596003830433,
0.09830307960510254,
0.010532584972679615,
0.1946217566728592,
-0.07262880355119705,
0.033792492002248764,
-0.1993618905544281,
-0.004783593583852053,
-0.024775700643658638,
-0.11841615289449692,
-0.13094422221183777,
-0.056784819811582565,
0.061064526438713074,
-0.043502189218997955,
0.13494151830673218,
0.02652793936431408,
0.043804071843624115,
0.027256280183792114,
-0.02629978395998478,
0.004789683502167463,
0.027772393077611923,
0.21655519306659698,
0.0314902700483799,
-0.03462948650121689,
0.07424721866846085,
0.059329308569431305,
0.09353601932525635,
0.111327163875103,
0.18506401777267456,
0.1540050208568573,
-0.019467337056994438,
0.08763955533504486,
0.01784883625805378,
-0.04724188894033432,
-0.1723865121603012,
0.033835913985967636,
-0.05434132739901543,
0.09317569434642792,
-0.021693043410778046,
0.20936767756938934,
0.05326254293322563,
-0.1654500961303711,
0.04627137631177902,
-0.050534989684820175,
-0.0874713882803917,
-0.09791871160268784,
-0.03261534869670868,
-0.08071227371692657,
-0.14260852336883545,
0.0022389127407222986,
-0.10063130408525467,
0.011305995285511017,
0.11359747499227524,
0.00611851504072547,
-0.027145378291606903,
0.15785899758338928,
0.026407381519675255,
0.029858311638236046,
0.05134345963597298,
0.0019301908323541284,
-0.03070494532585144,
-0.09913622587919235,
-0.06381121277809143,
-0.02413235418498516,
-0.013568517751991749,
0.03979763761162758,
-0.06418821960687637,
-0.06356706470251083,
0.0379914864897728,
-0.021054349839687347,
-0.08679784834384918,
0.017031481489539146,
0.023905262351036072,
0.06166454777121544,
0.04266756400465965,
0.0037281401455402374,
0.01955142430961132,
-0.020195692777633667,
0.20181815326213837,
-0.08121553063392639,
-0.08452973514795303,
-0.10013803094625473,
0.2872646152973175,
0.05275267735123634,
-0.010076425969600677,
0.03615431860089302,
-0.055526793003082275,
-0.002073989948257804,
0.25169193744659424,
0.17595943808555603,
-0.07584311068058014,
-0.011614820919930935,
0.0009684087126515806,
-0.017010929062962532,
-0.027412092313170433,
0.12415412813425064,
0.14827466011047363,
0.04721226170659065,
-0.10119011998176575,
-0.04847201704978943,
-0.06410049647092819,
-0.009588358923792839,
-0.055573321878910065,
0.04722244665026665,
0.031111815944314003,
0.0014503411948680878,
-0.04029959440231323,
0.05069956183433533,
-0.06760535389184952,
-0.09281300753355026,
0.07342161983251572,
-0.18613658845424652,
-0.16039890050888062,
-0.00588934076949954,
0.10490676760673523,
0.000041560739191481844,
0.054713912308216095,
-0.02873564325273037,
0.005802821833640337,
0.0746462270617485,
-0.023865971714258194,
-0.0825599730014801,
-0.0813475176692009,
0.09710150212049484,
-0.09594035148620605,
0.19031529128551483,
-0.03848811984062195,
0.07940537482500076,
0.12373442202806473,
0.07223255932331085,
-0.0831029862165451,
0.053511131554841995,
0.03294835984706879,
-0.07910160720348358,
0.03526637330651283,
0.08726534992456436,
-0.0251485425978899,
0.05382315814495087,
0.023804347962141037,
-0.1265377551317215,
0.017606789246201515,
-0.08010400831699371,
-0.03477926552295685,
-0.04672449827194214,
-0.051541753113269806,
-0.04943041503429413,
0.12453833222389221,
0.21279138326644897,
-0.02546665444970131,
0.011269456706941128,
-0.07915253192186356,
0.015369734726846218,
0.05242529138922691,
0.0033136396668851376,
-0.083539679646492,
-0.2267501950263977,
0.013521086424589157,
0.056664902716875076,
-0.027322400361299515,
-0.19102056324481964,
-0.09264279901981354,
0.0016309416387230158,
-0.08474386483430862,
-0.09641391783952713,
0.08232689648866653,
0.061473164707422256,
0.054381392896175385,
-0.05472034960985184,
-0.06750770658254623,
-0.08981794118881226,
0.14658477902412415,
-0.15045954287052155,
-0.09038986265659332
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1620
- Precision: 0.3509
- Recall: 0.3793
- F1: 0.3646
- Accuracy: 0.9468
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2997 | 0.1125 | 0.2057 | 0.1454 | 0.8669 |
| No log | 2.0 | 76 | 0.2620 | 0.1928 | 0.2849 | 0.2300 | 0.8899 |
| No log | 3.0 | 114 | 0.2497 | 0.1923 | 0.2906 | 0.2314 | 0.8918 |
| No log | 4.0 | 152 | 0.2474 | 0.1819 | 0.3377 | 0.2365 | 0.8905 |
| No log | 5.0 | 190 | 0.2418 | 0.2128 | 0.3264 | 0.2576 | 0.8997 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_12\_04
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1620
* Precision: 0.3509
* Recall: 0.3793
* F1: 0.3646
* Accuracy: 0.9468
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1633
- Precision: 0.3632
- Recall: 0.3786
- F1: 0.3707
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3227 | 0.1237 | 0.2397 | 0.1631 | 0.8566 |
| No log | 2.0 | 76 | 0.2874 | 0.2128 | 0.3328 | 0.2596 | 0.8721 |
| No log | 3.0 | 114 | 0.2762 | 0.2170 | 0.3603 | 0.2709 | 0.8844 |
| No log | 4.0 | 152 | 0.2770 | 0.2274 | 0.3690 | 0.2814 | 0.8819 |
| No log | 5.0 | 190 | 0.2771 | 0.2113 | 0.3741 | 0.2701 | 0.8823 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_27\_36
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1633
* Precision: 0.3632
* Recall: 0.3786
* F1: 0.3707
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1626
- Precision: 0.3811
- Recall: 0.3865
- F1: 0.3838
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3697 | 0.0933 | 0.2235 | 0.1317 | 0.8259 |
| No log | 2.0 | 76 | 0.3193 | 0.1266 | 0.2948 | 0.1771 | 0.8494 |
| No log | 3.0 | 114 | 0.3025 | 0.1606 | 0.3160 | 0.2130 | 0.8540 |
| No log | 4.0 | 152 | 0.2978 | 0.1867 | 0.3449 | 0.2422 | 0.8605 |
| No log | 5.0 | 190 | 0.2984 | 0.1706 | 0.3507 | 0.2295 | 0.8551 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-20\_43\_00
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1626
* Precision: 0.3811
* Recall: 0.3865
* F1: 0.3838
* Accuracy: 0.9482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2731
- Precision: 0.1928
- Recall: 0.3457
- F1: 0.2475
- Accuracy: 0.8826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3010 | 0.1330 | 0.2345 | 0.1697 | 0.8707 |
| No log | 2.0 | 60 | 0.2446 | 0.1739 | 0.2948 | 0.2188 | 0.8949 |
| No log | 3.0 | 90 | 0.2235 | 0.2446 | 0.3032 | 0.2708 | 0.9080 |
| No log | 4.0 | 120 | 0.2226 | 0.2670 | 0.3350 | 0.2972 | 0.9058 |
| No log | 5.0 | 150 | 0.2166 | 0.2779 | 0.3417 | 0.3065 | 0.9063 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_all\_16\_02\_2022-21\_11\_08
===========================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2731
* Precision: 0.1928
* Recall: 0.3457
* F1: 0.2475
* Accuracy: 0.8826
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1060
- Precision: 0.2003
- Recall: 0.1154
- F1: 0.1464
- Accuracy: 0.9712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0897 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 2.0 | 30 | 0.0798 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 3.0 | 45 | 0.0743 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 4.0 | 60 | 0.0707 | 0.0741 | 0.0110 | 0.0191 | 0.9802 |
| No log | 5.0 | 75 | 0.0696 | 0.2727 | 0.1648 | 0.2055 | 0.9805 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_editorials\_16\_02\_2022-21\_06\_22
==================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1060
* Precision: 0.2003
* Recall: 0.1154
* F1: 0.1464
* Accuracy: 0.9712
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2374
- Precision: 0.4766
- Recall: 0.5549
- F1: 0.5127
- Accuracy: 0.9173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4155 | 0.1569 | 0.3168 | 0.2099 | 0.8163 |
| No log | 2.0 | 22 | 0.3584 | 0.3827 | 0.5725 | 0.4587 | 0.8691 |
| No log | 3.0 | 33 | 0.3483 | 0.4353 | 0.5649 | 0.4917 | 0.8737 |
| No log | 4.0 | 44 | 0.3187 | 0.4403 | 0.5916 | 0.5049 | 0.8770 |
| No log | 5.0 | 55 | 0.3188 | 0.4463 | 0.6031 | 0.5130 | 0.8806 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_essays\_16\_02\_2022-21\_02\_59
==============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2374
* Precision: 0.4766
* Recall: 0.5549
* F1: 0.5127
* Accuracy: 0.9173
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5450
- Precision: 0.0049
- Recall: 0.0146
- F1: 0.0074
- Accuracy: 0.7431
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6830 | 0.0109 | 0.0323 | 0.0163 | 0.5685 |
| No log | 2.0 | 20 | 0.7187 | 0.0256 | 0.0323 | 0.0286 | 0.5668 |
| No log | 3.0 | 30 | 0.6839 | 0.0076 | 0.0484 | 0.0131 | 0.5848 |
| No log | 4.0 | 40 | 0.6988 | 0.0092 | 0.0484 | 0.0155 | 0.5918 |
| No log | 5.0 | 50 | 0.7055 | 0.0100 | 0.0484 | 0.0165 | 0.5946 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50", "results": []}]}
|
token-classification
|
ali2066/finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
finetuned\_token\_itr0\_3e-05\_webDiscourse\_16\_02\_2022-20\_59\_50
====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5450
* Precision: 0.0049
* Recall: 0.0146
* F1: 0.0074
* Accuracy: 0.7431
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10780386626720428,
0.08135806024074554,
-0.0019977749325335026,
0.1225561797618866,
0.18173600733280182,
0.015939990058541298,
0.1043737605214119,
0.11513571441173553,
-0.11740895360708237,
0.019440874457359314,
0.12570637464523315,
0.19138909876346588,
-0.0007414013962261379,
0.12780068814754486,
-0.05536404624581337,
-0.25077953934669495,
-0.006888475734740496,
0.05937104672193527,
-0.07571731507778168,
0.134678453207016,
0.09979171305894852,
-0.14165915548801422,
0.08140864223241806,
0.012437066063284874,
-0.2405797690153122,
0.008807661011815071,
0.019377104938030243,
-0.06848607212305069,
0.14377720654010773,
0.012953546829521656,
0.13538555800914764,
-0.005632925312966108,
0.08648057281970978,
-0.15634408593177795,
0.005213876720517874,
0.05123648792505264,
0.0185471773147583,
0.09018685668706894,
0.05187875032424927,
0.0026620784774422646,
0.1015123501420021,
-0.08288609981536865,
0.05170625075697899,
0.015830835327506065,
-0.11609601974487305,
-0.2386653870344162,
-0.08849553763866425,
0.034153733402490616,
0.0703657865524292,
0.10020653903484344,
0.007515658624470234,
0.1486203521490097,
-0.09107852727174759,
0.09336888790130615,
0.22696922719478607,
-0.2854035198688507,
-0.06208287179470062,
0.03930922597646713,
-0.0016678052488714457,
0.04754987359046936,
-0.10678931325674057,
-0.039095859974622726,
0.05954604595899582,
0.049160104244947433,
0.14534892141819,
-0.03682439401745796,
-0.11778544634580612,
0.012948760762810707,
-0.14728249609470367,
-0.03167489916086197,
0.12452704459428787,
0.028299035504460335,
-0.035700298845767975,
-0.03628649562597275,
-0.0578681156039238,
-0.16830432415008545,
-0.04117676243185997,
-0.011475862935185432,
0.04425552114844322,
-0.04138588160276413,
-0.06723581254482269,
0.023073460906744003,
-0.10146031528711319,
-0.06343509256839752,
-0.0826311707496643,
0.14977790415287018,
0.045623134821653366,
0.013686781749129295,
-0.028347494080662727,
0.10857497900724411,
0.013363409787416458,
-0.1264246553182602,
0.025839313864707947,
0.0277398731559515,
0.0014961721608415246,
-0.060350675135850906,
-0.06959391385316849,
-0.03686502203345299,
0.0036393343470990658,
0.12419439852237701,
-0.06518585234880447,
0.04157133027911186,
0.04338385909795761,
0.039512328803539276,
-0.09892862290143967,
0.19685524702072144,
-0.04032088443636894,
0.005973195657134056,
0.012515341863036156,
0.033741362392902374,
-0.00047897399053908885,
0.0056077041663229465,
-0.11040788888931274,
-0.002990704495459795,
0.12449601292610168,
0.015020692721009254,
-0.08128915727138519,
0.07312092185020447,
-0.049902353435754776,
-0.024732088670134544,
0.02359446883201599,
-0.0978589802980423,
0.03599648177623749,
-0.013216333463788033,
-0.0884271115064621,
-0.006763367913663387,
0.022116417065262794,
0.009671911597251892,
-0.02280067466199398,
0.12490334361791611,
-0.09003884345293045,
0.04149405658245087,
-0.10220324248075485,
-0.10075251758098602,
0.014028368517756462,
-0.08411122113466263,
0.034419167786836624,
-0.10635349154472351,
-0.15351004898548126,
-0.012995101511478424,
0.0542655773460865,
-0.016826672479510307,
-0.057425059378147125,
-0.036165740340948105,
-0.07308220118284225,
-0.000015284733308362775,
-0.019863123074173927,
0.13945390284061432,
-0.054211486130952835,
0.10924504697322845,
0.0403817743062973,
0.06596124917268753,
-0.04792344197630882,
0.05894266068935394,
-0.10599468648433685,
0.007912622764706612,
-0.19826345145702362,
0.03384622558951378,
-0.04999667778611183,
0.08255069702863693,
-0.09498593956232071,
-0.12168007344007492,
0.03302967548370361,
-0.014548259787261486,
0.07492416352033615,
0.07887506484985352,
-0.15092794597148895,
-0.07106415927410126,
0.148457333445549,
-0.06568174809217453,
-0.10869578272104263,
0.10782712697982788,
-0.06147918105125427,
0.04319724440574646,
0.07403045892715454,
0.14712004363536835,
0.07458898425102234,
-0.07272546738386154,
0.01584780402481556,
-0.005818364676088095,
0.03981269523501396,
-0.09008139371871948,
0.05365840718150139,
0.014245828613638878,
-0.011852237395942211,
0.037643082439899445,
-0.030743593350052834,
0.07130242139101028,
-0.10130415856838226,
-0.08942616730928421,
-0.045443084090948105,
-0.10317239910364151,
0.04697820916771889,
0.0771637111902237,
0.09390993416309357,
-0.0883287712931633,
-0.061839908361434937,
0.09406987577676773,
0.08209806680679321,
-0.05389213189482689,
0.027651295065879822,
-0.06291189789772034,
0.06651891022920609,
-0.048801489174366,
-0.029630443081259727,
-0.19786548614501953,
-0.002889832481741905,
0.010087883099913597,
-0.008518066257238388,
0.016017558053135872,
0.00900217704474926,
0.06757698953151703,
0.056552987545728683,
-0.04965068772435188,
-0.015781929716467857,
-0.010613913647830486,
-0.0017095474759116769,
-0.1393592208623886,
-0.1808321177959442,
-0.03317476063966751,
-0.017164941877126694,
0.1012755036354065,
-0.18433833122253418,
0.031106675043702126,
-0.02539553865790367,
0.08395697176456451,
0.0029307452496141195,
-0.005653124302625656,
-0.04771876335144043,
0.0943293496966362,
-0.031321845948696136,
-0.052948858588933945,
0.07245181500911713,
0.006652952637523413,
-0.07249361276626587,
-0.05438800901174545,
-0.08114130049943924,
0.18415692448616028,
0.13963408768177032,
-0.1243567019701004,
-0.08769536018371582,
-0.005607388447970152,
-0.06183994188904762,
-0.0324249193072319,
-0.04023582115769386,
0.05633904039859772,
0.16927753388881683,
-0.01835610345005989,
0.15449541807174683,
-0.06757251918315887,
-0.05503475293517113,
0.027239663526415825,
-0.034222085028886795,
0.03413810953497887,
0.10922146588563919,
0.12079417705535889,
-0.0893481969833374,
0.14455954730510712,
0.15348388254642487,
-0.1056639701128006,
0.10449334979057312,
-0.052568551152944565,
-0.06881970912218094,
-0.013496781699359417,
-0.01963173598051071,
-0.0004437449970282614,
0.0906413346529007,
-0.1185559332370758,
-0.003296730574220419,
0.023048430681228638,
0.025734659284353256,
0.018137933686375618,
-0.22529065608978271,
-0.034069083631038666,
0.026414336636662483,
-0.02826208993792534,
-0.003288564272224903,
-0.012848583050072193,
0.013939234428107738,
0.10181588679552078,
0.002023879671469331,
-0.09588360041379929,
0.047239676117897034,
0.015422130934894085,
-0.07486361265182495,
0.21649034321308136,
-0.08988916128873825,
-0.14176341891288757,
-0.1159023717045784,
-0.0858193188905716,
-0.03932875767350197,
0.009520499035716057,
0.059171464294195175,
-0.09042034298181534,
-0.02933063916862011,
-0.04270714148879051,
0.00856263842433691,
0.000019349932699697092,
0.0501767061650753,
0.015109824948012829,
0.0019506544340401888,
0.08021438866853714,
-0.10394728928804398,
-0.008070746436715126,
-0.05488026887178421,
-0.057500872761011124,
0.051178280264139175,
0.0398920476436615,
0.10573442280292511,
0.1577954888343811,
-0.03439083322882652,
0.008530151098966599,
-0.031489621847867966,
0.23834571242332458,
-0.056413743644952774,
-0.036072466522455215,
0.13872694969177246,
-0.00017103870050050318,
0.05574948713183403,
0.10348375141620636,
0.07251743227243423,
-0.08945895731449127,
0.008653412573039532,
0.025626467540860176,
-0.03498977795243263,
-0.2129097580909729,
-0.05179885774850845,
-0.0533674992620945,
-0.034986380487680435,
0.10388665646314621,
0.0271742045879364,
0.05213341489434242,
0.07695842534303665,
0.050102174282073975,
0.09911181032657623,
-0.05758382007479668,
0.05949776619672775,
0.12161944061517715,
0.05273371562361717,
0.12312933802604675,
-0.04493079334497452,
-0.07481184601783752,
0.029616720974445343,
-0.010678710415959358,
0.23281699419021606,
-0.000096432602731511,
0.10705618560314178,
0.053500253707170486,
0.19839859008789062,
0.004714127629995346,
0.0934394970536232,
-0.004894952289760113,
-0.043854016810655594,
-0.008579310029745102,
-0.03352591395378113,
-0.04162251204252243,
0.010748087428510189,
-0.06526454538106918,
0.05385715514421463,
-0.11862806230783463,
-0.01132581103593111,
0.047952745109796524,
0.26519832015037537,
0.022550063207745552,
-0.33669745922088623,
-0.09131860733032227,
-0.011359735392034054,
-0.03583338111639023,
-0.028081484138965607,
0.021662268787622452,
0.07142133265733719,
-0.09566187113523483,
0.02558676153421402,
-0.0733642429113388,
0.09277606010437012,
-0.04058288037776947,
0.04255722090601921,
0.07966171950101852,
0.08956659585237503,
0.01870894245803356,
0.07747678458690643,
-0.3200472295284271,
0.2655748724937439,
-0.0007870702538639307,
0.07289084047079086,
-0.07798688858747482,
0.002450778381898999,
0.030273471027612686,
0.06767696887254715,
0.05632384121417999,
-0.012208337895572186,
-0.04894056171178818,
-0.2130582630634308,
-0.046391263604164124,
0.02580726146697998,
0.078786201775074,
-0.010614067316055298,
0.0858069509267807,
-0.029949713498353958,
0.005756430793553591,
0.07418590784072876,
-0.04653802514076233,
-0.04538092762231827,
-0.08257448673248291,
-0.01406907569617033,
0.028050431981682777,
-0.03565613925457001,
-0.059983182698488235,
-0.11272013187408447,
-0.13366462290287018,
0.1495659351348877,
-0.012616882100701332,
-0.03858501836657524,
-0.11726520955562592,
0.08274003863334656,
0.08874335139989853,
-0.08609464764595032,
0.06109185889363289,
0.003713468089699745,
0.05900980532169342,
0.03917788341641426,
-0.07672705501317978,
0.10728137195110321,
-0.06332328170537949,
-0.15540704131126404,
-0.05263194441795349,
0.09053011238574982,
0.03438861295580864,
0.05854928866028786,
-0.00947805866599083,
0.013583460822701454,
-0.03930928185582161,
-0.0937843918800354,
0.013621087186038494,
-0.018771428614854813,
0.08800429850816727,
0.017807433381676674,
-0.056586217135190964,
0.009494788944721222,
-0.05997411534190178,
-0.02612341195344925,
0.1792614609003067,
0.21737967431545258,
-0.10327181965112686,
0.010020465590059757,
0.03301936015486717,
-0.06296369433403015,
-0.1921236217021942,
0.04204457625746727,
0.06559539586305618,
0.0011711368570104241,
0.025970127433538437,
-0.17060424387454987,
0.1446073353290558,
0.104672871530056,
-0.013719296082854271,
0.10187851637601852,
-0.31801751255989075,
-0.1249890848994255,
0.13199461996555328,
0.1479077786207199,
0.13198357820510864,
-0.1303076297044754,
-0.013566206209361553,
-0.014731746166944504,
-0.12826354801654816,
0.09595617651939392,
-0.05710664764046669,
0.1158486157655716,
-0.03652849420905113,
0.09188519418239594,
0.0016503125661984086,
-0.06383445858955383,
0.10751068592071533,
0.03653336688876152,
0.10438194125890732,
-0.057433538138866425,
-0.03633765131235123,
0.029264558106660843,
-0.03695882111787796,
0.017084509134292603,
-0.055517226457595825,
0.038277894258499146,
-0.0898505374789238,
-0.016233745962381363,
-0.08172290772199631,
0.04822961986064911,
-0.02551288716495037,
-0.057217516005039215,
-0.04233046993613243,
0.027323398739099503,
0.04666689410805702,
-0.01883748732507229,
0.12921254336833954,
0.03992860019207001,
0.14549009501934052,
0.10914436727762222,
0.05512187257409096,
-0.0739736557006836,
-0.0719662755727768,
-0.015226379036903381,
-0.0174039788544178,
0.06585398316383362,
-0.1331123560667038,
0.03344995900988579,
0.15029986202716827,
0.02154925838112831,
0.11765798926353455,
0.08512337505817413,
-0.010047666728496552,
0.004006912000477314,
0.0621761754155159,
-0.16185875236988068,
-0.055151328444480896,
0.0037096659652888775,
-0.053524408489465714,
-0.09347608685493469,
0.06746672838926315,
0.08094829320907593,
-0.07444384694099426,
-0.01577129401266575,
-0.008677768521010876,
-0.004112862516194582,
-0.06339193880558014,
0.2116699069738388,
0.06148940697312355,
0.04717578366398811,
-0.11260301619768143,
0.06433659046888351,
0.05991563946008682,
-0.07340233027935028,
-0.006489656865596771,
0.061860863119363785,
-0.09194988012313843,
-0.039468564093112946,
0.10909619182348251,
0.160379096865654,
-0.08411018550395966,
-0.043739933520555496,
-0.13560180366039276,
-0.12132100760936737,
0.08660734444856644,
0.16364336013793945,
0.12545360624790192,
0.021073125302791595,
-0.057090144604444504,
0.005854903254657984,
-0.13363541662693024,
0.07217995077371597,
0.04733011871576309,
0.08088090270757675,
-0.15466010570526123,
0.17130988836288452,
0.005327948834747076,
0.05414257571101189,
-0.024139054119586945,
0.03084219992160797,
-0.09883354604244232,
0.01890902779996395,
-0.11659783869981766,
-0.029361188411712646,
-0.030772749334573746,
0.008483249694108963,
-0.00048776500625535846,
-0.05852380767464638,
-0.048326525837183,
0.024856658652424812,
-0.12085786461830139,
-0.014910325407981873,
0.03692556917667389,
0.05114690959453583,
-0.11096780747175217,
-0.041116729378700256,
0.020571136847138405,
-0.055851131677627563,
0.06192551925778389,
0.05090705305337906,
0.01469819899648428,
0.05730292573571205,
-0.11985322833061218,
-0.009908370673656464,
0.08486630767583847,
0.009130984544754028,
0.07675738632678986,
-0.09437822550535202,
0.0002569468051660806,
0.013860481791198254,
0.06557785719633102,
0.01760769635438919,
0.0680561512708664,
-0.14886388182640076,
-0.012584415264427662,
-0.03159100562334061,
-0.07129718363285065,
-0.07073157280683517,
0.016355734318494797,
0.09892422705888748,
0.010477889329195023,
0.19432352483272552,
-0.07293868064880371,
0.03357716649770737,
-0.1995411217212677,
-0.004861529916524887,
-0.024936702102422714,
-0.11860329657793045,
-0.13159474730491638,
-0.05672862008213997,
0.06135683134198189,
-0.04309392720460892,
0.13614711165428162,
0.02654721401631832,
0.04362393543124199,
0.02725403755903244,
-0.02584167756140232,
0.005558451637625694,
0.027455933392047882,
0.2162487804889679,
0.031222593039274216,
-0.03456292673945427,
0.07481777667999268,
0.05978840962052345,
0.09346615523099899,
0.11116290092468262,
0.18470638990402222,
0.15390516817569733,
-0.01896120235323906,
0.08729198575019836,
0.017776070162653923,
-0.047176606953144073,
-0.17102132737636566,
0.033049073070287704,
-0.05434751883149147,
0.09303144365549088,
-0.02179264836013317,
0.20815986394882202,
0.05278501659631729,
-0.165188267827034,
0.046529434621334076,
-0.05083546042442322,
-0.0873342901468277,
-0.097758449614048,
-0.0320209376513958,
-0.08012567460536957,
-0.14235042035579681,
0.0023173950612545013,
-0.10096190124750137,
0.011071575805544853,
0.113917775452137,
0.0062962668016552925,
-0.027438925579190254,
0.1585211604833603,
0.02654469944536686,
0.030350929126143456,
0.051300037652254105,
0.001722844666801393,
-0.030747495591640472,
-0.09927742928266525,
-0.06388244777917862,
-0.024059470742940903,
-0.013972561806440353,
0.040034521371126175,
-0.06430207937955856,
-0.06395409256219864,
0.03836492821574211,
-0.02037494257092476,
-0.08709577471017838,
0.017096417024731636,
0.02397029846906662,
0.06204751878976822,
0.04405065253376961,
0.0033082463778555393,
0.019869115203619003,
-0.020410241559147835,
0.20079053938388824,
-0.08094979077577591,
-0.08422740548849106,
-0.10033047944307327,
0.2871081829071045,
0.0528130903840065,
-0.010422115214169025,
0.03578982874751091,
-0.055106449872255325,
-0.0017893280601128936,
0.25197136402130127,
0.17613667249679565,
-0.07606545835733414,
-0.011759242042899132,
0.0011456954525783658,
-0.01691812463104725,
-0.027222998440265656,
0.12419448792934418,
0.1485523283481598,
0.04675488546490669,
-0.10094397515058517,
-0.048196934163570404,
-0.06414656341075897,
-0.009735765866935253,
-0.05483759939670563,
0.04631907492876053,
0.031873125582933426,
0.0014280816540122032,
-0.03997102379798889,
0.05086725577712059,
-0.06781334429979324,
-0.09225709736347198,
0.07382495701313019,
-0.1860627681016922,
-0.16039180755615234,
-0.0062262630090117455,
0.10418093949556351,
0.0003449959622230381,
0.05439579486846924,
-0.028398221358656883,
0.0059807319194078445,
0.07454386353492737,
-0.02410769648849964,
-0.08210506290197372,
-0.0816088318824768,
0.09706878662109375,
-0.09534770250320435,
0.1903756558895111,
-0.038341719657182693,
0.07896971702575684,
0.12391943484544754,
0.0718766376376152,
-0.08305420726537704,
0.05411684885621071,
0.03275473043322563,
-0.07902685552835464,
0.03552934154868126,
0.08687062561511993,
-0.024995336309075356,
0.05406798794865608,
0.023392101749777794,
-0.12622854113578796,
0.018097173422574997,
-0.07968153804540634,
-0.03501368314027786,
-0.046764954924583435,
-0.05118923261761665,
-0.04915216937661171,
0.1251029074192047,
0.21323595941066742,
-0.025307785719633102,
0.011001919396221638,
-0.0789838656783104,
0.015510743483901024,
0.05206305906176567,
0.003198214340955019,
-0.08401475846767426,
-0.2264130711555481,
0.013688324950635433,
0.05585003271698952,
-0.02753879502415657,
-0.1916183978319168,
-0.09242858737707138,
0.0016467540990561247,
-0.0846264511346817,
-0.09678208082914352,
0.08210644870996475,
0.0613701231777668,
0.05483696237206459,
-0.05450870469212532,
-0.06611204147338867,
-0.0898379534482956,
0.14650508761405945,
-0.1508610099554062,
-0.09003931283950806
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2858
- Precision: 0.3206
- Recall: 0.4721
- F1: 0.3819
- Accuracy: 0.8762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3772 | 0.0269 | 0.0326 | 0.0294 | 0.8143 |
| No log | 2.0 | 60 | 0.3052 | 0.2015 | 0.3596 | 0.2583 | 0.8537 |
| No log | 3.0 | 90 | 0.2937 | 0.2737 | 0.4273 | 0.3337 | 0.8722 |
| No log | 4.0 | 120 | 0.2852 | 0.2728 | 0.4348 | 0.3353 | 0.8750 |
| No log | 5.0 | 150 | 0.2676 | 0.2851 | 0.4474 | 0.3483 | 0.8797 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45", "results": []}]}
|
token-classification
|
ali2066/twitter-roberta-base-sentiment_token_itr0_2e-05_all_01_03_2022-04_19_45
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
twitter-roberta-base-sentiment\_token\_itr0\_2e-05\_all\_01\_03\_2022-04\_19\_45
================================================================================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2858
* Precision: 0.3206
* Recall: 0.4721
* F1: 0.3819
* Accuracy: 0.8762
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
49,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0948643758893013,
0.04581434652209282,
-0.001630293671041727,
0.11686672270298004,
0.21261990070343018,
0.029393285512924194,
0.10317487269639969,
0.10154455155134201,
-0.12134837359189987,
0.025618793442845345,
0.12055003643035889,
0.18265849351882935,
-0.002852482721209526,
0.09668806940317154,
-0.05567420274019241,
-0.2746132016181946,
-0.030390562489628792,
0.046089984476566315,
-0.10410096496343613,
0.1254369616508484,
0.08378373086452484,
-0.15759681165218353,
0.07496330142021179,
-0.0019213224295526743,
-0.2688581943511963,
0.02011888660490513,
0.034848958253860474,
-0.06062149628996849,
0.14748266339302063,
0.009422088973224163,
0.17318056523799896,
-0.011515225283801556,
0.10551261156797409,
-0.14462892711162567,
0.012220455333590508,
0.061182960867881775,
0.022780809551477432,
0.09012746810913086,
0.06414694339036942,
-0.00689596077427268,
0.09573107212781906,
-0.09494950622320175,
0.06477311998605728,
0.002530347788706422,
-0.12428382784128189,
-0.2121906280517578,
-0.07138938456773758,
-0.001659552683122456,
0.05400359258055687,
0.09716690331697464,
-0.003939867950975895,
0.17458990216255188,
-0.10897684842348099,
0.09706144034862518,
0.2116614580154419,
-0.26719531416893005,
-0.08334353566169739,
0.053829923272132874,
-0.008676491677761078,
0.07513760030269623,
-0.12314248830080032,
-0.023049691691994667,
0.057228848338127136,
0.053233493119478226,
0.12950094044208527,
-0.034645430743694305,
-0.1205618754029274,
0.025631871074438095,
-0.15188764035701752,
-0.0003206430992577225,
0.06528346240520477,
0.01630103401839733,
-0.020995771512389183,
-0.015461578965187073,
-0.06662477552890778,
-0.16127972304821014,
-0.04072488471865654,
-0.028570035472512245,
0.04046601057052612,
-0.057102564722299576,
-0.1086321622133255,
0.010900715366005898,
-0.10168574750423431,
-0.06268737465143204,
-0.07617110759019852,
0.1817924827337265,
0.043915245682001114,
0.0182024072855711,
-0.03632977232336998,
0.10821577161550522,
-0.0029419248457998037,
-0.12857362627983093,
0.05639190971851349,
0.023844921961426735,
-0.037836723029613495,
-0.07078578323125839,
-0.06974578648805618,
-0.10001678019762039,
0.000015330759197240695,
0.08936288207769394,
-0.04386984929442406,
0.048572998493909836,
0.04093151539564133,
0.036131877452135086,
-0.09057271480560303,
0.19998279213905334,
-0.04960770905017853,
-0.01737036556005478,
0.003946000710129738,
0.04353543370962143,
-0.017194515094161034,
-0.002033616416156292,
-0.10797014832496643,
0.002968686632812023,
0.11983420699834824,
0.0028561982326209545,
-0.07581640034914017,
0.06851780414581299,
-0.03552001342177391,
-0.022112315520644188,
-0.0325101800262928,
-0.09385998547077179,
0.047111738473176956,
-0.017935607582330704,
-0.09557073563337326,
0.004736271221190691,
0.007665232755243778,
0.012444913387298584,
-0.009322592057287693,
0.1657855063676834,
-0.10272499918937683,
0.049854785203933716,
-0.1188562884926796,
-0.11931601166725159,
-0.0010413851123303175,
-0.0773697942495346,
0.026368876919150352,
-0.10167135298252106,
-0.1259731501340866,
-0.020056044682860374,
0.05659870430827141,
-0.03570985794067383,
-0.03762304037809372,
-0.040279436856508255,
-0.07406239956617355,
0.006099210120737553,
-0.011066229082643986,
0.17041580379009247,
-0.046203065663576126,
0.11528220772743225,
0.0503886453807354,
0.07258568704128265,
-0.04292316734790802,
0.04914867505431175,
-0.09458951652050018,
-0.0014114177320152521,
-0.20950093865394592,
0.039552200585603714,
-0.05580097436904907,
0.08305526524782181,
-0.07231532782316208,
-0.11584538966417313,
0.010331738740205765,
-0.005505256354808807,
0.09144242107868195,
0.07726765424013138,
-0.1561690866947174,
-0.08288555592298508,
0.15163101255893707,
-0.055827055126428604,
-0.07664741575717926,
0.11664056777954102,
-0.07318096607923508,
0.03337736427783966,
0.07516386359930038,
0.15124574303627014,
0.0637160912156105,
-0.07893093675374985,
0.02369588427245617,
-0.029794733971357346,
0.03850612789392471,
-0.0684489980340004,
0.03496313467621803,
0.025337429717183113,
-0.007015915121883154,
0.03206251934170723,
-0.016221847385168076,
0.07436635345220566,
-0.11874024569988251,
-0.08571802079677582,
-0.040072884410619736,
-0.10980819910764694,
0.05741502717137337,
0.08821354806423187,
0.10524823516607285,
-0.09596681594848633,
-0.07011483609676361,
0.10072591155767441,
0.06225096806883812,
-0.04718197137117386,
0.015947561711072922,
-0.05344301462173462,
0.0592205636203289,
-0.07664112001657486,
-0.03380771726369858,
-0.2070063352584839,
-0.041566718369722366,
0.0023472614120692015,
0.03729076683521271,
0.03594337776303291,
0.03737068921327591,
0.08729536086320877,
0.06326307356357574,
-0.06267210096120834,
-0.0038810751866549253,
-0.016317512840032578,
-0.007077397778630257,
-0.15147079527378082,
-0.1926833689212799,
-0.02548353746533394,
-0.019833121448755264,
0.08833871781826019,
-0.20405681431293488,
0.01946154609322548,
-0.04215741157531738,
0.09449215233325958,
0.01740393601357937,
-0.009009250439703465,
-0.05566170811653137,
0.1071028932929039,
-0.022996487095952034,
-0.048820849508047104,
0.0666293352842331,
-0.014804983511567116,
-0.06345962733030319,
-0.0806574821472168,
-0.10107271373271942,
0.18697227537631989,
0.1388881504535675,
-0.15068034827709198,
-0.10800860822200775,
0.015283594839274883,
-0.06123432144522667,
-0.02244204469025135,
-0.05723806470632553,
0.05593469366431236,
0.1797017604112625,
-0.015547075308859348,
0.15162670612335205,
-0.053179461508989334,
-0.047303229570388794,
0.02053520269691944,
-0.03345615416765213,
0.04279784858226776,
0.1074448749423027,
0.13522671163082123,
-0.08562581241130829,
0.1357564479112625,
0.12339135259389877,
-0.13153524696826935,
0.137314110994339,
-0.02540581300854683,
-0.0781324952840805,
-0.018876761198043823,
-0.030728433281183243,
0.007451851852238178,
0.10681284219026566,
-0.1061854138970375,
-0.019137538969516754,
0.007290733512490988,
0.020144181326031685,
0.02606985904276371,
-0.2311961054801941,
-0.046707697212696075,
0.024248791858553886,
-0.0031531129498034716,
0.018734166398644447,
-0.019333485513925552,
0.02541189268231392,
0.1187889501452446,
0.002474432811141014,
-0.07763870060443878,
0.024382684379816055,
0.008838987909257412,
-0.06421761959791183,
0.2139994502067566,
-0.06969884783029556,
-0.1136295422911644,
-0.10220303386449814,
-0.07550517469644547,
-0.04245505854487419,
0.013537119142711163,
0.031110700219869614,
-0.11973733454942703,
-0.02128857560455799,
-0.021783575415611267,
0.03234745189547539,
0.0031262512784451246,
0.06336375325918198,
-0.005282337311655283,
0.002983235055580735,
0.07169783115386963,
-0.09881510585546494,
-0.000326587789459154,
-0.07578474283218384,
-0.07250203937292099,
0.05814047530293465,
0.06275839358568192,
0.1205090582370758,
0.169474795460701,
-0.04752881079912186,
0.005159624852240086,
-0.023884424939751625,
0.2374337762594223,
-0.07452915608882904,
-0.03991229832172394,
0.09788655489683151,
-0.019902434200048447,
0.04950111359357834,
0.10445913672447205,
0.08315841853618622,
-0.0934228003025055,
0.015603112056851387,
0.04642453417181969,
-0.043512750416994095,
-0.2015766054391861,
-0.03840094804763794,
-0.05178138613700867,
-0.048346664756536484,
0.09224815666675568,
0.021334374323487282,
0.039875391870737076,
0.0788189098238945,
0.06674309819936752,
0.0971815437078476,
-0.07474236935377121,
0.051097724586725235,
0.0877576693892479,
0.05395406484603882,
0.13299857079982758,
-0.04103801026940346,
-0.10523229092359543,
0.021539490669965744,
-0.02402377314865589,
0.23008453845977783,
-0.003923655021935701,
0.07157545536756516,
0.03850210830569267,
0.19328561425209045,
0.01065826416015625,
0.08674764633178711,
0.004011486656963825,
-0.06679777801036835,
0.00016818662697914988,
-0.028634563088417053,
-0.036542512476444244,
0.011539367027580738,
-0.025145897641777992,
0.054014891386032104,
-0.11130587756633759,
-0.010507493279874325,
0.05711068585515022,
0.2310478538274765,
0.02472015842795372,
-0.322691947221756,
-0.07367837429046631,
-0.009978468529880047,
-0.03622289001941681,
-0.012980668805539608,
0.0074546984396874905,
0.1076570674777031,
-0.0988098531961441,
0.01220608875155449,
-0.0829499214887619,
0.08743161708116531,
-0.04227037727832794,
0.036833662539720535,
0.06782909482717514,
0.12572380900382996,
-0.004566233139485121,
0.06409724801778793,
-0.30529680848121643,
0.27295994758605957,
0.009592893533408642,
0.08034022897481918,
-0.0760527104139328,
-0.007151909172534943,
0.0364086739718914,
0.03666793927550316,
0.03265470266342163,
-0.019934799522161484,
-0.043439559638500214,
-0.22490046918392181,
-0.03014565259218216,
0.028867488726973534,
0.12148915231227875,
-0.00808426458388567,
0.10367205739021301,
-0.024588488042354584,
-0.00010941336222458631,
0.08034437149763107,
-0.045694828033447266,
-0.04500705003738403,
-0.07406040281057358,
-0.027313847094774246,
0.00974243227392435,
-0.07506455481052399,
-0.048503417521715164,
-0.12055011838674545,
-0.1336289495229721,
0.15029895305633545,
0.012040955014526844,
-0.016020609065890312,
-0.12779182195663452,
0.12549389898777008,
0.08058901131153107,
-0.08064548671245575,
0.044248372316360474,
0.012061342597007751,
0.055072344839572906,
0.03229621797800064,
-0.06856683641672134,
0.11520359665155411,
-0.05854954570531845,
-0.1527584195137024,
-0.06388039141893387,
0.08023566752672195,
0.04244997724890709,
0.06549736112356186,
-0.022133201360702515,
0.022729074582457542,
-0.024138592183589935,
-0.09001503884792328,
0.03952024132013321,
-0.03830036148428917,
0.0644330233335495,
0.02956113964319229,
-0.05086758732795715,
-0.005502054467797279,
-0.05658023804426193,
-0.010956823825836182,
0.18672387301921844,
0.2200131118297577,
-0.09739802777767181,
-0.0162198469042778,
0.025655262172222137,
-0.059498656541109085,
-0.19856862723827362,
0.09632505476474762,
0.08565674722194672,
0.007697532884776592,
0.046168211847543716,
-0.16232961416244507,
0.1539815068244934,
0.099558524787426,
-0.0014670685632154346,
0.10654739290475845,
-0.3051668703556061,
-0.12826897203922272,
0.10506083816289902,
0.17202512919902802,
0.13560201227664948,
-0.13683485984802246,
-0.007695924956351519,
-0.009862217120826244,
-0.09692876785993576,
0.10411307215690613,
-0.06699183583259583,
0.12009675800800323,
-0.0194843802601099,
0.10906043648719788,
0.013904480263590813,
-0.07120979577302933,
0.09434845298528671,
0.006334394216537476,
0.11565837264060974,
-0.0641108900308609,
-0.0599924772977829,
0.04327516257762909,
-0.02513393945991993,
-0.012603556737303734,
-0.02429954521358013,
0.01863659918308258,
-0.06655554473400116,
-0.020380061119794846,
-0.09729310125112534,
0.04249975457787514,
-0.022845672443509102,
-0.07215605676174164,
-0.03798982873558998,
0.034486591815948486,
0.0347672663629055,
-0.025408290326595306,
0.11631406843662262,
0.020474771037697792,
0.17357058823108673,
0.08708459883928299,
0.06479399651288986,
-0.04912528023123741,
-0.047987163066864014,
0.0031172367744147778,
-0.010042194277048111,
0.06336687505245209,
-0.12954935431480408,
0.021299181506037712,
0.1548917442560196,
0.02259223349392414,
0.11389923095703125,
0.09221676737070084,
-0.019381247460842133,
0.016354786232113838,
0.07670716196298599,
-0.16417500376701355,
-0.06515072286128998,
0.003931096754968166,
-0.08489454537630081,
-0.09275737404823303,
0.052891772240400314,
0.08091950416564941,
-0.0745406523346901,
-0.01143818162381649,
-0.008374009281396866,
-0.02357483096420765,
-0.06725141406059265,
0.22621916234493256,
0.08041004836559296,
0.04312139004468918,
-0.0999101847410202,
0.057771891355514526,
0.06371386349201202,
-0.08609388023614883,
-0.004832268226891756,
0.08025909215211868,
-0.07662060111761093,
-0.020290790125727654,
0.11775277554988861,
0.20120371878147125,
-0.07671817392110825,
-0.012768716551363468,
-0.1491883248090744,
-0.10546629130840302,
0.06394967436790466,
0.18146945536136627,
0.11174897849559784,
-0.005746394395828247,
-0.05898333713412285,
0.03549402207136154,
-0.15716321766376495,
0.07804688811302185,
0.04985138773918152,
0.08610734343528748,
-0.15088306367397308,
0.20125648379325867,
-0.0008145252359099686,
0.044585175812244415,
-0.03423246741294861,
0.032826900482177734,
-0.11945797502994537,
0.021768270060420036,
-0.11086944490671158,
-0.05751108005642891,
-0.0070248995907604694,
-0.006887249648571014,
-0.0017724940553307533,
-0.07418118417263031,
-0.059812262654304504,
0.005638316739350557,
-0.12948912382125854,
-0.015566032379865646,
0.046069059520959854,
0.016512660309672356,
-0.1068277582526207,
-0.04147090017795563,
0.02092311903834343,
-0.047368936240673065,
0.0480099581182003,
0.0498148575425148,
0.023248901590704918,
0.07366267591714859,
-0.14372731745243073,
-0.015195529907941818,
0.07291853427886963,
-0.005608049686998129,
0.09769507497549057,
-0.05470888689160347,
-0.0005538896075449884,
-0.010496788658201694,
0.11068644374608994,
0.024043062701821327,
0.08016267418861389,
-0.13879990577697754,
0.008863130584359169,
-0.03443152457475662,
-0.09479279071092606,
-0.06926314532756805,
0.02087808959186077,
0.0775085985660553,
0.01358357910066843,
0.18310385942459106,
-0.08565045148134232,
0.05392558500170708,
-0.2103486806154251,
-0.012335194274783134,
-0.019992126151919365,
-0.11216119676828384,
-0.10019932687282562,
-0.055610138922929764,
0.0748644471168518,
-0.052375003695487976,
0.11737731844186783,
0.04977351427078247,
0.064247265458107,
0.03170337900519371,
-0.02435336634516716,
0.005201812833547592,
0.03507564589381218,
0.19384288787841797,
0.0445544458925724,
-0.04285910725593567,
0.05763338878750801,
0.08178278058767319,
0.10580673813819885,
0.11292116343975067,
0.21202906966209412,
0.1439947634935379,
-0.02532072179019451,
0.0831497460603714,
0.0295761339366436,
-0.054273273795843124,
-0.16208545863628387,
0.02384331077337265,
-0.07622946798801422,
0.08083697408437729,
-0.033068813383579254,
0.19470880925655365,
0.06325560063123703,
-0.15578582882881165,
0.04556700587272644,
-0.06432455778121948,
-0.10116644948720932,
-0.09978976845741272,
-0.01707560382783413,
-0.08219102770090103,
-0.1386982798576355,
0.015715889632701874,
-0.10060658305883408,
0.012696845456957817,
0.12409891933202744,
0.013584802858531475,
-0.024686595425009727,
0.1988857537508011,
0.03971971571445465,
0.042158354073762894,
0.0560331866145134,
0.012747431173920631,
-0.01824902556836605,
-0.09046297520399094,
-0.05972641706466675,
-0.047912709414958954,
-0.014301790855824947,
0.033574461936950684,
-0.07752802222967148,
-0.09452049434185028,
0.03602764010429382,
-0.010265081189572811,
-0.10168483108282089,
0.02344057895243168,
0.02420823834836483,
0.06851383298635483,
0.02411331795156002,
-0.006386794149875641,
0.017144443467259407,
-0.03837822750210762,
0.22251245379447937,
-0.08971256017684937,
-0.07508094608783722,
-0.10328809171915054,
0.27766153216362,
0.035309549421072006,
0.005398862529546022,
0.01875901035964489,
-0.0693800076842308,
0.01019220519810915,
0.24764244258403778,
0.1949744075536728,
-0.1108095571398735,
-0.005140852648764849,
0.0034067535307258368,
-0.017039380967617035,
-0.0369071364402771,
0.13558796048164368,
0.12677976489067078,
0.05373919755220413,
-0.1120881661772728,
-0.04366685822606087,
-0.05857709050178528,
-0.013856849633157253,
-0.036774590611457825,
0.04978007823228836,
0.05895340070128441,
0.021156257018446922,
-0.06064862385392189,
0.05809765309095383,
-0.0711965411901474,
-0.11137676984071732,
0.08470019698143005,
-0.21013998985290527,
-0.1719648689031601,
-0.011832508258521557,
0.10823098570108414,
-0.013186563737690449,
0.07196928560733795,
-0.030912313610315323,
-0.002855669939890504,
0.03767279535531998,
-0.024354422464966774,
-0.07221914082765579,
-0.09673845022916794,
0.09894837439060211,
-0.10468140989542007,
0.17761120200157166,
-0.04928198829293251,
0.06770119816064835,
0.12587232887744904,
0.061686377972364426,
-0.06134488061070442,
0.04757951200008392,
0.04550354182720184,
-0.11256099492311478,
0.022502778097987175,
0.1296653002500534,
-0.030518945306539536,
0.05770569667220116,
0.03278255835175514,
-0.13991902768611908,
0.0329594649374485,
-0.10627151280641556,
-0.031079551205039024,
-0.04404055327177048,
-0.04851794242858887,
-0.053718794137239456,
0.12481997162103653,
0.2340480089187622,
-0.0068182614631950855,
0.03247760236263275,
-0.08736881613731384,
0.009014744311571121,
0.05398697033524513,
0.053898029029369354,
-0.10539843142032623,
-0.2563309073448181,
0.008755529299378395,
0.07601438462734222,
-0.03989158198237419,
-0.21808438003063202,
-0.09259103238582611,
0.008729842491447926,
-0.07869910448789597,
-0.08929599821567535,
0.08910216391086578,
0.07688698172569275,
0.06154398247599602,
-0.05100591480731964,
-0.103232242166996,
-0.08358746021986008,
0.15338730812072754,
-0.15332265198230743,
-0.08302705734968185
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.