sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
This **cased model** was pretrained from scratch using a custom vocabulary on the following corpora
- Pubmed
- Clinical trials corpus
- and a small subset of Bookcorpus
The pretrained model was used to do NER **as is, with no fine-tuning**. The approach is described [in this post](https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html). [Towards Data Science review](https://twitter.com/TDataScience/status/1486300137366466560?s=20)
[App in Spaces](https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-biomedical) demonstrates this approach.
[Github link](https://github.com/ajitrajasekharan/unsupervised_NER) to perform NER using this model in an ensemble with bert-base cased.
The ensemble detects 69 entity subtypes (17 broad entity groups)
<img src="https://ajitrajasekharan.github.io/images/1.png" width="600">
### Ensemble model performance
<img src="https://ajitrajasekharan.github.io/images/6.png" width="600">
### Additional notes
- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.
- Some of the top model predictions like "a", "the", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.
- [Use this link](https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation) to examine both fill-mask prediction and [CLS] predictions
### License
MIT license
<a href="https://huggingface.co/exbert/?model=ajitrajasekharan/biomedical&modelKind=bidirectional&sentence=Gefitinib%20is%20an%20EGFR%20tyrosine%20kinase%20inhibitor,%20which%20is%20often%20used%20for%20breast%20cancer%20and%20NSCLC%20treatment.&layer=3&heads=..0,1,2,3,4,5,6,7,8,9,10,11&threshold=0.7&tokenInd=17&tokenSide=right&maskInds=..&hideClsSep=true">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
{"language": [{}], "license": "mit", "tags": [{}, "exbert"], "widget": [{"text": "Lou Gehrig who works for XCorp and lives in New York suffers from [MASK]", "example_title": "Test for entity type: Disease"}, {"text": "Overexpression of [MASK] occurs across a wide range of cancers", "example_title": "Test for entity type: Gene"}, {"text": "Patients treated with [MASK] are vulnerable to infectious diseases", "example_title": "Test for entity type: Drug"}, {"text": "A eGFR level below [MASK] indicates chronic kidney disease", "example_title": "Test for entity type: Measure "}, {"text": "In the [MASK], increased daily imatinib dose induced MMR", "example_title": "Test for entity type: STUDY/TRIAL"}, {"text": "Paul Erdos died at [MASK]", "example_title": "Test for entity type: TIME"}], "inference": {"parameters": {"top_k": 10}}}
|
fill-mask
|
ajitrajasekharan/biomedical
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
This cased model was pretrained from scratch using a custom vocabulary on the following corpora
- Pubmed
- Clinical trials corpus
- and a small subset of Bookcorpus
The pretrained model was used to do NER as is, with no fine-tuning. The approach is described in this post. Towards Data Science review
App in Spaces demonstrates this approach.
Github link to perform NER using this model in an ensemble with bert-base cased.
The ensemble detects 69 entity subtypes (17 broad entity groups)
<img src="URL width="600">
### Ensemble model performance
<img src="URL width="600">
### Additional notes
- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.
- Some of the top model predictions like "a", "the", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.
- Use this link to examine both fill-mask prediction and [CLS] predictions
### License
MIT license
<a href="URL
<img width="300px" src="URL
</a>
|
[
"### Ensemble model performance\n\n <img src=\"URL width=\"600\">",
"### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions",
"### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>"
] |
[
"TAGS\n#transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Ensemble model performance\n\n <img src=\"URL width=\"600\">",
"### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions",
"### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>"
] |
[
45,
17,
165,
28
] |
[
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Ensemble model performance\n\n <img src=\"URL width=\"600\">### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>"
] |
[
-0.03627771511673927,
0.03145008161664009,
-0.0004051690630149096,
0.05778981372714043,
0.031422700732946396,
-0.01777363009750843,
0.09058648347854614,
-0.021983077749609947,
0.1387765258550644,
0.1412389725446701,
0.047298677265644073,
-0.10669359564781189,
0.02668350376188755,
0.07108215987682343,
-0.04105992987751961,
-0.21511179208755493,
0.06246507540345192,
-0.08466512709856033,
0.030664552003145218,
0.09978371113538742,
0.08671165257692337,
-0.06520932167768478,
0.057172901928424835,
0.11289363354444504,
-0.024939510971307755,
-0.00047608252498321235,
0.029144449159502983,
-0.020599981769919395,
0.0654507726430893,
0.025638649240136147,
0.11226195842027664,
0.029475221410393715,
0.07273469865322113,
-0.09889043867588043,
0.036737505346536636,
0.039153892546892166,
0.027243150398135185,
0.08462740480899811,
0.0548710860311985,
-0.05125313997268677,
0.053449057042598724,
-0.00543965632095933,
0.06236498802900314,
0.014542242512106895,
-0.08673222362995148,
-0.030627785250544548,
-0.12449180334806442,
0.06106347590684891,
0.014372543431818485,
0.025603890419006348,
0.010484552942216396,
0.19922146201133728,
-0.15019027888774872,
0.019291847944259644,
0.10925506055355072,
-0.2768441438674927,
0.025764327496290207,
0.07533317059278488,
0.04194483533501625,
-0.03376913070678711,
-0.011652517132461071,
0.007087232545018196,
0.01354703027755022,
-0.037312962114810944,
0.06497988104820251,
0.06425689905881882,
0.011706343851983547,
-0.019699139520525932,
-0.16274376213550568,
-0.10757794231176376,
0.14635589718818665,
0.03801845386624336,
-0.023538069799542427,
-0.11494500935077667,
-0.08374641835689545,
0.06765035539865494,
-0.013697057031095028,
-0.01010988187044859,
0.0028539709746837616,
0.007161329500377178,
0.037430454045534134,
0.03776577115058899,
-0.046753812581300735,
-0.05954870954155922,
-0.16505737602710724,
0.1962612420320511,
0.04273112863302231,
0.038403574377298355,
-0.0599508136510849,
0.08044397830963135,
-0.11292533576488495,
-0.13904783129692078,
-0.04246240854263306,
-0.07673800736665726,
-0.1313028484582901,
-0.010417908430099487,
-0.0820838138461113,
0.019127732142806053,
-0.026189900934696198,
0.24290239810943604,
0.019545016810297966,
0.017777493223547935,
0.03955816105008125,
0.06011884659528732,
0.03183966130018234,
0.03617671877145767,
-0.11094952374696732,
0.04933157190680504,
0.05908011272549629,
-0.06991950422525406,
0.12111212313175201,
-0.049319807440042496,
-0.03146466612815857,
0.023408858105540276,
-0.09522873908281326,
-0.016965501010417938,
-0.02436511032283306,
0.02066940627992153,
-0.1016683280467987,
0.001702914945781231,
0.14855147898197174,
-0.10438641905784607,
-0.004531494807451963,
0.05871955677866936,
-0.09554678946733475,
0.01318657211959362,
0.06212562322616577,
0.047579314559698105,
-0.04375426843762398,
0.04422949254512787,
-0.11754098534584045,
-0.04371423274278641,
-0.10584733635187149,
-0.09165994822978973,
0.0475216880440712,
0.07191199064254761,
-0.041327059268951416,
-0.07791082561016083,
-0.1458788812160492,
-0.01903330720961094,
0.034722451120615005,
-0.05521836876869202,
-0.019595852121710777,
0.05103323981165886,
0.004064017906785011,
0.025693388655781746,
-0.014914587140083313,
-0.11200131475925446,
-0.04526965320110321,
0.0043884627521038055,
-0.018112897872924805,
0.08339682966470718,
0.013140139169991016,
0.01323200948536396,
-0.1683596968650818,
0.048791538923978806,
-0.15671716630458832,
0.09030736237764359,
-0.053305160254240036,
0.00209570094011724,
-0.10428891330957413,
-0.0632447823882103,
-0.11640843003988266,
0.0039154584519565105,
0.04417979717254639,
0.10588762164115906,
-0.1852147877216339,
-0.018146438524127007,
0.15475012362003326,
-0.12180637568235397,
-0.09171175211668015,
0.13074301183223724,
-0.07477008551359177,
-0.04463324695825577,
0.029626619070768356,
0.16667233407497406,
0.10221567749977112,
-0.06572845578193665,
-0.002520295325666666,
0.017286907881498337,
0.014055199921131134,
0.027622081339359283,
0.06577625870704651,
0.0380762554705143,
-0.08824758976697922,
0.01922539249062538,
-0.15106453001499176,
-0.02004069834947586,
0.002987130545079708,
-0.05940315127372742,
-0.0466165654361248,
0.030297040939331055,
0.015291648916900158,
-0.017164506018161774,
0.02336619235575199,
-0.03289606422185898,
-0.1031387597322464,
-0.0012728107394650578,
0.07887329906225204,
-0.04092709347605705,
0.031135806813836098,
-0.0640997663140297,
0.10119562596082687,
-0.043638307601213455,
-0.03336462005972862,
-0.2078935205936432,
-0.13229838013648987,
0.06002577021718025,
-0.16030870378017426,
0.11147430539131165,
0.015139913186430931,
-0.0016070706769824028,
0.025928638875484467,
0.03723311796784401,
0.05394953116774559,
0.09939461201429367,
-0.0010300438152626157,
-0.016894759610295296,
-0.16641663014888763,
-0.0428302064538002,
-0.02875259891152382,
0.04522516205906868,
-0.14728328585624695,
-0.021755686029791832,
-0.0010625066934153438,
0.1960233449935913,
-0.04254453256726265,
-0.030783740803599358,
-0.0031522992067039013,
-0.035067420452833176,
-0.05409184843301773,
-0.012837431393563747,
0.008331693708896637,
0.0017214856343343854,
-0.12501974403858185,
0.14970940351486206,
-0.20018422603607178,
-0.012729265727102757,
0.08729014545679092,
0.031395573168992996,
-0.03808514401316643,
-0.005106267519295216,
-0.022870497778058052,
0.006936989724636078,
-0.05457909405231476,
0.037244051694869995,
0.17389841377735138,
0.026390818879008293,
0.06312296539545059,
-0.09733722358942032,
-0.056654781103134155,
-0.00046441835002042353,
-0.02986607514321804,
-0.03336302191019058,
0.05440153181552887,
0.185895174741745,
-0.12655334174633026,
0.05421791970729828,
-0.005846878979355097,
-0.02469470724463463,
0.016609150916337967,
0.0010594356572255492,
-0.07855327427387238,
-0.006431323476135731,
-0.004677776247262955,
-0.01050957478582859,
0.051770035177469254,
0.11263469606637955,
0.04837508127093315,
0.06088339909911156,
0.022537650540471077,
0.01885823905467987,
-0.15385150909423828,
0.02185322903096676,
0.03761875629425049,
-0.018029766157269478,
-0.1679994761943817,
0.021585652604699135,
-0.032882172614336014,
0.09781395643949509,
0.016931386664509773,
-0.07395147532224655,
0.0000782370989327319,
-0.062319476157426834,
-0.13174107670783997,
0.16463740170001984,
-0.04131454974412918,
-0.16664262115955353,
-0.15745675563812256,
0.05036710947751999,
-0.0671384185552597,
0.004307914059609175,
-0.011463369242846966,
0.028826655820012093,
-0.13630446791648865,
-0.12645825743675232,
-0.09555822610855103,
0.03957356885075569,
-0.04647701233625412,
0.008897875435650349,
-0.09239664673805237,
0.03724689781665802,
-0.14359329640865326,
0.01884911023080349,
-0.04291160777211189,
0.02369649149477482,
-0.014033242128789425,
0.022113647311925888,
0.09995099157094955,
0.18576204776763916,
-0.008040565997362137,
-0.030347704887390137,
-0.009808246046304703,
0.15202948451042175,
-0.05918920785188675,
-0.00898269284516573,
0.11376449465751648,
-0.07377937436103821,
0.08216355741024017,
0.19537371397018433,
0.050949856638908386,
-0.052919648587703705,
0.043027956038713455,
-0.03146898373961449,
-0.10728474706411362,
-0.1776074320077896,
-0.14446312189102173,
-0.09925661236047745,
-0.1753796637058258,
0.03520612791180611,
0.03343867510557175,
0.0037585818208754063,
0.025280354544520378,
-0.0947762280702591,
-0.016339514404535294,
0.026858827099204063,
0.06906870007514954,
0.12032449245452881,
0.04405992105603218,
0.10791297256946564,
-0.057006530463695526,
-0.04577683284878731,
0.06996383517980576,
-0.0034794341772794724,
0.1581818014383316,
-0.01955510303378105,
0.191716268658638,
0.08905148506164551,
0.09278866648674011,
0.09772016108036041,
0.0353565514087677,
-0.06464583426713943,
0.06820770353078842,
-0.02241814136505127,
-0.0949108824133873,
0.02168557606637478,
0.07547195255756378,
-0.003922696225345135,
0.010833402164280415,
-0.0238502137362957,
-0.039154842495918274,
0.03317425400018692,
0.047045353800058365,
0.10830069333314896,
-0.31770628690719604,
-0.05069449543952942,
0.07380086928606033,
-0.02936156466603279,
0.014364106580615044,
0.064004085958004,
0.037231482565402985,
-0.045378148555755615,
0.11321085691452026,
0.041517116129398346,
0.09377862513065338,
0.02062126249074936,
-0.014777385629713535,
-0.010808747261762619,
0.12999960780143738,
-0.0045698219910264015,
0.07011300325393677,
-0.06251873075962067,
0.15113702416419983,
-0.02414252795279026,
0.014013858512043953,
-0.06255728751420975,
-0.0007914755260571837,
0.04844122380018234,
0.03537071868777275,
0.12376762926578522,
0.003767839167267084,
-0.09683719277381897,
0.010394464246928692,
-0.09607967734336853,
0.03169780969619751,
0.03051522560417652,
-0.10185662657022476,
0.07741478830575943,
-0.01691042259335518,
-0.015048420056700706,
0.05053683742880821,
-0.035665251314640045,
-0.11537211388349533,
-0.12029191851615906,
0.05647341161966324,
-0.0004802208859473467,
-0.0702788308262825,
-0.05335621163249016,
-0.07410749047994614,
-0.130546435713768,
0.09693554788827896,
-0.12750813364982605,
-0.019060781225562096,
-0.12452399730682373,
-0.015036772936582565,
0.1566399484872818,
-0.08268525451421738,
0.012120074592530727,
-0.00941404141485691,
0.18783605098724365,
-0.003035301109775901,
-0.16197256743907928,
0.08830297738313675,
-0.07773275673389435,
-0.12864023447036743,
-0.05961129441857338,
0.14618904888629913,
0.06823403388261795,
0.07479660212993622,
0.03755407780408859,
0.10654521733522415,
-0.01642240770161152,
-0.14285553991794586,
-0.09316681325435638,
0.1135135218501091,
0.06232934072613716,
0.12765814363956451,
-0.015348563902080059,
0.006481285206973553,
0.012318922206759453,
0.09159215539693832,
0.08423469960689545,
0.1269538402557373,
-0.0975537896156311,
0.14958439767360687,
0.14401540160179138,
-0.041154369711875916,
-0.24546769261360168,
-0.007697770372033119,
0.009459137916564941,
0.06724119931459427,
0.09670888632535934,
-0.020680228248238564,
0.08655750006437302,
-0.0036401008255779743,
-0.05427319556474686,
-0.036406755447387695,
-0.1909969002008438,
-0.131219282746315,
0.10612622648477554,
-0.006390737369656563,
0.15380679070949554,
-0.02413976937532425,
-0.06776493787765503,
-0.04298644885420799,
-0.0365648977458477,
0.180833101272583,
-0.025937246158719063,
0.047773588448762894,
0.0428805910050869,
0.03892088308930397,
0.018235085532069206,
-0.06760073453187943,
0.1445329338312149,
0.05038411542773247,
0.05027597397565842,
-0.06948841363191605,
0.08075007051229477,
-0.05263237655162811,
-0.04753568023443222,
0.14949768781661987,
0.051834288984537125,
0.0784454271197319,
-0.0073071676306426525,
-0.04287448897957802,
-0.001159883220680058,
0.06781242787837982,
-0.009441015310585499,
0.01681678183376789,
-0.13166606426239014,
0.030396031215786934,
0.09375780075788498,
-0.022300060838460922,
0.13089990615844727,
0.007379845250397921,
0.006616713013499975,
0.051076773554086685,
0.15980930626392365,
0.05755620449781418,
-0.0948634222149849,
0.043078549206256866,
-0.018145810812711716,
0.11117864400148392,
-0.1763623058795929,
0.08176080137491226,
0.12019943445920944,
0.04520842060446739,
0.060304634273052216,
0.03694569319486618,
-0.10473350435495377,
-0.03751232102513313,
0.059944018721580505,
-0.09838312119245529,
-0.1072988212108612,
-0.008238643407821655,
-0.01811373606324196,
-0.061770178377628326,
-0.029211293905973434,
0.08787243068218231,
-0.11966509371995926,
0.015115550719201565,
0.05345604196190834,
0.07546589523553848,
0.02578805573284626,
0.08645515143871307,
0.058817293494939804,
0.02148047275841236,
-0.12356923520565033,
0.04598231986165047,
0.11013156175613403,
-0.05763453245162964,
-0.001874364446848631,
0.006682370789349079,
-0.14399376511573792,
-0.027739135548472404,
-0.11096670478582382,
0.016714733093976974,
-0.03450364992022514,
-0.06087290123105049,
-0.08901739865541458,
-0.1507878601551056,
0.046980779618024826,
0.22522199153900146,
0.0980663076043129,
0.03167383745312691,
-0.079874187707901,
-0.04971021041274071,
-0.05195116251707077,
0.07778004556894302,
0.10387694835662842,
0.03551507368683815,
-0.08131758868694305,
0.02140849642455578,
0.04831425100564957,
-0.02090202085673809,
-0.05648854374885559,
-0.03929181024432182,
-0.10939354449510574,
-0.00044633285142481327,
-0.12241230905056,
0.015881584957242012,
-0.0754980519413948,
0.0274210162460804,
0.006991947535425425,
-0.05033693462610245,
-0.06089980527758598,
0.046567268669605255,
-0.06536325067281723,
-0.0016744255553930998,
-0.06324560195207596,
0.08287805318832397,
-0.13912318646907806,
0.012296218425035477,
0.11228621751070023,
-0.05593179166316986,
0.0403401218354702,
0.03608566150069237,
-0.03307539224624634,
0.01851479895412922,
-0.20725421607494354,
-0.08379559218883514,
0.031433600932359695,
0.11268779635429382,
0.007290467619895935,
-0.12732462584972382,
0.032961975783109665,
0.04415546730160713,
0.00491387490183115,
-0.04104015603661537,
-0.03273668512701988,
-0.07582278549671173,
-0.05296484753489494,
-0.010940570384263992,
-0.020004257559776306,
-0.05520136281847954,
-0.02177944965660572,
0.037269990891218185,
0.13938555121421814,
0.15015758574008942,
0.00519581651315093,
0.004231865983456373,
-0.11219892650842667,
-0.010600467212498188,
-0.0002453037886880338,
-0.013161063194274902,
-0.1214384064078331,
-0.015485372394323349,
0.05306650698184967,
0.008032713085412979,
0.2814006209373474,
0.03715505078434944,
-0.04429175704717636,
0.035510364919900894,
0.15158389508724213,
0.07734798640012741,
0.033229630440473557,
0.048327043652534485,
0.08727683871984482,
0.022057848051190376,
0.01619599387049675,
-0.03640277311205864,
0.003011336550116539,
-0.2004653960466385,
0.1546708047389984,
0.09134292602539062,
0.019831696525216103,
0.04766228049993515,
0.07821831107139587,
-0.06611111015081406,
0.04328373447060585,
-0.028725823387503624,
-0.03672358766198158,
0.01816536672413349,
0.02116316743195057,
0.00013799878070130944,
0.1386781483888626,
-0.09463207423686981,
0.05708957090973854,
-0.0010371417738497257,
-0.059843845665454865,
-0.15251895785331726,
-0.20829816162586212,
-0.04116089269518852,
-0.07914890348911285,
-0.014020364731550217,
-0.08057565987110138,
-0.017465665936470032,
0.1615181416273117,
0.014257872477173805,
-0.0027017274405807257,
0.061611589044332504,
-0.17980489134788513,
-0.026753956452012062,
-0.06917115300893784,
0.00800339039415121,
0.019094141200184822,
0.08950246125459671,
-0.03428719565272331,
0.04107767716050148,
0.04263672977685928,
0.0354328416287899,
0.034383438527584076,
0.13780227303504944,
0.05026381462812424,
-0.01990448124706745,
-0.05911451205611229,
-0.036695897579193115,
-0.005979262292385101,
0.011490575037896633,
0.07189546525478363,
0.07446426153182983,
-0.0007747228373773396,
-0.01864570938050747,
0.10235673189163208,
-0.064934641122818,
-0.016124172136187553,
-0.12042500078678131,
0.21233266592025757,
0.019475802779197693,
0.015174280852079391,
0.03676021471619606,
-0.108990378677845,
-0.06891045719385147,
0.14463436603546143,
0.1784437596797943,
-0.06012820452451706,
-0.01506768073886633,
-0.037207216024398804,
-0.00145018904004246,
0.03807947412133217,
0.08032269030809402,
0.03249822184443474,
0.3633202910423279,
-0.0205533504486084,
-0.018944326788187027,
-0.025716617703437805,
0.0021133311092853546,
-0.026408039033412933,
0.07374308258295059,
-0.028533436357975006,
-0.0784291923046112,
-0.08947677910327911,
0.0881984755396843,
-0.0990549772977829,
-0.1301727145910263,
0.0008558073895983398,
-0.01824735850095749,
-0.08162356913089752,
0.018926648423075676,
0.012123789638280869,
-0.017208930104970932,
0.005036538001149893,
-0.0344868041574955,
-0.012371464632451534,
0.08768073469400406,
0.04139573872089386,
-0.133456289768219,
0.027260685339570045,
0.06581838428974152,
0.11789470165967941,
0.19473356008529663,
0.03803228214383125,
0.2101130336523056,
0.029764382168650627,
0.0346914678812027,
-0.06603041291236877,
0.009930547326803207,
0.05849425867199898,
-0.09383965283632278,
0.029276933521032333,
0.056909456849098206,
-0.011524572037160397,
0.008336074650287628,
0.0895935595035553,
-0.16056598722934723,
0.055855587124824524,
-0.11621595174074173,
-0.05262909457087517,
-0.11083512008190155,
0.006334073841571808,
-0.0806456208229065,
0.1244392842054367,
0.09059850126504898,
-0.03025791607797146,
0.008633951656520367,
-0.0051930928602814674,
-0.002909658709540963,
-0.032236333936452866,
0.0051465341821312904,
0.07553482800722122,
-0.13985314965248108,
0.01686440408229828,
-0.09662080556154251,
0.017679372802376747,
-0.2352275550365448,
-0.08587097376585007,
0.004032825585454702,
-0.013274035416543484,
0.036543626338243484,
0.07242324948310852,
0.09739924222230911,
0.029550006613135338,
-0.06730764359235764,
-0.11253993213176727,
0.0328572578728199,
0.028201207518577576,
-0.10791096836328506,
-0.05252089723944664
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-cola
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8385
- Matthews Correlation: 0.5865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.4887 | 1.0 | 535 | 0.5016 | 0.5107 |
| 0.286 | 2.0 | 1070 | 0.5473 | 0.5399 |
| 0.1864 | 3.0 | 1605 | 0.7114 | 0.5706 |
| 0.1163 | 4.0 | 2140 | 0.8385 | 0.5865 |
| 0.0834 | 5.0 | 2675 | 0.9610 | 0.5786 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5864941797290588, "name": "Matthews Correlation"}]}]}]}
|
text-classification
|
ajrae/bert-base-uncased-finetuned-cola
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
bert-base-uncased-finetuned-cola
================================
This model is a fine-tuned version of bert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8385
* Matthews Correlation: 0.5865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
65,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.11058378964662552,
0.08168771862983704,
-0.0018928216304630041,
0.12054884433746338,
0.16402749717235565,
0.03651754930615425,
0.11452049016952515,
0.12926580011844635,
-0.08146972209215164,
0.026920324191451073,
0.1253388673067093,
0.15753161907196045,
0.020413868129253387,
0.11850695312023163,
-0.04691627621650696,
-0.26174473762512207,
-0.009937528520822525,
0.04934175685048103,
-0.052011638879776,
0.13128681480884552,
0.08871930837631226,
-0.12730920314788818,
0.0955171287059784,
0.01379626989364624,
-0.19598133862018585,
0.0037745756562799215,
0.007866744883358479,
-0.055304158478975296,
0.1457548588514328,
0.028573520481586456,
0.12012506276369095,
-0.0012681136140599847,
0.08600315451622009,
-0.19181281328201294,
0.011322222650051117,
0.048287421464920044,
0.00024589619715698063,
0.0936809778213501,
0.05205908790230751,
0.0029348116368055344,
0.12715323269367218,
-0.08503279089927673,
0.05376281961798668,
0.028530191630125046,
-0.11875519901514053,
-0.22161872684955597,
-0.07665970921516418,
0.04215710237622261,
0.07633838802576065,
0.10951228439807892,
-0.005718022119253874,
0.12911391258239746,
-0.08710674941539764,
0.08877304196357727,
0.23591582477092743,
-0.30551132559776306,
-0.064704030752182,
0.033326052129268646,
0.012882307171821594,
0.03819486126303673,
-0.11001497507095337,
-0.033636145293712616,
0.053923528641462326,
0.05009079352021217,
0.12470096349716187,
-0.03137143328785896,
-0.11200437694787979,
0.011789802461862564,
-0.13569097220897675,
-0.0266043022274971,
0.1517753154039383,
0.03980390727519989,
-0.030814344063401222,
-0.0515427440404892,
-0.052898701280355453,
-0.14895284175872803,
-0.036878012120723724,
-0.005174336489289999,
0.047176703810691833,
-0.02803935296833515,
-0.05512383580207825,
0.003653373569250107,
-0.11400924623012543,
-0.06777030974626541,
-0.07787948846817017,
0.12161674350500107,
0.03376021981239319,
0.016329757869243622,
-0.03601174056529999,
0.1104925200343132,
-0.008701197803020477,
-0.13123579323291779,
0.014582755975425243,
0.025314364582300186,
0.007587775122374296,
-0.044702157378196716,
-0.051504962146282196,
-0.0515524260699749,
0.012162799946963787,
0.13041265308856964,
-0.05370127409696579,
0.04579243063926697,
0.05259358137845993,
0.043655142188072205,
-0.09150955080986023,
0.1945887953042984,
-0.03788289055228233,
-0.020141582936048508,
0.004516669549047947,
0.040276020765304565,
0.016940902918577194,
-0.009942113421857357,
-0.11964383721351624,
0.0038554698694497347,
0.08521955460309982,
0.008472660556435585,
-0.06519338488578796,
0.07421670854091644,
-0.05379481986165047,
-0.01859540119767189,
0.0014602354494854808,
-0.08893220871686935,
0.02967456541955471,
0.003279817523434758,
-0.07391027361154556,
-0.02444443479180336,
0.029594661667943,
0.0161152184009552,
-0.019491560757160187,
0.12372300773859024,
-0.09227437525987625,
0.030188148841261864,
-0.09228117018938065,
-0.10868990421295166,
0.02401377446949482,
-0.0974893569946289,
0.028760140761733055,
-0.0948692113161087,
-0.1688021719455719,
-0.014633400365710258,
0.05789358541369438,
-0.02905845083296299,
-0.06038733944296837,
-0.043867677450180054,
-0.06780573725700378,
0.01589832827448845,
-0.011880235746502876,
0.1308443397283554,
-0.06661584228277206,
0.08975161612033844,
0.03229938820004463,
0.06476900726556778,
-0.042724721133708954,
0.05435463413596153,
-0.10375642031431198,
0.011623548343777657,
-0.1614483892917633,
0.02499266155064106,
-0.048950474709272385,
0.08037903904914856,
-0.08492887765169144,
-0.09921029955148697,
0.010824191384017467,
-0.00129547412507236,
0.06584707647562027,
0.09731071442365646,
-0.17066963016986847,
-0.08113454282283783,
0.15901218354701996,
-0.07336559146642685,
-0.13515576720237732,
0.11572962999343872,
-0.05371662229299545,
0.050667572766542435,
0.06125761196017265,
0.16775716841220856,
0.06693456321954727,
-0.08980806916952133,
-0.008450786583125591,
0.027345219627022743,
0.05465889349579811,
-0.08189534395933151,
0.07530831545591354,
0.00464598648250103,
0.014153066091239452,
0.03463350608944893,
-0.023197989910840988,
0.060983192175626755,
-0.09093188494443893,
-0.09607794880867004,
-0.041179362684488297,
-0.08570978790521622,
0.0326363742351532,
0.07786992192268372,
0.0702214241027832,
-0.09798429161310196,
-0.08745589107275009,
0.045694779604673386,
0.07946042716503143,
-0.04736329987645149,
0.025907618924975395,
-0.0557166263461113,
0.07307851314544678,
-0.03692679852247238,
-0.02461162768304348,
-0.1790464073419571,
-0.0346548892557621,
0.0030609029345214367,
-0.0006751380860805511,
0.013818521052598953,
0.021601824089884758,
0.06722559779882431,
0.05653833970427513,
-0.052694857120513916,
-0.016924476251006126,
-0.022091317921876907,
-0.0012229891726747155,
-0.13773764669895172,
-0.20516261458396912,
-0.03532310202717781,
-0.023791655898094177,
0.14030927419662476,
-0.20550177991390228,
0.041250940412282944,
-0.006856988649815321,
0.07490403950214386,
0.009610324166715145,
-0.003095535561442375,
-0.04507903382182121,
0.07002750784158707,
-0.038284946233034134,
-0.04863224923610687,
0.07632183283567429,
0.017586855217814445,
-0.09179315716028214,
-0.04073137417435646,
-0.09298796951770782,
0.1729336977005005,
0.13664397597312927,
-0.11015596240758896,
-0.07624398916959763,
-0.013422394171357155,
-0.0684303268790245,
-0.033660564571619034,
-0.051689714193344116,
0.0307850930839777,
0.18682290613651276,
-0.00425696512684226,
0.14921899139881134,
-0.06628645956516266,
-0.05081954598426819,
0.025120487436652184,
-0.03326857462525368,
0.02106763981282711,
0.12643007934093475,
0.1385318487882614,
-0.06552370637655258,
0.15155351161956787,
0.14958477020263672,
-0.08799504488706589,
0.13583262264728546,
-0.04134104773402214,
-0.07326430082321167,
-0.015689736232161522,
-0.03602070361375809,
-0.006391804199665785,
0.110472172498703,
-0.15450039505958557,
-0.005259311757981777,
0.030913392081856728,
0.016670232638716698,
0.02515546977519989,
-0.22222745418548584,
-0.03972334414720535,
0.033838093280792236,
-0.035080812871456146,
-0.02135361172258854,
-0.013597116805613041,
0.004502273164689541,
0.106736920773983,
0.009417111054062843,
-0.0804939866065979,
0.03605075925588608,
0.0056302412413060665,
-0.08565610647201538,
0.2214750051498413,
-0.07271081954240799,
-0.15560635924339294,
-0.12723501026630402,
-0.0769243985414505,
-0.039728324860334396,
-0.0013606203719973564,
0.06990939378738403,
-0.09926848113536835,
-0.03523896262049675,
-0.06556397676467896,
0.027748197317123413,
0.002258316846564412,
0.037044718861579895,
0.0033989958465099335,
0.00392652302980423,
0.06612523645162582,
-0.107279472053051,
-0.017862817272543907,
-0.06011310592293739,
-0.04721766710281372,
0.03915006294846535,
0.03427216038107872,
0.11324126273393631,
0.14951582252979279,
-0.012422872707247734,
0.013470430858433247,
-0.031665198504924774,
0.23710668087005615,
-0.06092748045921326,
-0.026288842782378197,
0.13475467264652252,
-0.009928427636623383,
0.04838360473513603,
0.12141069769859314,
0.07586533576250076,
-0.07889805734157562,
0.003541958751156926,
0.03977319598197937,
-0.03476330637931824,
-0.23325279355049133,
-0.04961429908871651,
-0.055875636637210846,
0.0061027780175209045,
0.09228111058473587,
0.02949327416718006,
0.029167581349611282,
0.07120584696531296,
0.03814525157213211,
0.07626376301050186,
-0.04908978193998337,
0.05802080035209656,
0.11470900475978851,
0.0372953899204731,
0.1273476779460907,
-0.051862407475709915,
-0.06206965073943138,
0.044129591435194016,
-0.01639460027217865,
0.22040428221225739,
0.003773508593440056,
0.13132837414741516,
0.05665905028581619,
0.16321776807308197,
-0.0038043949753046036,
0.08464139699935913,
-0.010380703024566174,
-0.049569278955459595,
-0.01084445882588625,
-0.03918720409274101,
-0.0308225154876709,
0.027231786400079727,
-0.07271897792816162,
0.06833891570568085,
-0.12923358380794525,
0.00922108069062233,
0.05949745327234268,
0.24973973631858826,
0.046340588480234146,
-0.31998947262763977,
-0.09839750826358795,
0.0034540712367743254,
-0.031127991154789925,
-0.02500051073729992,
0.025755688548088074,
0.08669907599687576,
-0.09383657574653625,
0.03107856772840023,
-0.06761176139116287,
0.10054797679185867,
-0.042966872453689575,
0.050965700298547745,
0.09033869951963425,
0.08781831711530685,
0.005526093766093254,
0.09172326326370239,
-0.28879427909851074,
0.28034815192222595,
0.006638152990490198,
0.06722255796194077,
-0.08404923230409622,
0.007924233563244343,
0.03875875845551491,
0.06277710944414139,
0.08420775085687637,
-0.01462724432349205,
-0.04123333841562271,
-0.19558237493038177,
-0.06475776433944702,
0.03285158425569534,
0.06724734604358673,
-0.03411435708403587,
0.08829754590988159,
-0.030725756660103798,
0.007470272947102785,
0.07318444550037384,
0.009356030263006687,
-0.047994669526815414,
-0.10161826014518738,
-0.008715590462088585,
0.024675441905856133,
-0.06548207998275757,
-0.06280668824911118,
-0.12138459086418152,
-0.12046746909618378,
0.1649874448776245,
-0.03168739378452301,
-0.03515627235174179,
-0.11399421840906143,
0.08960965275764465,
0.06263815611600876,
-0.09449632465839386,
0.0373297780752182,
0.0003635968023445457,
0.07905662804841995,
0.025132769718766212,
-0.07757634669542313,
0.11242019385099411,
-0.07639475166797638,
-0.1530066281557083,
-0.06572554260492325,
0.10554061830043793,
0.028522729873657227,
0.06853212416172028,
-0.013590860180556774,
0.012335213832557201,
-0.04956187307834625,
-0.0910470187664032,
0.02016177587211132,
-0.010396964848041534,
0.07790178805589676,
0.003928485792130232,
-0.0676986575126648,
0.01545811165124178,
-0.05481227859854698,
-0.03449428454041481,
0.19974027574062347,
0.22100830078125,
-0.10380957275629044,
0.01994667761027813,
0.026058848947286606,
-0.07153739035129547,
-0.20492346584796906,
0.03470631688833237,
0.05062735453248024,
0.011621180921792984,
0.03473846614360809,
-0.17268769443035126,
0.15721261501312256,
0.10559370368719101,
-0.015673598274588585,
0.10027038305997849,
-0.300263375043869,
-0.12570743262767792,
0.1395372748374939,
0.13012734055519104,
0.12314410507678986,
-0.1386626958847046,
-0.020994868129491806,
-0.023730505257844925,
-0.1448492854833603,
0.10670189559459686,
-0.10653143376111984,
0.11540523916482925,
-0.03711257874965668,
0.07463301718235016,
0.00280234357342124,
-0.06191738322377205,
0.11914043873548508,
0.027134427800774574,
0.08920768648386002,
-0.06106947362422943,
-0.04200434312224388,
0.03443964943289757,
-0.04473399743437767,
0.035300370305776596,
-0.10083185136318207,
0.026121102273464203,
-0.10762327909469604,
-0.027173805981874466,
-0.07051941752433777,
0.045056067407131195,
-0.04485047236084938,
-0.06339830160140991,
-0.032650649547576904,
0.024941876530647278,
0.04080088436603546,
-0.013684689067304134,
0.13862080872058868,
0.02094348520040512,
0.1539815068244934,
0.09709318727254868,
0.0802595317363739,
-0.0815831795334816,
-0.07777950167655945,
-0.01725257933139801,
-0.016648761928081512,
0.05415203049778938,
-0.1465574949979782,
0.023812048137187958,
0.1517864614725113,
0.022475996986031532,
0.13774754106998444,
0.08713784068822861,
-0.02335292659699917,
-0.0015759967500343919,
0.06598124653100967,
-0.16277571022510529,
-0.08179201930761337,
-0.013726288452744484,
-0.060553207993507385,
-0.13148586452007294,
0.04796719178557396,
0.0872536301612854,
-0.06639043986797333,
-0.008931182324886322,
-0.006341056432574987,
0.008399281650781631,
-0.05830422416329384,
0.18955260515213013,
0.0617111399769783,
0.04747847095131874,
-0.10296866297721863,
0.06426992267370224,
0.04524865001440048,
-0.07698716223239899,
0.0028912597335875034,
0.08207450807094574,
-0.0821482464671135,
-0.05383390560746193,
0.08642295002937317,
0.1952705979347229,
-0.051188793033361435,
-0.04984303563833237,
-0.1425095498561859,
-0.13165368139743805,
0.08418554067611694,
0.15306837856769562,
0.11950413137674332,
0.013004201464354992,
-0.057744964957237244,
0.005279176402837038,
-0.11278563737869263,
0.09532744437456131,
0.043698571622371674,
0.0636632889509201,
-0.14441201090812683,
0.14511741697788239,
0.014016132801771164,
0.05248979851603508,
-0.02003890462219715,
0.030556267127394676,
-0.1127009317278862,
0.00692911259829998,
-0.10996110737323761,
-0.01533103734254837,
-0.03712952136993408,
0.007852286100387573,
-0.0033225324004888535,
-0.053022295236587524,
-0.061812546104192734,
0.012278469279408455,
-0.10819218307733536,
-0.021553313359618187,
0.02989807538688183,
0.06776696443557739,
-0.11449199914932251,
-0.033886898308992386,
0.026842448860406876,
-0.060971200466156006,
0.07095744460821152,
0.04675784707069397,
0.024762218818068504,
0.059278685599565506,
-0.13875989615917206,
0.016549136489629745,
0.06998954713344574,
0.020270591601729393,
0.07164876908063889,
-0.0909297913312912,
-0.007718430832028389,
-0.004338276106864214,
0.04557505622506142,
0.021511854603886604,
0.07169406116008759,
-0.14047205448150635,
-0.0006190943531692028,
-0.017452260479331017,
-0.08903514593839645,
-0.06354621052742004,
0.02594398520886898,
0.09783730655908585,
0.010193470865488052,
0.19664381444454193,
-0.07592520862817764,
0.04566219449043274,
-0.2206079661846161,
0.01103274617344141,
-0.014023556374013424,
-0.10392298549413681,
-0.10630355775356293,
-0.0691029503941536,
0.06090487539768219,
-0.056510262191295624,
0.15104418992996216,
0.04220644757151604,
0.037679657340049744,
0.03347740322351456,
-0.005754407029598951,
0.019229896366596222,
0.01714223437011242,
0.19873397052288055,
0.03061717376112938,
-0.0362832210958004,
0.0595984123647213,
0.04723411053419113,
0.09983482211828232,
0.12198832631111145,
0.20943738520145416,
0.13953885436058044,
0.009533321484923363,
0.09754917770624161,
0.043244969099760056,
-0.06116219237446785,
-0.1580333560705185,
0.036047521978616714,
-0.0469762347638607,
0.10224858671426773,
-0.021451519802212715,
0.21149180829524994,
0.07083642482757568,
-0.16944290697574615,
0.04301752150058746,
-0.06398287415504456,
-0.08558889478445053,
-0.12045430392026901,
-0.04505256563425064,
-0.08055998384952545,
-0.13044409453868866,
0.0010549919679760933,
-0.1134718656539917,
-0.0019775964319705963,
0.12246271222829819,
0.005069165024906397,
-0.02239612489938736,
0.16231834888458252,
0.013805028051137924,
0.030523577705025673,
0.0549866259098053,
0.011925294995307922,
-0.03276361897587776,
-0.11823397874832153,
-0.04881583899259567,
-0.01855955831706524,
-0.01867452636361122,
0.02688281051814556,
-0.06558216363191605,
-0.05248652771115303,
0.03940831497311592,
-0.016065074130892754,
-0.0974554568529129,
0.00763896806165576,
0.01138660591095686,
0.06124475598335266,
0.04790728539228439,
0.005254521034657955,
0.024792371317744255,
-0.009634161368012428,
0.2050269991159439,
-0.0799989253282547,
-0.06369679421186447,
-0.10818185657262802,
0.24709045886993408,
0.034862469881772995,
-0.02101771906018257,
0.029712922871112823,
-0.06804424524307251,
0.0012251039734110236,
0.25348836183547974,
0.2133166491985321,
-0.07595253735780716,
-0.004891899414360523,
0.015467436984181404,
-0.00707058934494853,
-0.02095029316842556,
0.09985392540693283,
0.1425386220216751,
0.06584673374891281,
-0.10076409578323364,
-0.04401390627026558,
-0.05312157794833183,
-0.019044911488890648,
-0.034217242151498795,
0.07384040206670761,
0.05149252712726593,
0.008103452622890472,
-0.0370606854557991,
0.05173087120056152,
-0.06404176354408264,
-0.08492442965507507,
0.06350332498550415,
-0.21481896936893463,
-0.1650671809911728,
-0.013375148177146912,
0.10437117516994476,
0.009120860137045383,
0.06753730028867722,
-0.02455856278538704,
-0.005081635899841785,
0.08442289382219315,
-0.01905807852745056,
-0.10784491151571274,
-0.07978401333093643,
0.0923481434583664,
-0.10956605523824692,
0.2229233980178833,
-0.04588206112384796,
0.0573381669819355,
0.13003548979759216,
0.0695522278547287,
-0.07895473390817642,
0.05749363824725151,
0.03891405835747719,
-0.065252386033535,
0.025600671768188477,
0.07076281309127808,
-0.0391865074634552,
0.05756274238228798,
0.04292585328221321,
-0.14607840776443481,
0.021775243803858757,
-0.05968533828854561,
-0.06319128721952438,
-0.045387476682662964,
-0.023305995389819145,
-0.05946716293692589,
0.13277143239974976,
0.21941795945167542,
-0.02792864292860031,
-0.01243514847010374,
-0.07005082070827484,
0.012377013452351093,
0.05411580577492714,
0.022347576916217804,
-0.06250055134296417,
-0.21139036118984222,
0.022813409566879272,
0.044575318694114685,
-0.019488442689180374,
-0.25224336981773376,
-0.0973757952451706,
0.0024055137764662504,
-0.07106439769268036,
-0.0996735543012619,
0.06923971325159073,
0.09146987646818161,
0.05202433094382286,
-0.05857878550887108,
-0.05892380699515343,
-0.06935331970453262,
0.14755848050117493,
-0.14392498135566711,
-0.09981387108564377
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4520
- Accuracy: 0.8578
- F1: 0.9003
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.4169 | 0.8039 | 0.8639 |
| No log | 2.0 | 460 | 0.4299 | 0.8137 | 0.875 |
| 0.4242 | 3.0 | 690 | 0.4520 | 0.8578 | 0.9003 |
| 0.4242 | 4.0 | 920 | 0.6323 | 0.8431 | 0.8926 |
| 0.1103 | 5.0 | 1150 | 0.6163 | 0.8578 | 0.8997 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-uncased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8578431372549019, "name": "Accuracy"}, {"type": "f1", "value": 0.9003436426116839, "name": "F1"}]}]}]}
|
text-classification
|
ajrae/bert-base-uncased-finetuned-mrpc
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
bert-base-uncased-finetuned-mrpc
================================
This model is a fine-tuned version of bert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4520
* Accuracy: 0.8578
* F1: 0.9003
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
65,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.11058378964662552,
0.08168771862983704,
-0.0018928216304630041,
0.12054884433746338,
0.16402749717235565,
0.03651754930615425,
0.11452049016952515,
0.12926580011844635,
-0.08146972209215164,
0.026920324191451073,
0.1253388673067093,
0.15753161907196045,
0.020413868129253387,
0.11850695312023163,
-0.04691627621650696,
-0.26174473762512207,
-0.009937528520822525,
0.04934175685048103,
-0.052011638879776,
0.13128681480884552,
0.08871930837631226,
-0.12730920314788818,
0.0955171287059784,
0.01379626989364624,
-0.19598133862018585,
0.0037745756562799215,
0.007866744883358479,
-0.055304158478975296,
0.1457548588514328,
0.028573520481586456,
0.12012506276369095,
-0.0012681136140599847,
0.08600315451622009,
-0.19181281328201294,
0.011322222650051117,
0.048287421464920044,
0.00024589619715698063,
0.0936809778213501,
0.05205908790230751,
0.0029348116368055344,
0.12715323269367218,
-0.08503279089927673,
0.05376281961798668,
0.028530191630125046,
-0.11875519901514053,
-0.22161872684955597,
-0.07665970921516418,
0.04215710237622261,
0.07633838802576065,
0.10951228439807892,
-0.005718022119253874,
0.12911391258239746,
-0.08710674941539764,
0.08877304196357727,
0.23591582477092743,
-0.30551132559776306,
-0.064704030752182,
0.033326052129268646,
0.012882307171821594,
0.03819486126303673,
-0.11001497507095337,
-0.033636145293712616,
0.053923528641462326,
0.05009079352021217,
0.12470096349716187,
-0.03137143328785896,
-0.11200437694787979,
0.011789802461862564,
-0.13569097220897675,
-0.0266043022274971,
0.1517753154039383,
0.03980390727519989,
-0.030814344063401222,
-0.0515427440404892,
-0.052898701280355453,
-0.14895284175872803,
-0.036878012120723724,
-0.005174336489289999,
0.047176703810691833,
-0.02803935296833515,
-0.05512383580207825,
0.003653373569250107,
-0.11400924623012543,
-0.06777030974626541,
-0.07787948846817017,
0.12161674350500107,
0.03376021981239319,
0.016329757869243622,
-0.03601174056529999,
0.1104925200343132,
-0.008701197803020477,
-0.13123579323291779,
0.014582755975425243,
0.025314364582300186,
0.007587775122374296,
-0.044702157378196716,
-0.051504962146282196,
-0.0515524260699749,
0.012162799946963787,
0.13041265308856964,
-0.05370127409696579,
0.04579243063926697,
0.05259358137845993,
0.043655142188072205,
-0.09150955080986023,
0.1945887953042984,
-0.03788289055228233,
-0.020141582936048508,
0.004516669549047947,
0.040276020765304565,
0.016940902918577194,
-0.009942113421857357,
-0.11964383721351624,
0.0038554698694497347,
0.08521955460309982,
0.008472660556435585,
-0.06519338488578796,
0.07421670854091644,
-0.05379481986165047,
-0.01859540119767189,
0.0014602354494854808,
-0.08893220871686935,
0.02967456541955471,
0.003279817523434758,
-0.07391027361154556,
-0.02444443479180336,
0.029594661667943,
0.0161152184009552,
-0.019491560757160187,
0.12372300773859024,
-0.09227437525987625,
0.030188148841261864,
-0.09228117018938065,
-0.10868990421295166,
0.02401377446949482,
-0.0974893569946289,
0.028760140761733055,
-0.0948692113161087,
-0.1688021719455719,
-0.014633400365710258,
0.05789358541369438,
-0.02905845083296299,
-0.06038733944296837,
-0.043867677450180054,
-0.06780573725700378,
0.01589832827448845,
-0.011880235746502876,
0.1308443397283554,
-0.06661584228277206,
0.08975161612033844,
0.03229938820004463,
0.06476900726556778,
-0.042724721133708954,
0.05435463413596153,
-0.10375642031431198,
0.011623548343777657,
-0.1614483892917633,
0.02499266155064106,
-0.048950474709272385,
0.08037903904914856,
-0.08492887765169144,
-0.09921029955148697,
0.010824191384017467,
-0.00129547412507236,
0.06584707647562027,
0.09731071442365646,
-0.17066963016986847,
-0.08113454282283783,
0.15901218354701996,
-0.07336559146642685,
-0.13515576720237732,
0.11572962999343872,
-0.05371662229299545,
0.050667572766542435,
0.06125761196017265,
0.16775716841220856,
0.06693456321954727,
-0.08980806916952133,
-0.008450786583125591,
0.027345219627022743,
0.05465889349579811,
-0.08189534395933151,
0.07530831545591354,
0.00464598648250103,
0.014153066091239452,
0.03463350608944893,
-0.023197989910840988,
0.060983192175626755,
-0.09093188494443893,
-0.09607794880867004,
-0.041179362684488297,
-0.08570978790521622,
0.0326363742351532,
0.07786992192268372,
0.0702214241027832,
-0.09798429161310196,
-0.08745589107275009,
0.045694779604673386,
0.07946042716503143,
-0.04736329987645149,
0.025907618924975395,
-0.0557166263461113,
0.07307851314544678,
-0.03692679852247238,
-0.02461162768304348,
-0.1790464073419571,
-0.0346548892557621,
0.0030609029345214367,
-0.0006751380860805511,
0.013818521052598953,
0.021601824089884758,
0.06722559779882431,
0.05653833970427513,
-0.052694857120513916,
-0.016924476251006126,
-0.022091317921876907,
-0.0012229891726747155,
-0.13773764669895172,
-0.20516261458396912,
-0.03532310202717781,
-0.023791655898094177,
0.14030927419662476,
-0.20550177991390228,
0.041250940412282944,
-0.006856988649815321,
0.07490403950214386,
0.009610324166715145,
-0.003095535561442375,
-0.04507903382182121,
0.07002750784158707,
-0.038284946233034134,
-0.04863224923610687,
0.07632183283567429,
0.017586855217814445,
-0.09179315716028214,
-0.04073137417435646,
-0.09298796951770782,
0.1729336977005005,
0.13664397597312927,
-0.11015596240758896,
-0.07624398916959763,
-0.013422394171357155,
-0.0684303268790245,
-0.033660564571619034,
-0.051689714193344116,
0.0307850930839777,
0.18682290613651276,
-0.00425696512684226,
0.14921899139881134,
-0.06628645956516266,
-0.05081954598426819,
0.025120487436652184,
-0.03326857462525368,
0.02106763981282711,
0.12643007934093475,
0.1385318487882614,
-0.06552370637655258,
0.15155351161956787,
0.14958477020263672,
-0.08799504488706589,
0.13583262264728546,
-0.04134104773402214,
-0.07326430082321167,
-0.015689736232161522,
-0.03602070361375809,
-0.006391804199665785,
0.110472172498703,
-0.15450039505958557,
-0.005259311757981777,
0.030913392081856728,
0.016670232638716698,
0.02515546977519989,
-0.22222745418548584,
-0.03972334414720535,
0.033838093280792236,
-0.035080812871456146,
-0.02135361172258854,
-0.013597116805613041,
0.004502273164689541,
0.106736920773983,
0.009417111054062843,
-0.0804939866065979,
0.03605075925588608,
0.0056302412413060665,
-0.08565610647201538,
0.2214750051498413,
-0.07271081954240799,
-0.15560635924339294,
-0.12723501026630402,
-0.0769243985414505,
-0.039728324860334396,
-0.0013606203719973564,
0.06990939378738403,
-0.09926848113536835,
-0.03523896262049675,
-0.06556397676467896,
0.027748197317123413,
0.002258316846564412,
0.037044718861579895,
0.0033989958465099335,
0.00392652302980423,
0.06612523645162582,
-0.107279472053051,
-0.017862817272543907,
-0.06011310592293739,
-0.04721766710281372,
0.03915006294846535,
0.03427216038107872,
0.11324126273393631,
0.14951582252979279,
-0.012422872707247734,
0.013470430858433247,
-0.031665198504924774,
0.23710668087005615,
-0.06092748045921326,
-0.026288842782378197,
0.13475467264652252,
-0.009928427636623383,
0.04838360473513603,
0.12141069769859314,
0.07586533576250076,
-0.07889805734157562,
0.003541958751156926,
0.03977319598197937,
-0.03476330637931824,
-0.23325279355049133,
-0.04961429908871651,
-0.055875636637210846,
0.0061027780175209045,
0.09228111058473587,
0.02949327416718006,
0.029167581349611282,
0.07120584696531296,
0.03814525157213211,
0.07626376301050186,
-0.04908978193998337,
0.05802080035209656,
0.11470900475978851,
0.0372953899204731,
0.1273476779460907,
-0.051862407475709915,
-0.06206965073943138,
0.044129591435194016,
-0.01639460027217865,
0.22040428221225739,
0.003773508593440056,
0.13132837414741516,
0.05665905028581619,
0.16321776807308197,
-0.0038043949753046036,
0.08464139699935913,
-0.010380703024566174,
-0.049569278955459595,
-0.01084445882588625,
-0.03918720409274101,
-0.0308225154876709,
0.027231786400079727,
-0.07271897792816162,
0.06833891570568085,
-0.12923358380794525,
0.00922108069062233,
0.05949745327234268,
0.24973973631858826,
0.046340588480234146,
-0.31998947262763977,
-0.09839750826358795,
0.0034540712367743254,
-0.031127991154789925,
-0.02500051073729992,
0.025755688548088074,
0.08669907599687576,
-0.09383657574653625,
0.03107856772840023,
-0.06761176139116287,
0.10054797679185867,
-0.042966872453689575,
0.050965700298547745,
0.09033869951963425,
0.08781831711530685,
0.005526093766093254,
0.09172326326370239,
-0.28879427909851074,
0.28034815192222595,
0.006638152990490198,
0.06722255796194077,
-0.08404923230409622,
0.007924233563244343,
0.03875875845551491,
0.06277710944414139,
0.08420775085687637,
-0.01462724432349205,
-0.04123333841562271,
-0.19558237493038177,
-0.06475776433944702,
0.03285158425569534,
0.06724734604358673,
-0.03411435708403587,
0.08829754590988159,
-0.030725756660103798,
0.007470272947102785,
0.07318444550037384,
0.009356030263006687,
-0.047994669526815414,
-0.10161826014518738,
-0.008715590462088585,
0.024675441905856133,
-0.06548207998275757,
-0.06280668824911118,
-0.12138459086418152,
-0.12046746909618378,
0.1649874448776245,
-0.03168739378452301,
-0.03515627235174179,
-0.11399421840906143,
0.08960965275764465,
0.06263815611600876,
-0.09449632465839386,
0.0373297780752182,
0.0003635968023445457,
0.07905662804841995,
0.025132769718766212,
-0.07757634669542313,
0.11242019385099411,
-0.07639475166797638,
-0.1530066281557083,
-0.06572554260492325,
0.10554061830043793,
0.028522729873657227,
0.06853212416172028,
-0.013590860180556774,
0.012335213832557201,
-0.04956187307834625,
-0.0910470187664032,
0.02016177587211132,
-0.010396964848041534,
0.07790178805589676,
0.003928485792130232,
-0.0676986575126648,
0.01545811165124178,
-0.05481227859854698,
-0.03449428454041481,
0.19974027574062347,
0.22100830078125,
-0.10380957275629044,
0.01994667761027813,
0.026058848947286606,
-0.07153739035129547,
-0.20492346584796906,
0.03470631688833237,
0.05062735453248024,
0.011621180921792984,
0.03473846614360809,
-0.17268769443035126,
0.15721261501312256,
0.10559370368719101,
-0.015673598274588585,
0.10027038305997849,
-0.300263375043869,
-0.12570743262767792,
0.1395372748374939,
0.13012734055519104,
0.12314410507678986,
-0.1386626958847046,
-0.020994868129491806,
-0.023730505257844925,
-0.1448492854833603,
0.10670189559459686,
-0.10653143376111984,
0.11540523916482925,
-0.03711257874965668,
0.07463301718235016,
0.00280234357342124,
-0.06191738322377205,
0.11914043873548508,
0.027134427800774574,
0.08920768648386002,
-0.06106947362422943,
-0.04200434312224388,
0.03443964943289757,
-0.04473399743437767,
0.035300370305776596,
-0.10083185136318207,
0.026121102273464203,
-0.10762327909469604,
-0.027173805981874466,
-0.07051941752433777,
0.045056067407131195,
-0.04485047236084938,
-0.06339830160140991,
-0.032650649547576904,
0.024941876530647278,
0.04080088436603546,
-0.013684689067304134,
0.13862080872058868,
0.02094348520040512,
0.1539815068244934,
0.09709318727254868,
0.0802595317363739,
-0.0815831795334816,
-0.07777950167655945,
-0.01725257933139801,
-0.016648761928081512,
0.05415203049778938,
-0.1465574949979782,
0.023812048137187958,
0.1517864614725113,
0.022475996986031532,
0.13774754106998444,
0.08713784068822861,
-0.02335292659699917,
-0.0015759967500343919,
0.06598124653100967,
-0.16277571022510529,
-0.08179201930761337,
-0.013726288452744484,
-0.060553207993507385,
-0.13148586452007294,
0.04796719178557396,
0.0872536301612854,
-0.06639043986797333,
-0.008931182324886322,
-0.006341056432574987,
0.008399281650781631,
-0.05830422416329384,
0.18955260515213013,
0.0617111399769783,
0.04747847095131874,
-0.10296866297721863,
0.06426992267370224,
0.04524865001440048,
-0.07698716223239899,
0.0028912597335875034,
0.08207450807094574,
-0.0821482464671135,
-0.05383390560746193,
0.08642295002937317,
0.1952705979347229,
-0.051188793033361435,
-0.04984303563833237,
-0.1425095498561859,
-0.13165368139743805,
0.08418554067611694,
0.15306837856769562,
0.11950413137674332,
0.013004201464354992,
-0.057744964957237244,
0.005279176402837038,
-0.11278563737869263,
0.09532744437456131,
0.043698571622371674,
0.0636632889509201,
-0.14441201090812683,
0.14511741697788239,
0.014016132801771164,
0.05248979851603508,
-0.02003890462219715,
0.030556267127394676,
-0.1127009317278862,
0.00692911259829998,
-0.10996110737323761,
-0.01533103734254837,
-0.03712952136993408,
0.007852286100387573,
-0.0033225324004888535,
-0.053022295236587524,
-0.061812546104192734,
0.012278469279408455,
-0.10819218307733536,
-0.021553313359618187,
0.02989807538688183,
0.06776696443557739,
-0.11449199914932251,
-0.033886898308992386,
0.026842448860406876,
-0.060971200466156006,
0.07095744460821152,
0.04675784707069397,
0.024762218818068504,
0.059278685599565506,
-0.13875989615917206,
0.016549136489629745,
0.06998954713344574,
0.020270591601729393,
0.07164876908063889,
-0.0909297913312912,
-0.007718430832028389,
-0.004338276106864214,
0.04557505622506142,
0.021511854603886604,
0.07169406116008759,
-0.14047205448150635,
-0.0006190943531692028,
-0.017452260479331017,
-0.08903514593839645,
-0.06354621052742004,
0.02594398520886898,
0.09783730655908585,
0.010193470865488052,
0.19664381444454193,
-0.07592520862817764,
0.04566219449043274,
-0.2206079661846161,
0.01103274617344141,
-0.014023556374013424,
-0.10392298549413681,
-0.10630355775356293,
-0.0691029503941536,
0.06090487539768219,
-0.056510262191295624,
0.15104418992996216,
0.04220644757151604,
0.037679657340049744,
0.03347740322351456,
-0.005754407029598951,
0.019229896366596222,
0.01714223437011242,
0.19873397052288055,
0.03061717376112938,
-0.0362832210958004,
0.0595984123647213,
0.04723411053419113,
0.09983482211828232,
0.12198832631111145,
0.20943738520145416,
0.13953885436058044,
0.009533321484923363,
0.09754917770624161,
0.043244969099760056,
-0.06116219237446785,
-0.1580333560705185,
0.036047521978616714,
-0.0469762347638607,
0.10224858671426773,
-0.021451519802212715,
0.21149180829524994,
0.07083642482757568,
-0.16944290697574615,
0.04301752150058746,
-0.06398287415504456,
-0.08558889478445053,
-0.12045430392026901,
-0.04505256563425064,
-0.08055998384952545,
-0.13044409453868866,
0.0010549919679760933,
-0.1134718656539917,
-0.0019775964319705963,
0.12246271222829819,
0.005069165024906397,
-0.02239612489938736,
0.16231834888458252,
0.013805028051137924,
0.030523577705025673,
0.0549866259098053,
0.011925294995307922,
-0.03276361897587776,
-0.11823397874832153,
-0.04881583899259567,
-0.01855955831706524,
-0.01867452636361122,
0.02688281051814556,
-0.06558216363191605,
-0.05248652771115303,
0.03940831497311592,
-0.016065074130892754,
-0.0974554568529129,
0.00763896806165576,
0.01138660591095686,
0.06124475598335266,
0.04790728539228439,
0.005254521034657955,
0.024792371317744255,
-0.009634161368012428,
0.2050269991159439,
-0.0799989253282547,
-0.06369679421186447,
-0.10818185657262802,
0.24709045886993408,
0.034862469881772995,
-0.02101771906018257,
0.029712922871112823,
-0.06804424524307251,
0.0012251039734110236,
0.25348836183547974,
0.2133166491985321,
-0.07595253735780716,
-0.004891899414360523,
0.015467436984181404,
-0.00707058934494853,
-0.02095029316842556,
0.09985392540693283,
0.1425386220216751,
0.06584673374891281,
-0.10076409578323364,
-0.04401390627026558,
-0.05312157794833183,
-0.019044911488890648,
-0.034217242151498795,
0.07384040206670761,
0.05149252712726593,
0.008103452622890472,
-0.0370606854557991,
0.05173087120056152,
-0.06404176354408264,
-0.08492442965507507,
0.06350332498550415,
-0.21481896936893463,
-0.1650671809911728,
-0.013375148177146912,
0.10437117516994476,
0.009120860137045383,
0.06753730028867722,
-0.02455856278538704,
-0.005081635899841785,
0.08442289382219315,
-0.01905807852745056,
-0.10784491151571274,
-0.07978401333093643,
0.0923481434583664,
-0.10956605523824692,
0.2229233980178833,
-0.04588206112384796,
0.0573381669819355,
0.13003548979759216,
0.0695522278547287,
-0.07895473390817642,
0.05749363824725151,
0.03891405835747719,
-0.065252386033535,
0.025600671768188477,
0.07076281309127808,
-0.0391865074634552,
0.05756274238228798,
0.04292585328221321,
-0.14607840776443481,
0.021775243803858757,
-0.05968533828854561,
-0.06319128721952438,
-0.045387476682662964,
-0.023305995389819145,
-0.05946716293692589,
0.13277143239974976,
0.21941795945167542,
-0.02792864292860031,
-0.01243514847010374,
-0.07005082070827484,
0.012377013452351093,
0.05411580577492714,
0.022347576916217804,
-0.06250055134296417,
-0.21139036118984222,
0.022813409566879272,
0.044575318694114685,
-0.019488442689180374,
-0.25224336981773376,
-0.0973757952451706,
0.0024055137764662504,
-0.07106439769268036,
-0.0996735543012619,
0.06923971325159073,
0.09146987646818161,
0.05202433094382286,
-0.05857878550887108,
-0.05892380699515343,
-0.06935331970453262,
0.14755848050117493,
-0.14392498135566711,
-0.09981387108564377
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-Total
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2814
- Wer: 0.2260
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.9157 | 0.2 | 400 | 2.8204 | 0.9707 |
| 0.9554 | 0.4 | 800 | 0.5295 | 0.5046 |
| 0.7585 | 0.6 | 1200 | 0.4007 | 0.3850 |
| 0.7288 | 0.8 | 1600 | 0.3632 | 0.3447 |
| 0.6792 | 1.0 | 2000 | 0.3433 | 0.3216 |
| 0.6085 | 1.2 | 2400 | 0.3254 | 0.2928 |
| 0.6225 | 1.4 | 2800 | 0.3161 | 0.2832 |
| 0.6183 | 1.6 | 3200 | 0.3111 | 0.2721 |
| 0.5947 | 1.8 | 3600 | 0.2969 | 0.2615 |
| 0.5953 | 2.0 | 4000 | 0.2912 | 0.2515 |
| 0.5358 | 2.2 | 4400 | 0.2920 | 0.2501 |
| 0.5535 | 2.4 | 4800 | 0.2939 | 0.2538 |
| 0.5408 | 2.6 | 5200 | 0.2854 | 0.2452 |
| 0.5272 | 2.8 | 5600 | 0.2816 | 0.2434 |
| 0.5248 | 3.0 | 6000 | 0.2755 | 0.2354 |
| 0.4923 | 3.2 | 6400 | 0.2795 | 0.2353 |
| 0.489 | 3.4 | 6800 | 0.2767 | 0.2330 |
| 0.4932 | 3.6 | 7200 | 0.2821 | 0.2335 |
| 0.4841 | 3.8 | 7600 | 0.2756 | 0.2349 |
| 0.4794 | 4.0 | 8000 | 0.2751 | 0.2265 |
| 0.444 | 4.2 | 8400 | 0.2809 | 0.2283 |
| 0.4533 | 4.4 | 8800 | 0.2804 | 0.2312 |
| 0.4563 | 4.6 | 9200 | 0.2830 | 0.2256 |
| 0.4498 | 4.8 | 9600 | 0.2819 | 0.2251 |
| 0.4532 | 5.0 | 10000 | 0.2814 | 0.2260 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Total", "results": []}]}
|
automatic-speech-recognition
|
akadriu/wav2vec2-large-xlsr-53-Total
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
wav2vec2-large-xlsr-53-Total
============================
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2814
* Wer: 0.2260
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 16
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
56,
158,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
-0.13674652576446533,
0.08070877939462662,
-0.0020980932749807835,
0.058059513568878174,
0.12391410768032074,
0.0035038397181779146,
0.11456210911273956,
0.13281060755252838,
-0.10483435541391373,
0.07206302136182785,
0.11653752624988556,
0.1098618283867836,
0.044953566044569016,
0.10940150916576385,
-0.03187897056341171,
-0.3115772604942322,
0.014124851673841476,
0.030880969017744064,
-0.15800932049751282,
0.12276221066713333,
0.10321488231420517,
-0.11404432356357574,
0.04755412042140961,
0.05697832256555557,
-0.14859606325626373,
0.002950704889371991,
-0.015324993059039116,
-0.08552468568086624,
0.11545715481042862,
0.038820531219244,
0.09594997018575668,
0.02817530930042267,
0.07893066108226776,
-0.20984669029712677,
0.010233578272163868,
0.05690901726484299,
0.03464622050523758,
0.0839756652712822,
0.08404600620269775,
-0.011458175256848335,
0.1593700796365738,
-0.06317459791898727,
0.07956483960151672,
0.05771494284272194,
-0.10734838992357254,
-0.33165594935417175,
-0.08562123030424118,
0.07140076160430908,
0.1055065467953682,
0.08566964417695999,
-0.017620524391531944,
0.1037357896566391,
-0.05401954427361488,
0.09061611443758011,
0.240467369556427,
-0.28254255652427673,
-0.08556798100471497,
-0.031896453350782394,
0.05493902787566185,
0.0284896083176136,
-0.1141970232129097,
-0.010107454843819141,
0.037994641810655594,
0.03282399848103523,
0.11520470678806305,
0.012219606898725033,
-0.00899500772356987,
0.018662085756659508,
-0.14970353245735168,
-0.06296957284212112,
0.14517110586166382,
0.07554210722446442,
-0.051406096667051315,
-0.0974389910697937,
-0.03219497203826904,
-0.2082793265581131,
-0.04534154012799263,
-0.010668010450899601,
0.029118800535798073,
-0.05673465505242348,
-0.1345083862543106,
-0.008525422774255276,
-0.08552496880292892,
-0.10397306084632874,
0.006161554250866175,
0.21717487275600433,
0.04934827610850334,
-0.0013095675967633724,
-0.01470398623496294,
0.11329932510852814,
0.055193524807691574,
-0.154753178358078,
-0.03218365088105202,
0.038078054785728455,
-0.07100611925125122,
-0.02347864955663681,
-0.05582362040877342,
-0.018326513469219208,
-0.004300891887396574,
0.1645500808954239,
-0.036594316363334656,
0.06751058995723724,
0.0373791828751564,
0.02364935912191868,
-0.11077814549207687,
0.21375028789043427,
-0.05507697910070419,
-0.00826102215796709,
-0.032468121498823166,
0.09636089205741882,
0.007358728442341089,
-0.01632450707256794,
-0.07539679110050201,
0.028774989768862724,
0.1061728224158287,
0.039398446679115295,
-0.030721314251422882,
0.0368494875729084,
-0.0472266785800457,
-0.03064638003706932,
0.019970359280705452,
-0.09226154536008835,
0.022474180907011032,
0.01959894970059395,
-0.0986814871430397,
-0.00550828268751502,
0.015618925914168358,
0.02077459543943405,
-0.001297670416533947,
0.10814844071865082,
-0.08303048461675644,
-0.0053221965208649635,
-0.08278482407331467,
-0.09748297184705734,
0.024732131510972977,
-0.03749770298600197,
0.007577471900731325,
-0.08713943511247635,
-0.12559345364570618,
-0.015980908647179604,
0.05031067878007889,
-0.03474213182926178,
-0.07135117799043655,
-0.04585350304841995,
-0.08519013971090317,
0.04854957014322281,
-0.019961819052696228,
0.15098556876182556,
-0.054136186838150024,
0.10771112889051437,
0.07973066717386246,
0.06113971024751663,
0.03634639456868172,
0.051311004906892776,
-0.05910837650299072,
0.03679198771715164,
-0.1598873883485794,
0.06963415443897247,
-0.08704935759305954,
0.06928148120641708,
-0.13236810266971588,
-0.12775342166423798,
0.005013182293623686,
-0.003992664162069559,
0.08970372378826141,
0.10141114145517349,
-0.1401475965976715,
-0.11198647320270538,
0.15347807109355927,
-0.07801712304353714,
-0.1379498690366745,
0.12426386773586273,
-0.014599165879189968,
-0.006150072906166315,
0.04817696660757065,
0.1399192363023758,
0.0948975533246994,
-0.09948718547821045,
-0.00556383328512311,
-0.04221586883068085,
0.10729922354221344,
-0.00645594485104084,
0.11234632879495621,
-0.031186135485768318,
0.013532848097383976,
0.01347425114363432,
-0.05966800078749657,
0.051682036370038986,
-0.10716789215803146,
-0.09867653995752335,
-0.04026965796947479,
-0.09605424106121063,
0.03258546441793442,
0.05854443088173866,
0.0686546191573143,
-0.09760317951440811,
-0.14093279838562012,
0.04209380969405174,
0.11699986457824707,
-0.08984297513961792,
0.030600646510720253,
-0.09934284538030624,
0.06253227591514587,
-0.043574415147304535,
-0.0074914894066751,
-0.17318740487098694,
-0.02416137419641018,
0.01788651943206787,
-0.06461439281702042,
0.019465893507003784,
-0.030260683968663216,
0.08996477723121643,
0.061795808374881744,
-0.048907406628131866,
-0.06598052382469177,
-0.08811268210411072,
-0.013823473826050758,
-0.07854179292917252,
-0.20820531249046326,
-0.10224060714244843,
-0.020709030330181122,
0.15238222479820251,
-0.20397138595581055,
0.02602054923772812,
0.031691402196884155,
0.12354726344347,
0.03313921019434929,
-0.044739555567502975,
-0.0215467419475317,
0.06925955414772034,
-0.029098955914378166,
-0.06535059958696365,
0.03313390538096428,
0.006343378685414791,
-0.1303095519542694,
-0.010364682413637638,
-0.10486939549446106,
0.14803294837474823,
0.11740259826183319,
-0.02140994928777218,
-0.06917641311883926,
-0.017506655305624008,
-0.07865623384714127,
-0.04834287241101265,
-0.011790171265602112,
0.0051116314716637135,
0.16635148227214813,
0.024722537025809288,
0.13508665561676025,
-0.08064986020326614,
-0.061079949140548706,
0.040378425270318985,
0.005128202494233847,
-0.016334926709532738,
0.12111590802669525,
0.049004919826984406,
-0.060287076979875565,
0.1036430150270462,
0.10099965333938599,
-0.09539014846086502,
0.14480380713939667,
-0.07472606748342514,
-0.1015549972653389,
-0.025761457160115242,
0.011103151366114616,
0.04300621151924133,
0.11810719221830368,
-0.1445896476507187,
-0.021111560985445976,
0.026908518746495247,
0.007836399599909782,
0.02012280561029911,
-0.2121768742799759,
-0.0073862457647919655,
0.05466489866375923,
-0.06121573597192764,
-0.04505503177642822,
0.0014101160923019052,
-0.0134247075766325,
0.08094006776809692,
0.01623365841805935,
-0.05838087201118469,
0.0024750176817178726,
-0.0005148432683199644,
-0.06680557876825333,
0.2008010447025299,
-0.0743025690317154,
-0.13310137391090393,
-0.15536800026893616,
-0.024848734959959984,
-0.059600718319416046,
-0.004190122243016958,
0.05071156844496727,
-0.10556165128946304,
-0.03387201949954033,
-0.05086163058876991,
0.04954879358410835,
-0.049706943333148956,
0.04638175666332245,
0.03286261856555939,
0.0047218166291713715,
0.09320874512195587,
-0.11967451125383377,
0.02107231505215168,
-0.03012463077902794,
-0.05113867297768593,
0.012557788752019405,
0.04326143115758896,
0.11445296555757523,
0.15444378554821014,
0.022630376741290092,
0.03867942839860916,
-0.029087131842970848,
0.1921146661043167,
-0.10267852991819382,
-0.05090838298201561,
0.13282331824302673,
0.011223641224205494,
0.03934168070554733,
0.0821511521935463,
0.06818389147520065,
-0.08765008300542831,
0.014638809487223625,
0.040342286229133606,
-0.024920476600527763,
-0.22355268895626068,
-0.02141602151095867,
-0.05833320692181587,
-0.014604467898607254,
0.11947382241487503,
0.03397859260439873,
0.050237640738487244,
0.04461901634931564,
-0.014204932376742363,
0.018464935943484306,
-0.014383730478584766,
0.08630450814962387,
0.09423083811998367,
0.06093122810125351,
0.13468357920646667,
-0.03283342719078064,
-0.04853907227516174,
0.020942997187376022,
-0.012827578000724316,
0.2365066260099411,
0.005622428841888905,
0.18515807390213013,
0.052487317472696304,
0.16297876834869385,
0.01220391970127821,
0.08543939143419266,
0.016839653253555298,
-0.03976818174123764,
0.022976644337177277,
-0.05848905071616173,
-0.028908900916576385,
0.04194033145904541,
0.05324557423591614,
0.065372534096241,
-0.13901284337043762,
-0.01906611956655979,
0.024765396490693092,
0.3574262857437134,
0.05388195440173149,
-0.3409322202205658,
-0.12292670458555222,
-0.0008447450818493962,
-0.07271254062652588,
-0.032929472625255585,
0.020442912355065346,
0.08261708170175552,
-0.08875884115695953,
0.06976631283760071,
-0.08137603849172592,
0.09813914448022842,
-0.037324871867895126,
0.006000734865665436,
0.08404389023780823,
0.08729756623506546,
-0.0005157797713764012,
0.05833212286233902,
-0.24960695207118988,
0.290278822183609,
-0.00817420519888401,
0.10040193796157837,
-0.04588852450251579,
0.029597170650959015,
0.03701235353946686,
0.001341571449302137,
0.054425276815891266,
-0.028021497651934624,
-0.07623939961194992,
-0.1940009593963623,
-0.07278390228748322,
0.02719632349908352,
0.12083747982978821,
-0.07709997147321701,
0.12955069541931152,
-0.028688542544841766,
-0.018465586006641388,
0.06377748399972916,
-0.053709451109170914,
-0.09191811829805374,
-0.09659367799758911,
0.02079726569354534,
0.019484149292111397,
0.06213536113500595,
-0.10761486738920212,
-0.12277235090732574,
-0.05683662369847298,
0.15575578808784485,
-0.08335503190755844,
-0.025844771414995193,
-0.13522516191005707,
0.07375442981719971,
0.15525642037391663,
-0.06961095333099365,
0.06042470037937164,
0.010548585094511509,
0.13650859892368317,
0.027834678068757057,
-0.036412134766578674,
0.09683291614055634,
-0.08594916760921478,
-0.21801145374774933,
-0.028339190408587456,
0.14967992901802063,
0.02412586659193039,
0.055244527757167816,
-0.024642838165163994,
0.035873446613550186,
-0.035356033593416214,
-0.08874625712633133,
0.05463343858718872,
-0.014197636395692825,
0.02041248232126236,
0.017543844878673553,
-0.00043035863200202584,
0.03673426806926727,
-0.07137145102024078,
-0.03840140625834465,
0.13328984379768372,
0.28971850872039795,
-0.08376463502645493,
-0.008133088238537312,
0.04393981024622917,
-0.023904841393232346,
-0.1312939077615738,
0.017316175624728203,
0.1204497218132019,
0.021530218422412872,
-0.010720038786530495,
-0.20913618803024292,
0.06251116096973419,
0.08062079548835754,
-0.03318486362695694,
0.10407321155071259,
-0.3069390654563904,
-0.14724813401699066,
0.1262437403202057,
0.11121926456689835,
0.0059957862831652164,
-0.1597631573677063,
-0.06296725571155548,
-0.015262293629348278,
-0.1243380755186081,
0.08984913676977158,
-0.04315787926316261,
0.11769136041402817,
-0.018300063908100128,
0.0621931254863739,
0.013250014744699001,
-0.051656074821949005,
0.15423886477947235,
-0.010913546197116375,
0.06079218164086342,
-0.0011900648241862655,
0.04089432954788208,
0.04662492126226425,
-0.05978346988558769,
0.014930326491594315,
-0.08831470459699631,
0.027773868292570114,
-0.11679959297180176,
-0.03767498582601547,
-0.09387997537851334,
0.0457797572016716,
-0.03377262130379677,
-0.03707604482769966,
-0.021102026104927063,
0.022051183506846428,
0.024353545159101486,
-0.009005383588373661,
0.17329107224941254,
-0.016709839925169945,
0.16980305314064026,
0.11269912868738174,
0.08776777237653732,
-0.022413114085793495,
-0.10429118573665619,
-0.008123982697725296,
-0.017944613471627235,
0.07650627195835114,
-0.14209704101085663,
0.01616857200860977,
0.13278289139270782,
0.061684101819992065,
0.12808412313461304,
0.07557827234268188,
-0.0652388334274292,
0.023424606770277023,
0.07441709190607071,
-0.10091598331928253,
-0.1297854781150818,
-0.033795177936553955,
0.020283455029129982,
-0.142140194773674,
0.06539657711982727,
0.0974554792046547,
-0.06915295869112015,
-0.009684200398623943,
0.007870426401495934,
-0.003157875733450055,
-0.05644015967845917,
0.22590842843055725,
0.049313630908727646,
0.08712635189294815,
-0.10545002669095993,
0.07830369472503662,
0.03737279772758484,
-0.1482158899307251,
0.012046578340232372,
0.06533043831586838,
-0.04735928401350975,
-0.013691993430256844,
0.011754900217056274,
0.08540607243776321,
-0.04687594622373581,
-0.06190815567970276,
-0.14861802756786346,
-0.14003951847553253,
0.09053649008274078,
0.12358865141868591,
0.05689210817217827,
0.029583722352981567,
-0.054618556052446365,
0.06282521784305573,
-0.11578525602817535,
0.09465678036212921,
0.08003169298171997,
0.08237984031438828,
-0.15830349922180176,
0.15823806822299957,
0.013511890545487404,
0.028959928080439568,
0.00042347065755166113,
-0.008731894195079803,
-0.09233080595731735,
0.023132918402552605,
-0.12894904613494873,
-0.04477455094456673,
-0.04921543970704079,
0.0025320423301309347,
0.007087230682373047,
-0.06688472628593445,
-0.08139850199222565,
0.03361520171165466,
-0.12486787885427475,
-0.04716702550649643,
0.01300264522433281,
0.04630684852600098,
-0.12564611434936523,
-0.009735455736517906,
0.04805954918265343,
-0.12623652815818787,
0.08271297067403793,
0.06924911588430405,
0.026515359058976173,
0.05463488772511482,
-0.05062117055058479,
0.013699651695787907,
0.04843483865261078,
-0.008847702294588089,
0.03797720745205879,
-0.13905459642410278,
-0.004087537992745638,
-0.020745648071169853,
0.05443813279271126,
-0.004942635539919138,
0.044185105711221695,
-0.1320052146911621,
-0.04634549096226692,
-0.016646308824419975,
-0.050551384687423706,
-0.06475567817687988,
0.04443029686808586,
0.0823061466217041,
0.039181943982839584,
0.18239425122737885,
-0.07189296931028366,
0.018250256776809692,
-0.22486275434494019,
0.010596467182040215,
-0.02787628211081028,
-0.10068386048078537,
-0.0793226882815361,
-0.026915380731225014,
0.07772635668516159,
-0.07114669680595398,
0.087468221783638,
-0.06492017209529877,
0.07241595536470413,
0.044199295341968536,
-0.058345090597867966,
0.027805685997009277,
0.04808096960186958,
0.24521327018737793,
0.058456022292375565,
-0.010558166541159153,
0.07982371747493744,
0.020223714411258698,
0.07067402452230453,
0.11804802715778351,
0.17006611824035645,
0.146487757563591,
-0.011341748759150505,
0.11299560964107513,
0.06405387818813324,
-0.08747188001871109,
-0.16829362511634827,
0.06899899989366531,
-0.03519812226295471,
0.13615761697292328,
-0.003392687998712063,
0.2021912783384323,
0.12508928775787354,
-0.17821365594863892,
0.04414188861846924,
-0.027174340561032295,
-0.07665053755044937,
-0.10236632823944092,
-0.03985695168375969,
-0.06973256170749664,
-0.19053827226161957,
0.022432230412960052,
-0.10409922152757645,
0.04588491842150688,
0.0515860877931118,
0.028682930395007133,
0.01087364461272955,
0.1556362360715866,
0.048738379031419754,
0.011727727018296719,
0.09543946385383606,
0.0016017640009522438,
-0.032884787768125534,
-0.04804806783795357,
-0.09659171104431152,
0.029005102813243866,
-0.034977469593286514,
0.051115620881319046,
-0.06198636814951897,
-0.12795421481132507,
0.0661126971244812,
0.014492202550172806,
-0.11393757909536362,
0.025155361741781235,
0.0027860295958817005,
0.0792250707745552,
0.040738433599472046,
0.015857933089137077,
0.001702626934275031,
-0.018638066947460175,
0.24441145360469818,
-0.11201895773410797,
-0.05742322653532028,
-0.13123808801174164,
0.25588300824165344,
0.020311908796429634,
-0.021831991150975227,
0.03461466357111931,
-0.07368037104606628,
-0.027629682794213295,
0.17038705945014954,
0.13069380819797516,
-0.007763391826301813,
-0.024394480511546135,
0.0034299378748983145,
-0.017789436504244804,
-0.05401826649904251,
0.08054638653993607,
0.11758092045783997,
0.07465071231126785,
-0.06648796796798706,
-0.038383159786462784,
-0.03645210340619087,
-0.051132045686244965,
-0.013340749777853489,
0.09908725321292877,
0.02080727368593216,
-0.02231254242360592,
-0.03196696937084198,
0.08954037725925446,
-0.0600292906165123,
-0.10214968025684357,
0.0583571195602417,
-0.16853338479995728,
-0.18174567818641663,
-0.03704700618982315,
0.06888433545827866,
0.01423308253288269,
0.06893520057201385,
0.0030576838180422783,
-0.03499741479754448,
0.0895458534359932,
0.0019209213787689805,
-0.06317444145679474,
-0.12956970930099487,
0.11604496091604233,
-0.0767846331000328,
0.19320985674858093,
-0.054563749581575394,
0.03669783100485802,
0.12822657823562622,
0.06516432762145996,
-0.08514963835477829,
0.030578671023249626,
0.06701546162366867,
-0.13923612236976624,
0.0422695092856884,
0.17806562781333923,
-0.03066358156502247,
0.10821613669395447,
0.022515183314681053,
-0.1386120766401291,
0.009138098917901516,
-0.08654473721981049,
-0.03467803820967674,
-0.06120049208402634,
-0.026361670345067978,
-0.04146046191453934,
0.12246923893690109,
0.21490861475467682,
-0.06355904042720795,
-0.013951899483799934,
-0.05941750481724739,
0.03594864159822464,
0.07126964628696442,
0.09801064431667328,
-0.041888847947120667,
-0.2882283926010132,
0.009145142510533333,
0.01962646096944809,
-0.01287107728421688,
-0.26902270317077637,
-0.09746669977903366,
0.041881013661623,
-0.06407735496759415,
-0.036558784544467926,
0.0927574411034584,
0.09426575899124146,
0.04709116742014885,
-0.052921220660209656,
-0.06195458769798279,
-0.06485895067453384,
0.17798766493797302,
-0.18559527397155762,
-0.06241728365421295
] |
null | null |
transformers
|
## how to use
```python
from transformers import pipeline, set_seed
path = "akahana/gpt2-indonesia"
generator = pipeline('text-generation',
model=path)
set_seed(42)
kalimat = "dahulu kala ada sebuah"
preds = generator(kalimat,
max_length=64,
num_return_sequences=3)
for data in preds:
print(data)
{'generated_text': 'dahulu kala ada sebuah perkampungan yang bernama pomere. namun kini kawasan ini sudah tidak dikembangkan lagi sebagai kawasan industri seperti perusahaan pupuk. sumber-sumber lain sudah sulit ditemukan karena belum adanya kilang pupuk milik indonesia yang sering di kembangkan sehingga belum ada satupun yang masih tersisa yang tersisa. kawasan ini juga memproduksi gula aren milik pt graha bina sarana'}
{'generated_text': 'dahulu kala ada sebuah desa kecil bernama desa. desa yang terkenal seperti halnya kota terdekat lainnya adalah desa tetangga yang bernama sama."\n"sebuah masjid merupakan suatu tempat suci yang digunakan umat islam untuk beribadah. beberapa masjid yang didaftarkan berikut memiliki suatu kehormatan tersendiri bagi masing-masing denominasi islam di dunia. sebuah masjid selain memiliki fungsi sebagai tempat'}
{'generated_text': 'dahulu kala ada sebuah peradaban yang dibangun di sebelah barat sungai mississippi di sekitar desa kecil desa yang bernama sama. penduduk asli di desa ini berasal dari etnis teweh yang berpindah agama menjadi kristen, namun kemudian pindah agama menjadi kristen. desa arawak mempunyai beberapa desa lain seperti adibei, deti, riuhut dan sa'}
```
|
{"language": "id", "widget": [{"text": "dahulu kala ada sebuah"}]}
|
text-generation
|
akahana/gpt2-indonesia
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"gpt2",
"text-generation",
"id",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"id"
] |
TAGS
#transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## how to use
|
[
"## how to use"
] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## how to use"
] |
[
57,
4
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## how to use"
] |
[
-0.03572583198547363,
0.004277295898646116,
-0.005547534208744764,
0.023597057908773422,
0.16504517197608948,
-0.0052865538746118546,
0.09676806628704071,
0.12004822492599487,
-0.015530800446867943,
-0.009471233002841473,
0.13420261442661285,
0.18794161081314087,
-0.002632427727803588,
0.11056347191333771,
-0.10573308914899826,
-0.23776356875896454,
0.052909720689058304,
0.0355224683880806,
0.0016614400083199143,
0.12152574956417084,
0.08707878738641739,
-0.05416171997785568,
0.07751312106847763,
-0.05425082892179489,
-0.14895235002040863,
0.0072553628124296665,
0.044989101588726044,
-0.13198526203632355,
0.13449916243553162,
0.046645645052194595,
0.09349645674228668,
0.04900004342198372,
-0.032963164150714874,
-0.13351953029632568,
0.02839099057018757,
0.05358829349279404,
-0.07356051355600357,
0.05062593147158623,
0.11814572662115097,
-0.06511399149894714,
0.1058414876461029,
0.028158679604530334,
-0.020071644335985184,
0.051179319620132446,
-0.157414048910141,
-0.06976176053285599,
-0.01230838056653738,
0.024034680798649788,
0.09337768703699112,
0.10928767174482346,
-0.004338770639151335,
0.15811896324157715,
-0.07211098074913025,
0.13282033801078796,
0.13183598220348358,
-0.31384363770484924,
-0.006622126325964928,
0.08419139683246613,
0.04537152126431465,
0.059108659625053406,
-0.03640218824148178,
0.04740726575255394,
0.03573843091726303,
0.03495340421795845,
0.057078488171100616,
-0.06545454263687134,
-0.1626170575618744,
0.024937821552157402,
-0.11511223763227463,
-0.08059348911046982,
0.23001280426979065,
-0.06432744860649109,
0.021950360387563705,
-0.03565586730837822,
-0.12112437188625336,
-0.011009592562913895,
-0.014835238456726074,
-0.023686934262514114,
-0.06608931720256805,
0.06515632569789886,
0.015350325033068657,
-0.07947485893964767,
-0.1456819325685501,
-0.04620581492781639,
-0.1439165323972702,
0.17331384122371674,
0.02063899300992489,
0.040268175303936005,
-0.16892239451408386,
0.1260850578546524,
0.005136008374392986,
-0.0903051346540451,
0.04179064929485321,
-0.090501569211483,
0.045710932463407516,
-0.023606743663549423,
-0.017863493412733078,
-0.09801741689443588,
0.1091197282075882,
0.12616084516048431,
-0.06889843940734863,
0.03205157071352005,
-0.06938645988702774,
0.07313486933708191,
-0.006069050170481205,
0.09358435124158859,
-0.021358054131269455,
0.0037934365682303905,
0.10425867885351181,
-0.1011461392045021,
-0.00009798166865948588,
-0.05288796126842499,
-0.13607248663902283,
-0.04949828237295151,
0.11533151566982269,
0.1385844647884369,
0.02324131317436695,
0.1044815257191658,
-0.025254035368561745,
-0.006917912513017654,
0.09851755946874619,
-0.10421404242515564,
-0.01702103763818741,
0.000932440918404609,
0.04441574960947037,
0.02600228786468506,
0.03273436799645424,
-0.00711588142439723,
-0.14485575258731842,
0.04798753559589386,
-0.053016502410173416,
-0.022400755435228348,
-0.029746372252702713,
-0.07929568737745285,
0.020403899252414703,
-0.08444198966026306,
0.016611797735095024,
-0.19852891564369202,
-0.18626220524311066,
0.029627861455082893,
-0.011517145670950413,
-0.01737755537033081,
-0.012529837898910046,
-0.020228195935487747,
-0.04937928915023804,
0.01899535208940506,
-0.058071911334991455,
-0.01231430470943451,
-0.058692771941423416,
0.11364347487688065,
-0.025354906916618347,
0.04774368181824684,
-0.0983506590127945,
0.050124604254961014,
-0.11521735042333603,
0.0025601168163120747,
-0.10033221542835236,
0.06446154415607452,
-0.0054888492450118065,
0.12560172379016876,
-0.031291212886571884,
-0.03242973983287811,
-0.08113068342208862,
0.034344132989645004,
-0.01250057015568018,
0.19960007071495056,
-0.08882102370262146,
-0.05632605031132698,
0.2795395851135254,
-0.1321103274822235,
-0.18807178735733032,
0.13146312534809113,
0.024626826867461205,
0.05020697042346001,
0.09264180809259415,
0.1649242788553238,
0.08665525168180466,
-0.04562389478087425,
0.0896197110414505,
0.13159720599651337,
-0.11680184304714203,
-0.07138212770223618,
-0.001628509140573442,
-0.020511414855718613,
-0.15104170143604279,
0.03656281903386116,
0.032892677932977676,
0.09342028200626373,
-0.04437081515789032,
-0.024620885029435158,
-0.06481479853391647,
-0.024555034935474396,
0.042685989290475845,
0.006092095747590065,
0.07978454232215881,
-0.06632781773805618,
-0.01712139882147312,
-0.06376971304416656,
-0.01194822695106268,
-0.0403950996696949,
0.030209166929125786,
-0.04578973725438118,
0.14454501867294312,
-0.02611399069428444,
0.05726220831274986,
-0.1702479124069214,
-0.12520313262939453,
0.001175920246168971,
0.15829972922801971,
-0.031312841922044754,
0.03785383701324463,
0.07438744604587555,
0.027083592489361763,
-0.019136644899845123,
-0.05136113613843918,
0.1905275583267212,
0.0026839198544621468,
-0.054932381957769394,
-0.05162212252616882,
0.07201727479696274,
-0.06433849036693573,
0.0019221570109948516,
-0.08123498409986496,
0.02637663669884205,
0.07071508467197418,
0.08657175302505493,
0.010110214352607727,
0.043564323335886,
-0.005608405917882919,
0.006251580081880093,
-0.0723993182182312,
-0.03807735815644264,
0.08130758255720139,
0.02037574164569378,
-0.08035246282815933,
0.15878582000732422,
-0.20129090547561646,
0.27957016229629517,
0.17752201855182648,
-0.23361459374427795,
-0.028813041746616364,
-0.05723578855395317,
-0.03219114989042282,
0.023006539791822433,
0.01980343461036682,
-0.048042286187410355,
0.06454551219940186,
-0.012105376459658146,
0.17891782522201538,
-0.07930178940296173,
-0.06863906979560852,
0.013109661638736725,
-0.062288928776979446,
-0.002621397376060486,
0.059302181005477905,
0.03896430507302284,
-0.1850566864013672,
0.17424726486206055,
0.17360864579677582,
0.03830194100737572,
0.16924163699150085,
-0.019765714183449745,
-0.0273258239030838,
0.09280388057231903,
0.098553366959095,
0.0017535861115902662,
-0.06575167924165726,
-0.15506266057491302,
0.009174625389277935,
0.06574558466672897,
0.04028921574354172,
0.0881599485874176,
-0.1456688940525055,
-0.038887206465005875,
-0.0029085148125886917,
-0.04433518648147583,
0.026199234649538994,
0.06480401754379272,
0.031013576313853264,
0.13113389909267426,
-0.020819827914237976,
-0.030201280489563942,
0.12170543521642685,
0.014711390249431133,
-0.12538215517997742,
0.22330065071582794,
-0.12502367794513702,
-0.35529232025146484,
-0.13086360692977905,
-0.10750891268253326,
-0.02680463343858719,
0.05688363313674927,
0.11070588231086731,
-0.1037885993719101,
-0.053683292120695114,
-0.03380553796887398,
0.03434963524341583,
-0.038259513676166534,
0.02053740806877613,
-0.08676903694868088,
0.04825180023908615,
-0.03678712993860245,
-0.10207662731409073,
-0.053968388587236404,
0.014393394812941551,
-0.09785798192024231,
0.17545975744724274,
-0.0937546044588089,
0.08136815577745438,
0.1707129180431366,
-0.010945960879325867,
0.060594893991947174,
-0.04536974057555199,
0.19281598925590515,
-0.08068174868822098,
0.0342618003487587,
0.2098812609910965,
-0.06153508275747299,
0.07655099779367447,
0.09246117621660233,
-0.011573483236134052,
-0.07964624464511871,
0.04607724770903587,
-0.04814467951655388,
-0.10083873569965363,
-0.24313415586948395,
-0.12298305332660675,
-0.10649930685758591,
0.08223968744277954,
0.043383870273828506,
0.09222672134637833,
0.16185016930103302,
0.10072539746761322,
-0.033934470266103745,
0.013369647786021233,
0.057882990688085556,
0.08767096698284149,
0.1246836856007576,
-0.0030355288181453943,
0.11152882874011993,
-0.06984002143144608,
-0.13728247582912445,
0.09526368975639343,
0.03785642609000206,
0.11450774222612381,
0.0227663516998291,
0.012185283936560154,
0.015075341798365116,
0.10274799913167953,
0.10615727305412292,
0.20221926271915436,
-0.0009796025697141886,
-0.025875555351376534,
-0.01123660895973444,
-0.03949768841266632,
-0.03748787194490433,
0.023682162165641785,
-0.044974539428949356,
-0.12766826152801514,
-0.05285077542066574,
-0.07291164249181747,
0.10432058572769165,
0.09438086301088333,
0.0514100007712841,
-0.24638161063194275,
-0.0014329422265291214,
0.06951356679201126,
-0.006613964214920998,
-0.13314862549304962,
0.08403541147708893,
0.05475929006934166,
-0.127755805850029,
0.05380409210920334,
-0.05620448291301727,
0.10371704399585724,
-0.027804220095276833,
0.06650999933481216,
-0.036558154970407486,
-0.04582913964986801,
-0.0123943742364645,
0.12854431569576263,
-0.30774614214897156,
0.19492501020431519,
0.00834913644939661,
-0.008211740292608738,
-0.10784397274255753,
0.019304148852825165,
0.032440897077322006,
0.14607498049736023,
0.15003032982349396,
-0.0023932696785777807,
-0.022067241370677948,
-0.12280067801475525,
-0.02597287856042385,
0.031210819259285927,
0.120527483522892,
-0.01002786960452795,
0.010915189981460571,
-0.0429207868874073,
-0.02066708728671074,
-0.0006609581760130823,
-0.07557659596204758,
-0.025336185470223427,
-0.15582069754600525,
0.050552066415548325,
0.016118168830871582,
0.10463862121105194,
-0.01929488033056259,
0.005256065167486668,
-0.11097879707813263,
0.20188957452774048,
-0.0445442833006382,
-0.11991947144269943,
-0.12815923988819122,
-0.0714963898062706,
0.050636786967515945,
-0.0752280130982399,
0.06457379460334778,
-0.07114645093679428,
0.042764097452163696,
-0.05540589988231659,
-0.19958782196044922,
0.10283437371253967,
-0.12238357216119766,
-0.0654960349202156,
-0.007526902481913567,
0.19039517641067505,
-0.06596735864877701,
-0.030934924259781837,
0.0498516783118248,
0.006576482206583023,
-0.07070232927799225,
-0.12464649230241776,
0.024685699492692947,
-0.046080052852630615,
0.07769542932510376,
0.05178375914692879,
-0.09180810302495956,
-0.05508526414632797,
-0.02064337581396103,
-0.006794096902012825,
0.29284143447875977,
0.16675405204296112,
-0.03959749639034271,
0.12173768132925034,
0.1221875324845314,
-0.05402714014053345,
-0.3308597505092621,
-0.09130126237869263,
-0.12715429067611694,
-0.05423456430435181,
-0.021210793405771255,
-0.12926824390888214,
0.0652189627289772,
0.007943532429635525,
-0.015507758595049381,
0.15307208895683289,
-0.1992790848016739,
-0.07777700573205948,
0.18301860988140106,
0.05812433734536171,
0.2538192570209503,
-0.16707761585712433,
-0.09370685368776321,
-0.035009097307920456,
-0.09037022292613983,
0.14968310296535492,
-0.12366428226232529,
0.06952222436666489,
-0.007451365701854229,
0.04524894058704376,
0.051796477288007736,
-0.06826401501893997,
0.07181905210018158,
-0.029627250507473946,
0.024142080917954445,
-0.1181839182972908,
0.010785192251205444,
0.06105141341686249,
-0.014637338928878307,
0.0806562602519989,
-0.03939215466380119,
0.057626236230134964,
-0.057249490171670914,
-0.04139196127653122,
-0.07162515819072723,
0.07339692115783691,
0.03378601744771004,
-0.08442701399326324,
0.010940701700747013,
-0.05794374644756317,
0.01562868058681488,
-0.013238772749900818,
0.12643998861312866,
-0.04039300978183746,
0.17929060757160187,
0.13796699047088623,
0.1431378871202469,
-0.10648392140865326,
0.04854096472263336,
-0.041972436010837555,
-0.065437451004982,
0.06259642541408539,
-0.07143958657979965,
0.07850006967782974,
0.08353447914123535,
-0.031332727521657944,
0.0843978002667427,
0.11092426627874374,
-0.007137143984436989,
-0.02419642172753811,
0.13167686760425568,
-0.2759329080581665,
-0.03502131998538971,
-0.09568407386541367,
-0.03651057928800583,
0.06752114742994308,
0.09175430983304977,
0.15358062088489532,
0.010922127403318882,
-0.02211466059088707,
-0.016137251630425453,
0.01441649254411459,
-0.041413575410842896,
0.08625319600105286,
0.0428030751645565,
0.035650577396154404,
-0.12490705400705338,
0.063365139067173,
0.002386466134339571,
-0.11365397274494171,
0.012932456098496914,
0.15890398621559143,
-0.16166548430919647,
-0.126607283949852,
0.017248215153813362,
0.11241866648197174,
-0.10029811412096024,
-0.06829161196947098,
-0.04710114747285843,
-0.13719026744365692,
0.06280336529016495,
0.1798064410686493,
0.0477403849363327,
0.08797039836645126,
-0.002709735184907913,
-0.013186895288527012,
-0.07863862812519073,
0.041375912725925446,
0.020359298214316368,
0.023571515455842018,
-0.12735144793987274,
0.0962403193116188,
-0.026323087513446808,
0.12614226341247559,
-0.09255199879407883,
-0.03193067014217377,
-0.15643079578876495,
0.027690062299370766,
-0.13557612895965576,
-0.030186044052243233,
-0.07159034162759781,
-0.02325245924293995,
-0.013975203968584538,
0.0020048466976732016,
-0.011997305788099766,
-0.02663353830575943,
-0.09688255190849304,
0.019993629306554794,
-0.032185450196266174,
-0.015239257365465164,
-0.08884421736001968,
-0.03391357883810997,
0.05479465797543526,
-0.05545324832201004,
0.1422167420387268,
0.11974745988845825,
-0.10094374418258667,
0.10808855295181274,
-0.2018313854932785,
-0.07723582535982132,
0.1306040734052658,
0.0028699724934995174,
0.026171011850237846,
0.05295240879058838,
0.038333192467689514,
0.07001474499702454,
-0.02930319868028164,
0.039493709802627563,
0.038126733154058456,
-0.10763785988092422,
0.0696093887090683,
-0.03643849864602089,
-0.12152926623821259,
-0.0567573718726635,
-0.02847030945122242,
0.03299066424369812,
-0.0030412175692617893,
0.09114079177379608,
-0.09295386075973511,
0.08998575061559677,
-0.08554292470216751,
0.005810434464365244,
0.010758355259895325,
-0.1673976480960846,
-0.08564551174640656,
-0.04298404976725578,
0.04892298951745033,
0.0030588305089622736,
0.20077168941497803,
0.04029285907745361,
0.021681804209947586,
0.019101236015558243,
0.042345281690359116,
0.09721510857343674,
-0.0035275144036859274,
0.22331947088241577,
0.049505945295095444,
-0.06329472362995148,
-0.12901006639003754,
0.05113751441240311,
0.016151852905750275,
-0.06162099912762642,
0.13728176057338715,
0.022516533732414246,
-0.095027394592762,
0.06836522370576859,
-0.035252831876277924,
-0.02642078325152397,
-0.07724139094352722,
-0.1826041340827942,
-0.023219287395477295,
0.04467500001192093,
-0.014716687612235546,
0.0471518449485302,
0.18277081847190857,
-0.0292605422437191,
0.01890290342271328,
-0.007110461592674255,
-0.0611443966627121,
-0.17630578577518463,
-0.15032240748405457,
-0.08106641471385956,
-0.10308795422315598,
0.0021283847745507956,
-0.1208156868815422,
0.023070471361279488,
0.033121608197689056,
0.06653080135583878,
-0.04595862329006195,
0.17952574789524078,
0.0618339478969574,
-0.08093981444835663,
0.07615543156862259,
-0.014565512537956238,
0.07327080518007278,
0.03622997924685478,
-0.032543569803237915,
-0.0739743709564209,
-0.022087112069129944,
-0.015506766736507416,
0.04053458198904991,
-0.019855791702866554,
0.05759067460894585,
-0.13230036199092865,
-0.08684422820806503,
-0.043906521052122116,
0.08063273876905441,
-0.04805868864059448,
0.132887601852417,
0.004423004109412432,
-0.03772657364606857,
0.045554473996162415,
0.2061547487974167,
-0.07248838245868683,
-0.1302771270275116,
-0.040044307708740234,
0.2630627751350403,
0.037351757287979126,
0.07786866277456284,
0.011588324792683125,
-0.03175980970263481,
-0.023623798042535782,
0.34234416484832764,
0.2683448791503906,
-0.045875921845436096,
0.04723857343196869,
-0.0120230782777071,
0.02546873316168785,
0.10419855266809464,
0.16107389330863953,
0.1007848009467125,
0.28091713786125183,
-0.07816112786531448,
-0.032072484493255615,
-0.02305706776678562,
0.0037237713113427162,
-0.11858530342578888,
0.10618789494037628,
0.04144597798585892,
-0.03998006135225296,
-0.031210150569677353,
0.11173152923583984,
-0.1933535486459732,
0.10118851810693741,
-0.0896284431219101,
-0.10963450372219086,
-0.051140882074832916,
-0.0012905171606689692,
0.06939049065113068,
-0.01913989521563053,
0.06940332800149918,
-0.024294095113873482,
-0.06349782645702362,
0.02917608805000782,
0.029838604852557182,
-0.19044584035873413,
0.03305768594145775,
0.029764054343104362,
-0.03238585218787193,
0.06913206726312637,
-0.0035936543717980385,
0.04265672340989113,
0.0791037380695343,
0.019427195191383362,
-0.06407445669174194,
0.11432980000972748,
-0.002218198962509632,
-0.03377869352698326,
0.047547098249197006,
0.034856539219617844,
0.009162476286292076,
-0.12393836677074432,
0.027494683861732483,
-0.1582656353712082,
0.03237863630056381,
0.030011676251888275,
-0.039327338337898254,
-0.03786676377058029,
0.01643008552491665,
-0.06491760909557343,
0.07678326219320297,
0.0779443010687828,
-0.014457416720688343,
0.03497009724378586,
-0.09241797775030136,
0.021560661494731903,
0.0012569046812132,
-0.07754778861999512,
-0.0476408526301384,
-0.12451756000518799,
-0.08007735759019852,
0.12317077815532684,
-0.010869817808270454,
-0.22428657114505768,
0.016975266858935356,
-0.09200610965490341,
0.03958183154463768,
-0.21174050867557526,
0.08042005449533463,
0.09407763928174973,
0.023074528202414513,
0.012047382071614265,
0.013591370545327663,
0.015053298324346542,
0.09408106654882431,
-0.08317477256059647,
-0.06671744585037231
] |
null | null |
transformers
|
## how to use
```python
from transformers import pipeline, set_seed
path = "akahana/indonesia-emotion-roberta"
emotion = pipeline('text-classification',
model=path,device=0)
set_seed(42)
kalimat = "dia orang yang baik ya bunds."
preds = emotion(kalimat)
preds
[{'label': 'BAHAGIA', 'score': 0.8790940046310425}]
```
|
{"language": "id", "widget": [{"text": "dia orang yang baik ya bunds."}]}
|
text-classification
|
akahana/indonesia-emotion-roberta
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"id",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"id"
] |
TAGS
#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us
|
## how to use
|
[
"## how to use"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n",
"## how to use"
] |
[
48,
4
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n## how to use"
] |
[
-0.04535957798361778,
0.06647671014070511,
-0.006033923476934433,
0.032867640256881714,
0.17866389453411102,
-0.0065958453342318535,
0.12294835597276688,
0.11045104265213013,
0.04938861355185509,
0.00926008727401495,
0.09594202041625977,
0.2271670401096344,
-0.017644742503762245,
0.06463609635829926,
-0.1376263052225113,
-0.2694115936756134,
0.02821090817451477,
0.05343596264719963,
-0.01749913953244686,
0.1014280840754509,
0.07933428138494492,
-0.11003617197275162,
0.03775956481695175,
-0.03011271543800831,
-0.1346483826637268,
0.024049481377005577,
0.03181697055697441,
-0.1330733448266983,
0.11081574112176895,
0.030617719516158104,
0.18851998448371887,
0.05810169503092766,
-0.014560781419277191,
-0.1575229912996292,
0.04097030684351921,
0.0281511340290308,
-0.07388822734355927,
0.06571827828884125,
0.1089860275387764,
-0.10125254094600677,
0.02259404957294464,
-0.02118563838303089,
0.04246699437499046,
0.030044525861740112,
-0.11790038645267487,
-0.05538090690970421,
-0.006595526356250048,
0.015786629170179367,
0.11095037311315536,
0.06839089840650558,
0.0030332638416439295,
0.17225070297718048,
-0.08750893175601959,
0.11978121846914291,
0.09628493338823318,
-0.3095456659793854,
-0.03022949956357479,
0.11511529982089996,
0.05774857848882675,
0.06235470995306969,
-0.07261856645345688,
0.045052289962768555,
0.022250348702073097,
0.010816837660968304,
0.05506910756230354,
-0.07427763193845749,
-0.13320526480674744,
0.01568177156150341,
-0.1075216755270958,
-0.020319584757089615,
0.146718367934227,
-0.06938482820987701,
0.05967528745532036,
-0.06744503229856491,
-0.10498262941837311,
-0.023224951699376106,
-0.04079199209809303,
-0.015688763931393623,
-0.04214232414960861,
0.04198046401143074,
0.0034927597735077143,
-0.05745411664247513,
-0.14565590023994446,
0.010452629998326302,
-0.1584893763065338,
0.18573105335235596,
0.015244035981595516,
0.026209156960248947,
-0.15589936077594757,
0.06510324776172638,
0.04037097468972206,
-0.09959451109170914,
0.08225254714488983,
-0.07280094921588898,
0.02390461601316929,
-0.04618976265192032,
-0.02618316188454628,
-0.16661496460437775,
0.11281430721282959,
0.10266069322824478,
-0.00416543846949935,
0.07355502992868423,
-0.047154854983091354,
0.0958005040884018,
0.011357828974723816,
0.1389354020357132,
0.008940368890762329,
-0.021856317296624184,
0.0937047153711319,
-0.06475327163934708,
0.03730401024222374,
-0.06120709329843521,
-0.16001899540424347,
-0.0198480486869812,
0.10983403772115707,
0.11597224324941635,
0.0263690035790205,
0.06880109012126923,
-0.04032835736870766,
-0.017891105264425278,
0.06898751109838486,
-0.11301296204328537,
0.037961892783641815,
0.025005068629980087,
0.041297197341918945,
0.024517586454749107,
0.023222217336297035,
-0.013699577189981937,
-0.08319517225027084,
0.11168120056390762,
-0.037319209426641464,
0.008013231679797173,
-0.06008187681436539,
-0.10325818508863449,
0.03702740743756294,
-0.16424520313739777,
0.026631707325577736,
-0.16885413229465485,
-0.11387227475643158,
-0.007972082123160362,
0.02650698833167553,
-0.009663291275501251,
0.01273324154317379,
-0.015611897222697735,
-0.0068765669129788876,
0.0337781086564064,
-0.04131937399506569,
-0.05928609520196915,
-0.047113437205553055,
0.082875095307827,
-0.032814353704452515,
0.055505357682704926,
-0.07133116573095322,
0.04739256575703621,
-0.07996275275945663,
0.008259124122560024,
-0.14800243079662323,
0.03369522839784622,
-0.06261996179819107,
0.1572985202074051,
-0.020521963015198708,
-0.025685714557766914,
-0.0741865485906601,
0.03887319937348366,
-0.018244419246912003,
0.14292152225971222,
-0.10334917157888412,
-0.05604177340865135,
0.22690270841121674,
-0.13155589997768402,
-0.148427352309227,
0.12248528003692627,
-0.02170548401772976,
0.021634837612509727,
0.076360322535038,
0.1961297243833542,
0.14647629857063293,
-0.05097809061408043,
0.07103734463453293,
0.13135261833667755,
-0.06821741163730621,
-0.1391095370054245,
-0.02595721371471882,
-0.010010690428316593,
-0.06133265420794487,
0.0325041189789772,
0.07557803392410278,
0.07718825340270996,
-0.02956322208046913,
-0.05664434656500816,
-0.039414968341588974,
-0.04273208603262901,
0.08381742238998413,
0.07540446519851685,
0.10247169435024261,
-0.06833963096141815,
-0.003780063707381487,
0.008474557660520077,
-0.015286809764802456,
-0.04155047610402107,
0.02155248261988163,
-0.0801076889038086,
0.13997186720371246,
-0.04860816150903702,
0.010686293244361877,
-0.21852435171604156,
-0.12004910409450531,
-0.01685527339577675,
0.10464278608560562,
-0.02824498526751995,
0.07973537594079971,
0.08606979995965958,
-0.011537875048816204,
-0.01975947432219982,
-0.034038107842206955,
0.21936199069023132,
0.03126909211277962,
-0.08395471423864365,
-0.09263963252305984,
0.0710320994257927,
-0.09525782614946365,
0.012992294505238533,
-0.1183987706899643,
0.036611754447221756,
0.08274124562740326,
0.08985787630081177,
0.03221955895423889,
0.059010595083236694,
0.004069310147315264,
0.05319821462035179,
-0.07157473266124725,
-0.013275262899696827,
0.10306774079799652,
0.014356979168951511,
-0.0949317216873169,
0.1082049086689949,
-0.2055465430021286,
0.28355568647384644,
0.1839582920074463,
-0.22214928269386292,
-0.017527161166071892,
-0.029393406584858894,
-0.001010461593978107,
0.018404293805360794,
-0.0074615213088691235,
0.025113919749855995,
0.0705094113945961,
0.004209196660667658,
0.17634759843349457,
-0.04191083833575249,
-0.05201117321848869,
0.011941210366785526,
-0.07774146646261215,
-0.03797990828752518,
0.07743912190198898,
0.04986630752682686,
-0.19568713009357452,
0.17404600977897644,
0.1660059541463852,
-0.05043446272611618,
0.17852230370044708,
-0.01638546958565712,
0.020462339743971825,
0.07621551305055618,
0.05461297184228897,
0.023959627375006676,
-0.01990092732012272,
-0.1611747294664383,
-0.024278994649648666,
0.052103910595178604,
-0.008594687096774578,
0.06787269562482834,
-0.1658533811569214,
-0.020454328507184982,
-0.0029417029581964016,
0.009761729277670383,
0.05042973905801773,
0.03708187863230705,
0.04141353443264961,
0.09825600683689117,
-0.019980045035481453,
-0.08213198184967041,
0.09302198886871338,
-0.01173747144639492,
-0.08808666467666626,
0.21491961181163788,
-0.11347297579050064,
-0.3193884491920471,
-0.1375478208065033,
-0.13040637969970703,
-0.00881699938327074,
0.045514900237321854,
0.07915297895669937,
-0.09852800518274307,
-0.05653901770710945,
-0.007781938649713993,
-0.046011533588171005,
-0.014681575819849968,
0.024523109197616577,
-0.06980868428945541,
0.08271312713623047,
-0.028385763987898827,
-0.08572550117969513,
-0.053220234811306,
-0.029051143676042557,
-0.035292018204927444,
0.15612153708934784,
-0.06756488978862762,
0.09449149668216705,
0.18653126060962677,
-0.02930375002324581,
0.05126655846834183,
-0.037366945296525955,
0.10482332855463028,
-0.08617063611745834,
0.029293660074472427,
0.1676512062549591,
-0.09008681774139404,
0.08448479324579239,
0.14728114008903503,
0.04077095165848732,
-0.04637491703033447,
0.01464572362601757,
-0.026867952197790146,
-0.11089793592691422,
-0.26995396614074707,
-0.13344043493270874,
-0.10799111425876617,
0.038270123302936554,
0.05193347483873367,
0.09422993659973145,
0.12602201104164124,
0.12186262756586075,
0.03434957191348076,
-0.009747055359184742,
0.040838174521923065,
0.06823015958070755,
0.16691860556602478,
0.025815898552536964,
0.14169757068157196,
-0.08719147741794586,
-0.15434889495372772,
0.05872675031423569,
0.04845859482884407,
0.13034728169441223,
0.07176171243190765,
0.040474873036146164,
0.015648474916815758,
0.10613962262868881,
0.1350957453250885,
0.16426031291484833,
0.007467589806765318,
-0.037193506956100464,
0.011238656006753445,
-0.015886079519987106,
-0.03546031564474106,
0.013093081302940845,
0.03708743676543236,
-0.10654542595148087,
-0.020699096843600273,
-0.07041433453559875,
0.10090776532888412,
0.09604444354772568,
0.0343485102057457,
-0.23536387085914612,
0.011615036055445671,
0.08605797588825226,
0.007444263901561499,
-0.08734072744846344,
0.07330777496099472,
0.02643091417849064,
-0.09940633922815323,
0.07726013660430908,
-0.09217164665460587,
0.10856010019779205,
-0.10387768596410751,
0.0410897433757782,
-0.055787790566682816,
-0.06169384717941284,
0.0044065662659704685,
0.10649915784597397,
-0.24129019677639008,
0.21231123805046082,
0.019481560215353966,
0.004068788606673479,
-0.07924288511276245,
0.007731246296316385,
0.06253208965063095,
0.16797968745231628,
0.12537412345409393,
-0.026898588985204697,
-0.07569216191768646,
-0.13266946375370026,
-0.049958765506744385,
0.007089157123118639,
0.10704080015420914,
0.01876997947692871,
0.0043690940365195274,
-0.033114753663539886,
-0.03550925478339195,
0.007984082214534283,
-0.12702469527721405,
0.002749492647126317,
-0.19437384605407715,
0.03420316055417061,
0.030868055298924446,
-0.03508039936423302,
0.008053761906921864,
-0.04753986746072769,
-0.1484289914369583,
0.22903461754322052,
-0.08333741873502731,
-0.08459903299808502,
-0.11926595866680145,
-0.08016403764486313,
0.029447466135025024,
-0.09011592715978622,
0.05869785323739052,
-0.0801033154129982,
0.05782609432935715,
-0.08301540464162827,
-0.18901780247688293,
0.11802013963460922,
-0.11917977780103683,
-0.025080958381295204,
-0.05220949649810791,
0.14272961020469666,
-0.05964067950844765,
-0.014422968029975891,
0.052234452217817307,
0.02618611790239811,
-0.06801102310419083,
-0.10686223208904266,
0.0207564327865839,
-0.0013666743179783225,
0.0738905817270279,
0.028534410521388054,
-0.09717347472906113,
-0.12010153383016586,
-0.016516445204615593,
0.0225470382720232,
0.28881409764289856,
0.15623174607753754,
-0.07609130442142487,
0.1030554249882698,
0.1412074714899063,
-0.06414251774549484,
-0.3618176281452179,
-0.054694462567567825,
-0.11361312121152878,
-0.039670202881097794,
0.0038995742797851562,
-0.1095672994852066,
0.11311287432909012,
-0.010337884537875652,
-0.0497906468808651,
0.09908543527126312,
-0.171787291765213,
-0.0980258658528328,
0.22693182528018951,
0.07950515300035477,
0.2548247277736664,
-0.1737028807401657,
-0.10030647367238998,
-0.02634670026600361,
-0.037183962762355804,
0.12727764248847961,
-0.13567757606506348,
0.06566696614027023,
0.003109812503680587,
0.020801082253456116,
0.04559198394417763,
-0.08967135846614838,
0.09194368124008179,
-0.06260763853788376,
0.02032647468149662,
-0.10713648796081543,
-0.06948360055685043,
0.06861022859811783,
-0.044982559978961945,
0.02714972384274006,
-0.0320708230137825,
0.014727124013006687,
-0.07068612426519394,
-0.047543805092573166,
-0.03924013301730156,
0.08356337994337082,
0.03179078921675682,
-0.05585503578186035,
-0.004434633534401655,
-0.02909420058131218,
0.0044164531864225864,
0.001661587506532669,
0.2542833983898163,
-0.030212683603167534,
0.18049588799476624,
0.1928384006023407,
0.16074278950691223,
-0.0643971785902977,
0.025747103616595268,
-0.03970850259065628,
-0.06224387139081955,
0.057015709578990936,
-0.06660929322242737,
0.06526883691549301,
0.10454408824443817,
-0.03407369926571846,
0.07152801007032394,
0.10500849783420563,
0.003934265114367008,
-0.005649908911436796,
0.15089765191078186,
-0.22922804951667786,
-0.08001930266618729,
-0.030604729428887367,
-0.04161680489778519,
0.03250087797641754,
0.09769614785909653,
0.12872137129306793,
0.026323245838284492,
-0.019895857200026512,
0.004019148647785187,
0.007841414771974087,
0.005891422275453806,
0.08967097103595734,
0.09594812244176865,
0.050474029034376144,
-0.1079903170466423,
0.058246910572052,
0.04934660717844963,
-0.18307997286319733,
-0.005013585556298494,
0.12844698131084442,
-0.14188526570796967,
-0.1368982493877411,
0.045567043125629425,
0.17645899951457977,
-0.0690978392958641,
-0.0887957215309143,
-0.10028104484081268,
-0.1278117597103119,
0.02312706783413887,
0.21875523030757904,
0.09545133262872696,
0.043033190071582794,
-0.027176545932888985,
-0.018589982762932777,
-0.07736338675022125,
0.07302343845367432,
0.020888572558760643,
0.03124060295522213,
-0.1483340561389923,
0.027259480208158493,
-0.00954228825867176,
0.10604634135961533,
-0.09390588104724884,
-0.03167039155960083,
-0.16854877769947052,
0.03314746543765068,
-0.11261764913797379,
0.018935542553663254,
-0.08523940294981003,
-0.005350548308342695,
-0.011949451640248299,
-0.009167836979031563,
-0.04117186740040779,
-0.04585021734237671,
-0.09955883026123047,
0.0374307744204998,
-0.019535008817911148,
-0.007891064509749413,
-0.10313194245100021,
-0.05514005944132805,
0.05581255629658699,
-0.0405225045979023,
0.09443970769643784,
0.0776720866560936,
-0.06911604851484299,
0.07457076013088226,
-0.1969759166240692,
-0.07068533450365067,
0.14601469039916992,
0.010474481619894505,
0.06767378747463226,
0.04254285246133804,
0.03787267953157425,
0.0664595365524292,
-0.005466792732477188,
0.045169897377491,
0.08400635421276093,
-0.1086631640791893,
0.11195456236600876,
-0.06456442922353745,
-0.1546304076910019,
-0.05756569281220436,
0.0038816339801996946,
0.07319680601358414,
-0.0030566491186618805,
0.13409611582756042,
-0.10139663517475128,
0.08901290595531464,
-0.0730426087975502,
0.01404943410307169,
-0.011429169215261936,
-0.1725044548511505,
-0.04619845375418663,
-0.04316597431898117,
0.03470643237233162,
-0.021557608619332314,
0.20792388916015625,
0.0697784498333931,
0.0321061871945858,
0.037600141018629074,
0.026414470747113228,
0.042092036455869675,
0.02308434434235096,
0.17310957610607147,
0.03829153627157211,
-0.05917329713702202,
-0.0827135294675827,
0.050889935344457626,
0.030201274901628494,
-0.022778550162911415,
0.1260100156068802,
0.07791759818792343,
-0.0958913192152977,
0.0887836441397667,
-0.01153111457824707,
0.02272750809788704,
-0.10481906682252884,
-0.10144073516130447,
-0.05400701239705086,
0.0586831271648407,
0.012352745048701763,
0.03975102677941322,
0.16867861151695251,
-0.03515953570604324,
0.03445815667510033,
-0.044219326227903366,
-0.07775527983903885,
-0.19665385782718658,
-0.1372065395116806,
-0.1044323518872261,
-0.060189224779605865,
0.002355489879846573,
-0.0820685476064682,
-0.03828303888440132,
0.04023294523358345,
0.059103578329086304,
-0.038613852113485336,
0.15645523369312286,
0.043547600507736206,
-0.0035778230521827936,
0.07799462229013443,
0.009630351327359676,
0.035519469529390335,
0.007243441883474588,
-0.02236701361835003,
-0.12215960770845413,
-0.033741481602191925,
-0.03700955584645271,
0.023765547201037407,
-0.023282673209905624,
0.055007465183734894,
-0.10975804179906845,
-0.11522996425628662,
-0.02767234668135643,
0.06998401880264282,
-0.016072120517492294,
0.1216813325881958,
0.004734305199235678,
-0.021342048421502113,
0.03226631134748459,
0.20090998709201813,
-0.07247336953878403,
-0.08190517127513885,
-0.033937860280275345,
0.2062484472990036,
0.052528444677591324,
0.0799085944890976,
0.002737385919317603,
-0.04689016565680504,
-0.017391355708241463,
0.30111128091812134,
0.3020711839199066,
-0.033716317266225815,
0.07655347883701324,
-0.002863724250346422,
0.022280778735876083,
0.08497127145528793,
0.1290603131055832,
0.07519050687551498,
0.2671823799610138,
-0.08594983071088791,
-0.062064845114946365,
-0.025950472801923752,
-0.015085105784237385,
-0.1463252753019333,
0.08952706307172775,
0.04676401615142822,
-0.008851670660078526,
-0.058193087577819824,
0.12318701297044754,
-0.16973817348480225,
0.05200588330626488,
0.021755801513791084,
-0.19960543513298035,
-0.09195008128881454,
-0.016232626512646675,
0.15988771617412567,
-0.05556764826178551,
0.0650068148970604,
-0.019361844286322594,
-0.08618485182523727,
-0.027206916362047195,
0.020676827058196068,
-0.18184415996074677,
0.0574185885488987,
0.01257823221385479,
-0.02078513242304325,
0.08503514528274536,
-0.011279790662229061,
0.01201311219483614,
0.11271602660417557,
0.04228607192635536,
-0.03849433735013008,
0.0949975773692131,
0.021035198122262955,
-0.05749628692865372,
0.058564718812704086,
0.030616389587521553,
-0.014287264086306095,
-0.10152095556259155,
0.054035790264606476,
-0.12900221347808838,
0.059333641082048416,
-0.10246986895799637,
-0.057641565799713135,
-0.04158659651875496,
0.055860769003629684,
-0.05921158939599991,
0.07161883264780045,
0.06849411129951477,
0.008681817911565304,
0.014123821631073952,
-0.04587489739060402,
-0.0025091974530369043,
0.017932284623384476,
-0.06229269132018089,
-0.0940735712647438,
-0.10924091190099716,
-0.05607933551073074,
0.09878126531839371,
0.014888518489897251,
-0.23346230387687683,
-0.010786877945065498,
-0.08371343463659286,
0.015358468517661095,
-0.20308320224285126,
0.05629860237240791,
0.10254371166229248,
0.026976734399795532,
-0.012976269237697124,
-0.021747106686234474,
0.011900574900209904,
0.0653197169303894,
-0.11366554349660873,
-0.06936556845903397
] |
null | null |
transformers
|
## how to use
```python
from transformers import pipeline, set_seed
path = "akahana/indonesia-sentiment-roberta"
emotion = pipeline('text-classification',
model=path,device=0)
set_seed(42)
kalimat = "dia orang yang baik ya bunds."
preds = emotion(kalimat)
preds
```
|
{"language": "id", "widget": [{"text": "dia orang yang baik ya bunds."}]}
|
text-classification
|
akahana/indonesia-sentiment-roberta
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"id",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"id"
] |
TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us
|
## how to use
|
[
"## how to use"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n",
"## how to use"
] |
[
43,
4
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n## how to use"
] |
[
-0.03284751996397972,
0.07392416149377823,
-0.0061490838415920734,
0.039486054331064224,
0.20389968156814575,
0.02399827539920807,
0.10531815141439438,
0.1286243051290512,
0.058293189853429794,
-0.0036875426303595304,
0.09275975078344345,
0.24460792541503906,
-0.01206942182034254,
0.044328320771455765,
-0.11871017515659332,
-0.3106755316257477,
0.004882248118519783,
0.07124484330415726,
-0.04984074458479881,
0.09964645653963089,
0.07368037849664688,
-0.09992173314094543,
0.05032755061984062,
-0.017752187326550484,
-0.1570565104484558,
0.031132113188505173,
0.023366697132587433,
-0.12333223223686218,
0.11021938174962997,
0.046731576323509216,
0.17112843692302704,
0.042947787791490555,
-0.0187120009213686,
-0.14772044122219086,
0.03915177285671234,
0.010630873031914234,
-0.08021227270364761,
0.07369477301836014,
0.09644567966461182,
-0.10131257027387619,
0.04597749933600426,
0.001537109143100679,
0.036734264343976974,
0.03024243377149105,
-0.12230019271373749,
-0.03388850763440132,
-0.004073058255016804,
0.010331615805625916,
0.08437148481607437,
0.0583236888051033,
0.00969934556633234,
0.1384509652853012,
-0.08876035362482071,
0.1135413721203804,
0.0971815437078476,
-0.30277198553085327,
-0.03399471566081047,
0.141605943441391,
0.04593651741743088,
0.06533745676279068,
-0.06578312069177628,
0.05111805722117424,
0.012131421826779842,
0.014464256353676319,
0.044105809181928635,
-0.082642562687397,
-0.11882170289754868,
0.036361850798130035,
-0.1010490134358406,
-0.026781409978866577,
0.1536123901605606,
-0.06608237326145172,
0.07787257432937622,
-0.042632099241018295,
-0.09896688908338547,
-0.04170285537838936,
-0.04862065985798836,
-0.007779804989695549,
-0.04476271942257881,
0.05453142523765564,
0.0020579188130795956,
-0.08205069601535797,
-0.13413047790527344,
0.015836011618375778,
-0.17497451603412628,
0.16906078159809113,
0.008169416338205338,
0.033133432269096375,
-0.1520622968673706,
0.06302570551633835,
0.02573736570775509,
-0.08395416289567947,
0.0873117446899414,
-0.06969022005796432,
0.009600748308002949,
-0.04031545668840408,
-0.03615814447402954,
-0.1608734279870987,
0.09602155536413193,
0.08857375383377075,
0.0395226776599884,
0.07629247009754181,
-0.028667768463492393,
0.10370757430791855,
0.02128121815621853,
0.16683673858642578,
0.007461384870111942,
-0.044355619698762894,
0.06601248681545258,
-0.08968981355428696,
0.011736741289496422,
-0.07851000130176544,
-0.1927250176668167,
-0.03449693322181702,
0.08561971783638,
0.08704633265733719,
0.03224598243832588,
0.06783280521631241,
-0.04015437886118889,
-0.055493082851171494,
0.04935048520565033,
-0.10705224424600601,
0.04788859561085701,
0.016393210738897324,
0.021022861823439598,
0.06044556945562363,
0.02256973274052143,
-0.0180120337754488,
-0.0924266055226326,
0.10813631117343903,
-0.04152951389551163,
0.017099661752581596,
-0.06921357661485672,
-0.10096830129623413,
0.02178439497947693,
-0.18842437863349915,
0.020430153235793114,
-0.14946898818016052,
-0.09942145645618439,
-0.005316511262208223,
0.04065389186143875,
-0.026358166709542274,
-0.010866038501262665,
-0.025537703186273575,
0.004407151602208614,
0.04893386736512184,
-0.034979015588760376,
-0.03954234719276428,
-0.04571295902132988,
0.07665213197469711,
-0.0437803789973259,
0.06999069452285767,
-0.09062524139881134,
0.0731683298945427,
-0.05590834841132164,
0.0005782766384072602,
-0.15423540771007538,
0.06401229649782181,
-0.06242191419005394,
0.13833358883857727,
-0.02909827046096325,
-0.033059023320674896,
-0.0664701834321022,
0.040516987442970276,
-0.024168135598301888,
0.1293029934167862,
-0.10316801071166992,
-0.0911383181810379,
0.1948167234659195,
-0.09231835603713989,
-0.12883031368255615,
0.10596147179603577,
-0.028096547350287437,
0.0330488346517086,
0.061531126499176025,
0.20106185972690582,
0.15481485426425934,
-0.021068116649985313,
0.08965503424406052,
0.14335143566131592,
-0.062293291091918945,
-0.1419764757156372,
-0.023951349779963493,
-0.009671014733612537,
-0.049180008471012115,
0.03723960742354393,
0.07595547288656235,
0.08509180694818497,
-0.03187442198395729,
-0.056186653673648834,
-0.024057859554886818,
-0.02977767586708069,
0.09588064253330231,
0.08181003481149673,
0.12657812237739563,
-0.04727699235081673,
0.002309938194230199,
0.03763739392161369,
-0.016194704920053482,
-0.038895245641469955,
0.03539929538965225,
-0.07269174605607986,
0.14187194406986237,
-0.04236232116818428,
0.014516604132950306,
-0.24142353236675262,
-0.09486352652311325,
-0.01627940498292446,
0.11843904852867126,
0.004914141725748777,
0.12433455884456635,
0.0734783411026001,
-0.03863414749503136,
-0.01736428216099739,
-0.0037316037341952324,
0.19211724400520325,
0.022096432745456696,
-0.08514122664928436,
-0.09054175764322281,
0.051842398941516876,
-0.08497092127799988,
0.005638415925204754,
-0.1066255196928978,
0.030756894499063492,
0.0836823433637619,
0.0840243250131607,
0.02157047763466835,
0.059737950563430786,
-0.004847624339163303,
0.058723341673612595,
-0.0741063728928566,
-0.0005954286316409707,
0.11369255185127258,
0.003969776909798384,
-0.1050238236784935,
0.10863285511732101,
-0.1638784259557724,
0.25029703974723816,
0.18776701390743256,
-0.2679271697998047,
-0.008743477053940296,
-0.03882410377264023,
-0.003576928749680519,
0.018378274515271187,
0.008669278584420681,
0.02844933234155178,
0.10862455517053604,
0.00835779681801796,
0.1932089775800705,
-0.02335468679666519,
-0.04040894657373428,
0.0011158451670780778,
-0.06334191560745239,
-0.0353534072637558,
0.07591721415519714,
0.0938769057393074,
-0.187194362282753,
0.17349520325660706,
0.15197014808654785,
-0.055925339460372925,
0.19402649998664856,
-0.003570389002561569,
0.013668671250343323,
0.07531138509511948,
0.008183525875210762,
0.011319716461002827,
-0.0455286018550396,
-0.20087601244449615,
-0.039816342294216156,
0.0626300573348999,
-0.00531830033287406,
0.08135470002889633,
-0.14992141723632812,
-0.011167113669216633,
-0.002167925238609314,
0.011399103328585625,
0.05417662486433983,
0.04012155160307884,
0.0517423190176487,
0.08645357191562653,
0.010228345170617104,
-0.08244866132736206,
0.08961490541696548,
-0.0029780776239931583,
-0.08004659414291382,
0.19928963482379913,
-0.12091904133558273,
-0.31552326679229736,
-0.15409637987613678,
-0.17120292782783508,
-0.02290085330605507,
0.03790728375315666,
0.0739513635635376,
-0.09826265275478363,
-0.04626402258872986,
0.029453137889504433,
-0.01823941245675087,
-0.0451824814081192,
0.02145383320748806,
-0.06484919041395187,
0.08048847317695618,
-0.055393096059560776,
-0.08408453315496445,
-0.05722019076347351,
-0.03218710795044899,
-0.01883668825030327,
0.14830096065998077,
-0.0994667336344719,
0.09033668041229248,
0.21355512738227844,
-0.0271216481924057,
0.07256253063678741,
-0.027302106842398643,
0.12036964297294617,
-0.10082060098648071,
0.023723546415567398,
0.15428632497787476,
-0.0794023796916008,
0.084299236536026,
0.13121995329856873,
0.05502557381987572,
-0.0435817651450634,
-0.001135872327722609,
-0.020599795505404472,
-0.11535186320543289,
-0.2663436830043793,
-0.13627029955387115,
-0.13354744017124176,
0.03482866659760475,
0.06600037217140198,
0.08515752851963043,
0.13260406255722046,
0.1144503802061081,
0.05381585285067558,
0.03075150027871132,
0.01694265380501747,
0.07162667065858841,
0.2124771922826767,
0.020980382338166237,
0.14118649065494537,
-0.08297334611415863,
-0.14833547174930573,
0.07249253243207932,
0.06516445428133011,
0.14406579732894897,
0.08412066847085953,
0.08620346337556839,
0.007059095427393913,
0.07907960563898087,
0.13346409797668457,
0.12999409437179565,
0.012321226298809052,
-0.019425585865974426,
-0.002143724123016,
-0.007977255620062351,
-0.03816443309187889,
0.022681545466184616,
0.09804894775152206,
-0.13302648067474365,
-0.011705090291798115,
-0.08528647571802139,
0.08901437371969223,
0.10932350158691406,
0.033924221992492676,
-0.22180314362049103,
0.013720162212848663,
0.0743546187877655,
-0.01107966061681509,
-0.08925916999578476,
0.058315351605415344,
-0.006008262746036053,
-0.1233048364520073,
0.07847709953784943,
-0.08426252007484436,
0.1316247433423996,
-0.12767358124256134,
0.04516718536615372,
-0.04146093502640724,
-0.07068457454442978,
0.017187222838401794,
0.1138831302523613,
-0.23789097368717194,
0.21692541241645813,
0.02301969565451145,
-0.03695102408528328,
-0.0826166644692421,
0.0029724689666181803,
0.07014992088079453,
0.17397703230381012,
0.08778330683708191,
-0.02514803409576416,
-0.039023760706186295,
-0.1340842843055725,
-0.027434462681412697,
-0.0040833111852407455,
0.10810201615095139,
-0.006837587337940931,
-0.007504854816943407,
-0.03483989089727402,
-0.037445396184921265,
-0.008332586847245693,
-0.09554650634527206,
0.04135102033615112,
-0.21071352064609528,
0.05415941774845123,
0.014018059708178043,
-0.048904821276664734,
0.04145805910229683,
-0.053867168724536896,
-0.1403573751449585,
0.25135162472724915,
-0.08502928167581558,
-0.08306924253702164,
-0.12173498421907425,
-0.054766666144132614,
0.0315251499414444,
-0.09226170927286148,
0.05678433179855347,
-0.08110236376523972,
0.044522907584905624,
-0.08244544267654419,
-0.20467668771743774,
0.12025034427642822,
-0.09537535905838013,
-0.002577614039182663,
-0.0519079826772213,
0.13336844742298126,
-0.061074454337358475,
0.009000573307275772,
0.04161722585558891,
0.021311651915311813,
-0.08148953318595886,
-0.10247141122817993,
0.02089124359190464,
0.006752548739314079,
0.06491520255804062,
0.029028762131929398,
-0.08786846697330475,
-0.06174907088279724,
-0.021123968064785004,
0.029740765690803528,
0.31538712978363037,
0.11923183500766754,
-0.08399783819913864,
0.12070930749177933,
0.11207170784473419,
-0.07925739139318466,
-0.3465035855770111,
-0.04998959228396416,
-0.0853046402335167,
-0.029996411874890327,
-0.010761326178908348,
-0.16859179735183716,
0.09906598925590515,
-0.01916709914803505,
-0.0351141132414341,
0.09762436896562576,
-0.18483667075634003,
-0.09545222669839859,
0.2077348232269287,
0.0526481531560421,
0.2540505528450012,
-0.1480235457420349,
-0.10899951308965683,
-0.027231300249695778,
-0.06189817935228348,
0.1335969865322113,
-0.06790602207183838,
0.0927698090672493,
-0.009317154064774513,
0.05657730996608734,
0.04440070688724518,
-0.06859312206506729,
0.09825588762760162,
-0.031333424150943756,
-0.0025902146007865667,
-0.09805943816900253,
-0.09814932197332382,
0.06291946023702621,
-0.03717328980565071,
0.008746185339987278,
-0.012247782200574875,
-0.001228532986715436,
-0.12312348932027817,
-0.04523373022675514,
-0.048114947974681854,
0.07521522045135498,
0.041923269629478455,
-0.05919352173805237,
-0.018769798800349236,
-0.027887893840670586,
-0.0009119726601056755,
0.010742150247097015,
0.2642112076282501,
-0.038945943117141724,
0.15645650029182434,
0.18946535885334015,
0.14916940033435822,
-0.07377025485038757,
-0.00960309524089098,
-0.057867515832185745,
-0.04800371080636978,
0.05927451327443123,
-0.09482026845216751,
0.055978260934352875,
0.11897988617420197,
-0.036878038197755814,
0.07868305593729019,
0.10232289880514145,
0.0025186752900481224,
-0.003808768931776285,
0.1423867791891098,
-0.21049199998378754,
-0.06099187582731247,
-0.044990066438913345,
-0.07125594466924667,
0.03893999382853508,
0.07193395495414734,
0.13281787931919098,
0.03235764428973198,
-0.027462301775813103,
0.023686794564127922,
-0.0020499026868492365,
0.00006916841812198982,
0.0856194868683815,
0.10011536628007889,
0.04827005788683891,
-0.11666049063205719,
0.051862869411706924,
0.07113099843263626,
-0.1806333065032959,
-0.008310377597808838,
0.14675277471542358,
-0.13167621195316315,
-0.1317136585712433,
0.023202357813715935,
0.18461555242538452,
-0.1115088015794754,
-0.0589759461581707,
-0.09811033308506012,
-0.11034489423036575,
0.04246789216995239,
0.196163609623909,
0.10621602833271027,
0.0432385690510273,
-0.062137242406606674,
-0.02183111198246479,
-0.053644876927137375,
0.04706927761435509,
0.01808561012148857,
0.024419698864221573,
-0.12891899049282074,
0.016209954395890236,
-0.009288552217185497,
0.13981126248836517,
-0.09165561944246292,
-0.062415506690740585,
-0.1669330596923828,
0.03396331146359444,
-0.11187712103128433,
0.005415432155132294,
-0.08011336624622345,
-0.005927897524088621,
-0.00549319526180625,
-0.017669949680566788,
-0.05393350496888161,
-0.058371227234601974,
-0.11987466365098953,
0.027532026171684265,
-0.030979184433817863,
0.008220687508583069,
-0.08596820384263992,
-0.04455830529332161,
0.06183392554521561,
-0.03227453678846359,
0.09123889356851578,
0.078870989382267,
-0.057687416672706604,
0.07694520801305771,
-0.13994082808494568,
-0.07912866771221161,
0.13842982053756714,
0.030048614367842674,
0.09018229693174362,
0.053705815225839615,
0.03805511072278023,
0.03916461765766144,
0.002949875546619296,
0.04745969548821449,
0.09057773649692535,
-0.113650381565094,
0.09582149237394333,
-0.09052541851997375,
-0.16466134786605835,
-0.06179463118314743,
0.03436003997921944,
0.07269194722175598,
0.02248287759721279,
0.11402086913585663,
-0.0822046622633934,
0.10080631822347641,
-0.06611001491546631,
0.010726060718297958,
-0.01753164641559124,
-0.17008890211582184,
-0.016834646463394165,
-0.07757370918989182,
0.027081407606601715,
-0.02570929005742073,
0.2106572389602661,
0.08089487999677658,
0.040128860622644424,
0.03287886455655098,
0.049700334668159485,
0.018033871427178383,
0.014535197988152504,
0.15551865100860596,
0.06501960754394531,
-0.05301722511649132,
-0.06616377085447311,
0.07671219110488892,
0.028762726113200188,
0.038537196815013885,
0.1330021470785141,
0.05082124471664429,
-0.08678027987480164,
0.09571411460638046,
-0.006729346700012684,
0.027942420914769173,
-0.12709234654903412,
-0.07354006916284561,
-0.036730919033288956,
0.08512289077043533,
0.004745099693536758,
0.042468294501304626,
0.13766513764858246,
-0.05059453472495079,
0.059911247342824936,
-0.03525003790855408,
-0.08433043956756592,
-0.18965931236743927,
-0.14254069328308105,
-0.09857527166604996,
-0.0821649432182312,
-0.0028576378244906664,
-0.07720694690942764,
-0.029190776869654655,
0.0548015721142292,
0.0558108314871788,
-0.043078646063804626,
0.11809715628623962,
0.029472995549440384,
-0.02223644219338894,
0.08679118752479553,
-0.0005647345678880811,
0.0374484620988369,
-0.02368186227977276,
-0.008976317010819912,
-0.12912483513355255,
-0.019720783457159996,
-0.034235067665576935,
0.02686305344104767,
-0.022225147113204002,
0.037199467420578,
-0.11066340655088425,
-0.12384708225727081,
-0.026994163170456886,
0.05661613494157791,
-0.01548044104129076,
0.12393951416015625,
-0.002482157200574875,
-0.02085752598941326,
0.027367910370230675,
0.20134714245796204,
-0.0838819220662117,
-0.039697084575891495,
-0.04147273302078247,
0.19881269335746765,
0.059431493282318115,
0.0763203427195549,
0.004585469141602516,
-0.039916008710861206,
-0.049521833658218384,
0.31066933274269104,
0.31162169575691223,
-0.05093914270401001,
0.05984745919704437,
0.03231760859489441,
0.023962803184986115,
0.1147533655166626,
0.1327114999294281,
0.061949990689754486,
0.23706869781017303,
-0.08813697099685669,
-0.08219822496175766,
-0.034512873739004135,
-0.03050607070326805,
-0.12781694531440735,
0.10275546461343765,
0.07402680069208145,
-0.02541724219918251,
-0.05254136398434639,
0.11876798421144485,
-0.19549217820167542,
0.05300752446055412,
0.03928014263510704,
-0.2252887338399887,
-0.1085578128695488,
-0.026915883645415306,
0.13175532221794128,
-0.04654495418071747,
0.07616379112005234,
-0.012595879845321178,
-0.09543756395578384,
-0.016597570851445198,
0.029535803943872452,
-0.2167610228061676,
0.051539599895477295,
0.03980935737490654,
-0.03810928016901016,
0.0364314466714859,
-0.025184977799654007,
0.014669018797576427,
0.10886285454034805,
0.0698683112859726,
-0.01129003707319498,
0.053514860570430756,
0.02210024558007717,
-0.04306938126683235,
0.04703829437494278,
0.03508899733424187,
-0.009090272709727287,
-0.12094961106777191,
0.0620666965842247,
-0.12866835296154022,
0.05410529300570488,
-0.11188452690839767,
-0.044560372829437256,
-0.029831338673830032,
0.037374451756477356,
-0.06779780983924866,
0.07218433916568756,
0.09573616832494736,
0.01959916017949581,
-0.006932793650776148,
-0.0549754798412323,
-0.024292247369885445,
0.024260027334094048,
-0.07069318741559982,
-0.13903497159481049,
-0.08875726908445358,
-0.08780376613140106,
0.06418926268815994,
0.004392793867737055,
-0.20431479811668396,
-0.013794136233627796,
-0.07624112069606781,
0.030434926971793175,
-0.18561643362045288,
0.07896272838115692,
0.07567986845970154,
0.01752517744898796,
-0.014554009772837162,
-0.022128012031316757,
0.021055670455098152,
0.05617275834083557,
-0.13994616270065308,
-0.057962581515312195
] |
null | null |
transformers
|
# Indonesian RoBERTa Base
## How to Use
### As Masked Language Model
```python
from transformers import pipeline
pretrained_name = "akahana/roberta-base-indonesia"
fill_mask = pipeline(
"fill-mask",
model=pretrained_name,
tokenizer=pretrained_name
)
fill_mask("Gajah <mask> sedang makan di kebun binatang.")
```
### Feature Extraction in PyTorch
```python
from transformers import RobertaModel, RobertaTokenizerFast
pretrained_name = "akahana/roberta-base-indonesia"
model = RobertaModel.from_pretrained(pretrained_name)
tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name)
prompt = "Gajah <mask> sedang makan di kebun binatang."
encoded_input = tokenizer(prompt, return_tensors='pt')
output = model(**encoded_input)
```
|
{"language": "id", "license": "mit", "tags": ["roberta-base-indonesia"], "datasets": ["wikipedia"], "widget": [{"text": "Gajah <mask> sedang makan di kebun binatang."}]}
|
feature-extraction
|
akahana/roberta-base-indonesia
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"roberta",
"feature-extraction",
"roberta-base-indonesia",
"id",
"dataset:wikipedia",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"id"
] |
TAGS
#transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us
|
# Indonesian RoBERTa Base
## How to Use
### As Masked Language Model
### Feature Extraction in PyTorch
|
[
"# Indonesian RoBERTa Base",
"## How to Use",
"### As Masked Language Model",
"### Feature Extraction in PyTorch"
] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n",
"# Indonesian RoBERTa Base",
"## How to Use",
"### As Masked Language Model",
"### Feature Extraction in PyTorch"
] |
[
59,
7,
4,
7,
9
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n# Indonesian RoBERTa Base## How to Use### As Masked Language Model### Feature Extraction in PyTorch"
] |
[
-0.0330832339823246,
-0.016156518831849098,
-0.0027613106649369,
0.06428340077400208,
0.10226626694202423,
-0.023883624002337456,
0.056818243116140366,
0.11190911382436752,
-0.03275112807750702,
-0.04293511062860489,
0.09194369614124298,
0.14963428676128387,
0.06160392239689827,
0.0493992380797863,
-0.02339276485145092,
-0.3657926917076111,
0.08593808859586716,
0.004968530032783747,
0.12976716458797455,
0.16828888654708862,
0.11795037239789963,
-0.04138844087719917,
0.10865994542837143,
0.0034548852127045393,
-0.05881161615252495,
-0.009598706848919392,
-0.06054968386888504,
-0.15859121084213257,
0.09482012689113617,
-0.02299516834318638,
0.07306420803070068,
0.01956014335155487,
-0.006203295197337866,
-0.08788500726222992,
0.03192800283432007,
-0.03260723501443863,
-0.05257030948996544,
0.021191181614995003,
0.014091177843511105,
-0.033337973058223724,
0.174185648560524,
0.07966939359903336,
0.0031741682905703783,
-0.028456686064600945,
-0.1268155574798584,
-0.22438079118728638,
-0.11042401939630508,
0.13650929927825928,
0.08051478862762451,
0.09922066330909729,
-0.014021029695868492,
0.12514516711235046,
-0.21352626383304596,
0.05091242864727974,
0.14937235414981842,
-0.19591352343559265,
-0.024295108392834663,
-0.04431690648198128,
0.053950563073158264,
0.003378537017852068,
-0.002560475841164589,
-0.0003009136999025941,
-0.01879098080098629,
0.03975684568285942,
0.03020988218486309,
-0.13231270015239716,
-0.21264168620109558,
-0.06750791519880295,
-0.021970044821500778,
-0.03226189315319061,
0.1585889458656311,
0.009257459081709385,
-0.021936709061264992,
-0.04501719772815704,
-0.04504834860563278,
0.06646712124347687,
-0.04141706973314285,
-0.007958617061376572,
-0.045501966029405594,
0.020318901166319847,
0.08602490276098251,
-0.0759890079498291,
-0.07506657391786575,
-0.013326045125722885,
-0.10088126361370087,
0.16683271527290344,
0.05483375862240791,
0.057629503309726715,
-0.13433274626731873,
0.0685238167643547,
-0.06504899263381958,
-0.19519296288490295,
-0.009781564585864544,
-0.04223908856511116,
0.13266725838184357,
0.13292306661605835,
0.07119759917259216,
0.032054610550403595,
0.1236373633146286,
0.16528646647930145,
-0.06028555706143379,
-0.016075802966952324,
-0.007237729150801897,
0.09244906902313232,
-0.03220674395561218,
0.0880625769495964,
-0.18856258690357208,
-0.049367766827344894,
0.11937803775072098,
-0.08694949001073837,
0.0686270222067833,
-0.0536719486117363,
-0.09907032549381256,
-0.0353672169148922,
0.102772057056427,
0.1299302577972412,
0.05974746495485306,
0.07843293994665146,
0.0026997134555131197,
-0.042845215648412704,
0.18859289586544037,
-0.10961779206991196,
-0.07146944105625153,
-0.040015339851379395,
-0.006599745247513056,
0.031499143689870834,
0.041969578713178635,
0.0003003163146786392,
-0.056477632373571396,
0.05579155310988426,
0.0037486348301172256,
0.011869524605572224,
-0.02113458514213562,
-0.055042874068021774,
0.015448939986526966,
-0.10488848388195038,
0.04693969339132309,
-0.18159231543540955,
-0.21866543591022491,
0.01809339039027691,
0.01760411448776722,
-0.05167330056428909,
0.021244332194328308,
-0.010379801504313946,
-0.04415120556950569,
0.0022913706488907337,
-0.07450339198112488,
0.005469390191137791,
-0.06294816732406616,
0.09198721498250961,
0.021135833114385605,
0.0810779482126236,
-0.13192692399024963,
0.05875307694077492,
-0.1839519441127777,
0.060398176312446594,
-0.2058284431695938,
0.010919208638370037,
-0.02891114540398121,
0.10785191506147385,
-0.05369599536061287,
-0.12385504692792892,
-0.06294775754213333,
-0.01667606830596924,
-0.017548969015479088,
0.12468130886554718,
-0.08123400807380676,
-0.034071698784828186,
0.22293858230113983,
-0.16941839456558228,
-0.15891577303409576,
0.0933145061135292,
-0.005972987040877342,
0.09238536655902863,
-0.012190397828817368,
0.1845826506614685,
0.06046489626169205,
0.0473957434296608,
0.107140451669693,
0.057091642171144485,
-0.0833960473537445,
-0.04655785858631134,
0.08673006296157837,
-0.01687033660709858,
-0.008720450103282928,
0.0887715220451355,
-0.10479284077882767,
0.10662347078323364,
-0.012297388166189194,
-0.0739942267537117,
-0.004293912090361118,
-0.0738907903432846,
0.07862871140241623,
0.04511765018105507,
0.08679769933223724,
-0.05057641863822937,
0.004690276924520731,
-0.03326618671417236,
0.07357590645551682,
-0.03612573817372322,
0.007485528942197561,
-0.07306233048439026,
0.21306012570858002,
-0.05309109389781952,
0.0021443862933665514,
-0.1934979110956192,
0.017133576795458794,
-0.013743778690695763,
0.06036710366606712,
0.03192874416708946,
-0.11263588070869446,
0.028706973418593407,
-0.014019807800650597,
-0.048333924263715744,
-0.07411160320043564,
0.08680006116628647,
0.02833513729274273,
0.0901782289147377,
-0.061290059238672256,
9.401125566910196e-8,
0.0016782357124611735,
-0.023122206330299377,
0.043900419026613235,
-0.023564405739307404,
-0.07750756293535233,
0.04832791909575462,
-0.04884137958288193,
0.07565390318632126,
0.05267927050590515,
0.07175177335739136,
-0.016194161027669907,
-0.037090640515089035,
0.045987289398908615,
-0.01287668477743864,
-0.05294405296444893,
0.21396949887275696,
-0.041559088975191116,
0.22034497559070587,
0.18641389906406403,
-0.16298837959766388,
-0.02982134185731411,
0.12349054962396622,
-0.004904363304376602,
-0.006719605531543493,
0.005403259303420782,
0.07737075537443161,
0.068622887134552,
-0.020479433238506317,
0.11684100329875946,
-0.1000097468495369,
-0.004364911932498217,
0.015164044685661793,
-0.09688261896371841,
-0.001055842381902039,
0.0711115375161171,
0.01963934861123562,
-0.2564457356929779,
0.17282608151435852,
0.09424375742673874,
0.011301802471280098,
0.11068953573703766,
-0.034441448748111725,
-0.004950257483869791,
-0.01635565422475338,
0.05101517215371132,
-0.028394125401973724,
0.048776283860206604,
-0.222147136926651,
-0.03319636359810829,
0.09515456855297089,
-0.013156496919691563,
0.044179487973451614,
-0.08099368214607239,
-0.08399344980716705,
-0.012564534321427345,
-0.017677638679742813,
-0.07617121934890747,
0.07169586420059204,
0.01452095340937376,
0.09937312453985214,
-0.01599927619099617,
-0.07755621522665024,
0.02593177556991577,
-0.00826676283031702,
-0.05411425232887268,
0.2245609015226364,
-0.06892472505569458,
-0.3332681357860565,
-0.0926460400223732,
-0.0856698527932167,
-0.04636261984705925,
-0.02514537051320076,
0.09625021368265152,
-0.0684908926486969,
-0.027512643486261368,
-0.010565024800598621,
-0.12529945373535156,
0.012448723427951336,
-0.012689164839684963,
-0.15472787618637085,
0.030772551894187927,
-0.05142217129468918,
-0.10767672955989838,
-0.04587394371628761,
-0.012062152847647667,
0.025003507733345032,
0.16129110753536224,
-0.06720905005931854,
0.12819108366966248,
0.09118370711803436,
-0.02358858846127987,
0.04208279028534889,
0.02388325147330761,
0.156126007437706,
-0.08825169503688812,
0.013025778345763683,
0.2696874737739563,
-0.0466088131070137,
0.03167400881648064,
0.11263138800859451,
0.022599169984459877,
-0.038080841302871704,
0.0015044778119772673,
-0.0743059441447258,
-0.09578963369131088,
-0.19241014122962952,
-0.058055438101291656,
-0.0973626896739006,
-0.05023534223437309,
-0.036186132580041885,
0.02266973815858364,
0.1491427719593048,
0.09817774593830109,
-0.005113361403346062,
-0.013594020158052444,
0.03022598661482334,
0.0011651645181700587,
0.06364329159259796,
0.005572656635195017,
0.09699105471372604,
-0.05410590395331383,
-0.08664660900831223,
0.037468504160642624,
-0.03448784723877907,
0.19999176263809204,
0.0142746577039361,
-0.0030645921360701323,
0.12673310935497284,
0.32293352484703064,
0.08015157282352448,
0.1427163928747177,
-0.11572527885437012,
0.02725595235824585,
-0.021169019863009453,
-0.07826400548219681,
0.017304133623838425,
-0.03252727538347244,
-0.05546755716204643,
0.02091587521135807,
-0.02101929485797882,
-0.09603165835142136,
0.08110116422176361,
0.12041081488132477,
-0.026272866874933243,
-0.13275094330310822,
-0.04616694524884224,
0.019066551700234413,
0.043410006910562515,
-0.03731383755803108,
0.03470325842499733,
0.02434886433184147,
-0.18075472116470337,
0.04153267294168472,
0.028012141585350037,
0.09510670602321625,
-0.03237665444612503,
-0.00789621938019991,
-0.08555766940116882,
-0.04055112227797508,
0.026868171989917755,
0.13122686743736267,
-0.19805629551410675,
0.32468563318252563,
0.0009403838193975389,
0.02849242091178894,
-0.09377453476190567,
-0.01695895381271839,
0.06673303991556168,
0.060672882944345474,
0.19998051226139069,
0.024572452530264854,
-0.05354341119527817,
-0.11596646159887314,
-0.08451684564352036,
0.04998944327235222,
0.06005050987005234,
0.043170467019081116,
-0.02971944399178028,
-0.0034577480982989073,
-0.01780647225677967,
-0.0027972327079623938,
0.028725039213895798,
-0.04304281622171402,
-0.06213618442416191,
0.015591737814247608,
-0.04350975155830383,
-0.00033755769254639745,
-0.04716874659061432,
-0.02947109192609787,
0.040627371519804,
0.13344426453113556,
0.04456906020641327,
-0.1411028951406479,
-0.10045960545539856,
-0.08074513077735901,
0.1667652279138565,
-0.1554681658744812,
0.04885447397828102,
-0.06313879787921906,
-0.033670637756586075,
-0.015420626848936081,
-0.12925881147384644,
0.09848257899284363,
-0.07361644506454468,
-0.07811599969863892,
0.018859632313251495,
0.10840516537427902,
0.018692705780267715,
-0.013404535129666328,
0.08680137991905212,
-0.031166590750217438,
-0.03772898390889168,
-0.17059072852134705,
-0.08067356795072556,
-0.017434805631637573,
0.02394004352390766,
0.06323933601379395,
-0.04815660044550896,
-0.07184386998414993,
-0.07085061073303223,
-0.05943487957119942,
0.19142068922519684,
0.08729559928178787,
-0.027691710740327835,
0.08636045455932617,
0.24557572603225708,
0.0014305432559922338,
-0.22943216562271118,
-0.1814878284931183,
-0.11147110909223557,
-0.03516750410199165,
-0.006315823178738356,
-0.037683919072151184,
0.08607321232557297,
0.08503665030002594,
-0.030134327709674835,
-0.027378126978874207,
-0.197986900806427,
-0.09932665526866913,
0.24432417750358582,
0.08186402916908264,
0.20469440519809723,
-0.12284687906503677,
-0.09412591904401779,
-0.010219083167612553,
-0.20863425731658936,
0.05218425393104553,
-0.07730837911367416,
0.0427904836833477,
-0.04260271415114403,
0.004680576268583536,
-0.005464623682200909,
-0.019028933718800545,
0.13641571998596191,
-0.04915772005915642,
0.05072866007685661,
-0.09854438155889511,
-0.09563243389129639,
0.1273294985294342,
0.052827250212430954,
0.13865435123443604,
0.016366813331842422,
0.070242740213871,
-0.09758160263299942,
-0.03275317698717117,
-0.16223695874214172,
0.083828866481781,
0.016955487430095673,
-0.09702502191066742,
-0.010701913386583328,
0.0744023248553276,
0.006938700098544359,
0.03183262422680855,
0.1216018870472908,
-0.008081423118710518,
0.06789691746234894,
-0.02009347267448902,
0.07786224037408829,
-0.11414840072393417,
0.023710744455456734,
-0.10764340311288834,
-0.04266604036092758,
0.039960578083992004,
-0.06342009454965591,
-0.03459020331501961,
0.0330926775932312,
0.02525470033288002,
0.0690426379442215,
0.04954257607460022,
-0.08409848809242249,
0.09189353883266449,
0.10237953811883926,
-0.08937565982341766,
-0.06378194689750671,
-0.04102429375052452,
-0.12875355780124664,
0.07892012596130371,
-0.05076140910387039,
0.012404914945363998,
-0.0778096616268158,
-0.08164698630571365,
-0.030847856774926186,
0.016851212829351425,
-0.0996997132897377,
0.08393507450819016,
0.127780020236969,
0.04264369234442711,
-0.14303775131702423,
0.10931509733200073,
0.0848950445652008,
-0.007176339626312256,
-0.010693992488086224,
0.13665224611759186,
-0.11867814511060715,
-0.10492740571498871,
0.017985863611102104,
0.10560573637485504,
-0.08202281594276428,
-0.1068456843495369,
-0.06299389898777008,
-0.10005760937929153,
-0.03812308609485626,
0.08458933979272842,
0.05802524834871292,
0.007848546840250492,
-0.002339904196560383,
-0.06812625378370285,
0.013949963264167309,
0.03448263183236122,
0.07580050081014633,
-0.022853180766105652,
-0.04012228921055794,
0.005164254456758499,
0.09286846965551376,
0.18272008001804352,
-0.06530676037073135,
-0.043962158262729645,
-0.09346179664134979,
0.04386139661073685,
-0.08481957763433456,
0.02709963545203209,
-0.1617884635925293,
-0.016327321529388428,
-0.049589987844228745,
-0.09199799597263336,
-0.008689289912581444,
0.00960418488830328,
-0.07649637013673782,
0.003720760578289628,
-0.019758768379688263,
-0.008732171729207039,
-0.13063810765743256,
-0.057090844959020615,
0.10850102454423904,
-0.005636369343847036,
0.07725534588098526,
0.17679570615291595,
-0.06105594336986542,
0.12945671379566193,
-0.25187578797340393,
-0.09426341950893402,
0.0684734508395195,
0.02810208685696125,
0.07598063349723816,
-0.042396023869514465,
0.04404152184724808,
0.0558902770280838,
-0.025969121605157852,
0.019647536799311638,
0.023644937202334404,
-0.14665360748767853,
-0.0656360387802124,
-0.0480848103761673,
-0.07314720749855042,
-0.0438498854637146,
0.044759515672922134,
0.1499672532081604,
-0.016474653035402298,
0.06908448040485382,
-0.06147909536957741,
0.10367840528488159,
-0.11077185720205307,
-0.014374127611517906,
-0.07768599689006805,
-0.1652471274137497,
-0.011867311783134937,
-0.04941222444176674,
0.010134855285286903,
-0.014613746665418148,
0.1959395408630371,
0.05389822646975517,
0.05536981672048569,
-0.028498198837041855,
0.04201965034008026,
0.0531427338719368,
0.013146590441465378,
0.26997846364974976,
0.04482197389006615,
-0.0327371284365654,
-0.05186671391129494,
0.02325955405831337,
-0.055548861622810364,
-0.013474916107952595,
0.046901822090148926,
0.18759135901927948,
0.14344404637813568,
0.036911431699991226,
0.11129266768693924,
0.055864639580249786,
-0.06889459490776062,
-0.2648426294326782,
0.05994240194559097,
0.019108127802610397,
0.03408459201455116,
0.05541151389479637,
0.19722139835357666,
-0.10328678786754608,
0.08864212781190872,
0.0386781208217144,
-0.07009296864271164,
-0.11596539616584778,
-0.2427067756652832,
-0.06284510344266891,
-0.04354485869407654,
-0.006230023689568043,
-0.11374211311340332,
-0.04375845193862915,
0.06921282410621643,
0.021227745339274406,
-0.09790585190057755,
0.14278919994831085,
0.06530030071735382,
-0.058300700038671494,
0.09961529076099396,
0.007426095195114613,
-0.006873483769595623,
0.05341643467545509,
-0.007947552017867565,
-0.054870422929525375,
-0.018527735024690628,
-0.0017849347786977887,
-0.006520060822367668,
-0.11796741187572479,
0.05820852890610695,
-0.09984797239303589,
-0.11672090739011765,
-0.033208347856998444,
0.004591241478919983,
0.04112783446907997,
0.15148361027240753,
0.04710622876882553,
0.0007273350493051112,
0.028069084510207176,
0.2208264023065567,
0.024375755339860916,
-0.16033849120140076,
-0.05553490296006203,
0.16518118977546692,
0.041057415306568146,
-0.03925357758998871,
0.0269771795719862,
-0.04112442582845688,
0.03365743160247803,
0.31444111466407776,
0.2630883455276489,
0.015604761429131031,
0.0702761635184288,
-0.0017932154005393386,
0.01536329835653305,
0.01836157776415348,
0.08740975707769394,
0.15961362421512604,
0.23169416189193726,
-0.07326284795999527,
0.06589730083942413,
-0.0870114415884018,
-0.046913109719753265,
-0.147213414311409,
0.027492620050907135,
0.06874196976423264,
-0.07041218876838684,
-0.026399539783596992,
0.14657831192016602,
-0.21490566432476044,
0.003069045254960656,
0.05534461885690689,
-0.11075016856193542,
-0.13032232224941254,
-0.08654341846704483,
-0.017880212515592575,
0.1368827372789383,
0.014038742519915104,
-0.022688105702400208,
0.04988829046487808,
0.04776284471154213,
0.10984949767589569,
-0.163133904337883,
-0.11691108345985413,
0.06768126785755157,
0.12564465403556824,
0.13325534760951996,
0.008792471140623093,
-0.031057246029376984,
0.08182139694690704,
0.07638854533433914,
-0.07710837572813034,
0.18850374221801758,
0.056119970977306366,
0.06071091070771217,
0.04876909404993057,
0.04196464642882347,
0.02686675265431404,
-0.19513586163520813,
0.022024214267730713,
-0.03226679190993309,
0.061996787786483765,
0.017862413078546524,
-0.0033365380950272083,
-0.07858727127313614,
0.03961653262376785,
-0.06904780119657516,
0.07626587152481079,
0.12887339293956757,
-0.06330687552690506,
-0.026734432205557823,
-0.10684533417224884,
0.07511333376169205,
0.028545191511511803,
-0.10624564439058304,
-0.12977251410484314,
-0.030000675469636917,
-0.048890456557273865,
0.020678086206316948,
0.025496885180473328,
-0.14545629918575287,
0.036950573325157166,
-0.09022027254104614,
-0.04141845554113388,
-0.06972850114107132,
0.03835569694638252,
0.01817365735769272,
0.04885892570018768,
0.038199350237846375,
0.004408130422234535,
-0.014163708314299583,
0.057848915457725525,
-0.14755330979824066,
-0.03812173381447792
] |
null | null |
transformers
|
# Indonesian tiny-RoBERTa
## How to Use
### As Masked Language Model
```python
from transformers import pipeline
pretrained_name = "akahana/tiny-roberta-indonesia"
fill_mask = pipeline(
"fill-mask",
model=pretrained_name,
tokenizer=pretrained_name
)
fill_mask("ikiryo adalah <mask> hantu dalam mitologi jepang.")
```
### Feature Extraction in PyTorch
```python
from transformers import RobertaModel, RobertaTokenizerFast
pretrained_name = "akahana/tiny-roberta-indonesia"
model = RobertaModel.from_pretrained(pretrained_name)
tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name)
prompt = "ikiryo adalah <mask> hantu dalam mitologi jepang."
encoded_input = tokenizer(prompt, return_tensors='pt')
output = model(**encoded_input)
```
|
{"language": "id", "license": "mit", "tags": ["tiny-roberta-indonesia"], "datasets": ["wikipedia"], "widget": [{"text": "ikiryo adalah <mask> hantu dalam mitologi jepang."}]}
|
feature-extraction
|
akahana/tiny-roberta-indonesia
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"roberta",
"feature-extraction",
"tiny-roberta-indonesia",
"id",
"dataset:wikipedia",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"id"
] |
TAGS
#transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us
|
# Indonesian tiny-RoBERTa
## How to Use
### As Masked Language Model
### Feature Extraction in PyTorch
|
[
"# Indonesian tiny-RoBERTa",
"## How to Use",
"### As Masked Language Model",
"### Feature Extraction in PyTorch"
] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n",
"# Indonesian tiny-RoBERTa",
"## How to Use",
"### As Masked Language Model",
"### Feature Extraction in PyTorch"
] |
[
59,
9,
4,
7,
9
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n# Indonesian tiny-RoBERTa## How to Use### As Masked Language Model### Feature Extraction in PyTorch"
] |
[
-0.007444711867719889,
-0.04652741551399231,
-0.0035860552452504635,
0.07009337842464447,
0.09566076844930649,
-0.031017392873764038,
0.05881756916642189,
0.11429966986179352,
-0.04486483335494995,
-0.04823455214500427,
0.08906978368759155,
0.1542244255542755,
0.05990894138813019,
0.02451251819729805,
-0.02299284189939499,
-0.37218010425567627,
0.07252449542284012,
0.008717120625078678,
0.14025598764419556,
0.16500987112522125,
0.11683899909257889,
-0.05382159352302551,
0.11355487257242203,
0.01220234390348196,
-0.057054806500673294,
-0.021352699026465416,
-0.043780405074357986,
-0.1683458685874939,
0.08184817433357239,
-0.025209976360201836,
0.06581107527017593,
0.0038678806740790606,
-0.014035833068192005,
-0.07657390087842941,
0.02802490070462227,
-0.02894866093993187,
-0.026323897764086723,
0.006365097593516111,
0.03588727116584778,
-0.0017699507297948003,
0.16957953572273254,
0.05204800143837929,
-0.0034622210077941418,
-0.02463771402835846,
-0.1155586689710617,
-0.22185759246349335,
-0.09448252618312836,
0.12549661099910736,
0.06525618582963943,
0.09677232056856155,
-0.012353738769888878,
0.16904515027999878,
-0.23975159227848053,
0.051928866654634476,
0.1739923059940338,
-0.15860339999198914,
-0.03299785032868385,
-0.053742315620183945,
0.060912419110536575,
-0.004873089492321014,
-0.004959382116794586,
0.013821515254676342,
-0.025372635573148727,
0.052656445652246475,
0.00950388703495264,
-0.15347139537334442,
-0.23086847364902496,
-0.07782722264528275,
-0.020212264731526375,
-0.03714926540851593,
0.15886276960372925,
-0.008426308631896973,
-0.030094699934124947,
-0.07885893434286118,
-0.039498597383499146,
0.05464192107319832,
-0.05924620106816292,
-0.009152105078101158,
-0.029231028631329536,
0.016545971855521202,
0.07661294937133789,
-0.06339773535728455,
-0.09204038977622986,
-0.0010078252526000142,
-0.10414014756679535,
0.17150482535362244,
0.047368794679641724,
0.05400750786066055,
-0.1708889901638031,
0.03877227008342743,
-0.05442994460463524,
-0.17241352796554565,
-0.014988292939960957,
-0.0408857986330986,
0.16742061078548431,
0.1369951218366623,
0.06719870120286942,
0.030813083052635193,
0.13257324695587158,
0.15033583343029022,
-0.058921877294778824,
-0.015207914635539055,
0.006719314027577639,
0.09240833669900894,
-0.029199542477726936,
0.08176657557487488,
-0.15226046741008759,
-0.02081999182701111,
0.11919238418340683,
-0.08581648021936417,
0.08834318816661835,
-0.05753080174326897,
-0.09323346614837646,
-0.04426543414592743,
0.09289546310901642,
0.14750108122825623,
0.07667722553014755,
0.07180853188037872,
0.009786232374608517,
-0.04385009780526161,
0.16984304785728455,
-0.10955820232629776,
-0.06382112205028534,
-0.052746038883924484,
0.015957562252879143,
0.05315936356782913,
0.007755646947771311,
-0.010782242752611637,
-0.07618803530931473,
0.08982447534799576,
0.0064809275791049,
0.02185726724565029,
-0.0024721736554056406,
-0.0465286523103714,
0.01479901559650898,
-0.0999196320772171,
0.05198622867465019,
-0.19828523695468903,
-0.1608651578426361,
0.03857764974236488,
0.00857873260974884,
-0.033288732171058655,
0.006584838964045048,
0.01293729804456234,
-0.06790873408317566,
0.0066714417189359665,
-0.06772743165493011,
-0.007398251444101334,
-0.058826472610235214,
0.08740994334220886,
0.015108906663954258,
0.0775144100189209,
-0.12468765676021576,
0.04723777249455452,
-0.18939615786075592,
0.056729525327682495,
-0.1870587170124054,
0.007261999882757664,
0.002578902291134,
0.09844104945659637,
-0.04393214359879494,
-0.1272757351398468,
-0.05252138525247574,
-0.005249716341495514,
-0.03779477998614311,
0.1337115466594696,
-0.09255123138427734,
-0.05120186135172844,
0.2428252249956131,
-0.16169369220733643,
-0.14360541105270386,
0.10317666083574295,
0.014913326129317284,
0.07401783019304276,
-0.004141025710850954,
0.2229553461074829,
0.06254009157419205,
0.061170127242803574,
0.09684925526380539,
0.08682959526777267,
-0.09029451012611389,
-0.0598435252904892,
0.091983363032341,
-0.027281221002340317,
0.025583596900105476,
0.07706864923238754,
-0.09222884476184845,
0.09769455343484879,
-0.003072081133723259,
-0.07069747895002365,
-0.0034307143650949,
-0.06351056694984436,
0.05676420405507088,
0.046473365277051926,
0.0828302726149559,
-0.07020742446184158,
0.018395205959677696,
-0.044349923729896545,
0.07615521550178528,
-0.01880686916410923,
0.019996846094727516,
-0.09378716349601746,
0.18809564411640167,
-0.050060003995895386,
0.008241331204771996,
-0.17759442329406738,
0.04146888852119446,
0.004362696316093206,
0.03735784813761711,
0.033155832439661026,
-0.09436997026205063,
0.029754994437098503,
-0.030450616031885147,
-0.04013678804039955,
-0.06559275835752487,
0.08784731477499008,
0.018338192254304886,
0.08920875191688538,
-0.04458894208073616,
0.01443004235625267,
0.01163457427173853,
-0.06882601231336594,
0.04847874119877815,
-0.04229885712265968,
-0.05616303160786629,
0.02481270581483841,
-0.040713969618082047,
0.06928355246782303,
0.040131062269210815,
0.05484134703874588,
-0.022116389125585556,
-0.03971290588378906,
0.05589941516518593,
-0.018711136654019356,
-0.04001876339316368,
0.21755023300647736,
-0.038450147956609726,
0.2160191535949707,
0.20740972459316254,
-0.18250010907649994,
-0.020124763250350952,
0.13253778219223022,
-0.001931607024744153,
0.009229202754795551,
0.0022680931724607944,
0.07678666710853577,
0.05513494089245796,
-0.008535086177289486,
0.11521975696086884,
-0.1088077649474144,
-0.02072826772928238,
0.027167508378624916,
-0.10040192306041718,
-0.00916344951838255,
0.0844164714217186,
0.020729893818497658,
-0.2536405920982361,
0.1618013083934784,
0.1046019196510315,
0.04021848365664482,
0.10833049565553665,
-0.03612484410405159,
0.006927968468517065,
-0.004324313718825579,
0.050919778645038605,
-0.003028148552402854,
0.02462998405098915,
-0.21407198905944824,
-0.031185505911707878,
0.10066140443086624,
-0.0049700490199029446,
0.03063184954226017,
-0.0882071852684021,
-0.09774865955114365,
-0.0008333883597515523,
-0.017054131254553795,
-0.05712135508656502,
0.08014725148677826,
0.01739341951906681,
0.09899374842643738,
-0.013919658958911896,
-0.05960682034492493,
0.026551781222224236,
-0.006848716642707586,
-0.04363733157515526,
0.21196003258228302,
-0.05675016716122627,
-0.3693520128726959,
-0.0994783565402031,
-0.08567576855421066,
-0.03490510210394859,
-0.01890692673623562,
0.1087673008441925,
-0.09235421568155289,
-0.027546139433979988,
-0.012649216689169407,
-0.12098083645105362,
-0.029003748670220375,
-0.0064506204798817635,
-0.16586045920848846,
0.03874202445149422,
-0.06529261916875839,
-0.1136244460940361,
-0.047425977885723114,
-0.005860139150172472,
0.02165701426565647,
0.1659499853849411,
-0.06081879884004593,
0.11533425748348236,
0.09342275559902191,
-0.019711727276444435,
0.044278793036937714,
0.023658372461795807,
0.16285361349582672,
-0.09515081346035004,
0.014368092641234398,
0.2980823814868927,
-0.02433912828564644,
0.033897388726472855,
0.09931111335754395,
0.020137961953878403,
-0.04655986651778221,
-0.006176935508847237,
-0.06801708787679672,
-0.1023976281285286,
-0.18706363439559937,
-0.05897747352719307,
-0.09909161180257797,
-0.008653203956782818,
-0.037996307015419006,
0.02291024848818779,
0.13070011138916016,
0.0933772400021553,
-0.018177257850766182,
0.017606686800718307,
0.013589015230536461,
0.0034575695171952248,
0.0801306888461113,
0.0164484865963459,
0.09882354736328125,
-0.059756163507699966,
-0.10098576545715332,
0.04918617755174637,
-0.0826292559504509,
0.16496674716472626,
0.027525993064045906,
0.018169144168496132,
0.12060610949993134,
0.2843591868877411,
0.09837702661752701,
0.1411835104227066,
-0.10323742777109146,
0.019949305802583694,
-0.02304530330002308,
-0.08020226657390594,
0.009248406626284122,
-0.048495449125766754,
-0.03397148475050926,
0.02054433710873127,
-0.030007213354110718,
-0.0523199662566185,
0.0815797746181488,
0.13299404084682465,
-0.02718355692923069,
-0.10091041773557663,
-0.04175802320241928,
0.018480129539966583,
0.03461615741252899,
-0.033597156405448914,
0.046587634831666946,
0.05615248158574104,
-0.18269042670726776,
0.029402785003185272,
0.02906019613146782,
0.0854799672961235,
-0.04070112854242325,
0.018095554783940315,
-0.0875052735209465,
-0.04220841825008392,
0.04113883897662163,
0.12602603435516357,
-0.20102520287036896,
0.28853845596313477,
0.007991797290742397,
0.036306872963905334,
-0.10253152996301651,
-0.011622869409620762,
0.06621488183736801,
0.04896838963031769,
0.21915960311889648,
0.03816618770360947,
-0.019642015919089317,
-0.1261013001203537,
-0.07569974660873413,
0.051489923149347305,
0.09552744030952454,
0.057840704917907715,
-0.03768519312143326,
-0.037455592304468155,
-0.009524486027657986,
-0.0017492669867351651,
0.019408375024795532,
-0.024118788540363312,
-0.07773502916097641,
0.02790672704577446,
-0.010322351939976215,
-0.06838416308164597,
-0.05491211637854576,
-0.01613299362361431,
0.04479067772626877,
0.12787050008773804,
0.02672303095459938,
-0.13211767375469208,
-0.08362340182065964,
-0.0958467498421669,
0.16227732598781586,
-0.1615609973669052,
0.04904140159487724,
-0.07903852313756943,
-0.033222343772649765,
-0.0260071512311697,
-0.12376704812049866,
0.08313478529453278,
-0.08562380075454712,
-0.09333053976297379,
0.02983272820711136,
0.11672613024711609,
-0.004992824513465166,
-0.006181597709655762,
0.08829184621572495,
-0.031704459339380264,
-0.02648516558110714,
-0.17369158565998077,
-0.07923077791929245,
-0.015835048630833626,
-0.003635233035311103,
0.06577591598033905,
-0.036393243819475174,
-0.07201050966978073,
-0.07088513672351837,
-0.07869458943605423,
0.20231039822101593,
0.11128628998994827,
-0.01838170364499092,
0.08855076879262924,
0.24177205562591553,
0.011768694967031479,
-0.25638583302497864,
-0.18650184571743011,
-0.13422086834907532,
-0.05896082893013954,
-0.002905478933826089,
-0.024046393111348152,
0.11426273733377457,
0.07042910903692245,
-0.012519515119493008,
-0.010649539530277252,
-0.24550054967403412,
-0.09365703165531158,
0.21992817521095276,
0.07671308517456055,
0.1989915668964386,
-0.12348198145627975,
-0.09926440566778183,
-0.02252693474292755,
-0.18449918925762177,
0.07278213649988174,
-0.06772708892822266,
0.05294303596019745,
-0.05106959491968155,
-0.0067217000760138035,
0.005667119286954403,
-0.011624932289123535,
0.13754115998744965,
-0.06389469653367996,
0.052079249173402786,
-0.0975545346736908,
-0.15145182609558105,
0.13608665764331818,
0.06085736304521561,
0.09677255898714066,
0.00825699232518673,
0.050987884402275085,
-0.06796932965517044,
-0.0334884449839592,
-0.17072828114032745,
0.09256014227867126,
0.011765260249376297,
-0.10877812653779984,
-0.03714175894856453,
0.06669457256793976,
0.010591935366392136,
0.03576546907424927,
0.1171569749712944,
-0.003755083540454507,
0.02568073384463787,
-0.04961679130792618,
0.09800022095441818,
-0.13418716192245483,
0.01503475196659565,
-0.11867290735244751,
-0.036952316761016846,
0.03161731734871864,
-0.034429874271154404,
-0.03501497954130173,
0.018006427213549614,
0.029140068218111992,
0.04491906985640526,
0.05081505328416824,
-0.07957836240530014,
0.08229687809944153,
0.08875679224729538,
-0.07396568357944489,
-0.08917537331581116,
-0.04146610572934151,
-0.09606072306632996,
0.08459185808897018,
-0.0656331330537796,
0.004368816968053579,
-0.06734833121299744,
-0.08052447438240051,
-0.03540375828742981,
0.021827517077326775,
-0.09305967390537262,
0.0788859874010086,
0.10122133791446686,
0.04545137286186218,
-0.14209650456905365,
0.10164126008749008,
0.08355146646499634,
-0.04057946801185608,
-0.014863441698253155,
0.15986907482147217,
-0.10837756097316742,
-0.10348178446292877,
0.06255214661359787,
0.07870854437351227,
-0.06996707618236542,
-0.09891572594642639,
-0.04150065779685974,
-0.10846452414989471,
-0.034457553178071976,
0.042420174926519394,
0.058293525129556656,
-0.0006047938368283212,
-0.004506794270128012,
-0.06874876469373703,
0.002684864215552807,
0.032426077872514725,
0.05135785788297653,
-0.025661202147603035,
-0.05705937370657921,
0.042011559009552,
0.0846974328160286,
0.1824827343225479,
-0.05660972371697426,
-0.036414243280887604,
-0.09080629050731659,
0.04587366431951523,
-0.043036941438913345,
0.06217262148857117,
-0.16615550220012665,
-0.01747012697160244,
-0.04531409591436386,
-0.05529232695698738,
-0.016912667080760002,
-0.005043243523687124,
-0.07198000699281693,
-0.004781042225658894,
-0.03168003633618355,
0.008164106868207455,
-0.10846785455942154,
-0.048669762909412384,
0.1050599068403244,
-0.006851586513221264,
0.0711088478565216,
0.15555411577224731,
-0.06559385359287262,
0.12640470266342163,
-0.2304750233888626,
-0.11428043991327286,
0.0687638521194458,
0.03325912356376648,
0.07764889299869537,
-0.01739061437547207,
0.041119497269392014,
0.060068465769290924,
-0.011410094797611237,
0.02600039727985859,
0.039695870131254196,
-0.15472714602947235,
-0.06582999229431152,
-0.041668687015771866,
-0.09727449715137482,
-0.056497834622859955,
0.03826282545924187,
0.14876089990139008,
-0.029854215681552887,
0.08178535103797913,
-0.053702499717473984,
0.11610079556703568,
-0.10159887373447418,
-0.0162944532930851,
-0.0862840861082077,
-0.1720934808254242,
-0.008276077918708324,
-0.035165563225746155,
0.014762917533516884,
-0.017906229943037033,
0.18246425688266754,
0.08719617128372192,
0.043225813657045364,
-0.015607901848852634,
0.012953661382198334,
0.027905240654945374,
0.01295675802975893,
0.28021055459976196,
0.05977552384138107,
-0.04827236756682396,
-0.04518333822488785,
-0.0052944570779800415,
-0.029448341578245163,
0.010328145697712898,
0.07122645527124405,
0.21482938528060913,
0.1352023035287857,
0.05521406978368759,
0.07376475632190704,
0.037983596324920654,
-0.0925978273153305,
-0.277384489774704,
0.07158675789833069,
0.030594920739531517,
0.038032710552215576,
0.05060740187764168,
0.18473036587238312,
-0.09566361457109451,
0.08704526722431183,
0.007947302423417568,
-0.06035618111491203,
-0.12886211276054382,
-0.25224828720092773,
-0.06568679958581924,
-0.0006279257358983159,
-0.025095392018556595,
-0.10434886068105698,
-0.03110988810658455,
0.05520286783576012,
0.016601329669356346,
-0.10653840750455856,
0.1492481231689453,
0.007164353970438242,
-0.05461464449763298,
0.1049039363861084,
-0.0015409077750518918,
-0.011123482137918472,
0.06181646138429642,
-0.014761188067495823,
-0.07890933752059937,
-0.020650267601013184,
0.0005070897750556469,
-0.005656184628605843,
-0.12608560919761658,
0.04947086051106453,
-0.11495807021856308,
-0.12313520908355713,
-0.023197075352072716,
-0.008323085494339466,
0.045374274253845215,
0.11576241999864578,
0.05011095851659775,
-0.006764614954590797,
0.02382412552833557,
0.20280177891254425,
0.02187092788517475,
-0.17310896515846252,
-0.018730085343122482,
0.16072756052017212,
0.020293310284614563,
-0.03367585316300392,
0.029460236430168152,
-0.03839442878961563,
0.01048968080431223,
0.3537387549877167,
0.27604755759239197,
0.016459766775369644,
0.06924019008874893,
0.0045464360155165195,
0.01886465959250927,
0.00019035462173633277,
0.1092386245727539,
0.142559215426445,
0.2343519628047943,
-0.06371185183525085,
0.08589243143796921,
-0.08824095129966736,
-0.0541914738714695,
-0.15023034811019897,
0.03410768136382103,
0.09359176456928253,
-0.05651768669486046,
-0.015394631773233414,
0.1357729732990265,
-0.2171928435564041,
0.042968373745679855,
0.08227699249982834,
-0.1077263355255127,
-0.10735763609409332,
-0.07424324005842209,
-0.013981935568153858,
0.13355153799057007,
0.03497040271759033,
-0.031054768711328506,
0.0373184010386467,
-0.011957847513258457,
0.10797899216413498,
-0.19817955791950226,
-0.07879292964935303,
0.07750600576400757,
0.10216575860977173,
0.1460392028093338,
0.019481493160128593,
-0.039221979677677155,
0.07879260182380676,
0.08407820761203766,
-0.08113043010234833,
0.17390210926532745,
0.0640668049454689,
0.07852683961391449,
0.05073320120573044,
0.06301582604646683,
0.02079940401017666,
-0.20879150927066803,
0.015265993773937225,
-0.04550822079181671,
0.059359896928071976,
0.05978748947381973,
0.020943984389305115,
-0.08276260644197464,
0.024950183928012848,
-0.08242694288492203,
0.0599205307662487,
0.12096720188856125,
-0.05041281878948212,
-0.045311976224184036,
-0.1018541008234024,
0.07147985696792603,
0.03099738620221615,
-0.11597158759832382,
-0.14271536469459534,
-0.011205492541193962,
-0.06484127789735794,
0.010890288278460503,
0.04086453095078468,
-0.14504827558994293,
0.051458410918712616,
-0.08592604845762253,
-0.042576927691698074,
-0.08916234225034714,
0.030002174898982048,
0.017331024631857872,
0.044247180223464966,
0.04160608723759651,
0.036212265491485596,
-0.013169605284929276,
0.056772928684949875,
-0.13880348205566406,
-0.03929091617465019
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-cats-vs-dogs
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0369
- Accuracy: 0.9883
## how to use
```python
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('akahana/vit-base-cats-vs-dogs')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0949 | 1.0 | 2488 | 0.0369 | 0.9883 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "datasets": ["cats_vs_dogs"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "vit-base-cats-vs-dogs", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "cats_vs_dogs", "type": "cats_vs_dogs", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9883257403189066, "name": "Accuracy"}]}]}]}
|
image-classification
|
akahana/vit-base-cats-vs-dogs
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:cats_vs_dogs",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
|
vit-base-cats-vs-dogs
=====================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cats\_vs\_dogs dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0369
* Accuracy: 0.9883
how to use
----------
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 1337
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
98,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.12957295775413513,
0.1866474598646164,
-0.002085668733343482,
0.10631359368562698,
0.1439513862133026,
0.029494209215044975,
0.1324373334646225,
0.15105551481246948,
-0.09980786591768265,
0.09979531913995743,
0.1303190290927887,
0.10306265205144882,
0.05283530056476593,
0.1674521565437317,
-0.026521751657128334,
-0.20807354152202606,
0.047651614993810654,
0.026890328153967857,
-0.042597685009241104,
0.11924612522125244,
0.07469216734170914,
-0.1419614553451538,
0.09756840765476227,
0.02298354171216488,
-0.18382877111434937,
-0.03231249377131462,
-0.01945793256163597,
-0.03965434804558754,
0.10210274159908295,
-0.014351165853440762,
0.11666863411664963,
0.03252732381224632,
0.10748492926359177,
-0.12952567636966705,
-0.0019531049765646458,
0.08118358254432678,
-0.009457416832447052,
0.10295751690864563,
0.09251430630683899,
-0.020842960104346275,
0.027733372524380684,
-0.1301252543926239,
0.038475774228572845,
0.019277816638350487,
-0.09593590348958969,
-0.2191493958234787,
-0.0793398916721344,
0.05499618500471115,
0.07020898908376694,
0.09505652636289597,
-0.022192182019352913,
0.13861124217510223,
-0.0376586988568306,
0.08764239400625229,
0.24048614501953125,
-0.2897796332836151,
-0.08170440047979355,
0.05613957718014717,
0.007618543226271868,
0.058210983872413635,
-0.09846828877925873,
-0.014058209024369717,
0.04974333941936493,
0.016746465116739273,
0.11911062151193619,
0.02647285908460617,
-0.025973161682486534,
-0.01962938904762268,
-0.15124782919883728,
-0.06705182790756226,
0.15464016795158386,
0.07764553278684616,
-0.04717430844902992,
-0.04751238599419594,
-0.08838298916816711,
-0.18390166759490967,
-0.04479940980672836,
0.020062174648046494,
0.04384424909949303,
-0.04706282913684845,
-0.09276732802391052,
0.021219918504357338,
-0.08544567227363586,
-0.07482602447271347,
-0.023636415600776672,
0.0624675489962101,
0.057276222854852676,
0.018877610564231873,
-0.0017337482422590256,
0.12246083468198776,
-0.0017780937487259507,
-0.1525428593158722,
0.009559317491948605,
0.024934440851211548,
-0.034372419118881226,
-0.02495388314127922,
-0.009368451312184334,
-0.038597527891397476,
0.05107761546969414,
0.09355754405260086,
-0.04285436496138573,
0.039200663566589355,
-0.014300900511443615,
0.032671667635440826,
-0.10037808865308762,
0.17005163431167603,
-0.09258408099412918,
-0.013532659038901329,
0.02490304224193096,
0.13425320386886597,
0.031191181391477585,
0.0056357551366090775,
-0.0938970074057579,
-0.012306144461035728,
0.12385328859090805,
0.009085857309401035,
0.005071766674518585,
0.06586574763059616,
-0.054679423570632935,
-0.011325121857225895,
0.05585136637091637,
-0.09099439531564713,
0.028181659057736397,
0.03307283669710159,
-0.08191513270139694,
-0.039221346378326416,
0.014354669488966465,
-0.005221192259341478,
-0.01749826967716217,
0.07716433703899384,
-0.10129499435424805,
-0.0016081901267170906,
-0.08844122290611267,
-0.1297418773174286,
0.015010747127234936,
-0.11492469906806946,
-0.011237318627536297,
-0.10130472481250763,
-0.15995946526527405,
-0.012023694813251495,
0.04200545698404312,
-0.051754992455244064,
-0.052109938114881516,
-0.06671780347824097,
-0.11507201194763184,
0.034018952399492264,
0.011486540548503399,
0.07553507387638092,
-0.07402065396308899,
0.09919057786464691,
0.010494144633412361,
0.08681123703718185,
-0.022319519892334938,
0.042515937238931656,
-0.09761473536491394,
0.041464921087026596,
-0.1662667989730835,
0.05055294558405876,
-0.060365229845047,
0.0766851156949997,
-0.10224594175815582,
-0.10116540640592575,
-0.005823275074362755,
-0.049943242222070694,
0.09375093877315521,
0.13235580921173096,
-0.18752527236938477,
-0.03082560934126377,
0.16540707647800446,
-0.08738920837640762,
-0.12201307713985443,
0.14676418900489807,
-0.020201995968818665,
-0.005536797922104597,
0.06411626189947128,
0.1762229949235916,
0.0885777398943901,
-0.10052836686372757,
-0.057891845703125,
-0.022610042244195938,
0.059896744787693024,
-0.025448966771364212,
0.08565863221883774,
0.006080918945372105,
0.0047487495467066765,
0.012111052870750427,
-0.08473829925060272,
0.04778516665101051,
-0.10018692165613174,
-0.08648185431957245,
-0.06146853789687157,
-0.10921865701675415,
0.06713222712278366,
0.06825172901153564,
0.052395328879356384,
-0.09113290160894394,
-0.11346914619207382,
-0.01763674058020115,
0.10515248030424118,
-0.08028887957334518,
0.003410294186323881,
-0.06152961775660515,
0.14520880579948425,
-0.06797566264867783,
-0.0064070699736475945,
-0.15638582408428192,
-0.045522384345531464,
0.03814718872308731,
-0.02626938931643963,
-0.007715651765465736,
-0.01918579265475273,
0.057199399918317795,
0.06890298426151276,
-0.03235786408185959,
-0.07003681361675262,
-0.043239183723926544,
0.003856396535411477,
-0.1102290078997612,
-0.2139735370874405,
-0.025057286024093628,
-0.01894826628267765,
0.1585417091846466,
-0.20723213255405426,
0.05593116208910942,
0.04098566249012947,
0.12101534008979797,
0.012232654727995396,
-0.03678802028298378,
-0.003943831659853458,
0.0236325953155756,
-0.05852854251861572,
-0.09614527225494385,
0.053658269345760345,
0.01202388945966959,
-0.057478491216897964,
-0.03360053151845932,
-0.10413902997970581,
0.14773528277873993,
0.1470937877893448,
0.0025485348887741566,
-0.07715969532728195,
0.04318944737315178,
-0.06525154411792755,
-0.025056565180420876,
-0.06668155640363693,
-0.019826306030154228,
0.05718039348721504,
-0.0006711615133099258,
0.13114553689956665,
-0.10185422748327255,
-0.029082465916872025,
0.046064041554927826,
-0.006271056365221739,
-0.002658918034285307,
0.11414112895727158,
0.06277019530534744,
-0.10516980290412903,
0.1585170328617096,
0.12542535364627838,
-0.067972332239151,
0.11556480824947357,
-0.04042961448431015,
-0.07739440351724625,
-0.02269396185874939,
0.03285485506057739,
0.026721324771642685,
0.16280771791934967,
-0.08987614512443542,
0.0030283115338534117,
0.025432895869016647,
0.014208024367690086,
-0.002524177310988307,
-0.22363942861557007,
-0.014751051552593708,
0.016395993530750275,
-0.06867368519306183,
-0.03807958960533142,
-0.035810135304927826,
0.01786886528134346,
0.11985502392053604,
0.00621823500841856,
-0.0705334022641182,
0.029752451926469803,
0.00814820360392332,
-0.09087016433477402,
0.1915704756975174,
-0.11080014705657959,
-0.17266453802585602,
-0.09954546391963959,
0.017764190211892128,
-0.049314968287944794,
0.00948216300457716,
0.04645448550581932,
-0.09602944552898407,
-0.03212490305304527,
-0.09602256864309311,
-0.03668450936675072,
0.003808380104601383,
0.052430059760808945,
0.04536119103431702,
0.00896687712520361,
0.11352323740720749,
-0.09581957012414932,
0.005369269754737616,
-0.014939767308533192,
-0.05529502406716347,
0.03065258264541626,
0.029243169352412224,
0.1194668561220169,
0.11116574704647064,
-0.04849393665790558,
0.01844082958996296,
-0.026581300422549248,
0.25295692682266235,
-0.0517503060400486,
-0.01415433082729578,
0.083687923848629,
-0.005550131667405367,
0.07975669205188751,
0.14829383790493011,
0.04494732618331909,
-0.0841391310095787,
-0.0028931302949786186,
0.013935467228293419,
-0.032346632331609726,
-0.20238809287548065,
-0.027249149978160858,
-0.038374803960323334,
0.029448730871081352,
0.13374577462673187,
0.041597358882427216,
0.0021796170622110367,
0.08627079427242279,
-0.02392318658530712,
0.036550018936395645,
-0.013089068233966827,
0.0845615416765213,
0.07280243933200836,
0.04872443526983261,
0.11684230715036392,
-0.0463370755314827,
-0.031201248988509178,
0.01702517457306385,
0.002205825410783291,
0.2404748499393463,
-0.0340457558631897,
0.13653145730495453,
0.03607523813843727,
0.21742013096809387,
0.005620840471237898,
0.08402259647846222,
-0.022155575454235077,
-0.014891228638589382,
-0.00014354845916386694,
-0.06243927776813507,
-0.007706530392169952,
0.020711708813905716,
-0.037563275545835495,
0.09170674532651901,
-0.1079147681593895,
0.05261962488293648,
0.06954529881477356,
0.24920102953910828,
0.07332926988601685,
-0.3903958797454834,
-0.08052487671375275,
-0.015597102232277393,
0.0021115264389663935,
-0.04394599795341492,
-0.005853667389601469,
0.13703159987926483,
-0.059532079845666885,
0.04987725242972374,
-0.07540478557348251,
0.07525033503770828,
-0.029947025701403618,
0.02031180076301098,
0.07915743440389633,
0.08993667364120483,
-0.010433999821543694,
0.07286472618579865,
-0.23522943258285522,
0.2666727304458618,
0.01800677366554737,
0.07427816838026047,
-0.05906984955072403,
0.012062635272741318,
0.02850246988236904,
0.06703280657529831,
0.0913563147187233,
-0.0052635143510997295,
-0.04601278901100159,
-0.18545657396316528,
-0.12139512598514557,
0.017745429649949074,
0.06765489280223846,
-0.04258224740624428,
0.1159113347530365,
-0.015564349479973316,
-0.025857247412204742,
0.04229975491762161,
0.003674321575090289,
-0.08303453773260117,
-0.09360560774803162,
-0.008230175822973251,
0.030310746282339096,
0.010175181552767754,
-0.08146216720342636,
-0.10822474956512451,
-0.12673324346542358,
0.10975348204374313,
-0.07859460264444351,
-0.05453790724277496,
-0.10272049158811569,
0.11129742860794067,
0.10627783834934235,
-0.06974390149116516,
0.06291738152503967,
-0.01725442335009575,
0.11859163641929626,
0.035530731081962585,
-0.07047753036022186,
0.0564492791891098,
-0.0804876908659935,
-0.21956005692481995,
-0.07175163924694061,
0.10025861114263535,
0.02618156187236309,
0.07493054121732712,
0.004063838627189398,
0.039695288985967636,
-0.023250222206115723,
-0.05746904015541077,
0.03450920805335045,
0.01576479710638523,
0.07696133852005005,
0.01418178528547287,
-0.034464068710803986,
-0.0617426373064518,
-0.07961730659008026,
-0.01858498342335224,
0.12413658946752548,
0.24853204190731049,
-0.11602941155433655,
0.007972060702741146,
0.013798738829791546,
-0.05886445194482803,
-0.1756594181060791,
0.05914008244872093,
0.08380793780088425,
0.022796357050538063,
0.026613924652338028,
-0.16276206076145172,
0.08465758711099625,
0.09695862233638763,
-0.02769768238067627,
0.10770877450704575,
-0.28397005796432495,
-0.11889930069446564,
0.07500416040420532,
0.14565390348434448,
0.04837546497583389,
-0.15816645324230194,
-0.02867284044623375,
0.013700392097234726,
-0.09106102585792542,
0.13151583075523376,
-0.06325384229421616,
0.09369681030511856,
-0.010442246682941914,
0.03552689775824547,
0.021885167807340622,
-0.06540074199438095,
0.14854809641838074,
0.0027968361973762512,
0.07243743538856506,
-0.04289708286523819,
-0.02273324877023697,
0.09185942262411118,
-0.07368004322052002,
0.041107937693595886,
-0.08624441921710968,
0.057810865342617035,
-0.0909331738948822,
0.015312747098505497,
-0.07091513276100159,
0.017611799761652946,
-0.03701276332139969,
-0.025048863142728806,
-0.07630318403244019,
0.04175800830125809,
0.07571831345558167,
-0.011438420042395592,
0.13956771790981293,
0.06689218431711197,
0.11933062225580215,
0.09913282096385956,
0.053284093737602234,
-0.025972209870815277,
-0.04972980171442032,
-0.004877997562289238,
-0.026176489889621735,
0.06113595515489578,
-0.13791368901729584,
0.028530778363347054,
0.14777712523937225,
0.03229498863220215,
0.10701965540647507,
0.06699905544519424,
-0.05407214164733887,
0.005656430032104254,
0.07368308305740356,
-0.16159053146839142,
-0.10689166188240051,
0.0022299655247479677,
-0.022768061608076096,
-0.14476533234119415,
0.026878025382757187,
0.08083923161029816,
-0.08758992701768875,
-0.005521316546946764,
0.002846873365342617,
0.03163592144846916,
-0.0005819749203510582,
0.20845136046409607,
0.04810263216495514,
0.0692920908331871,
-0.10121037065982819,
0.07747823745012283,
0.06579401344060898,
-0.1010076254606247,
0.026350533589720726,
0.021233314648270607,
-0.10431280732154846,
-0.013039364479482174,
0.06756530702114105,
0.12883082032203674,
0.01320241391658783,
-0.04421417787671089,
-0.15642428398132324,
-0.09657525271177292,
0.06382603198289871,
0.13472306728363037,
0.08363070338964462,
0.04060312733054161,
0.011056666262447834,
0.006871883757412434,
-0.12851348519325256,
0.13932783901691437,
0.0611809641122818,
0.0844108909368515,
-0.20142151415348053,
0.11334921419620514,
0.011507511138916016,
0.007546362932771444,
-0.008750573731958866,
0.047222599387168884,
-0.11817257106304169,
-0.013168000616133213,
-0.06530901044607162,
0.03861728683114052,
-0.06024792790412903,
-0.01803712733089924,
-0.004892116412520409,
-0.06766623258590698,
-0.054296500980854034,
0.01726824976503849,
-0.09259024262428284,
-0.0469549335539341,
0.0255210492759943,
0.05299973860383034,
-0.11206868290901184,
-0.026648500934243202,
-0.0006828302866779268,
-0.08787303417921066,
0.07386358082294464,
0.04626379534602165,
0.017139671370387077,
0.011491668410599232,
-0.11848331242799759,
-0.011137018911540508,
0.054362084716558456,
0.005105688236653805,
0.04630791023373604,
-0.10916825383901596,
0.008088056929409504,
-0.012038914486765862,
-0.0007229378679767251,
0.010670197196304798,
0.11186075210571289,
-0.12388141453266144,
-0.003929529804736376,
-0.031839191913604736,
0.0011494390200823545,
-0.04578879103064537,
0.0518258772790432,
0.11297942698001862,
-0.0033897776156663895,
0.21013428270816803,
-0.08738191425800323,
0.029285095632076263,
-0.23681987822055817,
-0.006551658734679222,
-0.026377910748124123,
-0.10858791321516037,
-0.12045591324567795,
-0.028743499889969826,
0.07439571619033813,
-0.06254652142524719,
0.08493897318840027,
0.022015443071722984,
0.019572606310248375,
0.03493545949459076,
0.006928951013833284,
-0.003989959601312876,
0.031417086720466614,
0.18839377164840698,
-0.002486014273017645,
-0.027193637564778328,
0.05498092621564865,
0.00852933432906866,
0.1039106622338295,
0.05831753462553024,
0.15189163386821747,
0.12981586158275604,
0.0013028981629759073,
0.09479587525129318,
0.08213769644498825,
-0.06627455353736877,
-0.1909036934375763,
0.09207188338041306,
-0.07509679347276688,
0.13436439633369446,
-0.014880441129207611,
0.19110827147960663,
0.10471151769161224,
-0.15797805786132812,
0.018948720768094063,
-0.05745091661810875,
-0.07254717499017715,
-0.08789196610450745,
-0.09567311406135559,
-0.08374009281396866,
-0.1698603332042694,
0.002414549933746457,
-0.11434978991746902,
0.01651027239859104,
0.10952483862638474,
0.007204551249742508,
-0.005677597597241402,
0.16153484582901,
0.06554650515317917,
0.02546910010278225,
0.05607542395591736,
0.02841971442103386,
-0.04301200807094574,
-0.03653929755091667,
-0.10398852080106735,
0.053132448345422745,
0.004993868991732597,
0.0553189180791378,
-0.04130654036998749,
0.005277955438941717,
0.049555759876966476,
0.007061675190925598,
-0.0951281413435936,
0.0227309949696064,
0.0030006098095327616,
0.04245252162218094,
0.04538405314087868,
0.025521107017993927,
0.001588649582117796,
-0.02683267556130886,
0.17892231047153473,
-0.06315602362155914,
-0.03168913722038269,
-0.12013735622167587,
0.1675172746181488,
-0.010278585366904736,
-0.03882082924246788,
0.0609818696975708,
-0.10761481523513794,
0.012464158236980438,
0.18932978808879852,
0.17710912227630615,
-0.029968328773975372,
-0.01983921229839325,
-0.018623782321810722,
-0.023301687091588974,
-0.03364787623286247,
0.07553288340568542,
0.11624997854232788,
0.04566652700304985,
-0.07717511802911758,
-0.032677438110113144,
-0.07715622335672379,
-0.011768589727580547,
-0.05269412696361542,
0.008717214688658714,
0.01755116507411003,
0.021342836320400238,
-0.05594314634799957,
0.057228852063417435,
-0.02325545996427536,
-0.09633133560419083,
0.06994081288576126,
-0.2064959853887558,
-0.1683977097272873,
-0.023760873824357986,
0.09072831273078918,
-0.008759967051446438,
0.034007687121629715,
-0.04212307184934616,
0.02574153058230877,
0.06608689576387405,
-0.04740810766816139,
-0.06558776646852493,
-0.08391598612070084,
0.04594678431749344,
-0.12141989916563034,
0.24523888528347015,
-0.042298998683691025,
0.03602179139852524,
0.12014477699995041,
0.029406892135739326,
-0.1539008915424347,
0.010576099157333374,
0.04254378750920296,
-0.048871301114559174,
0.02757950872182846,
0.11295310407876968,
-0.03216563165187836,
0.10554376244544983,
0.05289179086685181,
-0.07001624256372452,
-0.012804217636585236,
-0.042758967727422714,
-0.021667419001460075,
-0.059592582285404205,
-0.014040076173841953,
-0.05055980384349823,
0.13572658598423004,
0.1947062760591507,
-0.05726966634392738,
-0.0025752722285687923,
-0.049881212413311005,
0.0066278306767344475,
0.05844847485423088,
0.030225198715925217,
-0.016318539157509804,
-0.26626861095428467,
0.012994257733225822,
0.0288897305727005,
-0.0037749153561890125,
-0.2051798552274704,
-0.0980001762509346,
0.0026217978447675705,
-0.06327522546052933,
-0.10493485629558563,
0.09379494935274124,
0.0974702313542366,
0.05065132677555084,
-0.06181824952363968,
-0.02120400406420231,
-0.08794804662466049,
0.1729421764612198,
-0.12811170518398285,
-0.09814911335706711
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-tamil-colab-final
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7539
- Wer: 0.6135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 11.1466 | 1.0 | 118 | 4.3444 | 1.0 |
| 3.4188 | 2.0 | 236 | 3.2496 | 1.0 |
| 2.8617 | 3.0 | 354 | 1.6165 | 1.0003 |
| 0.958 | 4.0 | 472 | 0.7984 | 0.8720 |
| 0.5929 | 5.0 | 590 | 0.6733 | 0.7831 |
| 0.4628 | 6.0 | 708 | 0.6536 | 0.7621 |
| 0.3834 | 7.0 | 826 | 0.6037 | 0.7155 |
| 0.3242 | 8.0 | 944 | 0.6376 | 0.7184 |
| 0.2736 | 9.0 | 1062 | 0.6214 | 0.7070 |
| 0.2433 | 10.0 | 1180 | 0.6158 | 0.6944 |
| 0.2217 | 11.0 | 1298 | 0.6548 | 0.6830 |
| 0.1992 | 12.0 | 1416 | 0.6331 | 0.6775 |
| 0.1804 | 13.0 | 1534 | 0.6644 | 0.6874 |
| 0.1639 | 14.0 | 1652 | 0.6629 | 0.6649 |
| 0.143 | 15.0 | 1770 | 0.6927 | 0.6836 |
| 0.1394 | 16.0 | 1888 | 0.6933 | 0.6888 |
| 0.1296 | 17.0 | 2006 | 0.7039 | 0.6860 |
| 0.1212 | 18.0 | 2124 | 0.7042 | 0.6628 |
| 0.1121 | 19.0 | 2242 | 0.7132 | 0.6475 |
| 0.1069 | 20.0 | 2360 | 0.7423 | 0.6438 |
| 0.1063 | 21.0 | 2478 | 0.7171 | 0.6484 |
| 0.1025 | 22.0 | 2596 | 0.7396 | 0.6451 |
| 0.0946 | 23.0 | 2714 | 0.7400 | 0.6432 |
| 0.0902 | 24.0 | 2832 | 0.7385 | 0.6286 |
| 0.0828 | 25.0 | 2950 | 0.7368 | 0.6286 |
| 0.079 | 26.0 | 3068 | 0.7471 | 0.6306 |
| 0.0747 | 27.0 | 3186 | 0.7524 | 0.6201 |
| 0.0661 | 28.0 | 3304 | 0.7576 | 0.6201 |
| 0.0659 | 29.0 | 3422 | 0.7579 | 0.6130 |
| 0.0661 | 30.0 | 3540 | 0.7539 | 0.6135 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-tamil-colab-final", "results": []}]}
|
automatic-speech-recognition
|
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
|
wav2vec2-large-xls-r-300m-tamil-colab-final
===========================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7539
* Wer: 0.6135
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.13.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
65,
158,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
-0.11751111596822739,
0.07993100583553314,
-0.0028286364395171404,
0.055796701461076736,
0.12343578785657883,
0.008311945013701916,
0.11129909753799438,
0.15244056284427643,
-0.09420009702444077,
0.0791916698217392,
0.0947682335972786,
0.09260205924510956,
0.06181260570883751,
0.09807788580656052,
-0.017553221434354782,
-0.3227207660675049,
0.004273364786058664,
0.02123274654150009,
-0.1073567196726799,
0.11762262135744095,
0.10601196438074112,
-0.1141255795955658,
0.027031216770410538,
0.026858996599912643,
-0.12631836533546448,
0.014733375050127506,
-0.020584963262081146,
-0.06956163048744202,
0.1286342740058899,
0.029509223997592926,
0.10026474297046661,
0.016620028764009476,
0.09469127655029297,
-0.26187190413475037,
0.015138126909732819,
0.05899550020694733,
0.047878772020339966,
0.0775405764579773,
0.10431074351072311,
-0.028109235689044,
0.13380184769630432,
-0.0692068412899971,
0.07631681859493256,
0.042022738605737686,
-0.11316896975040436,
-0.3228369653224945,
-0.0783720538020134,
0.03650856018066406,
0.11214211583137512,
0.10455707460641861,
-0.03328578919172287,
0.0772644579410553,
-0.0758768618106842,
0.08718673139810562,
0.22803983092308044,
-0.2490013688802719,
-0.08304223418235779,
-0.023040222004055977,
0.04738582298159599,
0.04030529037117958,
-0.13171376287937164,
-0.031360115855932236,
0.02518504299223423,
0.04439559951424599,
0.10690051317214966,
0.005791217088699341,
-0.0384545624256134,
0.021378079429268837,
-0.13414667546749115,
-0.04777948930859566,
0.12752528488636017,
0.07527179270982742,
-0.0282231904566288,
-0.09266254305839539,
-0.00828537717461586,
-0.20419096946716309,
-0.04817011579871178,
0.016512354835867882,
0.024596363306045532,
-0.041554518043994904,
-0.12221032381057739,
0.011663608253002167,
-0.09490527212619781,
-0.0897427424788475,
0.012900903820991516,
0.13418857753276825,
0.04353409633040428,
-0.02783329039812088,
-0.0020368341356515884,
0.10952208936214447,
0.042359720915555954,
-0.13702596724033356,
0.010255960747599602,
0.04834248125553131,
-0.0948905274271965,
-0.021575715392827988,
-0.04137740656733513,
-0.049116287380456924,
-0.0017877642530947924,
0.12014590203762054,
-0.016700511798262596,
0.0798216313123703,
0.014216183684766293,
0.034927502274513245,
-0.08039461821317673,
0.1791132092475891,
-0.07204516977071762,
-0.019814006984233856,
-0.05630099028348923,
0.09497371315956116,
-0.023070624098181725,
-0.014900174923241138,
-0.0665879100561142,
0.0311382208019495,
0.11237959563732147,
0.03772808238863945,
-0.025581255555152893,
0.0238952673971653,
-0.06492231786251068,
-0.022776922211050987,
-0.0491035096347332,
-0.10365019738674164,
0.04415789991617203,
0.025948893278837204,
-0.08558893203735352,
0.01158748660236597,
0.0032235269900411367,
0.027108287438750267,
-0.023100432008504868,
0.1294458508491516,
-0.0680549144744873,
0.015858745202422142,
-0.09199077636003494,
-0.10519104450941086,
0.031245814636349678,
-0.03811834752559662,
0.010671580210328102,
-0.06107167899608612,
-0.10485575348138809,
-0.048919204622507095,
0.06899217516183853,
-0.05197467282414436,
-0.0681816041469574,
-0.07103281468153,
-0.06951935589313507,
0.047847896814346313,
-0.025976058095693588,
0.18071043491363525,
-0.057577770203351974,
0.11898144334554672,
0.021483248099684715,
0.03958865627646446,
0.030544346198439598,
0.0770564004778862,
-0.056049853563308716,
0.032444436103105545,
-0.13171660900115967,
0.06911075860261917,
-0.08554848283529282,
0.05915473774075508,
-0.1444619596004486,
-0.12692907452583313,
-0.023743104189634323,
0.004898342303931713,
0.10027804225683212,
0.08361312001943588,
-0.19276206195354462,
-0.09318786859512329,
0.17238783836364746,
-0.06951530277729034,
-0.10108175873756409,
0.13354387879371643,
-0.034197453409433365,
0.016805356368422508,
0.041145194321870804,
0.18827351927757263,
0.07016270607709885,
-0.09188750386238098,
0.015322967432439327,
-0.05242124944925308,
0.12315214425325394,
0.019863195717334747,
0.0975213572382927,
-0.04320415109395981,
0.03641282394528389,
-0.00593459140509367,
-0.019637251272797585,
0.06385376304388046,
-0.09503144025802612,
-0.09223990142345428,
-0.015049808658659458,
-0.07566695660352707,
0.007389950565993786,
0.06957791745662689,
0.03897741064429283,
-0.09804774820804596,
-0.13044017553329468,
0.033244404941797256,
0.10004934668540955,
-0.10864970088005066,
0.034154705703258514,
-0.07988332211971283,
0.036142561584711075,
-0.020147914066910744,
-0.014127596281468868,
-0.16676084697246552,
-0.007884828373789787,
0.023902110755443573,
-0.037739187479019165,
0.035678330808877945,
-0.00457350630313158,
0.08711846172809601,
0.037414345890283585,
-0.050228990614414215,
-0.07292155921459198,
-0.0704956129193306,
-0.003511284478008747,
-0.08278779685497284,
-0.2348886877298355,
-0.0770937129855156,
-0.02632809244096279,
0.16196496784687042,
-0.22453056275844574,
0.010337351821362972,
0.021228551864624023,
0.10351598262786865,
0.035135120153427124,
-0.04881803318858147,
-0.013496436178684235,
0.08058231323957443,
-0.019664539024233818,
-0.06306519359350204,
0.034400563687086105,
0.003678317880257964,
-0.12447215616703033,
0.01767059974372387,
-0.12286905199289322,
0.09520768374204636,
0.11031606793403625,
-0.0506834052503109,
-0.08551174402236938,
-0.061409637331962585,
-0.06887557357549667,
-0.06412763148546219,
-0.03498734161257744,
-0.0010996228083968163,
0.20516692101955414,
0.03516167029738426,
0.11540854722261429,
-0.07466687262058258,
-0.04675634577870369,
0.027427829802036285,
-0.006939449347555637,
-0.010562621988356113,
0.13961000740528107,
0.06793146580457687,
-0.03695082664489746,
0.10170997679233551,
0.0804038867354393,
-0.0870945155620575,
0.14304561913013458,
-0.06850659847259521,
-0.12817195057868958,
-0.02106383442878723,
0.01680314913392067,
0.03047383390367031,
0.12788839638233185,
-0.15700191259384155,
-0.004730622284114361,
0.02022462897002697,
0.023853223770856857,
0.030125174671411514,
-0.222624734044075,
-0.017062265425920486,
0.040918417274951935,
-0.06304582953453064,
-0.04954688251018524,
-0.01890508458018303,
0.002725212136283517,
0.09065243601799011,
0.002847066381946206,
-0.06169876828789711,
-0.006761852186173201,
-0.025375602766871452,
-0.08224871754646301,
0.18916553258895874,
-0.0921594575047493,
-0.1382182389497757,
-0.13530635833740234,
-0.04251059144735336,
0.001363044953905046,
-0.0167694054543972,
0.04708801954984665,
-0.10710645467042923,
-0.03394189104437828,
-0.06325989216566086,
0.046998366713523865,
-0.06864820420742035,
0.024171749129891396,
-0.013332800939679146,
0.012031765654683113,
0.07995340973138809,
-0.10119657218456268,
0.0198372732847929,
-0.024239061400294304,
-0.04110855981707573,
0.0343528687953949,
0.036993607878685,
0.0973338708281517,
0.167447030544281,
0.03023187816143036,
0.02361876517534256,
-0.04118826612830162,
0.15342336893081665,
-0.10501363128423691,
-0.030155101791024208,
0.10645309835672379,
-0.002280266722664237,
0.04160982742905617,
0.12241555750370026,
0.06607627868652344,
-0.08191302418708801,
0.021289166063070297,
0.056792549788951874,
-0.016731658950448036,
-0.246926948428154,
-0.025057541206479073,
-0.05933796614408493,
-0.022339841350913048,
0.12158855050802231,
0.03026094287633896,
0.0004514243919402361,
0.034189142286777496,
0.0004598632513079792,
0.0059538898058235645,
0.0021397715900093317,
0.06511794775724411,
0.06956153362989426,
0.03735699504613876,
0.11630076915025711,
-0.01704764924943447,
-0.053503312170505524,
0.02056731842458248,
0.013023070991039276,
0.2561072111129761,
0.0007118578068912029,
0.16626788675785065,
0.05789191648364067,
0.16205474734306335,
0.005357562564313412,
0.07461456209421158,
0.008461512625217438,
-0.02835102006793022,
0.014116613194346428,
-0.055005576461553574,
-0.02583620510995388,
0.041719332337379456,
0.0898328498005867,
0.03950388729572296,
-0.12575176358222961,
-0.030060341581702232,
0.019221477210521698,
0.35242149233818054,
0.0644313171505928,
-0.3002247214317322,
-0.08661270886659622,
0.002604456851258874,
-0.08245231956243515,
-0.047586843371391296,
0.02854464016854763,
0.10525981336832047,
-0.09864053875207901,
0.042439356446266174,
-0.08005630224943161,
0.09834594279527664,
-0.06609368324279785,
0.008241871371865273,
0.08418498188257217,
0.06872265040874481,
-0.0051025268621742725,
0.07776658982038498,
-0.2807559669017792,
0.31258559226989746,
-0.014618952758610249,
0.07847751677036285,
-0.04805951938033104,
0.02674245461821556,
0.025414787232875824,
-0.056252241134643555,
0.07116944342851639,
-0.01639210619032383,
-0.0890306904911995,
-0.19459335505962372,
-0.07525146007537842,
0.024622026830911636,
0.13040614128112793,
-0.05517873540520668,
0.12334034591913223,
-0.02670474909245968,
-0.002955016912892461,
0.06235484406352043,
-0.07852888852357864,
-0.0914587751030922,
-0.11209341138601303,
0.01606128178536892,
0.024346789345145226,
0.07301682978868484,
-0.10393943637609482,
-0.11357896029949188,
-0.07110057026147842,
0.15138746798038483,
-0.06411533802747726,
-0.007021286059170961,
-0.1285875141620636,
0.1010068953037262,
0.16545651853084564,
-0.06523338705301285,
0.04076032713055611,
0.02955041453242302,
0.11536197364330292,
0.0322086401283741,
-0.005419072229415178,
0.11551377177238464,
-0.07731673866510391,
-0.17606790363788605,
-0.056131523102521896,
0.16243793070316315,
0.04535512626171112,
0.07390221953392029,
-0.023377524688839912,
0.02246520295739174,
-0.033153340220451355,
-0.07168612629175186,
0.062024954706430435,
-0.006312267389148474,
0.008130325935781002,
0.05484110862016678,
-0.041466087102890015,
0.0066685485653579235,
-0.07988246530294418,
-0.06291305273771286,
0.16489630937576294,
0.2713643014431,
-0.0738893449306488,
0.019889874383807182,
0.03736702352762222,
-0.05028442293405533,
-0.14639706909656525,
0.036053553223609924,
0.12360399216413498,
0.033743105828762054,
0.019016264006495476,
-0.23318204283714294,
0.06570304930210114,
0.08537557721138,
-0.01990184746682644,
0.06997335702180862,
-0.3308058977127075,
-0.12668441236019135,
0.11919771879911423,
0.11184830218553543,
-0.042435985058546066,
-0.15506617724895477,
-0.054984964430332184,
-0.00829628948122263,
-0.09280698746442795,
0.06880688667297363,
-0.03184311091899872,
0.12956079840660095,
-0.0005080255214124918,
0.08747498691082001,
0.025989465415477753,
-0.058625828474760056,
0.14115747809410095,
-0.006411454174667597,
0.06407642364501953,
-0.006049228832125664,
0.046460915356874466,
0.015647441148757935,
-0.041154853999614716,
0.011025666259229183,
-0.07264641672372818,
0.00813282746821642,
-0.1346544623374939,
-0.03102990798652172,
-0.08601231127977371,
0.026262179017066956,
-0.041468728333711624,
-0.0520378053188324,
-0.008697997778654099,
0.04707785323262215,
0.0586530826985836,
0.00572617445141077,
0.12195461988449097,
-0.05385424941778183,
0.15611495077610016,
0.06110475957393646,
0.10534937679767609,
-0.004367182031273842,
-0.10076305270195007,
-0.014767343178391457,
-0.008629932068288326,
0.0498012900352478,
-0.11484631150960922,
0.029362840577960014,
0.15176445245742798,
0.04617828130722046,
0.15669257938861847,
0.06561297178268433,
-0.08548310399055481,
0.017597073689103127,
0.07095858454704285,
-0.0831989273428917,
-0.11707931756973267,
-0.014735857024788857,
0.06781820952892303,
-0.1444181650876999,
0.005745808593928814,
0.09828700870275497,
-0.0500553734600544,
-0.012757471762597561,
0.013546615839004517,
0.017016621306538582,
-0.06169046834111214,
0.2240232229232788,
0.027952199801802635,
0.07465658336877823,
-0.09250008314847946,
0.07556327432394028,
0.05788454785943031,
-0.17357149720191956,
0.027020685374736786,
0.07752856612205505,
-0.026886841282248497,
-0.019191060215234756,
0.025692887604236603,
0.09356972575187683,
-0.002430213848128915,
-0.056838180869817734,
-0.1200818195939064,
-0.14706718921661377,
0.07772985100746155,
0.0841960608959198,
0.033168114721775055,
0.025869220495224,
-0.05159107968211174,
0.04228825867176056,
-0.11832789331674576,
0.09071739763021469,
0.09730243682861328,
0.07158111780881882,
-0.1301373839378357,
0.15724284946918488,
0.013234059326350689,
0.005080425180494785,
0.008132091723382473,
-0.006458629854023457,
-0.0975375771522522,
0.03905138000845909,
-0.10076461732387543,
-0.033537689596414566,
-0.049044813960790634,
-0.0037623459938913584,
0.013463919050991535,
-0.05563763529062271,
-0.053031500428915024,
0.013989526778459549,
-0.12629570066928864,
-0.0429818294942379,
0.0025024861097335815,
0.06720365583896637,
-0.10986052453517914,
-0.022349976003170013,
0.04861949384212494,
-0.1043441891670227,
0.09183770418167114,
0.06121007353067398,
0.021383291110396385,
0.04517326503992081,
-0.1271660178899765,
0.015140803530812263,
0.038589682430028915,
-0.0008166406187228858,
0.029781360179185867,
-0.15518833696842194,
-0.013732279650866985,
-0.01841842196881771,
0.04191918298602104,
-0.0004431282286532223,
0.02298140898346901,
-0.13902771472930908,
-0.04059315845370293,
-0.0315205417573452,
-0.07596730440855026,
-0.06008246913552284,
0.053838033229112625,
0.05564560741186142,
0.04550834372639656,
0.1715267449617386,
-0.08713012933731079,
0.054747045040130615,
-0.21897552907466888,
0.019287070259451866,
-0.03543839976191521,
-0.06399734318256378,
-0.06646512448787689,
-0.04155997931957245,
0.0825326144695282,
-0.07543215155601501,
0.08933427184820175,
-0.02920309640467167,
0.04299464449286461,
0.03173528611660004,
-0.10693661868572235,
0.02565194107592106,
0.044104885309934616,
0.23969529569149017,
0.044452834874391556,
-0.02836671844124794,
0.07282676547765732,
0.010079070925712585,
0.052836086601018906,
0.18123255670070648,
0.15236535668373108,
0.17922845482826233,
0.04891754686832428,
0.08624797314405441,
0.0744033083319664,
-0.10730116069316864,
-0.12291247397661209,
0.125810906291008,
-0.018192267045378685,
0.12036343663930893,
-0.013458318077027798,
0.2638738453388214,
0.09923392534255981,
-0.1935877799987793,
0.05682285875082016,
-0.04030165821313858,
-0.09243113547563553,
-0.09126735478639603,
-0.06152336299419403,
-0.06696611642837524,
-0.17075374722480774,
0.012022443115711212,
-0.11299721151590347,
0.0550098717212677,
0.0612480603158474,
0.03781469166278839,
0.01403807569295168,
0.13798823952674866,
0.04038044437766075,
0.0037069725804030895,
0.1087566539645195,
0.01663758046925068,
-0.013624182902276516,
-0.0650908425450325,
-0.08850450068712234,
0.031775396317243576,
-0.0257123913615942,
0.046926528215408325,
-0.0530492328107357,
-0.09978248924016953,
0.05705709382891655,
0.0012935241684317589,
-0.1083962619304657,
0.017704378813505173,
-0.021260961890220642,
0.07447630912065506,
0.08489741384983063,
0.03146937116980553,
-0.006191028282046318,
-0.025294026359915733,
0.2663479745388031,
-0.10771125555038452,
-0.06059073284268379,
-0.13150440156459808,
0.24764859676361084,
0.012623465619981289,
-0.02319655753672123,
0.01633535511791706,
-0.07239192724227905,
0.006761291064321995,
0.16591541469097137,
0.1496773213148117,
-0.03135610744357109,
-0.020428920164704323,
0.015028745867311954,
-0.011567343026399612,
-0.058515515178442,
0.0806112214922905,
0.12978097796440125,
0.05138088017702103,
-0.07902372628450394,
-0.03128483518958092,
-0.059512920677661896,
-0.045862309634685516,
-0.028070807456970215,
0.07536277174949646,
0.042597848922014236,
-0.012720122002065182,
-0.029520343989133835,
0.12271322309970856,
-0.0746166780591011,
-0.11081734299659729,
0.015328744426369667,
-0.18246586620807648,
-0.1872519850730896,
-0.03597882762551308,
0.0721922218799591,
0.029790451750159264,
0.05395929887890816,
-0.015074214898049831,
-0.013553617522120476,
0.09470922499895096,
0.008332664147019386,
-0.045879218727350235,
-0.10852079838514328,
0.09600304067134857,
-0.09790076315402985,
0.191756933927536,
-0.04678092151880264,
0.027354737743735313,
0.12393396347761154,
0.07349805533885956,
-0.06247517466545105,
0.05297829955816269,
0.06825777888298035,
-0.12794238328933716,
0.04804496467113495,
0.19550277292728424,
-0.03327605500817299,
0.13987070322036743,
0.041486356407403946,
-0.11809878796339035,
0.028921447694301605,
-0.10948417335748672,
-0.04617263749241829,
-0.05886603519320488,
-0.01665010303258896,
-0.04302987456321716,
0.1307925134897232,
0.2197725772857666,
-0.06213530898094177,
-0.017521796748042107,
-0.06353048235177994,
0.0029342470224946737,
0.049161624163389206,
0.1137600690126419,
-0.051515914499759674,
-0.2727425992488861,
0.010669228620827198,
0.0004903279477730393,
0.006822726223617792,
-0.26497942209243774,
-0.09202728420495987,
0.04298253729939461,
-0.06373646855354309,
-0.06137651205062866,
0.1095472052693367,
0.0823647677898407,
0.053120050579309464,
-0.0571015439927578,
-0.0761890709400177,
-0.03493843227624893,
0.1882573813199997,
-0.1731024980545044,
-0.055893562734127045
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-tamil-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8072
- Wer: 0.6531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 11.0967 | 1.0 | 118 | 4.6437 | 1.0 |
| 3.4973 | 2.0 | 236 | 3.2588 | 1.0 |
| 3.1305 | 3.0 | 354 | 2.6566 | 1.0 |
| 1.2931 | 4.0 | 472 | 0.9156 | 0.9944 |
| 0.6851 | 5.0 | 590 | 0.7474 | 0.8598 |
| 0.525 | 6.0 | 708 | 0.6649 | 0.7995 |
| 0.4325 | 7.0 | 826 | 0.6740 | 0.7752 |
| 0.3766 | 8.0 | 944 | 0.6220 | 0.7628 |
| 0.3256 | 9.0 | 1062 | 0.6316 | 0.7322 |
| 0.2802 | 10.0 | 1180 | 0.6442 | 0.7305 |
| 0.2575 | 11.0 | 1298 | 0.6885 | 0.7280 |
| 0.2248 | 12.0 | 1416 | 0.6702 | 0.7197 |
| 0.2089 | 13.0 | 1534 | 0.6781 | 0.7173 |
| 0.1893 | 14.0 | 1652 | 0.6981 | 0.7049 |
| 0.1652 | 15.0 | 1770 | 0.7154 | 0.7436 |
| 0.1643 | 16.0 | 1888 | 0.6798 | 0.7023 |
| 0.1472 | 17.0 | 2006 | 0.7381 | 0.6947 |
| 0.1372 | 18.0 | 2124 | 0.7240 | 0.7065 |
| 0.1318 | 19.0 | 2242 | 0.7305 | 0.6714 |
| 0.1211 | 20.0 | 2360 | 0.7288 | 0.6597 |
| 0.1178 | 21.0 | 2478 | 0.7417 | 0.6699 |
| 0.1118 | 22.0 | 2596 | 0.7476 | 0.6753 |
| 0.1016 | 23.0 | 2714 | 0.7973 | 0.6647 |
| 0.0998 | 24.0 | 2832 | 0.8027 | 0.6633 |
| 0.0917 | 25.0 | 2950 | 0.8045 | 0.6680 |
| 0.0907 | 26.0 | 3068 | 0.7884 | 0.6565 |
| 0.0835 | 27.0 | 3186 | 0.8009 | 0.6622 |
| 0.0749 | 28.0 | 3304 | 0.8123 | 0.6536 |
| 0.0755 | 29.0 | 3422 | 0.8006 | 0.6555 |
| 0.074 | 30.0 | 3540 | 0.8072 | 0.6531 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-tamil-colab", "results": []}]}
|
automatic-speech-recognition
|
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
|
wav2vec2-large-xls-r-300m-tamil-colab
=====================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8072
* Wer: 0.6531
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.13.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
65,
158,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
-0.11751111596822739,
0.07993100583553314,
-0.0028286364395171404,
0.055796701461076736,
0.12343578785657883,
0.008311945013701916,
0.11129909753799438,
0.15244056284427643,
-0.09420009702444077,
0.0791916698217392,
0.0947682335972786,
0.09260205924510956,
0.06181260570883751,
0.09807788580656052,
-0.017553221434354782,
-0.3227207660675049,
0.004273364786058664,
0.02123274654150009,
-0.1073567196726799,
0.11762262135744095,
0.10601196438074112,
-0.1141255795955658,
0.027031216770410538,
0.026858996599912643,
-0.12631836533546448,
0.014733375050127506,
-0.020584963262081146,
-0.06956163048744202,
0.1286342740058899,
0.029509223997592926,
0.10026474297046661,
0.016620028764009476,
0.09469127655029297,
-0.26187190413475037,
0.015138126909732819,
0.05899550020694733,
0.047878772020339966,
0.0775405764579773,
0.10431074351072311,
-0.028109235689044,
0.13380184769630432,
-0.0692068412899971,
0.07631681859493256,
0.042022738605737686,
-0.11316896975040436,
-0.3228369653224945,
-0.0783720538020134,
0.03650856018066406,
0.11214211583137512,
0.10455707460641861,
-0.03328578919172287,
0.0772644579410553,
-0.0758768618106842,
0.08718673139810562,
0.22803983092308044,
-0.2490013688802719,
-0.08304223418235779,
-0.023040222004055977,
0.04738582298159599,
0.04030529037117958,
-0.13171376287937164,
-0.031360115855932236,
0.02518504299223423,
0.04439559951424599,
0.10690051317214966,
0.005791217088699341,
-0.0384545624256134,
0.021378079429268837,
-0.13414667546749115,
-0.04777948930859566,
0.12752528488636017,
0.07527179270982742,
-0.0282231904566288,
-0.09266254305839539,
-0.00828537717461586,
-0.20419096946716309,
-0.04817011579871178,
0.016512354835867882,
0.024596363306045532,
-0.041554518043994904,
-0.12221032381057739,
0.011663608253002167,
-0.09490527212619781,
-0.0897427424788475,
0.012900903820991516,
0.13418857753276825,
0.04353409633040428,
-0.02783329039812088,
-0.0020368341356515884,
0.10952208936214447,
0.042359720915555954,
-0.13702596724033356,
0.010255960747599602,
0.04834248125553131,
-0.0948905274271965,
-0.021575715392827988,
-0.04137740656733513,
-0.049116287380456924,
-0.0017877642530947924,
0.12014590203762054,
-0.016700511798262596,
0.0798216313123703,
0.014216183684766293,
0.034927502274513245,
-0.08039461821317673,
0.1791132092475891,
-0.07204516977071762,
-0.019814006984233856,
-0.05630099028348923,
0.09497371315956116,
-0.023070624098181725,
-0.014900174923241138,
-0.0665879100561142,
0.0311382208019495,
0.11237959563732147,
0.03772808238863945,
-0.025581255555152893,
0.0238952673971653,
-0.06492231786251068,
-0.022776922211050987,
-0.0491035096347332,
-0.10365019738674164,
0.04415789991617203,
0.025948893278837204,
-0.08558893203735352,
0.01158748660236597,
0.0032235269900411367,
0.027108287438750267,
-0.023100432008504868,
0.1294458508491516,
-0.0680549144744873,
0.015858745202422142,
-0.09199077636003494,
-0.10519104450941086,
0.031245814636349678,
-0.03811834752559662,
0.010671580210328102,
-0.06107167899608612,
-0.10485575348138809,
-0.048919204622507095,
0.06899217516183853,
-0.05197467282414436,
-0.0681816041469574,
-0.07103281468153,
-0.06951935589313507,
0.047847896814346313,
-0.025976058095693588,
0.18071043491363525,
-0.057577770203351974,
0.11898144334554672,
0.021483248099684715,
0.03958865627646446,
0.030544346198439598,
0.0770564004778862,
-0.056049853563308716,
0.032444436103105545,
-0.13171660900115967,
0.06911075860261917,
-0.08554848283529282,
0.05915473774075508,
-0.1444619596004486,
-0.12692907452583313,
-0.023743104189634323,
0.004898342303931713,
0.10027804225683212,
0.08361312001943588,
-0.19276206195354462,
-0.09318786859512329,
0.17238783836364746,
-0.06951530277729034,
-0.10108175873756409,
0.13354387879371643,
-0.034197453409433365,
0.016805356368422508,
0.041145194321870804,
0.18827351927757263,
0.07016270607709885,
-0.09188750386238098,
0.015322967432439327,
-0.05242124944925308,
0.12315214425325394,
0.019863195717334747,
0.0975213572382927,
-0.04320415109395981,
0.03641282394528389,
-0.00593459140509367,
-0.019637251272797585,
0.06385376304388046,
-0.09503144025802612,
-0.09223990142345428,
-0.015049808658659458,
-0.07566695660352707,
0.007389950565993786,
0.06957791745662689,
0.03897741064429283,
-0.09804774820804596,
-0.13044017553329468,
0.033244404941797256,
0.10004934668540955,
-0.10864970088005066,
0.034154705703258514,
-0.07988332211971283,
0.036142561584711075,
-0.020147914066910744,
-0.014127596281468868,
-0.16676084697246552,
-0.007884828373789787,
0.023902110755443573,
-0.037739187479019165,
0.035678330808877945,
-0.00457350630313158,
0.08711846172809601,
0.037414345890283585,
-0.050228990614414215,
-0.07292155921459198,
-0.0704956129193306,
-0.003511284478008747,
-0.08278779685497284,
-0.2348886877298355,
-0.0770937129855156,
-0.02632809244096279,
0.16196496784687042,
-0.22453056275844574,
0.010337351821362972,
0.021228551864624023,
0.10351598262786865,
0.035135120153427124,
-0.04881803318858147,
-0.013496436178684235,
0.08058231323957443,
-0.019664539024233818,
-0.06306519359350204,
0.034400563687086105,
0.003678317880257964,
-0.12447215616703033,
0.01767059974372387,
-0.12286905199289322,
0.09520768374204636,
0.11031606793403625,
-0.0506834052503109,
-0.08551174402236938,
-0.061409637331962585,
-0.06887557357549667,
-0.06412763148546219,
-0.03498734161257744,
-0.0010996228083968163,
0.20516692101955414,
0.03516167029738426,
0.11540854722261429,
-0.07466687262058258,
-0.04675634577870369,
0.027427829802036285,
-0.006939449347555637,
-0.010562621988356113,
0.13961000740528107,
0.06793146580457687,
-0.03695082664489746,
0.10170997679233551,
0.0804038867354393,
-0.0870945155620575,
0.14304561913013458,
-0.06850659847259521,
-0.12817195057868958,
-0.02106383442878723,
0.01680314913392067,
0.03047383390367031,
0.12788839638233185,
-0.15700191259384155,
-0.004730622284114361,
0.02022462897002697,
0.023853223770856857,
0.030125174671411514,
-0.222624734044075,
-0.017062265425920486,
0.040918417274951935,
-0.06304582953453064,
-0.04954688251018524,
-0.01890508458018303,
0.002725212136283517,
0.09065243601799011,
0.002847066381946206,
-0.06169876828789711,
-0.006761852186173201,
-0.025375602766871452,
-0.08224871754646301,
0.18916553258895874,
-0.0921594575047493,
-0.1382182389497757,
-0.13530635833740234,
-0.04251059144735336,
0.001363044953905046,
-0.0167694054543972,
0.04708801954984665,
-0.10710645467042923,
-0.03394189104437828,
-0.06325989216566086,
0.046998366713523865,
-0.06864820420742035,
0.024171749129891396,
-0.013332800939679146,
0.012031765654683113,
0.07995340973138809,
-0.10119657218456268,
0.0198372732847929,
-0.024239061400294304,
-0.04110855981707573,
0.0343528687953949,
0.036993607878685,
0.0973338708281517,
0.167447030544281,
0.03023187816143036,
0.02361876517534256,
-0.04118826612830162,
0.15342336893081665,
-0.10501363128423691,
-0.030155101791024208,
0.10645309835672379,
-0.002280266722664237,
0.04160982742905617,
0.12241555750370026,
0.06607627868652344,
-0.08191302418708801,
0.021289166063070297,
0.056792549788951874,
-0.016731658950448036,
-0.246926948428154,
-0.025057541206479073,
-0.05933796614408493,
-0.022339841350913048,
0.12158855050802231,
0.03026094287633896,
0.0004514243919402361,
0.034189142286777496,
0.0004598632513079792,
0.0059538898058235645,
0.0021397715900093317,
0.06511794775724411,
0.06956153362989426,
0.03735699504613876,
0.11630076915025711,
-0.01704764924943447,
-0.053503312170505524,
0.02056731842458248,
0.013023070991039276,
0.2561072111129761,
0.0007118578068912029,
0.16626788675785065,
0.05789191648364067,
0.16205474734306335,
0.005357562564313412,
0.07461456209421158,
0.008461512625217438,
-0.02835102006793022,
0.014116613194346428,
-0.055005576461553574,
-0.02583620510995388,
0.041719332337379456,
0.0898328498005867,
0.03950388729572296,
-0.12575176358222961,
-0.030060341581702232,
0.019221477210521698,
0.35242149233818054,
0.0644313171505928,
-0.3002247214317322,
-0.08661270886659622,
0.002604456851258874,
-0.08245231956243515,
-0.047586843371391296,
0.02854464016854763,
0.10525981336832047,
-0.09864053875207901,
0.042439356446266174,
-0.08005630224943161,
0.09834594279527664,
-0.06609368324279785,
0.008241871371865273,
0.08418498188257217,
0.06872265040874481,
-0.0051025268621742725,
0.07776658982038498,
-0.2807559669017792,
0.31258559226989746,
-0.014618952758610249,
0.07847751677036285,
-0.04805951938033104,
0.02674245461821556,
0.025414787232875824,
-0.056252241134643555,
0.07116944342851639,
-0.01639210619032383,
-0.0890306904911995,
-0.19459335505962372,
-0.07525146007537842,
0.024622026830911636,
0.13040614128112793,
-0.05517873540520668,
0.12334034591913223,
-0.02670474909245968,
-0.002955016912892461,
0.06235484406352043,
-0.07852888852357864,
-0.0914587751030922,
-0.11209341138601303,
0.01606128178536892,
0.024346789345145226,
0.07301682978868484,
-0.10393943637609482,
-0.11357896029949188,
-0.07110057026147842,
0.15138746798038483,
-0.06411533802747726,
-0.007021286059170961,
-0.1285875141620636,
0.1010068953037262,
0.16545651853084564,
-0.06523338705301285,
0.04076032713055611,
0.02955041453242302,
0.11536197364330292,
0.0322086401283741,
-0.005419072229415178,
0.11551377177238464,
-0.07731673866510391,
-0.17606790363788605,
-0.056131523102521896,
0.16243793070316315,
0.04535512626171112,
0.07390221953392029,
-0.023377524688839912,
0.02246520295739174,
-0.033153340220451355,
-0.07168612629175186,
0.062024954706430435,
-0.006312267389148474,
0.008130325935781002,
0.05484110862016678,
-0.041466087102890015,
0.0066685485653579235,
-0.07988246530294418,
-0.06291305273771286,
0.16489630937576294,
0.2713643014431,
-0.0738893449306488,
0.019889874383807182,
0.03736702352762222,
-0.05028442293405533,
-0.14639706909656525,
0.036053553223609924,
0.12360399216413498,
0.033743105828762054,
0.019016264006495476,
-0.23318204283714294,
0.06570304930210114,
0.08537557721138,
-0.01990184746682644,
0.06997335702180862,
-0.3308058977127075,
-0.12668441236019135,
0.11919771879911423,
0.11184830218553543,
-0.042435985058546066,
-0.15506617724895477,
-0.054984964430332184,
-0.00829628948122263,
-0.09280698746442795,
0.06880688667297363,
-0.03184311091899872,
0.12956079840660095,
-0.0005080255214124918,
0.08747498691082001,
0.025989465415477753,
-0.058625828474760056,
0.14115747809410095,
-0.006411454174667597,
0.06407642364501953,
-0.006049228832125664,
0.046460915356874466,
0.015647441148757935,
-0.041154853999614716,
0.011025666259229183,
-0.07264641672372818,
0.00813282746821642,
-0.1346544623374939,
-0.03102990798652172,
-0.08601231127977371,
0.026262179017066956,
-0.041468728333711624,
-0.0520378053188324,
-0.008697997778654099,
0.04707785323262215,
0.0586530826985836,
0.00572617445141077,
0.12195461988449097,
-0.05385424941778183,
0.15611495077610016,
0.06110475957393646,
0.10534937679767609,
-0.004367182031273842,
-0.10076305270195007,
-0.014767343178391457,
-0.008629932068288326,
0.0498012900352478,
-0.11484631150960922,
0.029362840577960014,
0.15176445245742798,
0.04617828130722046,
0.15669257938861847,
0.06561297178268433,
-0.08548310399055481,
0.017597073689103127,
0.07095858454704285,
-0.0831989273428917,
-0.11707931756973267,
-0.014735857024788857,
0.06781820952892303,
-0.1444181650876999,
0.005745808593928814,
0.09828700870275497,
-0.0500553734600544,
-0.012757471762597561,
0.013546615839004517,
0.017016621306538582,
-0.06169046834111214,
0.2240232229232788,
0.027952199801802635,
0.07465658336877823,
-0.09250008314847946,
0.07556327432394028,
0.05788454785943031,
-0.17357149720191956,
0.027020685374736786,
0.07752856612205505,
-0.026886841282248497,
-0.019191060215234756,
0.025692887604236603,
0.09356972575187683,
-0.002430213848128915,
-0.056838180869817734,
-0.1200818195939064,
-0.14706718921661377,
0.07772985100746155,
0.0841960608959198,
0.033168114721775055,
0.025869220495224,
-0.05159107968211174,
0.04228825867176056,
-0.11832789331674576,
0.09071739763021469,
0.09730243682861328,
0.07158111780881882,
-0.1301373839378357,
0.15724284946918488,
0.013234059326350689,
0.005080425180494785,
0.008132091723382473,
-0.006458629854023457,
-0.0975375771522522,
0.03905138000845909,
-0.10076461732387543,
-0.033537689596414566,
-0.049044813960790634,
-0.0037623459938913584,
0.013463919050991535,
-0.05563763529062271,
-0.053031500428915024,
0.013989526778459549,
-0.12629570066928864,
-0.0429818294942379,
0.0025024861097335815,
0.06720365583896637,
-0.10986052453517914,
-0.022349976003170013,
0.04861949384212494,
-0.1043441891670227,
0.09183770418167114,
0.06121007353067398,
0.021383291110396385,
0.04517326503992081,
-0.1271660178899765,
0.015140803530812263,
0.038589682430028915,
-0.0008166406187228858,
0.029781360179185867,
-0.15518833696842194,
-0.013732279650866985,
-0.01841842196881771,
0.04191918298602104,
-0.0004431282286532223,
0.02298140898346901,
-0.13902771472930908,
-0.04059315845370293,
-0.0315205417573452,
-0.07596730440855026,
-0.06008246913552284,
0.053838033229112625,
0.05564560741186142,
0.04550834372639656,
0.1715267449617386,
-0.08713012933731079,
0.054747045040130615,
-0.21897552907466888,
0.019287070259451866,
-0.03543839976191521,
-0.06399734318256378,
-0.06646512448787689,
-0.04155997931957245,
0.0825326144695282,
-0.07543215155601501,
0.08933427184820175,
-0.02920309640467167,
0.04299464449286461,
0.03173528611660004,
-0.10693661868572235,
0.02565194107592106,
0.044104885309934616,
0.23969529569149017,
0.044452834874391556,
-0.02836671844124794,
0.07282676547765732,
0.010079070925712585,
0.052836086601018906,
0.18123255670070648,
0.15236535668373108,
0.17922845482826233,
0.04891754686832428,
0.08624797314405441,
0.0744033083319664,
-0.10730116069316864,
-0.12291247397661209,
0.125810906291008,
-0.018192267045378685,
0.12036343663930893,
-0.013458318077027798,
0.2638738453388214,
0.09923392534255981,
-0.1935877799987793,
0.05682285875082016,
-0.04030165821313858,
-0.09243113547563553,
-0.09126735478639603,
-0.06152336299419403,
-0.06696611642837524,
-0.17075374722480774,
0.012022443115711212,
-0.11299721151590347,
0.0550098717212677,
0.0612480603158474,
0.03781469166278839,
0.01403807569295168,
0.13798823952674866,
0.04038044437766075,
0.0037069725804030895,
0.1087566539645195,
0.01663758046925068,
-0.013624182902276516,
-0.0650908425450325,
-0.08850450068712234,
0.031775396317243576,
-0.0257123913615942,
0.046926528215408325,
-0.0530492328107357,
-0.09978248924016953,
0.05705709382891655,
0.0012935241684317589,
-0.1083962619304657,
0.017704378813505173,
-0.021260961890220642,
0.07447630912065506,
0.08489741384983063,
0.03146937116980553,
-0.006191028282046318,
-0.025294026359915733,
0.2663479745388031,
-0.10771125555038452,
-0.06059073284268379,
-0.13150440156459808,
0.24764859676361084,
0.012623465619981289,
-0.02319655753672123,
0.01633535511791706,
-0.07239192724227905,
0.006761291064321995,
0.16591541469097137,
0.1496773213148117,
-0.03135610744357109,
-0.020428920164704323,
0.015028745867311954,
-0.011567343026399612,
-0.058515515178442,
0.0806112214922905,
0.12978097796440125,
0.05138088017702103,
-0.07902372628450394,
-0.03128483518958092,
-0.059512920677661896,
-0.045862309634685516,
-0.028070807456970215,
0.07536277174949646,
0.042597848922014236,
-0.012720122002065182,
-0.029520343989133835,
0.12271322309970856,
-0.0746166780591011,
-0.11081734299659729,
0.015328744426369667,
-0.18246586620807648,
-0.1872519850730896,
-0.03597882762551308,
0.0721922218799591,
0.029790451750159264,
0.05395929887890816,
-0.015074214898049831,
-0.013553617522120476,
0.09470922499895096,
0.008332664147019386,
-0.045879218727350235,
-0.10852079838514328,
0.09600304067134857,
-0.09790076315402985,
0.191756933927536,
-0.04678092151880264,
0.027354737743735313,
0.12393396347761154,
0.07349805533885956,
-0.06247517466545105,
0.05297829955816269,
0.06825777888298035,
-0.12794238328933716,
0.04804496467113495,
0.19550277292728424,
-0.03327605500817299,
0.13987070322036743,
0.041486356407403946,
-0.11809878796339035,
0.028921447694301605,
-0.10948417335748672,
-0.04617263749241829,
-0.05886603519320488,
-0.01665010303258896,
-0.04302987456321716,
0.1307925134897232,
0.2197725772857666,
-0.06213530898094177,
-0.017521796748042107,
-0.06353048235177994,
0.0029342470224946737,
0.049161624163389206,
0.1137600690126419,
-0.051515914499759674,
-0.2727425992488861,
0.010669228620827198,
0.0004903279477730393,
0.006822726223617792,
-0.26497942209243774,
-0.09202728420495987,
0.04298253729939461,
-0.06373646855354309,
-0.06137651205062866,
0.1095472052693367,
0.0823647677898407,
0.053120050579309464,
-0.0571015439927578,
-0.0761890709400177,
-0.03493843227624893,
0.1882573813199997,
-0.1731024980545044,
-0.055893562734127045
] |
null | null |
transformers
|
# Kaiser DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
akaushik1/DialoGPT-small-kaiser
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Kaiser DialoGPT Model
|
[
"# Kaiser DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Kaiser DialoGPT Model"
] |
[
51,
7
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Kaiser DialoGPT Model"
] |
[
-0.04118131846189499,
0.025264251977205276,
-0.005563425365835428,
0.0140759889036417,
0.1338503062725067,
0.004873829893767834,
0.16666583716869354,
0.12339522689580917,
0.011827551759779453,
-0.032097723335027695,
0.11001086980104446,
0.14069043099880219,
0.002463788725435734,
0.0693831592798233,
-0.07580121606588364,
-0.30435335636138916,
0.04989663138985634,
0.04934028536081314,
0.021763049066066742,
0.10419248044490814,
0.10667181015014648,
-0.05447576567530632,
0.07014172524213791,
0.010566665790975094,
-0.1388940066099167,
0.021747570484876633,
0.022646192461252213,
-0.1085267961025238,
0.1163996085524559,
0.05347733199596405,
0.020284784957766533,
0.035817865282297134,
-0.04106585681438446,
-0.1348899006843567,
0.03215857222676277,
-0.02129913866519928,
-0.03493686020374298,
0.04163135215640068,
0.014607548713684082,
-0.094419464468956,
0.10141514241695404,
0.08627203851938248,
-0.03290092572569847,
0.03628608211874962,
-0.14729247987270355,
-0.01232188567519188,
0.0022324146702885628,
0.07406894862651825,
0.07966374605894089,
0.09341027587652206,
-0.042767006903886795,
0.05658887326717377,
-0.0758730098605156,
0.0936259925365448,
0.11244472116231918,
-0.3558235168457031,
-0.023017117753624916,
0.11165294051170349,
0.014036137610673904,
0.05528147518634796,
-0.052689533680677414,
0.1111573800444603,
0.032783716917037964,
0.002408975502476096,
0.01716545782983303,
-0.08798429369926453,
-0.11615683883428574,
0.015316841192543507,
-0.10012943297624588,
-0.004754608031362295,
0.28228771686553955,
-0.03873424232006073,
0.06503605842590332,
-0.09741710126399994,
-0.07684994488954544,
0.014604552648961544,
-0.03860742598772049,
-0.04319003224372864,
-0.08178368955850601,
0.06108377128839493,
0.043450918048620224,
-0.12286698073148727,
-0.11597588658332825,
-0.035657238215208054,
-0.15881845355033875,
0.16188114881515503,
0.040897294878959656,
0.03136530518531799,
-0.19510379433631897,
0.11037398874759674,
-0.020731383934617043,
-0.11836321651935577,
0.013896278105676174,
-0.09847754240036011,
0.009520739316940308,
0.012841851450502872,
-0.04276035353541374,
-0.035428546369075775,
0.049545977264642715,
0.0959036573767662,
0.02340967394411564,
0.016343435272574425,
-0.014140758663415909,
0.06237782537937164,
0.05910751223564148,
0.10175154358148575,
-0.011412062682211399,
-0.09677433222532272,
0.02815091796219349,
-0.0880800411105156,
-0.002826645039021969,
-0.047634489834308624,
-0.19310864806175232,
-0.035331398248672485,
0.056453216820955276,
0.05310296267271042,
-0.008497526869177818,
0.11862530559301376,
-0.008578537963330746,
-0.037549905478954315,
0.03345499560236931,
-0.028221914544701576,
-0.027263930067420006,
-0.00676287617534399,
-0.018675563856959343,
0.19326597452163696,
-0.005780935287475586,
0.029181934893131256,
-0.1362089067697525,
0.023818127810955048,
-0.048258211463689804,
0.004547770135104656,
-0.036185380071401596,
-0.054248832166194916,
-0.01145049836486578,
-0.05796537920832634,
-0.0010011974954977632,
-0.1451568305492401,
-0.194461852312088,
0.006642373278737068,
-0.00006515556742670015,
-0.055950041860342026,
-0.08643610775470734,
-0.12037083506584167,
-0.023043498396873474,
0.048442088067531586,
-0.07420212775468826,
-0.046472564339637756,
-0.054483842104673386,
0.05690839886665344,
-0.04635809361934662,
0.10556560754776001,
-0.11224310100078583,
0.08539700508117676,
-0.1015273854136467,
-0.023383239284157753,
-0.14347897469997406,
0.13035957515239716,
-0.03033292293548584,
0.03748318552970886,
-0.01692393235862255,
-0.018412165343761444,
-0.08029871433973312,
0.07345054298639297,
-0.02581140212714672,
0.24592220783233643,
-0.10302266478538513,
-0.11824015527963638,
0.29061397910118103,
-0.06391653418540955,
-0.11195449531078339,
0.13155916333198547,
-0.0015149039682000875,
0.07547686994075775,
0.12715689837932587,
0.2106974571943283,
0.03943968191742897,
-0.018253860995173454,
0.061668578535318375,
0.1139119565486908,
-0.08167560398578644,
-0.006404031999409199,
0.012249317020177841,
-0.012139401398599148,
-0.08268561214208603,
0.05776907876133919,
0.07606033235788345,
0.0406707301735878,
-0.05624818429350853,
-0.01584593579173088,
-0.003339929971843958,
-0.003965531010180712,
0.11220338940620422,
-0.039736829698085785,
0.14843548834323883,
-0.0295517910271883,
-0.050103895366191864,
0.05202189460396767,
0.007895641960203648,
-0.05248233675956726,
0.03430810943245888,
-0.04301638901233673,
0.0647018626332283,
-0.007423511706292629,
0.07697992771863937,
-0.1324790120124817,
-0.08216314762830734,
-0.022155502811074257,
0.11887652426958084,
0.06514763087034225,
0.13538672029972076,
0.06055494397878647,
-0.040056757628917694,
-0.041819971054792404,
0.03404764086008072,
0.15443867444992065,
-0.020122313871979713,
-0.07647452503442764,
-0.10428804159164429,
0.0769767090678215,
-0.05325320363044739,
0.10972852259874344,
-0.018519381061196327,
0.010305583477020264,
-0.01925676502287388,
0.10855621099472046,
-0.018433524295687675,
0.04406674578785896,
0.00957320537418127,
-0.002230137586593628,
-0.05711647495627403,
0.02584112621843815,
0.09145496040582657,
-0.014066804200410843,
-0.055129993706941605,
0.2513747811317444,
-0.12193240970373154,
0.13001663982868195,
0.17275767028331757,
-0.23536792397499084,
-0.003446876537054777,
-0.14879508316516876,
-0.030346358194947243,
0.00829909648746252,
0.03664400428533554,
-0.06383660435676575,
0.23655419051647186,
-0.0430038683116436,
0.1615481972694397,
-0.041172824800014496,
-0.05269967019557953,
-0.029252251610159874,
-0.058110907673835754,
-0.003865207778289914,
0.09229089319705963,
0.1023273766040802,
-0.12590454518795013,
0.1656395047903061,
0.10251886397600174,
0.013165764510631561,
0.22441096603870392,
0.04165888950228691,
0.0004097809724044055,
0.05669166147708893,
-0.0166072528809309,
-0.05908621847629547,
-0.03490385040640831,
-0.29992178082466125,
-0.052434030920267105,
0.0764145776629448,
0.04397018626332283,
0.11618337035179138,
-0.08498738706111908,
-0.010528253391385078,
-0.025635555386543274,
-0.022524600848555565,
0.06033007428050041,
0.11065708100795746,
0.024374516680836678,
0.13210323452949524,
-0.01705830916762352,
-0.0480816513299942,
0.061048369854688644,
0.014652757905423641,
-0.0818132609128952,
0.17551521956920624,
-0.12049712985754013,
-0.3303508162498474,
-0.1256963610649109,
-0.14591993391513824,
-0.08763011544942856,
0.03808823600411415,
0.08693869411945343,
-0.09129837155342102,
-0.02395266853272915,
-0.004993145819753408,
0.0789579525589943,
-0.05815279856324196,
0.007532837800681591,
-0.018646707758307457,
-0.009511539712548256,
-0.11952762305736542,
-0.09140680730342865,
-0.06845381110906601,
-0.054455894976854324,
-0.03943974897265434,
0.09820553660392761,
-0.1129312515258789,
0.029433246701955795,
0.2325354963541031,
0.05319008603692055,
0.0654514953494072,
-0.0492035411298275,
0.1768333613872528,
-0.10606545954942703,
0.03830388933420181,
0.1695391684770584,
-0.038326047360897064,
0.055672936141490936,
0.1333744376897812,
-0.0035354120191186666,
-0.0661173015832901,
0.023848656564950943,
-0.020979952067136765,
-0.07291299849748611,
-0.20373257994651794,
-0.1454468071460724,
-0.13974110782146454,
0.08118101209402084,
0.006622703745961189,
0.02102648839354515,
0.14883020520210266,
0.05989302322268486,
-0.03971092030405998,
0.021091558039188385,
0.03673761710524559,
0.06970661133527756,
0.2701943814754486,
-0.06144455820322037,
0.14635464549064636,
-0.01034434325993061,
-0.159176304936409,
0.07732462882995605,
0.03743446245789528,
0.09683410823345184,
0.035822682082653046,
0.018675871193408966,
0.021588845178484917,
0.043689992278814316,
0.11284131556749344,
0.04962794482707977,
0.01562904752790928,
-0.04430780187249184,
-0.03386878967285156,
-0.05560910701751709,
-0.0017649887595325708,
0.05354182794690132,
0.05175282061100006,
-0.1375836879014969,
-0.035269249230623245,
-0.04986393451690674,
0.08281470090150833,
0.06698887050151825,
0.12911687791347504,
-0.14787538349628448,
-0.023472396656870842,
0.07670095562934875,
-0.02492174319922924,
-0.11098387837409973,
0.08994901925325394,
0.027869779616594315,
-0.13514278829097748,
0.06175735220313072,
-0.0017191325314342976,
0.10966411978006363,
-0.08029859513044357,
0.07568535208702087,
-0.11146574467420578,
-0.025235552340745926,
-0.006220719777047634,
0.10767362266778946,
-0.31496134400367737,
0.20669426023960114,
-0.007489604409784079,
-0.03769093379378319,
-0.12616950273513794,
-0.008520436473190784,
0.032343387603759766,
0.0690399780869484,
0.11818553507328033,
-0.00909879244863987,
0.02033700793981552,
0.038192637264728546,
-0.05483042821288109,
0.019478047266602516,
0.11954974383115768,
-0.04416314885020256,
-0.013698514550924301,
-0.02724975347518921,
-0.024913286790251732,
-0.018396615982055664,
-0.0335531122982502,
-0.025944141671061516,
-0.16904452443122864,
0.07473114132881165,
0.0970446914434433,
0.06272925436496735,
0.0425807423889637,
-0.03836619108915329,
-0.1256907433271408,
0.24438531696796417,
0.028960861265659332,
-0.10115614533424377,
-0.0955047681927681,
-0.04671401157975197,
0.05216361582279205,
-0.06848961114883423,
0.032168373465538025,
-0.05186497047543526,
0.049580562859773636,
-0.06642695516347885,
-0.19345104694366455,
0.1141647920012474,
-0.10838614404201508,
-0.03228526562452316,
-0.023288333788514137,
0.24176539480686188,
-0.011996692977845669,
0.017249073833227158,
0.046033214777708054,
-0.0068070534616708755,
-0.07151730358600616,
-0.11213165521621704,
0.04580855369567871,
0.014768832363188267,
-0.027335816994309425,
0.07326100766658783,
-0.05147504806518555,
-0.12598565220832825,
-0.04587244242429733,
-0.008002710528671741,
0.2957378923892975,
0.1531638354063034,
-0.04484192654490471,
0.16596314311027527,
0.15268723666667938,
-0.06043959781527519,
-0.3227575421333313,
-0.07005876302719116,
-0.059574149549007416,
-0.031024115160107613,
-0.08473880589008331,
-0.1721123456954956,
0.10166068375110626,
-0.028089726343750954,
-0.027935169637203217,
0.10564061999320984,
-0.29065635800361633,
-0.11763955652713776,
0.1808898150920868,
-0.04024913161993027,
0.4167211353778839,
-0.06892246752977371,
-0.09238175302743912,
-0.04268255457282066,
-0.1690768450498581,
0.14232203364372253,
-0.008839497342705727,
0.11479814350605011,
-0.013170219026505947,
0.1270124614238739,
0.0480523556470871,
-0.011029619723558426,
0.06989645957946777,
0.047271352261304855,
-0.04786626994609833,
-0.08745264261960983,
-0.05226140841841698,
0.04170868173241615,
0.015603043138980865,
0.06352563947439194,
-0.05867782607674599,
0.029314344748854637,
-0.10668537020683289,
-0.05679367482662201,
-0.10095269978046417,
0.06539212167263031,
0.03445489704608917,
-0.10124409943819046,
-0.005499368999153376,
-0.04082558676600456,
-0.026339920237660408,
0.02274162694811821,
0.14160054922103882,
-0.09683703631162643,
0.13080692291259766,
0.106263667345047,
0.13371731340885162,
-0.1295161247253418,
0.0012720981612801552,
-0.06219131872057915,
-0.06049958989024162,
0.07407137751579285,
-0.06934042274951935,
0.02162359096109867,
0.11749167740345001,
-0.018878236413002014,
0.0896037369966507,
0.08839870244264603,
0.007504857145249844,
0.024773266166448593,
0.08029346913099289,
-0.26818692684173584,
-0.061180830001831055,
-0.10852569341659546,
-0.0338122583925724,
0.08940471708774567,
0.13420045375823975,
0.21630997955799103,
-0.03598415106534958,
-0.013518046587705612,
0.007990168407559395,
0.003787296824157238,
-0.04029322415590286,
0.08018516004085541,
-0.000508946250192821,
0.02515164576470852,
-0.13765951991081238,
0.07077347487211227,
-0.018420500680804253,
-0.08496025204658508,
0.048162803053855896,
0.14061841368675232,
-0.10929609090089798,
-0.11489462852478027,
-0.10162467509508133,
0.11517056077718735,
-0.11037980020046234,
-0.0077178096398711205,
-0.04106535762548447,
-0.16049718856811523,
0.06278588622808456,
0.08520733565092087,
0.05425373092293739,
0.04081454500555992,
-0.10209427773952484,
-0.0076272315345704556,
-0.020363327115774155,
0.018767395988106728,
0.04947693645954132,
-0.002988791326060891,
-0.03640718013048172,
0.07254356145858765,
-0.04252339527010918,
0.13760656118392944,
-0.1114005297422409,
-0.10688530653715134,
-0.15828381478786469,
0.033336084336042404,
-0.16246050596237183,
-0.11790237575769424,
-0.10104595124721527,
-0.0649569034576416,
-0.020825063809752464,
-0.04306519776582718,
-0.05025416985154152,
-0.03088676743209362,
-0.11038300395011902,
0.04688655585050583,
-0.030004819855093956,
0.027897965162992477,
-0.07516420632600784,
0.022290091961622238,
0.05780225247144699,
-0.026743842288851738,
0.1709144562482834,
0.15966147184371948,
-0.10236211121082306,
0.1032436192035675,
-0.11738325655460358,
-0.08111906051635742,
0.10974021255970001,
0.028418464586138725,
0.07380690425634384,
0.08417048305273056,
0.01144604105502367,
0.06374160200357437,
0.05313665792346001,
0.05679897964000702,
-0.03220495581626892,
-0.07226608693599701,
0.07121007889509201,
-0.045613013207912445,
-0.12348216027021408,
-0.030851352959871292,
-0.008235114626586437,
0.03980283439159393,
0.018635785207152367,
0.072941854596138,
-0.06587177515029907,
0.083694227039814,
-0.0649707168340683,
0.03452589362859726,
0.024264737963676453,
-0.18441537022590637,
-0.005729655735194683,
-0.089154452085495,
0.05098961293697357,
0.00796155072748661,
0.229502335190773,
0.0374300554394722,
-0.023272085934877396,
0.028566714376211166,
0.0774722695350647,
0.02050192281603813,
0.013866699300706387,
0.1636364907026291,
0.10755771398544312,
-0.05664369836449623,
-0.11632802337408066,
0.0876888632774353,
0.03717784956097603,
0.05434402450919151,
0.17374294996261597,
-0.04523284360766411,
-0.03584078326821327,
0.10232816636562347,
0.0143194068223238,
0.014596402645111084,
-0.15144482254981995,
-0.11641759425401688,
-0.03662298619747162,
0.09834785014390945,
-0.051688626408576965,
0.11126614362001419,
0.12433035671710968,
-0.0342227965593338,
0.03974934294819832,
0.0024899200070649385,
-0.06247307360172272,
-0.17555955052375793,
-0.19682297110557556,
-0.06638413667678833,
-0.14661267399787903,
-0.004540255293250084,
-0.1336408108472824,
0.04502074792981148,
0.03753242641687393,
0.10199382901191711,
-0.06388071179389954,
0.12482224404811859,
0.027795596048235893,
-0.1051158756017685,
0.1387285590171814,
-0.037102147936820984,
0.0802546814084053,
-0.05448062717914581,
-0.008574857376515865,
-0.091514952480793,
0.04718200862407684,
-0.008922583423554897,
0.0323367640376091,
-0.05911075696349144,
-0.03267665207386017,
-0.09179820120334625,
-0.0739295482635498,
-0.05795213207602501,
0.054395802319049835,
0.003801866667345166,
0.09832591563463211,
0.027362607419490814,
-0.030468711629509926,
0.018728816881775856,
0.2474699467420578,
-0.09045649319887161,
-0.10107647627592087,
-0.05529732629656792,
0.1978464126586914,
0.02141634188592434,
0.11949671804904938,
-0.019414344802498817,
0.005890171509236097,
-0.08513259142637253,
0.35620445013046265,
0.3022752106189728,
-0.10292269289493561,
0.00636884942650795,
0.001382026937790215,
0.04125003516674042,
0.12652896344661713,
0.1151181235909462,
0.08366964757442474,
0.3423177897930145,
-0.05730171874165535,
-0.006094425916671753,
-0.009267522022128105,
-0.041563037782907486,
-0.0612361803650856,
0.08700557053089142,
0.06091795489192009,
-0.09265537559986115,
-0.0268951915204525,
0.10158263146877289,
-0.2745334506034851,
0.0902961939573288,
-0.18471133708953857,
-0.17581266164779663,
-0.09986286610364914,
-0.010787880048155785,
0.10737351328134537,
0.04892639070749283,
0.09387741982936859,
-0.01644982025027275,
-0.06549759954214096,
0.10521206259727478,
0.01623331755399704,
-0.16119278967380524,
-0.027124037966132164,
0.06993415951728821,
-0.08429176360368729,
-0.040583863854408264,
-0.030664611607789993,
0.06608780473470688,
0.0752967968583107,
0.04785860329866409,
0.0014618356944993138,
0.01845545321702957,
-0.000055303495173575357,
-0.10526709258556366,
0.024415424093604088,
0.058405958116054535,
0.010009804740548134,
-0.07448548823595047,
0.08150067180395126,
-0.13974061608314514,
0.04297064244747162,
0.0395313985645771,
-0.056159939616918564,
-0.02334957756102085,
0.0458657443523407,
-0.06295110285282135,
0.07624561339616776,
0.09408912062644958,
-0.009545210748910904,
-0.02198001928627491,
-0.02069074474275112,
-0.007583251688629389,
-0.018118243664503098,
-0.03954609856009483,
-0.08621097356081009,
-0.1648692935705185,
-0.10385748744010925,
0.08351173996925354,
-0.009747713804244995,
-0.17559532821178436,
0.010520252399146557,
-0.12108032405376434,
0.06843535602092743,
-0.13095159828662872,
0.08366431295871735,
0.09891761094331741,
0.025992389768362045,
0.014390937983989716,
-0.0292864590883255,
0.030031312257051468,
0.0764058455824852,
-0.13499727845191956,
-0.07187821716070175
] |
null | null |
transformers
|
# Hungarian Named Entity Recognition (NER) Model
This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc"
using the famous WikiANN dataset presented
in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "SZTAKI-HLT/hubert-base-cc"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9774538310923768
* f1: 0.9462099085573904
* precision: 0.9425718667406271
* recall: 0.9498761426661113
|
{"language": "hu", "widget": [{"text": "Karik\u00f3 Katalin megkapja Szeged d\u00edszpolg\u00e1rs\u00e1g\u00e1t."}]}
|
token-classification
|
akdeniz27/bert-base-hungarian-cased-ner
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"token-classification",
"hu",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"hu"
] |
TAGS
#transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us
|
# Hungarian Named Entity Recognition (NER) Model
This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc"
using the famous WikiANN dataset presented
in the "Cross-lingual Name Tagging and Linking for 282 Languages" paper.
# Fine-tuning parameters:
# How to use:
Pls refer "URL for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9774538310923768
* f1: 0.9462099085573904
* precision: 0.9425718667406271
* recall: 0.9498761426661113
|
[
"# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113"
] |
[
"TAGS\n#transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us \n",
"# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113"
] |
[
44,
71,
8,
24,
52
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us \n# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113"
] |
[
-0.13138820230960846,
0.01697736419737339,
-0.0008914695354178548,
0.07091008126735687,
0.09393076598644257,
-0.00909535400569439,
0.12058362364768982,
0.0237326230853796,
0.13954870402812958,
0.06739713996648788,
0.04749505594372749,
-0.010520920157432556,
0.04636658355593681,
0.030219674110412598,
-0.08888640999794006,
-0.16326452791690826,
0.12211377173662186,
0.006957367528229952,
0.11847038567066193,
0.09832167625427246,
0.07724905014038086,
-0.07571892440319061,
0.08902657777070999,
0.03677576035261154,
-0.10798396170139313,
0.06365499645471573,
0.01881476305425167,
-0.0824972540140152,
0.1579466313123703,
-0.0066521489061415195,
0.10918530076742172,
0.03372148796916008,
0.044188857078552246,
-0.09759088605642319,
0.013209386728703976,
-0.06834492087364197,
0.010152104310691357,
-0.00248320703394711,
0.06724979728460312,
-0.09957683086395264,
0.0896187424659729,
-0.0009896722622215748,
-0.03458356484770775,
-0.021301504224538803,
-0.0205091442912817,
-0.06372731178998947,
-0.037087008357048035,
0.1834164261817932,
0.009145340882241726,
0.055747538805007935,
-0.020032459869980812,
0.18830692768096924,
-0.10432380437850952,
0.09003235399723053,
0.15405447781085968,
-0.2822352945804596,
-0.02212141826748848,
0.08309520035982132,
-0.05754382163286209,
-0.0732521116733551,
0.006729931104928255,
0.07221931219100952,
0.027266060933470726,
0.03632821515202522,
0.04657437279820442,
-0.04562819004058838,
-0.29344746470451355,
-0.018663475289940834,
-0.1361919343471527,
-0.018130909651517868,
0.2427605539560318,
0.06993677467107773,
-0.006014985963702202,
-0.024595951661467552,
-0.0928281843662262,
0.07708685845136642,
-0.008540594950318336,
-0.03851412609219551,
-0.025326978415250778,
-0.09386563301086426,
0.0941043272614479,
0.06087425723671913,
-0.023327253758907318,
-0.06814128905534744,
-0.15504422783851624,
0.29479408264160156,
0.07288709282875061,
0.11342434585094452,
0.010294218547642231,
0.031970687210559845,
-0.026402417570352554,
-0.09288963675498962,
-0.009474977850914001,
0.00003497177749522962,
-0.06971147656440735,
-0.004126544110476971,
-0.017262613400816917,
0.10555822402238846,
0.11902114003896713,
0.0756501704454422,
-0.09892403334379196,
0.02848304994404316,
0.026031803339719772,
0.07411566376686096,
-0.024916723370552063,
0.17777827382087708,
-0.15389396250247955,
-0.010917303152382374,
0.042915526777505875,
-0.02211829088628292,
0.022280659526586533,
-0.0056780665181577206,
-0.1208948940038681,
-0.09168931841850281,
0.19938501715660095,
0.04173360392451286,
-0.08798228204250336,
0.14134131371974945,
0.0011771953431889415,
-0.027710404247045517,
0.004157292190939188,
-0.10544094443321228,
-0.004890242125838995,
0.04902627691626549,
-0.14380012452602386,
0.047439590096473694,
-0.07348867505788803,
0.0013775263214483857,
-0.1158333420753479,
0.06392202526330948,
-0.030818859115242958,
0.020225446671247482,
0.005495861638337374,
-0.15441396832466125,
0.07096867263317108,
-0.030793631449341774,
0.005120507441461086,
-0.20315642654895782,
-0.15026620030403137,
-0.009723786264657974,
-0.006949807051569223,
-0.02313845418393612,
0.059669315814971924,
-0.09445569664239883,
-0.025197461247444153,
-0.0053073749877512455,
-0.07279050350189209,
-0.18313880264759064,
-0.096218541264534,
-0.001446629874408245,
-0.06542591005563736,
0.0651848316192627,
-0.14989718794822693,
0.023077715188264847,
-0.16051334142684937,
0.037280354648828506,
-0.14411018788814545,
-0.002526388270780444,
-0.07908687740564346,
0.058151282370090485,
-0.07899629324674606,
-0.03632071986794472,
0.0838060975074768,
0.003609905717894435,
0.02566780522465706,
0.11906696110963821,
-0.02627304382622242,
-0.03814341127872467,
0.07155955582857132,
-0.14539974927902222,
-0.13180309534072876,
0.17894980311393738,
-0.009821177460253239,
-0.0057672359980642796,
0.10148246586322784,
0.30877572298049927,
0.061664093285799026,
-0.026782430708408356,
-0.08019295334815979,
-0.006562778726220131,
-0.10983049124479294,
-0.09533771872520447,
0.026328740641474724,
0.07337046414613724,
-0.1261843740940094,
0.06788468360900879,
-0.08592062443494797,
0.03736039251089096,
-0.04469474032521248,
-0.022918647155165672,
-0.007514857221394777,
-0.06890854239463806,
0.1308191865682602,
-0.019385535269975662,
0.08122364431619644,
-0.06776038557291031,
0.018446942791342735,
0.0654783621430397,
0.09347330033779144,
-0.056892894208431244,
0.028240134939551353,
-0.11348765343427658,
0.24009299278259277,
-0.05855925381183624,
0.010752364061772823,
-0.11720336973667145,
-0.08225838094949722,
0.04992589354515076,
0.028696687892079353,
0.02318461239337921,
-0.08023028820753098,
0.018024051561951637,
-0.009262842126190662,
-0.02251644991338253,
-0.012216516770422459,
0.11023446172475815,
0.025515954941511154,
0.009572897106409073,
-0.09479201585054398,
-0.05380164831876755,
0.042355895042419434,
0.12384992837905884,
-0.09403478354215622,
0.009191736578941345,
0.032205767929553986,
0.10893302410840988,
-0.1148092970252037,
0.09028702229261398,
-0.020397571846842766,
0.061248064041137695,
-0.02241378277540207,
0.0005066356388852,
0.10821782052516937,
-0.004088250920176506,
-0.07071056962013245,
0.12262734025716782,
-0.03744015097618103,
0.1741059571504593,
0.09735187143087387,
-0.06340780109167099,
0.0028131899889558554,
-0.033364102244377136,
0.0074385725893080235,
-0.020644711330533028,
-0.00010763013415271416,
0.03341144323348999,
0.11087263375520706,
0.004190543666481972,
0.10424527525901794,
-0.13419754803180695,
0.007247063331305981,
0.00036211012047715485,
-0.0297880657017231,
-0.0014504571445286274,
0.15093639492988586,
-0.016635969281196594,
-0.1859406679868698,
0.10006149858236313,
0.007350483909249306,
-0.10683638602495193,
0.13049282133579254,
-0.009552991017699242,
-0.024469761177897453,
0.031950145959854126,
0.027700114995241165,
-0.05200129374861717,
0.10752634704113007,
-0.022252200171351433,
-0.024290679022669792,
0.04518477991223335,
0.06589944660663605,
0.003268483327701688,
-0.08740758895874023,
0.037724271416664124,
-0.02837938442826271,
-0.05625411495566368,
-0.05868208035826683,
0.029778705909848213,
0.04242943227291107,
0.1284567415714264,
0.018350081518292427,
-0.24334239959716797,
-0.011559818871319294,
-0.011714668944478035,
-0.10346077382564545,
0.1867077797651291,
-0.03682408854365349,
-0.2476481944322586,
-0.17717893421649933,
-0.007179835345596075,
-0.24885600805282593,
-0.043378327041864395,
0.0045533920638263226,
0.00046508159721270204,
0.005039707291871309,
-0.048312582075595856,
0.06453996896743774,
-0.008513424545526505,
-0.0671406015753746,
-0.07750190049409866,
-0.03201762214303017,
-0.016376016661524773,
-0.07572673261165619,
-0.06131580099463463,
-0.12078137695789337,
-0.03801678493618965,
0.08688577264547348,
-0.10963762551546097,
0.10952916741371155,
0.12486451119184494,
-0.1010918915271759,
0.04749413952231407,
-0.04115224629640579,
0.08710620552301407,
-0.04614006355404854,
0.047894056886434555,
0.11387524008750916,
-0.10411794483661652,
0.027301346883177757,
0.15252003073692322,
0.01989223062992096,
-0.021827859804034233,
-0.010847042314708233,
-0.02893304079771042,
-0.04751471430063248,
-0.1404283195734024,
-0.19458462297916412,
-0.01210107747465372,
0.02669346146285534,
0.07343939691781998,
0.01890377886593342,
0.03206741809844971,
0.08344881981611252,
-0.03239111974835396,
-0.05232448875904083,
-0.021837173029780388,
0.05576450005173683,
0.22105096280574799,
0.06741996109485626,
0.09190883487462997,
-0.014468543231487274,
-0.054759666323661804,
-0.005568218883126974,
0.036287762224674225,
0.17858140170574188,
0.006866631098091602,
-0.030807213857769966,
0.05230291187763214,
0.16705407202243805,
0.09294687211513519,
0.16984903812408447,
-0.05396517366170883,
0.004511444363743067,
0.03153210133314133,
-0.07185018807649612,
0.010933168232440948,
0.0007604510174132884,
-0.045390740036964417,
0.09404591470956802,
-0.10747942328453064,
-0.10332794487476349,
0.08973661065101624,
0.2363562434911728,
0.09982232004404068,
-0.3146936595439911,
-0.08843105286359787,
-0.030645444989204407,
-0.03288119658827782,
-0.048347100615501404,
0.05061285197734833,
0.039718370884656906,
-0.10754411667585373,
0.11603832989931107,
0.04033837467432022,
0.10698922723531723,
-0.11742790043354034,
0.02011563628911972,
-0.10874158889055252,
-0.01240469329059124,
-0.013227875344455242,
0.10775000602006912,
-0.0576324462890625,
0.29189980030059814,
0.008239847607910633,
-0.00629801582545042,
-0.06631733477115631,
-0.08319123834371567,
0.0720333680510521,
0.17603035271167755,
0.0885225459933281,
0.052975766360759735,
-0.029498331248760223,
-0.1673397719860077,
-0.07909174263477325,
0.08385735005140305,
-0.007095947861671448,
0.0018844431033357978,
0.07594204694032669,
0.0012407057220116258,
-0.004455797374248505,
-0.03155188262462616,
0.005909298080950975,
-0.07408619672060013,
0.02060766890645027,
-0.047781724482774734,
0.21270030736923218,
0.08872311562299728,
-0.0133942486718297,
-0.08385790884494781,
-0.19114577770233154,
0.10163293033838272,
-0.0803445428609848,
-0.10188118368387222,
-0.07900312542915344,
-0.02360665425658226,
0.09372830390930176,
-0.08952661603689194,
-0.0005482528358697891,
-0.021419066935777664,
0.05862593650817871,
-0.030838577076792717,
-0.15001974999904633,
0.046188171952962875,
-0.027269747108221054,
-0.04323028400540352,
0.0636836513876915,
0.12069928646087646,
0.05601078271865845,
0.011032383888959885,
0.07806957513093948,
0.026488909497857094,
0.026380665600299835,
-0.10757774114608765,
-0.034860625863075256,
0.07809754461050034,
0.013024536892771721,
0.14650221168994904,
-0.08678360283374786,
-0.14027808606624603,
-0.11119186878204346,
0.051954444497823715,
0.17877572774887085,
0.1515880823135376,
-0.07911819964647293,
0.005628641229122877,
0.2310253530740738,
-0.009960552677512169,
-0.2796116769313812,
0.00038448182749561965,
-0.03475858271121979,
0.06033427268266678,
-0.105292409658432,
0.027088766917586327,
0.167689248919487,
0.09485463798046112,
-0.026344936341047287,
0.026572581380605698,
-0.10244308412075043,
-0.11385560780763626,
0.22873714566230774,
0.03225239738821983,
0.31393298506736755,
-0.00011668651859508827,
-0.038668930530548096,
-0.06380007416009903,
-0.1888521909713745,
0.02320549637079239,
-0.07722286880016327,
0.030809808522462845,
-0.06899867951869965,
0.12193872779607773,
0.03132686764001846,
0.013150726445019245,
0.10271187871694565,
0.10513363778591156,
0.056082893162965775,
-0.03872772306203842,
-0.06549815088510513,
0.11573886126279831,
-0.09572188556194305,
0.17812508344650269,
0.001357181346975267,
0.01738651469349861,
-0.04992116615176201,
-0.029048902913928032,
-0.09389194846153259,
0.14836932718753815,
0.03785423934459686,
0.002173112239688635,
-0.06602439284324646,
0.035958368331193924,
-0.0068498034961521626,
0.010160301811993122,
0.0708700492978096,
-0.05940188840031624,
0.060728248208761215,
0.08818741142749786,
0.06758676469326019,
-0.17208217084407806,
0.08718886226415634,
0.03856409341096878,
-0.042953018099069595,
0.1340857446193695,
0.009019477292895317,
0.06931640952825546,
0.19122613966464996,
0.0013179376255720854,
0.04040878266096115,
0.06409120559692383,
-0.044771064072847366,
-0.04708893224596977,
0.035476211458444595,
-0.1321287602186203,
-0.020897889509797096,
-0.031389832496643066,
-0.1199553832411766,
0.0019120954675599933,
0.16219715774059296,
0.1377909928560257,
-0.11323510855436325,
-0.003037236863747239,
0.003112013917416334,
-0.0680592805147171,
-0.03799852728843689,
0.08224806934595108,
0.017262011766433716,
0.07665108889341354,
-0.14131997525691986,
0.0940246656537056,
0.025444811210036278,
-0.011079013347625732,
0.003921542316675186,
-0.017972931265830994,
-0.1847699135541916,
-0.059880055487155914,
-0.062497589737176895,
0.13108676671981812,
-0.1235378310084343,
-0.1947813779115677,
-0.10356540232896805,
-0.18147359788417816,
-0.006331356707960367,
0.23812957108020782,
0.11617062985897064,
0.039369769394397736,
-0.01977400854229927,
-0.08243022114038467,
-0.07331132888793945,
0.04415542259812355,
0.09001605212688446,
0.06035785377025604,
-0.18729129433631897,
0.008225161582231522,
-0.00840573851019144,
0.10440928488969803,
-0.072895348072052,
-0.08299599587917328,
-0.14443005621433258,
0.07302595674991608,
-0.23641225695610046,
0.01709352433681488,
-0.09150705486536026,
0.032489798963069916,
0.0035912904422730207,
-0.0746878981590271,
-0.08148510754108429,
0.07127204537391663,
-0.08597801625728607,
0.0479436069726944,
0.024214446544647217,
0.03839203715324402,
-0.08280070871114731,
-0.054403021931648254,
0.038603849709033966,
-0.03950217738747597,
0.10952280461788177,
0.11447294801473618,
-0.07318056374788284,
0.13779261708259583,
-0.10855747014284134,
-0.10168428719043732,
0.03196306526660919,
0.04514037445187569,
0.10592906922101974,
-0.009621471166610718,
0.021598318591713905,
0.07687465846538544,
0.009516640566289425,
0.047739166766405106,
0.04666772857308388,
-0.016103750094771385,
-0.060008786618709564,
-0.10054738819599152,
-0.04721526801586151,
-0.03923821821808815,
0.01657867431640625,
0.11149172484874725,
0.0963209867477417,
0.0942329466342926,
-0.06361595541238785,
-0.029314205050468445,
-0.03058355301618576,
0.015766844153404236,
-0.004657279700040817,
-0.1873037964105606,
-0.06259150058031082,
-0.08673639595508575,
0.034582480788230896,
-0.0034587315749377012,
0.20407423377037048,
0.003178003942593932,
0.02703014574944973,
-0.0007073443266563118,
0.09483017772436142,
-0.109150230884552,
0.005161778535693884,
0.10334642231464386,
0.01672886684536934,
-0.024486439302563667,
0.00696842884644866,
0.02682446874678135,
0.0404057577252388,
0.008835469372570515,
0.0847441777586937,
0.11876704543828964,
0.010122758336365223,
0.0927678719162941,
0.13917317986488342,
0.019437294453382492,
-0.03045516461133957,
-0.16620242595672607,
-0.0849103257060051,
0.05581226199865341,
0.045883502811193466,
0.0723661333322525,
0.156706303358078,
-0.013383196666836739,
0.04923749715089798,
-0.017128465697169304,
-0.06320096552371979,
-0.1126987412571907,
-0.15140372514724731,
-0.11558350175619125,
-0.15375769138336182,
-0.0021401362027972937,
-0.05127198249101639,
-0.13621915876865387,
0.2080632448196411,
0.07086888700723648,
-0.024279361590743065,
0.09565557539463043,
-0.054661720991134644,
-0.06295266002416611,
0.12854987382888794,
-0.06902337819337845,
-0.03706369549036026,
0.03716307505965233,
-0.04959963262081146,
0.015488503500819206,
0.006248651072382927,
0.013497057370841503,
0.003045398509129882,
0.03772132098674774,
-0.01841067522764206,
-0.06545918434858322,
-0.051356587558984756,
-0.03066159226000309,
0.007408631965517998,
0.003702003974467516,
-0.0448550246655941,
0.07304158061742783,
-0.039631739258766174,
-0.005007152445614338,
0.15863297879695892,
-0.011778353713452816,
-0.11499912291765213,
-0.04247395694255829,
0.30940330028533936,
-0.0013676639646291733,
0.030635688453912735,
-0.0020771361887454987,
-0.025739258155226707,
-0.022898059338331223,
0.2118840515613556,
0.2159857302904129,
-0.0013852164847776294,
-0.003871541703119874,
-0.09210091084241867,
0.0022475754376500845,
0.0007032132707536221,
0.1021992415189743,
0.02255363017320633,
0.1523742824792862,
-0.028122158721089363,
-0.017081130295991898,
-0.07967080920934677,
-0.017889710143208504,
-0.08120599389076233,
0.01909494213759899,
0.016843657940626144,
-0.05955672264099121,
-0.1371668130159378,
0.0697137787938118,
-0.16174834966659546,
-0.012077138759195805,
0.04372377321124077,
-0.035372909158468246,
-0.1445995271205902,
-0.031994711607694626,
-0.06894416362047195,
0.019583523273468018,
0.062452420592308044,
-0.09820888936519623,
0.01658468320965767,
-0.08045488595962524,
0.019965335726737976,
-0.10174523293972015,
-0.11459055542945862,
0.07539112865924835,
0.0412183478474617,
0.1367097645998001,
0.0006658755009993911,
0.1277889609336853,
0.08950655907392502,
0.06424914300441742,
-0.04512743651866913,
0.052704472094774246,
-0.002118648961186409,
-0.06153995171189308,
0.04867503046989441,
-0.005401675123721361,
0.026349784806370735,
0.06658637523651123,
0.042628850787878036,
-0.1562332957983017,
-0.006566083524376154,
0.05632616579532623,
0.020981861278414726,
-0.11441268026828766,
0.041347429156303406,
-0.010821583680808544,
0.07370489090681076,
0.1337563693523407,
-0.0475362166762352,
-0.004283080343157053,
-0.08303412050008774,
0.0024318243376910686,
0.016263557597994804,
-0.0786466971039772,
0.012308440171182156,
-0.15870213508605957,
0.02026178129017353,
-0.08725101500749588,
-0.014054235070943832,
-0.20717114210128784,
0.0008602121961303055,
-0.06164911016821861,
-0.017916573211550713,
-0.011101655662059784,
0.03027019090950489,
0.09775515645742416,
0.05080993473529816,
0.0014186480548232794,
-0.16912660002708435,
0.017942382022738457,
0.09722699970006943,
-0.09931743144989014,
-0.11174281686544418
] |
null | null |
transformers
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased"
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("your text here")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9933935699477056
* f1: 0.9592969472710453
* precision: 0.9543530277931161
* recall: 0.9642923563325274
Evaluation results with the test sets proposed in ["Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye."](https://ieeexplore.ieee.org/document/7495744) paper.
* Test Set Acc. Prec. Rec. F1-Score
* 20010000 0.9946 0.9871 0.9463 0.9662
* 20020000 0.9928 0.9134 0.9206 0.9170
* 20030000 0.9942 0.9814 0.9186 0.9489
* 20040000 0.9943 0.9660 0.9522 0.9590
* 20050000 0.9971 0.9539 0.9932 0.9732
* 20060000 0.9993 0.9942 0.9942 0.9942
* 20070000 0.9970 0.9806 0.9439 0.9619
* 20080000 0.9988 0.9821 0.9649 0.9735
* 20090000 0.9977 0.9891 0.9479 0.9681
* 20100000 0.9961 0.9684 0.9293 0.9485
* Overall 0.9961 0.9720 0.9516 0.9617
|
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
|
token-classification
|
akdeniz27/bert-base-turkish-cased-ner
|
[
"transformers",
"pytorch",
"onnx",
"safetensors",
"bert",
"token-classification",
"tr",
"doi:10.57967/hf/0949",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"tr"
] |
TAGS
#transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased"
using a reviewed version of well known Turkish NER dataset
(URL
# Fine-tuning parameters:
# How to use:
Pls refer "URL for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9933935699477056
* f1: 0.9592969472710453
* precision: 0.9543530277931161
* recall: 0.9642923563325274
Evaluation results with the test sets proposed in "Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye." paper.
* Test Set Acc. Prec. Rec. F1-Score
* 20010000 0.9946 0.9871 0.9463 0.9662
* 20020000 0.9928 0.9134 0.9206 0.9170
* 20030000 0.9942 0.9814 0.9186 0.9489
* 20040000 0.9943 0.9660 0.9522 0.9590
* 20050000 0.9971 0.9539 0.9932 0.9732
* 20060000 0.9993 0.9942 0.9942 0.9942
* 20070000 0.9970 0.9806 0.9439 0.9619
* 20080000 0.9988 0.9821 0.9649 0.9735
* 20090000 0.9977 0.9891 0.9479 0.9681
* 20100000 0.9961 0.9684 0.9293 0.9485
* Overall 0.9961 0.9720 0.9516 0.9617
|
[
"# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617"
] |
[
"TAGS\n#transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617"
] |
[
64,
55,
8,
24,
338
] |
[
"passage: TAGS\n#transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617"
] |
[
-0.109690822660923,
0.07992327213287354,
-0.005827552173286676,
-0.004756292328238487,
0.05423218011856079,
0.06344766914844513,
0.16191546618938446,
0.05483628064393997,
0.023039711639285088,
0.09866088628768921,
0.10155723989009857,
0.04372620955109596,
0.14482425153255463,
0.06884942203760147,
0.005633566994220018,
-0.14515838027000427,
0.05695521458983421,
-0.08649951219558716,
0.11719495803117752,
0.1070360466837883,
0.06980160623788834,
-0.05857336148619652,
0.039266299456357956,
0.003539950819686055,
-0.00934052374213934,
-0.022862998768687248,
-0.04121638089418411,
-0.08943026512861252,
0.045194827020168304,
-0.017688175663352013,
0.05945847928524017,
-0.006256113760173321,
-0.009808642789721489,
-0.18705032765865326,
0.01055395882576704,
-0.025195278227329254,
-0.053196318447589874,
-0.012035105377435684,
0.16046786308288574,
-0.02322993241250515,
0.22890013456344604,
-0.10999240726232529,
-0.016674451529979706,
-0.027675475925207138,
-0.08297110348939896,
-0.091898113489151,
-0.20167125761508942,
0.21294145286083221,
0.13640932738780975,
0.09964402765035629,
-0.05144663155078888,
0.07449474185705185,
0.008866166695952415,
0.10473652184009552,
0.12672610580921173,
-0.29034411907196045,
-0.10382598638534546,
-0.0018040994182229042,
-0.021129349246621132,
-0.048941776156425476,
0.007261894643306732,
0.02490764856338501,
-0.03559791296720505,
-0.015216030180454254,
-0.14384327828884125,
-0.08522451668977737,
-0.009970898739993572,
-0.08673650771379471,
-0.06709425896406174,
-0.049932245165109634,
0.18931792676448822,
0.07319451123476028,
-0.03716650977730751,
-0.031411733478307724,
0.008342926390469074,
-0.06483513861894608,
-0.021538114175200462,
-0.018054116517305374,
-0.03742498904466629,
-0.1223880872130394,
0.059064481407403946,
0.06543642282485962,
-0.05973116308450699,
-0.020508956164121628,
-0.12182377278804779,
0.2102966159582138,
0.06323469430208206,
-0.0007533479947596788,
0.06544308364391327,
0.05020274594426155,
-0.011225992813706398,
-0.15562796592712402,
-0.06313375383615494,
0.04807184636592865,
-0.10450825095176697,
-0.011685097590088844,
0.02637024037539959,
-0.10999806225299835,
0.09890332818031311,
0.13877785205841064,
-0.012325170449912548,
0.1330091655254364,
0.022751647979021072,
0.015618322417140007,
-0.10994674265384674,
0.14846527576446533,
-0.10590331256389618,
-0.12407594919204712,
-0.0318642221391201,
0.06029924377799034,
0.07068333029747009,
-0.01110114436596632,
-0.05088937655091286,
-0.08429452776908875,
0.15217366814613342,
0.107084259390831,
0.05687955021858215,
0.08147832751274109,
0.011085065081715584,
0.0037474255077540874,
0.0338713675737381,
-0.11107036471366882,
-0.0005317150498740375,
0.01730664074420929,
-0.11734486371278763,
-0.11526007950305939,
0.004001707769930363,
-0.023344561457633972,
-0.08254417777061462,
0.1473321169614792,
0.003147735493257642,
0.054653916507959366,
-0.00003655517866718583,
-0.03953811153769493,
0.034891530871391296,
-0.07278304547071457,
-0.014599665999412537,
-0.16516518592834473,
-0.11621282249689102,
-0.13258346915245056,
0.01774088852107525,
-0.06151474639773369,
0.09368395060300827,
-0.06857604533433914,
-0.09082232415676117,
0.011448962613940239,
-0.014186777174472809,
0.03155604377388954,
-0.050707217305898666,
0.06204817444086075,
-0.017583554610610008,
0.04551846906542778,
0.05809466913342476,
0.003405933966860175,
-0.056574489921331406,
0.04241921380162239,
-0.07760000973939896,
-0.0004605982103385031,
-0.07053972780704498,
0.019724320620298386,
-0.1637796014547348,
-0.05065629258751869,
-0.016544338315725327,
-0.028694048523902893,
0.12812642753124237,
0.1200549453496933,
-0.1900210678577423,
0.05748555436730385,
0.12837150692939758,
-0.04891276732087135,
-0.17407189309597015,
0.07550541311502457,
0.04921771213412285,
0.01620163582265377,
0.05884616822004318,
0.21248659491539001,
0.09382589161396027,
-0.01519807893782854,
-0.15949051082134247,
-0.08039109408855438,
-0.01844216324388981,
0.10498687624931335,
0.043285757303237915,
-0.07256627827882767,
0.04591400921344757,
0.06238279491662979,
-0.09217130392789841,
0.03290819376707077,
-0.01542839128524065,
-0.043865516781806946,
0.038163695484399796,
-0.06403498351573944,
0.04792452231049538,
0.0010602539405226707,
0.03316240757703781,
-0.07228513807058334,
-0.09661383926868439,
-0.14199437201023102,
0.10633853077888489,
0.051573384553194046,
-0.010879721492528915,
-0.13819965720176697,
0.20597751438617706,
-0.03050367906689644,
0.018603535369038582,
-0.13444213569164276,
-0.03114376962184906,
-0.014104483649134636,
-0.02889310196042061,
0.03747638687491417,
-0.14451806247234344,
0.05427025258541107,
-0.01073225773870945,
-0.015963897109031677,
-0.06251955777406693,
0.05110067129135132,
0.02147987112402916,
-0.050463996827602386,
-0.1037277802824974,
0.04376569017767906,
0.047104522585868835,
0.17197565734386444,
-0.050078898668289185,
-0.00016807687643449754,
0.03534989804029465,
0.14462076127529144,
-0.08515208214521408,
-0.04159882664680481,
-0.017132695764303207,
0.03658919781446457,
0.02642115205526352,
-0.05297176167368889,
0.004866974428296089,
-0.013054820708930492,
-0.07769093662500381,
0.03176439180970192,
-0.26346680521965027,
-0.008328313939273357,
0.05981586128473282,
0.05757850408554077,
-0.16679462790489197,
0.0962737500667572,
0.015676729381084442,
-0.03303976729512215,
0.0942188948392868,
0.01805690862238407,
0.15265531837940216,
0.05636605992913246,
0.06276416033506393,
-0.04283805191516876,
-0.03243650868535042,
0.014527150429785252,
-0.027104368433356285,
-0.02841813676059246,
0.16597436368465424,
-0.014029462821781635,
-0.20006108283996582,
0.06437553465366364,
0.048009272664785385,
-0.028141571208834648,
0.12134372442960739,
-0.008863535709679127,
-0.053539954125881195,
-0.13134299218654633,
0.08331026136875153,
0.038171447813510895,
0.1403162181377411,
-0.04788542911410332,
0.003256922122091055,
0.035596054047346115,
0.027424903586506844,
0.00044269071076996624,
-0.05265104025602341,
0.01269868016242981,
-0.005586683750152588,
-0.052074190229177475,
-0.004595338832587004,
0.09567930549383163,
0.01755499839782715,
0.12374472618103027,
-0.006754041183739901,
-0.038725223392248154,
-0.011744250543415546,
-0.04751992225646973,
-0.12817399203777313,
0.19213145971298218,
-0.07902096211910248,
-0.1873377561569214,
-0.043369781225919724,
0.012888732366263866,
-0.10749716311693192,
-0.08703453838825226,
0.01814856380224228,
-0.07189204543828964,
-0.005182542838156223,
-0.08352584391832352,
-0.015874534845352173,
0.020927075296640396,
-0.019490446895360947,
-0.10852089524269104,
-0.01416266243904829,
0.019579507410526276,
-0.09065121412277222,
-0.03177296742796898,
-0.03676231577992439,
-0.07537505775690079,
0.06826845556497574,
0.017412999644875526,
0.08283502608537674,
0.07662039250135422,
-0.05404007062315941,
0.024880867451429367,
0.01763380505144596,
0.11415207386016846,
-0.15286685526371002,
0.05225776880979538,
0.014706091023981571,
-0.03244218975305557,
0.05349135771393776,
0.1601753830909729,
0.006328996736556292,
-0.038367606699466705,
-0.015188428573310375,
0.010506687685847282,
0.0062157753854990005,
-0.21961161494255066,
-0.08296558260917664,
-0.01295414473861456,
0.00589992618188262,
-0.01638874225318432,
0.029089316725730896,
0.03408065810799599,
0.06909945607185364,
-0.06264778971672058,
-0.042020343244075775,
-0.014919199049472809,
0.05955016240477562,
0.15474173426628113,
0.05670643597841263,
0.0481431670486927,
-0.0849996954202652,
0.04629775881767273,
0.018963828682899475,
-0.09507345408201218,
0.25457555055618286,
0.011257936246693134,
-0.022821281105279922,
0.0920238196849823,
0.14862129092216492,
-0.02972245402634144,
0.025570416823029518,
-0.026806987822055817,
0.005994664505124092,
0.06068623811006546,
-0.09766852855682373,
-0.03172784671187401,
0.015312273055315018,
-0.021684367209672928,
-0.023915622383356094,
-0.03725944831967354,
0.011261704377830029,
0.12628746032714844,
0.021824583411216736,
0.04988476634025574,
-0.23101015388965607,
-0.047007009387016296,
-0.05412377417087555,
-0.04988069459795952,
-0.046122655272483826,
-0.06979408115148544,
-0.028753623366355896,
-0.12314995378255844,
0.156757652759552,
-0.03153238072991371,
0.057446423918008804,
-0.06961239874362946,
-0.0044944449327886105,
-0.022093024104833603,
-0.04289119318127632,
-0.0011998862028121948,
0.06638558208942413,
-0.0723782554268837,
0.282020628452301,
0.01709994114935398,
0.09262643754482269,
-0.0651499554514885,
-0.04325689747929573,
0.08858318626880646,
-0.02453228272497654,
0.10580727458000183,
0.04621174558997154,
-0.19424566626548767,
-0.1547783762216568,
-0.07959899306297302,
0.025364845991134644,
0.10555477440357208,
-0.015086641535162926,
0.10580094903707504,
0.017455942928791046,
-0.009851683862507343,
-0.07749465852975845,
-0.08941458910703659,
-0.1647016555070877,
-0.06862086802721024,
0.08891728520393372,
-0.03647388890385628,
0.0431949608027935,
-0.05782303586602211,
-0.021115591749548912,
-0.063444122672081,
0.1208118200302124,
-0.16638080775737762,
-0.06386026740074158,
-0.0307427030056715,
-0.041713982820510864,
0.17986413836479187,
-0.16621823608875275,
-0.0010374272242188454,
-0.04305834323167801,
-0.092367984354496,
0.015350595116615295,
0.010691127739846706,
0.001944774528965354,
-0.03220319747924805,
-0.12241312861442566,
-0.02469480223953724,
0.13098277151584625,
0.0440136194229126,
0.059737831354141235,
0.05093755945563316,
0.04151705279946327,
0.026726679876446724,
-0.13891570270061493,
-0.0138541329652071,
0.014080167748034,
0.04208524525165558,
0.055039551109075546,
0.05297745391726494,
-0.08315714448690414,
-0.16045346856117249,
-0.02715551108121872,
0.03525208309292793,
0.3040306866168976,
-0.04231756925582886,
0.0287619698792696,
0.021791312843561172,
-0.05835490673780441,
-0.15632978081703186,
-0.06017554551362991,
0.05016703903675079,
0.00949573889374733,
-0.015801718458533287,
-0.04852424934506416,
0.03473882004618645,
0.10443270206451416,
0.006915131583809853,
0.1547662764787674,
-0.25755661725997925,
-0.1413993537425995,
0.19227464497089386,
0.06626337021589279,
0.022412920370697975,
-0.16443891823291779,
-0.08408135920763016,
-0.0196344256401062,
-0.03146903216838837,
-0.07169985771179199,
0.0011926906881853938,
0.04134272411465645,
-0.048075854778289795,
0.06112280115485191,
0.05986003950238228,
-0.02904576063156128,
0.2243729680776596,
0.009842891246080399,
0.038740139454603195,
-0.18556049466133118,
-0.09813521802425385,
0.011547361500561237,
-0.07372291386127472,
0.12554995715618134,
-0.0483514666557312,
0.06096984073519707,
-0.11876297742128372,
0.010721546597778797,
-0.05069028213620186,
0.08513451367616653,
-0.07274825870990753,
0.05978643521666527,
-0.07595786452293396,
0.06000788137316704,
0.02879246510565281,
0.0029611692298203707,
-0.0294940322637558,
-0.027369868010282516,
-0.03334562107920647,
0.03496219590306282,
0.09392061829566956,
0.05475960671901703,
0.003940173424780369,
0.05779655650258064,
0.010950344614684582,
-0.006009380333125591,
0.010217941366136074,
-0.05244915559887886,
0.1528501957654953,
-0.00392930768430233,
0.0633511170744896,
-0.04372968524694443,
-0.149826779961586,
0.015460421331226826,
0.11751396954059601,
-0.09750788658857346,
-0.11752517521381378,
0.014462641440331936,
-0.01359917689114809,
-0.09001508355140686,
-0.06573494523763657,
0.08978354930877686,
-0.02238355576992035,
0.033160049468278885,
-0.004910307936370373,
0.043951429426670074,
-0.01068553514778614,
0.18966782093048096,
0.030749602243304253,
0.010018711909651756,
-0.02899801731109619,
0.0566699281334877,
0.05115080997347832,
-0.03387802466750145,
0.08208882808685303,
0.05951779708266258,
-0.10655036568641663,
-0.05702062323689461,
-0.07769390940666199,
0.15287171304225922,
-0.0065182410180568695,
-0.13015542924404144,
-0.06209586560726166,
-0.08824682235717773,
-0.00808352418243885,
0.11556321382522583,
0.05173390358686447,
0.030465664342045784,
0.08333095163106918,
-0.04560522735118866,
-0.026553086936473846,
0.1205272525548935,
0.17879441380500793,
0.03732242062687874,
-0.04100551828742027,
0.06713191419839859,
0.010822401382029057,
0.014504010789096355,
0.023411160334944725,
0.008181678131222725,
-0.06887008249759674,
0.01358784269541502,
-0.19334346055984497,
0.03712954744696617,
-0.16203995048999786,
-0.009925800375640392,
0.037879277020692825,
-0.061073921620845795,
-0.06968775391578674,
-0.02417275682091713,
-0.06552302092313766,
-0.05142884701490402,
-0.028048403561115265,
0.04385315999388695,
-0.12211316078901291,
-0.042737286537885666,
0.03586530312895775,
-0.07168683409690857,
0.07635272294282913,
0.11540675908327103,
0.025574149563908577,
0.0965024009346962,
-0.11818304657936096,
0.028201792389154434,
-0.0761362835764885,
0.029726501554250717,
0.0075441887602210045,
-0.19331897795200348,
0.00845795776695013,
0.02429792284965515,
0.013507217168807983,
0.07298221439123154,
0.025102965533733368,
-0.0966983512043953,
0.03708305209875107,
-0.08303593099117279,
0.004421203397214413,
-0.06793864071369171,
0.10782264173030853,
0.06919064372777939,
0.025666911154985428,
0.13189148902893066,
-0.08528921753168106,
0.07084953039884567,
-0.11220888048410416,
0.025211580097675323,
-0.03594628721475601,
-0.08540378510951996,
0.058652494102716446,
-0.04541556164622307,
0.10239682346582413,
-0.05015925318002701,
0.002078091260045767,
-0.0038485247641801834,
0.00021808710880577564,
0.024750618264079094,
0.020412111654877663,
-0.012806513346731663,
0.0019038430182263255,
0.05764079466462135,
-0.0028422330506145954,
-0.037687815725803375,
-0.09885955601930618,
-0.01328787300735712,
-0.04329635575413704,
-0.21472281217575073,
0.14037761092185974,
0.14685265719890594,
0.06834880262613297,
0.09063204377889633,
0.04840352013707161,
-0.13935314118862152,
0.003960351459681988,
0.013693113811314106,
-0.15666761994361877,
0.053381141275167465,
0.030551152303814888,
0.0766998827457428,
0.15237866342067719,
-0.1374814510345459,
0.01764293573796749,
-0.0481751449406147,
-0.08641856908798218,
-0.0075944559648633,
-0.17440158128738403,
-0.09581195563077927,
-0.008770889602601528,
0.05549793317914009,
-0.029246585443615913,
0.050115592777729034,
0.12609343230724335,
0.019591623917222023,
-0.016309866681694984,
0.22061949968338013,
-0.09324505180120468,
-0.03587460517883301,
0.11815747618675232,
-0.024173438549041748,
-0.03612590208649635,
0.03117993101477623,
-0.03664856404066086,
-0.03894728422164917,
-0.01842205785214901,
0.06935414671897888,
0.09759427607059479,
-0.04033327475190163,
-0.010317694395780563,
-0.020650750026106834,
-0.07944998890161514,
0.012990359216928482,
0.00773500045761466,
0.10505743324756622,
0.1186695322394371,
0.08506205677986145,
0.03144301846623421,
-0.02660343609750271,
0.11142723262310028,
0.02362917549908161,
-0.11894375830888748,
-0.004615831188857555,
0.02351202629506588,
0.06392781436443329,
-0.05761129781603813,
0.04038430377840996,
-0.09473807364702225,
0.06355911493301392,
0.12157920747995377,
0.1878177523612976,
0.07894615083932877,
0.009953690692782402,
-0.028063945472240448,
0.018911728635430336,
-0.025452909991145134,
0.017728621140122414,
0.010464697144925594,
0.14857248961925507,
-0.011046450585126877,
0.04638729989528656,
-0.05241958424448967,
0.009721549227833748,
-0.007657594978809357,
0.04256219044327736,
0.01692151464521885,
-0.03379269316792488,
-0.05064764991402626,
0.1430705189704895,
-0.12516115605831146,
-0.2253207266330719,
0.10180378705263138,
-0.050416089594364166,
-0.17952705919742584,
0.05212574452161789,
0.10611707717180252,
0.055427681654691696,
0.08446524292230606,
-0.011981885880231857,
-0.040448181331157684,
0.009626110084354877,
0.035522446036338806,
-0.06242981180548668,
-0.11547902226448059,
0.041709769517183304,
0.019866401329636574,
0.2909352481365204,
0.030389796942472458,
0.13720817863941193,
0.1354299634695053,
0.02694953791797161,
-0.10242604464292526,
0.09475558996200562,
0.10317528992891312,
0.0099527882412076,
0.15891803801059723,
0.08323118835687637,
0.023162031546235085,
-0.0054817539639770985,
0.12999390065670013,
-0.009883986786007881,
0.05073583126068115,
-0.005885693710297346,
0.05743629112839699,
-0.11255180090665817,
0.12067708373069763,
-0.04878845438361168,
0.15217995643615723,
0.230152890086174,
-0.04451142996549606,
0.014487531036138535,
-0.038642216473817825,
-0.03363417834043503,
-0.021709835156798363,
0.07017095386981964,
0.02211170457303524,
-0.13006660342216492,
0.044536177068948746,
0.007693239022046328,
0.06772208213806152,
-0.13744625449180603,
-0.05094556510448456,
0.07104846835136414,
-0.05886783450841904,
0.05078419670462608,
0.11440318077802658,
0.042808905243873596,
-0.012296993285417557,
-0.050365012139081955,
-0.03256043791770935,
-0.005079467780888081,
0.12512123584747314,
-0.09133650362491608,
-0.08389497548341751
] |
null | null |
transformers
|
# Turkish Text Classification for Complaints Data Set
This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data with 9 categories as follows:
id_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ',
4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}
|
{"language": "tr"}
|
text-classification
|
akdeniz27/bert-turkish-text-classification
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"bert",
"text-classification",
"tr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"tr"
] |
TAGS
#transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us
|
# Turkish Text Classification for Complaints Data Set
This model is a fine-tune model of URL by using text classification data with 9 categories as follows:
id_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ',
4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}
|
[
"# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}"
] |
[
"TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n",
"# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}"
] |
[
46,
156
] |
[
"passage: TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}"
] |
[
0.0033640305045992136,
-0.04026137664914131,
-0.007805153727531433,
0.03187653422355652,
0.15128664672374725,
0.054374825209379196,
0.29418545961380005,
0.0284388717263937,
0.08215697109699249,
-0.04533613473176956,
0.08073315769433975,
0.09087714552879333,
-0.004731995519250631,
0.01957882195711136,
-0.05047040805220604,
-0.22150495648384094,
0.04815828800201416,
-0.047599464654922485,
0.029079008847475052,
0.12822218239307404,
0.16336672008037567,
-0.021989308297634125,
0.03176102042198181,
-0.051601700484752655,
-0.04644714668393135,
0.025803813710808754,
0.0393914170563221,
-0.09171710908412933,
0.07289109379053116,
-0.023784998804330826,
0.1492537558078766,
0.043894845992326736,
-0.017400825396180153,
-0.09689799696207047,
0.03829289227724075,
-0.026590364053845406,
-0.0587458610534668,
-0.01328686811029911,
0.09397188574075699,
-0.13617512583732605,
0.09594837576150894,
-0.13029871881008148,
-0.042269155383110046,
-0.019231799989938736,
-0.06960882991552353,
-0.039936404675245285,
-0.07868422567844391,
0.17296694219112396,
0.16803239285945892,
0.0719231367111206,
-0.04374511539936066,
0.07099553942680359,
-0.15257509052753448,
0.1453239619731903,
0.05275429040193558,
-0.27307596802711487,
-0.06740513443946838,
0.026327058672904968,
-0.040429141372442245,
0.025994518771767616,
-0.04177150875329971,
0.065825454890728,
-0.027854397892951965,
-0.03369397670030594,
-0.1097990870475769,
-0.09712201356887817,
-0.04331232234835625,
-0.08660180121660233,
-0.05459645017981529,
-0.0007852169219404459,
0.23955459892749786,
0.032744139432907104,
-0.005298464559018612,
-0.041474729776382446,
-0.02817595563828945,
0.05749724805355072,
-0.05768408253788948,
0.012683926150202751,
-0.09114970266819,
-0.014757676050066948,
0.06018975004553795,
0.08255866169929504,
-0.10641028732061386,
-0.006806014105677605,
-0.14566193521022797,
0.16484372317790985,
0.04928691312670708,
-0.03294452279806137,
-0.04907345399260521,
0.0382804349064827,
0.12024803459644318,
-0.12385601550340652,
0.08423321694135666,
-0.057277530431747437,
-0.028923604637384415,
-0.004154447931796312,
-0.02520599588751793,
-0.09145704656839371,
0.14819815754890442,
0.056126244366168976,
0.08166435360908508,
0.08463951200246811,
-0.007629778701812029,
0.059119611978530884,
-0.02670832723379135,
0.04404285177588463,
-0.08016957342624664,
-0.0769873782992363,
-0.0257708840072155,
-0.006793137174099684,
0.09534956514835358,
-0.0001539169461466372,
-0.047964002937078476,
0.0028050076216459274,
0.10362454503774643,
0.08087726682424545,
0.06540453433990479,
0.17664101719856262,
-0.008748484775424004,
-0.01689891144633293,
0.02785060927271843,
-0.09082546085119247,
0.018290424719452858,
0.05523403733968735,
-0.04545847326517105,
0.02706797607243061,
-0.08628841489553452,
0.05425308272242546,
-0.08601147681474686,
0.1266891062259674,
0.015635015442967415,
0.066250741481781,
0.06760919094085693,
-0.09509864449501038,
0.0640028789639473,
-0.09693970531225204,
-0.008420344442129135,
-0.18630388379096985,
-0.09034955501556396,
-0.03243456780910492,
0.033941786736249924,
-0.028606340289115906,
0.0458853542804718,
-0.056364960968494415,
-0.04589126259088516,
0.04088442400097847,
-0.01095872838050127,
-0.12125527113676071,
-0.09411787986755371,
0.08928370475769043,
-0.10681168735027313,
0.04054195433855057,
-0.05022214725613594,
0.029315786436200142,
-0.09137560427188873,
-0.025218620896339417,
-0.06642207503318787,
0.05072874575853348,
-0.09152475744485855,
0.12940028309822083,
-0.0846533328294754,
0.01815410517156124,
-0.002371683018282056,
0.02555433288216591,
-0.0021952365059405565,
0.23139986395835876,
-0.10680661350488663,
-0.04589645192027092,
0.07647712528705597,
-0.08603598177433014,
-0.06835993379354477,
0.14454932510852814,
0.008070701733231544,
0.01776145026087761,
0.16308289766311646,
0.23198668658733368,
0.14129233360290527,
0.04738326370716095,
-0.07707083970308304,
0.013601334765553474,
-0.053158361464738846,
0.06628306955099106,
0.05321729555726051,
-0.002957280958071351,
-0.04165363311767578,
0.025910036638379097,
-0.01983175426721573,
0.022600647062063217,
-0.006726005580276251,
-0.04028915613889694,
0.03022722341120243,
-0.00934460386633873,
0.1715981364250183,
0.004822235554456711,
0.06413380801677704,
-0.11369895935058594,
-0.04673300310969353,
-0.12877634167671204,
0.0346563495695591,
0.00013157425564713776,
-0.004981270059943199,
-0.08944202214479446,
0.11514975875616074,
0.02486126683652401,
0.050249725580215454,
-0.12790901958942413,
-0.07922255992889404,
-0.03391369432210922,
0.14692729711532593,
0.011501074768602848,
0.023504646494984627,
0.03945537284016609,
-0.07383017241954803,
-0.03783753514289856,
-0.02880968153476715,
0.10072411596775055,
0.015615582466125488,
-0.0369039811193943,
-0.1622484028339386,
0.10880137234926224,
-0.025248361751437187,
0.14397744834423065,
-0.09721297770738602,
0.005832670256495476,
0.11701207607984543,
0.1525198370218277,
-0.023935547098517418,
0.06452268362045288,
0.0018287579296156764,
0.04002169892191887,
-0.007742924150079489,
0.009232737123966217,
0.0714925080537796,
-0.03721483424305916,
-0.08283805102109909,
0.11454634368419647,
-0.08732983469963074,
0.1670728325843811,
0.16379274427890778,
-0.08357739448547363,
-0.057553406804800034,
0.08754593878984451,
-0.01053912565112114,
0.013672523200511932,
0.06483769416809082,
-0.02318902313709259,
0.02080644480884075,
0.040768664330244064,
0.10622462630271912,
-0.00386960175819695,
-0.006797228008508682,
0.018357904627919197,
-0.09161723405122757,
-0.059186212718486786,
0.1591285765171051,
-0.027547720819711685,
-0.22658737003803253,
0.1325307935476303,
0.2176326960325241,
0.011294275522232056,
0.1515846848487854,
-0.01179608516395092,
0.037554506212472916,
-0.010716171003878117,
0.04819928854703903,
-0.031990762799978256,
0.03320649638772011,
-0.08251550048589706,
-0.039340607821941376,
0.023014571517705917,
0.016752703115344048,
-0.006503948476165533,
-0.07715081423521042,
-0.0437646247446537,
-0.0553402379155159,
-0.023158928379416466,
-0.1377425193786621,
0.09802410006523132,
-0.004320810083299875,
0.1421099305152893,
-0.04180898889899254,
-0.15188564360141754,
0.06652479618787766,
-0.035719722509384155,
-0.09677807241678238,
0.13140536844730377,
-0.11411553621292114,
-0.3202381432056427,
-0.014000619761645794,
-0.052698034793138504,
-0.13424193859100342,
-0.002105903811752796,
0.06575177609920502,
-0.15831953287124634,
-0.00834594015032053,
-0.0442187674343586,
-0.00452457694336772,
0.02735999971628189,
0.04053120315074921,
-0.017171211540699005,
0.018045878037810326,
-0.010827932506799698,
-0.05335494875907898,
-0.042386725544929504,
-0.08724983036518097,
-0.03095286525785923,
0.09613263607025146,
-0.1059383898973465,
0.08824803680181503,
0.09560412913560867,
0.0024001076817512512,
-0.006586611736565828,
-0.0505400113761425,
0.12040545791387558,
-0.13814760744571686,
0.07058628648519516,
0.048990797251462936,
-0.045978352427482605,
0.06907501071691513,
0.27848243713378906,
0.033270884305238724,
-0.015385203994810581,
0.03543641045689583,
0.0473499521613121,
0.024785684421658516,
-0.21132759749889374,
-0.11719489097595215,
-0.06103604659438133,
0.04454067721962929,
-0.004114484880119562,
0.06065799668431282,
0.041871488094329834,
0.0857672169804573,
-0.052327461540699005,
-0.001965803327038884,
0.11824455857276917,
0.06155270338058472,
0.2417663335800171,
0.013111223466694355,
0.1011279746890068,
-0.10130566358566284,
-0.12312201410531998,
0.026786400005221367,
-0.037442296743392944,
0.14744789898395538,
0.06522659212350845,
-0.04793252795934677,
0.08133913576602936,
0.048489395529031754,
0.017157074064016342,
0.0018935538828372955,
0.022777818143367767,
-0.014880099333822727,
-0.00004147486833971925,
-0.04933605343103409,
-0.0036886606831103563,
-0.048282600939273834,
0.0016740482533350587,
-0.0854901373386383,
-0.03076694719493389,
0.012391366064548492,
0.2189800888299942,
0.027028974145650864,
0.07040640711784363,
-0.10804694145917892,
-0.012243218719959259,
0.042261429131031036,
-0.04108758643269539,
0.029219167307019234,
-0.006452769972383976,
-0.021962283179163933,
-0.09263459593057632,
0.14195258915424347,
-0.018199078738689423,
0.08427281677722931,
-0.05239606276154518,
0.07364536821842194,
-0.06208638474345207,
-0.12536461651325226,
-0.009032572619616985,
0.061773426830768585,
-0.25190469622612,
0.2795906960964203,
0.024654904380440712,
0.03021201491355896,
-0.07857861369848251,
-0.05450757220387459,
0.07998759299516678,
0.18419207632541656,
0.09638119488954544,
0.020106544718146324,
0.011166720651090145,
-0.09892121702432632,
-0.09387443214654922,
0.04799417778849602,
0.13544590771198273,
-0.08951817452907562,
0.039232008159160614,
-0.026436112821102142,
-0.009804765693843365,
-0.016629016026854515,
-0.10299261659383774,
-0.17329435050487518,
-0.09663163125514984,
0.07904919236898422,
0.07104025781154633,
-0.010043630376458168,
0.004525987431406975,
-0.08120831102132797,
-0.12654055655002594,
0.10772114992141724,
-0.18146122992038727,
-0.10440807789564133,
-0.05122906342148781,
-0.023543722927570343,
-0.01857980526983738,
-0.09186917543411255,
-0.07388797402381897,
-0.02314412221312523,
-0.05902025103569031,
-0.013651021756231785,
-0.09811457246541977,
0.04989910498261452,
-0.08212435990571976,
-0.08920647203922272,
-0.06373240053653717,
0.16244196891784668,
-0.010531404986977577,
0.0211043581366539,
0.05115576460957527,
0.014233313500881195,
0.0209906455129385,
-0.10924366116523743,
-0.04569512605667114,
-0.04786977544426918,
-0.025584693998098373,
0.09855595976114273,
-0.02105305902659893,
-0.19430188834667206,
-0.151961088180542,
0.01860133744776249,
0.09825073927640915,
0.13261090219020844,
-0.026120508089661598,
0.07984377443790436,
0.12829038500785828,
-0.006572147365659475,
-0.27162081003189087,
-0.10964012145996094,
0.009517193771898746,
-0.03788940981030464,
-0.049981214106082916,
-0.06756940484046936,
0.08195548504590988,
0.03462794050574303,
-0.019061844795942307,
0.03970373794436455,
-0.2255924493074417,
-0.08432001620531082,
0.1389891505241394,
0.003391184378415346,
0.27791932225227356,
-0.14909560978412628,
-0.06246737018227577,
-0.052339471876621246,
-0.032503727823495865,
0.08066603541374207,
-0.11171601712703705,
0.04601600021123886,
0.04422113671898842,
0.020217321813106537,
0.019082095474004745,
0.005809660069644451,
0.12667161226272583,
0.07796481996774673,
0.05317750945687294,
-0.15577955543994904,
-0.1376219391822815,
0.11151769012212753,
0.012875824235379696,
0.03998815640807152,
-0.09367930144071579,
-0.01840139925479889,
-0.15959012508392334,
-0.018693553283810616,
-0.07141121476888657,
0.05391528457403183,
-0.036903101950883865,
-0.0019623253028839827,
-0.004875159822404385,
0.013022340834140778,
0.008324993774294853,
-0.005429417360574007,
0.15589697659015656,
-0.017470471560955048,
0.04039890691637993,
-0.05241391435265541,
0.0662555992603302,
-0.044195495545864105,
0.00006535764987347648,
-0.044014498591423035,
-0.04964001104235649,
0.04820939525961876,
-0.08457150310277939,
-0.004072798416018486,
0.08089137077331543,
-0.04449573531746864,
0.07591371983289719,
0.03965793177485466,
0.03145467862486839,
0.03614090383052826,
0.1623208075761795,
-0.1395111232995987,
-0.08314267545938492,
0.006268964149057865,
-0.12904448807239532,
0.009851350449025631,
0.09989798814058304,
0.1672140210866928,
-0.013320631347596645,
0.03253524750471115,
0.02040431648492813,
0.021840959787368774,
0.01890942081809044,
0.08578377217054367,
0.04177803546190262,
-0.004193637985736132,
-0.09677120298147202,
0.07902773469686508,
0.08583569526672363,
-0.04006034880876541,
0.02481762506067753,
0.03601299971342087,
-0.17766600847244263,
-0.0989309698343277,
-0.1313985288143158,
0.1043609008193016,
0.07243919372558594,
-0.06756164133548737,
-0.12330035865306854,
-0.12989424169063568,
-0.01651114597916603,
0.03425941988825798,
0.07935534417629242,
0.1061304360628128,
-0.03640155494213104,
-0.06367778033018112,
-0.00713367061689496,
0.0910346508026123,
0.13562056422233582,
-0.032511383295059204,
-0.17899566888809204,
0.007563700433820486,
0.007645308040082455,
0.07903990894556046,
-0.0422646701335907,
-0.01684965379536152,
-0.1085580438375473,
0.00459644990041852,
-0.06621786206960678,
-0.005605084355920553,
-0.1343330591917038,
0.02034004218876362,
0.012356911785900593,
-0.07338797301054001,
-0.05562723055481911,
-0.044991347938776016,
-0.04219818487763405,
-0.014187468215823174,
0.03125777468085289,
0.08370216190814972,
-0.14352546632289886,
-0.05888592079281807,
0.03460831940174103,
-0.029957707971334457,
0.10484578460454941,
0.1209205612540245,
-0.07263750582933426,
0.07728835940361023,
-0.22020575404167175,
-0.013782775960862637,
0.03726522997021675,
0.002409212524071336,
-0.0012441144790500402,
0.007021377328783274,
0.012874990701675415,
0.05617284029722214,
0.08807898312807083,
0.12900999188423157,
0.09499934315681458,
-0.0751868262887001,
0.09025958925485611,
-0.11925116181373596,
-0.08854245394468307,
-0.02164285071194172,
0.04882166162133217,
0.07531774044036865,
0.020788295194506645,
0.20869924128055573,
-0.10869069397449493,
0.044203076511621475,
-0.03315158933401108,
0.046056944876909256,
-0.011966606602072716,
-0.16175734996795654,
-0.15218818187713623,
-0.07903362065553665,
0.04947315901517868,
-0.04992765188217163,
0.059207022190093994,
0.05863281339406967,
0.014517451636493206,
0.04994313791394234,
0.07335563004016876,
-0.04875267669558525,
0.04944822937250137,
0.07032477110624313,
0.03176230192184448,
-0.059054866433143616,
-0.14578157663345337,
-0.05536274611949921,
0.06278485059738159,
-0.13935483992099762,
0.05769079551100731,
0.16472752392292023,
0.0369805209338665,
0.023171396926045418,
0.0397561676800251,
-0.0363997146487236,
-0.014548677019774914,
-0.06745404005050659,
-0.11683337390422821,
0.07215623557567596,
-0.0061015780083835125,
0.012947026640176773,
0.12091492861509323,
-0.00938094686716795,
-0.05571801960468292,
-0.06777546554803848,
-0.06009150296449661,
-0.028047438710927963,
-0.1171535849571228,
-0.08117890357971191,
-0.08276208490133286,
0.008519526571035385,
-0.039158713072538376,
-0.045936740934848785,
0.06902357935905457,
0.054501425474882126,
-0.049341004341840744,
0.10498547554016113,
-0.03382059559226036,
-0.04224109649658203,
0.15353956818580627,
-0.05240371823310852,
-0.01279204897582531,
0.025781983509659767,
-0.04454103484749794,
-0.09785330295562744,
0.03238510340452194,
-0.006778347305953503,
0.08295333385467529,
-0.000026222427550237626,
-0.009519376792013645,
-0.1422274261713028,
-0.09871546179056168,
0.020956553518772125,
0.07079296559095383,
0.054174456745386124,
0.11475219577550888,
0.07516895979642868,
-0.018253348767757416,
0.01528236921876669,
0.1875956803560257,
0.024444712325930595,
-0.1166919693350792,
-0.08539623767137527,
0.07216931879520416,
0.028845319524407387,
0.04334709793329239,
-0.0024862352292984724,
-0.1032099649310112,
-0.015651308000087738,
0.15662354230880737,
0.3163068890571594,
-0.023922491818666458,
0.0752730518579483,
-0.06264849007129669,
0.03773183375597,
0.05454448238015175,
0.07217398285865784,
0.02692081592977047,
0.16089889407157898,
-0.00299134966917336,
0.017901534214615822,
-0.029609929770231247,
-0.003615916008129716,
-0.07482077926397324,
0.057660363614559174,
0.05825141817331314,
-0.056723322719335556,
-0.08925564587116241,
0.20675058662891388,
-0.12232813984155655,
-0.042156752198934555,
0.010937494225800037,
-0.1140146255493164,
-0.09824875742197037,
0.008844295516610146,
0.11478114873170853,
0.10435723513364792,
0.07752715051174164,
-0.002908447990193963,
-0.0389477014541626,
-0.024936014786362648,
0.025060361251235008,
-0.07268479466438293,
-0.02800726890563965,
0.053978174924850464,
0.055054109543561935,
0.07445109635591507,
-0.010672898963093758,
0.1218230202794075,
0.1040799617767334,
-0.0014931283658370376,
-0.0419340543448925,
0.06699106842279434,
0.06544911861419678,
0.07662011682987213,
0.07771395891904831,
-0.06960716843605042,
0.03862809017300606,
-0.10154407471418381,
0.14344975352287292,
-0.01776340790092945,
0.047024063766002655,
-0.006272787693887949,
-0.001934099942445755,
-0.11003872752189636,
0.16738592088222504,
-0.0735139325261116,
0.04826654866337776,
0.16251452267169952,
-0.026484200730919838,
0.019372405484318733,
0.0077526685781776905,
-0.059467315673828125,
-0.010233531706035137,
-0.11474510282278061,
-0.02196652442216873,
-0.15317471325397491,
-0.00770287262275815,
0.022174669429659843,
0.08700527995824814,
-0.10696335881948471,
0.000379207544028759,
-0.06206051632761955,
0.0355210155248642,
-0.04711802676320076,
0.06285546720027924,
0.02848055586218834,
-0.02535196952521801,
-0.03058970533311367,
-0.12439195066690445,
0.02188403718173504,
0.08850452303886414,
-0.041828978806734085,
-0.0712919682264328
] |
null | null |
transformers
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper.
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/convbert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
# Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
```
# Reference test results:
* accuracy: 0.9937648915431506
* f1: 0.9610945644080416
* precision: 0.9619899385131359
* recall: 0.9602008554956295
|
{"language": "tr", "widget": [{"text": "Almanya, koronavir\u00fcs a\u015f\u0131s\u0131n\u0131 geli\u015ftiren Dr. \u00d6zlem T\u00fcreci ve e\u015fi Prof. Dr. U\u011fur \u015eahin'e liyakat ni\u015fan\u0131 verdi"}]}
|
token-classification
|
akdeniz27/convbert-base-turkish-cased-ner
|
[
"transformers",
"pytorch",
"onnx",
"safetensors",
"convbert",
"token-classification",
"tr",
"arxiv:2008.02496",
"doi:10.57967/hf/0015",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2008.02496"
] |
[
"tr"
] |
TAGS
#transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)
using a reviewed version of well known Turkish NER dataset
(URL
The ConvBERT architecture is presented in the "ConvBERT: Improving BERT with Span-based Dynamic Convolution" paper.
# Fine-tuning parameters:
# How to use:
# Reference test results:
* accuracy: 0.9937648915431506
* f1: 0.9610945644080416
* precision: 0.9619899385131359
* recall: 0.9602008554956295
|
[
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.",
"# Fine-tuning parameters:",
"# How to use:",
"# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295"
] |
[
"TAGS\n#transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.",
"# Fine-tuning parameters:",
"# How to use:",
"# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295"
] |
[
75,
96,
8,
5,
54
] |
[
"passage: TAGS\n#transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.# Fine-tuning parameters:# How to use:# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295"
] |
[
-0.1315641552209854,
0.08083780109882355,
-0.000862588407471776,
0.06683135032653809,
0.02350427769124508,
0.02208109013736248,
0.11810117214918137,
0.03673370182514191,
-0.10992593318223953,
0.12447037547826767,
0.15466280281543732,
-0.003573685185983777,
0.0735606923699379,
0.07878965139389038,
-0.0872347354888916,
-0.1276891976594925,
0.06263234466314316,
0.01149478554725647,
0.12427123636007309,
0.09428486227989197,
0.04651157930493355,
-0.11635151505470276,
0.06552586704492569,
-0.00015999360766727477,
-0.179239422082901,
0.02566494233906269,
0.0025013501290231943,
-0.08706287294626236,
0.08969403803348541,
0.02399865910410881,
0.14988568425178528,
-0.0049547054804861546,
0.06358145922422409,
-0.11577767878770828,
0.013202797621488571,
-0.018480412662029266,
-0.03630932793021202,
0.05793849751353264,
0.12759935855865479,
0.0106849055737257,
0.12112116068601608,
-0.03796994686126709,
-0.0716458335518837,
-0.015545809641480446,
-0.0479450598359108,
-0.029008638113737106,
-0.12866918742656708,
0.20562610030174255,
0.01828782819211483,
0.06269071251153946,
-0.005020370241254568,
0.10256080329418182,
0.03736911714076996,
0.12789346277713776,
0.08428797870874405,
-0.3554883301258087,
-0.09052269160747528,
0.03495043143630028,
-0.07134126126766205,
-0.040590450167655945,
0.01482192799448967,
0.03632024675607681,
0.01541702076792717,
-0.005936131346970797,
-0.013839646242558956,
-0.056019723415374756,
-0.3099474012851715,
-0.034031692892313004,
-0.08052666485309601,
-0.0723177045583725,
0.20838694274425507,
0.054775867611169815,
-0.008591610938310623,
0.00930473767220974,
-0.13481464982032776,
-0.07253699004650116,
-0.04807121679186821,
-0.07342463731765747,
-0.04510048031806946,
-0.07276429235935211,
-0.047045134007930756,
-0.010773727670311928,
-0.06662125885486603,
-0.10444740951061249,
-0.18630817532539368,
0.21108433604240417,
0.05246046930551529,
0.0720318928360939,
-0.03775812312960625,
0.06928698718547821,
-0.06826777756214142,
-0.09990689158439636,
-0.011953453533351421,
0.006573228631168604,
-0.10331937670707703,
-0.009558278135955334,
-0.011143122799694538,
-0.04914543032646179,
0.0752851814031601,
0.07106400281190872,
0.021155325695872307,
0.03406137228012085,
0.004160857759416103,
0.013583727180957794,
-0.12132219970226288,
0.2579898238182068,
-0.1219920814037323,
-0.009079042822122574,
-0.0013970108702778816,
-0.03892580419778824,
0.0031810614746063948,
0.011582345701754093,
-0.07755560427904129,
-0.11204678565263748,
0.21123334765434265,
0.025773679837584496,
-0.06645441800355911,
0.12014095485210419,
0.017878374084830284,
0.03015289455652237,
0.027502255514264107,
-0.08483367413282394,
0.00856256578117609,
0.02290605567395687,
-0.1088373064994812,
-0.009817991405725479,
0.018994122743606567,
-0.07467532902956009,
-0.054903846234083176,
-0.04359772428870201,
-0.047236837446689606,
-0.008420448750257492,
-0.01586269959807396,
-0.1522628217935562,
0.027982112020254135,
-0.028707513585686684,
-0.018552197143435478,
-0.22768457233905792,
-0.13103967905044556,
0.006537884008139372,
0.00517316535115242,
-0.06252335011959076,
0.15699315071105957,
-0.06302737444639206,
-0.11793158203363419,
-0.010064170695841312,
-0.00838710181415081,
-0.013243227265775204,
-0.04621857777237892,
0.053991954773664474,
0.052433717995882034,
0.08126350492238998,
-0.07013305276632309,
0.030214902013540268,
-0.07099005579948425,
0.005054018925875425,
-0.08746600151062012,
0.015128747560083866,
-0.05740584433078766,
-0.0025995676405727863,
-0.12758107483386993,
-0.01693548634648323,
0.006771409418433905,
-0.05958397686481476,
0.10164320468902588,
0.14774386584758759,
-0.14791439473628998,
0.006833452731370926,
0.13337057828903198,
-0.06964729726314545,
-0.10802154242992401,
0.10155345499515533,
0.003345228498801589,
0.037483323365449905,
0.05511832609772682,
0.17787577211856842,
0.09118061512708664,
-0.07047674059867859,
-0.15757204592227936,
0.018933581188321114,
-0.04369906708598137,
-0.06159185245633125,
0.008905758149921894,
0.03945033624768257,
0.008935831487178802,
0.06714509427547455,
-0.05254495516419411,
0.01924360729753971,
-0.04367139935493469,
-0.04225260391831398,
-0.03957141935825348,
-0.059547584503889084,
0.04100178927183151,
-0.034644559025764465,
0.09568286687135696,
-0.02463017962872982,
-0.04620875045657158,
-0.02036318928003311,
0.07144936919212341,
-0.056206755340099335,
0.014347798191010952,
-0.13458053767681122,
0.18357381224632263,
-0.17891333997249603,
0.03506714478135109,
-0.16538375616073608,
-0.11198975145816803,
0.04133787378668785,
0.03980740159749985,
-0.010721740312874317,
0.014075220562517643,
0.09402354061603546,
0.03648227080702782,
0.016292160376906395,
-0.031948354095220566,
0.040697500109672546,
0.05704280734062195,
-0.08926735073328018,
-0.09019554406404495,
-0.033975180238485336,
-0.02029632404446602,
0.13235381245613098,
-0.08224106580018997,
-0.014564757235348225,
0.07967237383127213,
0.09716235101222992,
-0.051504820585250854,
0.012918537482619286,
-0.03504156693816185,
0.03600585088133812,
-0.008146543987095356,
-0.04895246773958206,
0.04364974424242973,
-0.006718144752085209,
-0.053356051445007324,
0.048198916018009186,
-0.18935543298721313,
0.12899106740951538,
0.07311507314443588,
0.04397221654653549,
-0.058411210775375366,
-0.022571677342057228,
-0.028743138536810875,
-0.036395084112882614,
0.09214597195386887,
0.017440056428313255,
0.19201022386550903,
-0.004978126380592585,
0.12793442606925964,
-0.06389974802732468,
-0.040819160640239716,
0.03759784996509552,
-0.01363579835742712,
-0.08277982473373413,
0.19478583335876465,
-0.05320058763027191,
-0.12898828089237213,
0.09287764877080917,
0.11599472165107727,
-0.09752262383699417,
0.04731180518865585,
0.0105420658364892,
-0.08805900067090988,
-0.059227354824543,
0.035048432648181915,
0.03027958981692791,
0.15273819863796234,
-0.03017614781856537,
-0.04601648449897766,
0.05370724946260452,
0.00906172301620245,
0.02490098960697651,
-0.09498979151248932,
0.07326479256153107,
0.02117595262825489,
-0.06407159566879272,
0.05172080919146538,
0.009920218028128147,
-0.003773340256884694,
0.12796947360038757,
-0.04202326014637947,
-0.17929768562316895,
-0.0032540648244321346,
0.00570685276761651,
-0.0414259135723114,
0.1801711767911911,
-0.09235658496618271,
-0.08331844210624695,
-0.14381486177444458,
-0.12198581546545029,
-0.14973707497119904,
-0.033247895538806915,
-0.018519099801778793,
-0.07305324822664261,
-0.012592026963829994,
-0.08417437225580215,
-0.045684754848480225,
-0.06550795584917068,
0.012180349789559841,
-0.02309652976691723,
-0.05820634588599205,
0.0043223220854997635,
-0.09290801733732224,
-0.03826267644762993,
-0.08424022048711777,
-0.1324916034936905,
0.10140776634216309,
-0.036553408950567245,
0.1407763510942459,
0.1239699274301529,
-0.1330087035894394,
0.06207937374711037,
-0.03089248575270176,
0.05314512923359871,
-0.03434821963310242,
0.06637564301490784,
0.08422154933214188,
-0.046074770390987396,
0.0019029354443773627,
0.15190386772155762,
0.00009616757597541437,
-0.026972441002726555,
-0.02017880603671074,
-0.07400331646203995,
-0.015727262943983078,
-0.20216649770736694,
-0.1202021986246109,
-0.03338554874062538,
0.02205268293619156,
0.04720704257488251,
0.04905535280704498,
0.09937901794910431,
0.07416818290948868,
0.0074837650172412395,
0.0572187639772892,
0.019926825538277626,
0.03301900997757912,
0.23070424795150757,
0.047768667340278625,
0.08095992356538773,
-0.06617777794599533,
-0.023729566484689713,
0.034519001841545105,
0.022137582302093506,
0.1709812879562378,
-0.010032813996076584,
0.05528102442622185,
0.03737620264291763,
0.13579881191253662,
-0.007581415586173534,
0.11227378994226456,
-0.013939786702394485,
0.008336514234542847,
0.0185492355376482,
-0.12308429181575775,
-0.019534047693014145,
0.026843644678592682,
-0.049806855618953705,
0.013425786979496479,
-0.06417468190193176,
-0.009221739135682583,
0.09000669419765472,
0.038352467119693756,
0.12367703020572662,
-0.38401684165000916,
-0.1344093680381775,
-0.02451581321656704,
-0.003303664270788431,
-0.0528690405189991,
-0.020839739590883255,
0.10453547537326813,
-0.02690211497247219,
-0.015597893856465816,
-0.034985702484846115,
0.09009800106287003,
-0.10291632264852524,
0.01746339164674282,
-0.03996841236948967,
0.05271761491894722,
0.02000400237739086,
0.06824252009391785,
-0.14965422451496124,
0.32146328687667847,
0.07325476408004761,
0.07175708562135696,
-0.05331858620047569,
0.02138570323586464,
0.05079177767038345,
0.02887311577796936,
0.12666189670562744,
-0.009292050264775753,
-0.05096922069787979,
-0.18839366734027863,
-0.1188805028796196,
0.08531893044710159,
0.04819095879793167,
0.07729954272508621,
0.08113278448581696,
-0.02352345548570156,
-0.018594134598970413,
-0.001037512207403779,
0.07209353148937225,
-0.12750397622585297,
-0.07047145068645477,
0.0034891257528215647,
0.1482478380203247,
0.02392411231994629,
-0.026139002293348312,
-0.045508988201618195,
-0.14429810643196106,
0.16640320420265198,
-0.11134105175733566,
-0.0011034088674932718,
-0.09328306466341019,
0.05564535781741142,
0.12157799303531647,
-0.11100475490093231,
-0.005832807160913944,
-0.07830002158880234,
0.0140309426933527,
-0.008631107397377491,
-0.1390158236026764,
0.01887735165655613,
-0.07072506099939346,
-0.041035547852516174,
-0.005824517458677292,
0.02225988544523716,
0.036405522376298904,
0.021602658554911613,
0.06561620533466339,
0.047596290707588196,
-0.04770073667168617,
-0.08103154599666595,
-0.0170418843626976,
0.08874964714050293,
0.11264321953058243,
0.010067104361951351,
-0.06512848287820816,
-0.20588357746601105,
-0.07302810251712799,
0.1427832543849945,
0.07549671828746796,
0.1672247350215912,
-0.0646599605679512,
-0.06242121383547783,
0.1877536177635193,
-0.0291824359446764,
-0.23249317705631256,
-0.026859888806939125,
-0.03440641984343529,
0.06188536062836647,
-0.10313254594802856,
0.01992456056177616,
0.1208738386631012,
0.11905758082866669,
-0.01613517850637436,
0.005276526790112257,
-0.20860248804092407,
-0.09661903977394104,
0.2564181387424469,
0.08351290971040726,
0.18230484426021576,
-0.07170449942350388,
-0.07489516586065292,
-0.02518473193049431,
-0.1330534666776657,
-0.13012242317199707,
-0.036191727966070175,
0.05288347229361534,
-0.05282623693346977,
0.04203760623931885,
0.018079545348882675,
-0.05230281129479408,
0.11844214051961899,
0.050962239503860474,
0.04298565164208412,
-0.0744105726480484,
-0.0531487837433815,
0.12385956943035126,
-0.09802313894033432,
0.10679648816585541,
0.052883073687553406,
0.11929310858249664,
-0.10600224137306213,
0.003895052010193467,
-0.0355469286441803,
0.1358008086681366,
0.011939553543925285,
0.013310974463820457,
-0.04031806439161301,
-0.00263429363258183,
-0.03564925119280815,
-0.021018417552113533,
-0.020862452685832977,
0.014871957711875439,
0.015278932638466358,
0.0987587496638298,
-0.013520944863557816,
0.013342801481485367,
0.0696374773979187,
0.04710253328084946,
-0.022206204012036324,
0.06373196840286255,
0.0324753113090992,
-0.008654267527163029,
0.17701444029808044,
0.00012471027730498463,
0.06591595709323883,
0.03907028213143349,
-0.057269200682640076,
-0.0018149217357859015,
0.022690268233418465,
-0.16161969304084778,
-0.014060787856578827,
0.01889473758637905,
-0.046706076711416245,
-0.00078656489495188,
0.1352424919605255,
0.15169990062713623,
-0.1204485073685646,
0.05625056102871895,
-0.013213534839451313,
-0.036435987800359726,
-0.012293186038732529,
0.16284801065921783,
0.006362406071275473,
0.008692524395883083,
-0.07900097221136093,
0.08375482261180878,
0.08419647812843323,
-0.06525766104459763,
0.03526746854186058,
-0.11501457542181015,
-0.14511361718177795,
-0.03632042557001114,
0.017801716923713684,
0.08981675654649734,
0.03720075264573097,
-0.1273171305656433,
-0.08241984993219376,
-0.0426909402012825,
0.015057092532515526,
0.24735146760940552,
0.05996694788336754,
0.04501119628548622,
-0.06247572600841522,
-0.02315969578921795,
-0.09601310640573502,
0.12514545023441315,
0.05671445280313492,
0.05576150491833687,
-0.11439839005470276,
0.12415236234664917,
-0.03909952938556671,
0.04221564158797264,
-0.035110294818878174,
0.004387861117720604,
-0.08790063112974167,
-0.016065005213022232,
-0.15899451076984406,
0.0012544073397293687,
-0.10352728515863419,
0.008300927467644215,
0.012807237915694714,
-0.03342878818511963,
-0.07291443645954132,
0.02589946612715721,
-0.03167836740612984,
0.021436383947730064,
0.009948174469172955,
0.08007536828517914,
-0.19516338407993317,
-0.040217045694589615,
-0.002683313563466072,
-0.044276319444179535,
0.1078185960650444,
0.1510898768901825,
0.009644892066717148,
0.07997545599937439,
-0.1398632973432541,
-0.04084622114896774,
0.029348088428378105,
0.05253943055868149,
0.0964689776301384,
-0.013656256720423698,
0.0479837991297245,
0.05571313202381134,
0.0011508174939081073,
0.02788187377154827,
0.11332431435585022,
-0.009864375926554203,
-0.02009703777730465,
-0.16886167228221893,
0.010235964320600033,
-0.09367574751377106,
0.10583498328924179,
0.13339249789714813,
0.05020871013402939,
0.03531196340918541,
-0.09092458337545395,
-0.023314403370022774,
-0.09669069945812225,
0.016149695962667465,
0.00977370236068964,
-0.17854195833206177,
-0.08180952817201614,
-0.08387023955583572,
0.093597412109375,
-0.02786017395555973,
0.09711526334285736,
-0.028241939842700958,
0.003926100675016642,
0.0037948547396808863,
0.01754676178097725,
-0.0620030015707016,
-0.007536677643656731,
0.16296140849590302,
0.057273633778095245,
-0.012128811329603195,
-0.026907246559858322,
0.06842350959777832,
0.06515775620937347,
-0.0165550597012043,
0.1401306390762329,
0.14554624259471893,
-0.08366161584854126,
0.16186994314193726,
0.09961885958909988,
-0.08990971744060516,
0.004295810591429472,
-0.07031573355197906,
-0.16379885375499725,
0.08144170790910721,
-0.01196699682623148,
0.10423550754785538,
0.1531451791524887,
-0.036363206803798676,
-0.013516295701265335,
0.0029881999362260103,
-0.09286760538816452,
-0.036128778010606766,
-0.10410621762275696,
-0.11041674017906189,
-0.04948212578892708,
-0.005116678774356842,
-0.06887727230787277,
-0.030886400490999222,
0.12271834909915924,
0.025189626961946487,
-0.027914049103856087,
0.22256718575954437,
-0.04755624011158943,
0.0032325538340955973,
0.0890636220574379,
-0.03821453079581261,
-0.016307294368743896,
-0.028811339288949966,
-0.06600888073444366,
0.004035769030451775,
0.05433366075158119,
0.07388511300086975,
0.06333427876234055,
0.08564287424087524,
-0.007350323721766472,
-0.015175574459135532,
-0.07876725494861603,
-0.06762323528528214,
0.021124517545104027,
0.017795240506529808,
0.027449224144220352,
0.07203064113855362,
-0.033520378172397614,
-0.028957240283489227,
0.13860660791397095,
-0.05173387750983238,
-0.017050350084900856,
-0.02456498332321644,
0.16195374727249146,
0.015537542290985584,
0.028413305059075356,
0.05044615641236305,
-0.06269266456365585,
0.0003709627198986709,
0.17611736059188843,
0.15884080529212952,
-0.005373988766223192,
-0.015365689992904663,
0.029261766001582146,
0.010809927247464657,
-0.04222803935408592,
0.05635171756148338,
-0.003414562437683344,
0.15697838366031647,
-0.0029224460013210773,
-0.06478732824325562,
-0.02157660946249962,
-0.02232343889772892,
-0.03220931440591812,
0.01616653986275196,
0.023076068609952927,
-0.07853898406028748,
-0.05270378664135933,
0.10221441835165024,
-0.0611116960644722,
-0.15561997890472412,
0.07840583473443985,
-0.02089766226708889,
-0.14415954053401947,
0.047775719314813614,
0.10354270040988922,
0.00008406514825765043,
0.07339894771575928,
-0.1010475680232048,
0.054402731359004974,
0.04178805276751518,
0.0050835153087973595,
-0.10232992470264435,
-0.05080794543027878,
0.033328521996736526,
0.04435668885707855,
0.23613376915454865,
0.007791691459715366,
0.1330697238445282,
0.11155786365270615,
-0.008619875647127628,
-0.10139573365449905,
0.11997649073600769,
0.04160148277878761,
-0.1311517357826233,
0.06551116704940796,
-0.0072815450839698315,
-0.017213741317391396,
0.010657574981451035,
0.09403804689645767,
-0.11307105422019958,
0.025667056441307068,
0.0013303249143064022,
0.006399243604391813,
-0.0915706604719162,
0.03843504562973976,
-0.006323057692497969,
0.0948871523141861,
0.1820131093263626,
-0.020705781877040863,
0.023152116686105728,
-0.06324155628681183,
0.004431501496583223,
0.0314655676484108,
0.09054011851549149,
0.017659956589341164,
-0.12365133315324783,
0.0035717275459319353,
-0.1691296100616455,
0.031058019027113914,
-0.2097865641117096,
-0.03401549533009529,
-0.018841400742530823,
-0.03201301768422127,
-0.01471695490181446,
0.07666808366775513,
0.11455223709344864,
0.01422762218862772,
-0.015864359214901924,
0.028052199631929398,
0.0011325692757964134,
0.056474994868040085,
-0.12679935991764069,
-0.06571312993764877
] |
null | null |
transformers
|
# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "DeBERTa v2 XLarge"
using CUAD dataset https://huggingface.co/datasets/cuad
Link for model checkpoint: https://github.com/TheAtticusProject/cuad
For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo
and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
|
{"language": "en", "datasets": ["cuad"]}
|
question-answering
|
akdeniz27/deberta-v2-xlarge-cuad
|
[
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"question-answering",
"en",
"dataset:cuad",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us
|
# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "DeBERTa v2 XLarge"
using CUAD dataset URL
Link for model checkpoint: URL
For the use of the model with CUAD: URL
and URL
|
[
"# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
"TAGS\n#transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n",
"# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
51,
65
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
-0.12631116807460785,
0.14909949898719788,
-0.0033352484460920095,
0.065231554210186,
0.08277268707752228,
0.03093934804201126,
0.12701700627803802,
-0.006080261431634426,
0.066553495824337,
0.08464418351650238,
0.13219723105430603,
-0.012182740494608879,
-0.007889253087341785,
0.10173012316226959,
-0.02779850736260414,
-0.14290492236614227,
0.08669446408748627,
0.0295743215829134,
0.008162770420312881,
0.057012297213077545,
0.07520739734172821,
-0.11369205266237259,
0.08685071766376495,
-0.004389483947306871,
-0.05017229542136192,
-0.0013015978038311005,
-0.021373840048909187,
-0.004283061716705561,
0.12346897274255753,
0.02967926301062107,
0.20888900756835938,
0.1036263257265091,
0.11089470237493515,
-0.09944016486406326,
0.028116244822740555,
-0.021129455417394638,
-0.06049066409468651,
0.05025414004921913,
-0.053401533514261246,
0.019825348630547523,
-0.015697622671723366,
-0.07023639231920242,
0.03934471309185028,
-0.055184051394462585,
-0.09635438770055771,
-0.020937062799930573,
-0.07765636593103409,
0.10548590868711472,
0.08311526477336884,
0.05317731574177742,
-0.0008374651079066098,
0.07811810076236725,
-0.10942774266004562,
0.01241887453943491,
0.008005630224943161,
-0.27914905548095703,
-0.03566234931349754,
0.10540086776018143,
0.1278800368309021,
0.1050710678100586,
0.03608309105038643,
0.06002000719308853,
0.06552852690219879,
0.021376049146056175,
0.04401390254497528,
-0.0482046864926815,
-0.07258918136358261,
0.04140984266996384,
-0.1442909985780716,
-0.016938962042331696,
0.08587190508842468,
-0.0005213628173805773,
-0.022959059104323387,
-0.00588125130161643,
-0.10977639257907867,
-0.017439454793930054,
-0.04099264368414879,
-0.09233318269252777,
0.025446178391575813,
0.013385612517595291,
0.06554409116506577,
-0.02038189396262169,
-0.11132536828517914,
-0.08268411457538605,
-0.15737956762313843,
0.06575976312160492,
-0.016181129962205887,
0.03374222293496132,
-0.17452162504196167,
0.07464541494846344,
-0.0966472178697586,
-0.10932310670614243,
-0.012930875644087791,
-0.08181200921535492,
-0.026142749935388565,
-0.03552931174635887,
-0.06284207850694656,
0.06973931193351746,
0.10746239125728607,
0.14952367544174194,
0.08311904966831207,
-0.04728642478585243,
0.009593138471245766,
0.004559272434562445,
0.05897742882370949,
0.2084011435508728,
-0.17999477684497833,
-0.11176571249961853,
0.09071783721446991,
0.0611136332154274,
0.08731742203235626,
-0.017075875774025917,
-0.1225411668419838,
-0.1603342741727829,
0.06667063385248184,
0.09646334499120712,
0.06116271764039993,
0.00240035611204803,
-0.03143758326768875,
0.01218983344733715,
0.19817104935646057,
-0.005872927140444517,
0.0028136081527918577,
0.018443988636136055,
0.04671560972929001,
0.058532413095235825,
0.04616441950201988,
0.04547395929694176,
0.08015881478786469,
0.01233689859509468,
-0.13522395491600037,
-0.07459208369255066,
-0.004155059345066547,
-0.1354784220457077,
0.03792398422956467,
-0.14402739703655243,
0.06448329985141754,
-0.19328612089157104,
-0.10726810246706009,
0.003941578324884176,
-0.04778294265270233,
-0.024657659232616425,
-0.01587577536702156,
-0.03550707548856735,
-0.010106482543051243,
0.0005811557057313621,
-0.0402989387512207,
-0.04090123996138573,
-0.03650902211666107,
0.03137332201004028,
0.022537382319569588,
0.09044705331325531,
-0.15810377895832062,
0.009543121792376041,
-0.034365393221378326,
0.05980561673641205,
-0.08264027535915375,
0.012659030966460705,
-0.037075225263834,
0.06759753078222275,
-0.04373832046985626,
-0.012252920307219028,
0.008954309858381748,
0.019855260848999023,
0.11340764909982681,
0.1667940467596054,
-0.24442635476589203,
0.037060726433992386,
0.11910318583250046,
-0.10648124665021896,
-0.1534542441368103,
0.0846504420042038,
-0.010950489901006222,
-0.012022716924548149,
0.0678594782948494,
0.09568970650434494,
0.11375484615564346,
-0.18052488565444946,
-0.020759467035531998,
0.036737848073244095,
-0.024952512234449387,
-0.10500966757535934,
0.04743671417236328,
0.0292984489351511,
-0.05402391031384468,
-0.014446317218244076,
-0.1543165147304535,
0.045294083654880524,
-0.06486768275499344,
-0.041049178689718246,
-0.01599779538810253,
-0.07985413074493408,
0.027356380596756935,
-0.04059077799320221,
-0.021615276113152504,
0.007360783405601978,
-0.0073665655218064785,
-0.02195342816412449,
0.08444990962743759,
-0.010422689840197563,
-0.008529875427484512,
-0.10204311460256577,
0.1892510950565338,
-0.2003103643655777,
-0.019722407683730125,
-0.09103865921497345,
-0.1957768052816391,
-0.03449629247188568,
0.13400331139564514,
-0.08345478028059006,
0.10521205514669418,
0.04084038734436035,
-0.013602322898805141,
0.04073158651590347,
0.0013218800304457545,
-0.026991166174411774,
0.0654928982257843,
-0.07100047171115875,
-0.08902132511138916,
-0.010693147778511047,
-0.06804221123456955,
0.10419822484254837,
-0.10361423343420029,
-0.025419438257813454,
0.007099790498614311,
0.08109647780656815,
-0.0003985327493865043,
0.08748331665992737,
0.0015168796526268125,
0.053148526698350906,
-0.017275171354413033,
-0.03138553351163864,
0.012112614698708057,
0.0008834485779516399,
-0.05724863335490227,
0.09016120433807373,
-0.04435763508081436,
0.193855419754982,
0.12919774651527405,
0.0736008808016777,
-0.015918120741844177,
-0.005877395160496235,
-0.0026038663927465677,
0.04215895012021065,
0.0022580872755497694,
-0.0494319386780262,
0.08921728283166885,
0.000749350932892412,
0.061798177659511566,
-0.0495975986123085,
0.041479017585515976,
0.025341207161545753,
-0.006186703685671091,
-0.04297647252678871,
0.020914915949106216,
0.15349121391773224,
-0.054013852030038834,
0.07071089744567871,
0.1579209417104721,
0.010365639813244343,
-0.0005676085711456835,
-0.00032449912396259606,
-0.06039884313941002,
-0.05076706036925316,
-0.06504831463098526,
-0.03597969934344292,
0.17251990735530853,
-0.08576033264398575,
-0.021880654618144035,
0.03293749317526817,
0.018699148669838905,
0.05428970605134964,
-0.10644148290157318,
-0.04976398125290871,
0.03355654701590538,
-0.008491392247378826,
-0.1802559792995453,
0.10193349421024323,
-0.016315139830112457,
0.08313897252082825,
0.038013871759176254,
-0.10375740379095078,
0.008822563104331493,
0.017823295667767525,
-0.0583808459341526,
0.15012821555137634,
-0.066984623670578,
-0.15954020619392395,
-0.050749603658914566,
0.0015744928969070315,
0.058206915855407715,
0.03649004176259041,
0.023608218878507614,
-0.04686526581645012,
-0.06617926061153412,
-0.016235312446951866,
0.07237468659877777,
0.03497304767370224,
0.05045010894536972,
0.03157394751906395,
-0.03940846398472786,
-0.01442329678684473,
-0.11182976514101028,
-0.020330483093857765,
-0.06733814626932144,
0.01702948845922947,
0.056426215916872025,
-0.03518028184771538,
0.17170515656471252,
0.09742788225412369,
0.016801659017801285,
-0.04540792852640152,
0.016702741384506226,
0.30781206488609314,
-0.039550863206386566,
0.052763357758522034,
0.15434736013412476,
-0.006168333813548088,
0.02805430255830288,
0.22933702170848846,
-0.00274898880161345,
-0.09186107665300369,
0.009040625765919685,
-0.051705505698919296,
-0.03700823709368706,
-0.13315372169017792,
-0.11026081442832947,
-0.052676327526569366,
-0.10244984924793243,
-0.042351312935352325,
-0.005650210194289684,
-0.06872919946908951,
0.10704358667135239,
0.05084510147571564,
0.047130074352025986,
-0.11583686619997025,
0.015686849132180214,
0.2185508906841278,
-0.03797009214758873,
0.08649523556232452,
-0.034988392144441605,
-0.11137572675943375,
0.06260397285223007,
0.09769603610038757,
0.10910964012145996,
0.033425137400627136,
0.007147279102355242,
0.06984279304742813,
0.08474055677652359,
0.09476712346076965,
0.11223161965608597,
-0.011032682843506336,
-0.05713677406311035,
-0.05045687407255173,
-0.025528213009238243,
-0.047619231045246124,
0.020067248493433,
0.02382155880331993,
-0.08911755681037903,
-0.07481501996517181,
0.056567344814538956,
0.028048200532794,
0.033321913331747055,
0.1259898692369461,
-0.3003104627132416,
-0.006107423920184374,
0.07360661774873734,
0.06896798312664032,
-0.0752411037683487,
0.0017505019204691052,
0.10148301720619202,
0.006496627349406481,
-0.04267594963312149,
0.060561370104551315,
0.07115573436021805,
-0.03619075194001198,
0.03868848830461502,
-0.05851804092526436,
-0.04255601391196251,
0.003044197801500559,
0.017063116654753685,
-0.14623330533504486,
0.16877618432044983,
0.014979424886405468,
-0.00452782865613699,
0.0037219757214188576,
-0.028640354052186012,
-0.009278674609959126,
0.23970046639442444,
0.1284540593624115,
0.0021017566323280334,
0.0885106772184372,
-0.05686542019248009,
-0.1440737545490265,
0.11133206635713577,
-0.042841535061597824,
-0.02546517364680767,
0.09142507612705231,
-0.003407026408240199,
-0.02298053540289402,
0.021637145429849625,
0.14079727232456207,
-0.11229953169822693,
-0.06046489626169205,
0.008270084857940674,
0.08834569901227951,
0.04317168518900871,
-0.02339319698512554,
-0.06336665898561478,
-0.08770634979009628,
0.008358693681657314,
-0.08326482027769089,
-0.06903436034917831,
-0.07965844124555588,
-0.058659378439188004,
0.1392471045255661,
-0.08545172959566116,
0.051292262971401215,
-0.0023778267204761505,
0.09757546335458755,
-0.03787100315093994,
-0.07486405968666077,
0.06297295540571213,
-0.09606650471687317,
-0.019922101870179176,
-0.09877500683069229,
0.059417903423309326,
-0.0154562471434474,
-0.020715860649943352,
0.06778112053871155,
0.01666131056845188,
-0.0561261847615242,
-0.08921077847480774,
-0.07464183121919632,
0.13177594542503357,
-0.007499938365072012,
-0.05176786333322525,
-0.0240253284573555,
-0.07502473890781403,
0.05214887484908104,
0.09405628591775894,
0.11397329717874527,
0.12025415152311325,
-0.10833374410867691,
0.024883270263671875,
0.1541559398174286,
-0.010509024374186993,
-0.26052650809288025,
-0.03223206475377083,
-0.06298240274190903,
0.08625198155641556,
-0.05221880227327347,
-0.04448346793651581,
0.08490990102291107,
0.006212967913597822,
-0.052263133227825165,
0.11097169667482376,
-0.2065345197916031,
-0.08032606542110443,
0.1252950131893158,
0.036128297448158264,
0.3482084274291992,
-0.07345574349164963,
-0.039576951414346695,
-0.009284915402531624,
-0.24541251361370087,
0.10374097526073456,
-0.050856418907642365,
0.008294143714010715,
-0.030888361856341362,
0.12966221570968628,
0.030565958470106125,
-0.044460512697696686,
0.16346651315689087,
0.03028896637260914,
0.03714287281036377,
-0.02673168107867241,
-0.1102856919169426,
0.027597341686487198,
-0.049299754202365875,
0.06169793754816055,
0.04470457136631012,
0.0856846421957016,
-0.07728517055511475,
-0.058298636227846146,
-0.034916460514068604,
-0.0073555512353777885,
-0.054739102721214294,
-0.056239061057567596,
0.0038133447524160147,
0.007981590926647186,
-0.023921137675642967,
-0.024673203006386757,
-0.018793750554323196,
-0.04049079865217209,
-0.09538572281599045,
-0.10411639511585236,
0.07111401110887527,
-0.07510213553905487,
0.06933820247650146,
0.04325643554329872,
-0.07277277857065201,
0.11461416631937027,
-0.09116064012050629,
0.05788402259349823,
0.11279447376728058,
-0.015082133002579212,
0.007677631452679634,
0.05757734924554825,
0.005461782217025757,
0.011047662235796452,
0.10333617776632309,
-0.13727350533008575,
-0.08794180303812027,
0.032886553555727005,
-0.10072777420282364,
-0.04700586572289467,
0.08252653479576111,
0.16319677233695984,
-0.017259931191802025,
-0.03696608170866966,
-0.04515260085463524,
0.005445909686386585,
-0.030963122844696045,
0.010227078571915627,
0.09609726071357727,
0.015819786116480827,
-0.08304940909147263,
-0.032200176268815994,
0.034025415778160095,
-0.0668601542711258,
-0.018717404454946518,
-0.0654812678694725,
-0.1000991240143776,
-0.09714838117361069,
-0.11066269129514694,
0.19774560630321503,
-0.16673678159713745,
-0.05180822312831879,
-0.06413649022579193,
-0.093169666826725,
0.008120710961520672,
0.17905879020690918,
0.06293118745088577,
0.08609673380851746,
0.010561788454651833,
-0.07590936869382858,
-0.07798470556735992,
0.022985482588410378,
-0.022572806105017662,
0.05534309521317482,
-0.1544475555419922,
-0.041249290108680725,
-0.08205019682645798,
0.05047740042209625,
-0.05500911921262741,
0.050786104053258896,
-0.10877955704927444,
-0.03119506500661373,
-0.3047414720058441,
0.03443998470902443,
-0.07309213280677795,
0.0032278187572956085,
-0.021596409380435944,
-0.08325107395648956,
-0.0800628513097763,
0.0036403366830199957,
-0.017203396186232567,
0.04037689417600632,
-0.0068892487324774265,
0.03698582947254181,
-0.14129026234149933,
-0.05135619640350342,
0.014463989995419979,
-0.04930571839213371,
0.1466660499572754,
0.00010108053538715467,
0.00811669323593378,
0.014288627542555332,
-0.0763503685593605,
-0.028587620705366135,
0.03327100723981857,
0.0373329296708107,
0.12793076038360596,
-0.05965961888432503,
0.03772546350955963,
0.022833483293652534,
-0.007351191248744726,
-0.005886695347726345,
0.04716242477297783,
-0.042293574661016464,
-0.0029719541780650616,
0.013647705316543579,
-0.023202335461974144,
-0.0034111961722373962,
-0.057720329612493515,
0.1459290087223053,
0.06542335450649261,
0.060970913618803024,
-0.022016657516360283,
0.04771606996655464,
-0.05551721155643463,
0.0098705580458045,
-0.061898861080408096,
0.023487558588385582,
-0.08670520782470703,
-0.05002647638320923,
0.034671831876039505,
-0.0501440167427063,
0.18661800026893616,
-0.02048698626458645,
0.1084507629275322,
-0.0056452336721122265,
0.046496592462062836,
0.051930446177721024,
0.035797398537397385,
0.1764654517173767,
0.04188059642910957,
-0.02418089285492897,
-0.11985830217599869,
0.042445551604032516,
0.045430492609739304,
0.02298952452838421,
0.07800563424825668,
0.08131066709756851,
0.08837281912565231,
0.09310844540596008,
0.08418635278940201,
-0.037586748600006104,
-0.06895486265420914,
-0.1250673234462738,
-0.11107999831438065,
-0.04099112004041672,
-0.00987127237021923,
0.015025733970105648,
0.07335731387138367,
-0.03438715636730194,
-0.07537765800952911,
-0.02768564596772194,
-0.03183399513363838,
-0.08461906015872955,
0.018431710079312325,
-0.10367563366889954,
-0.049653299152851105,
-0.021230213344097137,
-0.1273200958967209,
-0.12345555424690247,
0.015326998196542263,
-0.027230778709053993,
-0.04479553550481796,
0.060745105147361755,
0.10179876536130905,
0.0078010051511228085,
0.02952207438647747,
0.07676876336336136,
0.06615953892469406,
0.061648234724998474,
0.02756553143262863,
-0.010582594200968742,
0.04113428667187691,
-0.04308752715587616,
0.0028617929201573133,
-0.008780061267316341,
0.03076796606183052,
-0.011506017297506332,
-0.0260350052267313,
-0.0979171097278595,
0.03219734877347946,
-0.02302296832203865,
0.11066535860300064,
0.04799382761120796,
0.00969638954848051,
0.029999516904354095,
0.10690265148878098,
0.0016611464088782668,
-0.07459685206413269,
-0.12619172036647797,
0.15181060135364532,
-0.03521309420466423,
0.12003539502620697,
0.012403714470565319,
-0.05338061600923538,
-0.04744439572095871,
0.20620323717594147,
0.14258690178394318,
-0.17108330130577087,
0.031014053151011467,
0.01549492496997118,
0.02342413179576397,
-0.040977977216243744,
0.06851660460233688,
0.07321010529994965,
0.2608744204044342,
-0.04044725000858307,
-0.11074396967887878,
-0.11217859387397766,
0.021523525938391685,
0.04521786421537399,
0.0013303657760843635,
-0.028981288895010948,
-0.022354431450366974,
-0.07624205946922302,
0.08668458461761475,
-0.08214820921421051,
-0.006213179789483547,
0.05761784315109253,
-0.14324398338794708,
-0.10950995981693268,
-0.01038152351975441,
0.04227718338370323,
-0.027156883850693703,
0.082551009953022,
-0.09017901867628098,
-0.027463862672448158,
0.20697593688964844,
-0.03977019339799881,
-0.05461566895246506,
0.04609225317835808,
0.06463631987571716,
0.19430088996887207,
0.15315380692481995,
-0.0029588008765131235,
0.06163600832223892,
0.12076254189014435,
0.08841648697853088,
-0.1493460088968277,
0.08195798099040985,
0.05757686868309975,
-0.02575887180864811,
0.0037897794973105192,
-0.11384410411119461,
-0.0335472971200943,
-0.07855095714330673,
0.08896414190530777,
-0.0946129560470581,
0.03317907825112343,
0.04322473704814911,
-0.02650599740445614,
-0.12224602699279785,
0.05351300910115242,
-0.06430844962596893,
0.11988954246044159,
-0.003674790496006608,
-0.05548578500747681,
0.010902700014412403,
0.02604173868894577,
0.06252608448266983,
0.04774747043848038,
0.109093576669693,
-0.03293515741825104,
-0.052170395851135254,
0.000055535325373057276,
0.04344235733151436,
0.01586371846497059,
-0.1990429013967514,
0.0005050068139098585,
-0.07803984731435776,
0.028774835169315338,
-0.015121418051421642,
0.05180561542510986,
0.05860433354973793,
0.04702204838395119,
-0.007821699604392052,
0.07955057919025421,
-0.03294287994503975,
0.0593952015042305,
-0.08730180561542511,
-0.13943098485469818
] |
null | null |
transformers
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base"
(a multilingual version of DeBERTa V3)
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "microsoft/mdeberta-v3-base"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 2
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* f1: 0.95
* precision: 0.94
* recall: 0.96
|
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
|
token-classification
|
akdeniz27/mDeBERTa-v3-base-turkish-ner
|
[
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"token-classification",
"tr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"tr"
] |
TAGS
#transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base"
(a multilingual version of DeBERTa V3)
using a reviewed version of well known Turkish NER dataset
(URL
# Fine-tuning parameters:
# How to use:
Pls refer "URL for entity grouping with aggregation_strategy parameter.
# Reference test results:
* f1: 0.95
* precision: 0.94
* recall: 0.96
|
[
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96"
] |
[
"TAGS\n#transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n",
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96"
] |
[
49,
64,
8,
24,
24
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96"
] |
[
-0.06947502493858337,
-0.07918969541788101,
-0.0031754239462316036,
0.02244173176586628,
0.10183373838663101,
-0.01412914413958788,
0.10511715710163116,
-0.03218595311045647,
-0.06384379416704178,
0.047775302082300186,
0.07144945859909058,
0.01429302990436554,
0.000024580886019975878,
0.09285775572061539,
-0.05187835171818733,
-0.1392192840576172,
0.0825653001666069,
-0.018893547356128693,
0.11508893221616745,
0.13259972631931305,
0.10457070916891098,
-0.04255276545882225,
0.04585148021578789,
0.05660167708992958,
-0.08314783126115799,
0.08793468773365021,
-0.023106124252080917,
-0.10408701002597809,
0.11166471987962723,
-0.03159555420279503,
0.13412800431251526,
-0.01981046050786972,
-0.010322147980332375,
-0.14287717640399933,
0.023731771856546402,
-0.04862945154309273,
-0.03446102514863014,
-0.03524818643927574,
0.0991922914981842,
-0.14275136590003967,
0.1606757938861847,
-0.041532810777425766,
-0.02585711143910885,
-0.05155011638998985,
-0.060915328562259674,
-0.07168649882078171,
-0.06613518297672272,
0.1541624665260315,
0.08758818358182907,
0.09486439824104309,
-0.017480311915278435,
0.12948928773403168,
-0.13354122638702393,
0.09450966864824295,
0.07477039098739624,
-0.28966671228408813,
-0.09026730060577393,
0.0032279074657708406,
-0.07994478940963745,
-0.02829243242740631,
0.09740659594535828,
0.06848961859941483,
0.01210467703640461,
0.04150921106338501,
-0.006692621856927872,
-0.015356157906353474,
-0.17613407969474792,
-0.0314774252474308,
-0.1069217398762703,
-0.03842537850141525,
0.18973857164382935,
0.05722283571958542,
0.03281518816947937,
0.0111400056630373,
-0.061882343143224716,
-0.015019243583083153,
-0.021910399198532104,
-0.09378150850534439,
-0.03684002906084061,
-0.08982891589403152,
0.05024993047118187,
0.04103030636906624,
-0.04906666651368141,
-0.09987515956163406,
-0.24515141546726227,
0.2213279902935028,
0.06739829480648041,
0.04817216098308563,
-0.06022248417139053,
0.059626396745443344,
-0.07269788533449173,
-0.05685272067785263,
-0.03844691440463066,
-0.0009682733216322958,
-0.09912890195846558,
-0.018565624952316284,
-0.06168384850025177,
-0.005275774747133255,
0.12697269022464752,
0.1424061357975006,
0.06682112067937851,
0.0302553940564394,
0.04127189889550209,
0.05031899735331535,
-0.09656103700399399,
0.12417034804821014,
-0.07200727611780167,
-0.072419174015522,
0.05387650057673454,
-0.062050048261880875,
0.05962328985333443,
0.05146384984254837,
-0.08378621935844421,
-0.07559458911418915,
0.22197727859020233,
0.07817152887582779,
-0.04074612632393837,
0.12376978993415833,
-0.006707895081490278,
0.022475292906165123,
-0.014327283948659897,
-0.08083124458789825,
-0.0154018709436059,
0.021119067445397377,
-0.09759920835494995,
-0.03229581192135811,
-0.04030531272292137,
-0.019369278103113174,
-0.07253258675336838,
0.05125671625137329,
0.02687305025756359,
-0.01259663887321949,
0.016567697748541832,
-0.09460345655679703,
0.044258832931518555,
-0.10605550557374954,
-0.00288359634578228,
-0.2949349284172058,
-0.2386864870786667,
0.0157376267015934,
0.008079279214143753,
-0.0720452070236206,
0.08093804121017456,
-0.08438656479120255,
-0.004152081441134214,
-0.03416960686445236,
-0.08005426824092865,
-0.11268815398216248,
-0.09113293886184692,
0.000422674638684839,
0.08260129392147064,
0.07798251509666443,
-0.049008142203092575,
0.043632686138153076,
-0.10856035351753235,
0.004162981174886227,
-0.058379802852869034,
0.09314026683568954,
-0.054516274482011795,
0.050971902906894684,
-0.1398501992225647,
-0.02726602740585804,
-0.05684740096330643,
-0.04444387927651405,
0.06424452364444733,
0.08326424658298492,
-0.07573781907558441,
-0.041932906955480576,
0.009607041254639626,
-0.11744570732116699,
-0.11514927446842194,
0.13604269921779633,
0.007807794958353043,
0.015590609982609749,
0.11890066415071487,
0.24958735704421997,
0.08386394381523132,
-0.008088686503469944,
-0.012975084595382214,
0.004920716397464275,
-0.1568068563938141,
-0.08301065862178802,
-0.0008290943806059659,
0.07166986167430878,
-0.08585617691278458,
0.08024188876152039,
-0.09502042829990387,
0.1188705787062645,
-0.02973279170691967,
-0.04534105584025383,
0.01976010948419571,
-0.06559503078460693,
0.09335460513830185,
-0.060887183994054794,
0.11180013418197632,
-0.062207359820604324,
0.016469862312078476,
0.04611583799123764,
0.032456137239933014,
-0.01708044670522213,
0.010248996317386627,
-0.10145162045955658,
0.23099105060100555,
-0.12913106381893158,
0.041733600199222565,
-0.16686055064201355,
-0.12145168334245682,
-0.025966541841626167,
-0.029685216024518013,
0.03691808506846428,
-0.02377179265022278,
0.022563772276043892,
-0.05659475550055504,
-0.005499159451574087,
-0.01070842519402504,
0.06462401151657104,
0.0681328997015953,
0.01401493139564991,
-0.0716569572687149,
0.05338529497385025,
0.0315120667219162,
0.09510482102632523,
-0.018968313932418823,
0.017449287697672844,
0.006034075282514095,
0.120818130671978,
-0.08479981869459152,
0.10697518289089203,
-0.034970641136169434,
0.06081587076187134,
-0.015590242110192776,
-0.007904727011919022,
0.07884302735328674,
-0.0006669163121841848,
-0.0871329978108406,
0.05816936120390892,
-0.050919052213430405,
0.21324104070663452,
0.0936717689037323,
-0.015623758547008038,
-0.06273247301578522,
0.04655973240733147,
-0.01639036275446415,
-0.052158962935209274,
0.06710293889045715,
0.0565793514251709,
0.14642319083213806,
0.02057938650250435,
0.10557657480239868,
-0.09023614972829819,
-0.027307428419589996,
0.014821660704910755,
-0.05940060690045357,
-0.05487600713968277,
0.11537062376737595,
-0.05097637698054314,
-0.24607372283935547,
0.10752280801534653,
0.0729975700378418,
-0.15435673296451569,
0.07951898127794266,
0.03214011341333389,
-0.017606696113944054,
0.009888255968689919,
0.047938428819179535,
0.009962796233594418,
0.04916961118578911,
-0.07982106506824493,
-0.017253020778298378,
0.03706342726945877,
0.07806651294231415,
0.05306880548596382,
-0.04989410191774368,
0.02899075113236904,
0.01489626057446003,
-0.057523246854543686,
-0.008901407942175865,
0.06914004683494568,
0.002140326425433159,
0.11678421497344971,
0.006961354520171881,
-0.1954175978899002,
0.07225973159074783,
0.0018143532797694206,
-0.09790075570344925,
0.16548658907413483,
-0.058062463998794556,
-0.29722410440444946,
-0.0953206866979599,
0.0028563279192894697,
-0.2175162136554718,
-0.046886131167411804,
0.041169922798871994,
-0.03354574367403984,
0.022303219884634018,
-0.024230262264609337,
0.02834351174533367,
-0.02429354190826416,
-0.0017198992427438498,
-0.08343105018138885,
-0.004369817208498716,
0.05027414858341217,
-0.06862470507621765,
-0.03021642379462719,
-0.12074217945337296,
-0.039356231689453125,
0.10281550884246826,
-0.10945902019739151,
0.14691342413425446,
0.06567000597715378,
-0.11922542750835419,
0.04666343331336975,
-0.03057098388671875,
0.11661745607852936,
-0.08203145861625671,
-0.01434363517910242,
0.10601218044757843,
-0.04465966299176216,
-0.0022487835958600044,
0.1390058696269989,
-0.0306516382843256,
-0.03204963728785515,
0.00814009364694357,
-0.012950227595865726,
-0.04101782292127609,
-0.1530228853225708,
-0.13816311955451965,
-0.0652039498090744,
-0.05628655105829239,
-0.003859595861285925,
0.053643304854631424,
0.04330025240778923,
0.026376765221357346,
0.025500481948256493,
-0.033329322934150696,
0.014336258172988892,
0.05115857347846031,
0.3872326612472534,
0.06583476066589355,
0.08265364915132523,
-0.07105035334825516,
-0.0977037250995636,
0.026905857026576996,
0.042059533298015594,
0.20053625106811523,
0.059006620198488235,
-0.02105765976011753,
0.07364288717508316,
0.08296113461256027,
0.08395180106163025,
0.10187043994665146,
-0.025703566148877144,
0.002542582806199789,
0.02631641924381256,
-0.04537495598196983,
-0.010264881886541843,
-0.017230866476893425,
-0.05421724542975426,
-0.0009869309142231941,
-0.026148581877350807,
-0.05323079973459244,
0.16565535962581635,
0.0738493949174881,
0.04792754724621773,
-0.3650968074798584,
-0.0902678444981575,
-0.0783185288310051,
-0.03888854756951332,
0.012063310481607914,
-0.014782432466745377,
-0.06848620623350143,
-0.05354170873761177,
0.1513650268316269,
-0.005827406421303749,
0.07860288769006729,
-0.07838396728038788,
0.04205720126628876,
-0.03908918797969818,
0.0008876799256540835,
0.03401903063058853,
0.12679432332515717,
-0.18355347216129303,
0.2571304142475128,
-0.005522729363292456,
0.047870248556137085,
-0.009765888564288616,
-0.08069577813148499,
0.03502100333571434,
0.1337321549654007,
0.07260879874229431,
0.011579858139157295,
-0.04253993555903435,
-0.04867207631468773,
-0.08572741597890854,
0.10891392081975937,
-0.005937695037573576,
0.03731703385710716,
0.045553479343652725,
0.003905781777575612,
0.004308213945478201,
-0.007475394755601883,
-0.012139108031988144,
-0.16387110948562622,
-0.07120577991008759,
-0.031774770468473434,
0.10443432629108429,
0.04632096365094185,
-0.013578128069639206,
-0.06447817385196686,
-0.11750876158475876,
0.17466004192829132,
-0.14158158004283905,
-0.06871361285448074,
-0.07250351458787918,
0.04087167978286743,
0.027395645156502724,
-0.09739544242620468,
0.010593540966510773,
-0.053751390427351,
-0.005663661751896143,
-0.006700371857732534,
-0.1590670496225357,
0.016996635124087334,
-0.07171835750341415,
-0.020520269870758057,
0.024278616532683372,
0.03180424124002457,
0.043540339916944504,
-0.020693093538284302,
0.07610838860273361,
-0.017071790993213654,
-0.005334842950105667,
-0.0723533108830452,
-0.04210738092660904,
0.11699044704437256,
-0.013383475132286549,
0.06754156947135925,
0.01926402561366558,
-0.15292273461818695,
-0.06258030235767365,
0.0680743083357811,
0.14839398860931396,
0.04964020475745201,
-0.05285446718335152,
0.032237470149993896,
0.171177476644516,
-0.002090970054268837,
-0.22314104437828064,
-0.05212712287902832,
0.026416324079036713,
0.04832400754094124,
-0.05973204970359802,
0.03107600472867489,
0.12161003798246384,
0.13924486935138702,
-0.03539411351084709,
0.023310022428631783,
-0.1364014893770218,
-0.09865738451480865,
0.2251451313495636,
0.025096766650676727,
0.3072665333747864,
-0.02316337078809738,
-0.03822460025548935,
-0.05266697704792023,
-0.04879021644592285,
-0.05044395104050636,
-0.06255552917718887,
0.058203309774398804,
-0.06503523141145706,
0.1113305538892746,
-0.010247201658785343,
0.00029436874319799244,
0.11366705596446991,
0.06395302712917328,
0.06299834698438644,
-0.0721639096736908,
0.02854085899889469,
0.08468740433454514,
-0.08409635722637177,
0.13159261643886566,
-0.019173678010702133,
0.05364237725734711,
0.024675531312823296,
-0.07893959432840347,
-0.048279911279678345,
0.1883377730846405,
0.057126857340335846,
0.0369708389043808,
-0.036490775644779205,
0.006640769075602293,
-0.0251302532851696,
-0.016203565523028374,
0.046171654015779495,
-0.034805625677108765,
-0.0070204054936766624,
0.015507658012211323,
0.06633606553077698,
-0.056736283004283905,
0.017410824075341225,
0.003021571086719632,
-0.01932612434029579,
0.08209607005119324,
0.02567862905561924,
0.0030313096940517426,
0.18173685669898987,
-0.05140756443142891,
0.04122840613126755,
0.04774867743253708,
-0.07264292240142822,
0.0034009297378361225,
0.12392901629209518,
-0.0745033547282219,
-0.08011040836572647,
0.0039452118799090385,
-0.2193187028169632,
0.026795772835612297,
0.1596195548772812,
0.11927805095911026,
-0.11400157958269119,
0.03444257378578186,
-0.000023645558030693792,
-0.05745931342244148,
-0.05315302312374115,
0.12217964977025986,
0.013363548554480076,
0.015973811969161034,
-0.07551250606775284,
0.09814568608999252,
0.04523172974586487,
-0.04643901810050011,
0.006427273619920015,
-0.07236101478338242,
-0.17729444801807404,
-0.07168468087911606,
-0.019607428461313248,
0.19624194502830505,
-0.05396277830004692,
-0.17745067179203033,
-0.11617777496576309,
-0.1288556158542633,
0.040039099752902985,
0.13781657814979553,
0.1103346049785614,
0.04066823422908783,
-0.05444759130477905,
-0.033046621829271317,
-0.03243980556726456,
0.09869407117366791,
0.10695663839578629,
0.0483204610645771,
-0.1996372491121292,
-0.06323351711034775,
0.02689981460571289,
0.09066703915596008,
-0.0638619065284729,
-0.047903161495923996,
-0.08124839514493942,
0.06470641493797302,
-0.2579413950443268,
0.004877504892647266,
-0.1211278960108757,
0.04829155281186104,
0.042198918759822845,
-0.014501143246889114,
-0.09320936352014542,
0.05334173142910004,
-0.028318077325820923,
0.03334824740886688,
-0.010997732169926167,
0.03872755542397499,
-0.12016833573579788,
-0.028803160414099693,
-0.018232354894280434,
-0.02099752239882946,
0.13477905094623566,
0.15514469146728516,
-0.03829320892691612,
0.1052863597869873,
-0.16179795563220978,
-0.05645614117383957,
0.07861337810754776,
0.057574961334466934,
0.07194952666759491,
-0.04197530075907707,
0.047563888132572174,
0.1311919391155243,
-0.017487559467554092,
0.045403022319078445,
0.019535856321454048,
-0.06782563030719757,
-0.016771335154771805,
-0.1323913335800171,
-0.02648807317018509,
-0.04724925011396408,
-0.014035578817129135,
0.07057160884141922,
0.1349547952413559,
0.1298527717590332,
-0.10949429124593735,
-0.020134247839450836,
-0.000923396903090179,
0.012171357870101929,
-0.0039093042723834515,
-0.15850146114826202,
-0.09857814759016037,
-0.08533552289009094,
0.04728149250149727,
-0.018412591889500618,
0.21547161042690277,
0.08584170788526535,
0.022102857008576393,
-0.014122417196631432,
-0.023949380964040756,
-0.019738811999559402,
-0.010652145370841026,
0.0589614175260067,
0.019156120717525482,
-0.007386802230030298,
-0.05856644734740257,
-0.001968064345419407,
0.04960141330957413,
-0.062172140926122665,
0.12310632318258286,
0.16788671910762787,
-0.09342531114816666,
0.1074337586760521,
0.13195249438285828,
-0.03500891849398613,
-0.06966187059879303,
-0.14352473616600037,
-0.12698709964752197,
0.07163163274526596,
0.08890362828969955,
-0.03750185668468475,
0.23311637341976166,
-0.008290106430649757,
-0.03588758036494255,
-0.009851144626736641,
-0.056851912289857864,
-0.05918574333190918,
-0.21655935049057007,
-0.12007726728916168,
-0.15415222942829132,
-0.004284604452550411,
-0.03359551727771759,
-0.14844290912151337,
0.08905521780252457,
0.05510949343442917,
-0.07441797107458115,
0.14532245695590973,
0.015147841535508633,
-0.045794516801834106,
0.10617534816265106,
-0.07886271178722382,
-0.05675525963306427,
0.06441566348075867,
-0.03880440816283226,
-0.018673477694392204,
0.01971943862736225,
0.0232659000903368,
0.036028165370225906,
0.015801314264535904,
0.010707790032029152,
-0.0756160095334053,
-0.039460767060518265,
-0.03957922011613846,
0.05846576392650604,
-0.03792619705200195,
0.010047500021755695,
0.08698950707912445,
-0.074391208589077,
0.005733874626457691,
0.10052686184644699,
0.04408353567123413,
-0.1798943281173706,
-0.0244637168943882,
0.28863468766212463,
0.04063645005226135,
0.050156936049461365,
-0.0018713038880378008,
-0.03794927895069122,
-0.008379554376006126,
0.18689672648906708,
0.26181939244270325,
0.04133868217468262,
0.017422813922166824,
-0.061563216149806976,
0.008732403628528118,
0.025112731382250786,
0.05041668564081192,
0.052341870963573456,
0.2181742638349533,
0.013267881236970425,
-0.025481294840574265,
-0.0818309485912323,
0.0004588221199810505,
-0.07631479948759079,
0.001534932991489768,
0.05940831080079079,
-0.06235095486044884,
-0.1011802926659584,
0.1490655541419983,
-0.15475715696811676,
-0.02552623115479946,
0.08796067535877228,
0.06466222554445267,
-0.1587497442960739,
0.00328821805305779,
0.050175584852695465,
-0.020986268296837807,
0.039476580917835236,
-0.1014079824090004,
-0.011852534487843513,
-0.05867798626422882,
0.013882861472666264,
-0.10776766389608383,
-0.06861501187086105,
0.06251206248998642,
0.19719548523426056,
0.06854252517223358,
-0.0037628053687512875,
0.11483320593833923,
0.07648169994354248,
0.07948324829339981,
-0.0903966948390007,
0.1606031358242035,
0.010652195662260056,
0.05229315906763077,
0.13038185238838196,
-0.07288423180580139,
0.02328699827194214,
-0.0562848262488842,
0.1108466386795044,
-0.07752928137779236,
0.013641949743032455,
0.011587330140173435,
0.011160561814904213,
-0.1192886233329773,
0.07871339470148087,
0.004016002640128136,
0.06736993044614792,
0.14805510640144348,
-0.037854909896850586,
0.04447689652442932,
-0.057923294603824615,
-0.0029614949598908424,
0.044969912618398666,
0.0245484858751297,
0.04856802523136139,
-0.1514045149087906,
-0.014405161142349243,
0.004819950088858604,
0.0006436910480260849,
-0.10783328115940094,
-0.035745445638895035,
-0.05338125675916672,
-0.01896023005247116,
0.04194321483373642,
0.07319433242082596,
0.09452376514673233,
0.03290741890668869,
-0.018936196342110634,
-0.11678548157215118,
-0.0031275576911866665,
0.08107705414295197,
-0.09488831460475922,
-0.09210460633039474
] |
null | null |
transformers
|
# Albanian Named Entity Recognition (NER) Model
This model is the fine-tuned model of "bert-base-multilingual-cased"
using the famous WikiANN dataset presented
in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "bert-base-multilingual-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9719268816143276
* f1: 0.9192366826444787
* precision: 0.9171629669734704
* recall: 0.9213197969543148
|
{"language": "sq", "widget": [{"text": "Varianti AY.4.2 \u00ebsht\u00eb m\u00eb i leht\u00eb p\u00ebr t'u transmetuar, thot\u00eb Francois Balu, drejtor i Institutit t\u00eb Gjenetik\u00ebs n\u00eb Lond\u00ebr."}]}
|
token-classification
|
akdeniz27/mbert-base-albanian-cased-ner
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"token-classification",
"sq",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"sq"
] |
TAGS
#transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us
|
# Albanian Named Entity Recognition (NER) Model
This model is the fine-tuned model of "bert-base-multilingual-cased"
using the famous WikiANN dataset presented
in the "Cross-lingual Name Tagging and Linking for 282 Languages" paper.
# Fine-tuning parameters:
# How to use:
Pls refer "URL for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9719268816143276
* f1: 0.9192366826444787
* precision: 0.9171629669734704
* recall: 0.9213197969543148
|
[
"# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148"
] |
[
"TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us \n",
"# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148"
] |
[
45,
69,
8,
24,
53
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us \n# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148"
] |
[
-0.1251903772354126,
0.03358101099729538,
-0.0019165704725310206,
0.11291969567537308,
0.07145077735185623,
-0.012200049124658108,
0.14103613793849945,
0.033276528120040894,
0.10266110301017761,
0.0428292378783226,
0.06561777740716934,
0.003106377087533474,
0.03734198585152626,
0.015186470001935959,
-0.09468945860862732,
-0.17145459353923798,
0.12648753821849823,
-0.020883729681372643,
0.11128001660108566,
0.11376626789569855,
0.08250469714403152,
-0.07743167132139206,
0.06496572494506836,
0.05075427144765854,
-0.11613849550485611,
0.08130771666765213,
-0.013167132623493671,
-0.10143397748470306,
0.12346958369016647,
0.021181071177124977,
0.08636199682950974,
0.007944120094180107,
0.022677849978208542,
-0.13744033873081207,
0.023236200213432312,
-0.05731768161058426,
-0.012881854549050331,
-0.029681112617254257,
0.08163196593523026,
-0.11519251763820648,
-0.03515400364995003,
0.027103206142783165,
-0.03271544352173805,
-0.05715734884142876,
-0.018409298732876778,
-0.10116009414196014,
-0.01285658311098814,
0.18924589455127716,
0.01895349659025669,
0.04406554624438286,
-0.01474695559591055,
0.13712981343269348,
-0.10927131026983261,
0.1106560230255127,
0.06878267228603363,
-0.27454274892807007,
-0.05946411192417145,
0.01311678159981966,
-0.07912687212228775,
-0.06343308836221695,
0.005963827949017286,
0.07093383371829987,
0.0004844764480367303,
0.03977459296584129,
-0.060776159167289734,
-0.03370912745594978,
-0.24998624622821808,
-0.012803109362721443,
-0.09119671583175659,
-0.015582614578306675,
0.26079875230789185,
0.08984983712434769,
0.001208578352816403,
-0.00255134841427207,
-0.0733911320567131,
0.13242720067501068,
-0.02372926101088524,
-0.08320821821689606,
-0.019423944875597954,
-0.04785303771495819,
0.06934523582458496,
0.0258902907371521,
-0.018506361171603203,
-0.05715803802013397,
-0.17756608128547668,
0.3557316064834595,
0.08760442584753036,
0.10394758731126785,
-0.021700933575630188,
0.03918100520968437,
-0.0887819305062294,
-0.07520551234483719,
-0.026151353493332863,
-0.004662599414587021,
-0.032196030020713806,
0.03876934200525284,
-0.018659351393580437,
0.0502714104950428,
0.1314103603363037,
0.11051594465970993,
0.01665729656815529,
0.00945616140961647,
0.01543250773102045,
0.0885343849658966,
-0.05680342763662338,
0.14039044082164764,
-0.11365983635187149,
-0.035068072378635406,
0.02809915877878666,
-0.01767701655626297,
0.016942020505666733,
0.01926352269947529,
-0.11243811994791031,
-0.07365827262401581,
0.1504983901977539,
0.05379448086023331,
-0.04818432778120041,
0.13261781632900238,
0.007952645421028137,
-0.02476937510073185,
0.03283575922250748,
-0.12690982222557068,
0.017786255106329918,
0.010190109722316265,
-0.12205161154270172,
0.05592314898967743,
-0.05816411226987839,
0.020159009844064713,
-0.1397256851196289,
0.023475797846913338,
0.01713392697274685,
0.04509987309575081,
0.03665297478437424,
-0.12061993032693863,
0.07575345784425735,
-0.0011515102814882994,
-0.01885160245001316,
-0.20930150151252747,
-0.16786162555217743,
0.0006869221106171608,
0.013602005317807198,
-0.05277613177895546,
0.06031542643904686,
-0.10804412513971329,
0.00742846867069602,
0.011565296910703182,
-0.04943213611841202,
-0.19510923326015472,
-0.07545791566371918,
-0.016754426062107086,
-0.035459164530038834,
0.0649200975894928,
-0.1235489770770073,
0.06211412325501442,
-0.14499877393245697,
0.00592195475474,
-0.12474027276039124,
0.030252160504460335,
-0.05135974660515785,
-0.01548930536955595,
-0.11294634640216827,
-0.01517700869590044,
0.012918648310005665,
0.004152071196585894,
0.047986000776290894,
0.12994368374347687,
-0.0407237634062767,
-0.01769206114113331,
0.11396145075559616,
-0.13678745925426483,
-0.11667513102293015,
0.20162354409694672,
-0.0070486413314938545,
0.004147392697632313,
0.09238974750041962,
0.2863366901874542,
0.029862485826015472,
0.033745408058166504,
-0.020023338496685028,
0.013898327946662903,
-0.09872982650995255,
-0.0771210640668869,
0.02953743375837803,
0.015357007272541523,
-0.04355083778500557,
0.0889502689242363,
-0.03376823663711548,
0.049171242862939835,
-0.03607426583766937,
-0.04035346210002899,
-0.036274805665016174,
-0.055331431329250336,
0.11197417974472046,
-0.024790355935692787,
0.06488140672445297,
-0.06822466105222702,
-0.006717505864799023,
0.03644124045968056,
0.07743974775075912,
-0.06464084982872009,
0.04852072149515152,
-0.11443497240543365,
0.23232261836528778,
-0.13266588747501373,
0.021434523165225983,
-0.12856154143810272,
-0.09779760241508484,
0.02799154445528984,
0.0909145325422287,
-0.007293103262782097,
-0.11804462969303131,
0.0491989403963089,
-0.04741869866847992,
-0.02473054639995098,
-0.013035012409090996,
0.13531970977783203,
0.024694034829735756,
-0.022344820201396942,
-0.09417329728603363,
-0.02522631362080574,
0.02620135433971882,
0.030312430113554,
-0.1242147758603096,
-0.006701998878270388,
0.00717986049130559,
0.1035860925912857,
-0.09305985271930695,
0.09187190234661102,
-0.041531164199113846,
0.030626872554421425,
-0.03400659188628197,
0.0008272333652712405,
0.10363777726888657,
-0.029231304302811623,
-0.02401387318968773,
0.1629655957221985,
0.01394455973058939,
0.23870041966438293,
0.0874503031373024,
-0.08471459150314331,
0.012694119475781918,
-0.020184075459837914,
0.01963028870522976,
-0.054714396595954895,
0.03686043620109558,
0.06021362543106079,
0.09713719040155411,
0.027549896389245987,
0.10443062335252762,
-0.12319779396057129,
0.03872554004192352,
0.019537469372153282,
-0.033210597932338715,
-0.03744109719991684,
0.16656635701656342,
-0.016889093443751335,
-0.19816258549690247,
0.11533720046281815,
0.07778224349021912,
-0.08090559393167496,
0.08627993613481522,
-0.004875486716628075,
-0.021255584433674812,
0.02472255565226078,
0.07622870802879333,
-0.05054343864321709,
0.041876357048749924,
-0.06818857043981552,
-0.027923323214054108,
0.05247217416763306,
0.08428718894720078,
-0.02378399670124054,
-0.09482713788747787,
0.01192986685782671,
-0.008593798615038395,
-0.07224138081073761,
-0.0019177477806806564,
0.02293897047638893,
0.03760397434234619,
0.13268764317035675,
0.0038267336785793304,
-0.22620263695716858,
0.03717012703418732,
-0.021962735801935196,
-0.06268168240785599,
0.21357998251914978,
-0.03325570374727249,
-0.24713365733623505,
-0.14948569238185883,
-0.055461689829826355,
-0.2808501422405243,
-0.0761258602142334,
0.030931057408452034,
-0.05114474147558212,
-0.0009848637273535132,
-0.07274479418992996,
0.02955419011414051,
-0.04650167003273964,
-0.0790567621588707,
-0.11626369506120682,
-0.05198885127902031,
-0.029944611713290215,
-0.10810539871454239,
-0.059869177639484406,
-0.10639064759016037,
-0.034051306545734406,
0.08008196204900742,
-0.09724432229995728,
0.09200730919837952,
0.09116283804178238,
-0.10936782509088516,
0.06339887529611588,
-0.005249043460935354,
0.06992073357105255,
-0.06351593136787415,
0.06741153448820114,
0.09943817555904388,
-0.09315213561058044,
0.056747276335954666,
0.14395885169506073,
0.028840409591794014,
-0.022783972322940826,
-0.02816828526556492,
0.013947222381830215,
-0.024550920352339745,
-0.16706782579421997,
-0.16983413696289062,
-0.026663849130272865,
-0.037626732140779495,
0.05138276889920235,
0.07650379836559296,
0.008082949556410313,
0.07331978529691696,
-0.01783629320561886,
-0.03733903169631958,
-0.008510537445545197,
0.03552927449345589,
0.2977565824985504,
0.07262162119150162,
0.10742684453725815,
-0.03773221746087074,
-0.0694953054189682,
0.014098730869591236,
0.07554755359888077,
0.2201562076807022,
0.04549604281783104,
-0.01622338779270649,
0.07018349319696426,
0.1596011072397232,
0.08386925607919693,
0.16370642185211182,
-0.04352204129099846,
0.0033782285172492266,
0.04681551828980446,
-0.07415640354156494,
0.0762331560254097,
-0.005567202810198069,
-0.041941672563552856,
0.0752783790230751,
-0.046809934079647064,
-0.08705786615610123,
0.08881335705518723,
0.2597607374191284,
0.05744878575205803,
-0.3088647127151489,
-0.05496790260076523,
-0.046926818788051605,
-0.08697786927223206,
-0.0704643577337265,
0.04689110815525055,
0.02199593186378479,
-0.08681866526603699,
0.09405884891748428,
0.01336638256907463,
0.11874374747276306,
-0.11993926018476486,
-0.0134637001901865,
-0.051689330488443375,
-0.026412857696413994,
0.005141235888004303,
0.11132951825857162,
-0.010206848382949829,
0.2971769869327545,
0.013640222139656544,
0.0020808062981814146,
-0.05400065332651138,
-0.06058944761753082,
0.07602705806493759,
0.171530082821846,
0.11385802179574966,
0.030951038002967834,
0.08085475116968155,
-0.13433778285980225,
-0.09948087483644485,
0.10571081191301346,
0.03619488701224327,
0.031146248802542686,
0.04444041848182678,
-0.0024151091929525137,
-0.00014969574112910777,
-0.0018625218654051423,
0.022003022953867912,
-0.12994499504566193,
-0.04622938483953476,
-0.052790846675634384,
0.2130305916070938,
0.05956095829606056,
0.010806582868099213,
-0.12121463567018509,
-0.17841492593288422,
0.20385827124118805,
-0.019995758309960365,
-0.09462136775255203,
-0.09367291629314423,
-0.02855033054947853,
0.08689063042402267,
-0.08643912523984909,
-0.005864642560482025,
-0.07875999063253403,
0.014109473675489426,
-0.016487956047058105,
-0.1289720982313156,
0.05964123085141182,
-0.013754011131823063,
-0.027782298624515533,
0.038715869188308716,
0.08125225454568863,
0.02575625292956829,
-0.046163804829120636,
0.07587574422359467,
0.019836897030472755,
0.002943176543340087,
-0.09345415234565735,
-0.03258983790874481,
0.07484975457191467,
-0.011300011537969112,
0.09763723611831665,
-0.06856022775173187,
-0.1035098060965538,
-0.08221106976270676,
0.04682459682226181,
0.2092227041721344,
0.12412186712026596,
-0.06375952064990997,
-0.0010124826803803444,
0.2078234702348709,
-0.042372409254312515,
-0.25564345717430115,
-0.03609306737780571,
-0.058292098343372345,
0.041373759508132935,
-0.11582673341035843,
0.014370748773217201,
0.22332383692264557,
0.12600944936275482,
-0.031509727239608765,
0.08689584583044052,
-0.08215159922838211,
-0.1070086881518364,
0.22880828380584717,
0.03191366046667099,
0.34254512190818787,
-0.023846184834837914,
-0.045399222522974014,
-0.022622117772698402,
-0.161399245262146,
-0.022056715562939644,
-0.03608277812600136,
0.03241286799311638,
-0.06341620534658432,
0.10403265058994293,
-0.004308741539716721,
0.03527810052037239,
0.10532861202955246,
0.10845126211643219,
0.07261160016059875,
-0.06188727915287018,
-0.07281189411878586,
0.07370822876691818,
-0.0701870545744896,
0.1781425029039383,
-0.0025424733757972717,
0.007233004085719585,
-0.10088793933391571,
-0.07880886644124985,
-0.08065787702798843,
0.10281234234571457,
0.047638457268476486,
0.015200566500425339,
-0.008915567770600319,
-0.004176782444119453,
-0.011219433508813381,
0.023067764937877655,
0.09426580369472504,
-0.02517194300889969,
0.017134467139840126,
0.09716933220624924,
0.06467344611883163,
-0.1323680281639099,
-0.003171818098053336,
0.0005503378924913704,
-0.039758287370204926,
0.11456803977489471,
-0.03570491075515747,
0.07326813042163849,
0.1622483730316162,
-0.017858099192380905,
0.04549461603164673,
0.05231374502182007,
-0.03392782807350159,
-0.028081687167286873,
0.04415181651711464,
-0.09477972239255905,
-0.10396590083837509,
-0.006032885052263737,
-0.19222621619701385,
0.010555624030530453,
0.15826991200447083,
0.11271734535694122,
-0.1001029834151268,
0.012997990474104881,
-0.008347995579242706,
-0.03892061486840248,
-0.04008995369076729,
0.07264301925897598,
0.05815158784389496,
0.04106799140572548,
-0.1148415058851242,
0.15491007268428802,
0.024311579763889313,
-0.06116083636879921,
0.024807831272482872,
-0.017343906685709953,
-0.150880828499794,
-0.08014886826276779,
-0.034964483231306076,
0.11674924939870834,
-0.041608575731515884,
-0.22265201807022095,
-0.07542725652456284,
-0.14375239610671997,
0.015418857336044312,
0.17203211784362793,
0.09737357497215271,
0.022099636495113373,
-0.038228392601013184,
-0.10148965567350388,
-0.03116454742848873,
0.09163837134838104,
0.12613190710544586,
0.012907639145851135,
-0.12608247995376587,
-0.0925685241818428,
0.013026485219597816,
0.10926774889230728,
-0.05640752986073494,
-0.11841819435358047,
-0.08455578237771988,
0.07690706849098206,
-0.25911346077919006,
0.032246511429548264,
-0.07928405702114105,
0.05821163207292557,
0.021646400913596153,
-0.08152230083942413,
-0.07076743245124817,
0.05276937782764435,
-0.0929379016160965,
0.026475030928850174,
0.0416579507291317,
0.049574755132198334,
-0.13654263317584991,
-0.05949172005057335,
0.0027729629073292017,
-0.0035479043144732714,
0.10259124636650085,
0.1089940294623375,
-0.10681314021348953,
0.08162171393632889,
-0.16616347432136536,
-0.05890556052327156,
0.02954520657658577,
0.046396978199481964,
0.09917892515659332,
0.01914026215672493,
0.03718951344490051,
0.10639571398496628,
0.022779470309615135,
0.039304133504629135,
0.09033975750207901,
-0.05863403156399727,
-0.03332255408167839,
-0.1435062736272812,
-0.08130710572004318,
-0.0402735099196434,
0.03136906400322914,
0.0853826105594635,
0.08339808881282806,
0.08562617748975754,
-0.06842751055955887,
-0.029068827629089355,
-0.04272693395614624,
0.024736963212490082,
0.01820250228047371,
-0.1807161271572113,
-0.029358945786952972,
-0.07280724495649338,
0.0170335303992033,
0.00027763505931943655,
0.19411663711071014,
0.009255443699657917,
-0.007022956386208534,
-0.007415425032377243,
0.005263218190521002,
-0.11020706593990326,
-0.006567862816154957,
0.025305001065135002,
0.029108401387929916,
-0.01865428127348423,
-0.04832717403769493,
-0.0035087070427834988,
0.05177662894129753,
0.025280235335230827,
-0.0027784707490354776,
0.19246608018875122,
0.03715701773762703,
0.12994331121444702,
0.11806534975767136,
0.008393077179789543,
-0.007078580558300018,
-0.18454085290431976,
-0.10391835123300552,
0.0927879735827446,
0.041902054101228714,
0.054862603545188904,
0.14475315809249878,
0.032332856208086014,
0.0037894262932240963,
-0.0013117317575961351,
-0.062158919870853424,
-0.1102273091673851,
-0.2401694357395172,
-0.13399949669837952,
-0.14889882504940033,
0.005344569217413664,
-0.058882202953100204,
-0.07712730020284653,
0.21085500717163086,
0.10640571266412735,
-0.03986021876335144,
0.07053982466459274,
-0.016799578443169594,
-0.04630087688565254,
0.1680692881345749,
-0.09201018512248993,
-0.00903509184718132,
0.048979900777339935,
-0.058717530220746994,
0.0007043550140224397,
-0.02847244404256344,
0.0022755616810172796,
0.0411120168864727,
0.061851922422647476,
0.010978851467370987,
-0.10311148315668106,
-0.0645570158958435,
-0.04631740227341652,
0.03591539338231087,
0.004351401701569557,
-0.02629624865949154,
0.09433437138795853,
-0.029207274317741394,
0.008820682764053345,
0.08565358072519302,
0.025472883135080338,
-0.10077177733182907,
-0.03119911067187786,
0.22315195202827454,
-0.011135182343423367,
0.04402676597237587,
-0.02416209690272808,
-0.03176497295498848,
-0.032481834292411804,
0.21213433146476746,
0.24338848888874054,
0.037588026374578476,
-0.004790603648871183,
-0.02588561736047268,
-0.0022321222350001335,
0.03194163367152214,
0.07720640301704407,
0.018642831593751907,
0.1142379567027092,
-0.03804229572415352,
-0.030072348192334175,
-0.07668792456388474,
-0.02851705066859722,
-0.08174007385969162,
0.03786195069551468,
0.02507762797176838,
-0.05513432249426842,
-0.14374768733978271,
0.09333069622516632,
-0.13268952071666718,
0.05010939761996269,
0.10310924798250198,
-0.021579384803771973,
-0.17203187942504883,
-0.04106708616018295,
-0.06611732393503189,
0.02482825145125389,
0.04039527475833893,
-0.08370832353830338,
0.00015061558224260807,
-0.05229240655899048,
0.030651265755295753,
-0.1155780628323555,
-0.11459660530090332,
0.04857764393091202,
0.04183795675635338,
0.10664467513561249,
0.03223578631877899,
0.1332210898399353,
0.08076102286577225,
0.08172638714313507,
-0.031079649925231934,
0.0646100789308548,
0.01187857985496521,
0.0267547108232975,
0.05579032376408577,
-0.06558139622211456,
0.03558027371764183,
0.050749365240335464,
0.059458374977111816,
-0.04867937043309212,
0.014327365905046463,
0.03570402041077614,
-0.01977531611919403,
-0.14263683557510376,
0.03954438120126724,
-0.023415368050336838,
0.05778426676988602,
0.15875619649887085,
-0.033741701394319534,
-0.01649482175707817,
-0.06609368324279785,
0.012559826485812664,
0.006549797486513853,
-0.11721465736627579,
-0.003502983832731843,
-0.11705919355154037,
0.053434859961271286,
-0.06688354909420013,
0.04190671443939209,
-0.18785881996154785,
-0.03587974235415459,
-0.036242492496967316,
-0.02906610071659088,
0.0033507992047816515,
0.02641439624130726,
0.13697558641433716,
0.05747775360941887,
-0.015876170247793198,
-0.21292099356651306,
0.04448601230978966,
0.08494613319635391,
-0.06641534715890884,
-0.08820755779743195
] |
null | null |
transformers
|
# RoBERTa Base Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "RoBERTa Base"
using CUAD dataset https://huggingface.co/datasets/cuad
Link for model checkpoint: https://github.com/TheAtticusProject/cuad
For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo
and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
|
{"language": "en", "datasets": ["cuad"]}
|
question-answering
|
akdeniz27/roberta-base-cuad
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"question-answering",
"en",
"dataset:cuad",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us
|
# RoBERTa Base Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "RoBERTa Base"
using CUAD dataset URL
Link for model checkpoint: URL
For the use of the model with CUAD: URL
and URL
|
[
"# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
"TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n",
"# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
47,
57
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL"
] |
[
-0.12394272536039352,
0.1451941728591919,
-0.0004955157055519521,
0.027302704751491547,
0.07400605082511902,
0.017374631017446518,
0.14419375360012054,
0.013854974880814552,
0.10216426849365234,
0.10508648306131363,
0.1335950642824173,
-0.021366262808442116,
-0.021494243294000626,
0.06251900643110275,
-0.0013357698917388916,
-0.1321841925382614,
0.08708983659744263,
-0.0037034021224826574,
0.04411281645298004,
0.0859152302145958,
0.0526716448366642,
-0.10429476201534271,
0.07529909163713455,
-0.010630937293171883,
-0.030456511303782463,
-0.01060886774212122,
-0.018586428835988045,
-0.01416883897036314,
0.11070508509874344,
-0.0037433269899338484,
0.1835392266511917,
0.09800764918327332,
0.09271864593029022,
-0.13004331290721893,
0.045517448335886,
-0.026560043916106224,
-0.06887850910425186,
0.07507141679525375,
-0.07779727131128311,
-0.08613003045320511,
0.007188683375716209,
-0.024437876418232918,
0.05263931304216385,
-0.032135915011167526,
-0.12426546216011047,
0.07119479775428772,
-0.08344374597072601,
0.11476866155862808,
0.08243560045957565,
0.052659790962934494,
-0.01047447882592678,
0.07732710987329483,
-0.15842849016189575,
0.021044280380010605,
0.06656648218631744,
-0.2355792373418808,
-0.043634846806526184,
0.11029030382633209,
0.11952126771211624,
0.11255012452602386,
0.009301502257585526,
0.04010060429573059,
0.050757523626089096,
-0.017455844208598137,
-0.00889984518289566,
-0.035782478749752045,
-0.11013682931661606,
0.05841236189007759,
-0.14026784896850586,
-0.04160225763916969,
0.06854013353586197,
0.020057912915945053,
-0.008882958441972733,
0.051843639463186264,
-0.1089603453874588,
-0.04842314496636391,
-0.05922212824225426,
0.023179451003670692,
-0.01889115758240223,
0.029456915333867073,
-0.05910421162843704,
-0.03217514231801033,
-0.06267797946929932,
-0.08147665113210678,
-0.11146283149719238,
0.1341840773820877,
-0.01943480782210827,
0.020903542637825012,
-0.14576886594295502,
0.10089720785617828,
-0.03397289663553238,
-0.12387057393789291,
-0.005098361521959305,
-0.08555230498313904,
-0.026498030871152878,
-0.022627130150794983,
-0.07059239596128464,
0.12922659516334534,
0.1378743052482605,
0.3032604455947876,
0.1554250717163086,
-0.06239398941397667,
0.00817960686981678,
0.02975362353026867,
0.05708596482872963,
0.19832156598567963,
-0.23657512664794922,
-0.15130586922168732,
0.1150999590754509,
0.059984322637319565,
0.060198113322257996,
-0.023029470816254616,
-0.11325134336948395,
-0.10778166353702545,
0.04806455969810486,
0.0793609693646431,
0.11889055371284485,
0.017518246546387672,
-0.0068576037883758545,
0.033333685249090195,
0.12025679647922516,
-0.005891706794500351,
-0.04926256835460663,
0.004415648523718119,
0.0475093312561512,
0.024517951533198357,
0.06417523324489594,
0.05633458495140076,
0.11225228756666183,
0.022499429062008858,
-0.1471443921327591,
-0.10088230669498444,
0.0057249972596764565,
-0.1075488030910492,
0.03294774889945984,
-0.16550090909004211,
0.07939957082271576,
-0.15941545367240906,
-0.12125436216592789,
-0.04480031132698059,
-0.023926319554448128,
-0.030969908460974693,
-0.01463022269308567,
-0.03959786146879196,
0.005854934453964233,
0.0005872928304597735,
-0.03711423650383949,
-0.014803223311901093,
-0.054189231246709824,
0.05200011655688286,
-0.007718181237578392,
0.1029626727104187,
-0.11095109581947327,
-0.007368234917521477,
-0.0765707939863205,
0.050038762390613556,
-0.11021522432565689,
0.02972443401813507,
-0.08771791309118271,
0.14466434717178345,
-0.04616455361247063,
0.026258910074830055,
-0.03942647576332092,
0.026921268552541733,
0.11393679678440094,
0.17917439341545105,
-0.1190638467669487,
0.02991906739771366,
0.13630260527133942,
-0.07493852078914642,
-0.1400674283504486,
0.0630144253373146,
-0.04158545285463333,
0.03816941753029823,
0.043546535074710846,
0.10076197981834412,
0.0962028056383133,
-0.0928126648068428,
-0.013417281210422516,
0.031679924577474594,
0.008305396884679794,
-0.1451295167207718,
0.053523626178503036,
0.006706595420837402,
-0.12385864555835724,
-0.01031820010393858,
-0.11931388825178146,
0.07623128592967987,
-0.10316161066293716,
-0.04586775228381157,
-0.014987438917160034,
-0.11351769417524338,
0.031246503815054893,
-0.05113833025097847,
-0.01787990890443325,
0.015539352782070637,
-0.034420013427734375,
-0.06537473201751709,
0.09081621468067169,
0.0005176877020858228,
-0.00008694399730302393,
-0.09491106122732162,
0.26207593083381653,
-0.24119281768798828,
-0.0503549762070179,
-0.16369391977787018,
-0.1781155914068222,
-0.07809487730264664,
0.28454047441482544,
-0.021704664453864098,
-0.017081035301089287,
0.026073768734931946,
-0.04849984124302864,
0.04607317969202995,
0.013173388317227364,
0.046118173748254776,
0.061603840440511703,
-0.05617649853229523,
-0.10955425351858139,
-0.03931524232029915,
-0.08840545266866684,
0.10982179641723633,
-0.04027973860502243,
-0.03695812448859215,
0.03193121775984764,
0.07986432313919067,
0.0068299113772809505,
0.06834572553634644,
0.05274898186326027,
0.06570258736610413,
-0.016111716628074646,
-0.02841024100780487,
0.02098242938518524,
0.018176911398768425,
-0.035261258482933044,
0.07870212942361832,
-0.002672242233529687,
0.10445307940244675,
0.13126011192798615,
0.04898044094443321,
-0.025953451171517372,
-0.0029858106281608343,
-0.015898147597908974,
0.05229084566235542,
0.0067570749670267105,
-0.01505524106323719,
0.06843136996030807,
0.023551475256681442,
0.045792270451784134,
-0.033803150057792664,
0.04760017618536949,
0.01069761160761118,
-0.04398601874709129,
0.0230726208537817,
0.03767610341310501,
0.1694059520959854,
-0.022356761619448662,
0.07171973586082458,
0.03639313206076622,
-0.00680908327922225,
0.012838945724070072,
-0.023144705221056938,
-0.06111876294016838,
-0.029854169115424156,
-0.07746032625436783,
-0.031479183584451675,
0.15212389826774597,
-0.07859797775745392,
-0.05670108273625374,
0.03571733832359314,
-0.03641657158732414,
0.07460927963256836,
-0.09230642020702362,
-0.04397716745734215,
0.017573025077581406,
0.023325931280851364,
-0.15730020403862,
0.10195222496986389,
-0.011099588125944138,
0.062366459518671036,
0.058662086725234985,
-0.09356362372636795,
-0.020011795684695244,
-0.007029651664197445,
-0.03912033513188362,
0.15981051325798035,
-0.0029354540165513754,
0.01451530959457159,
-0.1126968190073967,
-0.14135710895061493,
0.05917657911777496,
0.023037496954202652,
0.025662008672952652,
-0.057459089905023575,
-0.039268288761377335,
-0.019590454176068306,
0.016928235068917274,
0.12529264390468597,
0.026034092530608177,
-0.0349489226937294,
-0.02710910327732563,
-0.054694436490535736,
-0.09098091721534729,
-0.013533391989767551,
-0.07350663840770721,
-0.000465772784082219,
0.05131033435463905,
-0.06367909908294678,
0.19678227603435516,
0.10980519652366638,
0.044505681842565536,
-0.03161958232522011,
0.00018670078134164214,
0.31530115008354187,
-0.034964583814144135,
0.025183426216244698,
0.11480671167373657,
-0.027989111840724945,
0.022714264690876007,
0.2281797081232071,
0.00768911000341177,
-0.08197454363107681,
0.011675633490085602,
-0.04242844879627228,
-0.07313503324985504,
-0.14806440472602844,
-0.12238558381795883,
-0.060564979910850525,
-0.13435545563697815,
0.029071055352687836,
-0.013416486792266369,
-0.07566586881875992,
0.15240488946437836,
0.04320313408970833,
0.0063587636686861515,
-0.16528183221817017,
0.039280861616134644,
0.09132308512926102,
-0.029611773788928986,
0.08524517714977264,
-0.03763266280293465,
-0.08923907577991486,
0.058368489146232605,
0.09781143069267273,
0.15699686110019684,
0.008829734288156033,
0.018334558233618736,
0.09500783681869507,
0.17303189635276794,
0.12262015044689178,
0.11535310745239258,
-0.03022942878305912,
-0.031159576028585434,
-0.033595506101846695,
-0.01896531693637371,
-0.08242229372262955,
0.005267045460641384,
-0.013334769755601883,
-0.07805245369672775,
-0.05519551783800125,
-0.01605016179382801,
0.012574709951877594,
0.1587468385696411,
0.10004214942455292,
-0.2802465856075287,
-0.01927797868847847,
0.05799546837806702,
0.055736392736434937,
-0.037688080221414566,
0.043740179389715195,
0.03720252588391304,
-0.01779700256884098,
-0.09723687916994095,
0.04854065552353859,
0.09444615244865417,
-0.048063259571790695,
0.0016062676440924406,
-0.10834072530269623,
-0.03571480140089989,
-0.039815597236156464,
0.008659586310386658,
0.016183482483029366,
0.27285072207450867,
-0.001156447222456336,
-0.03895129635930061,
0.005234214942902327,
-0.06716403365135193,
0.04945966973900795,
0.18706874549388885,
0.12588270008563995,
0.0008038925589062274,
-0.017081597819924355,
-0.08710777014493942,
-0.1860019713640213,
0.11141505092382431,
-0.047991301864385605,
-0.09437278658151627,
0.14351055026054382,
-0.01850329153239727,
-0.04015639051795006,
-0.0076586659997701645,
0.07437033951282501,
-0.05027492344379425,
-0.0772072821855545,
-0.059874728322029114,
0.04023593291640282,
0.09349818527698517,
-0.038400620222091675,
-0.05219655483961105,
-0.01936516724526882,
0.01306981686502695,
0.008519922383129597,
-0.03261886164546013,
-0.1000828891992569,
-0.06016970053315163,
0.17958177626132965,
-0.09974969178438187,
0.05820515751838684,
-0.0062685864977538586,
0.0581299290060997,
-0.02608821541070938,
-0.07799393683671951,
0.061748310923576355,
-0.08204405754804611,
0.012944846414029598,
-0.08579032868146896,
0.06738609075546265,
-0.0015094889095053077,
-0.014958161860704422,
0.04633457958698273,
0.04397909715771675,
-0.08715517073869705,
-0.09064650535583496,
-0.09036722779273987,
0.07965268194675446,
-0.024402568116784096,
0.032317154109478,
-0.04070529714226723,
-0.027837570756673813,
0.009411264210939407,
0.09192255884408951,
0.16269128024578094,
0.10138115286827087,
-0.10682153701782227,
0.000908863206859678,
0.2251933068037033,
-0.00011919141979888082,
-0.2577812671661377,
-0.055305395275354385,
-0.09516376256942749,
0.06037769839167595,
-0.06637519598007202,
-0.03615381568670273,
0.09346817433834076,
-0.028143486008048058,
-0.05994917452335358,
0.0016645806608721614,
-0.15189886093139648,
-0.07243332266807556,
0.18330471217632294,
0.06043926998972893,
0.41281649470329285,
-0.09489332139492035,
-0.07207135111093521,
0.010970286093652248,
-0.25139686465263367,
0.06935059279203415,
-0.11477085202932358,
0.0397353395819664,
-0.015661947429180145,
0.1160561665892601,
0.01709199696779251,
-0.05830531194806099,
0.11455988138914108,
0.011788458563387394,
0.01416501309722662,
-0.02940938249230385,
-0.15631608664989471,
0.05560841038823128,
-0.058354608714580536,
0.009552986361086369,
0.09740637987852097,
0.11345008760690689,
-0.09735260903835297,
-0.05429789423942566,
-0.052774738520383835,
-0.033401504158973694,
-0.01814413256943226,
-0.05292033404111862,
-0.014628838747739792,
0.030831901356577873,
-0.019317451864480972,
-0.00030346421408466995,
0.0049666850827634335,
-0.10128539800643921,
0.019933320581912994,
-0.07298688590526581,
0.06417903304100037,
-0.09651360660791397,
0.08393143117427826,
0.04886482283473015,
-0.1004413515329361,
0.09152275323867798,
-0.130576029419899,
0.017638901248574257,
0.07129506766796112,
0.03156878799200058,
-0.004935541655868292,
0.047486405819654465,
-0.0021362032275646925,
0.044466178864240646,
0.12799334526062012,
-0.1336829662322998,
-0.05327969416975975,
0.013608366250991821,
-0.15212315320968628,
-0.10325495153665543,
0.015424604527652264,
0.1537090539932251,
-0.0061117312870919704,
-0.05177468806505203,
-0.04835374653339386,
-0.026704905554652214,
-0.03523022681474686,
-0.020490137860178947,
0.17594516277313232,
0.026563765481114388,
-0.08806829154491425,
-0.052067093551158905,
0.04516085982322693,
0.017028920352458954,
-0.03182767704129219,
-0.04799087718129158,
-0.10069790482521057,
-0.10009067505598068,
-0.13976997137069702,
0.18191854655742645,
-0.22299864888191223,
-0.007164547685533762,
-0.09439478069543839,
-0.05956454575061798,
0.0000384234735975042,
0.28576597571372986,
0.0677112340927124,
0.06154872477054596,
-0.004108855966478586,
-0.0703883245587349,
-0.05378520488739014,
-0.01533469744026661,
0.01666133664548397,
0.048170916736125946,
-0.08043418079614639,
-0.07243490219116211,
-0.0874410942196846,
0.05299451947212219,
-0.05601818487048149,
0.0036162734031677246,
-0.14963321387767792,
0.002829340286552906,
-0.3217485845088959,
0.03182819113135338,
-0.06851826608181,
0.02010197378695011,
-0.035427916795015335,
-0.09998742491006851,
-0.11444216221570969,
-0.02097242698073387,
-0.04856548830866814,
0.05699365213513374,
-0.00992286391556263,
0.025683848187327385,
-0.12387534976005554,
0.015555680729448795,
0.07880082726478577,
-0.04103226959705353,
0.10961885750293732,
-0.006371640600264072,
-0.012119773775339127,
0.018502332270145416,
-0.16648119688034058,
-0.07019654661417007,
-0.018695339560508728,
-0.006071422714740038,
0.12537738680839539,
-0.02955203503370285,
0.05677681416273117,
-0.005067191552370787,
0.028173673897981644,
-0.0043019820004701614,
0.014490348286926746,
-0.05189868435263634,
0.02375531569123268,
0.04491119831800461,
-0.004869964439421892,
-0.0030467465985566378,
-0.06331751495599747,
0.18580523133277893,
0.04541725665330887,
0.03663814812898636,
-0.020507896319031715,
0.047063782811164856,
-0.08485119789838791,
0.016251372173428535,
-0.0806971862912178,
-0.00023224700998980552,
-0.09235832095146179,
-0.09628042578697205,
0.017954034730792046,
-0.008014059625566006,
0.2359120100736618,
-0.07827747613191605,
0.08263259381055832,
-0.010273100808262825,
0.13174594938755035,
0.0916660726070404,
0.034685395658016205,
0.1980898529291153,
0.08542636036872864,
-0.02540198341012001,
-0.0937536433339119,
0.04596846178174019,
0.011251665651798248,
-0.02342991903424263,
0.08135958760976791,
0.056448545306921005,
0.21614763140678406,
0.06299444288015366,
0.09763261675834656,
0.04885613173246384,
0.09791532903909683,
-0.13514401018619537,
-0.06751761585474014,
-0.08246421813964844,
-0.005071703810244799,
0.005194892641156912,
0.13274550437927246,
-0.020207682624459267,
-0.037917282432317734,
0.01637658290565014,
0.001306447316892445,
-0.093398317694664,
-0.0007428093813359737,
-0.09180375933647156,
-0.08202953636646271,
0.012220370583236217,
-0.11638063937425613,
-0.14137758314609528,
0.10658282041549683,
-0.02400919608771801,
0.0022867450024932623,
0.06022689491510391,
0.06568890064954758,
0.01604526676237583,
0.03657180443406105,
0.04090387374162674,
0.046448975801467896,
0.008910118602216244,
-0.017052270472049713,
0.010092721320688725,
0.010437111370265484,
-0.04567990079522133,
0.022616401314735413,
-0.02903676964342594,
0.070157989859581,
-0.039814312011003494,
-0.04746183753013611,
-0.08231211453676224,
0.03603013604879379,
0.032448429614305496,
0.13343095779418945,
0.02746761031448841,
0.02196556329727173,
0.04375104233622551,
0.21859599649906158,
-0.01153483521193266,
-0.10450245440006256,
-0.16269390285015106,
0.10959076136350632,
-0.05480824410915375,
0.0611160546541214,
-0.041701074689626694,
-0.06510122865438461,
0.016287727281451225,
0.27289390563964844,
0.15666905045509338,
-0.14416469633579254,
0.037297558039426804,
0.01612897776067257,
0.019699443131685257,
-0.024286257103085518,
0.05914763733744621,
0.0670454129576683,
0.20419900119304657,
-0.0635981410741806,
-0.14307916164398193,
-0.07627471536397934,
-0.006259200628846884,
0.042731039226055145,
-0.015931161120533943,
0.0012511933455243707,
-0.05057217553257942,
-0.10600747168064117,
0.1209750846028328,
-0.17075277864933014,
-0.016510434448719025,
0.0538005493581295,
-0.1641746312379837,
-0.14030282199382782,
-0.04391318932175636,
0.0006135859293863177,
0.04132941737771034,
0.07468711584806442,
-0.07363756746053696,
-0.029957445338368416,
0.10251862555742264,
-0.021525036543607712,
-0.06146128103137016,
-0.029926279559731483,
0.06411247700452805,
0.21955762803554535,
0.15490314364433289,
-0.022627463564276695,
-0.04940987378358841,
0.15766002237796783,
0.052859481424093246,
-0.17107771337032318,
0.06090397387742996,
0.047642018646001816,
-0.08495741337537766,
0.016541756689548492,
-0.11092256009578705,
-0.024348881095647812,
-0.05913190171122551,
0.06379520148038864,
-0.05948514863848686,
0.09169117361307144,
-0.005297372583299875,
0.0292508564889431,
-0.1297779381275177,
0.012775015085935593,
-0.06164056435227394,
0.14358647167682648,
0.010262751020491123,
-0.09319667518138885,
0.010104818269610405,
0.04441436007618904,
0.05888674780726433,
0.036714665591716766,
0.056977447122335434,
-0.05533421412110329,
-0.05735430866479874,
-0.020350845530629158,
0.06908567994832993,
-0.023938987404108047,
-0.2856858968734741,
0.010654167272150517,
-0.060917798429727554,
0.04479248821735382,
-0.01866544596850872,
0.09038472920656204,
0.10574512928724289,
0.0656956285238266,
0.01842745579779148,
0.021601425483822823,
-0.014790219254791737,
0.061566852033138275,
-0.14341825246810913,
-0.12773898243904114
] |
null | null |
transformers
|
# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset
# Model Details
## Model Description
The [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad), pronounced "kwad", a dataset for legal contract review curated by the Atticus Project.
Contract review is a task about "finding needles in a haystack."
We find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community.
- **Developed by:** TheAtticusProject
- **Shared by [Optional]:** HuggingFace
- **Model type:** Language model
- **Language(s) (NLP):** en
- **License:** More information needed
- **Related Models:** RoBERTA
- **Parent Model:**RoBERTA Large
- **Resources for more information:**
- [GitHub Repo](https://github.com/TheAtticusProject/cuad)
- [Associated Paper](https://arxiv.org/abs/2103.06268)
# Uses
## Direct Use
Legal contract review
## Downstream Use [Optional]
More information needed
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
# Training Details
## Training Data
See [cuad dataset card](https://huggingface.co/datasets/cuad) for further details
## Training Procedure
More information needed
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
#### Extra Data
Researchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available [here](https://drive.google.com/file/d/1of37X0hAhECQ3BN_004D8gm6V88tgZaB/view?usp=sharing).
### Factors
More information needed
### Metrics
More information needed
## Results
We [provide checkpoints](https://zenodo.org/record/4599830) for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
The HuggingFace [Transformers](https://huggingface.co/transformers) library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4.
# Citation
**BibTeX:**
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={NeurIPS},
year={2021}
}
# Glossary [optional]
More information needed
# More Information [optional]
For more details about CUAD and legal contract review, see the [Atticus Project website](https://www.atticusprojectai.org/cuad).
# Model Card Authors [optional]
TheAtticusProject
# Model Card Contact
[TheAtticusProject](https://www.atticusprojectai.org/), in collaboration with the Ezi Ozoani and the HuggingFace Team
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/roberta-large-cuad")
model = AutoModelForQuestionAnswering.from_pretrained("akdeniz27/roberta-large-cuad")
```
</details>
|
{"language": "en", "datasets": ["cuad"]}
|
question-answering
|
akdeniz27/roberta-large-cuad
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"question-answering",
"en",
"dataset:cuad",
"arxiv:2103.06268",
"arxiv:1910.09700",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2103.06268",
"1910.09700"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us
|
# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset
# Model Details
## Model Description
The Contract Understanding Atticus Dataset (CUAD), pronounced "kwad", a dataset for legal contract review curated by the Atticus Project.
Contract review is a task about "finding needles in a haystack."
We find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community.
- Developed by: TheAtticusProject
- Shared by [Optional]: HuggingFace
- Model type: Language model
- Language(s) (NLP): en
- License: More information needed
- Related Models: RoBERTA
- Parent Model:RoBERTA Large
- Resources for more information:
- GitHub Repo
- Associated Paper
# Uses
## Direct Use
Legal contract review
## Downstream Use [Optional]
More information needed
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
# Training Details
## Training Data
See cuad dataset card for further details
## Training Procedure
More information needed
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
#### Extra Data
Researchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here.
### Factors
More information needed
### Metrics
More information needed
## Results
We provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: More information needed
- Hours used: More information needed
- Cloud Provider: More information needed
- Compute Region: More information needed
- Carbon Emitted: More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
The HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4.
BibTeX:
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={NeurIPS},
year={2021}
}
# Glossary [optional]
More information needed
# More Information [optional]
For more details about CUAD and legal contract review, see the Atticus Project website.
# Model Card Authors [optional]
TheAtticusProject
# Model Card Contact
TheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
</details>
|
[
"# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset",
"# Model Details",
"## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper",
"# Uses",
"## Direct Use\n \nLegal contract review",
"## Downstream Use [Optional]\n \nMore information needed",
"## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.",
"# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.",
"## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.",
"# Training Details",
"## Training Data\nSee cuad dataset card for further details",
"## Training Procedure\n \nMore information needed",
"### Preprocessing\n \nMore information needed",
"### Speeds, Sizes, Times\n \nMore information needed",
"# Evaluation",
"## Testing Data, Factors & Metrics",
"### Testing Data",
"#### Extra Data\nResearchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here.",
"### Factors\n \nMore information needed",
"### Metrics\n \nMore information needed",
"## Results \n \n \n\n\nWe provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).",
"# Model Examination\n \nMore information needed",
"# Environmental Impact\n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed",
"# Technical Specifications [optional]",
"## Model Architecture and Objective\n \nMore information needed",
"## Compute Infrastructure\n \nMore information needed",
"### Hardware\n \nMore information needed",
"### Software\n \nThe HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. \n \nBibTeX:\n \n @article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, \n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={NeurIPS},\n year={2021}\n}",
"# Glossary [optional]\n \nMore information needed",
"# More Information [optional]\n \nFor more details about CUAD and legal contract review, see the Atticus Project website.",
"# Model Card Authors [optional]\n \nTheAtticusProject",
"# Model Card Contact\n \nTheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team",
"# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n\n \n</details>"
] |
[
"TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us \n",
"# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset",
"# Model Details",
"## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper",
"# Uses",
"## Direct Use\n \nLegal contract review",
"## Downstream Use [Optional]\n \nMore information needed",
"## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.",
"# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.",
"## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.",
"# Training Details",
"## Training Data\nSee cuad dataset card for further details",
"## Training Procedure\n \nMore information needed",
"### Preprocessing\n \nMore information needed",
"### Speeds, Sizes, Times\n \nMore information needed",
"# Evaluation",
"## Testing Data, Factors & Metrics",
"### Testing Data",
"#### Extra Data\nResearchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here.",
"### Factors\n \nMore information needed",
"### Metrics\n \nMore information needed",
"## Results \n \n \n\n\nWe provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).",
"# Model Examination\n \nMore information needed",
"# Environmental Impact\n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed",
"# Technical Specifications [optional]",
"## Model Architecture and Objective\n \nMore information needed",
"## Compute Infrastructure\n \nMore information needed",
"### Hardware\n \nMore information needed",
"### Software\n \nThe HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. \n \nBibTeX:\n \n @article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, \n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={NeurIPS},\n year={2021}\n}",
"# Glossary [optional]\n \nMore information needed",
"# More Information [optional]\n \nFor more details about CUAD and legal contract review, see the Atticus Project website.",
"# Model Card Authors [optional]\n \nTheAtticusProject",
"# Model Card Contact\n \nTheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team",
"# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n\n \n</details>"
] |
[
65,
39,
3,
214,
3,
6,
11,
28,
87,
42,
3,
12,
7,
8,
12,
3,
11,
5,
28,
7,
8,
61,
8,
68,
9,
10,
8,
6,
108,
11,
25,
14,
26,
41
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us \n# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset# Model Details## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper# Uses## Direct Use\n \nLegal contract review## Downstream Use [Optional]\n \nMore information needed## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.# Training Details"
] |
[
-0.027583790943026543,
0.13285358250141144,
-0.00512436730787158,
0.01697411574423313,
0.04534491151571274,
-0.008816969580948353,
0.04893781617283821,
0.07553896307945251,
0.06218286231160164,
0.05079863220453262,
-0.020098073408007622,
-0.011416872963309288,
0.0774250254034996,
0.04840844124555588,
0.044090140610933304,
-0.1583707332611084,
0.042993396520614624,
-0.04539301246404648,
0.13583961129188538,
0.09389316290616989,
0.11374970525503159,
-0.040463026612997055,
0.0656144842505455,
0.011377738788723946,
-0.07367176562547684,
-0.010294076055288315,
-0.012001873925328255,
0.0008697283919900656,
0.09937424212694168,
0.0837765485048294,
0.11589933186769485,
0.0018420172855257988,
0.041271306574344635,
-0.24451972544193268,
0.01619037054479122,
0.0790177434682846,
-0.002647235058248043,
0.03752459958195686,
0.04644850268959999,
0.008653766475617886,
0.12100034207105637,
-0.15768378973007202,
0.08289175480604172,
0.05779896304011345,
-0.08569680154323578,
-0.07565439492464066,
-0.09536378085613251,
0.07872781157493591,
0.07265197485685349,
0.06286843121051788,
-0.013024565763771534,
0.19754277169704437,
-0.061201613396406174,
0.03690009191632271,
0.0985388532280922,
-0.17750632762908936,
-0.03984769061207771,
0.029203051701188087,
0.06792528182268143,
0.03393450006842613,
-0.07310999184846878,
0.021181855350732803,
0.01218346320092678,
0.029715636745095253,
0.06022344157099724,
-0.05065244063735008,
-0.02359200268983841,
-0.02751842886209488,
-0.14791905879974365,
-0.013098347000777721,
0.06013704836368561,
0.038728151470422745,
-0.09615428000688553,
-0.20335952937602997,
-0.021494420245289803,
0.1049138531088829,
-0.0026503230910748243,
-0.11220479756593704,
0.03629734739661217,
-0.02061004564166069,
0.09861887991428375,
-0.09264805167913437,
-0.0762290507555008,
-0.010085036978125572,
-0.05582006648182869,
0.08025333285331726,
0.030285026878118515,
-0.0051896232180297375,
0.014824838377535343,
0.05000176653265953,
-0.02915537916123867,
-0.05195455998182297,
-0.05871596187353134,
-0.07293056696653366,
-0.115685373544693,
-0.05136146396398544,
0.00457032211124897,
-0.05237843468785286,
0.017002690583467484,
0.1589243859052658,
-0.045253854244947433,
-0.007356311194598675,
-0.051395732909440994,
0.021282749250531197,
0.06932327896356583,
0.13112658262252808,
-0.060186807066202164,
-0.08109055459499359,
0.051776736974716187,
0.016536641865968704,
0.017599504441022873,
-0.008122432976961136,
-0.03282466158270836,
-0.04387192055583,
0.024666083976626396,
0.10533884167671204,
0.10154987871646881,
0.01932455599308014,
-0.056421663612127304,
-0.023261189460754395,
0.12606947124004364,
-0.10842017829418182,
0.007575866300612688,
-0.044650230556726456,
-0.0044056023471057415,
0.001448073424398899,
0.006225127261132002,
0.02632475271821022,
-0.05960070341825485,
0.0070602004416286945,
-0.059082310646772385,
-0.026051824912428856,
-0.07865548133850098,
-0.07021480798721313,
0.08175721019506454,
-0.0011699942406266928,
-0.0025779246352612972,
-0.1263771504163742,
-0.140835240483284,
-0.08021261543035507,
-0.018259691074490547,
-0.041950665414333344,
-0.042183827608823776,
0.010052859783172607,
-0.012126311659812927,
-0.05870490148663521,
-0.023524245247244835,
-0.0365975983440876,
-0.0031013789121061563,
0.0041891587898135185,
-0.061365801841020584,
-0.004622277803719044,
-0.008640698157250881,
-0.019775645807385445,
-0.1069473922252655,
0.03924651816487312,
-0.12687674164772034,
0.07094117254018784,
-0.06524360179901123,
-0.00920222420245409,
-0.10464081913232803,
-0.01420283131301403,
-0.00018900047871284187,
0.04325654357671738,
-0.013363969512283802,
0.11798477172851562,
-0.17289458215236664,
0.011040921323001385,
0.12155727297067642,
-0.12567399442195892,
-0.05034682899713516,
0.14267541468143463,
-0.04472125321626663,
0.1178724393248558,
0.13063471019268036,
0.11239601671695709,
0.07650314271450043,
-0.09935744106769562,
-0.09234033524990082,
-0.012115820311009884,
-0.055144745856523514,
0.1413680464029312,
0.03888934850692749,
-0.0005688309902325273,
0.03866027295589447,
0.006545576266944408,
-0.02030027285218239,
-0.022356949746608734,
-0.003626086749136448,
-0.06553862988948822,
0.010553248226642609,
-0.0187673456966877,
0.00413102563470602,
-0.01171658281236887,
-0.07834531366825104,
0.005503436550498009,
-0.1559491753578186,
-0.024486156180500984,
0.07954023033380508,
0.022685611620545387,
0.020696165040135384,
-0.10308007895946503,
0.015783481299877167,
0.018473366275429726,
-0.009572227485477924,
-0.12971100211143494,
-0.14439018070697784,
0.0408841036260128,
-0.16005270183086395,
0.10972121357917786,
0.05076070874929428,
-0.008156804367899895,
-0.005800831597298384,
-0.04132118076086044,
0.03667721524834633,
-0.06615860760211945,
0.005356169771403074,
-0.024901801720261574,
-0.13196961581707,
-0.026829073205590248,
-0.04480432718992233,
0.057457853108644485,
-0.20476330816745758,
0.011247965507209301,
0.050524789839982986,
0.07620420306921005,
0.03847096115350723,
-0.040975138545036316,
0.027109039947390556,
0.05010547116398811,
0.02129567787051201,
-0.03389091417193413,
0.017280228435993195,
-0.017754491418600082,
-0.0719388946890831,
0.0794714093208313,
-0.13661980628967285,
-0.03169089928269386,
0.028311273083090782,
0.05663418397307396,
-0.1043047308921814,
-0.018566355109214783,
-0.007491137832403183,
-0.04499699920415878,
-0.05081779509782791,
-0.03931235522031784,
0.19816625118255615,
0.04632565379142761,
-0.013630998320877552,
-0.07176077365875244,
-0.05530044063925743,
-0.03474435955286026,
-0.02491062320768833,
-0.004233809653669596,
0.022051917389035225,
0.03275127708911896,
-0.1612550914287567,
0.040208276361227036,
0.03243968263268471,
0.007709013298153877,
0.11810745298862457,
0.03446948528289795,
-0.06450235843658447,
-0.04034615308046341,
-0.0010549189755693078,
-0.009557303041219711,
0.11097484081983566,
0.028571782633662224,
0.04160149395465851,
0.04444585740566254,
0.005735869985073805,
0.05059090256690979,
-0.054465021938085556,
0.023970961570739746,
-0.00932321511209011,
-0.0012963266344740987,
-0.07049916684627533,
-0.021686995401978493,
0.037541743367910385,
0.07505317777395248,
0.010975739918649197,
0.06177888438105583,
-0.00561181828379631,
-0.03332271799445152,
-0.0958583876490593,
0.12987934052944183,
-0.04883059114217758,
-0.3209380507469177,
-0.12681731581687927,
0.09035320580005646,
-0.02362970821559429,
-0.046524256467819214,
0.010888226330280304,
-0.02491946518421173,
-0.07163912057876587,
-0.07569952309131622,
0.1110198050737381,
-0.0030084445606917143,
-0.13328799605369568,
-0.08790748566389084,
0.043276336044073105,
0.017644671723246574,
-0.12076675891876221,
0.007966781035065651,
-0.002253068145364523,
-0.12251178175210953,
-0.010445069521665573,
0.0494174063205719,
0.1362951248884201,
0.05956519395112991,
0.01029213797301054,
-0.09422852843999863,
-0.04517197608947754,
0.14445121586322784,
-0.11040148138999939,
0.08414095640182495,
0.15367025136947632,
-0.06055530533194542,
0.052247535437345505,
0.16235485672950745,
0.015004782937467098,
-0.05736349895596504,
-0.018095139414072037,
0.059326935559511185,
-0.026977427303791046,
-0.24415098130702972,
-0.10789745301008224,
-0.018593570217490196,
-0.06769934296607971,
-0.010295657441020012,
0.033485569059848785,
-0.01769520714879036,
0.013771360740065575,
-0.08780326694250107,
-0.009954923763871193,
0.008770113810896873,
0.0955217108130455,
0.15047436952590942,
-0.023109735921025276,
0.06152345985174179,
-0.027010690420866013,
-0.0004781440075021237,
0.08077792078256607,
0.039315998554229736,
0.20832012593746185,
0.014102145098149776,
0.17687658965587616,
0.0789860412478447,
0.04518871754407883,
0.04861528053879738,
-0.026109347119927406,
0.01748274825513363,
0.032656554132699966,
-0.041161712259054184,
-0.04034877195954323,
-0.04881545528769493,
0.07941963523626328,
0.03213519603013992,
-0.03613648563623428,
0.0015044133178889751,
-0.01267750933766365,
0.057533252984285355,
0.14287671446800232,
-0.03549450263381004,
-0.12013865262269974,
-0.048130135983228683,
0.040996670722961426,
-0.06562647223472595,
-0.09912458062171936,
0.013805187307298183,
0.06810165196657181,
-0.16599875688552856,
0.027060357853770256,
-0.01635162904858589,
0.09568198770284653,
-0.13592474162578583,
0.020647307857871056,
-0.07508417963981628,
0.06417153775691986,
0.019063681364059448,
0.08631014078855515,
-0.15652243793010712,
0.1194322481751442,
0.025842487812042236,
0.06875526905059814,
-0.05473481863737106,
0.025587672367691994,
-0.02220606617629528,
0.03684553876519203,
0.16829968988895416,
0.02518007904291153,
-0.07143735885620117,
-0.08099301904439926,
-0.07325547188520432,
0.0719495341181755,
0.0589817650616169,
-0.0458085723221302,
0.08804512768983841,
-0.0030098091810941696,
0.029029740020632744,
-0.002828323980793357,
-0.057698044925928116,
-0.15277431905269623,
-0.1674921214580536,
0.05762210115790367,
-0.06876114010810852,
0.008477508090436459,
-0.08554191142320633,
-0.013151448220014572,
0.02846710756421089,
0.20582681894302368,
-0.11817678809165955,
-0.0698092132806778,
-0.0853920727968216,
-0.026466306298971176,
0.11103346198797226,
-0.0735134482383728,
-0.0033970277290791273,
0.011325365863740444,
0.10809372365474701,
-0.03639606386423111,
-0.020505432039499283,
0.02877167984843254,
-0.07432771474123001,
-0.10869397968053818,
-0.04904285445809364,
0.09957227855920792,
0.10076214373111725,
0.06608108431100845,
0.041295889765024185,
0.002562503330409527,
0.024481048807501793,
-0.10831065475940704,
-0.03612979128956795,
0.19298066198825836,
0.005610095337033272,
0.07458919286727905,
-0.080105260014534,
-0.046599943190813065,
-0.10915999114513397,
-0.02536129765212536,
0.11058425903320312,
0.16057954728603363,
-0.061843886971473694,
0.15573784708976746,
0.1605481207370758,
-0.13643042743206024,
-0.18419843912124634,
0.007361427880823612,
0.011587752029299736,
-0.0030694054439663887,
0.07005323469638824,
-0.17170436680316925,
0.07283265143632889,
0.048061568289995193,
-0.002696005627512932,
0.05952085554599762,
-0.11833340674638748,
-0.09227924793958664,
0.06925123929977417,
-0.019127044826745987,
0.04193801060318947,
-0.07825691252946854,
-0.021819572895765305,
-0.019284488633275032,
-0.12575916945934296,
0.09214457869529724,
-0.06125548854470253,
0.017615700140595436,
0.0162467323243618,
0.08782197535037994,
0.04674932360649109,
-0.02079261839389801,
0.10976552218198776,
0.012658798135817051,
0.061208222061395645,
-0.05572044476866722,
-0.010539058595895767,
0.017398914322257042,
-0.038768745958805084,
0.10307470709085464,
0.03975222632288933,
0.017241807654500008,
-0.0708782821893692,
-0.07771347463130951,
-0.054575227200984955,
0.1097460612654686,
-0.06343201547861099,
-0.07511994987726212,
-0.06675087660551071,
0.12426306307315826,
0.0559922456741333,
-0.017176860943436623,
-0.007636664900928736,
-0.09114562720060349,
0.03279701620340347,
0.07047546654939651,
0.18085312843322754,
-0.03476922959089279,
-0.08147084712982178,
0.01105919573456049,
-0.03904862329363823,
0.09359990805387497,
-0.03298715129494667,
0.02958965301513672,
0.0783626064658165,
0.00540520716458559,
0.07051560282707214,
-0.03770241513848305,
-0.16143223643302917,
0.005220689345151186,
0.01570039428770542,
-0.05939903110265732,
-0.1826936900615692,
0.0026288211811333895,
0.034085217863321304,
-0.10797622054815292,
-0.06061715632677078,
0.16030646860599518,
-0.04309588670730591,
-0.045541755855083466,
0.006272357888519764,
0.07112930715084076,
0.04085851088166237,
0.008037755265831947,
0.024660572409629822,
0.044943396002054214,
-0.04638432338833809,
0.06474678963422775,
0.10515514761209488,
-0.08502238988876343,
0.051852740347385406,
0.014354299753904343,
-0.04767303913831711,
-0.06504413485527039,
-0.039640240371227264,
0.06617698073387146,
-0.01896614022552967,
-0.06902715563774109,
0.005175784695893526,
-0.06150362268090248,
-0.009320156648755074,
0.12029517441987991,
0.009674771688878536,
0.009586584754288197,
0.019749607890844345,
0.0052267867140471935,
-0.07504812628030777,
0.055485647171735764,
0.008239887654781342,
0.022464299574494362,
-0.06964512169361115,
0.030430449172854424,
0.03807941451668739,
0.016528772190213203,
-0.012836042791604996,
0.011260938830673695,
-0.11672887206077576,
-0.029926281422376633,
-0.16088837385177612,
0.028683457523584366,
-0.07996157556772232,
0.058787986636161804,
-0.01826396957039833,
-0.013923374004662037,
-0.04121756553649902,
0.02810019440948963,
-0.025557834655046463,
-0.035895299166440964,
-0.0014157402329146862,
0.11794691532850266,
-0.11581780761480331,
0.012408813461661339,
0.08981075137853622,
-0.05316571891307831,
0.08016648888587952,
-0.05737220495939255,
-0.01475723646581173,
0.05619175359606743,
-0.10495961457490921,
0.05217929929494858,
-0.04561414197087288,
0.037914395332336426,
-0.008933802135288715,
-0.15239374339580536,
-0.001985708950087428,
0.0035956327337771654,
0.011725056916475296,
0.016245469450950623,
0.02311520278453827,
-0.07833657413721085,
0.01736365258693695,
0.03984948247671127,
-0.04842432215809822,
-0.03280164301395416,
-0.003886502468958497,
0.03381141275167465,
0.043486516922712326,
0.11201994866132736,
-0.01392138097435236,
0.06596861779689789,
-0.15126660466194153,
-0.027991628274321556,
-0.01131452340632677,
0.08090606331825256,
0.08088061958551407,
-0.04234572872519493,
0.04748871549963951,
-0.020185019820928574,
0.2569701671600342,
0.004468244034796953,
0.04567737877368927,
0.054191917181015015,
-0.01692947745323181,
-0.07881391793489456,
-0.0028892173431813717,
-0.04215799272060394,
0.008747072890400887,
-0.007454096805304289,
-0.006182453129440546,
-0.08262714743614197,
-0.057708222419023514,
-0.057227931916713715,
0.1188112422823906,
0.19479288160800934,
0.10433454066514969,
0.00921331625431776,
0.07694656401872635,
-0.03859127312898636,
-0.04442865028977394,
0.04122080281376839,
0.015806417912244797,
-0.03186655789613724,
-0.053159430623054504,
0.09087624400854111,
0.1422840654850006,
-0.10392605513334274,
0.10700605809688568,
-0.010063440538942814,
-0.05076335370540619,
-0.07903475314378738,
-0.15866196155548096,
-0.06434544175863266,
0.013435098342597485,
0.013160067610442638,
-0.09793742746114731,
0.023832740262150764,
0.11223524808883667,
-0.03980191424489021,
-0.02498709037899971,
0.08395513147115707,
-0.07566184550523758,
-0.0874146893620491,
0.05418098345398903,
0.01692734844982624,
0.026721253991127014,
0.0004219725960865617,
0.051516588777303696,
0.02559533901512623,
0.11045823991298676,
0.048375971615314484,
0.05188930034637451,
0.056672945618629456,
-0.012989494949579239,
-0.09180907905101776,
-0.06487087160348892,
-0.012182331643998623,
0.036650899797677994,
0.021054180338978767,
0.15481238067150116,
0.05178917571902275,
-0.032269809395074844,
-0.004085124004632235,
0.2050834745168686,
0.006155218929052353,
-0.09179249405860901,
-0.1401645690202713,
0.1642574816942215,
-0.06049603596329689,
-0.017682522535324097,
0.002904814202338457,
-0.07267545908689499,
0.08689053356647491,
0.11707861721515656,
0.16410768032073975,
-0.032607100903987885,
-0.004510603379458189,
-0.03114636428654194,
0.010736907832324505,
-0.05521416664123535,
0.11639402061700821,
0.026279419660568237,
0.22409024834632874,
-0.06576789170503616,
0.030729155987501144,
-0.02557402290403843,
-0.008419700898230076,
-0.04345608130097389,
0.09888270497322083,
-0.02238554321229458,
0.02151438035070896,
-0.090337835252285,
0.11499042809009552,
-0.038210123777389526,
-0.22270023822784424,
-0.04271334409713745,
-0.0734441801905632,
-0.09819810092449188,
0.009680833667516708,
0.02468859776854515,
-0.064273402094841,
0.03665976598858833,
0.015490416437387466,
-0.04460738226771355,
0.15465107560157776,
0.0044609736651182175,
-0.053372591733932495,
-0.01512998715043068,
0.11355578154325485,
0.07080613821744919,
0.2440510243177414,
0.024619586765766144,
0.13631115853786469,
0.09183358401060104,
-0.009772139601409435,
-0.11677383631467819,
0.04338420182466507,
0.014910220168530941,
-0.03218097984790802,
0.032677099108695984,
0.16698887944221497,
0.012412370182573795,
0.1364116221666336,
0.12545767426490784,
-0.04079413041472435,
0.05339236557483673,
-0.09461414813995361,
-0.05229649320244789,
-0.07616587728261948,
0.10411418229341507,
-0.10382016003131866,
0.1520475447177887,
0.1327890306711197,
-0.017235688865184784,
0.007438541855663061,
-0.055674124509096146,
0.03569665178656578,
0.02944081276655197,
0.13204459846019745,
-0.0035052387975156307,
-0.09089810401201248,
0.009578151628375053,
0.043913908302783966,
0.06375773251056671,
-0.19781604409217834,
-0.07483731955289841,
0.05680372193455696,
0.0017036477802321315,
0.0016968344571068883,
0.10370239615440369,
0.022207321599125862,
0.007021212950348854,
-0.021994056180119514,
-0.20248009264469147,
0.022545119747519493,
0.0765724629163742,
-0.09027419984340668,
-0.024363188073039055
] |
null | null |
transformers
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned version of "xlm-roberta-base"
(a multilingual version of RoBERTa)
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "xlm-roberta-base"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 2
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9919343118732742
* f1: 0.9492100796448622
* precision: 0.9407349896480332
* recall: 0.9578392621870883
|
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
|
token-classification
|
akdeniz27/xlm-roberta-base-turkish-ner
|
[
"transformers",
"pytorch",
"safetensors",
"xlm-roberta",
"token-classification",
"tr",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"tr"
] |
TAGS
#transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned version of "xlm-roberta-base"
(a multilingual version of RoBERTa)
using a reviewed version of well known Turkish NER dataset
(URL
# Fine-tuning parameters:
# How to use:
Pls refer "URL for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9919343118732742
* f1: 0.9492100796448622
* precision: 0.9407349896480332
* recall: 0.9578392621870883
|
[
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883"
] |
[
"TAGS\n#transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL",
"# Fine-tuning parameters:",
"# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.",
"# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883"
] |
[
52,
60,
8,
24,
52
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883"
] |
[
-0.10435346513986588,
-0.0381808839738369,
-0.0019086733227595687,
0.03176600858569145,
0.10578595101833344,
-0.018771762028336525,
0.1054520308971405,
0.010318341664969921,
-0.03344451263546944,
0.08734717965126038,
0.0628533661365509,
0.005745796486735344,
0.03050547093153,
0.09022340178489685,
-0.065375417470932,
-0.13850842416286469,
0.05766195431351662,
-0.015663761645555496,
0.10577994585037231,
0.15141451358795166,
0.06966826319694519,
-0.08312228322029114,
0.07208023965358734,
0.05544206127524376,
-0.12501180171966553,
0.07592148333787918,
0.02027669921517372,
-0.12683939933776855,
0.11898842453956604,
-0.02927509695291519,
0.150120347738266,
-0.010538960807025433,
0.019433630630373955,
-0.0982765406370163,
0.018793057650327682,
-0.04368596151471138,
-0.03714580461382866,
0.026027841493487358,
0.10077766329050064,
-0.1572135090827942,
0.15126414597034454,
-0.0452544242143631,
-0.034240808337926865,
-0.03519288823008537,
-0.07394817471504211,
-0.0763152614235878,
-0.10959778726100922,
0.15527650713920593,
0.06878990679979324,
0.07646147906780243,
-0.028634777292609215,
0.1664862185716629,
-0.11711502820253372,
0.10784134268760681,
0.17834962904453278,
-0.31378334760665894,
-0.09418551623821259,
0.004239014349877834,
-0.07087074220180511,
-0.025224439799785614,
0.04329686984419823,
0.06002374738454819,
0.0369546078145504,
0.027983283624053,
0.016381563618779182,
-0.031811993569135666,
-0.21064096689224243,
-0.00007879048644099385,
-0.11597190052270889,
-0.05001756548881531,
0.20123454928398132,
0.05424419045448303,
-0.01798039861023426,
-0.010447024367749691,
-0.06892389059066772,
-0.06576762348413467,
-0.02255694568157196,
-0.046938084065914154,
-0.0342673622071743,
-0.1399928778409958,
-0.019777385517954826,
0.0622517354786396,
-0.04685701057314873,
-0.10640642046928406,
-0.24388587474822998,
0.2943159341812134,
0.05465962365269661,
0.0652555450797081,
-0.02398042194545269,
0.07963049411773682,
-0.11029379814863205,
-0.05923104286193848,
-0.034279029816389084,
0.028181929141283035,
-0.12084851413965225,
0.015005738474428654,
-0.029862551018595695,
0.052015647292137146,
0.08818138390779495,
0.14008785784244537,
-0.014073112979531288,
0.017706215381622314,
0.06108131259679794,
0.05255400761961937,
-0.0919826477766037,
0.17379161715507507,
-0.08957161754369736,
-0.03752066567540169,
0.010682499036192894,
-0.044136229902505875,
0.0546347051858902,
0.034962818026542664,
-0.05790514126420021,
-0.09985917806625366,
0.20923423767089844,
0.05156988650560379,
-0.03751682862639427,
0.10126378387212753,
0.01517531555145979,
0.03920125961303711,
-0.034978315234184265,
-0.09894527494907379,
-0.019242698326706886,
0.007156162057071924,
-0.13593922555446625,
-0.05471275746822357,
-0.024520840495824814,
-0.03287718817591667,
-0.056524261832237244,
0.018367372453212738,
-0.00012288347352296114,
0.02048458158969879,
-0.0010703217703849077,
-0.13638025522232056,
0.029516704380512238,
-0.08796520531177521,
-0.012412798590958118,
-0.26703059673309326,
-0.18093056976795197,
-0.006460817065089941,
-0.02579403482377529,
-0.07697800546884537,
0.05972606688737869,
-0.06625600904226303,
-0.020048828795552254,
-0.0066510336473584175,
-0.06398093700408936,
-0.027483711019158363,
-0.06540456414222717,
0.03876367211341858,
0.06508960574865341,
0.09406839311122894,
-0.014133286662399769,
0.03662724792957306,
-0.12185678631067276,
0.0037423043977469206,
-0.0753655880689621,
0.040928471833467484,
-0.049307193607091904,
0.003872432978823781,
-0.12392833828926086,
-0.07305584102869034,
-0.01685384474694729,
-0.024500831961631775,
0.06290450692176819,
0.10134328901767731,
-0.010684755630791187,
-0.04560141637921333,
0.052829742431640625,
-0.10430615395307541,
-0.08580520749092102,
0.1376906931400299,
0.00753756333142519,
-0.013221483677625656,
0.08951320499181747,
0.2534049451351166,
0.05641970783472061,
-0.0026351427659392357,
-0.0617544986307621,
0.002789083169773221,
-0.1268443763256073,
-0.10025109350681305,
0.039464615285396576,
0.075796939432621,
-0.08612153679132462,
0.08214940875768661,
-0.10163729637861252,
0.11071760207414627,
-0.056040987372398376,
-0.04499140754342079,
0.007845718413591385,
-0.060560937970876694,
0.1088041290640831,
-0.03885890170931816,
0.12225877493619919,
-0.08753929287195206,
-0.03343068063259125,
-0.02077292464673519,
0.07962466031312943,
-0.01732943020761013,
-0.005300747696310282,
-0.10462304204702377,
0.2688118815422058,
-0.1719871163368225,
-0.014224797487258911,
-0.18754242360591888,
-0.08706292510032654,
-0.03337031602859497,
0.020982155576348305,
0.04530687630176544,
-0.0484437569975853,
0.05572658032178879,
-0.030782515183091164,
-0.012268520891666412,
-0.0316239558160305,
0.08801215887069702,
0.0353487953543663,
-0.014664354734122753,
-0.04981999471783638,
0.005172156263142824,
0.015164165757596493,
0.13242875039577484,
-0.057334303855895996,
0.01904314197599888,
-0.010189112275838852,
0.06829233467578888,
-0.0747012123465538,
0.08496797829866409,
-0.010971399955451488,
0.06466039270162582,
-0.02112855762243271,
-0.008173211477696896,
0.07600255310535431,
-0.012952923774719238,
-0.06123006343841553,
0.09483963251113892,
-0.11066620796918869,
0.2342328131198883,
0.09692788124084473,
0.01158501859754324,
-0.08251796662807465,
0.015617012977600098,
-0.027364986017346382,
-0.025810783728957176,
0.023931503295898438,
0.07001273334026337,
0.11768200248479843,
0.004234146326780319,
0.12734957039356232,
-0.0987902358174324,
-0.009889645501971245,
0.03533743694424629,
-0.07897506654262543,
-0.034696776419878006,
0.2093578279018402,
-0.0516924187541008,
-0.1720227599143982,
0.12517940998077393,
0.044261425733566284,
-0.12537382543087006,
0.07062707841396332,
0.025158055126667023,
-0.03129756450653076,
-0.02435511350631714,
0.0365833044052124,
-0.0022446459624916315,
0.08648638427257538,
0.002292812569066882,
-0.0400683768093586,
0.07090054452419281,
0.035799622535705566,
0.02869889698922634,
-0.08680543303489685,
0.013829059898853302,
0.020651083439588547,
-0.05021587759256363,
-0.030577437952160835,
0.06786315143108368,
0.03310670703649521,
0.16120663285255432,
-0.013978409580886364,
-0.19663329422473907,
0.019743798300623894,
0.008516554720699787,
-0.08394187688827515,
0.17880527675151825,
-0.03406858816742897,
-0.22939179837703705,
-0.13522163033485413,
-0.053068045526742935,
-0.17880010604858398,
-0.06650590151548386,
0.014655672013759613,
-0.07298656553030014,
0.0356995090842247,
-0.04555448144674301,
0.010471505112946033,
-0.007948917336761951,
-0.02132168598473072,
-0.11366172879934311,
-0.01808461733162403,
0.03534074127674103,
-0.05637276545166969,
-0.050891075283288956,
-0.14183829724788666,
-0.0948856845498085,
0.14202624559402466,
-0.07361140102148056,
0.14300093054771423,
0.08905541151762009,
-0.1255807727575302,
0.05153302848339081,
-0.03614592179656029,
0.06088937819004059,
-0.07101093232631683,
-0.015766523778438568,
0.13270629942417145,
0.030438270419836044,
0.011791616678237915,
0.10687031596899033,
-0.015783891081809998,
0.005959864240139723,
-0.019752569496631622,
-0.029049761593341827,
-0.059712644666433334,
-0.15874190628528595,
-0.143606036901474,
-0.03483419120311737,
-0.040658239275217056,
0.05153707414865494,
0.035474374890327454,
0.01799238845705986,
0.07861461490392685,
0.01572965271770954,
-0.06929481774568558,
-0.05265718325972557,
0.04504937306046486,
0.27287739515304565,
0.057599201798439026,
0.11461875587701797,
-0.07820234447717667,
-0.08648175001144409,
0.02652718499302864,
0.0007049339474178851,
0.2504740357398987,
-0.007639480754733086,
-0.04416793957352638,
0.04618271440267563,
0.16697187721729279,
0.08490218222141266,
0.12716853618621826,
-0.025936251506209373,
-0.008790861815214157,
0.025743627920746803,
-0.06856105476617813,
-0.024321651086211205,
-0.021570343524217606,
-0.04078175872564316,
0.05952160432934761,
-0.08105534315109253,
-0.07147076725959778,
0.11719897389411926,
0.09088928252458572,
0.06448179483413696,
-0.39138057827949524,
-0.1113056018948555,
-0.06741461902856827,
-0.029399225488305092,
-0.014425155706703663,
-0.003380510490387678,
0.012540256604552269,
-0.09366542845964432,
0.07683970779180527,
-0.037690669298172,
0.07595361024141312,
-0.013953769579529762,
0.011264392174780369,
-0.08020979911088943,
0.019411111250519753,
-0.003996327053755522,
0.13218042254447937,
-0.08170612156391144,
0.3557415306568146,
0.001178426668047905,
0.024462075904011726,
-0.02506723813712597,
-0.07201316207647324,
0.05800700560212135,
0.06068756431341171,
0.12960784137248993,
0.02409306913614273,
-0.07809825241565704,
-0.18508557975292206,
-0.0925414115190506,
0.09384174644947052,
-0.009632997214794159,
0.02379651553928852,
0.09839600324630737,
0.0023488360457122326,
0.0011702872579917312,
-0.018902231007814407,
-0.0669088289141655,
-0.06484682857990265,
-0.05034312233328819,
-0.04580938443541527,
0.11215417832136154,
-0.030754003673791885,
-0.04184072092175484,
-0.0953039824962616,
-0.13548041880130768,
0.12159734964370728,
-0.08836527913808823,
-0.06755443662405014,
-0.07075898349285126,
0.05925214663147926,
0.07121556997299194,
-0.14268375933170319,
-0.008982163853943348,
-0.038503699004650116,
-0.002302461303770542,
-0.0048250555992126465,
-0.128931924700737,
0.004077079705893993,
-0.05508361756801605,
-0.03422296792268753,
0.05481240153312683,
0.077757328748703,
0.04936544597148895,
0.02477630414068699,
0.06139327213168144,
0.027673639357089996,
-0.03799770027399063,
-0.07660432159900665,
-0.016455532982945442,
0.045012880116701126,
0.05808023363351822,
0.14338473975658417,
0.015104990452528,
-0.17441484332084656,
-0.10525335371494293,
0.07621165364980698,
0.1606113463640213,
0.0968828797340393,
-0.08378185331821442,
0.026823000982403755,
0.12533289194107056,
0.0009837630204856396,
-0.19901353120803833,
-0.05914103984832764,
0.0060209427028894424,
0.08806881308555603,
-0.01407478004693985,
0.05619420111179352,
0.1136721596121788,
0.1266014724969864,
-0.028620095923542976,
-0.019915468990802765,
-0.1671641767024994,
-0.07913128286600113,
0.24501562118530273,
0.049837321043014526,
0.25275954604148865,
-0.03803902864456177,
-0.03094867244362831,
0.007547158747911453,
-0.049985192716121674,
-0.05191664397716522,
-0.07516685128211975,
0.08023331314325333,
-0.0931781455874443,
0.16999201476573944,
0.027444930747151375,
-0.016999591141939163,
0.13837897777557373,
0.01849503256380558,
0.07035603374242783,
-0.07151679694652557,
-0.09580789506435394,
0.08407622575759888,
-0.08922050148248672,
0.11482634395360947,
-0.03525904566049576,
0.05407766252756119,
-0.05874527990818024,
-0.037548936903476715,
-0.07728055864572525,
0.1662748157978058,
0.03861411660909653,
0.05198235437273979,
-0.06822102516889572,
0.030029719695448875,
-0.05188389867544174,
-0.031936947256326675,
0.04877157136797905,
-0.04645618423819542,
0.07133439928293228,
0.07833228260278702,
0.04606448486447334,
-0.0171354990452528,
-0.0014027947327122092,
0.007573173847049475,
-0.017305584624409676,
0.06860417127609253,
-0.024478154256939888,
-0.005543796811252832,
0.17009702324867249,
0.002457194961607456,
0.05905034393072128,
0.038846205919981,
-0.0741758719086647,
0.04462327063083649,
0.1017824113368988,
-0.09465465694665909,
-0.06993418186903,
-0.0031404392793774605,
-0.16267989575862885,
-0.028447233140468597,
0.11237525194883347,
0.11121423542499542,
-0.1173308789730072,
0.021081767976284027,
-0.018796300515532494,
-0.027558188885450363,
-0.04082898795604706,
0.1627189666032791,
0.03691500052809715,
0.038635868579149246,
-0.09691652655601501,
0.05618295818567276,
0.050477638840675354,
-0.017718680202960968,
0.010621950961649418,
-0.060525014996528625,
-0.13320325314998627,
-0.0526079386472702,
-0.044490665197372437,
0.14610642194747925,
-0.09304524213075638,
-0.15192702412605286,
-0.13616101443767548,
-0.12601983547210693,
0.02701985277235508,
0.16009213030338287,
0.1270262598991394,
-0.005981205031275749,
-0.04135338217020035,
-0.06297611445188522,
-0.04434080049395561,
0.08896970003843307,
0.1551402360200882,
0.046812012791633606,
-0.17573091387748718,
0.053613629192113876,
0.01568133756518364,
0.12161193042993546,
-0.05576307699084282,
-0.0755293071269989,
-0.09352394938468933,
0.05697895586490631,
-0.19100120663642883,
0.017315857112407684,
-0.1040751188993454,
0.033169735223054886,
0.015569969080388546,
-0.025794344022870064,
-0.11965624988079071,
0.04389369860291481,
-0.06653475016355515,
0.05381961911916733,
0.004172395449131727,
0.040310945361852646,
-0.1186228096485138,
-0.03634845092892647,
0.010497079230844975,
-0.015573943965137005,
0.08680751174688339,
0.17259733378887177,
-0.009929890744388103,
0.10153070092201233,
-0.17160655558109283,
-0.07151498645544052,
0.0437438003718853,
0.04376939311623573,
0.08616948872804642,
-0.07974781841039658,
0.06940098106861115,
0.09405426681041718,
0.010157296434044838,
0.05558301880955696,
0.014084934256970882,
-0.061888113617897034,
0.013958072289824486,
-0.1314413696527481,
-0.010306769981980324,
-0.10657201707363129,
0.05097399652004242,
0.0639050304889679,
0.12360883504152298,
0.101081982254982,
-0.10988033562898636,
-0.0058321161195635796,
-0.08290737122297287,
0.01984129473567009,
-0.050717033445835114,
-0.17668430507183075,
-0.05827028676867485,
-0.08112818747758865,
0.05724705755710602,
0.012962060049176216,
0.17589393258094788,
0.08058099448680878,
-0.014170411042869091,
-0.01905527524650097,
0.0020674874540418386,
-0.007496967911720276,
-0.03600440174341202,
0.06616619229316711,
0.01956889219582081,
-0.025869818404316902,
-0.0031916736625134945,
0.031499382108449936,
0.060117676854133606,
-0.04259043186903,
0.11269275844097137,
0.18319319188594818,
-0.04796576499938965,
0.09522983431816101,
0.10377247631549835,
-0.07536079734563828,
0.01913595013320446,
-0.1280367523431778,
-0.1479027420282364,
0.036943498998880386,
0.06938636302947998,
0.04776551201939583,
0.23178750276565552,
-0.03177589550614357,
0.0019042108906432986,
-0.026142306625843048,
-0.0499453991651535,
-0.07371149212121964,
-0.18761786818504333,
-0.11452285945415497,
-0.12961091101169586,
-0.010739053599536419,
-0.046453751623630524,
-0.10525844246149063,
0.17133955657482147,
0.03595203906297684,
-0.01721400022506714,
0.13007064163684845,
-0.06463731080293655,
-0.03593526780605316,
0.10145210474729538,
-0.06936878710985184,
-0.025964532047510147,
0.03674270957708359,
-0.02826005034148693,
0.030284089967608452,
-0.008745674043893814,
0.05976344272494316,
0.036778971552848816,
0.04178900644183159,
0.03007931262254715,
-0.06865331530570984,
-0.0656428262591362,
-0.04207230731844902,
0.046126823872327805,
0.038206104189157486,
-0.011379075236618519,
0.07667337357997894,
-0.03354237973690033,
-0.03529326245188713,
0.19757743179798126,
-0.0001566153805470094,
-0.08826301246881485,
-0.008450916968286037,
0.27902448177337646,
0.018308835104107857,
0.003372418927028775,
0.0005086243618279696,
-0.04054859280586243,
0.020656801760196686,
0.1779778152704239,
0.2653530538082123,
0.05743715912103653,
0.008468735963106155,
-0.08132079988718033,
0.008220870047807693,
0.0037903785705566406,
0.040022555738687515,
0.0491425022482872,
0.18895556032657623,
-0.03278551995754242,
0.0008161216974258423,
-0.07791269570589066,
0.015156476758420467,
-0.06112263724207878,
0.006452583707869053,
0.03526054695248604,
-0.04110441356897354,
-0.1134185716509819,
0.11554618179798126,
-0.0631224662065506,
-0.061422549188137054,
0.1103033646941185,
-0.01218862272799015,
-0.17480434477329254,
0.030161945149302483,
0.027451591566205025,
0.015660447999835014,
0.07017083466053009,
-0.11789380759000778,
0.009076239541172981,
-0.08937534689903259,
0.03025767020881176,
-0.12618929147720337,
-0.09460015594959259,
0.09245149791240692,
0.13201868534088135,
0.1304941624403,
-0.004208569880574942,
0.10838095843791962,
0.10632150620222092,
0.023627545684576035,
-0.09200940281152725,
0.13506938517093658,
0.007940810173749924,
-0.015897922217845917,
0.13462592661380768,
-0.0041976748034358025,
0.03332699462771416,
-0.037879399955272675,
0.08066818863153458,
-0.08403957635164261,
0.020711472257971764,
-0.035219136625528336,
0.031450096517801285,
-0.1078605055809021,
0.046868447214365005,
0.002626395784318447,
0.09574291855096817,
0.1775764673948288,
-0.03971634805202484,
0.028530821204185486,
-0.06517452001571655,
-0.005664157681167126,
0.053642626851797104,
0.013120479881763458,
0.058905716985464096,
-0.12520486116409302,
-0.011133941821753979,
-0.039433643221855164,
-0.009153803810477257,
-0.2433544546365738,
-0.034448739141225815,
-0.0447087436914444,
-0.05645010620355606,
0.050822664052248,
0.07243695110082626,
0.10711776465177536,
0.051433783024549484,
-0.009025493636727333,
-0.09736988693475723,
0.00453846575692296,
0.11941535770893097,
-0.08530398458242416,
-0.07899340242147446
] |
null | null | null |
<div align="left">
## You Only Look Once for Panoptic Driving Perception
> [**You Only Look at Once for Panoptic driving Perception**](https://arxiv.org/abs/2108.11250)
>
> by Dong Wu, Manwen Liao, Weitian Zhang, [Xinggang Wang](https://xinggangw.info/) [*School of EIC, HUST*](http://eic.hust.edu.cn/English/Home.htm)
>
> *arXiv technical report ([arXiv 2108.11250](https://arxiv.org/abs/2108.11250))*
---
### The Illustration of YOLOP

### Contributions
* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the `BDD100K `dataset.
* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.
### Results
#### Traffic Object Detection Result
| Model | Recall(%) | mAP50(%) | Speed(fps) |
| -------------- | --------- | -------- | ---------- |
| `Multinet` | 81.3 | 60.2 | 8.6 |
| `DLT-Net` | 89.4 | 68.4 | 9.3 |
| `Faster R-CNN` | 77.2 | 55.6 | 5.3 |
| `YOLOv5s` | 86.8 | 77.2 | 82 |
| `YOLOP(ours)` | 89.2 | 76.5 | 41 |
#### Drivable Area Segmentation Result
| Model | mIOU(%) | Speed(fps) |
| ------------- | ------- | ---------- |
| `Multinet` | 71.6 | 8.6 |
| `DLT-Net` | 71.3 | 9.3 |
| `PSPNet` | 89.6 | 11.1 |
| `YOLOP(ours)` | 91.5 | 41 |
#### Lane Detection Result:
| Model | mIOU(%) | IOU(%) |
| ------------- | ------- | ------ |
| `ENet` | 34.12 | 14.64 |
| `SCNN` | 35.79 | 15.84 |
| `ENet-SAD` | 36.56 | 16.02 |
| `YOLOP(ours)` | 70.50 | 26.20 |
#### Ablation Studies 1: End-to-end v.s. Step-by-step:
| Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) |
| --------------- | --------- | ----- | ------- | ----------- | ------ |
| `ES-W` | 87.0 | 75.3 | 90.4 | 66.8 | 26.2 |
| `ED-W` | 87.3 | 76.0 | 91.6 | 71.2 | 26.1 |
| `ES-D-W` | 87.0 | 75.1 | 91.7 | 68.6 | 27.0 |
| `ED-S-W` | 87.5 | 76.1 | 91.6 | 68.0 | 26.8 |
| `End-to-end` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 |
#### Ablation Studies 2: Multi-task v.s. Single task:
| Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | Speed(ms/frame) |
| --------------- | --------- | ----- | ------- | ----------- | ------ | --------------- |
| `Det(only)` | 88.2 | 76.9 | - | - | - | 15.7 |
| `Da-Seg(only)` | - | - | 92.0 | - | - | 14.8 |
| `Ll-Seg(only)` | - | - | - | 79.6 | 27.9 | 14.8 |
| `Multitask` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 | 24.4 |
**Notes**:
- The works we has use for reference including `Multinet` ([paper](https://arxiv.org/pdf/1612.07695.pdf?utm_campaign=affiliate-ir-Optimise%20media%28%20South%20East%20Asia%29%20Pte.%20ltd._156_-99_national_R_all_ACQ_cpa_en&utm_content=&utm_source=%20388939),[code](https://github.com/MarvinTeichmann/MultiNet)),`DLT-Net` ([paper](https://ieeexplore.ieee.org/abstract/document/8937825)),`Faster R-CNN` ([paper](https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf),[code](https://github.com/ShaoqingRen/faster_rcnn)),`YOLOv5s`([code](https://github.com/ultralytics/yolov5)) ,`PSPNet`([paper](https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf),[code](https://github.com/hszhao/PSPNet)) ,`ENet`([paper](https://arxiv.org/pdf/1606.02147.pdf),[code](https://github.com/osmr/imgclsmob)) `SCNN`([paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16802/16322),[code](https://github.com/XingangPan/SCNN)) `SAD-ENet`([paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf),[code](https://github.com/cardwing/Codes-for-Lane-Detection)). Thanks for their wonderful works.
- In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.
---
### Visualization
#### Traffic Object Detection Result

#### Drivable Area Segmentation Result

#### Lane Detection Result

**Notes**:
- The visualization of lane detection result has been post processed by quadratic fitting.
---
### Project Structure
```python
├─inference
│ ├─images # inference images
│ ├─output # inference result
├─lib
│ ├─config/default # configuration of training and validation
│ ├─core
│ │ ├─activations.py # activation function
│ │ ├─evaluate.py # calculation of metric
│ │ ├─function.py # training and validation of model
│ │ ├─general.py #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py # loss function
│ │ ├─postprocess.py # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py # Superclass dataset,general function
│ │ ├─bdd.py # Subclass dataset,specific function
│ │ ├─hust.py # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py
│ │ ├─DemoDataset.py # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py # Setup and Configuration of model
│ │ ├─light.py # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py # calculation module
│ ├─utils
│ │ ├─augmentations.py # data augumentation
│ │ ├─autoanchor.py # auto anchor(k-means)
│ │ ├─split_dataset.py # (Campus scene, unrelated to paper)
│ │ ├─utils.py # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time # Visualization, logging and model_save
├─tools
│ │ ├─demo.py # demo(folder、camera)
│ │ ├─test.py
│ │ ├─train.py
├─toolkits
│ │ ├─depoly # Deployment of model
├─weights # Pretraining model
```
---
### Requirement
This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:
```
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
```
See `requirements.txt` for additional dependencies and version requirements.
```setup
pip install -r requirements.txt
```
### Data preparation
#### Download
- Download the images from [images](https://bdd-data.berkeley.edu/).
- Download the annotations of detection from [det_annotations](https://drive.google.com/file/d/1Ge-R8NTxG1eqd4zbryFo-1Uonuh0Nxyl/view?usp=sharing).
- Download the annotations of drivable area segmentation from [da_seg_annotations](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing).
- Download the annotations of lane line segmentation from [ll_seg_annotations](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing).
We recommend the dataset directory structure to be the following:
```
# The id represent the correspondence relation
├─dataset root
│ ├─images
│ │ ├─train
│ │ ├─val
│ ├─det_annotations
│ │ ├─train
│ │ ├─val
│ ├─da_seg_annotations
│ │ ├─train
│ │ ├─val
│ ├─ll_seg_annotations
│ │ ├─train
│ │ ├─val
```
Update the your dataset path in the `./lib/config/default.py`.
### Training
You can set the training configuration in the `./lib/config/default.py`. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).
If you want try alternating optimization or train model for single task, please modify the corresponding configuration in `./lib/config/default.py` to `True`. (As following, all configurations is `False`, which means training multiple tasks end to end).
```python
# Alternating optimization
_C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch
# Single task
_C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False # Only train detection task
```
Start training:
```shell
python tools/train.py
```
### Evaluation
You can set the evaluation configuration in the `./lib/config/default.py`. (Including: batch_size and threshold value for nms).
Start evaluating:
```shell
python tools/test.py --weights weights/End-to-end.pth
```
### Demo Test
We provide two testing method.
#### Folder
You can store the image or video in `--source`, and then save the reasoning result to `--save-dir`
```shell
python tools/demo --source inference/images
```
#### Camera
If there are any camera connected to your computer, you can set the `source` as the camera number(The default is 0).
```shell
python tools/demo --source 0
```
### Deployment
Our model can reason in real-time on `Jetson Tx2`, with `Zed Camera` to capture image. We use `TensorRT` tool for speeding up. We provide code for deployment and reasoning of model in `./toolkits/deploy`.
## Citation
If you find our paper and code useful for your research, please consider giving a star and citation:
```BibTeX
@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}
```
|
{"tags": ["object-detection"]}
|
object-detection
|
akhaliq/YOLOP
|
[
"object-detection",
"arxiv:2108.11250",
"arxiv:1612.07695",
"arxiv:1606.02147",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2108.11250",
"1612.07695",
"1606.02147"
] |
[] |
TAGS
#object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us
|
You Only Look Once for Panoptic Driving Perception
----------------------------------------------------
>
> You Only Look at Once for Panoptic driving Perception
>
>
> by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang *School of EIC, HUST*
>
>
> *arXiv technical report (arXiv 2108.11250)*
>
>
>
---
### The Illustration of YOLOP
!yolop
### Contributions
* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.
* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.
### Results
#### Traffic Object Detection Result
#### Drivable Area Segmentation Result
Model: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6
Model: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3
Model: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1
Model: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41
#### Lane Detection Result:
Model: 'ENet', mIOU(%): 34.12, IOU(%): 14.64
Model: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84
Model: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02
Model: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20
#### Ablation Studies 1: End-to-end v.s. Step-by-step:
#### Ablation Studies 2: Multi-task v.s. Single task:
Notes:
* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.
* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.
---
### Visualization
#### Traffic Object Detection Result
!detect result
#### Drivable Area Segmentation Result

#### Lane Detection Result

Notes:
* The visualization of lane detection result has been post processed by quadratic fitting.
---
### Project Structure
---
### Requirement
This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:
See 'URL' for additional dependencies and version requirements.
### Data preparation
#### Download
* Download the images from images.
* Download the annotations of detection from det\_annotations.
* Download the annotations of drivable area segmentation from da\_seg\_annotations.
* Download the annotations of lane line segmentation from ll\_seg\_annotations.
We recommend the dataset directory structure to be the following:
Update the your dataset path in the './lib/config/URL'.
### Training
You can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\_size).
If you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).
Start training:
### Evaluation
You can set the evaluation configuration in the './lib/config/URL'. (Including: batch\_size and threshold value for nms).
Start evaluating:
### Demo Test
We provide two testing method.
#### Folder
You can store the image or video in '--source', and then save the reasoning result to '--save-dir'
#### Camera
If there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0).
### Deployment
Our model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'.
If you find our paper and code useful for your research, please consider giving a star and citation:
|
[
"### The Illustration of YOLOP\n\n\n!yolop",
"### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.",
"### Results",
"#### Traffic Object Detection Result",
"#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41",
"#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20",
"#### Ablation Studies 1: End-to-end v.s. Step-by-step:",
"#### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---",
"### Visualization",
"#### Traffic Object Detection Result\n\n\n!detect result",
"#### Drivable Area Segmentation Result\n\n\n",
"#### Lane Detection Result\n\n\n\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---",
"### Project Structure\n\n\n\n\n---",
"### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.",
"### Data preparation",
"#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.",
"### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:",
"### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:",
"### Demo Test\n\n\nWe provide two testing method.",
"#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'",
"#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0).",
"### Deployment\n\n\nOur model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'.\n\n\nIf you find our paper and code useful for your research, please consider giving a star and citation:"
] |
[
"TAGS\n#object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us \n",
"### The Illustration of YOLOP\n\n\n!yolop",
"### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.",
"### Results",
"#### Traffic Object Detection Result",
"#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41",
"#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20",
"#### Ablation Studies 1: End-to-end v.s. Step-by-step:",
"#### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---",
"### Visualization",
"#### Traffic Object Detection Result\n\n\n!detect result",
"#### Drivable Area Segmentation Result\n\n\n",
"#### Lane Detection Result\n\n\n\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---",
"### Project Structure\n\n\n\n\n---",
"### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.",
"### Data preparation",
"#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.",
"### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:",
"### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:",
"### Demo Test\n\n\nWe provide two testing method.",
"#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'",
"#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0).",
"### Deployment\n\n\nOur model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'.\n\n\nIf you find our paper and code useful for your research, please consider giving a star and citation:"
] |
[
36,
12,
147,
3,
7,
106,
110,
21,
228,
4,
11,
19,
41,
7,
44,
4,
105,
135,
45,
10,
33,
30,
93
] |
[
"passage: TAGS\n#object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us \n### The Illustration of YOLOP\n\n\n!yolop### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.### Results#### Traffic Object Detection Result#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20#### Ablation Studies 1: End-to-end v.s. Step-by-step:",
"passage: #### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---### Visualization#### Traffic Object Detection Result\n\n\n!detect result#### Drivable Area Segmentation Result\n\n\n#### Lane Detection Result\n\n\n\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---### Project Structure\n\n\n\n\n---### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.### Data preparation#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:### Demo Test\n\n\nWe provide two testing method.#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0)."
] |
[
-0.06576700508594513,
0.11310334503650665,
-0.007154106628149748,
0.0320669487118721,
0.0772407129406929,
-0.014837589114904404,
0.06914056837558746,
0.10542227327823639,
-0.011408170685172081,
0.12244175374507904,
0.006673121824860573,
0.0659874975681305,
0.0810675173997879,
0.10282570123672485,
0.028528613969683647,
-0.12968075275421143,
0.0419757142663002,
-0.10389138758182526,
-0.08342084288597107,
0.08503374457359314,
0.0896720439195633,
-0.09079769253730774,
0.08555404841899872,
-0.0005014287307858467,
-0.033206626772880554,
0.004723379388451576,
-0.0653834193944931,
-0.045153822749853134,
0.0656936839222908,
0.06365345418453217,
0.0755983293056488,
0.03557559847831726,
0.043292850255966187,
-0.2348896563053131,
-0.0047066956758499146,
0.10118592530488968,
0.022924600169062614,
0.024071509018540382,
0.1407681405544281,
-0.01672821305692196,
0.07919912040233612,
-0.03191341087222099,
0.058856893330812454,
0.025222688913345337,
-0.07984256744384766,
-0.1602606475353241,
-0.10747131705284119,
0.07162923365831375,
0.1144668236374855,
0.048821769654750824,
-0.021477004513144493,
0.10012144595384598,
-0.05170048400759697,
0.06463664770126343,
0.09199142456054688,
-0.19184738397598267,
-0.04703830927610397,
0.05963515490293503,
0.028175821527838707,
0.028077030554413795,
-0.0843236893415451,
-0.001005577389150858,
0.01177111268043518,
0.03077453002333641,
-0.010313984006643295,
0.007641686126589775,
0.10123023390769958,
0.019666798412799835,
-0.13397380709648132,
-0.07333707809448242,
0.1685468852519989,
0.022574756294488907,
-0.06369654834270477,
-0.09022299945354462,
-0.04018346220254898,
-0.019071213901042938,
-0.036634065210819244,
-0.026122907176613808,
0.0014892085455358028,
0.009275391697883606,
0.022831296548247337,
0.00007555261254310608,
-0.1191948652267456,
-0.02104998379945755,
0.006673024967312813,
0.09057244658470154,
0.07225064933300018,
0.021543404087424278,
0.0036752165760844946,
0.13778837025165558,
0.03528466820716858,
-0.07728255540132523,
-0.046288102865219116,
-0.08424381166696548,
-0.09598582237958908,
-0.010519688948988914,
0.001483139581978321,
-0.10717341303825378,
0.08930552005767822,
0.15175700187683105,
0.04090123623609543,
0.0741618424654007,
-0.04452568292617798,
0.03180565685033798,
0.030491914600133896,
0.15634626150131226,
-0.057592421770095825,
-0.05217012017965317,
-0.04694398492574692,
0.09214094281196594,
-0.024059249088168144,
-0.0032751448452472687,
0.016463542357087135,
0.06766827404499054,
0.06010040268301964,
0.05479852855205536,
0.07736985385417938,
0.06680011004209518,
-0.043575212359428406,
-0.02330225519835949,
0.07151562720537186,
-0.1630481779575348,
0.01883942075073719,
0.043809324502944946,
-0.024567987769842148,
0.025703532621264458,
0.06150003895163536,
-0.02866029553115368,
-0.0756341964006424,
0.04507648944854736,
-0.04517567902803421,
-0.011980386450886726,
-0.10167916119098663,
-0.08096185326576233,
0.019134581089019775,
0.006188143044710159,
-0.0687875747680664,
-0.10943837463855743,
-0.09314355254173279,
-0.09028232842683792,
0.06824962049722672,
-0.058576930314302444,
0.044497545808553696,
-0.019140349701046944,
-0.07134248316287994,
0.0058936672285199165,
0.030344931408762932,
0.04804560914635658,
-0.04998987913131714,
0.0590893030166626,
-0.02983769215643406,
0.034856610000133514,
0.11490805447101593,
0.028396151959896088,
-0.05860443413257599,
0.07704450190067291,
-0.1048729345202446,
0.12512460350990295,
-0.13904476165771484,
0.05289827287197113,
-0.11497055739164352,
-0.0037783728912472725,
-0.053850144147872925,
0.03236484155058861,
0.02386181429028511,
0.10256204009056091,
-0.14791083335876465,
-0.03514296934008598,
0.13153676688671112,
-0.11629973351955414,
-0.06067654862999916,
0.12231088429689407,
0.0043080588802695274,
-0.005186873488128185,
0.04224751889705658,
0.10262434184551239,
0.10917109251022339,
-0.1245349794626236,
-0.049004532396793365,
-0.0021204627119004726,
-0.02063574828207493,
0.12245500832796097,
0.07747868448495865,
-0.032913848757743835,
0.02565198764204979,
0.03715767711400986,
-0.03916463628411293,
-0.019665991887450218,
-0.038363080471754074,
-0.07505406439304352,
-0.006473922170698643,
-0.028810948133468628,
-0.05121534317731857,
-0.0035075806081295013,
-0.02713841013610363,
-0.038582220673561096,
-0.10627634823322296,
-0.08393771201372147,
0.11224045604467392,
-0.03478711098432541,
0.012641525827348232,
-0.1042168065905571,
0.07426439225673676,
-0.034388285130262375,
0.022545907646417618,
-0.14268866181373596,
-0.08611880242824554,
0.036432672291994095,
-0.11435133218765259,
-0.016187775880098343,
0.02000012807548046,
0.02454022876918316,
0.06865760684013367,
-0.002954579424113035,
-0.03523802012205124,
-0.026696674525737762,
0.00003451621159911156,
-0.038916610181331635,
-0.1723909080028534,
-0.04944683238863945,
-0.04092865437269211,
0.10049257427453995,
-0.1382271647453308,
0.019067445769906044,
0.0917300283908844,
0.1357961893081665,
0.02895398996770382,
-0.03672907501459122,
0.006847328506410122,
0.0014443508116528392,
-0.04817618429660797,
-0.042249660938978195,
-0.016801197081804276,
-0.0077442508190870285,
0.0014062889385968447,
0.04968056082725525,
-0.08777613192796707,
-0.012422922998666763,
0.08060846477746964,
-0.003223557723686099,
-0.07208600640296936,
0.02306399494409561,
-0.06962352991104126,
-0.057854361832141876,
-0.06506885588169098,
-0.0678180456161499,
0.022879406809806824,
0.054154105484485626,
0.06772305816411972,
-0.03796900063753128,
-0.03649231046438217,
0.0006647128611803055,
-0.025236966088414192,
-0.057238537818193436,
0.09238968044519424,
0.07976949214935303,
-0.09010942280292511,
0.08968853950500488,
0.03244244307279587,
0.007246565073728561,
0.0952407568693161,
-0.03265243396162987,
-0.10413046181201935,
-0.007496503181755543,
0.07673029601573944,
0.010704951360821724,
0.05693906173110008,
-0.03403087705373764,
0.015090521425008774,
0.04761696606874466,
-0.0015575096476823092,
0.04222385585308075,
-0.11858285218477249,
0.06142184138298035,
0.030107807368040085,
0.0024630706757307053,
0.05750641971826553,
-0.023112542927265167,
-0.0005517099052667618,
0.06998501718044281,
-0.007771689910441637,
-0.044266194105148315,
-0.016932271420955658,
-0.06759603321552277,
-0.08044108003377914,
0.14703598618507385,
-0.06098901107907295,
-0.2482599914073944,
-0.15725566446781158,
-0.023330338299274445,
-0.05945878475904465,
-0.008299172855913639,
0.03958549350500107,
-0.04430081695318222,
-0.09635791182518005,
-0.0937243327498436,
0.010855183005332947,
0.0373699776828289,
-0.036250051110982895,
0.021571576595306396,
0.0721789300441742,
0.03913135826587677,
-0.11756503582000732,
-0.014588365331292152,
-0.000043837353587150574,
-0.02790084294974804,
0.0404890775680542,
0.03052026778459549,
0.09292459487915039,
0.10429777204990387,
0.05650739744305611,
0.0052164760418236256,
0.02741755172610283,
0.15599393844604492,
-0.08754542469978333,
0.06329357624053955,
0.07337792217731476,
-0.021715858951210976,
0.07710768282413483,
0.1236414685845375,
0.026651009917259216,
-0.06170414015650749,
0.025063415989279747,
0.06786292046308517,
-0.00001579616218805313,
-0.23677018284797668,
-0.06363123655319214,
-0.03720889240503311,
0.01302849967032671,
0.061401039361953735,
0.07362931966781616,
-0.005831517744809389,
0.009157462976872921,
-0.044676803052425385,
0.021037960425019264,
0.05910216644406319,
0.07239757478237152,
0.11054791510105133,
-0.002499248366802931,
0.07606032490730286,
-0.060058824717998505,
-0.04097701236605644,
0.0694054439663887,
0.040066175162792206,
0.19519494473934174,
-0.01989717222750187,
0.025384359061717987,
0.1010575145483017,
0.051280297338962555,
0.010476955212652683,
0.01466620247811079,
-0.009787624701857567,
0.05005739629268646,
-0.020188461989164352,
-0.08345664292573929,
-0.013264002278447151,
0.08707103133201599,
0.07748857885599136,
-0.078959159553051,
0.009806313551962376,
0.06283987313508987,
0.1049279272556305,
0.1898479461669922,
0.08259676396846771,
-0.19754843413829803,
0.008019734174013138,
0.022817939519882202,
-0.06061752885580063,
-0.06678047776222229,
0.019740890711545944,
0.07594648003578186,
-0.10067181289196014,
0.027455128729343414,
-0.03472176194190979,
0.05981788784265518,
-0.08301421254873276,
-0.005614348687231541,
0.055678971111774445,
0.05846264585852623,
-0.0041953264735639095,
0.058859847486019135,
-0.1603449583053589,
0.1382165104150772,
-0.008332539349794388,
0.06547202169895172,
-0.013245857320725918,
0.0776558518409729,
0.04458014294505119,
0.06888139992952347,
0.11023770272731781,
-0.0031560389325022697,
-0.08272729068994522,
-0.0637010931968689,
-0.15827229619026184,
0.020678924396634102,
0.08207452297210693,
-0.05821049585938454,
0.11273187398910522,
-0.01327885128557682,
-0.04280497878789902,
-0.044572070240974426,
-0.032473817467689514,
-0.09725724160671234,
-0.1510126143693924,
0.08483027666807175,
-0.10721733421087265,
0.009956994093954563,
-0.0809689462184906,
-0.05150105431675911,
-0.08409328758716583,
0.16374923288822174,
-0.11988995224237442,
-0.08352763950824738,
-0.11015897244215012,
0.012735212221741676,
0.10612896084785461,
-0.03753121197223663,
0.01164345070719719,
-0.00891299918293953,
0.08282902091741562,
0.0013998495414853096,
-0.0714353621006012,
0.050383877009153366,
-0.08642896264791489,
-0.15627524256706238,
-0.06481490284204483,
0.11777853965759277,
-0.01578555814921856,
0.027712509036064148,
-0.024815646931529045,
0.01485281903296709,
0.01023656316101551,
-0.08028359711170197,
0.045010462403297424,
0.15789392590522766,
0.0016547497361898422,
0.060901373624801636,
-0.06286080181598663,
-0.10856969654560089,
-0.08967216312885284,
-0.04721345752477646,
0.03205680102109909,
0.20091350376605988,
-0.04675906151533127,
0.0879259929060936,
0.1247292011976242,
-0.09965769201517105,
-0.23917725682258606,
-0.08017531037330627,
0.03447314351797104,
-0.00568936113268137,
0.018005233258008957,
-0.14775237441062927,
0.060248710215091705,
0.06902705878019333,
-0.028646990656852722,
0.07846876978874207,
-0.30499395728111267,
-0.10476075112819672,
0.06609170138835907,
0.014246547594666481,
-0.050436582416296005,
-0.13350416719913483,
-0.05227728560566902,
-0.006085726898163557,
-0.16123345494270325,
-0.010192879475653172,
0.06773984432220459,
0.07407283037900925,
0.002640475519001484,
-0.05933182314038277,
0.048979464918375015,
-0.07396680116653442,
0.14881497621536255,
-0.0007595206843689084,
0.06238877400755882,
-0.04850988835096359,
0.01798017881810665,
0.005929555743932724,
-0.053050439804792404,
0.12772442400455475,
0.027711985632777214,
0.039188411086797714,
-0.04819990694522858,
-0.038076452910900116,
-0.04353812709450722,
0.03201228007674217,
-0.03306925296783447,
-0.031909070909023285,
-0.06435497105121613,
0.07132423669099808,
0.07583794742822647,
0.000945711974054575,
0.04472489282488823,
0.004798445850610733,
-0.029903609305620193,
0.16096436977386475,
0.04848513752222061,
0.026782678440213203,
-0.15151569247245789,
-0.03824488818645477,
-0.004242990165948868,
0.05958167091012001,
-0.12997733056545258,
0.06854507327079773,
0.11600662767887115,
-0.017878782004117966,
0.1288643628358841,
0.02738386020064354,
-0.16087189316749573,
-0.023736823350191116,
0.10841012001037598,
-0.11323946714401245,
-0.1674710512161255,
-0.040273960679769516,
0.019964437931776047,
-0.038868505507707596,
-0.01274867169559002,
0.10638496279716492,
-0.049458131194114685,
0.0014385422691702843,
-0.0018132636323571205,
0.11270630359649658,
0.00390278035774827,
0.15180276334285736,
0.03412289172410965,
0.040328267961740494,
-0.046102263033390045,
0.13568808138370514,
0.09229611605405807,
-0.10896328091621399,
0.021359166130423546,
0.07675705850124359,
-0.07985465228557587,
-0.058699049055576324,
-0.021495576947927475,
0.09266673028469086,
0.061742622405290604,
-0.07559850811958313,
-0.0605107918381691,
-0.0689709484577179,
0.058890607208013535,
0.03052438795566559,
0.042731668800115585,
0.11095449328422546,
0.017330829054117203,
-0.011453264392912388,
-0.05557393282651901,
0.1382429003715515,
0.07236850261688232,
0.05333206057548523,
-0.12604740262031555,
0.039614856243133545,
0.01889549195766449,
0.025275714695453644,
-0.010394943878054619,
-0.04686460644006729,
-0.09336117655038834,
0.011028699576854706,
-0.13488911092281342,
0.011999361217021942,
-0.041414521634578705,
-0.022018786519765854,
0.04901823401451111,
-0.006076308898627758,
-0.01556006446480751,
0.04972701519727707,
-0.08182469010353088,
-0.055655792355537415,
-0.034627340734004974,
0.0924900472164154,
-0.13467326760292053,
-0.024796713143587112,
0.058502197265625,
-0.12698593735694885,
0.04685647413134575,
0.01687045581638813,
-0.010495456866919994,
0.017294693738222122,
-0.056548647582530975,
-0.00906579103320837,
0.01442199107259512,
0.04927339404821396,
0.005811164155602455,
-0.11534875631332397,
0.023618316277861595,
-0.014658625237643719,
-0.05762416869401932,
-0.013864079490303993,
0.055001504719257355,
-0.11629313230514526,
0.05142543464899063,
-0.014976844191551208,
-0.08622269332408905,
-0.04555835574865341,
0.022745300084352493,
0.032542429864406586,
0.07430559396743774,
0.1469898372888565,
-0.07334473729133606,
0.007647900842130184,
-0.1330103725194931,
-0.02227022871375084,
0.018099870532751083,
0.0052740019746124744,
0.05488124489784241,
-0.03206806257367134,
0.054345086216926575,
-0.06769278645515442,
0.11447367817163467,
0.04554535076022148,
-0.057501938194036484,
0.024910978972911835,
-0.09091313183307648,
-0.06102066487073898,
0.06946549564599991,
-0.026871690526604652,
0.010800197720527649,
0.010279764421284199,
-0.015764381736516953,
-0.08214861899614334,
0.028571367263793945,
0.013560367748141289,
0.06286298483610153,
0.1485646814107895,
0.10118827223777771,
0.07510437816381454,
0.0784468874335289,
-0.08518248051404953,
-0.15331125259399414,
0.060194894671440125,
-0.10742539167404175,
0.10330383479595184,
-0.07351426780223846,
0.04595349356532097,
0.1083720326423645,
-0.11871002614498138,
0.0778469368815422,
-0.07515860348939896,
-0.0459417887032032,
-0.06377368420362473,
-0.1283295899629593,
-0.06264397501945496,
-0.07076497375965118,
0.01188137661665678,
-0.055703915655612946,
0.049264777451753616,
0.09103605151176453,
0.04371486231684685,
-0.01542142778635025,
0.1145959347486496,
-0.05771617591381073,
-0.03504398837685585,
0.03650011122226715,
-0.006104856729507446,
-0.010830639861524105,
0.03305090591311455,
0.017910830676555634,
-0.004856438376009464,
0.048148609697818756,
0.03852842003107071,
0.06279440224170685,
0.012800287455320358,
0.05722011253237724,
-0.017086582258343697,
-0.06496186554431915,
0.009002961218357086,
-0.0679553896188736,
-0.029082532972097397,
0.03894700109958649,
0.08175491541624069,
-0.030174873769283295,
0.013298693113029003,
0.1657622754573822,
-0.05189857631921768,
-0.10324317216873169,
-0.18438535928726196,
0.16388779878616333,
0.02990100346505642,
0.04579688236117363,
0.025588292628526688,
-0.12019722163677216,
-0.019916126504540443,
0.14641477167606354,
0.13882791996002197,
0.0014742035418748856,
-0.015328355133533478,
0.04805412143468857,
0.001903024036437273,
-0.035542529076337814,
0.07565250247716904,
0.03526393324136734,
0.19631564617156982,
-0.0380987748503685,
0.031724125146865845,
-0.04978892579674721,
-0.03588620945811272,
-0.05382564663887024,
0.10958905518054962,
-0.009583957493305206,
0.015611518174409866,
-0.0903686136007309,
0.08151353895664215,
-0.015265099704265594,
-0.17654502391815186,
0.0726746916770935,
-0.047793999314308167,
-0.1214141994714737,
0.018496669828891754,
0.08453523367643356,
-0.003224531188607216,
0.04806628078222275,
-0.014451776631176472,
-0.04686376824975014,
0.17018640041351318,
0.0053614117205142975,
-0.0308659840375185,
-0.04292387515306473,
0.07712308317422867,
-0.015326876193284988,
0.23051130771636963,
0.02605338580906391,
0.04815676808357239,
0.09101397544145584,
-0.004071047995239496,
-0.10463269054889679,
0.034785762429237366,
0.06384792178869247,
-0.06695745885372162,
0.018929215148091316,
0.09729432314634323,
0.00933582428842783,
0.1298171430826187,
0.04815470427274704,
0.023545194417238235,
0.006989859975874424,
0.014415784738957882,
-0.0013774093240499496,
-0.07750353962182999,
0.027042310684919357,
-0.08169209957122803,
0.09406665712594986,
0.1669347882270813,
-0.012570862658321857,
0.027576591819524765,
-0.06066080182790756,
0.05353124439716339,
-0.020660288631916046,
0.05622861534357071,
-0.009776370599865913,
-0.18118324875831604,
0.05853059142827988,
-0.05965699627995491,
0.08389148116111755,
-0.12674248218536377,
-0.09547887742519379,
0.061784692108631134,
-0.011765080504119396,
-0.051816485822200775,
0.12398327887058258,
0.11454547196626663,
0.02543955110013485,
-0.05365350842475891,
-0.10707126557826996,
0.004117097705602646,
0.08319003880023956,
-0.0876636952161789,
-0.05522208660840988
] |
null | null |
transformers
|
# GPT2-Small-Arabic-Poetry
## Model description
Fine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.
## Intended uses & limitations
#### How to use
An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing).
#### Limitations and bias
Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance.
Use them as demonstrations or proof of concepts but not as production code.
## Training data
This pretrained model used the [Arabic Poetry dataset](https://www.kaggle.com/ahmedabelal/arabic-poetry) from 9 different eras with a total of around 40k poems.
The dataset was trained (fine-tuned) based on the [gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) transformer model.
## Training procedure
Training was done using [Simple Transformers](https://github.com/ThilinaRajapakse/simpletransformers) library on Kaggle, using free GPU.
## Eval results
Final perplexity reached ws 76.3, loss: 4.33
### BibTeX entry and citation info
```bibtex
@inproceedings{Abed Khooli,
year={2020}
}
```
|
{"language": "ar", "tags": ["text-generation"], "datasets": ["Arabic poetry from several eras"]}
|
text-generation
|
akhooli/gpt2-small-arabic-poetry
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"gpt2",
"text-generation",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar"
] |
TAGS
#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
# GPT2-Small-Arabic-Poetry
## Model description
Fine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.
## Intended uses & limitations
#### How to use
An example is provided in this colab notebook.
#### Limitations and bias
Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance.
Use them as demonstrations or proof of concepts but not as production code.
## Training data
This pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems.
The dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.
## Training procedure
Training was done using Simple Transformers library on Kaggle, using free GPU.
## Eval results
Final perplexity reached ws 76.3, loss: 4.33
### BibTeX entry and citation info
|
[
"# GPT2-Small-Arabic-Poetry",
"## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.",
"## Intended uses & limitations",
"#### How to use\n\nAn example is provided in this colab notebook.",
"#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.",
"## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.",
"## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.",
"## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# GPT2-Small-Arabic-Poetry",
"## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.",
"## Intended uses & limitations",
"#### How to use\n\nAn example is provided in this colab notebook.",
"#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.",
"## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.",
"## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.",
"## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33",
"### BibTeX entry and citation info"
] |
[
61,
13,
25,
9,
15,
56,
56,
21,
18,
11
] |
[
"passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT2-Small-Arabic-Poetry## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.## Intended uses & limitations#### How to use\n\nAn example is provided in this colab notebook.#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33### BibTeX entry and citation info"
] |
[
-0.07463090121746063,
0.10979470610618591,
-0.0013916163006797433,
0.10388413816690445,
0.04974858835339546,
0.01151244342327118,
0.15120939910411835,
0.09804383665323257,
-0.07386878877878189,
0.050657518208026886,
0.11811884492635727,
-0.007337682414799929,
0.09631151705980301,
0.06197107210755348,
0.05749346315860748,
-0.19352802634239197,
-0.004091580398380756,
-0.04256410896778107,
0.03304995596408844,
0.10029171407222748,
0.12892399728298187,
-0.01937282085418701,
0.04338793829083443,
-0.000526965653989464,
-0.06704111397266388,
-0.008462759666144848,
-0.031894128769636154,
-0.09637438505887985,
0.08473465591669083,
0.09153370559215546,
0.07355666905641556,
0.04371098428964615,
0.0792793333530426,
-0.21799775958061218,
0.02768944576382637,
0.03885466232895851,
-0.022680044174194336,
0.01101549994200468,
0.041543055325746536,
-0.020585346966981888,
0.09892673045396805,
-0.11878097802400589,
0.0198028776794672,
0.0018136890139430761,
-0.09310704469680786,
-0.17673435807228088,
-0.060481127351522446,
0.0938895121216774,
0.06125336140394211,
0.09618259966373444,
-0.02582588605582714,
0.03662087395787239,
0.0068788169883191586,
0.06165681406855583,
0.10158813744783401,
-0.28928735852241516,
-0.03912726044654846,
0.05950328707695007,
0.02680262364447117,
0.0526546873152256,
-0.11032599210739136,
0.05868416279554367,
0.0529913455247879,
0.02008962072432041,
0.023854240775108337,
-0.02260875143110752,
0.03474565967917442,
-0.0009524635970592499,
-0.08378906548023224,
-0.10691629350185394,
0.18047291040420532,
-0.013886251486837864,
-0.10839466005563736,
-0.1096724271774292,
-0.034287743270397186,
0.024673910811543465,
0.02919950895011425,
0.02460634894669056,
-0.016570134088397026,
0.013674705289304256,
0.018300527706742287,
-0.08860362321138382,
-0.1264478862285614,
-0.09443255513906479,
-0.0351523794233799,
0.05519016832113266,
0.05341183766722679,
0.048910435289144516,
-0.003136181505396962,
0.14596955478191376,
-0.09727413952350616,
-0.10555238276720047,
-0.019543875008821487,
-0.05450404807925224,
-0.001614697277545929,
0.0025237612426280975,
-0.017271393910050392,
-0.0247983206063509,
-0.03865716606378555,
0.10940787196159363,
0.003761856583878398,
0.020161623135209084,
0.046300746500492096,
0.019876930862665176,
0.029451819136738777,
0.09057718515396118,
-0.01900877244770527,
-0.011902282014489174,
0.06369131803512573,
0.08874507993459702,
0.03321731090545654,
0.001871778047643602,
-0.03481245040893555,
-0.031500235199928284,
0.03087020292878151,
0.05950794368982315,
0.007225410081446171,
0.037165939807891846,
-0.0015295175835490227,
0.0043017868883907795,
0.12215103209018707,
-0.1462254375219345,
-0.05269765481352806,
-0.00947408564388752,
-0.0793658196926117,
-0.07310794293880463,
0.09786367416381836,
-0.035445716232061386,
-0.1059734895825386,
-0.006584382150322199,
-0.028742533177137375,
-0.016298724338412285,
0.001415856066159904,
-0.07897663861513138,
0.022114183753728867,
-0.06309076398611069,
-0.004319638945162296,
-0.1357392519712448,
-0.2858867645263672,
0.0008367152768187225,
0.055282287299633026,
-0.0673607662320137,
-0.027505403384566307,
-0.045439377427101135,
0.011710885912179947,
0.05468728020787239,
-0.044671885669231415,
0.006595365237444639,
-0.049949489533901215,
0.09069471806287766,
0.01930639147758484,
0.07761847227811813,
0.0052602533251047134,
0.013251600787043571,
-0.06045521795749664,
0.017215175554156303,
0.01539402361959219,
0.1808931976556778,
-0.010980057530105114,
-0.051798827946186066,
-0.11183490604162216,
-0.006837699096649885,
-0.0015213127480819821,
0.003672734135761857,
0.05631924048066139,
0.1849992573261261,
-0.19362059235572815,
-0.0411752350628376,
0.19556693732738495,
-0.04795599728822708,
-0.06889249384403229,
0.15446418523788452,
-0.07056429237127304,
0.09196508675813675,
0.1143789067864418,
0.14393512904644012,
-0.03960263356566429,
-0.07077334821224213,
-0.0981799066066742,
0.057584989815950394,
0.1209685429930687,
0.12905831634998322,
0.0853334367275238,
-0.05182475224137306,
0.04236011207103729,
0.0236164852976799,
0.024898875504732132,
0.03387517109513283,
-0.01069630403071642,
-0.08775429427623749,
-0.009399873204529285,
-0.055019352585077286,
0.030512142926454544,
0.0016722225118428469,
0.08597245812416077,
-0.04427780210971832,
-0.13996215164661407,
-0.035511314868927,
0.05765375867486,
-0.02647062949836254,
0.05182868242263794,
-0.02982066012918949,
0.02737332321703434,
-0.14615772664546967,
0.0300934799015522,
-0.13394950330257416,
0.017181504517793655,
0.013974083587527275,
0.010107917711138725,
0.06999941170215607,
-0.07005017250776291,
0.0482085719704628,
0.06773832440376282,
-0.059475649148225784,
0.01047713402658701,
-0.04434777423739433,
-0.004915466997772455,
-0.12670068442821503,
-0.1143498346209526,
0.01634969748556614,
-0.052298735827207565,
0.046925246715545654,
-0.1768207997083664,
0.023146171122789383,
0.03765784204006195,
0.07372540980577469,
-0.026679497212171555,
-0.043256618082523346,
0.03897974267601967,
-0.0031679566018283367,
-0.03859001025557518,
-0.08424003422260284,
0.0029800725169479847,
0.021938443183898926,
-0.09803815931081772,
0.10479764640331268,
-0.16190671920776367,
-0.07381782680749893,
0.1317053586244583,
0.08162723481655121,
-0.06767372786998749,
0.036723535507917404,
-0.015658769756555557,
-0.01679833233356476,
0.0007576710777357221,
0.011448604054749012,
0.20931321382522583,
-0.03652973100543022,
0.1748606562614441,
-0.13586872816085815,
-0.02068336121737957,
0.0010519989300519228,
-0.05883626267313957,
-0.0419851690530777,
0.10181299597024918,
-0.06990443915128708,
-0.1496882289648056,
0.11584164202213287,
0.09537389874458313,
0.017888905480504036,
0.21895664930343628,
0.048074159771203995,
-0.0608004629611969,
-0.0006817828980274498,
0.015249100513756275,
0.006555434316396713,
0.13858333230018616,
-0.026756733655929565,
0.006014788057655096,
0.0257941335439682,
0.04845844581723213,
0.018121618777513504,
-0.17192603647708893,
0.0244413111358881,
0.06678450107574463,
-0.07170568406581879,
-0.0014782173093408346,
0.0095794927328825,
-0.07939606159925461,
0.09699874371290207,
0.04248862713575363,
0.08358152210712433,
0.008433402515947819,
-0.03019098937511444,
-0.11071032285690308,
0.1839122772216797,
-0.10419956594705582,
-0.1961154341697693,
-0.05927661806344986,
0.01214908342808485,
-0.0354427769780159,
0.0564115084707737,
0.05986189469695091,
-0.11890752613544464,
-0.019233450293540955,
-0.1178440973162651,
0.06669556349515915,
-0.10653921216726303,
-0.026229098439216614,
-0.005887327715754509,
-0.015840861946344376,
-0.034580767154693604,
-0.11961587518453598,
0.010975996032357216,
-0.016209235414862633,
-0.13852755725383759,
0.0055268569849431515,
-0.08425015211105347,
-0.0046481778845191,
0.046996019780635834,
0.030252769589424133,
-0.02037607878446579,
-0.04313686862587929,
0.2835935652256012,
-0.08544190227985382,
0.06437031179666519,
0.11204100400209427,
0.04789718985557556,
0.043386831879615784,
0.1532098948955536,
-0.004452613648027182,
-0.09238709509372711,
0.02113647572696209,
0.03072621487081051,
-0.06932096928358078,
-0.2329125851392746,
-0.02052755281329155,
-0.05671687424182892,
-0.04096518084406853,
0.06345070153474808,
0.09925907105207443,
-0.005663751158863306,
0.07404717803001404,
-0.10389246046543121,
0.16229556500911713,
0.05109461024403572,
0.08733385056257248,
0.08296241611242294,
0.014420289546251297,
0.037627846002578735,
-0.09663426131010056,
0.03646521270275116,
0.1155376136302948,
0.10543046146631241,
0.19672150909900665,
-0.062246017158031464,
0.17836308479309082,
0.060881149023771286,
0.08134151250123978,
0.06091056019067764,
0.016327902674674988,
0.018772106617689133,
0.030053595080971718,
-0.026518290862441063,
-0.0687863752245903,
-0.09298976510763168,
0.07579583674669266,
-0.043217647820711136,
0.01854238659143448,
-0.02584541216492653,
-0.0720289945602417,
0.07921924442052841,
0.10185123980045319,
0.027361944317817688,
-0.2125692367553711,
-0.10454972088336945,
0.07834726572036743,
-0.07173564285039902,
-0.11424293369054794,
-0.024270588532090187,
0.011558870784938335,
-0.18944019079208374,
0.053144421428442,
-0.010021809488534927,
0.09458868205547333,
-0.11633262038230896,
-0.0643049106001854,
-0.05412048473954201,
-0.07984612137079239,
-0.04357233643531799,
0.09353403747081757,
-0.2984730005264282,
0.19741414487361908,
0.0701245442032814,
0.1563122272491455,
-0.03910557180643082,
0.028471559286117554,
0.04739468917250633,
0.02453898824751377,
0.18068450689315796,
0.0011220877058804035,
0.060721881687641144,
-0.03780273348093033,
-0.06031344458460808,
0.05475476384162903,
0.05547352135181427,
-0.03524889796972275,
0.03972594439983368,
0.047744832932949066,
0.051317885518074036,
-0.04153427109122276,
0.01440639328211546,
-0.1957126408815384,
-0.21316683292388916,
0.00959307886660099,
-0.024004295468330383,
-0.04041177034378052,
-0.07764679938554764,
-0.07159343361854553,
-0.04723173752427101,
0.18277622759342194,
-0.14396752417087555,
-0.14679741859436035,
-0.09500673413276672,
0.008307969197630882,
0.07218373566865921,
-0.05661263316869736,
0.03244047984480858,
-0.07409655302762985,
0.02008673921227455,
-0.06755068153142929,
-0.0695972740650177,
-0.010569494217634201,
-0.07110282778739929,
-0.13105061650276184,
-0.047012973576784134,
0.10745197534561157,
0.03925530984997749,
0.028873421251773834,
0.01183080393821001,
0.008002339862287045,
-0.08551476895809174,
-0.09658654034137726,
-0.011022822931408882,
0.07321431487798691,
0.02999027445912361,
0.017206404358148575,
0.004107871558517218,
-0.07832170277833939,
-0.06452437490224838,
-0.08137449622154236,
0.05398494377732277,
0.2583424150943756,
-0.02069804258644581,
0.1819463074207306,
0.1766553372144699,
-0.13419918715953827,
-0.21048006415367126,
-0.06988435238599777,
0.038146961480379105,
0.044245265424251556,
-0.08503925055265427,
-0.16890886425971985,
-0.0803966149687767,
-0.03425386920571327,
-0.01858370564877987,
0.02776428498327732,
-0.24355392158031464,
-0.14022254943847656,
0.06625015288591385,
0.026586009189486504,
0.07578682899475098,
-0.14813417196273804,
-0.06175392121076584,
-0.09165597707033157,
-0.10785835981369019,
0.08998596668243408,
-0.020604202523827553,
0.16161485016345978,
-0.010172839276492596,
-0.0011689034290611744,
-0.020702818408608437,
-0.013154307380318642,
0.1967327743768692,
0.0021990418899804354,
0.035716574639081955,
-0.10470490902662277,
0.10302659124135971,
0.11009208858013153,
-0.029263952746987343,
0.0593414306640625,
-0.0598779171705246,
0.037656866014003754,
-0.254954993724823,
-0.10860797017812729,
-0.0713694617152214,
-0.013001902960240841,
-0.047661490738391876,
-0.08660529553890228,
-0.088682159781456,
0.03205692023038864,
0.07125820964574814,
-0.015192985534667969,
-0.0950624942779541,
-0.027746126055717468,
0.03606307879090309,
0.07162582129240036,
0.11025404930114746,
0.061303023248910904,
-0.0703091248869896,
0.036236826330423355,
-0.008212934248149395,
0.07515685260295868,
-0.27615612745285034,
-0.049526602029800415,
0.09211931377649307,
0.007225546985864639,
0.11985557526350021,
0.009743005968630314,
-0.1269993782043457,
0.052756112068891525,
0.036045677959918976,
-0.11979786306619644,
-0.11197111755609512,
-0.012532126158475876,
-0.05886296555399895,
0.014272295869886875,
-0.055833980441093445,
0.09873763471841812,
-0.07219885289669037,
-0.025166170671582222,
-0.030579406768083572,
0.008229690603911877,
-0.005741069559007883,
0.1576763391494751,
0.05045801028609276,
0.034587711095809937,
-0.04083366319537163,
0.188081294298172,
0.11430779099464417,
-0.08543157577514648,
0.0886889398097992,
0.08226518332958221,
-0.11649361252784729,
-0.020567648112773895,
-0.02645845338702202,
0.009829585440456867,
-0.0454462505877018,
-0.036381952464580536,
-0.051795173436403275,
-0.03381405025720596,
-0.017444048076868057,
0.06850630044937134,
0.0507623553276062,
0.055972155183553696,
-0.027554268017411232,
-0.007709766738116741,
-0.05278042331337929,
0.09603594243526459,
0.04294087737798691,
-0.015103986486792564,
-0.022818950936198235,
0.0433688648045063,
0.018675552681088448,
0.10776913166046143,
-0.027044979855418205,
0.000603211228735745,
-0.050199758261442184,
0.03857271000742912,
-0.09506997466087341,
0.07005994021892548,
-0.08358670771121979,
-0.0055230762809515,
-0.05637941509485245,
0.015538233332335949,
-0.015007508918642998,
0.027801979333162308,
-0.02105417288839817,
-0.036138709634542465,
-0.05738519877195358,
0.03584655374288559,
-0.09826847910881042,
-0.036211807280778885,
0.013406099751591682,
-0.06601749360561371,
0.11074122041463852,
0.025010617449879646,
-0.03273887559771538,
0.05502443015575409,
-0.21010270714759827,
0.07182629406452179,
-0.06036582589149475,
-0.004558616317808628,
-0.030822785571217537,
-0.031897254288196564,
0.03514086455106735,
-0.00559723237529397,
0.006337457336485386,
-0.0033869410399347544,
0.05966939777135849,
-0.08934570103883743,
-0.09487883746623993,
-0.00023344819783233106,
0.05378042533993721,
-0.0381510965526104,
0.11029256135225296,
0.05282091349363327,
0.04692177474498749,
0.01339561864733696,
-0.06261055916547775,
0.009806257672607899,
-0.12214962393045425,
-0.025306381285190582,
-0.009567839093506336,
-0.035371340811252594,
-0.06774945557117462,
-0.0028695575892925262,
0.05997738987207413,
-0.020200232043862343,
0.21540772914886475,
-0.0019180206581950188,
-0.07313231378793716,
0.045108597725629807,
-0.04107221961021423,
0.07371466606855392,
-0.020536325871944427,
0.15420781075954437,
0.023955250158905983,
-0.016082419082522392,
-0.06523457169532776,
-0.029946645721793175,
-0.006750162690877914,
0.10815959423780441,
0.023606522008776665,
0.1131182312965393,
0.11457392573356628,
0.11070913076400757,
-0.06889871507883072,
-0.07428907603025436,
-0.004001034889370203,
-0.01787448674440384,
0.0033223917707800865,
0.05044123902916908,
-0.07952895015478134,
-0.04784015193581581,
0.21579617261886597,
-0.12450015544891357,
0.05227633938193321,
-0.02890918217599392,
-0.12536028027534485,
-0.12215559184551239,
-0.1489785611629486,
-0.04434332251548767,
0.03108011558651924,
0.045533958822488785,
-0.08933492004871368,
0.08227676898241043,
0.13644878566265106,
0.03441496565937996,
-0.006710035726428032,
0.14198949933052063,
0.034303028136491776,
-0.10859953612089157,
0.09903626143932343,
-0.01755516603589058,
0.039333686232566833,
-0.0012586826924234629,
0.017189791426062584,
0.028758300468325615,
-0.05473746359348297,
0.04839291051030159,
0.07475273311138153,
0.037643659859895706,
0.06747785210609436,
0.017508085817098618,
-0.02592238411307335,
-0.018957611173391342,
0.053849026560783386,
0.11596687138080597,
0.20608755946159363,
0.036342088133096695,
-0.057768937200307846,
0.016619835048913956,
0.2037423551082611,
0.02759210206568241,
-0.06476304680109024,
-0.10521173477172852,
0.07480382919311523,
-0.010336006060242653,
-0.02570045180618763,
0.04917943477630615,
-0.07215987145900726,
0.051598161458969116,
0.1543971449136734,
0.1933182179927826,
-0.01921534724533558,
0.000032869163987925276,
-0.03933027759194374,
0.0009199287160299718,
0.04966887831687927,
0.06897719949483871,
0.020400507375597954,
0.235246941447258,
-0.151366725564003,
-0.014011477120220661,
-0.018116861581802368,
-0.043933235108852386,
-0.05191431939601898,
0.20042970776557922,
-0.022388696670532227,
0.03918972611427307,
-0.07944841682910919,
0.03860337287187576,
-0.04326259717345238,
-0.1888454556465149,
0.08654045313596725,
-0.021851256489753723,
-0.08324868232011795,
0.0336652547121048,
-0.01474215928465128,
0.021039312705397606,
0.0018301649251952767,
0.009192914701998234,
0.02869589440524578,
0.019695142284035683,
0.01950083114206791,
-0.10158726572990417,
-0.008046870119869709,
0.10961227864027023,
0.08576411753892899,
0.18359775841236115,
0.0005547627224586904,
0.1446148306131363,
0.07160643488168716,
0.012876618653535843,
-0.08334458619356155,
0.11278191208839417,
0.044252630323171616,
0.06508218497037888,
0.037988681346178055,
0.1522456556558609,
0.025721877813339233,
0.014179225079715252,
0.058593060821294785,
0.10450536012649536,
0.1044524759054184,
0.08252915740013123,
-0.04947968199849129,
-0.14015726745128632,
0.05822368711233139,
-0.14154522120952606,
0.12526187300682068,
0.08830273896455765,
-0.06711556017398834,
0.01797354221343994,
-0.06466203182935715,
0.016061851754784584,
-0.004329614341259003,
0.025946054607629776,
0.034658778458833694,
-0.12900125980377197,
0.05120377987623215,
-0.03088272176682949,
0.047231368720531464,
-0.290698379278183,
-0.06765303760766983,
-0.02265181951224804,
-0.027917174622416496,
-0.04400893673300743,
0.11577592045068741,
0.041773486882448196,
0.014831595122814178,
-0.06275184452533722,
-0.07457727193832397,
-0.05086323246359825,
0.018957754597067833,
-0.11094339936971664,
-0.11877934634685516
] |
null | null |
transformers
|
# GPT2-Small-Arabic
## Model description
GPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).
## Intended uses & limitations
#### How to use
An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing).
Both text and poetry (fine-tuned model) generation are included.
#### Limitations and bias
GPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance.
Use as demonstration or proof of concepts but not as production code.
## Training data
This pretrained model used the Arabic Wikipedia dump (around 900 MB).
## Training procedure
Training was done using [Fastai2](https://github.com/fastai/fastai2/) library on Kaggle, using free GPU.
## Eval results
Final perplexity reached was 72.19, loss: 4.28, accuracy: 0.307
### BibTeX entry and citation info
```bibtex
@inproceedings{Abed Khooli,
year={2020}
}
```
|
{"language": "ar", "datasets": ["Arabic Wikipedia"], "metrics": ["none"]}
|
text-generation
|
akhooli/gpt2-small-arabic
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"gpt2",
"text-generation",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar"
] |
TAGS
#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
# GPT2-Small-Arabic
## Model description
GPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).
## Intended uses & limitations
#### How to use
An example is provided in this colab notebook.
Both text and poetry (fine-tuned model) generation are included.
#### Limitations and bias
GPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance.
Use as demonstration or proof of concepts but not as production code.
## Training data
This pretrained model used the Arabic Wikipedia dump (around 900 MB).
## Training procedure
Training was done using Fastai2 library on Kaggle, using free GPU.
## Eval results
Final perplexity reached was 72.19, loss: 4.28, accuracy: 0.307
### BibTeX entry and citation info
|
[
"# GPT2-Small-Arabic",
"## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).",
"## Intended uses & limitations",
"#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.",
"#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.",
"## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).",
"## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.",
"## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# GPT2-Small-Arabic",
"## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).",
"## Intended uses & limitations",
"#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.",
"#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.",
"## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).",
"## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.",
"## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307",
"### BibTeX entry and citation info"
] |
[
61,
9,
26,
9,
31,
64,
20,
20,
25,
11
] |
[
"passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT2-Small-Arabic## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).## Intended uses & limitations#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307### BibTeX entry and citation info"
] |
[
-0.06650682538747787,
0.06655579060316086,
-0.0016152627067640424,
0.0811597928404808,
0.06911451369524002,
0.03532656654715538,
0.17713642120361328,
0.1277308166027069,
-0.05654136836528778,
0.02253015525639057,
0.09186454862356186,
0.02295636758208275,
0.1428671032190323,
0.16960379481315613,
0.03335254639387131,
-0.1738935261964798,
0.04253491014242172,
-0.044524647295475006,
0.04646981880068779,
0.09786105901002884,
0.11300227791070938,
-0.04449291154742241,
0.05361460894346237,
-0.001490740105509758,
-0.12127760797739029,
-0.04290098324418068,
0.005995025858283043,
-0.10912919044494629,
0.09138395637273788,
0.07226819545030594,
0.09518654644489288,
0.03671896457672119,
0.04517329856753349,
-0.18504083156585693,
0.026481065899133682,
0.05891744792461395,
0.03684958070516586,
0.04529464244842529,
0.013910161331295967,
0.061349209398031235,
0.026088854297995567,
-0.10168047249317169,
0.03192395716905594,
-0.012391408905386925,
-0.0888519212603569,
-0.13724440336227417,
-0.07985663414001465,
0.07759219408035278,
0.07304001599550247,
0.043647512793540955,
0.006203352473676205,
0.10845103859901428,
-0.06922391802072525,
0.04707414284348488,
0.1333782821893692,
-0.21468374133110046,
-0.05333515629172325,
0.041172683238983154,
0.0035672648809850216,
0.07516537606716156,
-0.06963406503200531,
0.03733276575803757,
0.03973344340920448,
-0.006266586948186159,
0.07290952652692795,
-0.023053336888551712,
0.003200239734724164,
-0.05796658992767334,
-0.049463775008916855,
-0.09163879603147507,
0.1491168886423111,
0.0019690217450261116,
-0.10573072731494904,
-0.12450297176837921,
-0.027265798300504684,
-0.010904889553785324,
-0.0031847944483160973,
0.01695362851023674,
-0.009807399474084377,
0.002073214389383793,
0.048415254801511765,
-0.09904168546199799,
-0.08911865949630737,
-0.08143407851457596,
-0.0576840378344059,
0.11177325248718262,
0.08635398745536804,
0.06020548567175865,
0.03254899010062218,
0.13796395063400269,
-0.10049217194318771,
-0.0929112657904625,
-0.029585029929876328,
-0.07615438848733902,
-0.0017057160148397088,
-0.031247925013303757,
0.03903758153319359,
0.02990833856165409,
0.007337426766753197,
0.038722120225429535,
-0.052841924130916595,
0.05630319565534592,
0.026454458013176918,
0.04011590778827667,
-0.005771364085376263,
0.0681784451007843,
-0.05232110619544983,
-0.03461900353431702,
0.11517847329378128,
0.1141873225569725,
0.020521830767393112,
0.016894038766622543,
-0.02256304770708084,
-0.04104779660701752,
0.0661502480506897,
0.06411772221326828,
-0.016734762117266655,
0.04512336105108261,
-0.05399927496910095,
-0.0058808173052966595,
0.1212884709239006,
-0.1338639110326767,
-0.026267772540450096,
0.00538237951695919,
-0.09467422962188721,
-0.030252903699874878,
0.10983593016862869,
-0.021636102348566055,
-0.11781582236289978,
-0.022429436445236206,
-0.02403082326054573,
0.030848050490021706,
-0.0583767406642437,
-0.08157490193843842,
0.009888221509754658,
-0.0847916528582573,
-0.01275815349072218,
-0.13405375182628632,
-0.26541149616241455,
0.023219434544444084,
0.06700634956359863,
-0.06431363523006439,
-0.03361617773771286,
-0.0081699313595891,
0.007129203993827105,
0.04776303842663765,
-0.03726551681756973,
0.019673418253660202,
-0.06683577597141266,
0.11388885974884033,
-0.02082948200404644,
0.098874032497406,
-0.024450816214084625,
0.018493467941880226,
-0.063815638422966,
0.036259669810533524,
-0.09538310766220093,
0.16518525779247284,
-0.023631399497389793,
-0.0513714998960495,
-0.12078876048326492,
-0.021879497915506363,
-0.05361704155802727,
-0.00014523902791552246,
0.08697596937417984,
0.20107626914978027,
-0.17473089694976807,
-0.024480435997247696,
0.19762806594371796,
-0.04891514033079147,
-0.08069157600402832,
0.17679153382778168,
-0.0696038156747818,
0.13552449643611908,
0.1015050932765007,
0.1070157065987587,
-0.004800749476999044,
-0.10804520547389984,
-0.06089196354150772,
0.05560866370797157,
0.04962455853819847,
0.05459298938512802,
0.060408156365156174,
-0.014755276031792164,
0.05338310822844505,
0.029509518295526505,
0.05947956070303917,
0.0940830186009407,
-0.02256690338253975,
-0.0674777552485466,
-0.015129053965210915,
-0.09100855141878128,
0.012303988449275494,
0.02036815881729126,
0.08527984470129013,
-0.03846894949674606,
-0.1215514987707138,
0.04574885591864586,
0.08017858862876892,
-0.022210394963622093,
0.005676082335412502,
-0.04464297741651535,
0.031030714511871338,
-0.1575058400630951,
0.005967946723103523,
-0.09494185447692871,
-0.023966532200574875,
0.016741449013352394,
-0.02820941060781479,
0.0483449287712574,
-0.0758669376373291,
0.05993262305855751,
0.055216386914253235,
-0.05563823878765106,
0.0010842559859156609,
-0.020903024822473526,
0.009861982427537441,
-0.11310575902462006,
-0.09907935559749603,
0.060370318591594696,
-0.00892728939652443,
0.04905620962381363,
-0.11862403899431229,
0.031930726021528244,
-0.015123031102120876,
0.11541573703289032,
-0.007765556685626507,
-0.046659186482429504,
0.05461280420422554,
-0.015189909376204014,
-0.0310564786195755,
-0.10478691011667252,
0.011765796691179276,
0.012782551348209381,
-0.03733564168214798,
0.08555068075656891,
-0.1110239326953888,
-0.019699381664395332,
0.15305522084236145,
0.09085692465305328,
-0.09303005039691925,
0.028387349098920822,
0.007133510895073414,
-0.05974692478775978,
-0.020120883360505104,
0.015875782817602158,
0.15359054505825043,
-0.01985863782465458,
0.17758412659168243,
-0.12645314633846283,
-0.0012127580121159554,
0.013314221985638142,
-0.0542859323322773,
-0.025330789387226105,
0.05185020714998245,
0.05613430589437485,
-0.10719742625951767,
0.13673846423625946,
0.06729607284069061,
-0.00915332417935133,
0.2190047949552536,
0.03951363265514374,
-0.06187612935900688,
0.017320293933153152,
0.05490238592028618,
0.011382696218788624,
0.13619738817214966,
-0.04067566245794296,
0.008771372959017754,
0.03543856367468834,
0.04856560006737709,
0.018518617376685143,
-0.14892767369747162,
0.02875959314405918,
0.01715639792382717,
-0.08661585301160812,
0.02365908771753311,
-0.005780898965895176,
-0.0027513252571225166,
0.11872803419828415,
0.055136799812316895,
0.06860075891017914,
0.03852897882461548,
0.000302804954117164,
-0.0719006285071373,
0.17148852348327637,
-0.08839742839336395,
-0.21307340264320374,
-0.056969594210386276,
0.01108518149703741,
-0.018495311960577965,
0.008992988616228104,
0.008239436894655228,
-0.06959524750709534,
-0.009365622885525227,
-0.0833369642496109,
0.029376110062003136,
-0.043205663561820984,
-0.015489191748201847,
-0.021690567955374718,
0.006673559546470642,
-0.00936268363147974,
-0.11491422355175018,
-0.013461612164974213,
0.017507510259747505,
-0.09138840436935425,
0.050698813050985336,
-0.07678953558206558,
-0.03637603670358658,
0.029570776969194412,
-0.031273189932107925,
-0.02634112909436226,
-0.01905287429690361,
0.22340120375156403,
-0.09677679091691971,
0.09224895387887955,
0.12792131304740906,
0.01967029832303524,
0.054384276270866394,
0.15149882435798645,
0.013681448996067047,
-0.08290208876132965,
0.008999951183795929,
0.02195640280842781,
-0.07676512002944946,
-0.18946069478988647,
-0.004074447322636843,
-0.07933035492897034,
-0.060651931911706924,
0.03227197751402855,
0.049154240638017654,
-0.030977893620729446,
0.1023007482290268,
-0.1026347205042839,
0.15483029186725616,
0.0571705661714077,
0.07609193027019501,
0.0272145364433527,
0.035899486392736435,
0.058782391250133514,
-0.09286965429782867,
0.029616355895996094,
0.12907730042934418,
0.07692649960517883,
0.254873126745224,
-0.1058773323893547,
0.10021264106035233,
0.04650886729359627,
0.09833678603172302,
0.08231834322214127,
0.05788539722561836,
0.018753841519355774,
0.013374825939536095,
-0.025499625131487846,
-0.037924353033304214,
-0.12925469875335693,
0.06039651110768318,
-0.024593763053417206,
0.016939686611294746,
0.015234529040753841,
-0.0033372724428772926,
0.06912578642368317,
0.1747707724571228,
0.04815174266695976,
-0.261178582906723,
-0.08953455835580826,
0.049791231751441956,
-0.07685453444719315,
-0.1630098819732666,
-0.0421314463019371,
0.02489735186100006,
-0.17442332208156586,
0.025178879499435425,
-0.012213651090860367,
0.08961006999015808,
-0.1523672491312027,
-0.06987904757261276,
-0.06071062386035919,
0.0009501528111286461,
-0.06331717222929001,
0.06839938461780548,
-0.28241166472435,
0.13848502933979034,
0.046399183571338654,
0.17084966599941254,
-0.08309964835643768,
0.033995021134614944,
0.08351945132017136,
-0.004796885885298252,
0.11781983822584152,
0.008574365638196468,
0.07145759463310242,
-0.10937067121267319,
-0.1433730125427246,
0.03204524517059326,
0.022908683866262436,
0.06082175299525261,
0.014877651818096638,
0.004296416882425547,
0.07807237654924393,
-0.01934603601694107,
-0.04662999138236046,
-0.1684805303812027,
-0.1514924168586731,
0.02796817198395729,
-0.03098183684051037,
-0.047482188791036606,
-0.08220556378364563,
-0.05811646953225136,
-0.004818051587790251,
0.24896468222141266,
-0.1249227523803711,
-0.180302694439888,
-0.09227757900953293,
-0.0019212315091863275,
0.08317409455776215,
-0.048694733530282974,
0.07165155559778214,
-0.0795719251036644,
0.01845075748860836,
-0.036374107003211975,
-0.05107738822698593,
0.018586644902825356,
-0.08318309485912323,
-0.11217070370912552,
-0.051767878234386444,
0.06806451082229614,
0.016216609627008438,
0.027698667719960213,
0.017935361713171005,
-0.009811987169086933,
-0.04991621524095535,
-0.09763357043266296,
-0.031055910512804985,
0.06680034846067429,
0.03320371359586716,
0.07032962143421173,
-0.019168084487318993,
-0.10540152341127396,
-0.031758107244968414,
-0.11069745570421219,
0.06984181702136993,
0.30193111300468445,
-0.017237799242138863,
0.13222916424274445,
0.12855377793312073,
-0.07507289201021194,
-0.2176056057214737,
-0.028876125812530518,
0.07122514396905899,
0.05196409672498703,
-0.0746680349111557,
-0.1467004418373108,
-0.026754386723041534,
0.04543442279100418,
-0.020407821983098984,
0.07881515473127365,
-0.18668930232524872,
-0.13338159024715424,
0.07751093059778214,
0.06071711331605911,
0.1747259795665741,
-0.14406783878803253,
-0.013416782952845097,
-0.07532838732004166,
-0.0739479660987854,
0.10574766248464584,
-0.04173628240823746,
0.14770713448524475,
-0.026498673483729362,
0.00039995284168981016,
0.0041573974303901196,
-0.057778190821409225,
0.18650484085083008,
-0.08653835952281952,
0.04182031378149986,
-0.11714918166399002,
0.030624695122241974,
0.0637001022696495,
-0.050602033734321594,
0.09399756789207458,
-0.026607844978570938,
0.02434874325990677,
-0.21619100868701935,
-0.0923433005809784,
-0.07810685783624649,
0.014073491096496582,
-0.02846975065767765,
-0.08880961686372757,
-0.08955233544111252,
0.061865195631980896,
0.04217695817351341,
0.006204552017152309,
-0.08390632271766663,
0.009374955669045448,
-0.022625742480158806,
0.09584333002567291,
0.09347860515117645,
0.027142958715558052,
-0.010061126202344894,
0.02240072377026081,
-0.014264870434999466,
0.06947418302297592,
-0.28154072165489197,
-0.00913411844521761,
0.052835334092378616,
-0.02227734960615635,
0.12162382900714874,
-0.007196784019470215,
-0.13396912813186646,
0.07771048694849014,
0.07308303564786911,
-0.07786625623703003,
-0.08056056499481201,
0.02698083408176899,
-0.03999074548482895,
-0.02136622741818428,
-0.07488176226615906,
0.09658552706241608,
-0.09172528982162476,
-0.007215684745460749,
-0.029516365379095078,
0.03379151225090027,
-0.0239871833473444,
0.17552807927131653,
0.053578611463308334,
0.03224863484501839,
-0.045130565762519836,
0.17842943966388702,
0.0821407213807106,
0.0014480046229436994,
0.07495871186256409,
0.0576736144721508,
-0.14566300809383392,
-0.020877931267023087,
0.01322976779192686,
-0.00502488249912858,
0.042484305799007416,
-0.054158765822649,
-0.08097847551107407,
-0.05725419893860817,
-0.031672779470682144,
-0.037518784403800964,
0.020830867812037468,
0.04058396443724632,
0.009239908307790756,
-0.010602225549519062,
-0.06866295635700226,
0.10913756489753723,
0.05271900072693825,
-0.002984020859003067,
-0.042561888694763184,
0.0810394212603569,
0.034684211015701294,
0.08042745292186737,
-0.03258051350712776,
0.041088931262493134,
-0.0841604694724083,
0.030815651640295982,
-0.1684248298406601,
0.04898814857006073,
-0.06702914834022522,
-0.016889290884137154,
-0.04286595433950424,
-0.02070956490933895,
-0.03559793531894684,
0.014110560528934002,
-0.034942176192998886,
-0.012297630310058594,
-0.048012491315603256,
0.03674422204494476,
-0.05838404968380928,
-0.05610693618655205,
0.04192541167140007,
-0.07687065750360489,
0.11677329987287521,
0.029191574081778526,
-0.008576441556215286,
0.029474914073944092,
-0.11725912243127823,
0.04651409387588501,
-0.015214447863399982,
0.006844651885330677,
-0.008553098887205124,
-0.04560000076889992,
0.07704431563615799,
0.004056875593960285,
0.034097444266080856,
0.0025078938342630863,
0.07748319953680038,
-0.07966475188732147,
-0.046423107385635376,
-0.041573718190193176,
0.030564483255147934,
-0.0290832482278347,
0.12620048224925995,
0.09052961319684982,
0.04990954324603081,
0.05279966816306114,
-0.04903312399983406,
-0.014442717656493187,
-0.12277431041002274,
-0.03120119497179985,
-0.021369434893131256,
-0.07444845139980316,
0.016226675361394882,
-0.019721301272511482,
0.07498583197593689,
-0.018970012664794922,
0.21143674850463867,
0.030437778681516647,
-0.11319372802972794,
0.031554270535707474,
-0.08990275859832764,
0.012909477576613426,
0.003057898487895727,
0.12090331315994263,
0.01420731283724308,
-0.0012505269842222333,
-0.07742457091808319,
-0.024128371849656105,
0.025514710694551468,
0.036352332681417465,
0.05403963103890419,
0.18617068231105804,
0.005087873432785273,
0.08073408156633377,
-0.05095067247748375,
-0.07522014528512955,
-0.010460653342306614,
0.02691022865474224,
-0.054118890315294266,
0.04860372841358185,
-0.055665273219347,
-0.00519886240363121,
0.21471670269966125,
-0.11972631514072418,
0.030369529500603676,
-0.024002855643630028,
-0.11942557245492935,
-0.12536977231502533,
-0.07945211976766586,
-0.056080374866724014,
0.01568925939500332,
0.035258010029792786,
-0.07980114221572876,
0.03990720584988594,
0.1949044018983841,
0.055881090462207794,
-0.02558598667383194,
0.16696234047412872,
0.029726579785346985,
-0.10428036749362946,
0.08686873316764832,
-0.0014171014772728086,
-0.006859216373413801,
-0.03220191225409508,
-0.0787326991558075,
0.012929247692227364,
-0.0018100050510838628,
0.08537434041500092,
0.0562807060778141,
-0.027863290160894394,
0.052321042865514755,
0.006687013898044825,
-0.05834386870265007,
-0.023522134870290756,
0.023083003237843513,
0.06433790177106857,
0.15460525453090668,
0.03765963762998581,
-0.04358890280127525,
0.006175507791340351,
0.13840141892433167,
0.01587977446615696,
-0.10722701996564865,
-0.11979372054338455,
0.047251321375370026,
-0.04675032198429108,
-0.033125460147857666,
0.028873585164546967,
-0.07954291254281998,
0.024717364460229874,
0.1934618502855301,
0.15489649772644043,
-0.06711799651384354,
-0.016780201345682144,
-0.037808675318956375,
-0.012873750180006027,
-0.0071840472519397736,
0.1396847516298294,
0.027104932814836502,
0.13720278441905975,
-0.12070627510547638,
0.051645804196596146,
-0.007258898112922907,
-0.049537453800439835,
-0.08062963932752609,
0.13210535049438477,
-0.03051343373954296,
0.05823294445872307,
-0.1230902299284935,
0.006161559838801622,
0.0027305905241519213,
-0.20097748935222626,
0.08592744916677475,
-0.03505701199173927,
-0.1168118342757225,
0.018740449100732803,
-0.1099306121468544,
-0.008662177249789238,
-0.0246468223631382,
0.007422209717333317,
0.060588084161281586,
-0.0004866677336394787,
-0.006067059934139252,
-0.10409840196371078,
-0.02586463838815689,
0.09385888278484344,
0.12302617728710175,
0.17962361872196198,
0.020658619701862335,
0.13957269489765167,
0.0890083909034729,
-0.013896283693611622,
-0.08681084960699081,
0.10959430038928986,
0.03452901542186737,
0.04924178496003151,
0.029442230239510536,
0.09772169589996338,
-0.02037118747830391,
-0.041229818016290665,
0.07767878472805023,
0.09731517732143402,
0.043132953345775604,
-0.01425148919224739,
-0.08007264137268066,
-0.12928368151187897,
0.059089433401823044,
-0.10916159301996231,
0.13962507247924805,
0.13904832303524017,
-0.05577261373400688,
0.02783150225877762,
-0.07902754098176956,
0.05436671897768974,
0.039428550750017166,
0.006044555455446243,
-0.02413095161318779,
-0.17915432155132294,
0.024395683780312538,
-0.04268177971243858,
0.06345149874687195,
-0.21155908703804016,
-0.043247342109680176,
-0.08231455087661743,
-0.04194646328687668,
-0.0909428745508194,
0.12946045398712158,
0.026163607835769653,
0.019192660227417946,
-0.056007418781518936,
-0.10024053603410721,
-0.062473081052303314,
0.04953833669424057,
-0.0721471980214119,
-0.08700238168239594
] |
null | null |
transformers
|
### mbart-large-ar-en
This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en.
Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing)
Note: model has limited training set, not fully trained (do not use for production).
Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
|
{"language": ["ar", "en"], "license": "mit", "tags": ["translation"]}
|
translation
|
akhooli/mbart-large-cc25-ar-en
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"translation",
"ar",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar",
"en"
] |
TAGS
#transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
### mbart-large-ar-en
This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en.
Usage: see example notebook
Note: model has limited training set, not fully trained (do not use for production).
Other models by me: Abed Khooli
|
[
"### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli"
] |
[
"TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli"
] |
[
51,
73
] |
[
"passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli"
] |
[
-0.04427473992109299,
-0.029351765289902687,
-0.0030057281255722046,
0.02293848618865013,
0.09084364771842957,
0.0229164008051157,
0.17348426580429077,
0.06051851436495781,
0.07905763387680054,
-0.04672205448150635,
0.13004794716835022,
0.1321781426668167,
0.02173355408012867,
0.13604778051376343,
-0.0610848069190979,
-0.2315787672996521,
0.003779462305828929,
0.0616605244576931,
-0.12347646802663803,
0.07257022708654404,
0.09426990151405334,
-0.06856103241443634,
0.09543365240097046,
0.018691865727305412,
-0.08644970506429672,
0.02818925492465496,
-0.02661491557955742,
-0.12522605061531067,
0.12367422133684158,
0.10278191417455673,
0.08967605978250504,
0.05629855766892433,
0.0030703821685165167,
-0.11079706996679306,
0.04129260033369064,
-0.032846227288246155,
-0.03336662799119949,
0.02738810144364834,
0.018384220078587532,
0.02282705344259739,
0.2464117407798767,
-0.004224718082696199,
-0.014047417789697647,
-0.017856284976005554,
-0.055852461606264114,
-0.06677142530679703,
0.026555590331554413,
0.01875796541571617,
0.018094783648848534,
0.1068665161728859,
0.0210680291056633,
0.17584329843521118,
-0.059754446148872375,
0.0497477650642395,
0.10029450058937073,
-0.2673127353191376,
-0.00883539579808712,
0.06756003946065903,
0.05221943184733391,
0.0785931646823883,
-0.015876563265919685,
0.01514391228556633,
0.03900754079222679,
0.03126794472336769,
0.046050142496824265,
-0.10318705439567566,
0.05002956464886665,
-0.005126718431711197,
-0.08010748773813248,
-0.012583047151565552,
0.30172213912010193,
-0.04220106825232506,
-0.008540942333638668,
-0.02846977673470974,
-0.019788522273302078,
0.05385107547044754,
-0.004888836294412613,
-0.01220771111547947,
-0.027315102517604828,
0.007343933917582035,
0.015583785250782967,
-0.06111018732190132,
-0.13566887378692627,
-0.00847710482776165,
-0.20941375195980072,
0.1380368024110794,
0.03600197285413742,
0.03520314767956734,
-0.14010120928287506,
0.0540766716003418,
-0.20677290856838226,
-0.07986191660165787,
0.01224349346011877,
-0.10616403818130493,
0.09261789917945862,
0.017601007595658302,
-0.03728435933589935,
-0.06677070260047913,
0.07420878857374191,
0.036873262375593185,
0.04703215882182121,
0.014559820294380188,
0.033048536628484726,
0.07789206504821777,
0.04554273188114166,
0.04521365463733673,
-0.000637151999399066,
-0.05817904695868492,
0.09281034022569656,
0.012167360633611679,
-0.04578002169728279,
-0.020744385197758675,
-0.17239710688591003,
-0.09741899371147156,
-0.028737815096974373,
-0.004158982075750828,
-0.011443499475717545,
0.05910404771566391,
-0.0009094740962609649,
-0.049794428050518036,
0.021560940891504288,
-0.054063670337200165,
-0.041121385991573334,
-0.004437606781721115,
-0.04408911615610123,
0.01695488579571247,
0.054288119077682495,
0.06574395298957825,
-0.04093049839138985,
0.06220395117998123,
-0.05360390245914459,
-0.08192239701747894,
-0.03836324065923691,
-0.07126782089471817,
0.004879013169556856,
-0.08177196234464645,
0.10831165313720703,
-0.19622573256492615,
-0.06594634056091309,
0.009543627500534058,
0.058704908937215805,
-0.0008459882810711861,
-0.07290948927402496,
-0.007914729416370392,
-0.0030115568079054356,
0.014085423201322556,
-0.03971949964761734,
0.06527737528085709,
-0.04996563121676445,
0.053984373807907104,
0.009950866922736168,
0.05888495221734047,
-0.19805480539798737,
0.05159813165664673,
-0.11292151361703873,
-0.014960061758756638,
-0.0693439394235611,
-0.007651189807802439,
0.006050919182598591,
0.06727299094200134,
-0.08981946110725403,
-0.05459921434521675,
-0.1489272564649582,
0.055093757808208466,
0.008214816451072693,
0.09380067884922028,
-0.023211125284433365,
-0.08521105349063873,
0.0759277492761612,
-0.0499998964369297,
-0.14252275228500366,
0.07522266358137131,
-0.05212368071079254,
0.16462796926498413,
0.05083341524004936,
0.11599864810705185,
-0.023631954565644264,
-0.05945038050413132,
0.04892066493630409,
0.045868776738643646,
-0.00258637685328722,
-0.1099124476313591,
0.10405930131673813,
0.021878892555832863,
-0.12200955301523209,
0.025740789249539375,
-0.0625975951552391,
0.006809640675783157,
-0.02017807587981224,
-0.05779087543487549,
0.007526773028075695,
-0.03983951359987259,
-0.0015386578161269426,
-0.01751161925494671,
0.13453300297260284,
-0.02533951960504055,
-0.017223546281456947,
0.013749648816883564,
0.05379388481378555,
-0.012047830037772655,
0.002075935248285532,
-0.05824090167880058,
-0.009432886727154255,
-0.0863681212067604,
0.028580432757735252,
-0.10549511760473251,
0.06493256986141205,
-0.0010681806597858667,
0.005272080190479755,
0.09627692401409149,
0.1638060063123703,
0.03711196407675743,
-0.0029362784698605537,
-0.02235788106918335,
0.06549005955457687,
0.05219655856490135,
0.012702560052275658,
-0.09279142320156097,
-0.1301243007183075,
0.05533521622419357,
-0.0206579752266407,
0.018659071996808052,
-0.12496334314346313,
0.006924955639988184,
-0.04050813242793083,
0.01914094015955925,
-0.04752439260482788,
0.11872468888759613,
-0.037726204842329025,
0.03657619282603264,
-0.048991404473781586,
0.05073845386505127,
0.08691102266311646,
0.031207140535116196,
-0.11904795467853546,
0.1542527675628662,
-0.1695091873407364,
0.17862793803215027,
0.1707245111465454,
-0.10487733781337738,
0.02249184250831604,
-0.14697064459323883,
-0.009770415723323822,
-0.05225140228867531,
0.03202182054519653,
0.011493111960589886,
0.2823222577571869,
-0.03736194595694542,
0.14334136247634888,
-0.10921978205442429,
0.007117909379303455,
0.036838099360466,
-0.08039793372154236,
-0.026900064200162888,
0.1130543053150177,
0.15244877338409424,
-0.1837649792432785,
0.06167832762002945,
0.22068504989147186,
-0.07187338918447495,
0.22056569159030914,
0.02988274395465851,
-0.05570381507277489,
0.012287544086575508,
-0.04711924120783806,
-0.01943553425371647,
0.05682804062962532,
-0.21535123884677887,
-0.02489505708217621,
0.08314069360494614,
0.007077863905578852,
0.09822189062833786,
-0.11297110468149185,
-0.02787049114704132,
0.03733353689312935,
0.06626016646623611,
-0.05320655182003975,
0.09096372127532959,
-0.016233840957283974,
0.0877041444182396,
0.023042025044560432,
-0.06561176478862762,
0.08240652084350586,
-0.014405112713575363,
-0.05672407150268555,
0.1859840750694275,
-0.09240438789129257,
-0.17464658617973328,
-0.1060134619474411,
-0.03505489230155945,
-0.03128805384039879,
0.028144363313913345,
0.09162585437297821,
-0.01424051821231842,
-0.02751985751092434,
-0.02497583068907261,
0.07989567518234253,
-0.07192939519882202,
-0.022424545139074326,
-0.02922196500003338,
0.024983124807476997,
-0.08788743615150452,
-0.06626567244529724,
-0.06626267731189728,
-0.025081615895032883,
-0.11752227693796158,
0.1002725213766098,
-0.15427091717720032,
0.064236119389534,
0.11959467828273773,
-0.016552666202187538,
0.03130712732672691,
-0.000872097269166261,
0.11050072312355042,
-0.04879569262266159,
-0.030107198283076286,
0.1520351767539978,
0.02312924712896347,
0.04058568924665451,
0.14952971041202545,
0.0073369285091757774,
0.007127345539629459,
0.039669860154390335,
-0.03263821080327034,
-0.11178085952997208,
-0.21146735548973083,
-0.07115958631038666,
-0.09868285059928894,
-0.034674033522605896,
0.06965047866106033,
0.028327908366918564,
0.10147123038768768,
0.13009202480316162,
0.0344974659383297,
0.1072888970375061,
-0.018772121518850327,
0.064206063747406,
0.18988767266273499,
0.051884666085243225,
0.09980510175228119,
-0.042801037430763245,
-0.09034890681505203,
0.10972025245428085,
0.12155923247337341,
0.1867140531539917,
-0.008758029900491238,
0.0944288894534111,
0.10053888708353043,
0.06089824065566063,
0.11193253099918365,
0.07967022061347961,
-0.0108552947640419,
-0.015842881053686142,
-0.09137199819087982,
-0.06256793439388275,
-0.0852072462439537,
0.12168212980031967,
-0.011051062494516373,
-0.05927679315209389,
-0.08163172006607056,
0.04775366932153702,
-0.01245780847966671,
0.08557918667793274,
-0.02990121766924858,
-0.21098415553569794,
0.009500736370682716,
0.03161555528640747,
-0.009997930377721786,
-0.06839120388031006,
0.08490484952926636,
0.07524311542510986,
-0.1506718546152115,
-0.020314907655119896,
-0.02148500457406044,
0.11180523037910461,
-0.02193177305161953,
0.06007255241274834,
-0.0980219691991806,
0.0013057212345302105,
-0.015319050289690495,
0.09684821963310242,
-0.30304238200187683,
0.23867610096931458,
-0.013962466269731522,
0.02603215165436268,
-0.13104063272476196,
-0.05134335905313492,
0.07958380877971649,
0.10334917157888412,
0.07457484304904938,
-0.0029781111516058445,
-0.10340864211320877,
-0.07793748378753662,
-0.08271432667970657,
0.09336128830909729,
0.0038784448988735676,
-0.014067525044083595,
0.024666810408234596,
-0.05202952027320862,
0.03516613692045212,
0.0146010871976614,
0.12776118516921997,
-0.05665086582303047,
-0.12885193526744843,
0.06931859254837036,
0.04353708028793335,
-0.06197989732027054,
-0.024588465690612793,
-0.05299828574061394,
0.04027242958545685,
0.07446680217981339,
0.006830762606114149,
-0.09066259860992432,
-0.06326290965080261,
-0.054630715399980545,
0.07058487832546234,
-0.11334633082151413,
0.03897734731435776,
-0.0556546151638031,
-0.021426554769277573,
-0.05879523977637291,
-0.13316278159618378,
0.11616584658622742,
-0.08355321735143661,
-0.022493412718176842,
-0.0120814498513937,
0.016898471862077713,
-0.01974625326693058,
0.040278442203998566,
0.05150424689054489,
-0.034040968865156174,
-0.12926152348518372,
-0.057721469551324844,
-0.03286890685558319,
-0.015470368787646294,
0.14188267290592194,
0.03093435801565647,
-0.10516110807657242,
-0.03910000994801521,
-0.007177376188337803,
-0.08692068606615067,
0.18332752585411072,
0.16379626095294952,
-0.02788023091852665,
0.04091120883822441,
0.24004407227039337,
-0.09608093649148941,
-0.25639766454696655,
-0.08458806574344635,
-0.025174593552947044,
0.04982873424887657,
-0.032837968319654465,
-0.1196378767490387,
0.07009150087833405,
0.043060820549726486,
-0.022124214097857475,
0.026664994657039642,
-0.28414294123649597,
-0.12030958384275436,
0.217982679605484,
0.06471823155879974,
0.399812787771225,
-0.148049458861351,
-0.022419683635234833,
-0.0871780514717102,
-0.1670239120721817,
0.10740874707698822,
-0.06536687165498734,
0.11069762706756592,
-0.04865528643131256,
0.07916155457496643,
0.01497788354754448,
-0.043024636805057526,
0.12092804163694382,
0.017758624628186226,
0.007901778444647789,
-0.09973177313804626,
-0.08187093585729599,
0.043972261250019073,
-0.018328692764043808,
0.04649125784635544,
-0.06277833878993988,
0.013057295233011246,
-0.13551156222820282,
-0.07756230235099792,
-0.0746321752667427,
0.09762509912252426,
-0.006382010877132416,
-0.1067890077829361,
0.00012751633767038584,
0.026260770857334137,
0.010248234495520592,
0.022268258035182953,
0.0921555832028389,
-0.09380215406417847,
0.03664299473166466,
0.13689053058624268,
0.17451642453670502,
-0.03496108204126358,
-0.007189365103840828,
-0.007472704164683819,
-0.019544197246432304,
0.09043656289577484,
-0.15943822264671326,
0.02891472727060318,
0.14293240010738373,
-0.034880347549915314,
0.06990969181060791,
0.048772700130939484,
-0.029493510723114014,
0.020129766315221786,
0.1145075112581253,
-0.09396321326494217,
0.0670580044388771,
-0.04500187933444977,
0.16452445089817047,
0.06447698920965195,
0.0219289381057024,
0.12657839059829712,
-0.08025316894054413,
-0.042284898459911346,
-0.025850526988506317,
-0.014744941145181656,
-0.06255887448787689,
0.09839463979005814,
0.028689207509160042,
0.008912945166230202,
-0.07152558118104935,
0.05366871878504753,
0.006404249928891659,
-0.043464016169309616,
0.030574597418308258,
0.05625573545694351,
-0.09088172018527985,
-0.10908789932727814,
0.008457547053694725,
0.06380299478769302,
-0.18238817155361176,
-0.06710627675056458,
-0.021469904109835625,
-0.12489734590053558,
0.03082430548965931,
0.02449711412191391,
0.0678846687078476,
-0.0324568934738636,
-0.07601061463356018,
-0.06017427146434784,
-0.03280835598707199,
0.04309431463479996,
-0.0005250303074717522,
0.01408444531261921,
-0.043107789009809494,
-0.008142020553350449,
-0.03256934881210327,
0.09855945408344269,
-0.05771978572010994,
-0.02857745997607708,
-0.10437479615211487,
0.021947788074612617,
-0.22496314346790314,
0.030227506533265114,
-0.055837541818618774,
-0.0435074046254158,
-0.02635118179023266,
-0.04455198347568512,
-0.0787455141544342,
0.011622062884271145,
-0.14087814092636108,
0.03332415595650673,
-0.04494526982307434,
0.08287259191274643,
0.06886088848114014,
-0.040425535291433334,
0.08694462478160858,
-0.01627200096845627,
0.06360550969839096,
0.09551321715116501,
-0.0704595223069191,
0.06427861005067825,
-0.01864244043827057,
0.03330341354012489,
0.023078404366970062,
0.06295766681432724,
0.022051498293876648,
-0.0016343409661203623,
0.018512723967432976,
0.08631182461977005,
0.06482066214084625,
0.007862765341997147,
0.06244530528783798,
-0.1233210638165474,
-0.03713315725326538,
-0.03171380236744881,
-0.10904571413993835,
-0.03263896703720093,
-0.014659939333796501,
0.05479307100176811,
0.0722125843167305,
0.12224167585372925,
-0.010198267176747322,
0.02555803768336773,
-0.02296658232808113,
0.0217386856675148,
0.0031018024310469627,
-0.12964282929897308,
0.05286768823862076,
-0.11180661618709564,
0.014940301887691021,
0.012886054813861847,
0.2568942904472351,
0.017445355653762817,
-0.02759730815887451,
-0.0010484147351235151,
-0.0034513957798480988,
0.07305971533060074,
-0.012422165833413601,
0.28793853521347046,
0.05974320322275162,
0.032677698880434036,
-0.051105715334415436,
0.09271930158138275,
0.022002480924129486,
0.10675208270549774,
0.1703685224056244,
0.12186586111783981,
0.1487497240304947,
0.09539373964071274,
0.10796336829662323,
0.020167503505945206,
-0.06434924900531769,
-0.05435311794281006,
0.021750792860984802,
0.06888346374034882,
-0.05768149346113205,
0.04640671983361244,
0.22116969525814056,
-0.07209053635597229,
0.007146921008825302,
-0.06035887449979782,
-0.057017117738723755,
-0.1743905246257782,
-0.17822830379009247,
-0.09395116567611694,
-0.07613398134708405,
-0.017298154532909393,
-0.09856255352497101,
-0.03675992786884308,
0.11969305574893951,
0.042197927832603455,
-0.06904468685388565,
0.09616661816835403,
-0.08163692057132721,
-0.13179540634155273,
0.07090674340724945,
-0.022457677870988846,
0.010707094334065914,
-0.06237158179283142,
-0.023957177996635437,
-0.06308804452419281,
-0.016023993492126465,
-0.008362803608179092,
-0.009813698008656502,
-0.053941331803798676,
-0.04587407037615776,
-0.03260365501046181,
-0.027475295588374138,
-0.11373889446258545,
0.0475146509706974,
0.034620240330696106,
0.0947774201631546,
0.000897725229151547,
-0.05212438479065895,
0.021952863782644272,
0.19660423696041107,
-0.014127770438790321,
-0.14961130917072296,
-0.05601726844906807,
0.10428754985332489,
0.020397663116455078,
0.04297494888305664,
-0.008963655680418015,
0.0051138801500201225,
-0.010029943659901619,
0.27761051058769226,
0.28332337737083435,
-0.11303509026765823,
0.01313777919858694,
0.044645536690950394,
0.030318019911646843,
-0.010156895965337753,
0.1460035741329193,
0.06911514699459076,
0.24818304181098938,
-0.09967049956321716,
0.009364782832562923,
-0.054477840662002563,
0.07613155990839005,
-0.08292389661073685,
0.03747463598847389,
0.0670454204082489,
-0.0811321958899498,
-0.012961911037564278,
0.03871707618236542,
-0.0561700314283371,
-0.07701312750577927,
-0.10718710720539093,
-0.08647828549146652,
-0.08681108057498932,
-0.038462311029434204,
-0.005593553185462952,
0.016315074637532234,
0.07593832910060883,
-0.0782162994146347,
-0.01321094948798418,
-0.022723430767655373,
0.018199782818555832,
-0.1603625863790512,
0.005007722415030003,
0.13491760194301605,
0.04169141873717308,
0.09355495125055313,
-0.00011581019498407841,
0.12229302525520325,
0.07101073861122131,
0.02649318054318428,
0.013735775835812092,
0.09994146227836609,
0.028827399015426636,
0.006753592751920223,
0.02318641170859337,
-0.034493643790483475,
-0.030455008149147034,
-0.038799479603767395,
0.07662270963191986,
-0.10375861078500748,
0.05648256465792656,
-0.02676383964717388,
-0.03460686653852463,
-0.02492137998342514,
0.07374410331249237,
-0.12636823952198029,
0.11689525097608566,
0.11492356657981873,
-0.009720672853291035,
-0.07660811394453049,
-0.02846035547554493,
0.06533564627170563,
0.04221678897738457,
0.013566137291491032,
-0.056667715311050415,
-0.10213898867368698,
-0.05304756760597229,
-0.03264344111084938,
0.022392671555280685,
-0.251797616481781,
-0.04353480786085129,
-0.09798631817102432,
0.0016187598230317235,
-0.08939416706562042,
0.035304922610521317,
0.080794557929039,
-0.0009373840875923634,
-0.04427250474691391,
-0.10224612802267075,
-0.049049630761146545,
0.045321784913539886,
-0.12566448748111725,
-0.0974971279501915
] |
null | null |
transformers
|
### mbart-large-en-ar
This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar.
Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing)
Note: model has limited training set, not fully trained (do not use for production).
|
{"language": ["en", "ar"], "license": "mit", "tags": ["translation"]}
|
translation
|
akhooli/mbart-large-cc25-en-ar
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"translation",
"en",
"ar",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en",
"ar"
] |
TAGS
#transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
### mbart-large-en-ar
This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar.
Usage: see example notebook
Note: model has limited training set, not fully trained (do not use for production).
|
[
"### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)."
] |
[
"TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)."
] |
[
51,
63
] |
[
"passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)."
] |
[
-0.02557206153869629,
-0.07165943086147308,
-0.003741991939023137,
0.014367413707077503,
0.1147843599319458,
0.05487526208162308,
0.13544397056102753,
0.035960905253887177,
0.0511639229953289,
-0.0434897243976593,
0.16543790698051453,
0.16147840023040771,
-0.0006829624180682003,
0.1320985108613968,
-0.061912938952445984,
-0.14332710206508636,
0.028527284041047096,
0.030065370723605156,
-0.03803706541657448,
0.09011751413345337,
0.09248035401105881,
-0.07544051110744476,
0.09670432657003403,
-0.01625339686870575,
-0.11044207960367203,
0.037451330572366714,
-0.024296794086694717,
-0.08959582448005676,
0.10521867871284485,
0.08474111557006836,
0.12226660549640656,
0.07142464071512222,
0.007003766018897295,
-0.17899301648139954,
0.026352791115641594,
-0.046614453196525574,
-0.05332077667117119,
0.03971301019191742,
-0.017782635986804962,
0.017423538491129875,
0.16220982372760773,
-0.02151281200349331,
-0.01340938825160265,
0.002509308746084571,
-0.08910204470157623,
-0.05652524158358574,
0.016832157969474792,
0.008089412935078144,
0.00612700916826725,
0.08359488099813461,
0.025848310440778732,
0.13427232205867767,
-0.0924082100391388,
0.033268041908741,
0.08247745782136917,
-0.27906206250190735,
0.0004671872593462467,
0.08521705865859985,
0.1042025163769722,
0.10294309258460999,
-0.016590649262070656,
0.017882853746414185,
0.07676208764314651,
0.04943684861063957,
0.05340690165758133,
-0.08893423527479172,
-0.017543625086545944,
-0.012537790462374687,
-0.07096895575523376,
-0.0333608016371727,
0.31537747383117676,
-0.045316681265830994,
-0.020129092037677765,
-0.00932792667299509,
-0.013154175132513046,
0.03905139118432999,
-0.016727784648537636,
-0.030449891462922096,
-0.027750451117753983,
0.022523216903209686,
-0.018947167322039604,
-0.07243820279836655,
-0.12623468041419983,
-0.030119387432932854,
-0.23656687140464783,
0.11357910931110382,
0.0028533327858895063,
0.03577711060643196,
-0.1504831463098526,
0.039156921207904816,
-0.1299230307340622,
-0.05316615849733353,
-0.006239313166588545,
-0.10150326043367386,
0.11930281668901443,
-0.015029165893793106,
-0.024971168488264084,
-0.02346186339855194,
0.057039711624383926,
0.08010698854923248,
0.004734849091619253,
0.01168003398925066,
0.03694895654916763,
0.12134002894163132,
0.03258688002824783,
0.02645941823720932,
0.018707020208239555,
-0.06436428427696228,
0.05090619996190071,
-0.029704241082072258,
-0.03737448528409004,
-0.01950230449438095,
-0.20952370762825012,
-0.08249378949403763,
-0.050044432282447815,
0.0399303175508976,
-0.019115425646305084,
0.06641169637441635,
-0.023047761991620064,
-0.01687319576740265,
0.14111995697021484,
-0.0436280220746994,
-0.02458237111568451,
0.025211451575160027,
-0.01680379919707775,
0.017454903572797775,
0.04600553959608078,
0.02422201819717884,
-0.021526165306568146,
0.07998466491699219,
-0.06682386994361877,
-0.059723369777202606,
-0.0455876886844635,
-0.10090693831443787,
0.04272028058767319,
-0.030974604189395905,
0.07097917795181274,
-0.20792095363140106,
-0.09893818199634552,
0.02282382734119892,
0.04042349010705948,
0.004906456917524338,
-0.0007658944232389331,
-0.055827781558036804,
0.020035289227962494,
0.03962017968297005,
-0.05846979841589928,
0.0011034061899408698,
-0.035044435411691666,
0.05710434168577194,
-0.011847970075905323,
0.08975255489349365,
-0.20064480602741241,
0.029402635991573334,
-0.1235850378870964,
-0.0007984153344295919,
-0.03829660266637802,
0.018913976848125458,
0.019265059381723404,
0.09763124585151672,
-0.08072593808174133,
-0.07394644618034363,
-0.18797528743743896,
0.04912467300891876,
-0.0048275175504386425,
0.13656555116176605,
-0.07606784254312515,
-0.09789282083511353,
0.09354294091463089,
-0.05246930941939354,
-0.14795620739459991,
0.08190862834453583,
-0.03937874361872673,
0.1738971322774887,
0.057753678411245346,
0.12327931076288223,
-0.07086585462093353,
-0.05892235413193703,
0.02046225592494011,
0.07552381604909897,
-0.05025425925850868,
-0.12047702074050903,
0.08522827923297882,
0.01804623007774353,
-0.16684071719646454,
0.011732266284525394,
-0.010125921107828617,
0.039419084787368774,
-0.034545768052339554,
-0.06149040535092354,
0.029238060116767883,
0.001031748135574162,
0.07196266949176788,
-0.04061512276530266,
0.0693897157907486,
-0.04884521663188934,
-0.0003479825099930167,
0.05194614827632904,
0.03680502250790596,
-0.02412174455821514,
0.016227778047323227,
-0.07651101797819138,
-0.029911112040281296,
-0.09016972035169601,
0.03563102334737778,
-0.09158787131309509,
0.05310649052262306,
-0.0064487336203455925,
0.006626543123275042,
0.0817951112985611,
0.1253696084022522,
0.03803190588951111,
-0.02285338193178177,
-0.020226892083883286,
0.05746617913246155,
0.06458242237567902,
-0.01054869219660759,
-0.03898489847779274,
-0.13581237196922302,
0.051102641969919205,
-0.02888195589184761,
-0.028135547414422035,
-0.15099099278450012,
0.018618516623973846,
-0.05241970345377922,
-0.0028105585370212793,
-0.0385330505669117,
0.10891170799732208,
-0.0368531160056591,
0.07441339641809464,
-0.06973863393068314,
0.0581774041056633,
0.0937580019235611,
0.01280733197927475,
-0.1292330026626587,
0.14231067895889282,
-0.14569512009620667,
0.18068505823612213,
0.16794048249721527,
-0.16634930670261383,
-0.012896173633635044,
-0.08347251266241074,
0.02079286053776741,
-0.04034344106912613,
0.03132215887308121,
0.032256461679935455,
0.1971161663532257,
-0.031856756657361984,
0.17184868454933167,
-0.11777268350124359,
-0.006742741446942091,
0.02256450057029724,
-0.10397320240736008,
-0.04455207660794258,
0.06513505429029465,
0.13685168325901031,
-0.18642325699329376,
0.09227695316076279,
0.25791946053504944,
-0.0723404735326767,
0.22352108359336853,
0.08918600529432297,
-0.03158873692154884,
0.0034942941274493933,
-0.027456775307655334,
-0.023547396063804626,
0.04309472814202309,
-0.2052726000547409,
-0.024195626378059387,
0.06563789397478104,
0.033819276839494705,
0.11690562963485718,
-0.08893188089132309,
-0.03678063303232193,
0.02868838608264923,
0.02501991204917431,
-0.12806785106658936,
0.06669887900352478,
-0.007393527310341597,
0.07807996869087219,
0.042079076170921326,
-0.002081006532534957,
0.09292761981487274,
-0.005712294485419989,
-0.08899522572755814,
0.1902581751346588,
-0.11755687743425369,
-0.2744097411632538,
-0.14594557881355286,
-0.08889982104301453,
0.004590843338519335,
0.05004588142037392,
0.09800395369529724,
-0.0650765672326088,
-0.014936824329197407,
0.004874662961810827,
0.03365417197346687,
-0.078815758228302,
-0.03705374151468277,
0.04249422252178192,
0.05638207867741585,
-0.03804740682244301,
-0.07750307023525238,
-0.03336483985185623,
-0.023186707869172096,
-0.09309856593608856,
0.08323471248149872,
-0.1323729157447815,
0.10017696022987366,
0.12962251901626587,
-0.030068809166550636,
0.0237860269844532,
-0.01786656491458416,
0.18626387417316437,
-0.04572366550564766,
-0.06716503202915192,
0.10769540816545486,
-0.010558288544416428,
0.04134124144911766,
0.18780162930488586,
0.03309730067849159,
-0.018834641203284264,
0.02214936912059784,
-0.1016431674361229,
-0.0982719212770462,
-0.2339749038219452,
-0.09006575495004654,
-0.10878030210733414,
-0.040287647396326065,
0.04961118847131729,
0.030029786750674248,
0.12151119858026505,
0.10524601489305496,
0.01031012274324894,
0.07078861445188522,
-0.021248599514365196,
0.09652098268270493,
0.22107312083244324,
0.0328977033495903,
0.09711761772632599,
-0.07050620019435883,
-0.08063143491744995,
0.09867092967033386,
0.16305950284004211,
0.17056116461753845,
0.0888030081987381,
0.1090899184346199,
0.09572767466306686,
0.0613233707845211,
0.11105311661958694,
0.11107712239027023,
-0.033838413655757904,
-0.031044332310557365,
-0.08842010051012039,
-0.04830126091837883,
-0.09657367318868637,
0.07517115771770477,
-0.022362614050507545,
-0.04154438525438309,
-0.05539064481854439,
-0.006780785974115133,
0.05567355826497078,
-0.02630007266998291,
-0.016500739380717278,
-0.21180197596549988,
-0.02183934859931469,
0.03723625838756561,
0.013064042665064335,
-0.06395672261714935,
0.05542656034231186,
0.11706192791461945,
-0.1056385189294815,
-0.010003713890910149,
0.036874085664749146,
0.11294407397508621,
-0.014319480396807194,
0.07034385204315186,
-0.08682602643966675,
0.018780069425702095,
0.0046560633927583694,
0.10534927248954773,
-0.2939112186431885,
0.2290729135274887,
0.01332535594701767,
0.03748020529747009,
-0.09114392846822739,
-0.06139221787452698,
0.011649020947515965,
0.1602424681186676,
0.09301839768886566,
0.017276907339692116,
-0.13879404962062836,
-0.11880829185247421,
-0.0026621255092322826,
0.06672701984643936,
0.06655183434486389,
0.06743726134300232,
0.003714661579579115,
-0.05172841250896454,
0.03498364984989166,
0.01352318562567234,
0.04471655189990997,
-0.09483078122138977,
-0.16531093418598175,
0.053354695439338684,
0.08124405145645142,
-0.042417336255311966,
0.0031297721434384584,
-0.005478073842823505,
0.061910077929496765,
0.1424226313829422,
-0.1421000361442566,
-0.05005321279168129,
-0.05045623332262039,
-0.13324646651744843,
0.06744411587715149,
-0.10856495797634125,
0.05444473400712013,
-0.05665965750813484,
-0.014805268496274948,
-0.0788048654794693,
-0.109674371778965,
0.11099844425916672,
-0.1287858784198761,
0.009450268931686878,
-0.0318044014275074,
-0.021855749189853668,
-0.029982231557369232,
0.04541156068444252,
0.06560918688774109,
-0.03763751685619354,
-0.13046783208847046,
-0.08751915395259857,
-0.04442794620990753,
-0.03988806903362274,
0.10153324902057648,
0.021485386416316032,
-0.14471794664859772,
-0.10208874940872192,
-0.01470524538308382,
-0.08754190057516098,
0.21565361320972443,
0.17386221885681152,
-0.06948946416378021,
0.05958157032728195,
0.3301440477371216,
-0.09153679013252258,
-0.29033026099205017,
-0.11278800666332245,
-0.040846262127161026,
0.01171192154288292,
-0.0660567507147789,
-0.14753088355064392,
0.0067192791029810905,
0.06343244761228561,
-0.0037811973597854376,
0.008842848241329193,
-0.2991583049297333,
-0.10220705717802048,
0.13823924958705902,
-0.017218781635165215,
0.40407341718673706,
-0.10389551520347595,
-0.0448702834546566,
-0.11813660711050034,
-0.14783400297164917,
0.12043482810258865,
0.023590996861457825,
0.11274588853120804,
-0.02221926860511303,
0.09759074449539185,
-0.005791925359517336,
-0.04542800039052963,
0.14184719324111938,
0.013101055286824703,
0.017712272703647614,
-0.07070665806531906,
-0.08739093691110611,
0.05094613879919052,
0.009662489406764507,
0.04558322951197624,
-0.0642198920249939,
0.018937161192297935,
-0.07429667562246323,
-0.08013507723808289,
-0.05988650768995285,
0.08559427410364151,
0.008353031240403652,
-0.09874366223812103,
-0.028720427304506302,
-0.011628828011453152,
0.00014034740161150694,
0.015574085526168346,
0.10451814532279968,
-0.11358366906642914,
0.06818945705890656,
0.11444514989852905,
0.21509946882724762,
-0.13057315349578857,
0.037559621036052704,
0.03279866278171539,
-0.05614015832543373,
0.0945078432559967,
-0.17180587351322174,
0.03750121220946312,
0.11150208115577698,
-0.051442500203847885,
0.09708739072084427,
0.0616346038877964,
0.013754854910075665,
0.04217297211289406,
0.16854071617126465,
-0.08030054718255997,
0.05983252823352814,
0.006000441499054432,
0.1504242718219757,
0.037610799074172974,
0.02545936405658722,
0.06259629875421524,
-0.06058540567755699,
-0.0207880400121212,
-0.03727113455533981,
-0.018920453265309334,
-0.08750506490468979,
0.07769094407558441,
0.050002213567495346,
0.017501093447208405,
-0.07530437409877777,
0.05402173846960068,
0.0433746874332428,
-0.07886482030153275,
0.013456554152071476,
0.06635977327823639,
-0.09830592572689056,
-0.09400388598442078,
-0.07136904448270798,
0.0844433456659317,
-0.1948881894350052,
-0.0904012992978096,
0.013736961409449577,
-0.10050522536039352,
0.03745654597878456,
0.06320060789585114,
0.06323374807834625,
-0.000625974265858531,
-0.05708146467804909,
-0.042133770883083344,
-0.0463363379240036,
0.002925523556768894,
-0.025611238554120064,
0.009102525189518929,
-0.0459914393723011,
0.00831806380301714,
0.016984518617391586,
0.11102937906980515,
-0.05959051847457886,
-0.010859179310500622,
-0.10682689398527145,
0.025907406583428383,
-0.17245012521743774,
0.031837426126003265,
-0.1003161296248436,
-0.03975922241806984,
0.0009430015925318003,
-0.053413935005664825,
-0.10303325951099396,
-0.02010117657482624,
-0.11843310296535492,
0.049098242074251175,
-0.003532340982928872,
0.08654453605413437,
0.027829019352793694,
-0.006971947383135557,
0.08825434744358063,
0.003232656279578805,
0.055731985718011856,
0.10149351507425308,
-0.06722770631313324,
0.0664929747581482,
-0.10179951786994934,
-0.019985049962997437,
0.040340177714824677,
0.0673108771443367,
0.014325547032058239,
0.056915611028671265,
0.02126331254839897,
0.10822142660617828,
0.04595126956701279,
0.02291223034262657,
0.05865439027547836,
-0.12168831378221512,
0.008216521702706814,
-0.051523979753255844,
-0.12558968365192413,
-0.025265686213970184,
-0.02014358714222908,
0.07832381129264832,
0.034976352006196976,
0.16126208007335663,
-0.04797297716140747,
0.01269600261002779,
-0.022283541038632393,
0.022194065153598785,
-0.008875946514308453,
-0.13763584196567535,
-0.05848241224884987,
-0.11238791793584824,
-0.0115978317335248,
0.014332365244626999,
0.3053741157054901,
-0.05158468708395958,
-0.06786853820085526,
0.005039695184677839,
0.003164564725011587,
-0.054567839950323105,
-0.041134197264909744,
0.24776972830295563,
0.0756666362285614,
0.0013959604548290372,
-0.10496468096971512,
0.07496679574251175,
0.020405445247888565,
0.03130689263343811,
0.14844800531864166,
0.1404472291469574,
0.13961651921272278,
0.09096702933311462,
0.04740277677774429,
0.027280285954475403,
-0.04227729141712189,
0.008045010268688202,
0.01338431891053915,
0.02736266702413559,
-0.03448391333222389,
0.06379417330026627,
0.2630023658275604,
-0.05168624594807625,
0.01002715714275837,
-0.029951194301247597,
-0.037467680871486664,
-0.18302686512470245,
-0.10126631706953049,
-0.10082591325044632,
-0.09757260233163834,
-0.00795326940715313,
-0.10856829583644867,
-0.013297445140779018,
0.07211310416460037,
0.047755271196365356,
-0.05543026700615883,
0.08025836944580078,
-0.04542365297675133,
-0.10739514231681824,
0.011303129605948925,
-0.02970045618712902,
0.031473394483327866,
-0.10694864392280579,
-0.0312286838889122,
-0.019130747765302658,
-0.01910429261624813,
0.034957654774188995,
0.03246494382619858,
-0.002689780667424202,
-0.03550795093178749,
-0.076483815908432,
-0.055412184447050095,
-0.11817486584186554,
0.10627901554107666,
0.01353300642222166,
0.08267219364643097,
-0.019957978278398514,
-0.057603463530540466,
0.029387541115283966,
0.1573915183544159,
-0.016050809994339943,
-0.198294997215271,
-0.052308253943920135,
0.15390877425670624,
0.050291404128074646,
0.10190503299236298,
-0.034463346004486084,
-0.0023199194110929966,
-0.04356791079044342,
0.3061256408691406,
0.30902719497680664,
-0.10104840248823166,
0.0003282948164269328,
0.03445805609226227,
0.04537554830312729,
0.019522124901413918,
0.1377849280834198,
0.08719252049922943,
0.24564622342586517,
-0.058719452470541,
-0.031848128885030746,
-0.06755504757165909,
0.10181962698698044,
-0.07352613657712936,
0.022073589265346527,
0.022390101104974747,
-0.06708429008722305,
-0.036949120461940765,
0.045328591018915176,
-0.07793648540973663,
0.007663298398256302,
-0.07506881654262543,
-0.08656421303749084,
-0.047082096338272095,
-0.021890075877308846,
0.09508538991212845,
0.0037421626038849354,
0.03910847753286362,
-0.05058510601520538,
-0.056462328881025314,
-0.008676356635987759,
0.011388101615011692,
-0.1646794080734253,
-0.007100853603333235,
0.09323454648256302,
0.07415714859962463,
0.12646465003490448,
0.004594699013978243,
0.10597220808267593,
0.06062338128685951,
0.03723888471722603,
-0.008719241246581078,
0.12062305957078934,
0.023021776229143143,
0.0670761689543724,
0.028655776754021645,
-0.039004962891340256,
-0.026604369282722473,
-0.005541543010622263,
0.07761403173208237,
-0.15577973425388336,
0.07852634787559509,
-0.02799646556377411,
-0.05928484722971916,
-0.0031294934451580048,
0.06137607991695404,
-0.05382028594613075,
0.09367617964744568,
0.0940409004688263,
0.012907908298075199,
-0.06255301088094711,
-0.035578563809394836,
0.0419711209833622,
0.06972701102495193,
0.025497347116470337,
-0.06649744510650635,
-0.1108844131231308,
-0.04212544485926628,
-0.03459213674068451,
0.041155196726322174,
-0.21846620738506317,
-0.007182619534432888,
-0.06113515794277191,
0.0332585945725441,
-0.09194229543209076,
0.05606812238693237,
0.05142337828874588,
0.0157118309289217,
-0.025747012346982956,
-0.09326143562793732,
0.0027378592640161514,
0.05352864786982536,
-0.08392952382564545,
-0.09172411262989044
] |
null | null |
transformers
|
## personachat-arabic (conversational AI)
This is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English)
and fine-tuned from [akhooli/gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) which is a limited text generation model.
Usage: see the last section of this [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing)
Note: model has limited training set which was machine translated (do not use for production).
|
{"language": ["ar"], "license": "mit", "tags": ["conversational"]}
|
text-generation
|
akhooli/personachat-arabic
|
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"conversational",
"ar",
"license:mit",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar"
] |
TAGS
#transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us
|
## personachat-arabic (conversational AI)
This is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English)
and fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model.
Usage: see the last section of this example notebook
Note: model has limited training set which was machine translated (do not use for production).
|
[
"## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)."
] |
[
"TAGS\n#transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)."
] |
[
54,
101
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us \n## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)."
] |
[
-0.023916808888316154,
-0.09073778241872787,
-0.001003952813334763,
-0.003482805099338293,
0.12851417064666748,
-0.0012332783080637455,
0.2710667848587036,
0.058486390858888626,
0.025369742885231972,
-0.05149206891655922,
0.12136092036962509,
-0.06264293193817139,
0.06768041104078293,
0.1720007061958313,
0.10368073731660843,
-0.24242256581783295,
0.09464945644140244,
-0.03649783879518509,
0.1289396435022354,
0.131923645734787,
0.14146652817726135,
-0.003772428957745433,
0.08418188989162445,
0.0630875676870346,
-0.13430801033973694,
-0.052465200424194336,
0.024824369698762894,
-0.13403257727622986,
0.1446579396724701,
0.06897641718387604,
0.10602579265832901,
-0.0131156537681818,
0.0007898177718743682,
-0.16327199339866638,
0.035739555954933167,
0.004392191302031279,
-0.0060300687327980995,
-0.016363147646188736,
-0.02773931436240673,
-0.004292253404855728,
0.2212839424610138,
0.02851617895066738,
-0.030654175207018852,
0.005452743731439114,
-0.10200455039739609,
-0.10967535525560379,
0.04819914698600769,
0.06306616216897964,
0.06260154396295547,
0.11967481672763824,
-0.036772411316633224,
0.12979504466056824,
-0.10925837606191635,
0.08150040358304977,
0.09250856935977936,
-0.23988915979862213,
-0.06365550309419632,
0.024613428860902786,
0.0068998620845377445,
0.08898547291755676,
-0.03497665002942085,
0.08128196746110916,
-0.013743754476308823,
0.009831380099058151,
-0.02501782216131687,
-0.0442085862159729,
-0.0033553617540746927,
-0.08042018860578537,
-0.0341816321015358,
-0.059033382683992386,
0.28074148297309875,
-0.008467182517051697,
-0.04465535655617714,
-0.1043953001499176,
-0.01518118567764759,
0.03436098247766495,
-0.0072779348120093346,
-0.03902331367135048,
-0.07402707636356354,
0.001241207355633378,
0.013531375676393509,
-0.07526978105306625,
-0.11538780480623245,
-0.12099864333868027,
-0.18746857345104218,
0.17913216352462769,
0.039700947701931,
0.08222943544387817,
-0.1108810231089592,
-0.007344062440097332,
-0.10344403237104416,
-0.0369887612760067,
-0.02427351102232933,
-0.0824202373623848,
0.08040192723274231,
0.04387383908033371,
-0.07104725390672684,
-0.031125320121645927,
0.06242344155907631,
-0.05691869184374809,
-0.12354529649019241,
0.055019691586494446,
-0.007590734865516424,
0.08382612466812134,
0.01920519769191742,
0.15499214828014374,
-0.022817391902208328,
0.11690326035022736,
-0.002950591966509819,
0.015576908364892006,
0.009686650708317757,
-0.030113460496068,
-0.1274818629026413,
0.05465413257479668,
0.10010603815317154,
0.03664223104715347,
-0.0629725307226181,
0.16938649117946625,
-0.021517986431717873,
0.01655695214867592,
0.03288111463189125,
-0.07674732804298401,
-0.06697026640176773,
0.024459289386868477,
-0.09953010827302933,
-0.06585266441106796,
0.010135779157280922,
0.004970356356352568,
-0.0880405604839325,
-0.10364552587270737,
-0.005944258999079466,
0.043682873249053955,
-0.02526130899786949,
-0.033685918897390366,
-0.014546655118465424,
-0.005511237308382988,
0.002029143273830414,
-0.2708682715892792,
-0.14146406948566437,
0.05406288057565689,
0.051937755197286606,
-0.01933407038450241,
0.00980877410620451,
-0.03436803072690964,
0.05233510956168175,
0.02422359213232994,
-0.10138086974620819,
-0.10096084326505661,
-0.06195884570479393,
0.08844288438558578,
0.01772286556661129,
0.11952494084835052,
-0.11010371148586273,
0.04958415776491165,
-0.07742854207754135,
-0.0023531208280473948,
-0.1354409009218216,
0.06091834604740143,
-0.011832070536911488,
0.003350527724251151,
-0.07997499406337738,
-0.006147376261651516,
-0.06251084059476852,
0.07339072227478027,
-0.033293530344963074,
0.14309754967689514,
-0.11670535802841187,
-0.07548801600933075,
0.2266932725906372,
-0.11773707717657089,
-0.09304886311292648,
0.15913747251033783,
-0.022579753771424294,
0.10156239569187164,
0.10047520697116852,
0.2983250617980957,
-0.10812495648860931,
-0.08830421417951584,
0.01767316274344921,
0.1367974579334259,
-0.019602805376052856,
0.054895300418138504,
0.07355272769927979,
0.0025236448273062706,
-0.05832875892519951,
0.039344582706689835,
-0.08356834203004837,
0.15594080090522766,
-0.03883926197886467,
-0.06628573685884476,
0.05787880718708038,
-0.07355859130620956,
0.11392253637313843,
0.022368790581822395,
0.13201558589935303,
-0.05410011485219002,
-0.11458414047956467,
0.008572525344789028,
0.051657117903232574,
0.005558086559176445,
0.012359960936009884,
-0.1909646987915039,
0.058387551456689835,
0.04996391013264656,
0.010619551874697208,
-0.05423866584897041,
-0.020883500576019287,
-0.06313695013523102,
0.10343573242425919,
0.046212878078222275,
0.02291036956012249,
0.047853585332632065,
-0.02821503020823002,
-0.025018839165568352,
0.007774664089083672,
0.08895574510097504,
0.020628279075026512,
-0.029107552021741867,
-0.06092001870274544,
0.052565477788448334,
-0.020789485424757004,
0.17868253588676453,
0.07022834569215775,
-0.004531780257821083,
-0.030237233266234398,
0.04584027826786041,
-0.049872949719429016,
0.02650088258087635,
0.008442657999694347,
0.0537208653986454,
0.0029095879290252924,
0.0004744826874230057,
0.1108715608716011,
0.015868468210101128,
-0.10413128137588501,
0.21381743252277374,
-0.1758134365081787,
0.19519083201885223,
0.1765076071023941,
-0.06192827597260475,
-0.01617828756570816,
0.025730183348059654,
0.02647683396935463,
0.0069334739819169044,
0.05226333066821098,
-0.023682337254285812,
0.2791191041469574,
-0.055959925055503845,
0.155427947640419,
-0.07630429416894913,
0.08573462814092636,
-0.01762666553258896,
-0.10015996545553207,
-0.08098037540912628,
0.03338959068059921,
-0.04289820045232773,
-0.08470242470502853,
0.1270788460969925,
0.056338436901569366,
0.027503525838255882,
0.266114205121994,
0.05189633369445801,
0.060422904789447784,
0.00878984946757555,
0.0306189376860857,
-0.055918071419000626,
0.08167548477649689,
-0.32203343510627747,
-0.12014098465442657,
0.02058955654501915,
0.04594530537724495,
0.04927752539515495,
-0.07171487808227539,
-0.04058270901441574,
0.0059684100560843945,
-0.08027057349681854,
-0.006466940511018038,
0.05604604631662369,
-0.030663179233670235,
0.10535536706447601,
0.04539061710238457,
-0.09345816820859909,
0.04200657829642296,
0.017940843477845192,
-0.09850328415632248,
0.15458698570728302,
-0.10956139117479324,
-0.40772300958633423,
-0.0013489018892869353,
-0.03314099833369255,
-0.05499233305454254,
0.05785486102104187,
0.07932472974061966,
-0.11995820701122284,
0.048127807676792145,
-0.040461137890815735,
0.057998351752758026,
-0.0453350655734539,
-0.04208935424685478,
0.034061577171087265,
-0.08455511927604675,
0.012845280580222607,
-0.11557327955961227,
-0.04469844698905945,
-0.004684838000684977,
-0.16382235288619995,
0.0712682455778122,
-0.1707839071750641,
-0.0002569057687651366,
0.04882637783885002,
-0.02133367396891117,
0.05868341401219368,
-0.09189797937870026,
0.23468662798404694,
-0.10111114382743835,
-0.020999476313591003,
0.18695998191833496,
0.08319532871246338,
-0.016340451315045357,
0.1843736469745636,
-0.020742859691381454,
-0.02434704080224037,
-0.0020607388578355312,
-0.04977357015013695,
-0.09328150004148483,
-0.017521632835268974,
-0.12237969785928726,
-0.010056703351438046,
0.017900295555591583,
-0.005796230398118496,
0.05601944774389267,
0.05466265231370926,
0.029041530564427376,
-0.03376695513725281,
-0.005260971374809742,
0.0022291552741080523,
0.017918717116117477,
0.0806756392121315,
-0.07586362212896347,
0.13432300090789795,
-0.013257574290037155,
-0.023180268704891205,
0.04462553188204765,
0.00903703086078167,
0.09968121349811554,
-0.012439919635653496,
0.047354068607091904,
0.07312274724245071,
0.12126114219427109,
0.09065160900354385,
-0.03670574724674225,
0.01369396410882473,
-0.05827080085873604,
-0.02305569499731064,
0.0004977778880856931,
-0.24330677092075348,
0.03917054831981659,
0.05509575083851814,
-0.06667501479387283,
-0.06752058863639832,
0.04183950647711754,
0.1325352042913437,
0.00020383537048473954,
-0.05083556845784187,
-0.1538705676794052,
-0.08113627880811691,
-0.007693160325288773,
-0.0551203191280365,
-0.10574917495250702,
0.06822885572910309,
0.09033020585775375,
-0.18514074385166168,
-0.016345730051398277,
0.03752979636192322,
0.0352608859539032,
-0.08511800318956375,
0.08509960025548935,
-0.06784577667713165,
-0.1437220722436905,
0.03006647154688835,
0.07603779435157776,
-0.3106405735015869,
0.28555312752723694,
0.021243706345558167,
0.07790104299783707,
-0.10170230269432068,
-0.05738119035959244,
0.07108354568481445,
0.11471300572156906,
0.12169572710990906,
0.06381849199533463,
-0.09967833012342453,
-0.09992698580026627,
-0.05187682434916496,
0.08791912347078323,
0.038795508444309235,
0.0714954361319542,
-0.09706387668848038,
-0.02821279689669609,
0.04994744434952736,
-0.03147995099425316,
0.09695077687501907,
-0.1173117384314537,
-0.1168336346745491,
0.015751535072922707,
0.14349569380283356,
0.03817586600780487,
-0.08566141128540039,
-0.02124433033168316,
-0.05142427235841751,
0.06964506953954697,
0.07319989800453186,
-0.11427874863147736,
-0.048828352242708206,
-0.03420928120613098,
-0.09464071691036224,
-0.08429093658924103,
0.017800020053982735,
-0.09884463250637054,
-0.03557726740837097,
0.005997473374009132,
-0.048790208995342255,
0.044394027441740036,
-0.08578896522521973,
0.07270736247301102,
0.013450688682496548,
0.03948678448796272,
0.037829361855983734,
0.04827309772372246,
0.05475854128599167,
-0.05739613249897957,
-0.06251227110624313,
-0.03594546765089035,
-0.05053047090768814,
-0.008929255418479443,
-0.10800237953662872,
0.022726543247699738,
-0.021337643265724182,
-0.1875518560409546,
-0.062461722642183304,
-0.10842687636613846,
0.2167719006538391,
0.04147670418024063,
-0.021918360143899918,
0.12322736531496048,
0.2708079218864441,
0.0023701591417193413,
-0.2960950434207916,
-0.1833445280790329,
0.0012383273569867015,
-0.0014611365040764213,
-0.07903065532445908,
-0.1464860588312149,
0.010980826802551746,
-0.009528388269245625,
-0.0033924842718988657,
-0.09524547308683395,
-0.2836056351661682,
-0.08791596442461014,
0.24001650512218475,
0.05419209226965904,
0.3681720197200775,
-0.1453838050365448,
-0.01720907911658287,
-0.06222590059041977,
-0.08612176030874252,
-0.02647247165441513,
-0.1070023775100708,
0.1234411671757698,
-0.002931507769972086,
0.15233924984931946,
-0.011856751516461372,
0.016231486573815346,
0.1427789330482483,
-0.05871408060193062,
-0.028137903660535812,
-0.1596401184797287,
-0.11481790244579315,
0.011681684292852879,
0.005063091404736042,
0.0560818612575531,
-0.12993471324443817,
-0.03551693260669708,
-0.14358216524124146,
-0.04829961061477661,
-0.0939466580748558,
0.004196078982204199,
0.023583145812153816,
-0.07179944217205048,
-0.002415003487840295,
0.05172962322831154,
0.03635338693857193,
0.0662195011973381,
-0.0676446333527565,
-0.11979006230831146,
0.1775835156440735,
0.10079730302095413,
0.05335497856140137,
-0.18524713814258575,
0.004832676146179438,
-0.016125790774822235,
0.011749709956347942,
0.0945722907781601,
-0.11661523580551147,
-0.02584565058350563,
0.017957843840122223,
-0.053986065089702606,
0.10419884324073792,
0.0061929901130497456,
-0.007906136102974415,
0.09488048404455185,
0.10129077732563019,
-0.06433112919330597,
-0.1505516618490219,
0.008315835148096085,
0.20570534467697144,
0.07951885461807251,
0.02783893793821335,
0.1521298885345459,
-0.03863300383090973,
0.007445208728313446,
-0.08942771703004837,
0.00925770215690136,
-0.04172862321138382,
0.04163256287574768,
-0.040102288126945496,
0.05016142129898071,
-0.06685950607061386,
0.05539987236261368,
0.030938299372792244,
0.005122179631143808,
0.10451740026473999,
0.011637969873845577,
-0.13166438043117523,
-0.13515283167362213,
-0.09217701852321625,
0.04177909344434738,
0.012808430939912796,
-0.12954770028591156,
-0.010813656263053417,
-0.15715350210666656,
-0.07681199163198471,
0.0579829178750515,
0.0789702832698822,
0.007332099135965109,
-0.024227457121014595,
-0.007024962920695543,
0.05280863121151924,
-0.0036974234972149134,
-0.054660528898239136,
-0.0873747169971466,
-0.04230345040559769,
0.0900345891714096,
0.03469158336520195,
0.13390304148197174,
-0.06730494648218155,
-0.09607783704996109,
-0.15888364613056183,
0.07889027893543243,
-0.14742305874824524,
-0.010354166850447655,
-0.10145861655473709,
-0.0221570897847414,
0.0479138046503067,
-0.019879134371876717,
-0.05108172819018364,
-0.011271413415670395,
-0.05095021799206734,
0.040369730442762375,
-0.007741434965282679,
0.04533737525343895,
-0.03649831935763359,
0.0403408482670784,
0.014036529697477818,
0.037343718111515045,
0.13757851719856262,
0.138461634516716,
-0.08470321446657181,
0.08563157171010971,
-0.21449658274650574,
-0.001218363526277244,
-0.029144488275051117,
-0.018454793840646744,
0.03017091378569603,
-0.03094611130654812,
0.04340041056275368,
0.11483760178089142,
0.0763499066233635,
0.06787221878767014,
0.21131011843681335,
-0.024492360651493073,
0.061858925968408585,
-0.00024546353961341083,
-0.004859580658376217,
-0.057471126317977905,
0.059554945677518845,
0.06996551156044006,
0.0019131008302792907,
0.050956640392541885,
-0.08502930402755737,
-0.04063279926776886,
0.013960163109004498,
0.056097738444805145,
0.01475053932517767,
-0.10505050420761108,
-0.002506792079657316,
-0.09511372447013855,
0.004089525435119867,
0.0020189068745821714,
0.2574852705001831,
0.159400075674057,
-0.0676557645201683,
0.033919911831617355,
-0.011749576777219772,
0.021249059587717056,
-0.050993941724300385,
0.07717543095350266,
-0.012744014151394367,
0.008264632895588875,
0.034696873277425766,
0.007349046412855387,
-0.002085390966385603,
0.05417061969637871,
0.07534608989953995,
0.1276857554912567,
0.04046526923775673,
0.12191881984472275,
-0.022645853459835052,
-0.004772610031068325,
-0.056077152490615845,
-0.2271026223897934,
-0.11166782677173615,
0.030064091086387634,
-0.10299573093652725,
0.05382995307445526,
0.19848357141017914,
-0.04040835425257683,
0.014803365804255009,
-0.11081136763095856,
-0.09197863191366196,
-0.09733882546424866,
-0.10692284256219864,
-0.025994349271059036,
-0.16152237355709076,
0.013677548617124557,
-0.04052608087658882,
-0.06908595561981201,
0.20202478766441345,
0.03557084873318672,
-0.058572277426719666,
0.2447764277458191,
-0.10178514569997787,
-0.08937849849462509,
0.06277894973754883,
-0.03631459176540375,
0.02863544225692749,
-0.09852418303489685,
-0.02799876593053341,
-0.03094610385596752,
0.03030906245112419,
0.07833503186702728,
0.02984500303864479,
-0.06144387647509575,
0.0340091697871685,
-0.07812538743019104,
-0.04111742228269577,
-0.059472061693668365,
0.01439665723592043,
0.0075594899244606495,
0.2383085936307907,
0.005668123252689838,
-0.06440349668264389,
-0.01276510301977396,
0.1942065805196762,
0.02387627400457859,
-0.14427421987056732,
-0.11208980530500412,
0.1616363525390625,
-0.0681481659412384,
-0.01836588606238365,
-0.06541700661182404,
0.021298212930560112,
-0.07143779844045639,
0.2931639552116394,
0.3385022282600403,
-0.10115502029657364,
0.01690266840159893,
-0.06950030475854874,
0.041795141994953156,
-0.03448203578591347,
0.150614932179451,
0.10224931687116623,
0.21067573130130768,
-0.06804177910089493,
0.04446502774953842,
0.007326842751353979,
-0.01208710577338934,
-0.14367176592350006,
-0.05186418071389198,
0.03212296590209007,
0.02552739903330803,
-0.09440896660089493,
0.0499112606048584,
-0.15725114941596985,
-0.028794093057513237,
0.0007535841432400048,
-0.07331929355859756,
-0.018649430945515633,
0.01297890767455101,
0.15102554857730865,
0.08624890446662903,
0.08077826350927353,
-0.011457025073468685,
0.0227736197412014,
-0.01603841409087181,
0.0340438075363636,
-0.12228222191333771,
-0.10006840527057648,
0.12187088280916214,
0.009462231770157814,
0.18083155155181885,
-0.019328735768795013,
0.09362644702196121,
0.058246150612831116,
0.04425695538520813,
0.04615436866879463,
0.20352618396282196,
0.017150046303868294,
0.0028887521475553513,
0.006394644267857075,
0.030728640034794807,
-0.019317567348480225,
0.05133432149887085,
0.04623927175998688,
-0.04438076540827751,
0.08323581516742706,
0.049219511449337006,
0.004442671779543161,
-0.04061315208673477,
0.08504258841276169,
-0.10846279561519623,
0.09868030995130539,
0.11782483011484146,
0.025249028578400612,
-0.06154392659664154,
-0.019315531477332115,
0.02720361389219761,
-0.010637571103870869,
-0.12671560049057007,
-0.09178563207387924,
-0.16795504093170166,
-0.03726854920387268,
-0.036431919783353806,
0.0013482979265972972,
-0.2051583081483841,
-0.0026400431524962187,
-0.0921652615070343,
0.023333922028541565,
0.009215164929628372,
0.04193658009171486,
0.05756765604019165,
0.03881732374429703,
-0.010666814632713795,
-0.05576954409480095,
0.027709636837244034,
0.07125529646873474,
-0.08621460944414139,
-0.126250758767128
] |
null | null |
transformers
|
### xlm-r-large-arabic-sent
Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large.
Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other
classes (was based on a rate of 3 out of 5 in reviews).
Usage: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
|
{"language": ["ar", "en", "multilingual"], "license": "mit"}
|
text-classification
|
akhooli/xlm-r-large-arabic-sent
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"ar",
"en",
"multilingual",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar",
"en",
"multilingual"
] |
TAGS
#transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
### xlm-r-large-arabic-sent
Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large.
Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other
classes (was based on a rate of 3 out of 5 in reviews).
Usage: see last section in this Colab notebook
|
[
"### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook"
] |
[
53,
118
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook"
] |
[
-0.044719576835632324,
-0.11797643452882767,
-0.0038172006607055664,
0.061359960585832596,
0.10288216918706894,
0.08482526242733002,
0.14766211807727814,
0.07524450868368149,
0.022240126505494118,
-0.058079615235328674,
-0.007682689465582371,
0.030642345547676086,
0.06805291026830673,
0.03775235638022423,
-0.10123488306999207,
-0.16654212772846222,
0.019227638840675354,
-0.01151975803077221,
0.08428879082202911,
0.13388824462890625,
0.127529114484787,
-0.008670929819345474,
0.043702516704797745,
0.008619728498160839,
-0.13632120192050934,
0.01703171245753765,
0.08077975362539291,
-0.0791521817445755,
0.10560888051986694,
0.17264333367347717,
0.1409601867198944,
0.04690858721733093,
-0.06538747251033783,
-0.17993687093257904,
0.05011570453643799,
-0.01823491044342518,
-0.06404579430818558,
-0.02285388857126236,
0.05767139047384262,
-0.1858176738023758,
0.13092748820781708,
-0.0702129602432251,
-0.007458787877112627,
0.05596715584397316,
-0.041962262243032455,
-0.29071372747421265,
-0.07611963152885437,
0.11233360320329666,
0.034241579473018646,
-0.043951328843832016,
-0.005543522071093321,
0.13604208827018738,
-0.14942263066768646,
0.10206936299800873,
0.16380847990512848,
-0.19957293570041656,
-0.019449075683951378,
0.05515991151332855,
0.030274491757154465,
0.09780752658843994,
-0.04184139892458916,
0.0746525228023529,
0.041156649589538574,
-0.018273446708917618,
-0.09039744734764099,
-0.09621913731098175,
-0.08280375599861145,
-0.023319652304053307,
-0.05542433634400368,
-0.020766958594322205,
0.15218065679073334,
0.01829916425049305,
-0.06516249477863312,
-0.10593563318252563,
-0.027301527559757233,
-0.021608086302876472,
0.0067505007609725,
-0.007716879714280367,
-0.018713440746068954,
-0.012598896399140358,
0.1505734771490097,
0.058181196451187134,
-0.07198919355869293,
0.009553281590342522,
-0.2782476544380188,
0.3445056080818176,
0.027287866920232773,
0.08441668003797531,
-0.016915757209062576,
0.029080048203468323,
-0.05587193742394447,
-0.04689336568117142,
-0.02600889466702938,
-0.09607762843370438,
-0.015983449295163155,
0.029189635068178177,
-0.0642288476228714,
-0.01196194626390934,
0.06663406640291214,
-0.05535389482975006,
-0.055706921964883804,
0.08847422897815704,
-0.07668370753526688,
0.0863499641418457,
0.054836928844451904,
0.11204773932695389,
0.07406435161828995,
-0.00374247832223773,
0.015097171068191528,
-0.05949215590953827,
0.06949405372142792,
-0.002450396306812763,
-0.09641925990581512,
-0.041311319917440414,
0.009297122247517109,
0.09468986839056015,
-0.10649272054433823,
0.09204921126365662,
-0.09253821521997452,
-0.015236388891935349,
-0.011147085577249527,
-0.14931680262088776,
0.03414070978760719,
0.06762493401765823,
-0.017037713900208473,
0.08483284711837769,
-0.012013658881187439,
0.00750165106728673,
-0.045675162225961685,
-0.04007774218916893,
0.026990225538611412,
0.08936852216720581,
-0.024580800905823708,
-0.10079719871282578,
0.041519440710544586,
0.008219921961426735,
-0.04946485906839371,
-0.16951794922351837,
-0.023976709693670273,
0.0005372033920139074,
-0.016749901697039604,
0.01197142992168665,
0.04630979150533676,
-0.0036954451352357864,
0.09483643621206284,
0.08049774169921875,
-0.01734381541609764,
0.040432125329971313,
-0.10277616232633591,
0.09175533801317215,
0.04059937968850136,
0.051934875547885895,
-0.1459822803735733,
0.01944413222372532,
-0.010322540998458862,
0.026427527889609337,
-0.1231219470500946,
0.1568739116191864,
-0.05313212797045708,
-0.08116068691015244,
-0.09820809215307236,
-0.04104090481996536,
0.07726719230413437,
0.04836219921708107,
-0.12838628888130188,
0.12237010151147842,
-0.1929280161857605,
-0.14967726171016693,
0.1276024729013443,
-0.09036123752593994,
-0.036183442920446396,
0.15248310565948486,
-0.05334140360355377,
-0.04825091361999512,
0.08243010938167572,
0.03250603377819061,
0.015086092054843903,
-0.04246086999773979,
-0.020586827769875526,
0.076108418405056,
0.007818437181413174,
0.0946575403213501,
0.10089550912380219,
0.057110365480184555,
-0.15764392912387848,
0.05517802760004997,
-0.0026477929204702377,
0.07356560230255127,
0.024725724011659622,
-0.07164350897073746,
-0.024111641570925713,
0.05200415477156639,
0.18779683113098145,
0.06435380131006241,
0.04221867769956589,
-0.09849699586629868,
-0.08746189624071121,
-0.03467220067977905,
0.04991831257939339,
0.00614134781062603,
0.04744807630777359,
-0.11004195362329483,
0.040862008929252625,
-0.005707339383661747,
0.003265796694904566,
-0.15047016739845276,
-0.05472831800580025,
-0.027274608612060547,
0.058582939207553864,
0.044141001999378204,
0.12145539373159409,
-0.006703234277665615,
-0.011068670079112053,
-0.11423638463020325,
0.056054502725601196,
0.07224570959806442,
0.0039723459631204605,
-0.036550357937812805,
-0.16148191690444946,
0.05830548331141472,
-0.04346877336502075,
0.14442086219787598,
-0.08860284835100174,
-0.00489656301215291,
0.08824485540390015,
0.11260869354009628,
-0.014112737029790878,
0.11299187690019608,
-0.032168179750442505,
0.12447396665811539,
-0.04839407652616501,
0.03440559282898903,
0.0898999273777008,
-0.07413382083177567,
-0.2562600374221802,
0.1378859430551529,
-0.178237184882164,
0.1284186989068985,
0.13293133676052094,
-0.03213899955153465,
-0.06514128297567368,
-0.1571258157491684,
-0.013093397952616215,
0.003625184763222933,
0.058367036283016205,
0.07633200287818909,
0.18237899243831635,
-0.0007967918063513935,
0.12812389433383942,
-0.07239966094493866,
0.011128845624625683,
-0.01536687184125185,
-0.05447296053171158,
-0.09753912687301636,
0.16936539113521576,
0.001859451993368566,
-0.24295885860919952,
0.14034520089626312,
0.2316475808620453,
0.04763098433613777,
0.15845900774002075,
0.020159857347607613,
0.07554548233747482,
-0.035626836121082306,
-0.01969725266098976,
-0.03244233503937721,
-0.018940456211566925,
-0.02708994783461094,
-0.016231022775173187,
0.050331901758909225,
0.013880017213523388,
-0.011740092188119888,
-0.12465067207813263,
-0.01424702350050211,
-0.02462402917444706,
-0.007982428185641766,
-0.05699101462960243,
0.07196361571550369,
0.0995420590043068,
0.1228073239326477,
-0.015182741917669773,
-0.05848831683397293,
0.08247751742601395,
-0.014561847783625126,
-0.11102437973022461,
0.16512084007263184,
-0.1358618438243866,
-0.322294145822525,
-0.0532630980014801,
-0.17401760816574097,
-0.17997874319553375,
-0.014771326445043087,
0.03647438809275627,
-0.09403572976589203,
0.002804538467898965,
-0.02198774367570877,
0.08459408581256866,
-0.10852189362049103,
-0.04218010976910591,
-0.056128840893507004,
-0.021443326026201248,
-0.038701027631759644,
-0.07685074210166931,
-0.037310853600502014,
-0.028172828257083893,
-0.1010676771402359,
0.09481604397296906,
-0.15416917204856873,
-0.027306338772177696,
0.17730243504047394,
-0.02153574861586094,
-0.006445173639804125,
-0.10423540323972702,
0.07930884510278702,
-0.12230318039655685,
-0.08452196419239044,
0.0962735116481781,
-0.03760053217411041,
0.05175390467047691,
0.23050609230995178,
0.03536853566765785,
-0.028002945706248283,
-0.05310731753706932,
0.03869768604636192,
-0.05142250657081604,
-0.17493079602718353,
-0.12558221817016602,
-0.1024174913764,
-0.0979231595993042,
-0.1328907161951065,
0.03567210212349892,
-0.04133768379688263,
-0.010027567856013775,
-0.08501975238323212,
-0.07015006244182587,
-0.006349832750856876,
0.02623722143471241,
0.2933681309223175,
0.005855795927345753,
0.10471617430448532,
-0.07801136374473572,
0.017404526472091675,
0.11275220662355423,
0.07344844937324524,
0.07848979532718658,
0.04272981360554695,
0.039656803011894226,
0.10684656351804733,
0.06908747553825378,
0.11778385937213898,
-0.10730734467506409,
0.013070384040474892,
-0.024114420637488365,
-0.027657879516482353,
-0.020126357674598694,
-0.10071782767772675,
0.029052698984742165,
0.0666797086596489,
0.03659076616168022,
-0.07856210321187973,
-0.13650064170360565,
0.12941937148571014,
-0.020821528509259224,
-0.035545915365219116,
-0.13029490411281586,
-0.02114994078874588,
0.11171639710664749,
-0.039994414895772934,
-0.06930112838745117,
-0.006286148447543383,
-0.07647711783647537,
-0.17341315746307373,
0.22854425013065338,
-0.036490339785814285,
0.10425763577222824,
-0.07121806591749191,
-0.0145903080701828,
-0.1508455127477646,
-0.08094790577888489,
0.02159097045660019,
0.09293798357248306,
-0.21726736426353455,
0.22055906057357788,
0.0976819097995758,
-0.06053948029875755,
-0.04854263365268707,
-0.03863406181335449,
0.08416465669870377,
0.1911499947309494,
0.020349815487861633,
0.03583439067006111,
-0.11189345270395279,
-0.17605771124362946,
0.012208458036184311,
0.07672140747308731,
0.11937862634658813,
0.07846268266439438,
0.00040717891533859074,
-0.025836404412984848,
0.061598338186740875,
-0.021790657192468643,
0.19269110262393951,
-0.1088467389345169,
-0.1634523570537567,
0.0796765387058258,
0.1059507429599762,
-0.08413863927125931,
-0.04137809947133064,
-0.13266512751579285,
-0.12057714909315109,
0.22280077636241913,
-0.1573667824268341,
-0.12171757221221924,
-0.10707996040582657,
-0.005486070644110441,
-0.017563819885253906,
-0.1155095249414444,
-0.058588236570358276,
-0.1525261104106903,
-0.015536793507635593,
-0.057694073766469955,
-0.10224057734012604,
0.06334677338600159,
0.003658945206552744,
-0.08034467697143555,
-0.06660888344049454,
0.17334552109241486,
-0.015298969112336636,
0.046357300132513046,
0.006410819943994284,
0.00017609084898140281,
0.011051871813833714,
-0.07662665843963623,
0.001047794008627534,
0.14118695259094238,
0.04592995345592499,
0.18697771430015564,
-0.006854179780930281,
-0.1970914751291275,
-0.044718872755765915,
-0.11976850032806396,
0.19373203814029694,
0.15084390342235565,
-0.05256028473377228,
0.17998985946178436,
0.061007820069789886,
-0.025955382734537125,
-0.16434691846370697,
-0.1017240360379219,
0.04321684688329697,
0.044385917484760284,
-0.00299816089682281,
-0.044070594012737274,
-0.017520137131214142,
0.03286420926451683,
0.02058521658182144,
-0.015220369212329388,
-0.2618255913257599,
-0.08144547790288925,
0.13973192870616913,
0.01151307113468647,
0.31801265478134155,
-0.15375110507011414,
-0.04606686159968376,
-0.11606200039386749,
-0.11861623823642731,
0.10383542627096176,
0.03484760969877243,
0.1532968431711197,
-0.08085947483778,
0.05808239057660103,
-0.015504313632845879,
0.07190100103616714,
0.18885041773319244,
-0.052835460752248764,
0.0626593753695488,
-0.10754302889108658,
-0.16309840977191925,
-0.04152917116880417,
0.010653605684638023,
-0.09110641479492188,
-0.1257605403661728,
-0.0626043826341629,
-0.15143337845802307,
-0.07550476491451263,
-0.0504535511136055,
0.03395085036754608,
-0.011662942357361317,
0.007482108194380999,
-0.0988515168428421,
-0.00033051345963031054,
-0.02049841545522213,
-0.051641322672367096,
0.1446048617362976,
-0.12778949737548828,
0.11667939275503159,
0.14685052633285522,
0.17337211966514587,
-0.07035910338163376,
-0.035962752997875214,
-0.0555841438472271,
-0.030944066122174263,
0.08886239677667618,
-0.1352456957101822,
0.03199173882603645,
0.08758784085512161,
-0.04736427962779999,
0.159113809466362,
0.04468325898051262,
0.05172450840473175,
0.08823893964290619,
0.11903906613588333,
0.013702210038900375,
-0.24777260422706604,
0.02848140150308609,
-0.010831702500581741,
0.0067033926025033,
-0.009851865470409393,
0.1286485344171524,
0.03284040465950966,
-0.047361962497234344,
0.0006041083834134042,
0.00419882545247674,
-0.006606381852179766,
0.030379217118024826,
-0.020360466092824936,
0.020867209881544113,
-0.09580124914646149,
0.08379019796848297,
0.13874468207359314,
-0.05262064188718796,
-0.021650224924087524,
0.0652376115322113,
-0.08304765820503235,
-0.031093420460820198,
-0.017136966809630394,
0.14422637224197388,
-0.1092085912823677,
-0.10409913212060928,
-0.019728947430849075,
-0.20904570817947388,
-0.04062779247760773,
0.172639861702919,
0.09112292528152466,
0.08913674205541611,
-0.042594172060489655,
-0.0943298265337944,
0.15451563894748688,
0.041072994470596313,
0.021286047995090485,
-0.038627658039331436,
-0.05536598339676857,
0.12642088532447815,
0.028940537944436073,
0.1662999987602234,
-0.048565592616796494,
-0.06636890023946762,
-0.09700576961040497,
0.0195586159825325,
-0.2690475583076477,
0.07006929814815521,
-0.0025393955875188112,
0.09697602689266205,
0.02266337163746357,
-0.044054385274648666,
-0.04937819391489029,
-0.031507913023233414,
-0.0742972269654274,
0.06852694600820541,
0.02132200263440609,
0.15239772200584412,
-0.0648704394698143,
-0.0274572242051363,
0.061654675751924515,
0.04938400164246559,
0.0914916917681694,
0.07344944775104523,
-0.05859336256980896,
0.08518239110708237,
-0.28264033794403076,
-0.018063826486468315,
0.07372031360864639,
0.03704944998025894,
0.01943792961537838,
-0.0939333587884903,
0.035659853368997574,
0.09026964008808136,
0.03295031562447548,
0.09279438853263855,
0.08327102661132812,
-0.06770054996013641,
-0.06718821823596954,
-0.05558395013213158,
-0.10101405531167984,
-0.04556060582399368,
0.05930715426802635,
0.034704457968473434,
0.12781831622123718,
0.09794776886701584,
-0.015139000490307808,
-0.02769213356077671,
-0.014646273106336594,
-0.030947484076023102,
-0.04282449558377266,
-0.11876045167446136,
-0.1109280064702034,
-0.10369540750980377,
0.030829813331365585,
0.08642978966236115,
0.23858173191547394,
0.06945741176605225,
-0.0260615274310112,
0.011269320733845234,
0.11739610135555267,
0.03308582678437233,
-0.03213782235980034,
0.062269967049360275,
0.005065403878688812,
0.030117999762296677,
0.11588982492685318,
-0.04915664717555046,
0.0013114481698721647,
0.09507670998573303,
0.15963800251483917,
0.12469907850027084,
0.043693386018276215,
0.052656140178442,
-0.07790113985538483,
-0.017867106944322586,
0.1432279348373413,
-0.01776246726512909,
0.01053119357675314,
0.032733090221881866,
-0.10725443065166473,
0.041364289820194244,
0.11687649041414261,
-0.08205005526542664,
0.07257184386253357,
-0.06692009419202805,
-0.06565836071968079,
-0.13553471863269806,
-0.0744592696428299,
-0.0745348110795021,
-0.06659294664859772,
0.003427837509661913,
-0.03973207622766495,
0.012716001830995083,
0.030999476090073586,
0.05543951317667961,
-0.026610586792230606,
-0.021331029012799263,
-0.16116619110107422,
-0.12856236100196838,
0.039777789264917374,
-0.021396677941083908,
0.09867769479751587,
-0.020537247881293297,
0.001945499680005014,
0.022037699818611145,
-0.05620013177394867,
0.03267858177423477,
0.07397965341806412,
0.05560596287250519,
-0.01636286824941635,
-0.17106370627880096,
-0.0597323440015316,
-0.023946156725287437,
0.05563931167125702,
0.11925148218870163,
0.18374384939670563,
0.07805169373750687,
0.02870977483689785,
-0.003317884635180235,
0.12538762390613556,
0.07152310013771057,
-0.05198850855231285,
-0.02695993147790432,
0.14115720987319946,
-0.11685988306999207,
0.0016643375856801867,
-0.021983791142702103,
-0.05552312731742859,
-0.04214545711874962,
0.06906033307313919,
0.18176665902137756,
-0.06949612498283386,
0.04568808153271675,
-0.07509925961494446,
0.05783126875758171,
0.12186644226312637,
0.05983586981892586,
-0.005220397375524044,
0.19939051568508148,
-0.07106656581163406,
0.010133815929293633,
-0.041692472994327545,
0.04221305996179581,
-0.03133514150977135,
0.10440786927938461,
-0.014875046908855438,
-0.037895429879426956,
-0.05300453305244446,
0.07956600934267044,
-0.0020100371912121773,
0.015920694917440414,
0.1170511394739151,
-0.07309100031852722,
-0.07955539226531982,
-0.006161546800285578,
0.10390149056911469,
0.07523882389068604,
-0.03513501212000847,
-0.006400613579899073,
-0.033183082938194275,
0.010805444791913033,
0.02437678538262844,
-0.19236351549625397,
-0.06588227301836014,
0.15563201904296875,
0.06835959851741791,
0.010675200261175632,
0.0434948094189167,
0.203161358833313,
0.05481145158410072,
0.048461463302373886,
0.06852509826421738,
0.09153898805379868,
0.025008583441376686,
0.04046924412250519,
0.06171382963657379,
0.03714574873447418,
0.015815110877156258,
-0.03282012790441513,
0.079340860247612,
0.04462742805480957,
0.12256261706352234,
-0.09521649777889252,
-0.13716699182987213,
-0.03679357096552849,
0.11942383646965027,
-0.13327036798000336,
0.05141991749405861,
0.18884433805942535,
0.008724790066480637,
-0.021937774494290352,
-0.08524765074253082,
-0.030404232442378998,
0.002979760756716132,
-0.04689183831214905,
-0.006199205759912729,
-0.0662699043750763,
0.05990880727767944,
0.11353631317615509,
0.023860344663262367,
-0.05937591567635536,
-0.07853308320045471,
-0.05908685922622681,
0.026844043284654617,
-0.03084953874349594,
0.07928674668073654,
-0.022262686863541603,
-0.031686119735240936,
-0.05307549238204956,
-0.4484356641769409,
0.068244069814682,
0.04290507733821869,
0.021427016705274582,
-0.026904240250587463
] |
null | null |
transformers
|
### xlm-r-large-arabic-toxic (toxic/hate speech classifier)
Toxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large.
Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English).
Usage and further info: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
|
{"language": ["ar", "en"], "license": "mit"}
|
text-classification
|
akhooli/xlm-r-large-arabic-toxic
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"ar",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ar",
"en"
] |
TAGS
#transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
### xlm-r-large-arabic-toxic (toxic/hate speech classifier)
Toxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large.
Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English).
Usage and further info: see last section in this Colab notebook
|
[
"### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook"
] |
[
49,
104
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook"
] |
[
-0.053845711052417755,
-0.050342585891485214,
-0.005096056032925844,
-0.0011734197614714503,
0.1320001482963562,
0.028704095631837845,
0.16459770500659943,
0.13667675852775574,
0.048806507140398026,
-0.0857962891459465,
0.028002845123410225,
0.15574368834495544,
-0.02090923860669136,
0.037640608847141266,
-0.056837256997823715,
-0.1295292228460312,
0.008889189921319485,
-0.0035771033726632595,
0.024985168129205704,
0.13297270238399506,
0.17396047711372375,
0.005343202501535416,
0.05141616612672806,
0.027926720678806305,
-0.12234882265329361,
0.007418446708470583,
0.11697430163621902,
-0.13307087123394012,
0.12700574100017548,
0.11041348427534103,
0.10063834488391876,
0.0051707923412323,
-0.055524393916130066,
-0.16559931635856628,
0.05443325638771057,
0.005963702220469713,
-0.03367248550057411,
0.03934188932180405,
0.03828087076544762,
-0.2260180115699768,
0.1864173412322998,
-0.08897341042757034,
-0.034785911440849304,
0.0914272591471672,
-0.06328040361404419,
-0.22139513492584229,
0.022524073719978333,
0.07946117222309113,
0.10543593764305115,
0.03615870326757431,
-0.029193531721830368,
0.18331214785575867,
-0.015150782652199268,
0.14569677412509918,
0.20323532819747925,
-0.12048965692520142,
-0.03332098573446274,
-0.06837841123342514,
0.04566800221800804,
0.09748150408267975,
-0.0866590142250061,
0.09580449014902115,
0.022738207131624222,
-0.048605483025312424,
-0.06141940876841545,
-0.12802407145500183,
-0.002561186207458377,
-0.06921111792325974,
-0.03765324130654335,
0.007545712869614363,
0.060287099331617355,
0.004315326455980539,
-0.04884033277630806,
-0.06562094390392303,
-0.03439312055706978,
-0.05629151314496994,
0.010124308988451958,
-0.03449574485421181,
-0.03392946720123291,
-0.025252843275666237,
0.11467482894659042,
0.018218623474240303,
-0.09114431589841843,
-0.011778962798416615,
-0.1421351283788681,
0.33772581815719604,
0.018168989568948746,
0.07702846825122833,
0.0014623020542785525,
-0.032510776072740555,
-0.04269802197813988,
-0.06803815066814423,
-0.023620814085006714,
-0.10443076491355896,
-0.003338252194225788,
0.008843215182423592,
-0.04547962546348572,
-0.06526527553796768,
0.07558996230363846,
-0.12709404528141022,
-0.01948927529156208,
0.04628043994307518,
-0.06925949454307556,
0.07834327220916748,
0.025743143633008003,
0.042129263281822205,
0.0645056813955307,
0.027718616649508476,
0.05659393221139908,
0.008519177325069904,
0.03474599868059158,
0.05006186664104462,
-0.06310412287712097,
-0.017606111243367195,
-0.015484975650906563,
0.13209332525730133,
-0.07400760799646378,
0.12619630992412567,
-0.049494076520204544,
-0.0010229975450783968,
0.06284131854772568,
-0.11442797631025314,
0.010914414189755917,
0.10437144339084625,
-0.02138715609908104,
0.018292203545570374,
0.027251465246081352,
-0.007156841456890106,
-0.08490636944770813,
-0.05187694728374481,
0.0003676087944768369,
0.1248510330915451,
-0.05039335787296295,
-0.06499113142490387,
0.029112063348293304,
0.09429765492677689,
-0.028683306649327278,
-0.1953156441450119,
-0.0025337254628539085,
0.037874218076467514,
-0.028788402676582336,
0.04576300084590912,
0.03146035596728325,
-0.006985949818044901,
0.07151462882757187,
0.04907602444291115,
-0.06573029607534409,
-0.10742507129907608,
-0.08310531824827194,
0.1279744952917099,
0.03852374851703644,
0.08620929718017578,
-0.08066253364086151,
0.0006901397136971354,
-0.002681243931874633,
0.00024090944498311728,
-0.06835344433784485,
0.10320676863193512,
-0.09708476811647415,
0.004466763231903315,
-0.12025817483663559,
-0.0125446617603302,
0.011891941539943218,
0.04834170266985893,
-0.08170540630817413,
0.15659360587596893,
-0.23870183527469635,
-0.08924854546785355,
0.12755967676639557,
-0.07242542505264282,
-0.07706907391548157,
0.1305542141199112,
-0.0523846372961998,
-0.08754824101924896,
0.10452994704246521,
0.028017228469252586,
-0.10874087363481522,
-0.06923666596412659,
-0.025060657411813736,
0.10014314204454422,
-0.10642421245574951,
0.031203586608171463,
0.04938872903585434,
0.0018369352910667658,
-0.07156814634799957,
0.0003146441886201501,
0.07189927995204926,
0.10331780463457108,
0.05478909984230995,
-0.10217621922492981,
-0.02128005400300026,
0.009887315332889557,
0.17150519788265228,
0.003788900328800082,
0.00334222917445004,
-0.07093839347362518,
-0.12211392819881439,
-0.06442378461360931,
0.08014734834432602,
0.0209900364279747,
0.06324929744005203,
-0.11083916574716568,
0.022834815084934235,
-0.03890588507056236,
-0.008903338573873043,
-0.1491847187280655,
-0.027390779927372932,
-0.0890733003616333,
0.08891234546899796,
0.08867126703262329,
0.02041802369058132,
0.02366780675947666,
-0.05254896730184555,
-0.06223856657743454,
0.061684977263212204,
0.09876135736703873,
0.024495646357536316,
-0.09707876294851303,
-0.09809560328722,
0.11962306499481201,
-0.0227358415722847,
0.05221732705831528,
-0.09098599851131439,
-0.016052739694714546,
0.08791010826826096,
0.006958061829209328,
-0.06024516001343727,
0.09419803321361542,
0.037657711654901505,
0.062249403446912766,
-0.038462746888399124,
-0.008372488431632519,
0.09270097315311432,
-0.0679483413696289,
-0.1919599175453186,
0.13721199333667755,
-0.16515058279037476,
0.1789351850748062,
0.1654885709285736,
-0.06430255621671677,
-0.04534531012177467,
-0.0352538600564003,
-0.008395460434257984,
0.034545037895441055,
0.12738481163978577,
0.08080132305622101,
0.19327569007873535,
-0.009054221212863922,
0.1144629567861557,
-0.05892220139503479,
0.005712092854082584,
-0.0346938893198967,
-0.06672169268131256,
-0.088821642100811,
0.13189825415611267,
0.003262787126004696,
-0.25080713629722595,
0.11567874997854233,
0.2579362690448761,
-0.052813317626714706,
0.0772794708609581,
0.07449921220541,
0.05118512734770775,
-0.0006856481777504086,
-0.055140987038612366,
0.012617208063602448,
0.04615304246544838,
-0.02753392979502678,
-0.03770913928747177,
0.01998903974890709,
-0.02532517910003662,
0.014002857729792595,
-0.06134071573615074,
-0.02869836613535881,
-0.01981024444103241,
-0.001918153720907867,
-0.13522197306156158,
0.05924715846776962,
0.0747462660074234,
0.1184132844209671,
-0.029715048149228096,
-0.08449099212884903,
0.03655516356229782,
0.004478061106055975,
-0.12240966409444809,
0.13575328886508942,
-0.14807233214378357,
-0.3350944221019745,
0.021702053025364876,
-0.15262854099273682,
-0.09022639691829681,
0.025173092260956764,
0.02917475253343582,
-0.18000616133213043,
0.006522010080516338,
0.0031910587567836046,
0.056189779192209244,
-0.04822613671422005,
-0.009687721729278564,
0.021609334275126457,
-0.0015802013222128153,
0.04492776840925217,
-0.10150858759880066,
-0.02545524202287197,
-0.06279563903808594,
-0.05445627495646477,
0.045877546072006226,
-0.09056411683559418,
0.005498233716934919,
0.14029859006404877,
-0.027976227924227715,
-0.03874572739005089,
-0.08539391309022903,
0.1650545597076416,
-0.1356048732995987,
-0.06458741426467896,
0.14290213584899902,
-0.14279890060424805,
0.03517714887857437,
0.1340680867433548,
0.051025956869125366,
-0.031511642038822174,
-0.045212019234895706,
0.03162273019552231,
0.0007312005618587136,
-0.1214287132024765,
-0.12053637951612473,
-0.06976281851530075,
-0.08279058337211609,
-0.09992390125989914,
0.07145380228757858,
0.0023757009766995907,
0.017433054745197296,
-0.03412913903594017,
-0.1531732827425003,
0.022734003141522408,
0.057446375489234924,
0.16339749097824097,
-0.014715460129082203,
0.0863189846277237,
-0.0811149850487709,
-0.028137696906924248,
0.0759183019399643,
0.029901480302214622,
0.03296539932489395,
0.0765581950545311,
0.14216682314872742,
0.11182821542024612,
0.04955579712986946,
0.17159900069236755,
-0.020817456766963005,
-0.024111568927764893,
-0.03549222648143768,
-0.004614545963704586,
-0.0030415719375014305,
-0.15579304099082947,
0.0014431423041969538,
0.0847008228302002,
0.030598627403378487,
0.04620327055454254,
-0.0920565277338028,
0.2234654575586319,
-0.06822267919778824,
-0.08071906864643097,
-0.16394272446632385,
0.04428686574101448,
0.06911559402942657,
-0.03709326311945915,
-0.03436034917831421,
0.015697458758950233,
-0.15946944057941437,
-0.1510801762342453,
0.1727270931005478,
-0.08265667408704758,
0.06988687813282013,
-0.0278849508613348,
0.01855582185089588,
-0.11464452743530273,
-0.07793904840946198,
-0.011080245487391949,
0.10039056092500687,
-0.3121170103549957,
0.21371516585350037,
0.09759355336427689,
-0.025392914190888405,
-0.08612766116857529,
-0.05326337367296219,
0.10145246982574463,
0.1687973439693451,
0.14641684293746948,
0.005567171610891819,
-0.09503483027219772,
-0.15264587104320526,
-0.044223397970199585,
0.049027182161808014,
0.06579090654850006,
0.1109282374382019,
-0.03949977457523346,
-0.024642018601298332,
-0.007854028604924679,
0.005663566756993532,
0.06084045395255089,
-0.14759191870689392,
-0.1937904804944992,
0.08997370302677155,
0.06810662895441055,
-0.09059266000986099,
-0.041039057075977325,
-0.09248015284538269,
-0.09725898504257202,
0.2767207622528076,
-0.15944108366966248,
-0.158198744058609,
-0.14718717336654663,
-0.036817632615566254,
-0.00015769831952638924,
-0.13647101819515228,
-0.06350693106651306,
-0.09383939951658249,
0.02024249918758869,
-0.07926227897405624,
-0.09776855260133743,
0.0714200884103775,
-0.06707961112260818,
0.018477408215403557,
-0.06648522615432739,
0.22283071279525757,
-0.01923440769314766,
0.07277406752109528,
0.024128345772624016,
-0.04564664140343666,
-0.005383423063904047,
-0.07100296765565872,
-0.03951021656394005,
-0.00696150679141283,
-0.04241484776139259,
0.04519219696521759,
-0.09167633950710297,
-0.21556107699871063,
-0.12270216643810272,
-0.06124505400657654,
0.25065580010414124,
0.137751504778862,
0.015455753542482853,
0.11732875555753708,
0.09429769217967987,
-0.04064280539751053,
-0.18869437277317047,
-0.1322142481803894,
0.05604567751288414,
-0.012885418720543385,
0.01273007970303297,
-0.04352731257677078,
-0.008687599562108517,
0.012935732491314411,
0.01689363643527031,
0.045870233327150345,
-0.16591070592403412,
-0.09028351306915283,
0.21661287546157837,
0.04508376121520996,
0.2843915820121765,
-0.1422255039215088,
-0.024080604314804077,
-0.13287854194641113,
-0.000047343550249934196,
0.11514744162559509,
0.053404055535793304,
0.09405408799648285,
-0.003652404760941863,
0.04937044903635979,
0.029307443648576736,
0.037334006279706955,
0.1576530933380127,
-0.040190622210502625,
0.08901173621416092,
-0.11955205351114273,
-0.2606658637523651,
-0.027903256937861443,
0.03504158556461334,
-0.08984208852052689,
-0.12235894054174423,
-0.06254539638757706,
-0.1101577877998352,
-0.11771367490291595,
-0.05949711054563522,
0.05911027267575264,
0.013558811508119106,
-0.017038168385624886,
-0.01709054596722126,
-0.040329981595277786,
-0.011043020524084568,
-0.0538468211889267,
0.16961465775966644,
-0.16816748678684235,
0.0768987312912941,
0.11282127350568771,
0.2147163301706314,
-0.025284627452492714,
-0.07815541326999664,
0.018985170871019363,
0.009634986519813538,
0.03926751762628555,
-0.10845394432544708,
0.04042568802833557,
0.038226161152124405,
-0.07977130264043808,
0.07021772116422653,
0.013150111772119999,
0.06866854429244995,
0.11413523554801941,
0.1362253725528717,
0.04819981008768082,
-0.14085274934768677,
-0.003142806002870202,
-0.039967410266399384,
-0.03819568455219269,
-0.05273997038602829,
0.13689211010932922,
0.03211449831724167,
-0.026408782228827477,
-0.021621521562337875,
-0.029127366840839386,
-0.07411553710699081,
0.05266457423567772,
0.03547988086938858,
0.021128175780177116,
-0.10281269997358322,
0.04892895370721817,
0.0881633535027504,
-0.0005803032545372844,
-0.0037326752208173275,
0.11659755557775497,
-0.11031646281480789,
-0.08203523606061935,
-0.06254806369543076,
0.10553253442049026,
-0.06728287786245346,
-0.04868200048804283,
-0.03979981318116188,
-0.14041423797607422,
-0.08438505977392197,
0.1623552441596985,
0.08180470019578934,
0.06838783621788025,
-0.043125007301568985,
-0.08537964522838593,
0.10937276482582092,
0.06373225152492523,
-0.03005375526845455,
-0.040073007345199585,
-0.02017148956656456,
0.1730884313583374,
0.008088828064501286,
0.19051235914230347,
-0.055979352444410324,
-0.008583998307585716,
-0.05817405879497528,
0.03569581359624863,
-0.14477917551994324,
0.03279620781540871,
-0.07123322039842606,
0.0633375346660614,
0.026580512523651123,
-0.020356925204396248,
-0.045509882271289825,
-0.00827446673065424,
-0.0834452286362648,
0.06325407326221466,
0.04155421257019043,
0.04858793690800667,
-0.09547208994626999,
0.021391114220023155,
0.04127676039934158,
0.06557350605726242,
0.11049334704875946,
0.12268781661987305,
-0.11526988446712494,
0.10549428313970566,
-0.2732434868812561,
-0.0394255630671978,
0.09733392298221588,
0.004844296257942915,
0.015889301896095276,
-0.03585948050022125,
0.08887109160423279,
0.09493955224752426,
0.09223618358373642,
0.06595320999622345,
0.05491408705711365,
-0.06060602888464928,
-0.03172365203499794,
0.006360550411045551,
-0.0628521516919136,
0.03919707611203194,
-0.035827238112688065,
0.044077470898628235,
0.04625600948929787,
0.1563064604997635,
0.0023093405179679394,
-0.042472485452890396,
-0.011193448677659035,
0.028368448838591576,
-0.0018527050269767642,
-0.10273611545562744,
-0.1435486525297165,
-0.09451554715633392,
0.07061225175857544,
0.01774415746331215,
0.19734257459640503,
0.048979438841342926,
-0.0829029381275177,
0.08223718404769897,
0.04948830604553223,
0.00379775557667017,
-0.008356557227671146,
0.07764342427253723,
-0.0002075374941341579,
0.014664091169834137,
0.08022169768810272,
-0.06563694030046463,
0.03591316565871239,
-0.04217477887868881,
0.09668978303670883,
0.17054812610149384,
0.15695355832576752,
0.05777830258011818,
-0.06071384623646736,
-0.05774471163749695,
0.12269224226474762,
-0.10175441950559616,
-0.05177602916955948,
-0.01766430027782917,
-0.055028267204761505,
-0.006437413394451141,
0.187798410654068,
-0.017724648118019104,
0.007028532680124044,
-0.036917489022016525,
-0.08704951405525208,
-0.17648720741271973,
-0.10068686306476593,
-0.07155650854110718,
-0.005339120514690876,
0.04135678708553314,
-0.03305206447839737,
-0.009322849102318287,
0.05525780841708183,
0.037418432533741,
-0.0490310899913311,
0.12510019540786743,
-0.1017831340432167,
-0.13014358282089233,
0.04368789494037628,
-0.01811683550477028,
0.10394870489835739,
0.02553684636950493,
0.06585714966058731,
0.010174734517931938,
-0.11539293825626373,
0.05487938970327377,
0.022604865953326225,
0.02660912089049816,
0.06032545119524002,
-0.2085488885641098,
-0.060856301337480545,
-0.00848823320120573,
0.09345567971467972,
0.12964968383312225,
0.28355297446250916,
0.09583115577697754,
0.00533748883754015,
-0.0004066023975610733,
0.08163023740053177,
0.0904395803809166,
-0.05650759115815163,
-0.025477362796664238,
0.11079435795545578,
-0.041450999677181244,
0.0054160901345312595,
-0.06588519364595413,
-0.005765668116509914,
0.0032340113539248705,
0.14946214854717255,
0.2173716127872467,
-0.17424120008945465,
0.058535728603601456,
-0.11519528925418854,
0.07236362993717194,
0.06580649316310883,
0.030178088694810867,
0.07053495198488235,
0.1722278892993927,
-0.05914328619837761,
-0.001486620749346912,
0.00923626683652401,
0.027795637026429176,
-0.07955186814069748,
0.08250578492879868,
-0.028476044535636902,
-0.00552601320669055,
-0.013409312814474106,
0.0968407616019249,
-0.02418495900928974,
0.02057827077805996,
-0.07402382791042328,
-0.059145737439394,
-0.09011586010456085,
0.02875005453824997,
0.035115040838718414,
0.14159415662288666,
-0.019123150035738945,
0.043305542320013046,
-0.10538181662559509,
0.038415685296058655,
0.008381360210478306,
-0.20993927121162415,
-0.0433342345058918,
0.1281004548072815,
0.038632262498140335,
0.04266703501343727,
0.06598003953695297,
0.13022781908512115,
0.033465366810560226,
-0.004860048182308674,
0.03083585947751999,
0.15529346466064453,
0.022998714819550514,
-0.04129881411790848,
0.07799749821424484,
0.011939618736505508,
0.038404595106840134,
-0.02007211185991764,
0.044750913977622986,
0.0971088781952858,
0.11764611303806305,
-0.08519024401903152,
-0.1252305805683136,
-0.010584249161183834,
0.14147202670574188,
-0.13598696887493134,
0.05794024094939232,
0.15214627981185913,
0.03263767063617706,
-0.02057844214141369,
-0.05204721912741661,
-0.01320461742579937,
0.004847988486289978,
-0.09631916135549545,
-0.05628315359354019,
-0.09492392838001251,
0.041165079921483994,
0.027929071336984634,
-0.0012401366839185357,
-0.052536848932504654,
-0.0417221337556839,
-0.10142890363931656,
-0.008408267982304096,
-0.04889926314353943,
0.018476786091923714,
-0.0510006919503212,
-0.026854954659938812,
-0.00401166221126914,
-0.25139740109443665,
0.06142544001340866,
0.000019538743799785152,
-0.05743686854839325,
-0.06995002925395966
] |
null | null |
transformers
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 529614927
- CO2 Emissions (in grams): 5.999771405025692
## Validation Metrics
- Loss: 0.7582379579544067
- Accuracy: 0.7636103151862464
- Macro F1: 0.770630619486531
- Micro F1: 0.7636103151862464
- Weighted F1: 0.765233270165301
- Macro Precision: 0.7746285216467107
- Micro Precision: 0.7636103151862464
- Weighted Precision: 0.7683270753840836
- Macro Recall: 0.7680576576961138
- Micro Recall: 0.7636103151862464
- Weighted Recall: 0.7636103151862464
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/akilesh96/autonlp-mrcooper_text_classification-529614927
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
{"language": "en", "tags": "autonlp", "datasets": ["akilesh96/autonlp-data-mrcooper_text_classification"], "widget": [{"text": "Not Many People Know About The City 1200 Feet Below Detroit"}, {"text": "Bob accepts the challenge, and the next week they're standing in Saint Peters square. 'This isnt gonna work, he's never going to see me here when theres this much people. You stay here, I'll go talk to him and you'll see me on the balcony, the guards know me too.' Half an hour later, Bob and the pope appear side by side on the balcony. Bobs boss gets a heart attack, and Bob goes to visit him in the hospital."}, {"text": "I\u2019m sorry if you made it this far, but I\u2019m just genuinely idk, I feel like I shouldn\u2019t give up, it\u2019s just getting harder to come back from stuff like this."}], "co2_eq_emissions": 5.999771405025692}
|
text-classification
|
akilesh96/autonlp-mrcooper_text_classification-529614927
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:akilesh96/autonlp-data-mrcooper_text_classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 529614927
- CO2 Emissions (in grams): 5.999771405025692
## Validation Metrics
- Loss: 0.7582379579544067
- Accuracy: 0.7636103151862464
- Macro F1: 0.770630619486531
- Micro F1: 0.7636103151862464
- Weighted F1: 0.765233270165301
- Macro Precision: 0.7746285216467107
- Micro Precision: 0.7636103151862464
- Weighted Precision: 0.7683270753840836
- Macro Recall: 0.7680576576961138
- Micro Recall: 0.7636103151862464
- Weighted Recall: 0.7636103151862464
## Usage
You can use cURL to access this model:
Or Python API:
|
[
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692",
"## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692",
"## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
74,
43,
152,
17
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
-0.10563471913337708,
0.2122945338487625,
-0.0020509466994553804,
0.06496754288673401,
0.125682070851326,
0.036803506314754486,
0.059006284922361374,
0.11749210208654404,
0.004514776170253754,
0.16343790292739868,
0.08685760945081711,
0.16123086214065552,
0.07214061170816422,
0.11827412992715836,
-0.08957982063293457,
-0.1107502281665802,
0.029110748320817947,
0.019643954932689667,
0.045911695808172226,
0.08290554583072662,
0.06360244750976562,
-0.09463021159172058,
0.13166455924510956,
-0.008104330860078335,
-0.1157648041844368,
0.05509332939982414,
0.06914790719747543,
-0.06548643857240677,
0.06833206862211227,
0.10277583450078964,
0.1222379133105278,
0.0049150255508720875,
0.07855065166950226,
-0.1394224464893341,
-0.020003845915198326,
0.04448162764310837,
-0.03870539739727974,
0.08476690202951431,
0.15002088248729706,
-0.0006448718486353755,
0.06471286714076996,
-0.10238371789455414,
0.08858062326908112,
0.074887715280056,
-0.0759047344326973,
-0.040472421795129776,
-0.11581989377737045,
0.06181388348340988,
0.08048025518655777,
0.09302379190921783,
0.005230715963989496,
0.1974799931049347,
-0.021023040637373924,
0.10401307046413422,
0.09127116203308105,
-0.23280149698257446,
-0.04535859078168869,
0.1838427037000656,
-0.032777223736047745,
0.013767093420028687,
-0.006927831564098597,
0.01133448351174593,
0.06545354425907135,
-0.000012756210708175786,
0.0077336495742201805,
-0.0434374175965786,
-0.017885727807879448,
-0.01321769505739212,
-0.11528701335191727,
-0.08657622337341309,
0.1643049567937851,
0.022382348775863647,
-0.07180441915988922,
-0.09394579380750656,
-0.07698804140090942,
-0.09239073097705841,
-0.05152885615825653,
-0.04274367168545723,
0.016445675864815712,
-0.043378155678510666,
-0.057151127606630325,
0.07427448034286499,
-0.03304149582982063,
-0.0919312834739685,
-0.12351027876138687,
0.010699250735342503,
0.007100132293999195,
0.05235407128930092,
0.015845702961087227,
0.019078237935900688,
-0.08566059917211533,
-0.06425586342811584,
-0.01255709957331419,
0.02073906548321247,
-0.0926983505487442,
-0.06517776846885681,
0.008644943125545979,
0.06290988624095917,
0.05804157257080078,
0.12343788146972656,
-0.03345115855336189,
0.11008752882480621,
0.027385655790567398,
-0.02043513022363186,
-0.048657648265361786,
0.13644835352897644,
-0.10877780616283417,
-0.11586415022611618,
0.0029136331286281347,
-0.03279167786240578,
0.022389225661754608,
-0.031288690865039825,
-0.047931160777807236,
-0.08747522532939911,
0.06997627764940262,
0.03826338052749634,
0.037382256239652634,
0.01583007536828518,
-0.06118196249008179,
-0.059948332607746124,
0.10235661268234253,
-0.09705989807844162,
0.02265036664903164,
0.012931912206113338,
-0.12100858241319656,
0.07301347702741623,
0.06193742901086807,
0.005096158012747765,
-0.14207080006599426,
0.01886267587542534,
-0.12236206978559494,
0.014933837577700615,
-0.06924986839294434,
-0.13049836456775665,
0.05488660931587219,
0.001561623066663742,
-0.03123130463063717,
-0.1093088686466217,
-0.16218216717243195,
-0.09112824499607086,
-0.014585191383957863,
-0.05927614867687225,
-0.04740782827138901,
-0.022807728499174118,
-0.00673907995223999,
0.04855119064450264,
0.0018550861859694123,
0.02553766779601574,
-0.028227992355823517,
0.04243454709649086,
0.055040743201971054,
0.05723414942622185,
-0.02979663386940956,
0.040176838636398315,
-0.03876460716128349,
0.016257522627711296,
-0.11789236962795258,
0.07614228129386902,
-0.08545274287462234,
0.04336879029870033,
-0.1865185797214508,
-0.055760469287633896,
0.07954277843236923,
-0.038605015724897385,
0.08047500997781754,
0.09605680406093597,
-0.12539318203926086,
0.012583295814692974,
0.10173074156045914,
-0.08699017018079758,
-0.11793070286512375,
0.06187877804040909,
-0.0004420792683959007,
-0.0141500448808074,
0.04817858710885048,
0.0965333804488182,
0.15786795318126678,
-0.1408960372209549,
-0.07193783670663834,
0.00499196071177721,
0.014268506318330765,
-0.08049161732196808,
0.08724728971719742,
-0.05239114910364151,
-0.15028734505176544,
0.0013312025694176555,
0.0013516078470274806,
-0.02379423938691616,
-0.024691687896847725,
-0.06888869404792786,
-0.03136371076107025,
-0.0402856282889843,
0.0066563282161951065,
0.008975951932370663,
0.017882350832223892,
-0.0353696271777153,
-0.020802155137062073,
0.07378356158733368,
0.1618933081626892,
-0.04904957488179207,
-0.04195163771510124,
-0.12885476648807526,
0.0557703822851181,
-0.13706597685813904,
-0.04588991031050682,
-0.21458418667316437,
-0.08507349342107773,
0.01827395334839821,
-0.09838896989822388,
0.01851006969809532,
-0.048360615968704224,
0.0808742493391037,
0.04195990785956383,
0.05013369023799896,
0.029303550720214844,
0.09588763862848282,
-0.019988732412457466,
-0.08284967392683029,
-0.04368455708026886,
-0.03387146815657616,
0.0031237287912517786,
0.19918383657932281,
-0.17707456648349762,
0.016299255192279816,
0.04762403294444084,
0.035967979580163956,
-0.0047554513439536095,
-0.06452255696058273,
-0.01980249211192131,
0.0727907344698906,
0.029655300080776215,
-0.05205721780657768,
0.06064087152481079,
-0.037025537341833115,
-0.09121602028608322,
-0.014954213984310627,
-0.2516550123691559,
0.20937706530094147,
0.12068795412778854,
0.012113185599446297,
-0.0683814138174057,
-0.07189551740884781,
0.04333081841468811,
-0.04952939227223396,
-0.043353915214538574,
0.038334671407938004,
0.1367979496717453,
0.032508525997400284,
0.09381641447544098,
-0.07383337616920471,
-0.020931566134095192,
0.020310506224632263,
-0.02443501353263855,
-0.04935280233621597,
0.19789065420627594,
0.04376152157783508,
-0.1226542592048645,
0.05924966186285019,
-0.01137100625783205,
-0.07998967915773392,
0.03883061558008194,
0.02615327015519142,
-0.06206311285495758,
-0.07079745084047318,
0.011091932654380798,
0.04498142749071121,
0.019604938104748726,
-0.026375386863946915,
0.06714320182800293,
0.058438051491975784,
-0.026730017736554146,
0.03861571103334427,
-0.10513292253017426,
0.027077939361333847,
0.03018937073647976,
-0.0566440224647522,
-0.0762290433049202,
0.005154706072062254,
0.028640443459153175,
0.10893769562244415,
0.0219317227602005,
-0.0014818845083937049,
-0.024645190685987473,
-0.02264106087386608,
-0.13500817120075226,
0.21955040097236633,
-0.09188288450241089,
-0.13523297011852264,
-0.1677577942609787,
-0.12022630125284195,
-0.0800614282488823,
-0.047800254076719284,
-0.014661080203950405,
-0.04897681251168251,
-0.11150429397821426,
-0.04867852106690407,
-0.1010451465845108,
-0.0267502348870039,
-0.07786191999912262,
0.03639647364616394,
-0.03120720200240612,
0.08946766704320908,
-0.13038618862628937,
-0.03347319737076759,
-0.009935863316059113,
-0.11767319589853287,
0.03490983322262764,
-0.008234923705458641,
0.13048654794692993,
0.17101438343524933,
-0.04100782051682472,
0.03249490261077881,
0.0006396080716513097,
0.21000970900058746,
-0.009793051518499851,
-0.04876469075679779,
0.20902298390865326,
0.09355239570140839,
0.07418051362037659,
0.10730612277984619,
0.0605773851275444,
-0.06828169524669647,
-0.006533866748213768,
0.04209669679403305,
-0.024193542078137398,
-0.19676560163497925,
-0.18356195092201233,
0.008121561259031296,
-0.014426848851144314,
0.16977040469646454,
0.029887748882174492,
0.019359376281499863,
0.09941063076257706,
0.019948335364460945,
0.0818043053150177,
-0.02809656225144863,
0.0713837593793869,
0.1391141563653946,
0.04207964614033699,
0.12072845548391342,
-0.08620426803827286,
0.022918062284588814,
0.09109514206647873,
-0.0006115440628491342,
0.06703824549913406,
0.031623560935258865,
0.13087637722492218,
-0.02024698629975319,
0.1362316906452179,
0.028090931475162506,
0.10812567174434662,
0.03000323660671711,
-0.0035154547076672316,
0.05200203135609627,
-0.09954089671373367,
-0.13241912424564362,
-0.01794472709298134,
0.027690410614013672,
0.03826938569545746,
-0.09287326782941818,
-0.00731127243489027,
-0.001649484853260219,
0.04897374287247658,
0.05023724585771561,
-0.4546738862991333,
-0.064791738986969,
0.024544427171349525,
0.00014355697203427553,
-0.10534092783927917,
-0.019139517098665237,
0.00281330244615674,
-0.13615857064723969,
0.061631940305233,
-0.012959649786353111,
0.132418692111969,
-0.05639799311757088,
-0.0360795259475708,
-0.03854324668645859,
0.05729414150118828,
-0.006673574913293123,
0.07195112854242325,
-0.16359923779964447,
0.16283658146858215,
0.0493035688996315,
0.05337944254279137,
-0.0694555938243866,
0.007905611768364906,
0.0395846888422966,
0.00665662856772542,
0.13493649661540985,
0.011273731477558613,
-0.09244134277105331,
-0.30161166191101074,
-0.1431276798248291,
0.029330851510167122,
-0.018752308562397957,
0.0037652573082596064,
0.07562457025051117,
-0.01770169287919998,
-0.009607707150280476,
-0.0330546535551548,
-0.06646216660737991,
-0.09654577821493149,
-0.06369315087795258,
0.031046200543642044,
0.07635873556137085,
-0.03059149719774723,
-0.037605058401823044,
-0.04244353249669075,
-0.028884723782539368,
0.12538203597068787,
-0.08875329792499542,
-0.06129677593708038,
-0.1368407905101776,
-0.021635813638567924,
0.12347838282585144,
-0.12431701272726059,
0.03364846855401993,
-0.0033072768710553646,
0.09128274023532867,
-0.012861061841249466,
-0.11630977690219879,
0.06524334102869034,
-0.04040710628032684,
-0.04028264805674553,
0.044426243752241135,
0.0464043989777565,
0.011179409921169281,
0.054079268127679825,
0.056468330323696136,
0.0329819954931736,
-0.03083963505923748,
-0.13954855501651764,
-0.03997539356350899,
0.07518405467271805,
0.1263607293367386,
0.10341581702232361,
0.03608938306570053,
-0.17191405594348907,
-0.06505324691534042,
0.08968669176101685,
0.12305139750242233,
0.2171962410211563,
-0.06991522014141083,
-0.010758507996797562,
0.10896643996238708,
-0.03721123933792114,
-0.19782961905002594,
-0.014524754136800766,
0.025226224213838577,
0.00778849795460701,
-0.06310524791479111,
-0.053968947380781174,
0.12353748083114624,
0.17083321511745453,
-0.04107595235109329,
-0.05030190572142601,
-0.2807708978652954,
-0.1332695186138153,
0.17584408819675446,
0.1451917290687561,
0.037980034947395325,
-0.14726927876472473,
-0.07796190679073334,
-0.12664811313152313,
-0.19083671271800995,
0.11931990087032318,
-0.04969950392842293,
0.05608412250876427,
-0.05078928917646408,
0.08539769053459167,
0.05085679888725281,
-0.07425665855407715,
0.15111513435840607,
0.017288340255618095,
0.023508187383413315,
-0.04553355276584625,
-0.047367848455905914,
-0.03927689418196678,
-0.09899227321147919,
0.15242089331150055,
0.05337829515337944,
0.08386889845132828,
-0.22330516576766968,
0.00421700906008482,
-0.004965160507708788,
0.055387113243341446,
-0.05463238060474396,
-0.006508128251880407,
-0.015924138948321342,
0.004205108620226383,
-0.005251761991530657,
-0.0344078466296196,
-0.026353614404797554,
-0.04314378276467323,
0.07732918858528137,
0.20785440504550934,
0.10692141950130463,
0.0029233547393232584,
-0.07975418865680695,
0.060727186501026154,
-0.04768107831478119,
0.050139911472797394,
-0.13381803035736084,
0.06969161331653595,
0.1308198720216751,
0.04656242951750755,
0.08310838043689728,
0.02033204771578312,
-0.04835488647222519,
-0.023608168587088585,
0.03859627619385719,
-0.1294143795967102,
0.006156301591545343,
-0.006963464431464672,
0.012365620583295822,
-0.08746259659528732,
-0.035766977816820145,
0.10426168888807297,
-0.003165698144584894,
-0.021992044523358345,
0.011272916570305824,
0.00706771295517683,
-0.012195689603686333,
0.2525610327720642,
0.015774695202708244,
0.09749414771795273,
-0.12204346805810928,
0.0745868980884552,
0.09705007821321487,
-0.16595566272735596,
0.014428788796067238,
0.0859154686331749,
-0.08344866335391998,
-0.05808310955762863,
0.010126283392310143,
0.1407516896724701,
-0.13619539141654968,
-0.06516106426715851,
0.0006257402710616589,
-0.06871075183153152,
0.06827235221862793,
0.23409336805343628,
0.10634814202785492,
0.016655901446938515,
0.01000850647687912,
-0.0905294343829155,
-0.10388974100351334,
0.028945952653884888,
0.08652009069919586,
0.01923857070505619,
-0.10011040419340134,
0.1507895588874817,
-0.0035613866057246923,
0.0034833550453186035,
-0.008265224285423756,
-0.01534911897033453,
-0.1800040602684021,
-0.03169016167521477,
-0.040581438690423965,
0.09175637364387512,
-0.07075739651918411,
0.0596357099711895,
-0.01940959505736828,
0.025799183174967766,
-0.04976922646164894,
0.016500350087881088,
-0.05886441841721535,
-0.06087561324238777,
0.007174792233854532,
0.06865336745977402,
-0.12256567180156708,
-0.007837474346160889,
0.08285458385944366,
-0.02080630138516426,
0.02537599578499794,
0.0902886688709259,
0.06599608808755875,
0.02750794216990471,
-0.06796526163816452,
-0.009293774142861366,
0.06536528468132019,
0.025783706456422806,
0.07622486352920532,
-0.17885372042655945,
0.06412886083126068,
0.0030240940395742655,
0.015520856715738773,
0.04917105659842491,
0.09925296902656555,
-0.11223329603672028,
-0.004794738255441189,
-0.09487650543451309,
-0.06478175520896912,
-0.13592994213104248,
0.04863985255360603,
0.1558767408132553,
0.06617757678031921,
0.054697707295417786,
-0.0753958597779274,
0.019486529752612114,
-0.18226461112499237,
-0.017234744504094124,
-0.02657405659556389,
-0.03635367006063461,
-0.007565212436020374,
-0.010352357290685177,
0.08924153447151184,
-0.016530228778719902,
0.08250895887613297,
-0.034783363342285156,
0.02913886494934559,
0.015722278505563736,
0.09826713055372238,
-0.02320433408021927,
-0.05392834171652794,
0.19250717759132385,
0.07679770141839981,
0.00426799152046442,
0.11959006637334824,
0.09807667881250381,
0.009685040451586246,
0.013026035390794277,
0.00600099703297019,
0.08233098685741425,
-0.10367051512002945,
0.06661395728588104,
0.047180771827697754,
-0.0831170603632927,
-0.010442406870424747,
0.060553256422281265,
-0.12235142290592194,
0.016729671508073807,
-0.04579372704029083,
0.03760315477848053,
0.14305885136127472,
-0.15547966957092285,
0.01114561315625906,
-0.009370516054332256,
-0.0817907452583313,
-0.19399631023406982,
-0.07695868611335754,
-0.12591560184955597,
-0.030335847288370132,
-0.027392398566007614,
-0.12307121604681015,
0.022015895694494247,
0.16691337525844574,
0.010063264518976212,
0.035452019423246384,
0.10366029292345047,
-0.2013157457113266,
-0.018004463985562325,
-0.04607619717717171,
-0.001137567451223731,
-0.0019252412021160126,
0.002920414786785841,
0.0031137592159211636,
0.05220921337604523,
-0.02238593064248562,
0.11734034866094589,
0.022732766345143318,
0.04818941652774811,
0.09730704873800278,
-0.026964794844388962,
-0.07914028316736221,
-0.032737571746110916,
0.03232083097100258,
0.03293228894472122,
0.13431698083877563,
0.03971833735704422,
0.003609840292483568,
-0.040336765348911285,
0.21158656477928162,
-0.10046279430389404,
0.017555411905050278,
-0.11320886015892029,
0.2473989725112915,
0.031571242958307266,
0.04307667165994644,
0.03708643466234207,
-0.022200794890522957,
0.035291705280542374,
0.16431854665279388,
0.10083390772342682,
0.01578027755022049,
-0.024084337055683136,
-0.00577318063005805,
-0.005724893882870674,
-0.012134467251598835,
0.07611212879419327,
0.051555439829826355,
0.17725640535354614,
-0.07473470270633698,
0.039105407893657684,
0.012243024073541164,
0.004744180478155613,
-0.08196953684091568,
0.031985092908144,
0.0020841388031840324,
-0.014167713932693005,
-0.004092259798198938,
0.12008196860551834,
-0.02814326249063015,
0.04720240458846092,
0.09041586518287659,
-0.09076137095689774,
-0.1339242160320282,
0.026607772335410118,
-0.042145926505327225,
-0.04675213247537613,
0.08309001475572586,
-0.04512698948383331,
-0.005034265108406544,
0.03074023500084877,
0.010383079759776592,
-0.2142930030822754,
-0.08498625457286835,
-0.00915963388979435,
0.16239072382450104,
0.2671540081501007,
0.03578345850110054,
0.11196766048669815,
0.16881480813026428,
-0.0036646153312176466,
-0.14433936774730682,
0.12552690505981445,
0.0003948099329136312,
-0.15046799182891846,
0.09781955182552338,
0.058751028031110764,
-0.03485522046685219,
0.13246606290340424,
0.04494807496666908,
-0.16625623404979706,
-0.0042110225185751915,
-0.03555189445614815,
0.09373047202825546,
-0.07128536701202393,
0.01699921302497387,
-0.08558487892150879,
0.12370666116476059,
0.154459610581398,
-0.01865633949637413,
0.02135159820318222,
-0.04282999783754349,
0.04554491490125656,
-0.024971015751361847,
0.0067026191391050816,
-0.025095101445913315,
-0.096986785531044,
0.06631896644830704,
-0.20606592297554016,
0.0018585887737572193,
-0.28446707129478455,
-0.015747450292110443,
-0.015301743522286415,
-0.059097904711961746,
-0.03656177595257759,
0.10535889863967896,
0.02683475986123085,
0.003457470331341028,
-0.04465680941939354,
-0.18247923254966736,
0.0131095414981246,
0.16317778825759888,
-0.12112496048212051,
-0.1390143185853958
] |
null | null |
transformers
|
hello
|
{}
|
text-generation
|
akozlo/con_bal60k
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
hello
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
47
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.027653997763991356,
0.02414041943848133,
-0.0068230400793254375,
0.010564634576439857,
0.18164798617362976,
0.033704131841659546,
0.08821956068277359,
0.13570955395698547,
-0.0068973456509411335,
-0.013526750728487968,
0.1547490805387497,
0.20799952745437622,
-0.0026462990790605545,
0.0791444480419159,
-0.0664469450712204,
-0.2753458023071289,
0.05913490429520607,
0.0680282786488533,
-0.007687992881983519,
0.12075648456811905,
0.07187031954526901,
-0.0549883171916008,
0.0886516347527504,
-0.02030559629201889,
-0.17324471473693848,
0.01953965798020363,
0.04816993698477745,
-0.12518654763698578,
0.1176358312368393,
0.05111858248710632,
0.09795232862234116,
0.008365745656192303,
-0.06405694782733917,
-0.13635118305683136,
0.022147029638290405,
0.03033585101366043,
-0.058860234916210175,
0.0636059120297432,
0.1087222546339035,
-0.09939044713973999,
0.09311723709106445,
0.08541663736104965,
-0.0255570225417614,
0.05364618077874184,
-0.15825888514518738,
-0.06378549337387085,
-0.02499648556113243,
0.007804732769727707,
0.06256697326898575,
0.10073644667863846,
-0.017566369846463203,
0.10258800536394119,
-0.0975269079208374,
0.10333853214979172,
0.1500675231218338,
-0.3112771809101105,
0.009987793862819672,
0.09499151259660721,
0.04119991883635521,
0.03931105509400368,
-0.02533094584941864,
0.05045793950557709,
0.025268254801630974,
0.027277586981654167,
0.007437177933752537,
-0.0750175341963768,
-0.1137726753950119,
0.049895867705345154,
-0.09199702739715576,
-0.07458660751581192,
0.22324641048908234,
-0.07399588078260422,
0.060080595314502716,
-0.025852523744106293,
-0.11121725291013718,
-0.05274823680520058,
-0.013890148140490055,
0.018784796819090843,
-0.06587869673967361,
0.08765926212072372,
0.024050135165452957,
-0.06755640357732773,
-0.1323474794626236,
-0.04128742218017578,
-0.18628640472888947,
0.17943057417869568,
0.015332846902310848,
0.05883103236556053,
-0.1924149990081787,
0.11635245382785797,
-0.004000017885118723,
-0.08559784293174744,
0.024640021845698357,
-0.09488005936145782,
0.03717249631881714,
-0.005796557758003473,
-0.06343648582696915,
-0.07624655961990356,
0.078512042760849,
0.13449318706989288,
-0.0038929670117795467,
0.031459223479032516,
-0.03913462534546852,
0.08946967869997025,
0.023094916716217995,
0.11019261926412582,
-0.01329297386109829,
-0.00601809611544013,
0.043852973729372025,
-0.14449132978916168,
-0.008341594599187374,
-0.06913956254720688,
-0.1527271568775177,
-0.05108632892370224,
0.05306483805179596,
0.08953460305929184,
0.008545879274606705,
0.09067165106534958,
-0.04840036481618881,
-0.026439275592565536,
0.06191498041152954,
-0.07166212797164917,
-0.0057375445030629635,
0.0005479406099766493,
0.020326290279626846,
0.12346802651882172,
-0.006863993126899004,
0.01816580630838871,
-0.1344953328371048,
0.07597071677446365,
-0.0810447409749031,
0.0016609809827059507,
-0.037295255810022354,
-0.051307324320077896,
0.016753138974308968,
-0.09774310886859894,
0.014272624626755714,
-0.15190516412258148,
-0.18175770342350006,
0.015764877200126648,
0.0044948384165763855,
-0.03198384866118431,
-0.035312067717313766,
-0.03263629972934723,
-0.023609675467014313,
0.04306609928607941,
-0.06790579855442047,
0.009302832186222076,
-0.05678845942020416,
0.10395034402608871,
-0.032171644270420074,
0.06649759411811829,
-0.10738259553909302,
0.0829162523150444,
-0.12368609756231308,
-0.004673504736274481,
-0.09571383893489838,
0.07571588456630707,
-0.0049130916595458984,
0.11728651076555252,
-0.028541911393404007,
-0.03454771637916565,
-0.07556727528572083,
0.04999465495347977,
-0.02550712786614895,
0.18951213359832764,
-0.060080599039793015,
-0.12557648122310638,
0.2583121061325073,
-0.07503679394721985,
-0.1294521689414978,
0.09354755282402039,
0.013357079587876797,
0.03000263124704361,
0.08708256483078003,
0.17770351469516754,
0.03385210409760475,
0.011724604293704033,
0.08526027947664261,
0.1101398766040802,
-0.11245359480381012,
-0.0934135690331459,
0.01582467369735241,
-0.04410967230796814,
-0.14348545670509338,
0.0551721565425396,
0.06396481394767761,
0.08126390725374222,
-0.04889657348394394,
-0.02648499235510826,
-0.04211905598640442,
0.005280596204102039,
0.08378548920154572,
0.011136471293866634,
0.12981148064136505,
-0.04937934875488281,
-0.03142275661230087,
-0.018193937838077545,
-0.012411710806190968,
-0.03191297501325607,
0.03591127321124077,
-0.019667068496346474,
0.13700194656848907,
-0.048340748995542526,
0.053371917456388474,
-0.18971459567546844,
-0.07922437787055969,
0.0010099048959091306,
0.123023621737957,
-0.014106693677604198,
0.08013445883989334,
0.05753817409276962,
-0.018720267340540886,
-0.004700321704149246,
-0.01032867468893528,
0.1544346958398819,
-0.021616755053400993,
-0.06661882251501083,
-0.04162381589412689,
0.0662311464548111,
-0.05831345543265343,
-0.0033040468115359545,
-0.05776660889387131,
0.013589667156338692,
0.05048443749547005,
0.10443682968616486,
-0.0023575187660753727,
0.03253777325153351,
-0.02123248018324375,
0.018250472843647003,
-0.07885172218084335,
-0.0028943256475031376,
0.09839999675750732,
-0.003195167751982808,
-0.06114937365055084,
0.191707044839859,
-0.16508106887340546,
0.2123199850320816,
0.18989497423171997,
-0.2840019166469574,
0.008855658583343029,
-0.07930868119001389,
-0.03107025846838951,
0.019292673096060753,
0.04051336646080017,
-0.035391807556152344,
0.12321244925260544,
0.0030509934294968843,
0.1893225461244583,
-0.05120055004954338,
-0.054668959230184555,
-0.0003608512051869184,
-0.05736381933093071,
0.0013126746052876115,
0.06707432866096497,
0.11558198183774948,
-0.12564630806446075,
0.1973772495985031,
0.17830142378807068,
0.02446782775223255,
0.16028088331222534,
0.003589105326682329,
-0.02908729389309883,
0.07800903916358948,
0.001039333757944405,
-0.03403163328766823,
-0.08341804146766663,
-0.19453173875808716,
-0.01920945756137371,
0.08615871518850327,
0.05208343267440796,
0.11178864538669586,
-0.1340440809726715,
-0.039688125252723694,
-0.016580121591687202,
-0.013963420875370502,
0.004052120726555586,
0.08927994221448898,
0.05621529743075371,
0.11766386777162552,
-0.008479462936520576,
0.004914911463856697,
0.11690844595432281,
0.024292193353176117,
-0.0974007099866867,
0.20369629561901093,
-0.12859489023685455,
-0.35919657349586487,
-0.17192909121513367,
-0.16941924393177032,
-0.046767693012952805,
0.06603047996759415,
0.10566895455121994,
-0.11921820044517517,
-0.03283723443746567,
0.01984371617436409,
0.10511579364538193,
-0.0874844342470169,
0.025252653285861015,
-0.07854585349559784,
0.039858005940914154,
-0.08228866755962372,
-0.07852846384048462,
-0.058627899736166,
-0.02397638000547886,
-0.06844961643218994,
0.15293799340724945,
-0.10580270737409592,
0.04606963321566582,
0.19703397154808044,
0.035209350287914276,
0.05708123743534088,
-0.03352535888552666,
0.19375872611999512,
-0.09711813181638718,
-0.014181635342538357,
0.20692157745361328,
-0.04432303458452225,
0.08276087045669556,
0.10658510029315948,
-0.0009211950236931443,
-0.0905555859208107,
0.023672347888350487,
-0.03327333554625511,
-0.09995128959417343,
-0.2413795441389084,
-0.12423769384622574,
-0.12672755122184753,
0.07157120853662491,
0.06113129481673241,
0.06719478219747543,
0.1604551076889038,
0.09354656934738159,
-0.019843624904751778,
0.04505275562405586,
-0.0036725422833114862,
0.07906411588191986,
0.20365294814109802,
-0.0204415675252676,
0.13615357875823975,
-0.050657231360673904,
-0.13334059715270996,
0.09257177263498306,
0.06900633871555328,
0.15225820243358612,
0.054498545825481415,
0.05270633473992348,
0.006767008453607559,
0.06716175377368927,
0.1454283893108368,
0.13071000576019287,
0.014545821584761143,
-0.016409022733569145,
-0.021825823932886124,
-0.011036834679543972,
-0.05876464396715164,
0.04085689038038254,
0.02777833305299282,
-0.1610528975725174,
-0.05520197004079819,
-0.12001585215330124,
0.08774644136428833,
0.09219257533550262,
0.06569026410579681,
-0.2342914491891861,
0.007060535252094269,
0.08197256177663803,
-0.028898365795612335,
-0.1258426308631897,
0.08190665394067764,
-0.021697908639907837,
-0.14926569163799286,
0.0494246669113636,
-0.061497997492551804,
0.12161173671483994,
-0.07084709405899048,
0.08109014481306076,
-0.03937468305230141,
-0.062106676399707794,
0.020281726494431496,
0.1271398812532425,
-0.29730626940727234,
0.20356124639511108,
-0.001819691271521151,
-0.05869410187005997,
-0.11437822878360748,
0.01959572173655033,
0.01367559190839529,
0.11016108095645905,
0.10386832803487778,
0.005328167695552111,
-0.0475030355155468,
-0.12364684045314789,
-0.022924374788999557,
0.024910306558012962,
0.12441114336252213,
-0.05739542469382286,
-0.008891535922884941,
-0.044362228363752365,
-0.0058176638558506966,
-0.028876133263111115,
-0.053936153650283813,
0.025268638506531715,
-0.16888569295406342,
0.08389513194561005,
0.017658868804574013,
0.09978678822517395,
0.01261826977133751,
-0.013697084039449692,
-0.09944134950637817,
0.23519866168498993,
-0.07718266546726227,
-0.11035529524087906,
-0.1205357164144516,
-0.04611735790967941,
0.0686027929186821,
-0.0741099938750267,
0.0634869635105133,
-0.08208895474672318,
0.024847982451319695,
-0.047674816101789474,
-0.21411024034023285,
0.1248590424656868,
-0.09078147262334824,
-0.047217957675457,
-0.038028888404369354,
0.1873915195465088,
-0.07860055565834045,
0.003835690440610051,
0.01727161929011345,
0.03052649088203907,
-0.11501652747392654,
-0.10535892844200134,
0.02131424844264984,
-0.005508285015821457,
0.06073078140616417,
0.04357268661260605,
-0.06716573983430862,
0.01641303487122059,
-0.022389056161046028,
-0.006917606573551893,
0.32454678416252136,
0.14079391956329346,
-0.04770330339670181,
0.17363035678863525,
0.11376409232616425,
-0.08209476619958878,
-0.31482723355293274,
-0.08535979688167572,
-0.09984239190816879,
-0.03735451400279999,
-0.06232178583741188,
-0.21656104922294617,
0.09480288624763489,
0.04200942441821098,
-0.015409117564558983,
0.1568077802658081,
-0.24411429464817047,
-0.0795927420258522,
0.15950311720371246,
-0.007333407178521156,
0.3560895025730133,
-0.12491796165704727,
-0.11301901936531067,
-0.05532994866371155,
-0.1397564709186554,
0.15002089738845825,
-0.009417316876351833,
0.11106741428375244,
-0.03287123143672943,
0.10856477171182632,
0.048215944319963455,
-0.05544896051287651,
0.09160676598548889,
0.026295991614460945,
-0.003711326979100704,
-0.10597866773605347,
-0.01747799478471279,
0.043585844337940216,
0.006319248117506504,
0.031217962503433228,
-0.03127649053931236,
0.033463045954704285,
-0.12691029906272888,
-0.04727448150515556,
-0.08006873726844788,
0.05846472829580307,
0.052333541214466095,
-0.0737200528383255,
-0.0010956452460959554,
-0.06611854583024979,
-0.016030769795179367,
0.003143493551760912,
0.19045160710811615,
-0.03460016846656799,
0.14779594540596008,
0.0818052664399147,
0.09073434770107269,
-0.1361592561006546,
-0.0061243316158652306,
-0.06888517737388611,
-0.057741593569517136,
0.08706554025411606,
-0.10988334566354752,
0.06429524719715118,
0.11854783445596695,
-0.04650293290615082,
0.07134203612804413,
0.11840200424194336,
0.015247469767928123,
-0.0033181030303239822,
0.13015136122703552,
-0.2568117082118988,
0.019211336970329285,
-0.0754370167851448,
-0.03775216266512871,
0.08088402450084686,
0.07995659112930298,
0.16486960649490356,
0.036187540739774704,
-0.042049095034599304,
-0.003924929536879063,
0.009187355637550354,
-0.039663419127464294,
0.08243577927350998,
0.012240500189363956,
0.023174172267317772,
-0.15248477458953857,
0.071900375187397,
0.015580810606479645,
-0.12336304783821106,
0.011253113858401775,
0.1477922946214676,
-0.13801799714565277,
-0.11707340180873871,
-0.03374985232949257,
0.08742405474185944,
-0.14541642367839813,
-0.0241269338876009,
-0.04783749580383301,
-0.12825986742973328,
0.09339214116334915,
0.11613135039806366,
0.07497538626194,
0.10595441609621048,
-0.0529337078332901,
-0.02668607421219349,
-0.03682107478380203,
-0.022537073120474815,
-0.0017330512637272477,
0.032638516277074814,
-0.08304216712713242,
0.0579586885869503,
-0.020800847560167313,
0.14298540353775024,
-0.08964299410581589,
-0.07169508188962936,
-0.1581236720085144,
0.03564200550317764,
-0.12593989074230194,
-0.07035141438245773,
-0.08840593695640564,
-0.05227470397949219,
-0.007837125100195408,
-0.01494099572300911,
-0.0388214997947216,
-0.04472146928310394,
-0.12364204227924347,
0.01879296824336052,
-0.05806630104780197,
0.02100815810263157,
-0.07383234053850174,
0.00039667764212936163,
0.08932872861623764,
-0.0410015694797039,
0.13851116597652435,
0.13557660579681396,
-0.08107975125312805,
0.11907198280096054,
-0.13537484407424927,
-0.0908876284956932,
0.1157127171754837,
0.013428857550024986,
0.03907458856701851,
0.06849293410778046,
0.037317484617233276,
0.06514574587345123,
0.016511039808392525,
0.05237346887588501,
0.006972990930080414,
-0.1299850195646286,
0.03433857858181,
-0.042786743491888046,
-0.1481933295726776,
-0.05744143947958946,
-0.05092177540063858,
0.039562974125146866,
0.02438235841691494,
0.10801149904727936,
-0.03665049374103546,
0.11085481196641922,
-0.058541763573884964,
0.01499281544238329,
0.004919432103633881,
-0.18287403881549835,
-0.044654008001089096,
-0.07792776077985764,
0.02775009535253048,
0.022204352542757988,
0.2720205783843994,
0.0410233810544014,
0.020275471732020378,
0.017097288742661476,
0.11327627301216125,
0.057128578424453735,
0.015525308437645435,
0.214890718460083,
0.11996994912624359,
-0.06049320101737976,
-0.10806480050086975,
0.0858595222234726,
0.02164783701300621,
0.007426374591886997,
0.14070266485214233,
0.008503482677042484,
-0.015597577206790447,
0.0887407436966896,
-0.03357330709695816,
0.0031263602431863546,
-0.11658911406993866,
-0.13779941201210022,
-0.028487415984272957,
0.0629650130867958,
-0.0040870243683457375,
0.0956285297870636,
0.13609373569488525,
-0.026881180703639984,
0.03953414782881737,
-0.007877747528254986,
-0.054916199296712875,
-0.1785028725862503,
-0.15742821991443634,
-0.0790708139538765,
-0.13561099767684937,
0.014744875021278858,
-0.10368648171424866,
0.04369770362973213,
0.09560346603393555,
0.055915698409080505,
-0.05440305173397064,
0.10839936882257462,
0.060064028948545456,
-0.1045473963022232,
0.056569941341876984,
-0.032912541180849075,
0.06427399069070816,
-0.001812951872125268,
-0.02503552846610546,
-0.09098561853170395,
0.0020124134607613087,
0.0017788249533623457,
0.0514003150165081,
-0.05152478814125061,
0.024474015459418297,
-0.15132632851600647,
-0.09570280462503433,
-0.04949872940778732,
0.07316448539495468,
-0.06007300689816475,
0.1162300780415535,
-0.001420395914465189,
-0.017011309042572975,
0.03990921378135681,
0.2064858227968216,
-0.07188161462545395,
-0.04990030825138092,
-0.047407180070877075,
0.22449158132076263,
0.04847963526844978,
0.10619479417800903,
-0.013415440917015076,
-0.00436578830704093,
-0.07670432329177856,
0.36612021923065186,
0.2802904546260834,
-0.06149837002158165,
0.012722660787403584,
0.03524370491504669,
0.030115660279989243,
0.13885097205638885,
0.1454230099916458,
0.09396251291036606,
0.27579233050346375,
-0.08266803622245789,
-0.052018675953149796,
-0.015770163387060165,
-0.020211221650242805,
-0.09714096784591675,
0.11003416776657104,
0.04697350785136223,
-0.06982195377349854,
-0.044631510972976685,
0.09750646352767944,
-0.24107815325260162,
0.1615772694349289,
-0.07760030031204224,
-0.15214353799819946,
-0.06177033111453056,
0.012448563240468502,
0.10150322318077087,
0.00011545186134753749,
0.08784360438585281,
-0.009687529876828194,
-0.10291683673858643,
0.05749227851629257,
0.02730483002960682,
-0.23568211495876312,
-0.007146455347537994,
0.053680915385484695,
-0.04540037736296654,
0.013332240283489227,
-0.01917567476630211,
0.04910791665315628,
0.06717875599861145,
0.055140718817710876,
-0.0426395982503891,
0.03817736729979515,
-0.010196289978921413,
-0.05020907521247864,
0.029649224132299423,
0.044778332114219666,
0.017814766615629196,
-0.13065220415592194,
0.05277646332979202,
-0.13968263566493988,
0.041911475360393524,
-0.029653942212462425,
-0.027413733303546906,
-0.004670299123972654,
-0.019546283408999443,
-0.06313455104827881,
0.057941507548093796,
0.08424945920705795,
0.001472705160267651,
-0.007915833964943886,
-0.08050897717475891,
-0.011023934930562973,
-0.012819311581552029,
-0.08308050036430359,
-0.10086389631032944,
-0.1384236365556717,
-0.10634621232748032,
0.12701933085918427,
-0.017066750675439835,
-0.19125573337078094,
0.01284839678555727,
-0.09708964824676514,
0.060041818767786026,
-0.1797112077474594,
0.0843181237578392,
0.06071038171648979,
0.01623542606830597,
-0.004114143084734678,
-0.029135411605238914,
0.039420004934072495,
0.08210206776857376,
-0.10779064148664474,
-0.09044761955738068
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# conserv_fulltext_model
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
unbalanced_texts gpt2
|
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "conserv_fulltext_model", "results": []}]}
|
text-generation
|
akozlo/conserv_fulltext_1_18_22
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# conserv_fulltext_model
This model is a fine-tuned version of gpt2 on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
unbalanced_texts gpt2
|
[
"# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2"
] |
[
59,
29,
6,
12,
8,
3,
126,
4,
42
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2"
] |
[
-0.08681079000234604,
0.14870373904705048,
-0.0035047116689383984,
0.0909651517868042,
0.14118827879428864,
0.052474360913038254,
0.10255976021289825,
0.160902738571167,
-0.08309794217348099,
0.07539262622594833,
0.0855429545044899,
0.04749413952231407,
0.0663616731762886,
0.1316918283700943,
-0.0045042806304991245,
-0.2711210548877716,
0.018749743700027466,
-0.03281829133629799,
-0.029944900423288345,
0.0950707271695137,
0.10974043607711792,
-0.07262720167636871,
0.06701718270778656,
0.01145369466394186,
-0.14622077345848083,
-0.012188689783215523,
-0.029935263097286224,
-0.04887107387185097,
0.0884767398238182,
0.035649724304676056,
0.06705090403556824,
-0.00641242740675807,
0.10576660931110382,
-0.20587490499019623,
-0.0028666064608842134,
0.07684534043073654,
0.03447762131690979,
0.08347786962985992,
0.08462955057621002,
0.00012364193389657885,
0.08623818308115005,
-0.13239991664886475,
0.08439059555530548,
0.024843046441674232,
-0.09972161799669266,
-0.12984739243984222,
-0.08970335125923157,
0.053167764097452164,
0.08684375882148743,
0.09420106559991837,
-0.004130825400352478,
0.08114417642354965,
-0.093443863093853,
0.05163157731294632,
0.16135577857494354,
-0.2632485032081604,
-0.04422731325030327,
0.05231459066271782,
0.018463563174009323,
0.05852197855710983,
-0.10277729481458664,
-0.03563312068581581,
0.017876707017421722,
0.03448336943984032,
0.08112620562314987,
0.0017042813124135137,
-0.10055533051490784,
0.005595994647592306,
-0.12656164169311523,
-0.0414782352745533,
0.14310915768146515,
0.027714058756828308,
-0.031182659789919853,
-0.1564527153968811,
-0.037604257464408875,
-0.11715885251760483,
-0.01880929432809353,
0.005123981274664402,
0.015792861580848694,
-0.00949920155107975,
-0.0428425632417202,
-0.056156568229198456,
-0.06736812740564346,
-0.06768735498189926,
-0.011971884407103062,
0.06401591002941132,
0.04889563098549843,
0.010666466318070889,
-0.009617839939892292,
0.12335170060396194,
-0.05169982835650444,
-0.1150931790471077,
-0.02314206212759018,
-0.014731494709849358,
-0.1066604033112526,
-0.05317232385277748,
-0.037344153970479965,
-0.011983128264546394,
0.008715084753930569,
0.14645574986934662,
-0.02904408983886242,
0.07769466936588287,
0.011425537057220936,
0.009024749509990215,
0.014903328381478786,
0.14090070128440857,
-0.05609411001205444,
-0.02226918190717697,
-0.00448976457118988,
0.07876206934452057,
-0.0006148676038719714,
-0.019648408517241478,
-0.09535402059555054,
-0.0358482301235199,
0.07906679064035416,
0.06268342584371567,
-0.029447993263602257,
0.039931148290634155,
-0.055955782532691956,
-0.04326242208480835,
0.06315790861845016,
-0.12037088721990585,
0.04456231743097305,
0.003241154598072171,
-0.07745036482810974,
-0.010044476948678493,
0.009207227267324924,
0.0064787669107317924,
-0.05675194039940834,
0.07273125648498535,
-0.07485034316778183,
-0.004844243638217449,
-0.07024501264095306,
-0.06273826956748962,
0.01051509752869606,
-0.05250821262598038,
-0.015506621450185776,
-0.052595093846321106,
-0.2086385041475296,
-0.040357258170843124,
0.030331721529364586,
-0.0836988165974617,
-0.057628098875284195,
-0.04841884970664978,
-0.03562808036804199,
0.04104642942547798,
-0.010008290410041809,
0.11663880944252014,
-0.05959717184305191,
0.06069264933466911,
-0.021982038393616676,
0.018154915422201157,
0.052774183452129364,
0.044952407479286194,
-0.08161880820989609,
0.0245541799813509,
-0.12077982723712921,
0.11837108433246613,
-0.08246111124753952,
0.010369454510509968,
-0.1271127462387085,
-0.09318361431360245,
0.00883091427385807,
-0.026356298476457596,
0.05123647674918175,
0.13162349164485931,
-0.1593862920999527,
-0.023465925827622414,
0.17894187569618225,
-0.06021196022629738,
-0.052592892199754715,
0.11314951628446579,
-0.05401775613427162,
0.007953595370054245,
0.06037775054574013,
0.1554969698190689,
0.1095978245139122,
-0.08858625590801239,
-0.0008719903999008238,
0.016697324812412262,
0.062378209084272385,
0.04823727905750275,
0.07721928507089615,
-0.03573079779744148,
0.011479664593935013,
0.016012875363230705,
-0.04273558780550957,
0.022393671795725822,
-0.06847045570611954,
-0.0835380107164383,
-0.048076193779706955,
-0.07213975489139557,
0.04972607269883156,
0.009323070757091045,
0.03859935328364372,
-0.05357467383146286,
-0.12216705828905106,
0.05533081665635109,
0.13484086096286774,
-0.06828852742910385,
0.005695556756108999,
-0.06692668050527573,
0.03891192376613617,
-0.025558829307556152,
-0.019043300300836563,
-0.17713773250579834,
-0.12637002766132355,
0.0529230535030365,
-0.03812333568930626,
0.03525951877236366,
0.00488027511164546,
0.057426802814006805,
0.06555309146642685,
-0.04016970843076706,
-0.016902845352888107,
-0.04614415392279625,
-0.020345017313957214,
-0.0851847231388092,
-0.1752193719148636,
-0.03868908807635307,
-0.025548886507749557,
0.1762743890285492,
-0.22509843111038208,
0.004744086414575577,
-0.009613960050046444,
0.11483581364154816,
0.017108246684074402,
-0.06860911101102829,
0.018031753599643707,
0.02299753576517105,
-0.007313949055969715,
-0.10910587012767792,
0.03719174489378929,
0.016603877767920494,
-0.08240874111652374,
-0.019474618136882782,
-0.12927649915218353,
0.02981940470635891,
0.0697527602314949,
0.07173913717269897,
-0.11685193330049515,
-0.062262553721666336,
-0.05546315014362335,
-0.04219905659556389,
-0.09064122289419174,
0.0008800351060926914,
0.2204105406999588,
0.016683371737599373,
0.1246427446603775,
-0.06008796766400337,
-0.0638706237077713,
0.003981586080044508,
0.011256837286055088,
0.013874193653464317,
0.08037363737821579,
0.07408695667982101,
-0.10452980548143387,
0.08571150153875351,
0.0438542515039444,
-0.024382688105106354,
0.1377054899930954,
-0.0390252023935318,
-0.09727496653795242,
-0.031276166439056396,
0.029559651389718056,
-0.006060321349650621,
0.08177851885557175,
-0.10561225563287735,
-0.00376178533770144,
0.047822874039411545,
0.04877982661128044,
0.041113004088401794,
-0.16458584368228912,
-0.011991401202976704,
0.03003760799765587,
-0.05436341464519501,
-0.004850470926612616,
-0.014503988437354565,
0.02679433487355709,
0.0851181298494339,
0.03318821266293526,
0.004719947464764118,
0.01980440504848957,
-0.014232499524950981,
-0.09351551532745361,
0.18400980532169342,
-0.11746063083410263,
-0.1689932942390442,
-0.11581293493509293,
0.0052972352132201195,
-0.04232032597064972,
-0.00906600896269083,
0.0029450817964971066,
-0.07368883490562439,
-0.05777313560247421,
-0.0891108512878418,
0.011273698881268501,
-0.05448886379599571,
-0.009736095555126667,
0.010009421966969967,
0.004653872922062874,
0.052779246121644974,
-0.12463942170143127,
0.008766992948949337,
0.009689293801784515,
-0.10821104794740677,
0.01675434410572052,
0.03838955610990524,
0.0640290379524231,
0.1500469446182251,
0.014893116429448128,
0.01957073248922825,
-0.04407930374145508,
0.24491293728351593,
-0.08676016330718994,
-0.0010709043126553297,
0.09706313908100128,
0.008413231931626797,
0.06012536212801933,
0.11387462913990021,
0.03365211561322212,
-0.08936236798763275,
0.022282127290964127,
0.05365992709994316,
-0.01138612162321806,
-0.24585646390914917,
-0.04636668413877487,
-0.049865931272506714,
-0.042552173137664795,
0.13050583004951477,
0.05854227766394615,
0.015277374535799026,
0.06321236491203308,
-0.02478720247745514,
0.062321681529283524,
-0.000054120308050187305,
0.08579553663730621,
0.09166371077299118,
0.043810781091451645,
0.10031682252883911,
-0.023661931976675987,
-0.024209890514612198,
0.08044421672821045,
0.025309117510914803,
0.27068468928337097,
-0.026372643187642097,
0.1543908715248108,
0.022374356165528297,
0.13533362746238708,
-0.00837401207536459,
0.01632225140929222,
-0.0006862209993414581,
0.0076355477795004845,
-0.006224353797733784,
-0.05985250324010849,
-0.032770827412605286,
0.028865795582532883,
0.008910301141440868,
-0.0062884618528187275,
-0.0935705304145813,
-0.00893490482121706,
0.023755880072712898,
0.2192915827035904,
0.06886858493089676,
-0.2803662121295929,
-0.06987584382295609,
0.029703162610530853,
-0.03126845136284828,
-0.0822555348277092,
0.012455404736101627,
0.08505065739154816,
-0.15116874873638153,
0.04794614017009735,
-0.052079107612371445,
0.09419237822294235,
-0.10691044479608536,
-0.011421374045312405,
0.05912885069847107,
0.09704738110303879,
-0.007292839232832193,
0.10957921296358109,
-0.18441422283649445,
0.18097494542598724,
0.01579279452562332,
0.08070287853479385,
-0.08110427856445312,
0.04965520650148392,
0.016527405008673668,
0.04387636110186577,
0.10672733932733536,
0.00929872877895832,
-0.05569171905517578,
-0.15661685168743134,
-0.10691462457180023,
0.02355281263589859,
0.10655955225229263,
-0.04099487140774727,
0.07157354056835175,
-0.05124366283416748,
0.013611835427582264,
0.040461376309394836,
-0.08424591273069382,
-0.1378966122865677,
-0.1592763513326645,
0.049076419323682785,
-0.004731879569590092,
0.0029377778992056847,
-0.061465147882699966,
-0.08209028095006943,
-0.04741736501455307,
0.22032399475574493,
0.008570642210543156,
-0.07099979370832443,
-0.13807186484336853,
0.05292248725891113,
0.14636294543743134,
-0.059025850147008896,
0.03740697726607323,
0.01239435002207756,
0.13321740925312042,
0.037118468433618546,
-0.08262977749109268,
0.06383804976940155,
-0.05148949474096298,
-0.16583280265331268,
-0.061400704085826874,
0.12651729583740234,
0.05181823670864105,
0.04911772906780243,
-0.0073354667983949184,
0.027066558599472046,
-0.005357731133699417,
-0.11058811098337173,
0.02001170441508293,
0.090962715446949,
0.07129226624965668,
0.0830637589097023,
-0.046559713780879974,
0.053866028785705566,
-0.03713290020823479,
-0.02367551252245903,
0.15302909910678864,
0.2058536857366562,
-0.08559180796146393,
0.10834646224975586,
0.04094981774687767,
-0.08062197268009186,
-0.1601589173078537,
0.03856666013598442,
0.10610126703977585,
0.02396092377603054,
0.01804024539887905,
-0.2333805114030838,
0.07208014279603958,
0.12083352357149124,
-0.02115071378648281,
0.07289531081914902,
-0.3712458312511444,
-0.12357085198163986,
0.07026955485343933,
0.07554381340742111,
0.0032896031625568867,
-0.14309479296207428,
-0.05162498354911804,
-0.02473343349993229,
-0.12754061818122864,
0.12160192430019379,
-0.049928437918424606,
0.12347256392240524,
-0.01556770782917738,
0.09667660295963287,
0.03303103521466255,
-0.04144638031721115,
0.1549326777458191,
0.039349544793367386,
0.050723303109407425,
-0.061308879405260086,
0.03199005872011185,
0.06114499270915985,
-0.06031195819377899,
0.05941058695316315,
-0.02885380946099758,
0.07215439528226852,
-0.1801663190126419,
-0.030917277559638023,
-0.05920783802866936,
0.03945189341902733,
-0.039169032126665115,
-0.06493477523326874,
-0.06534312665462494,
0.0636141449213028,
0.0726451724767685,
-0.025520743802189827,
0.05474032834172249,
0.0218645129352808,
0.06465203315019608,
0.04436333477497101,
0.06932688504457474,
0.0068992190062999725,
-0.13712860643863678,
-0.01055233459919691,
-0.01793680153787136,
0.03824677690863609,
-0.13917697966098785,
0.022275980561971664,
0.11913532763719559,
0.03264807164669037,
0.14803087711334229,
0.045258041471242905,
-0.05664646998047829,
0.007033654488623142,
0.04213130474090576,
-0.11243779957294464,
-0.1290532350540161,
-0.01673584245145321,
-0.01008487306535244,
-0.12352297455072403,
-0.026717262342572212,
0.10684236884117126,
-0.036131758242845535,
-0.022948987782001495,
-0.0007140261586755514,
0.03726993873715401,
-0.012928969226777554,
0.176910400390625,
0.022506875917315483,
0.04884262755513191,
-0.096581369638443,
0.12230776995420456,
0.10210704058408737,
-0.053649090230464935,
0.05383053421974182,
0.07917014509439468,
-0.08629851043224335,
-0.024129044264554977,
0.06013057380914688,
0.12371346354484558,
-0.03569681569933891,
-0.019260646775364876,
-0.04348979517817497,
-0.09006040543317795,
0.062307000160217285,
0.01298262644559145,
0.03655370697379112,
0.017513636499643326,
-0.040850963443517685,
0.013009163551032543,
-0.1264161765575409,
0.07165072858333588,
0.059084951877593994,
0.062318529933691025,
-0.12402277439832687,
0.1134445071220398,
0.000645698921289295,
0.028357213363051414,
-0.009219850413501263,
0.000664246384985745,
-0.10182549059391022,
-0.025506844744086266,
-0.1083943247795105,
0.018294719979166985,
-0.04697149619460106,
0.012054944410920143,
-0.01936216466128826,
-0.027248544618487358,
-0.026173293590545654,
0.01922564208507538,
-0.06456625461578369,
-0.06784627586603165,
-0.01822770945727825,
0.06434495747089386,
-0.12415838241577148,
-0.0064891912043094635,
0.027956780046224594,
-0.09758534282445908,
0.10127756744623184,
0.05732598528265953,
0.029325440526008606,
0.019226934760808945,
-0.08551513403654099,
-0.009338993579149246,
0.019770734012126923,
0.019896894693374634,
0.03825460001826286,
-0.12301453948020935,
0.005687850061804056,
-0.0364009365439415,
0.022196918725967407,
0.022705629467964172,
0.03414691612124443,
-0.13329701125621796,
-0.02199743315577507,
-0.05525227636098862,
-0.03543570265173912,
-0.06859873980283737,
0.05814102664589882,
0.08663757145404816,
0.020787427201867104,
0.13604304194450378,
-0.06633012741804123,
0.054917704313993454,
-0.2020162045955658,
-0.0328039713203907,
-0.0016031874110922217,
-0.01713012531399727,
-0.045860543847084045,
-0.030610932037234306,
0.07994021475315094,
-0.046728961169719696,
0.17022378742694855,
-0.016806479543447495,
0.05512957647442818,
0.018514979630708694,
-0.0013667969033122063,
0.014518792741000652,
0.011376266367733479,
0.18726208806037903,
0.07999905943870544,
-0.03649422526359558,
0.07416210323572159,
-0.006240146234631538,
0.05763274431228638,
0.056791845709085464,
0.16472114622592926,
0.09746545553207397,
0.0023612533695995808,
0.03790663555264473,
0.047048021107912064,
-0.1294558197259903,
-0.14437201619148254,
0.1214919313788414,
-0.02836812660098076,
0.10934959352016449,
-0.05146428197622299,
0.16279609501361847,
0.07972247153520584,
-0.17987333238124847,
0.06781736016273499,
-0.03982437774538994,
-0.12171214818954468,
-0.11013904213905334,
-0.10717731714248657,
-0.07685623317956924,
-0.11462169140577316,
0.02036661095917225,
-0.13035689294338226,
0.05906851589679718,
0.08456941694021225,
0.020794961601495743,
0.0031548645347356796,
0.11532540619373322,
-0.018904326483607292,
-0.014971817843616009,
0.06195516139268875,
0.015892628580331802,
0.022276610136032104,
-0.06133827567100525,
-0.05619901418685913,
0.040825847536325455,
0.021925250068306923,
0.09724859893321991,
-0.027888622134923935,
0.026064736768603325,
0.03276817873120308,
-0.01886003091931343,
-0.06097336858510971,
0.007391489110887051,
0.017903665080666542,
0.01932886429131031,
0.0622502937912941,
0.051363859325647354,
-0.005532125011086464,
-0.038697801530361176,
0.2785446345806122,
-0.06568660587072372,
-0.09251973778009415,
-0.1359594315290451,
0.17196491360664368,
0.01463985163718462,
-0.014611862599849701,
0.0718444362282753,
-0.10158498585224152,
-0.0064648170955479145,
0.1767818182706833,
0.17660699784755707,
-0.07433715462684631,
-0.02151297964155674,
0.010314838960766792,
-0.017896752804517746,
-0.017090028151869774,
0.1282486468553543,
0.07547709345817566,
0.05980372428894043,
-0.06450903415679932,
-0.00389875122345984,
0.0027231513522565365,
-0.020095329731702805,
-0.08253130316734314,
0.0936834067106247,
0.011682430282235146,
0.018381640315055847,
-0.036089733242988586,
0.07434388995170593,
-0.03721184283494949,
-0.11631201207637787,
-0.009916759096086025,
-0.14090782403945923,
-0.18968245387077332,
-0.01500619389116764,
0.03857336565852165,
-0.015137020498514175,
0.053987547755241394,
-0.00682453066110611,
-0.005958469118922949,
0.12780512869358063,
-0.008821727707982063,
-0.0741124302148819,
-0.08090168237686157,
0.06860727816820145,
-0.020471123978495598,
0.215868279337883,
0.016717761754989624,
0.06906439363956451,
0.10454139858484268,
0.026720505207777023,
-0.14675432443618774,
0.02287052385509014,
0.0656093955039978,
-0.03602094575762749,
0.039287321269512177,
0.16156716644763947,
-0.036803457885980606,
0.05961973965167999,
0.0590413361787796,
-0.08451362699270248,
0.0023061528336256742,
-0.027565421536564827,
0.005598716903477907,
-0.08377690613269806,
-0.023329908028244972,
-0.06378570944070816,
0.16381217539310455,
0.20458810031414032,
-0.036473024636507034,
-0.003972511738538742,
-0.06284841895103455,
0.016213487833738327,
0.037337251007556915,
0.11102789640426636,
-0.039659373462200165,
-0.1832626760005951,
0.003372532781213522,
0.05677490308880806,
0.051137786358594894,
-0.22432562708854675,
-0.09270496666431427,
0.03441311791539192,
-0.04863974452018738,
-0.06401340663433075,
0.14838340878486633,
0.029132690280675888,
0.025555817410349846,
-0.03737413138151169,
-0.0998137965798378,
-0.0419357568025589,
0.12638674676418304,
-0.13564546406269073,
-0.057800617069005966
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-bert
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-bert
|
[
"transformers",
"pytorch",
"tf",
"bert",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #bert #endpoints_compatible #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #bert #endpoints_compatible #region-us \n"
] |
[
26
] |
[
"passage: TAGS\n#transformers #pytorch #tf #bert #endpoints_compatible #region-us \n"
] |
[
-0.0519382543861866,
-0.027320021763443947,
-0.009764132089912891,
-0.0032538732048124075,
0.12203092873096466,
0.037466175854206085,
0.009042004123330116,
0.07347417622804642,
0.11445384472608566,
-0.023526279255747795,
0.11918403208255768,
0.19854307174682617,
-0.047428879886865616,
0.034996576607227325,
-0.06911652535200119,
-0.25343912839889526,
0.056837018579244614,
0.10850243270397186,
-0.09315312653779984,
0.10027559101581573,
0.04692741110920906,
-0.08653239905834198,
0.0697496309876442,
-0.048778828233480453,
-0.1262734830379486,
0.06432301551103592,
0.04400718957185745,
-0.0846443697810173,
0.13183706998825073,
0.06088709831237793,
0.16135188937187195,
0.03878556936979294,
-0.12860263884067535,
-0.13109640777111053,
0.03566617891192436,
0.01584373228251934,
-0.0880003422498703,
0.026918010786175728,
0.06795313209295273,
-0.07675633579492569,
0.04368853569030762,
0.06744871288537979,
0.0000652581438771449,
0.04510953277349472,
-0.176326721906662,
-0.17865219712257385,
-0.04033225402235985,
0.0680084228515625,
0.0010986941633746028,
0.05530589073896408,
0.031322114169597626,
0.20231948792934418,
-0.14044910669326782,
0.11149867624044418,
0.17974220216274261,
-0.32820987701416016,
-0.0024254366289824247,
0.07835733890533447,
0.041856568306684494,
0.05643672123551369,
-0.0035236477851867676,
0.05162319913506508,
0.020004844292998314,
0.027064481750130653,
0.0009612401481717825,
-0.08996759355068207,
-0.06211596354842186,
0.08964387327432632,
-0.10629377514123917,
-0.07971685379743576,
0.2254120260477066,
-0.015110119245946407,
0.04084228724241257,
0.08179354667663574,
-0.11323974281549454,
-0.033332642167806625,
0.0082203084602952,
-0.029629532247781754,
-0.031394459307193756,
0.06094600260257721,
0.004114678595215082,
-0.03917248919606209,
-0.11459733545780182,
0.04130971059203148,
-0.24569104611873627,
0.2655271291732788,
0.02189009264111519,
0.09525708854198456,
-0.23134444653987885,
0.05876314640045166,
-0.0726928561925888,
-0.07681587338447571,
0.03577464073896408,
-0.10101931542158127,
0.015091744251549244,
-0.012678784318268299,
-0.05956424027681351,
0.02716975286602974,
0.051459815353155136,
0.14054177701473236,
-0.0009337703231722116,
0.022963374853134155,
-0.015584737062454224,
0.09155338257551193,
0.002966145286336541,
0.08796258270740509,
-0.0244596004486084,
0.0015456639230251312,
0.035680294036865234,
-0.17874816060066223,
-0.040611691772937775,
-0.04197341576218605,
-0.09485428035259247,
-0.06870589405298233,
0.04039795324206352,
0.09549342840909958,
0.009509903378784657,
0.04464595019817352,
-0.06087582930922508,
-0.011514143086969852,
0.057909075170755386,
-0.052709583193063736,
-0.02188136614859104,
0.0038244063034653664,
0.03182881698012352,
0.20425215363502502,
-0.011945978738367558,
-0.03783247247338295,
-0.03674011304974556,
0.10061241686344147,
-0.08497567474842072,
-0.03526772931218147,
-0.01868714578449726,
-0.048640165477991104,
0.05848388746380806,
-0.12420527637004852,
0.06905367970466614,
-0.17908571660518646,
-0.05495839938521385,
0.055432453751564026,
0.03357434272766113,
0.01250407099723816,
0.025755522772669792,
0.04008230194449425,
-0.028584906831383705,
-0.024705838412046432,
-0.057092856615781784,
-0.041877929121255875,
-0.05742081627249718,
0.11495847254991531,
-0.018769966438412666,
0.05930876359343529,
-0.14255619049072266,
0.056966960430145264,
-0.06587215512990952,
0.020100990310311317,
-0.1425444334745407,
-0.03686119243502617,
-0.029511619359254837,
0.16492727398872375,
-0.0006236573099158704,
-0.07267279922962189,
-0.14386127889156342,
0.04142189770936966,
-0.04502592980861664,
0.15352997183799744,
-0.05330772325396538,
-0.11421133577823639,
0.2620699107646942,
-0.09922351688146591,
-0.19211409986019135,
0.07545328140258789,
0.019832735881209373,
-0.009515326470136642,
0.07868539541959763,
0.17369548976421356,
0.06302949041128159,
-0.09266605228185654,
0.09856861084699631,
0.15532591938972473,
-0.1470654308795929,
-0.13300856947898865,
0.022281624376773834,
-0.019005484879016876,
-0.1382136344909668,
0.02891840972006321,
0.012995037250220776,
0.10820422321557999,
-0.09593437612056732,
0.002389068715274334,
-0.01893600821495056,
-0.023710332810878754,
0.07475420087575912,
0.05124349147081375,
0.08591506630182266,
-0.07444112747907639,
0.01059661153703928,
0.02769838646054268,
-0.017335204407572746,
0.037069376558065414,
0.049418456852436066,
-0.05502919480204582,
0.12715983390808105,
-0.030201196670532227,
0.009376510977745056,
-0.1967129111289978,
-0.1260397583246231,
-0.0063103665597736835,
0.13402026891708374,
-0.026696115732192993,
0.19899339973926544,
0.10673554986715317,
-0.08973298221826553,
-0.01332789845764637,
-0.025700697675347328,
0.12305665016174316,
0.024770068004727364,
-0.013723139651119709,
-0.05058055371046066,
0.027768710628151894,
-0.07127342373132706,
-0.09897004067897797,
-0.02614632062613964,
-0.008973709307610989,
0.15934640169143677,
0.13976310193538666,
0.023497749119997025,
0.046397216618061066,
-0.030489258468151093,
0.05174655094742775,
-0.013672980479896069,
0.0007942395750433207,
0.08550477772951126,
-0.012440686114132404,
-0.08698473125696182,
0.17234715819358826,
-0.07189275324344635,
0.40628674626350403,
0.20212171971797943,
-0.29884424805641174,
-0.005996955558657646,
0.004819003399461508,
-0.023997247219085693,
0.026467502117156982,
0.12559671700000763,
-0.054208677262067795,
0.06665095686912537,
0.018337178975343704,
0.11830319464206696,
-0.04171596094965935,
-0.06147150695323944,
0.012726669199764729,
-0.032136473804712296,
-0.048092588782310486,
0.08882739394903183,
0.05195198208093643,
-0.18553796410560608,
0.1601165235042572,
0.2724831700325012,
0.07558935135602951,
0.13614650070667267,
-0.07456263154745102,
-0.03121986798942089,
0.04058309271931648,
0.032491203397512436,
-0.03196796029806137,
0.0271753016859293,
-0.24344617128372192,
-0.03599075600504875,
0.07695035636425018,
0.015495184808969498,
0.07689465582370758,
-0.13479779660701752,
-0.061162687838077545,
0.03606554493308067,
0.009916122071444988,
-0.05762319639325142,
0.11517763882875443,
0.038134921342134476,
0.0996982753276825,
0.013948257081210613,
-0.06010504439473152,
0.10814736783504486,
0.016774319112300873,
-0.07451086491346359,
0.16540850698947906,
-0.13380934298038483,
-0.26722627878189087,
-0.09338574856519699,
-0.12326372414827347,
0.024641457945108414,
0.00014672378893010318,
0.07388658076524734,
-0.08628984540700912,
-0.026951845735311508,
0.09007605165243149,
0.05231219902634621,
-0.14800812304019928,
0.06359276920557022,
-0.04713018983602524,
0.025826292112469673,
-0.07320202887058258,
-0.07569645345211029,
-0.07317369431257248,
-0.046936001628637314,
-0.05762707069516182,
0.11590932309627533,
-0.14470942318439484,
0.08948163688182831,
0.13070501387119293,
0.023364072665572166,
0.08771540969610214,
-0.02918846346437931,
0.20220030844211578,
-0.0741504654288292,
-0.010992320254445076,
0.17748519778251648,
-0.04410402476787567,
0.09062933921813965,
0.07930151373147964,
0.03683330491185188,
-0.06968646496534348,
-0.016544748097658157,
-0.05195244774222374,
-0.10867027938365936,
-0.20548702776432037,
-0.08243849873542786,
-0.135298952460289,
0.025750545784831047,
-0.015917126089334488,
0.050561126321554184,
0.100987009704113,
0.050289757549762726,
0.05221550911664963,
-0.06939227879047394,
-0.04693610221147537,
0.03796180710196495,
0.19744795560836792,
-0.027398552745580673,
0.06818733364343643,
-0.06814339756965637,
-0.07844175398349762,
0.11224529892206192,
0.04011155292391777,
0.1588401198387146,
0.07922294735908508,
0.004005948547273874,
0.06610811501741409,
0.16204719245433807,
0.13110379874706268,
0.1637434959411621,
-0.031000612303614616,
-0.04466547816991806,
-0.021210649982094765,
-0.014184569008648396,
-0.03104240447282791,
-0.00028230276075191796,
0.0952121689915657,
-0.14171196520328522,
-0.05996495112776756,
-0.2332693189382553,
0.07400825619697571,
0.05208748206496239,
0.03713569790124893,
-0.14532729983329773,
-0.0026638945564627647,
0.04557324945926666,
-0.0021796205546706915,
-0.04091058671474457,
0.08834055066108704,
0.03592932969331741,
-0.11631575971841812,
0.06910338252782822,
-0.02974160760641098,
0.0975019708275795,
0.023169061169028282,
0.079803466796875,
0.0011110514169558883,
-0.121381014585495,
0.04523578658699989,
0.05608227103948593,
-0.2730547785758972,
0.2893122434616089,
-0.006144280079752207,
-0.08935476839542389,
-0.049510009586811066,
-0.05139350891113281,
0.0031436760909855366,
0.19751937687397003,
0.11028332263231277,
0.04492397606372833,
0.0065943836234509945,
-0.13301721215248108,
0.06468524038791656,
0.0276307575404644,
0.1358376443386078,
-0.021856248378753662,
-0.04428038373589516,
-0.002977613592520356,
-0.02020835503935814,
-0.003456852165982127,
0.06660448759794235,
0.05694156512618065,
-0.10543699562549591,
0.050797540694475174,
-0.01651599258184433,
0.013692216016352177,
-0.013724102638661861,
-0.013122821226716042,
-0.07734047621488571,
0.11210741847753525,
-0.036430828273296356,
-0.060697879642248154,
-0.11479295790195465,
-0.1374426633119583,
0.11669386178255081,
-0.10490847378969193,
0.07253468781709671,
-0.07519256323575974,
-0.0714644119143486,
-0.061484601348638535,
-0.21560710668563843,
0.13580256700515747,
-0.10583362728357315,
0.021167749539017677,
-0.027958912774920464,
0.21197853982448578,
-0.06503500789403915,
0.0027526814956218004,
-0.006710439920425415,
-0.014438402839004993,
-0.069017194211483,
-0.0826200470328331,
0.012490025721490383,
-0.057560428977012634,
0.03308288753032684,
0.030597379431128502,
-0.04431882128119469,
0.06857766211032867,
0.017353011295199394,
0.02569381333887577,
0.20668646693229675,
0.18162654340267181,
-0.04763133451342583,
0.11022300273180008,
0.1409776359796524,
-0.011914649046957493,
-0.2666119933128357,
-0.056651242077350616,
-0.15697816014289856,
-0.05931984260678291,
-0.014636700041592121,
-0.12515892088413239,
0.11693833768367767,
0.023205595090985298,
0.0030687525868415833,
0.15040966868400574,
-0.225942000746727,
-0.051368411630392075,
0.15509754419326782,
0.019383756443858147,
0.4931022524833679,
-0.11803363263607025,
-0.0799175575375557,
0.04847966879606247,
-0.2553592026233673,
0.12559255957603455,
-0.00995383970439434,
0.04142092540860176,
-0.01304638758301735,
0.07083501666784286,
0.039865460246801376,
-0.0671933963894844,
0.08598122000694275,
0.02308056131005287,
0.02882605604827404,
-0.07500572502613068,
-0.12813256680965424,
0.0530896857380867,
0.002847570227459073,
-0.01860470324754715,
0.08415020257234573,
0.028146645054221153,
-0.13599777221679688,
-0.01658465526998043,
-0.1472906619310379,
0.05734759196639061,
0.031424615532159805,
-0.05477670952677727,
0.0002404053957434371,
-0.0159312654286623,
-0.018032466992735863,
-0.014838137663900852,
0.20452992618083954,
-0.0369696281850338,
0.16031064093112946,
0.0263175331056118,
0.08635058254003525,
-0.22505603730678558,
-0.09437306225299835,
-0.06945769488811493,
-0.06295964866876602,
0.08038776367902756,
-0.053197383880615234,
0.051097847521305084,
0.15070320665836334,
-0.010119957849383354,
0.006317006889730692,
0.1209004744887352,
-0.006425834260880947,
-0.05379224568605423,
0.13409236073493958,
-0.2388617843389511,
-0.05733226612210274,
-0.06723228842020035,
-0.08154319226741791,
0.1348072737455368,
0.10607225447893143,
0.10901085287332535,
0.06253127753734589,
-0.009943895973265171,
-0.017554933205246925,
-0.0547364167869091,
-0.08226016163825989,
0.016598636284470558,
0.0830153301358223,
0.029149286448955536,
-0.11218919605016708,
0.031105417758226395,
-0.02270912006497383,
-0.24229544401168823,
-0.04770703241229057,
0.12124108523130417,
-0.1440686583518982,
-0.10000921785831451,
-0.05721968784928322,
0.06645072996616364,
-0.17137080430984497,
-0.03509913757443428,
-0.0070243640802800655,
-0.10381218791007996,
0.07723966240882874,
0.31465718150138855,
0.08396455645561218,
0.11683455854654312,
-0.0167145486921072,
-0.007641023490577936,
0.049978017807006836,
-0.06613322347402573,
-0.018642107024788857,
0.014270046725869179,
-0.10900071263313293,
0.053072962909936905,
-0.03349626436829567,
0.17804639041423798,
-0.09104074537754059,
-0.05826505646109581,
-0.18548564612865448,
0.06460312753915787,
-0.09451226145029068,
-0.11687987297773361,
-0.08080396801233292,
-0.06172075495123863,
0.018230628222227097,
-0.11248873174190521,
-0.027141671627759933,
-0.02415466494858265,
-0.14059622585773468,
0.07246477156877518,
0.05099467560648918,
0.005106923170387745,
-0.054867133498191833,
-0.04989868402481079,
0.12731413543224335,
-0.04205090552568436,
0.10579812526702881,
0.17044131457805634,
-0.09542867541313171,
0.1405068039894104,
-0.1045435220003128,
-0.14129304885864258,
0.10213664174079895,
0.0150831937789917,
0.09433972090482712,
0.10106483846902847,
0.0265190489590168,
0.05190939083695412,
0.013090653344988823,
0.055985353887081146,
0.0011948833707720041,
-0.10529489070177078,
0.013797585852444172,
0.02987719140946865,
-0.16431519389152527,
-0.03550678491592407,
-0.08069171756505966,
0.1489269882440567,
0.027673201635479927,
0.051411595195531845,
0.007484564557671547,
0.08624803274869919,
-0.04316668212413788,
-0.005373162683099508,
0.014731601811945438,
-0.19331541657447815,
0.03463058918714523,
-0.03904537484049797,
0.013399305753409863,
-0.004958235193043947,
0.23115116357803345,
-0.06519123166799545,
0.024806570261716843,
0.03763798624277115,
0.011734526604413986,
0.013801529072225094,
0.006582810077816248,
0.23132365942001343,
0.07284604012966156,
-0.044500209391117096,
-0.12237326055765152,
0.07745730131864548,
-0.025972386822104454,
-0.048311229795217514,
0.160067617893219,
0.0968691036105156,
-0.0008779972558841109,
0.07346946746110916,
0.008684652857482433,
0.040117111057043076,
-0.08351675420999527,
-0.3068414330482483,
0.0005880663520656526,
0.05390188470482826,
-0.0004080653307028115,
0.10278192162513733,
0.13547782599925995,
-0.026782996952533722,
0.07586362957954407,
-0.012287060730159283,
-0.009930981323122978,
-0.14092010259628296,
-0.07998111099004745,
-0.03860793635249138,
-0.10701387375593185,
0.018636103719472885,
-0.0728125274181366,
0.005572995636612177,
0.11933892220258713,
0.07146399468183517,
-0.023640716448426247,
0.13026200234889984,
0.042568936944007874,
-0.07072459161281586,
0.05669412389397621,
0.002766501856967807,
0.0237323846668005,
0.020365754142403603,
-0.019074173644185066,
-0.1444065123796463,
-0.06695511937141418,
-0.09343139082193375,
0.01841532252728939,
-0.07946296036243439,
-0.023484082892537117,
-0.11396641284227371,
-0.09364181011915207,
-0.05636921897530556,
0.058891549706459045,
-0.06462797522544861,
0.10763886570930481,
-0.020995182916522026,
0.010001998394727707,
0.01356064435094595,
0.16561684012413025,
-0.0702751949429512,
-0.041890550404787064,
-0.013677678070962429,
0.21981149911880493,
0.041018348187208176,
0.10365543514490128,
0.0075690425001084805,
0.028365202248096466,
-0.08236732333898544,
0.34954604506492615,
0.24368152022361755,
-0.04501981660723686,
0.05501217767596245,
0.06435660272836685,
0.05063075199723244,
0.12029954791069031,
0.14472532272338867,
0.10290328413248062,
0.3139810860157013,
-0.07516738027334213,
-0.04828411713242531,
-0.027271248400211334,
0.0288124680519104,
-0.08906130492687225,
0.06912975013256073,
0.06379225105047226,
-0.06806012988090515,
-0.06658823788166046,
0.1061929389834404,
-0.15140506625175476,
0.073165163397789,
0.05098837986588478,
-0.21422789990901947,
-0.03925197571516037,
-0.07931607216596603,
0.1121252253651619,
-0.007558431010693312,
0.12036492675542831,
-0.04320735111832619,
-0.12715299427509308,
0.05067778378725052,
0.06094727665185928,
-0.27958884835243225,
-0.08152859658002853,
0.1255241334438324,
0.006790063809603453,
-0.02103787660598755,
-0.02455497533082962,
0.013413757085800171,
0.06418756395578384,
0.06180133670568466,
-0.018241457641124725,
0.009386696852743626,
0.04159574583172798,
-0.09160048514604568,
-0.13200053572654724,
-0.02173485793173313,
0.020955529063940048,
-0.10396905988454819,
0.021776851266622543,
-0.19205990433692932,
0.026144854724407196,
0.04638098180294037,
-0.026866618543863297,
-0.006248581223189831,
0.013403120450675488,
-0.06592537462711334,
0.03365224227309227,
0.07499435544013977,
0.011214463040232658,
-0.022642677649855614,
-0.06710469722747803,
-0.02193247713148594,
0.080978162586689,
-0.09705041348934174,
-0.14508993923664093,
-0.004159168340265751,
-0.0894705131649971,
0.07667975127696991,
-0.0430147647857666,
-0.05861308053135872,
-0.019356386736035347,
-0.04901138320565224,
0.07373028248548508,
-0.13136449456214905,
0.051313236355781555,
0.027490707114338875,
0.05054324492812157,
0.02927270345389843,
-0.008497674949467182,
0.04490219056606293,
0.05612283572554588,
-0.1288987249135971,
-0.05947105959057808
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-gpt2
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-gpt2
|
[
"transformers",
"pytorch",
"tf",
"gpt2",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
37
] |
[
"passage: TAGS\n#transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.03489702567458153,
-0.021188847720623016,
-0.008413724601268768,
0.009493514895439148,
0.16067612171173096,
0.04350156709551811,
0.03622197359800339,
0.1379895806312561,
0.015667220577597618,
-0.024414019659161568,
0.11452130228281021,
0.18001049757003784,
0.003907693549990654,
0.013739313930273056,
-0.06826436519622803,
-0.2761639356613159,
0.059920743107795715,
0.08576636016368866,
-0.06182254105806351,
0.1169091984629631,
0.0514913871884346,
-0.03437412530183792,
0.09541764110326767,
-0.03398064896464348,
-0.16588252782821655,
0.02844986319541931,
0.04739190265536308,
-0.1012825295329094,
0.12181203812360764,
0.06453141570091248,
0.08259084820747375,
0.015825951471924782,
-0.11821311712265015,
-0.12086669355630875,
0.03644178435206413,
0.05389263480901718,
-0.0990571528673172,
0.044504258781671524,
0.09719318151473999,
-0.1052640974521637,
0.15524336695671082,
0.05400000512599945,
-0.06071038544178009,
0.04930275306105614,
-0.17500047385692596,
-0.1104203537106514,
-0.02480817399919033,
0.0492040254175663,
0.006075836718082428,
0.0933508574962616,
-0.0013089412823319435,
0.10918556898832321,
-0.08557277917861938,
0.11486517637968063,
0.21218423545360565,
-0.3336280882358551,
-0.008280999958515167,
0.10872916132211685,
0.03501337021589279,
0.057528506964445114,
-0.021136580035090446,
0.061493270099163055,
0.021543992683291435,
0.02918325364589691,
0.014372652396559715,
-0.08155577629804611,
-0.10618877410888672,
0.08262400329113007,
-0.10454889386892319,
-0.09818603098392487,
0.2180972695350647,
-0.04899539053440094,
0.05137583613395691,
0.016807643696665764,
-0.1301533281803131,
-0.023711182177066803,
-0.006293773651123047,
0.033233776688575745,
-0.061614107340574265,
0.0912150964140892,
0.03110717050731182,
-0.10060060024261475,
-0.1203380674123764,
-0.04768230393528938,
-0.19539874792099,
0.22997860610485077,
0.024068597704172134,
0.08647554367780685,
-0.21888215839862823,
0.10557865351438522,
-0.0476018525660038,
-0.07025192677974701,
0.01190347783267498,
-0.11039187014102936,
0.03090471215546131,
0.024706948548555374,
-0.06335801631212234,
-0.043810442090034485,
0.08680126070976257,
0.07783453166484833,
-0.08190710097551346,
0.014326061122119427,
-0.05173860117793083,
0.0952160507440567,
-0.0005488010356202722,
0.063149593770504,
-0.0541498139500618,
0.0422932393848896,
0.033720340579748154,
-0.17662198841571808,
-0.02409031055867672,
-0.06750428676605225,
-0.12184775620698929,
-0.08824428915977478,
0.044940173625946045,
0.08957917988300323,
0.007487763650715351,
0.08940491825342178,
-0.01795271784067154,
-0.03258451819419861,
0.0459880530834198,
-0.06278913468122482,
-0.0409906767308712,
0.017407022416591644,
0.01870553009212017,
0.17587882280349731,
0.00429866649210453,
-0.022360526025295258,
-0.1603153944015503,
0.029361972585320473,
-0.07396674901247025,
0.00037281468394212425,
-0.014238186180591583,
-0.044821348041296005,
0.026207271963357925,
-0.122909776866436,
0.011723407544195652,
-0.15922850370407104,
-0.16086038947105408,
0.04687940701842308,
-0.004030365031212568,
-0.01575235277414322,
0.004020885564386845,
-0.006352339405566454,
-0.07140949368476868,
0.015583692118525505,
-0.058218613266944885,
0.00020203339227009565,
-0.06520774960517883,
0.12584058940410614,
-0.059944216161966324,
0.0640234723687172,
-0.14597831666469574,
0.07580026984214783,
-0.08319464325904846,
0.005461170803755522,
-0.12652727961540222,
0.06918974965810776,
0.0104476073756814,
0.09297344088554382,
-0.023339562118053436,
-0.07425510883331299,
-0.1362805962562561,
0.05049459636211395,
-0.046022284775972366,
0.1804448515176773,
-0.07368219643831253,
-0.12179923802614212,
0.3093971610069275,
-0.09073037654161453,
-0.1645551323890686,
0.10213667899370193,
0.026867467910051346,
-0.008785118348896503,
0.07355426251888275,
0.2192545235157013,
0.0481954962015152,
-0.0048566339537501335,
0.07695271074771881,
0.1571372002363205,
-0.14643655717372894,
-0.09344271570444107,
0.026910725980997086,
-0.03373101353645325,
-0.12458974868059158,
0.02146776393055916,
-0.004581359680742025,
0.08401618152856827,
-0.05329624190926552,
-0.0015817433595657349,
-0.04600958898663521,
0.022523844614624977,
0.06819247454404831,
0.00837688334286213,
0.09570978581905365,
-0.04337283968925476,
-0.027956750243902206,
-0.023892242461442947,
-0.02103256806731224,
-0.05527855083346367,
0.06617345660924911,
-0.01637791283428669,
0.15976738929748535,
-0.019164705649018288,
0.0523848757147789,
-0.19008545577526093,
-0.1005646213889122,
-0.018755968660116196,
0.13654860854148865,
-0.02743273787200451,
0.10238780081272125,
0.07024551928043365,
-0.05264526605606079,
-0.023079345002770424,
0.0033046589232981205,
0.1012713760137558,
-0.0307946614921093,
-0.009751718491315842,
-0.04525696858763695,
0.05343129485845566,
-0.053159307688474655,
-0.0638224184513092,
-0.040989115834236145,
0.019662410020828247,
0.13190628588199615,
0.10083112120628357,
-0.000008412795978074428,
0.02903035841882229,
-0.001301262411288917,
0.00023140413395594805,
-0.044731855392456055,
-0.02633880451321602,
0.09355220943689346,
-0.008367802016437054,
-0.0949106365442276,
0.2184341698884964,
-0.12610572576522827,
0.2344386875629425,
0.20174719393253326,
-0.2939556837081909,
0.02284141629934311,
-0.06728050112724304,
-0.037967078387737274,
0.04177270084619522,
0.07633811980485916,
-0.05755497142672539,
0.13415877521038055,
0.0036737588234245777,
0.15727806091308594,
-0.0907488688826561,
-0.06603416800498962,
0.0018908868078142405,
-0.010470892302691936,
0.0021860115230083466,
0.07785443961620331,
0.08766854554414749,
-0.1289670467376709,
0.16844947636127472,
0.19062691926956177,
0.06287727504968643,
0.17421959340572357,
-0.040417175740003586,
-0.049862246960401535,
0.09436852484941483,
0.055832646787166595,
-0.03747089207172394,
-0.05808528885245323,
-0.251475065946579,
-0.005826941225677729,
0.08202244341373444,
0.06879114359617233,
0.1315613090991974,
-0.13579341769218445,
-0.056826602667570114,
-0.019516384229063988,
-0.06599477678537369,
-0.04864497482776642,
0.09837005287408829,
0.06042110174894333,
0.13366849720478058,
-0.0011837773490697145,
0.01721075177192688,
0.11138904094696045,
0.016374794766306877,
-0.10566350072622299,
0.22137293219566345,
-0.11158567667007446,
-0.32954105734825134,
-0.12645508348941803,
-0.09543824940919876,
-0.03319648280739784,
0.03884716331958771,
0.0996958464384079,
-0.10575874894857407,
0.007261207327246666,
0.00971034076064825,
0.1360776722431183,
-0.12406421452760696,
0.04280814528465271,
-0.06302771717309952,
0.040112365037202835,
-0.10484539717435837,
-0.09311223030090332,
-0.05292462557554245,
-0.031192848458886147,
-0.09294966608285904,
0.1476619839668274,
-0.14985254406929016,
0.05241287499666214,
0.18622009456157684,
0.034491345286369324,
0.07764148712158203,
-0.052032697945833206,
0.1927827000617981,
-0.11054988205432892,
-0.0013887243112549186,
0.21191880106925964,
-0.02664117142558098,
0.08624618500471115,
0.04103571176528931,
-0.0013806616188958287,
-0.08897373080253601,
-0.0012410798808559775,
-0.02090088650584221,
-0.11873076856136322,
-0.24295486509799957,
-0.09311395138502121,
-0.13949880003929138,
0.07886340469121933,
0.01357286423444748,
0.06676700711250305,
0.13138525187969208,
0.055968742817640305,
-0.025895679369568825,
-0.004269619006663561,
0.021276842802762985,
0.06456270813941956,
0.16441674530506134,
-0.013346541672945023,
0.08069853484630585,
-0.0659722089767456,
-0.08892574906349182,
0.11373142153024673,
0.06569572538137436,
0.18404090404510498,
0.00600465340539813,
0.04252307116985321,
0.04386763274669647,
0.06668388843536377,
0.11855259537696838,
0.13622236251831055,
-0.026308320462703705,
-0.010281819850206375,
-0.032300304621458054,
-0.03157389909029007,
-0.014655929990112782,
0.013814114965498447,
0.013412623666226864,
-0.16303402185440063,
-0.06896327435970306,
-0.14260178804397583,
0.11658075451850891,
0.08673720806837082,
0.060193195939064026,
-0.19142693281173706,
0.0026083311531692743,
0.06716994196176529,
-0.006922720931470394,
-0.10718715190887451,
0.09647408127784729,
0.057432856410741806,
-0.12047344446182251,
0.08055002242326736,
-0.05173701047897339,
0.11755616217851639,
-0.020123278722167015,
0.06886478513479233,
-0.022307690232992172,
-0.08292634785175323,
0.01194895338267088,
0.09985271096229553,
-0.2736223340034485,
0.2327333241701126,
-0.003919471986591816,
-0.05608883872628212,
-0.09086402505636215,
-0.014196168631315231,
0.008876722306013107,
0.133252814412117,
0.143311008810997,
0.02823689579963684,
0.016125041991472244,
-0.05434997007250786,
0.02592892199754715,
0.04675687476992607,
0.1487584114074707,
-0.050048451870679855,
-0.028424350544810295,
-0.014777849428355694,
-0.0033799041993916035,
-0.022056899964809418,
0.0008911446784622967,
0.06117500364780426,
-0.12796500325202942,
0.05712539330124855,
0.0004382053448352963,
0.05049702525138855,
0.008660669438540936,
0.008188686333596706,
-0.09062360227108002,
0.1698286235332489,
-0.09058831632137299,
-0.1260618269443512,
-0.11271292716264725,
-0.06728818267583847,
0.08397217094898224,
-0.06436518579721451,
0.049089979380369186,
-0.0670454129576683,
-0.00810396857559681,
-0.05611783266067505,
-0.24135182797908783,
0.11509864777326584,
-0.08112652599811554,
-0.02519191801548004,
0.011973943561315536,
0.23379455506801605,
-0.07873651385307312,
-0.0023746942169964314,
0.014185742475092411,
-0.003998454660177231,
-0.07553013414144516,
-0.12395307421684265,
0.03005521558225155,
-0.013571532443165779,
0.05886518210172653,
0.0807451456785202,
-0.04827897250652313,
0.056730665266513824,
-0.017020519822835922,
0.031716447323560715,
0.2846757471561432,
0.118344746530056,
-0.03467092290520668,
0.14534851908683777,
0.08021072298288345,
-0.056546907871961594,
-0.2825585901737213,
-0.04883657023310661,
-0.1299365609884262,
-0.05882938206195831,
-0.08273155242204666,
-0.18983472883701324,
0.07569646835327148,
0.041759658604860306,
0.02953329309821129,
0.17712783813476562,
-0.29378557205200195,
-0.05440058186650276,
0.09503355622291565,
0.013203556649386883,
0.3800232410430908,
-0.13711227476596832,
-0.10265026986598969,
-0.0003089795645792037,
-0.20444944500923157,
0.17078502476215363,
-0.10143354535102844,
0.09444068372249603,
-0.032962240278720856,
0.07278371602296829,
0.039555683732032776,
-0.053237222135066986,
0.08306892961263657,
0.06471488624811172,
0.022632241249084473,
-0.08420430123806,
-0.02995374985039234,
0.06910613924264908,
0.019945189356803894,
0.024558212608098984,
-0.004665408283472061,
0.04716692492365837,
-0.14523212611675262,
-0.03183489292860031,
-0.12921024858951569,
0.04696199297904968,
0.04933355003595352,
-0.07085876911878586,
-0.019162002950906754,
-0.04692349582910538,
0.004008008167147636,
0.00626700883731246,
0.1804223358631134,
-0.056548550724983215,
0.14722932875156403,
0.049867793917655945,
0.08277390152215958,
-0.15070435404777527,
-0.05058727785944939,
-0.0665200799703598,
-0.03506699949502945,
0.09682730585336685,
-0.14619098603725433,
0.05846933647990227,
0.11040246486663818,
-0.023253200575709343,
0.03641175478696823,
0.13904738426208496,
-0.003337281756103039,
-0.018502013757824898,
0.12028279900550842,
-0.25684329867362976,
-0.059033166617155075,
-0.09719091653823853,
-0.10570159554481506,
0.1114061176776886,
0.11084268987178802,
0.1666247695684433,
0.033322129398584366,
-0.013170252554118633,
-0.013166965916752815,
-0.010645024478435516,
-0.05796729773283005,
0.02140110544860363,
0.036751072853803635,
0.02080395445227623,
-0.1392669826745987,
0.08872292935848236,
-0.025546375662088394,
-0.16354751586914062,
-0.0036485688760876656,
0.1489465981721878,
-0.1487804800271988,
-0.1090782880783081,
-0.05245090648531914,
0.05260172858834267,
-0.14119987189769745,
-0.02737327292561531,
-0.031168300658464432,
-0.12051250785589218,
0.10071635991334915,
0.2208756059408188,
0.05731713026762009,
0.1214601919054985,
-0.025135328993201256,
-0.023888438940048218,
-0.0020697200670838356,
-0.060661543160676956,
-0.028983423486351967,
0.0037429716903716326,
-0.08444804698228836,
0.10455988347530365,
-0.03530777245759964,
0.17432411015033722,
-0.08425556123256683,
-0.062097229063510895,
-0.15271544456481934,
0.04473869502544403,
-0.10487734526395798,
-0.05802140757441521,
-0.08279764652252197,
-0.054068971425294876,
-0.017931153997778893,
-0.021816197782754898,
-0.04226601868867874,
-0.03177621215581894,
-0.11940133571624756,
0.035762593150138855,
-0.03624512627720833,
0.0000044892472033097874,
-0.07822686433792114,
-0.008130858652293682,
0.07598529756069183,
-0.047080714255571365,
0.15586796402931213,
0.16447517275810242,
-0.11342290788888931,
0.14240112900733948,
-0.15547457337379456,
-0.11466843634843826,
0.11025752127170563,
0.009400593116879463,
0.02679590694606304,
0.10574685037136078,
0.04906648024916649,
0.03826316446065903,
-0.0009608428808860481,
0.05800119414925575,
-0.025508766993880272,
-0.1138070821762085,
0.028579633682966232,
-0.05080884322524071,
-0.11209703981876373,
-0.056502871215343475,
-0.03201378881931305,
0.07276902347803116,
0.056661613285541534,
0.047077856957912445,
-0.016571518033742905,
0.09937570989131927,
-0.0627935528755188,
0.007845757529139519,
0.030019480735063553,
-0.17222076654434204,
0.009487118571996689,
-0.05287862941622734,
0.034240782260894775,
0.005697670858353376,
0.24612757563591003,
0.003240124089643359,
-0.0000047116745918174274,
0.011195522733032703,
0.061739444732666016,
0.04722452163696289,
0.0019528425764292479,
0.2544024884700775,
0.09195879846811295,
-0.06597435474395752,
-0.10087311267852783,
0.06348471343517303,
0.004198039881885052,
0.028411827981472015,
0.1989322304725647,
0.07132495194673538,
-0.01306676585227251,
0.09669101238250732,
-0.01271575503051281,
0.008003458380699158,
-0.06787926703691483,
-0.17312119901180267,
0.027301646769046783,
0.0649636760354042,
0.0007523694657720625,
0.09352727234363556,
0.15914402902126312,
-0.03941015526652336,
0.06799253076314926,
0.030227158218622208,
-0.05337119847536087,
-0.1563500463962555,
-0.13703039288520813,
-0.04096251726150513,
-0.1387273371219635,
0.014226924628019333,
-0.13288220763206482,
0.031634628772735596,
0.11023227125406265,
0.0794668197631836,
-0.03449437394738197,
0.12881116569042206,
0.0785941407084465,
-0.12662018835544586,
0.10430245101451874,
-0.02425536885857582,
0.0818149670958519,
0.0490107461810112,
-0.023563196882605553,
-0.04410858824849129,
-0.044835299253463745,
-0.022632470354437828,
0.05376069247722626,
-0.018345661461353302,
0.024224866181612015,
-0.1742192506790161,
-0.08752273768186569,
-0.048075608909130096,
0.07961082458496094,
-0.05992849916219711,
0.12677152454853058,
0.021233459934592247,
-0.04661720618605614,
0.039744388312101364,
0.2218700498342514,
-0.06341630965471268,
-0.0343608632683754,
-0.026786193251609802,
0.19108696281909943,
0.04488668590784073,
0.08097406476736069,
0.0058216010220348835,
-0.007969084195792675,
-0.07486008107662201,
0.35050758719444275,
0.2649090886116028,
-0.05943185091018677,
0.020924942567944527,
0.04757446050643921,
0.04616689682006836,
0.17558015882968903,
0.1421521008014679,
0.10855185985565186,
0.28797128796577454,
-0.06282341480255127,
-0.0778639018535614,
-0.018448032438755035,
0.015638943761587143,
-0.08710744976997375,
0.11595672369003296,
0.061118654906749725,
-0.10757211595773697,
-0.03261376544833183,
0.11667726933956146,
-0.24067741632461548,
0.09084895998239517,
-0.04029184579849243,
-0.15861162543296814,
-0.04687689244747162,
-0.0382293276488781,
0.04658213630318642,
0.022295020520687103,
0.10569298267364502,
-0.027507521212100983,
-0.11809556931257248,
0.041439395397901535,
0.07011078298091888,
-0.2756839692592621,
-0.015716807916760445,
0.06702274084091187,
-0.028723618015646935,
-0.03268684819340706,
-0.027876989915966988,
0.04934055730700493,
0.05993259325623512,
0.048332102596759796,
-0.010699842125177383,
0.03473098203539848,
0.001072985352948308,
-0.021076329052448273,
-0.02882295474410057,
0.039843685925006866,
0.006304124370217323,
-0.16685764491558075,
0.058570630848407745,
-0.13670231401920319,
0.016933107748627663,
0.04119521379470825,
-0.03239182010293007,
-0.02068369835615158,
-0.04429412633180618,
-0.08292924612760544,
0.023400042206048965,
0.10071339458227158,
0.002968334825709462,
-0.0003295268106739968,
-0.09234271198511124,
-0.031120190396904945,
0.0045846072025597095,
-0.08683722466230392,
-0.09343455731868744,
-0.06546229124069214,
-0.11298885941505432,
0.08883694559335709,
-0.0281944889575243,
-0.15394791960716248,
0.03175481781363487,
-0.06910403072834015,
0.07504644989967346,
-0.16566741466522217,
0.07923563569784164,
0.040940213948488235,
0.027956150472164154,
0.00828421302139759,
0.021880704909563065,
0.051552388817071915,
0.08202730119228363,
-0.10438036173582077,
-0.07357750833034515
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mbart
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-mbart
|
[
"transformers",
"pytorch",
"tf",
"mbart",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #mbart #endpoints_compatible #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #mbart #endpoints_compatible #region-us \n"
] |
[
27
] |
[
"passage: TAGS\n#transformers #pytorch #tf #mbart #endpoints_compatible #region-us \n"
] |
[
-0.06456893682479858,
-0.07477530837059021,
-0.009524213150143623,
-0.012417823076248169,
0.13416165113449097,
0.0339563712477684,
0.01959824003279209,
0.08512365072965622,
0.10482505708932877,
-0.0297844260931015,
0.09886941313743591,
0.2356390804052353,
-0.043584153056144714,
0.0806826502084732,
-0.07471432536840439,
-0.2289649099111557,
0.06054437905550003,
0.0937415212392807,
-0.10106192529201508,
0.11609440296888351,
0.05152088776230812,
-0.06167814880609512,
0.06391438096761703,
-0.0659891664981842,
-0.15061046183109283,
0.05951346084475517,
0.04218115285038948,
-0.0816730335354805,
0.11945047974586487,
0.051510054618120193,
0.15066146850585938,
0.04649171233177185,
-0.1446717083454132,
-0.12387886643409729,
0.03672172129154205,
0.02418832667171955,
-0.08580213040113449,
0.028188584372401237,
0.03576912358403206,
-0.10162831842899323,
0.06824073195457458,
0.04562045633792877,
0.01541212946176529,
0.046518560498952866,
-0.17477189004421234,
-0.1841687113046646,
-0.05413515493273735,
0.044170670211315155,
0.023060064762830734,
0.058103643357753754,
0.03781527653336525,
0.2210395187139511,
-0.15283335745334625,
0.12103721499443054,
0.1941811442375183,
-0.31052497029304504,
0.009778172709047794,
0.12172362208366394,
0.05057230964303017,
0.0744752287864685,
0.010081340558826923,
0.04029024764895439,
0.004847714211791754,
0.037623368203639984,
0.01361402403563261,
-0.08520661294460297,
-0.018835728988051414,
0.08823580294847488,
-0.11331350356340408,
-0.08730747550725937,
0.2473210096359253,
-0.0379280187189579,
0.0413055419921875,
0.06631812453269958,
-0.10996561497449875,
-0.04130882769823074,
0.0008337497711181641,
0.013739221729338169,
-0.042972635477781296,
0.06290428340435028,
-0.005922469776123762,
-0.036201994866132736,
-0.09603355079889297,
0.011492009274661541,
-0.25476545095443726,
0.29711583256721497,
0.019054822623729706,
0.10529830306768417,
-0.23983417451381683,
0.07333024591207504,
-0.08190537989139557,
-0.07172202318906784,
0.023346979171037674,
-0.10804208368062973,
-0.010226896032691002,
-0.005463974084705114,
-0.05630316212773323,
0.02276112325489521,
0.051506854593753815,
0.17852772772312164,
0.01624000072479248,
0.0341518335044384,
-0.017010215669870377,
0.11048701405525208,
-0.01015656441450119,
0.0620654858648777,
-0.017893075942993164,
-0.009481259621679783,
0.05953387916088104,
-0.16890384256839752,
-0.03165119141340256,
-0.044887784868478775,
-0.09354249387979507,
-0.07550288736820221,
0.028106963261961937,
0.1207648292183876,
0.029514772817492485,
0.05683334171772003,
-0.05983074754476547,
-0.020880626514554024,
0.10677210241556168,
-0.06337161362171173,
-0.03274054452776909,
-0.012420116923749447,
0.013136623427271843,
0.16137562692165375,
0.018132109194993973,
-0.026210539042949677,
-0.02326924167573452,
0.11366211622953415,
-0.0681295394897461,
-0.02596895769238472,
-0.020797744393348694,
-0.05099636688828468,
0.052827853709459305,
-0.10392961651086807,
0.06114128977060318,
-0.18975447118282318,
-0.10468702763319016,
0.05599592998623848,
0.011907274834811687,
0.0166088305413723,
0.01495654322206974,
0.04692182317376137,
-0.03552906587719917,
-0.023441530764102936,
-0.061552125960588455,
-0.018548116087913513,
-0.057903680950403214,
0.11117193847894669,
-0.0028766298200935125,
0.06877698749303818,
-0.14638790488243103,
0.057976625859737396,
-0.07436316460371017,
0.028043143451213837,
-0.1742599904537201,
-0.010305377654731274,
-0.04736832156777382,
0.18513338267803192,
-0.016421297565102577,
-0.06217009946703911,
-0.16969195008277893,
0.033946868032217026,
-0.0370386578142643,
0.13898691534996033,
-0.07107274979352951,
-0.12034841626882553,
0.26201874017715454,
-0.10284342616796494,
-0.18105322122573853,
0.058133892714977264,
0.021544041112065315,
-0.005000303033739328,
0.06249439716339111,
0.16049176454544067,
0.07389840483665466,
-0.07665681838989258,
0.11623150110244751,
0.12690606713294983,
-0.18288320302963257,
-0.15938293933868408,
0.028097260743379593,
-0.015081699937582016,
-0.15016092360019684,
0.02942350134253502,
0.015355688519775867,
0.12138714641332626,
-0.0872146263718605,
0.004805503413081169,
-0.0349908173084259,
-0.02191379852592945,
0.06147007644176483,
0.04403156414628029,
0.07545653730630875,
-0.07354722172021866,
0.022195208817720413,
0.027419643476605415,
0.00966428592801094,
0.047470852732658386,
0.04797893017530441,
-0.04695518687367439,
0.11275550723075867,
-0.05300324037671089,
0.011896313168108463,
-0.19807466864585876,
-0.0995296835899353,
-0.006981140933930874,
0.10274092108011246,
-0.007201278582215309,
0.16518919169902802,
0.11791124939918518,
-0.08789891749620438,
-0.010168584994971752,
-0.02043287642300129,
0.1274229884147644,
0.02942853420972824,
-0.0005911116022616625,
-0.06144433468580246,
0.03095509484410286,
-0.07457620650529861,
-0.07234816998243332,
-0.0007723223534412682,
0.013837041333317757,
0.154775932431221,
0.14848457276821136,
0.027413735166192055,
0.04220586270093918,
-0.009359053336083889,
0.050083860754966736,
-0.015364162623882294,
-0.006358071696013212,
0.07224902510643005,
-0.016101276502013206,
-0.09737107157707214,
0.20018713176250458,
-0.11888545751571655,
0.3836403489112854,
0.21055802702903748,
-0.27057167887687683,
-0.006314894184470177,
-0.009823852218687534,
-0.02667130157351494,
0.006928825285285711,
0.1327153444290161,
-0.050273824483156204,
0.04965166747570038,
0.022286776453256607,
0.12011823058128357,
-0.04735739156603813,
-0.06962383538484573,
0.00826205499470234,
-0.035025980323553085,
-0.03668661043047905,
0.08411895483732224,
0.07188080251216888,
-0.1901162713766098,
0.1555512696504593,
0.2612094283103943,
0.06024689972400665,
0.14503143727779388,
-0.061365075409412384,
-0.02103048749268055,
0.03836524114012718,
0.04001987725496292,
-0.02700492925941944,
0.005590911954641342,
-0.2237524688243866,
-0.03388025611639023,
0.07823222875595093,
0.040387462824583054,
0.10384393483400345,
-0.12325134873390198,
-0.06546846777200699,
0.043519821017980576,
0.01479911059141159,
-0.06621431559324265,
0.1308087557554245,
0.050458986312150955,
0.09709914773702621,
0.012472445145249367,
-0.03504953905940056,
0.10590044409036636,
0.015055722557008266,
-0.07112973928451538,
0.1549142450094223,
-0.15205934643745422,
-0.27784132957458496,
-0.10475843399763107,
-0.09640718251466751,
0.014506151899695396,
-0.0024700078647583723,
0.07234705239534378,
-0.07809019833803177,
-0.02203293889760971,
0.08246766030788422,
0.08856644481420517,
-0.11977525055408478,
0.057250045239925385,
-0.04555080085992813,
0.04312990978360176,
-0.07579179108142853,
-0.08830759674310684,
-0.06915406137704849,
-0.036034226417541504,
-0.06977856904268265,
0.11718129366636276,
-0.160130113363266,
0.08804056793451309,
0.13309983909130096,
0.02676217071712017,
0.0897858515381813,
-0.024975759908556938,
0.19385240972042084,
-0.07896851003170013,
-0.009505783207714558,
0.1826656013727188,
-0.013071184977889061,
0.08834080398082733,
0.09429573267698288,
0.03953946754336357,
-0.0665188729763031,
-0.0054504480212926865,
-0.060374971479177475,
-0.1313103288412094,
-0.19320939481258392,
-0.09814046323299408,
-0.15211258828639984,
0.018073156476020813,
-0.022427987307310104,
0.059248462319374084,
0.11750930547714233,
0.04762831702828407,
0.034323882311582565,
-0.06375116109848022,
-0.01236693188548088,
0.0563209168612957,
0.14195474982261658,
-0.012622369453310966,
0.08630286157131195,
-0.082057423889637,
-0.07116474956274033,
0.11861655116081238,
0.07946552336215973,
0.17399777472019196,
0.05211044102907181,
0.01435508206486702,
0.0762857049703598,
0.1595221757888794,
0.14851824939250946,
0.1668444275856018,
-0.016719721257686615,
-0.04321878030896187,
-0.019201118499040604,
-0.015845827758312225,
-0.04669138789176941,
0.002217064844444394,
0.11861587315797806,
-0.12449642270803452,
-0.04466209560632706,
-0.234188973903656,
0.08849558979272842,
0.04031745716929436,
0.01071435771882534,
-0.15678700804710388,
0.008986935950815678,
0.041623275727033615,
0.011506425216794014,
-0.021678773686289787,
0.08275751024484634,
0.018017122521996498,
-0.11458868533372879,
0.07674790918827057,
-0.028236236423254013,
0.1088528037071228,
0.02448420412838459,
0.05060255900025368,
0.0017811425495892763,
-0.08589844405651093,
0.029968639835715294,
0.04970813915133476,
-0.31285178661346436,
0.26437458395957947,
-0.010156835429370403,
-0.0856465995311737,
-0.05668528378009796,
-0.045330651104450226,
0.011471547186374664,
0.19380095601081848,
0.07428187876939774,
0.049826327711343765,
-0.02750905603170395,
-0.1345585286617279,
0.049634240567684174,
0.010439364239573479,
0.11881580948829651,
-0.026688264682888985,
-0.05126165598630905,
-0.001631272374652326,
-0.028574520722031593,
-0.016246935352683067,
0.035280704498291016,
0.05795930325984955,
-0.10036302357912064,
0.0573619045317173,
-0.0005023258272558451,
-0.038242943584918976,
-0.022983727976679802,
0.0008298427565023303,
-0.042343176901340485,
0.11343502253293991,
-0.032018452882766724,
-0.06797553598880768,
-0.1190560832619667,
-0.17305625975131989,
0.1351882815361023,
-0.09969118982553482,
0.08138243108987808,
-0.07631725817918777,
-0.07035931944847107,
-0.07184012234210968,
-0.2317347377538681,
0.13863636553287506,
-0.11211688816547394,
0.01912928745150566,
-0.018941186368465424,
0.2176593691110611,
-0.09238123148679733,
-0.006303578615188599,
-0.022527821362018585,
-0.013962771743535995,
-0.08287876099348068,
-0.08820978552103043,
0.00371677172370255,
-0.01772797480225563,
0.018098708242177963,
0.09477871656417847,
-0.009395034052431583,
0.061077117919921875,
0.018574504181742668,
0.0201284047216177,
0.18363802134990692,
0.19275327026844025,
-0.048461005091667175,
0.1202712133526802,
0.12240265309810638,
0.00045300539932213724,
-0.26609545946121216,
-0.04319830238819122,
-0.16646841168403625,
-0.06660575419664383,
-0.01384734082967043,
-0.09146302938461304,
0.07438847422599792,
0.026571109890937805,
-0.00386485131457448,
0.16166241466999054,
-0.2574669122695923,
-0.054539017379283905,
0.12611240148544312,
0.027375945821404457,
0.4646010994911194,
-0.12431973218917847,
-0.08252031356096268,
0.030309822410345078,
-0.2862806022167206,
0.09563321620225906,
-0.03139045834541321,
0.04582489654421806,
-0.022244121879339218,
0.08634933829307556,
0.03760192543268204,
-0.0852784812450409,
0.09749612212181091,
0.026463929563760757,
0.03919832035899162,
-0.09329673647880554,
-0.07774610817432404,
0.046987827867269516,
-0.0009397345129400492,
0.0024996467400342226,
0.046049464493989944,
0.03722894564270973,
-0.11897725611925125,
-0.01727394387125969,
-0.1471419483423233,
0.05614778399467468,
0.03539527952671051,
-0.044364046305418015,
-0.004378759767860174,
-0.01894380897283554,
-0.03240154683589935,
-0.012343773618340492,
0.18923181295394897,
-0.0416354238986969,
0.15002863109111786,
0.05257423594594002,
0.06773830950260162,
-0.20959365367889404,
-0.09379687905311584,
-0.05606233328580856,
-0.05453796684741974,
0.08025746047496796,
-0.08844742923974991,
0.06492271274328232,
0.13572028279304504,
-0.015037165023386478,
0.012859464623034,
0.11853323876857758,
-0.0211745984852314,
-0.05246669426560402,
0.1444488912820816,
-0.21584457159042358,
-0.02327559143304825,
-0.05148855224251747,
-0.026652349159121513,
0.1634669452905655,
0.12579701840877533,
0.11197976022958755,
0.05647910758852959,
-0.0118709122762084,
-0.017669955268502235,
-0.04442784935235977,
-0.09754212945699692,
0.04101686179637909,
0.08015503734350204,
0.040362805128097534,
-0.13233742117881775,
0.05201089754700661,
-0.022548282518982887,
-0.1924661248922348,
-0.05602937564253807,
0.1333654671907425,
-0.14898650348186493,
-0.10294466465711594,
-0.04902070388197899,
0.06460864841938019,
-0.14823146164417267,
-0.02623373083770275,
-0.019144892692565918,
-0.09329804033041,
0.07833294570446014,
0.28693026304244995,
0.07699982076883316,
0.11608177423477173,
-0.010996848344802856,
-0.010548418387770653,
0.01926330290734768,
-0.08068118989467621,
-0.01792111061513424,
0.03861549124121666,
-0.10417257994413376,
0.056928087025880814,
-0.03169792518019676,
0.16614772379398346,
-0.08822060376405716,
-0.05023704841732979,
-0.1776847541332245,
0.07721658051013947,
-0.08174711465835571,
-0.11175697296857834,
-0.10259812325239182,
-0.05300334095954895,
0.017475340515375137,
-0.11469502747058868,
-0.0342857800424099,
-0.011611263267695904,
-0.1449931114912033,
0.06211003288626671,
0.03228423744440079,
-0.016709614545106888,
-0.04760240018367767,
-0.052484236657619476,
0.1232205182313919,
-0.043721526861190796,
0.10239645093679428,
0.1786084622144699,
-0.09357335418462753,
0.12300863862037659,
-0.08176255226135254,
-0.13253583014011383,
0.09955397993326187,
0.008677161298692226,
0.08591973036527634,
0.09760512411594391,
0.034256257116794586,
0.052482400089502335,
0.01535513810813427,
0.0521329827606678,
-0.0006830461788922548,
-0.11346331983804703,
0.017566382884979248,
0.012234595604240894,
-0.14767470955848694,
-0.03755607828497887,
-0.07465135306119919,
0.15481306612491608,
0.04873434826731682,
0.04167317599058151,
0.016865873709321022,
0.0834844708442688,
-0.04721922427415848,
-0.022484159097075462,
0.0036841975525021553,
-0.20052334666252136,
0.051850322633981705,
-0.0281407218426466,
0.017399867996573448,
-0.004258945118635893,
0.2533140182495117,
-0.057211607694625854,
-0.01027614064514637,
0.0214715376496315,
0.037279896438121796,
0.04041481763124466,
0.00520883547142148,
0.22171419858932495,
0.06511621177196503,
-0.030354944989085197,
-0.1168709397315979,
0.08406734466552734,
-0.03338547796010971,
-0.08822547644376755,
0.1414126455783844,
0.12642709910869598,
0.024418018758296967,
0.05951926112174988,
0.03305152803659439,
0.038792796432971954,
-0.06794820725917816,
-0.30766475200653076,
0.0010231002233922482,
0.030453352257609367,
-0.006136205978691578,
0.06698343902826309,
0.15024271607398987,
-0.022746585309505463,
0.08283016830682755,
0.0038654881063848734,
-0.006951900664716959,
-0.13824428617954254,
-0.08199865370988846,
-0.03872791305184364,
-0.12193863838911057,
0.017036864534020424,
-0.06522074341773987,
0.004055017605423927,
0.10703705251216888,
0.06506915390491486,
-0.012751099653542042,
0.12739121913909912,
0.041795533150434494,
-0.06975753605365753,
0.04328120872378349,
-0.010584351606667042,
0.006465231999754906,
0.046131763607263565,
-0.018934402614831924,
-0.12023679912090302,
-0.07863546162843704,
-0.07454770058393478,
0.01752769947052002,
-0.09849810600280762,
-0.007071657571941614,
-0.12117929756641388,
-0.09589756280183792,
-0.053669482469558716,
0.057946156710386276,
-0.06944280862808228,
0.10948864370584488,
-0.010684927925467491,
0.0035702146124094725,
0.017260076478123665,
0.19232606887817383,
-0.06131833419203758,
-0.0712035670876503,
-0.018825270235538483,
0.19418910145759583,
0.052985481917858124,
0.09115254133939743,
-0.005331114865839481,
0.025707656517624855,
-0.08035911619663239,
0.3293799161911011,
0.2605923116207123,
-0.02970457635819912,
0.06518419086933136,
0.06558466702699661,
0.04794975370168686,
0.11188957840204239,
0.15558390319347382,
0.10754528641700745,
0.28312215209007263,
-0.05734492093324661,
-0.037052642554044724,
-0.02710878849029541,
0.010839243419468403,
-0.08094654977321625,
0.04364306852221489,
0.0428190678358078,
-0.08233459293842316,
-0.061874911189079285,
0.10246133804321289,
-0.14915767312049866,
0.0854853093624115,
0.02538764476776123,
-0.2282799780368805,
-0.04291364550590515,
-0.0907200276851654,
0.13323356211185455,
-0.009135873056948185,
0.10002801567316055,
-0.041535623371601105,
-0.1227584183216095,
0.026812031865119934,
0.05316158011555672,
-0.2794167995452881,
-0.10739845037460327,
0.10804632306098938,
0.00925779901444912,
-0.04347698763012886,
-0.04543264955282211,
0.01754285767674446,
0.07163307815790176,
0.05819232761859894,
-0.020313194021582603,
0.04194854199886322,
0.030610593035817146,
-0.0705750361084938,
-0.12239182740449905,
0.018700579181313515,
0.0022185659036040306,
-0.10376570373773575,
0.026222864165902138,
-0.22273202240467072,
0.01993497833609581,
-0.0008098430116660893,
-0.004710426088422537,
-0.013786226511001587,
0.006049289833754301,
-0.0490155853331089,
0.041194040328264236,
0.06381761282682419,
0.00445429515093565,
0.0009867548942565918,
-0.06929299235343933,
-0.018203523010015488,
0.07345103472471237,
-0.05711933225393295,
-0.14900602400302887,
-0.02144867740571499,
-0.09440513700246811,
0.06916357576847076,
-0.023310741409659386,
-0.06605372577905655,
-0.030845381319522858,
-0.06827660650014877,
0.04181195795536041,
-0.12119058519601822,
0.07513443380594254,
0.032659634947776794,
0.0559702143073082,
0.02611793763935566,
-0.06573541462421417,
0.040550556033849716,
0.07133708894252777,
-0.14315378665924072,
-0.06362609565258026
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mpnet
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-mpnet
|
[
"transformers",
"pytorch",
"tf",
"mpnet",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #mpnet #endpoints_compatible #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #mpnet #endpoints_compatible #region-us \n"
] |
[
27
] |
[
"passage: TAGS\n#transformers #pytorch #tf #mpnet #endpoints_compatible #region-us \n"
] |
[
-0.05588984489440918,
-0.0039598518051207066,
-0.007920208387076855,
-0.032861266285181046,
0.12064072489738464,
0.01309424452483654,
0.042796675115823746,
0.08287813514471054,
-0.01781487837433815,
-0.058267224580049515,
0.107779361307621,
0.20413866639137268,
-0.04430330917239189,
0.029402533546090126,
-0.04511633887887001,
-0.2219637632369995,
0.09805525839328766,
0.10290592163801193,
-0.14353257417678833,
0.1069713905453682,
0.08096170425415039,
-0.028399355709552765,
0.08311422169208527,
-0.03353789076209068,
-0.12388011068105698,
0.04727168008685112,
0.03937068209052086,
-0.07274723798036575,
0.10194554179906845,
0.051719971001148224,
0.13049085438251495,
-0.015616721473634243,
-0.13053952157497406,
-0.14201699197292328,
0.022840149700641632,
0.07462245970964432,
-0.08865898102521896,
0.024810558184981346,
0.05435775965452194,
-0.03462718054652214,
0.1342765986919403,
0.06954050064086914,
-0.010983421467244625,
0.03542622923851013,
-0.0877474695444107,
-0.1360977739095688,
-0.0033410489559173584,
0.0727611631155014,
-0.008489188738167286,
0.12440076470375061,
0.05088629946112633,
0.3290618658065796,
-0.16950857639312744,
0.13635244965553284,
0.17167063057422638,
-0.31747475266456604,
-0.0007996758795343339,
0.18322980403900146,
0.0699356272816658,
0.07165078818798065,
0.021555017679929733,
0.008623091503977776,
0.0012352793710306287,
0.036771271377801895,
-0.00486011290922761,
-0.05378148704767227,
-0.07133223861455917,
0.05732054263353348,
-0.12644585967063904,
-0.07555726170539856,
0.24607646465301514,
-0.01817728579044342,
0.10190171748399734,
0.043868765234947205,
-0.15022344887256622,
-0.056044481694698334,
0.013935527764260769,
0.011943887919187546,
-0.028324062004685402,
0.07230667769908905,
0.020090730860829353,
-0.019102241843938828,
-0.08897848427295685,
0.025604350492358208,
-0.23632197082042694,
0.23121191561222076,
0.04808124527335167,
0.12513132393360138,
-0.22935867309570312,
0.042488958686590195,
-0.030506430193781853,
-0.053729135543107986,
0.040785565972328186,
-0.12549825012683868,
0.019498363137245178,
0.016645951196551323,
-0.06602983921766281,
-0.028988052159547806,
0.08956704288721085,
0.11488992720842361,
-0.006075102370232344,
0.02380405366420746,
-0.00854920782148838,
0.12021278589963913,
-0.0034290251787751913,
-0.00039360340451821685,
-0.09856931865215302,
0.014959742315113544,
0.05190693214535713,
-0.1840800940990448,
-0.017097560688853264,
-0.03961766138672829,
-0.06899458169937134,
-0.03279665857553482,
0.027933189645409584,
0.09262397140264511,
0.05014524981379509,
0.07734911143779755,
-0.02075636386871338,
-0.039505552500486374,
0.11139581352472305,
-0.05332181975245476,
-0.023430000990629196,
0.0014666609931737185,
-0.006096378434449434,
0.18527953326702118,
0.030368946492671967,
-0.0004891243879683316,
-0.10819382965564728,
0.09138122946023941,
-0.07300829887390137,
-0.013431305065751076,
-0.009782012552022934,
-0.06453682482242584,
0.08357095718383789,
-0.08646374195814133,
0.031912725418806076,
-0.2070039063692093,
-0.001877324772067368,
0.036615218967199326,
0.05739421397447586,
0.05137168988585472,
0.007073923479765654,
0.05509528890252113,
-0.09284836053848267,
-0.03761635348200798,
-0.05497249960899353,
-0.03245000168681145,
-0.07979084551334381,
0.07012134790420532,
-0.07605640590190887,
0.05406784266233444,
-0.1295919418334961,
0.044166404753923416,
-0.06861279159784317,
-0.011518745683133602,
-0.14637453854084015,
-0.023195946589112282,
-0.09365212172269821,
0.15896578133106232,
0.0021623733919113874,
-0.08554152399301529,
-0.13621431589126587,
0.0061493185348808765,
-0.057918939739465714,
0.11359858512878418,
-0.013724691234529018,
-0.09814286977052689,
0.24490466713905334,
-0.13284167647361755,
-0.18270371854305267,
0.07206086069345474,
0.03983572870492935,
-0.06340070068836212,
0.049783628433942795,
0.14730025827884674,
0.12695786356925964,
-0.11580828577280045,
0.08651963621377945,
0.15376882255077362,
-0.2075459212064743,
-0.19870023429393768,
0.0042591337114572525,
0.01041689794510603,
-0.08169486373662949,
-0.004723200108855963,
-0.02032713033258915,
0.12539122998714447,
-0.09133295714855194,
-0.02403983846306801,
-0.03152758628129959,
-0.04502664878964424,
0.028584742918610573,
0.057789117097854614,
0.0753912478685379,
-0.056045159697532654,
0.024305369704961777,
0.007310898043215275,
0.03256300091743469,
0.010974210686981678,
0.08610053360462189,
-0.06656970083713531,
0.038838885724544525,
-0.008141407743096352,
0.021862365305423737,
-0.19182167947292328,
-0.1556045413017273,
-0.010410839691758156,
0.05076200142502785,
-0.031227480620145798,
0.14926747977733612,
0.09654636681079865,
-0.08032485097646713,
0.0015618859324604273,
0.003991700243204832,
0.12506671249866486,
0.0509316511452198,
0.004736345261335373,
-0.09824150800704956,
0.031453803181648254,
-0.04800374433398247,
-0.06987368315458298,
-0.005611595697700977,
0.004872527904808521,
0.10220988839864731,
0.181165412068367,
0.008909431286156178,
0.029233289882540703,
-0.02340095303952694,
0.013932716101408005,
-0.04305889457464218,
-0.016486620530486107,
0.06395240873098373,
0.0007591992616653442,
-0.06445571035146713,
0.20519131422042847,
-0.06721046566963196,
0.40082913637161255,
0.22545984387397766,
-0.3167949318885803,
0.0228959359228611,
0.05840495973825455,
-0.03191586211323738,
-0.016809871420264244,
0.12378226220607758,
-0.031136728823184967,
-0.0071802157908678055,
0.015531575307250023,
0.12251891195774078,
-0.06568767130374908,
-0.0557744987308979,
0.024853533133864403,
-0.05505196750164032,
-0.005401281174272299,
0.06272859871387482,
0.08707647770643234,
-0.18560631573200226,
0.16292153298854828,
0.17788155376911163,
0.02290925197303295,
0.12071866542100906,
-0.06881089508533478,
-0.016484923660755157,
0.06732995063066483,
0.048969611525535583,
-0.029295556247234344,
-0.025926116853952408,
-0.2686016857624054,
-0.024021951481699944,
0.06990521401166916,
0.07267318665981293,
0.11760776489973068,
-0.11490166932344437,
-0.05271013081073761,
0.02433132380247116,
-0.002859278116375208,
-0.036195892840623856,
0.08388455957174301,
0.03672383353114128,
0.09631308168172836,
-0.005651440471410751,
-0.11113610118627548,
0.11282862722873688,
-0.018731698393821716,
-0.0873217061161995,
0.1629277914762497,
-0.1652224212884903,
-0.2888074815273285,
-0.07012806832790375,
-0.11458280682563782,
-0.06098715215921402,
-0.00735051603987813,
0.0403008759021759,
-0.09588675945997238,
-0.02697848528623581,
0.042223259806632996,
0.00226122816093266,
-0.09517432004213333,
0.06410841643810272,
-0.017471952363848686,
0.07718106359243393,
-0.02732408605515957,
-0.12218240648508072,
-0.02715255878865719,
-0.04874025657773018,
-0.034056201577186584,
0.11435560137033463,
-0.15589606761932373,
0.08673058450222015,
0.173556387424469,
0.015256620943546295,
0.08157908171415329,
0.022411974146962166,
0.1765786111354828,
-0.05059191584587097,
-0.015229465439915657,
0.15939952433109283,
-0.01656309887766838,
0.08727294951677322,
0.07327380776405334,
0.04039797559380531,
-0.04862486571073532,
0.012799697928130627,
-0.03394076228141785,
-0.11038371920585632,
-0.22773896157741547,
-0.15388761460781097,
-0.1250171661376953,
0.03499956801533699,
-0.01925504207611084,
0.08710910379886627,
0.10854276269674301,
0.034398533403873444,
0.034830112010240555,
-0.11644984781742096,
0.02410370297729969,
0.050682537257671356,
0.15194866061210632,
-0.019579296931624413,
0.07736506313085556,
-0.09761375188827515,
-0.07548794895410538,
0.10539579391479492,
0.050105780363082886,
0.16630424559116364,
0.03527555614709854,
-0.020552176982164383,
0.07007195800542831,
0.2151942104101181,
0.12278646230697632,
0.1611877828836441,
0.010597983375191689,
-0.049184806644916534,
0.028862226754426956,
-0.01475356426090002,
-0.025494391098618507,
-0.00027643408975563943,
0.07160409539937973,
-0.16258125007152557,
0.00531117245554924,
-0.1601206511259079,
0.07618743926286697,
0.09673203527927399,
0.024138949811458588,
-0.18525253236293793,
0.04259921610355377,
-0.014721913263201714,
-0.049708042293787,
-0.032799914479255676,
0.09550724923610687,
0.04633054509758949,
-0.10779866576194763,
0.09534405916929245,
-0.02821381203830242,
0.0967772826552391,
-0.0017811910947784781,
0.038460079580545425,
0.06411679834127426,
-0.11934413015842438,
0.05815881863236427,
0.06302051991224289,
-0.21125581860542297,
0.22582803666591644,
-0.04735349118709564,
-0.08310287445783615,
-0.08318885415792465,
-0.055833812803030014,
0.005734261125326157,
0.22591815888881683,
0.06116878613829613,
0.07601124048233032,
0.09044129401445389,
-0.07444240152835846,
0.0064210109412670135,
0.015706878155469894,
0.13207589089870453,
0.047200608998537064,
-0.06716345250606537,
0.00549475708976388,
-0.04816298931837082,
0.011221889406442642,
0.018093321472406387,
0.07255738228559494,
-0.07386580109596252,
0.03318009153008461,
0.08830510079860687,
0.0028341326396912336,
-0.0093421945348382,
-0.012961476109921932,
-0.09182700514793396,
0.20648497343063354,
-0.043459463864564896,
-0.0888129323720932,
-0.06783238053321838,
-0.19838126003742218,
0.12112719565629959,
-0.05938684567809105,
0.09614229202270508,
-0.06903998553752899,
-0.028845369815826416,
-0.055111829191446304,
-0.23982366919517517,
0.14325296878814697,
-0.14475250244140625,
0.03186170384287834,
-0.011080346070230007,
0.21173742413520813,
-0.04895283281803131,
-0.01555263064801693,
-0.021245818585157394,
-0.041054826229810715,
-0.08978045731782913,
-0.10920549184083939,
-0.08104383200407028,
0.019172677770256996,
0.01786515675485134,
0.11614540964365005,
-0.0012166346423327923,
0.03518317639827728,
0.030043382197618484,
0.030187679454684258,
0.21425163745880127,
0.13184373080730438,
-0.05182700976729393,
0.0833962932229042,
0.14828501641750336,
0.01883857697248459,
-0.29763805866241455,
-0.07308454066514969,
-0.11345271021127701,
-0.12356535345315933,
-0.03579004853963852,
-0.0581178218126297,
0.14610125124454498,
0.03219633921980858,
-0.00887590553611517,
0.1470165252685547,
-0.276049941778183,
-0.0380106121301651,
0.11104036122560501,
-0.004477963782846928,
0.37786728143692017,
-0.10627431422472,
-0.050947919487953186,
0.009245237335562706,
-0.2673071026802063,
0.14959397912025452,
-0.08355499058961868,
0.053553227335214615,
0.023349402472376823,
0.037036117166280746,
0.00870346836745739,
-0.09613200277090073,
0.06685470044612885,
0.06732525676488876,
0.022744067013263702,
-0.08852678537368774,
0.00005362495357985608,
0.1025189608335495,
0.021985160186886787,
0.0466698594391346,
0.09076453745365143,
0.02021499164402485,
-0.13425549864768982,
-0.005197491496801376,
-0.1624520868062973,
0.03409876301884651,
0.05159442871809006,
-0.03948115557432175,
-0.04186200350522995,
-0.022005995735526085,
0.03616824001073837,
0.01054003182798624,
0.21252502501010895,
-0.0019132379675284028,
0.12222950160503387,
0.16087596118450165,
0.068271204829216,
-0.26875367760658264,
-0.13556654751300812,
-0.0407390370965004,
-0.048582904040813446,
0.10232165455818176,
-0.0599684976041317,
0.06595560908317566,
0.1311795860528946,
-0.04394996538758278,
-0.042644698172807693,
0.11302214115858078,
-0.038946665823459625,
-0.10985712707042694,
0.12865450978279114,
-0.20440147817134857,
0.013384844176471233,
-0.03880918398499489,
-0.031161237508058548,
0.13692471385002136,
0.16013899445533752,
0.12710295617580414,
0.0057157170958817005,
0.0149712935090065,
0.0013463045470416546,
-0.031053729355335236,
-0.1241345927119255,
0.0618785060942173,
0.09570744633674622,
0.029007969424128532,
-0.14470280706882477,
0.10702469944953918,
-0.049207545816898346,
-0.18511182069778442,
-0.061319973319768906,
0.1602562665939331,
-0.18936596810817719,
-0.11119908094406128,
-0.030756335705518723,
0.007023124489933252,
-0.16586889326572418,
-0.07999534904956818,
-0.002731160493567586,
-0.09118815511465073,
0.10111392289400101,
0.19441373646259308,
0.09498465806245804,
0.12255042791366577,
-0.004110940266400576,
-0.026321548968553543,
-0.01759675331413746,
-0.10716748982667923,
-0.008438470773398876,
0.025473225861787796,
-0.15438102185726166,
0.039066705852746964,
-0.009197723120450974,
0.16373054683208466,
-0.09153752028942108,
-0.03369081765413284,
-0.12296682596206665,
0.09604185074567795,
-0.057299669831991196,
-0.11801032721996307,
-0.10534932464361191,
-0.042127564549446106,
0.004484560340642929,
-0.08267476409673691,
-0.03588512912392616,
0.01693464256823063,
-0.11238852143287659,
0.03348655626177788,
0.013450918719172478,
-0.06908879429101944,
-0.06746941059827805,
-0.03199369087815285,
0.08616650849580765,
-0.03750094398856163,
0.10348107665777206,
0.16391849517822266,
-0.1283746361732483,
0.08935660868883133,
-0.056888263672590256,
-0.1478690207004547,
0.13781985640525818,
0.03152990713715553,
0.06409882754087448,
0.07967899739742279,
0.029568733647465706,
0.09553956240415573,
0.020474698394536972,
0.050262611359357834,
0.017998117953538895,
-0.10787758976221085,
-0.003286071354523301,
-0.05775192379951477,
-0.10824570804834366,
-0.025935791432857513,
-0.11170279234647751,
0.17083512246608734,
0.049220435321331024,
0.0999860167503357,
0.03917050361633301,
0.0723903700709343,
-0.0305563323199749,
-0.01321721263229847,
0.020050354301929474,
-0.18948598206043243,
0.09071889519691467,
0.019973933696746826,
-0.002188136102631688,
-0.052172306925058365,
0.2597348690032959,
-0.0491102859377861,
-0.05645611137151718,
0.0400233194231987,
0.029799601063132286,
-0.033538322895765305,
0.010338149964809418,
0.2130807489156723,
0.0753084272146225,
-0.03517456352710724,
-0.09160762280225754,
0.04885334521532059,
-0.012696203775703907,
-0.07191071659326553,
0.11405962705612183,
0.09117263555526733,
0.03467971831560135,
0.05702957138419151,
0.05903398245573044,
0.0388694703578949,
-0.12689976394176483,
-0.26210224628448486,
-0.03911373019218445,
0.06435763835906982,
0.0015971761895343661,
0.019538594409823418,
0.15228164196014404,
0.011814702302217484,
0.04589728266000748,
0.009293527342379093,
-0.022248469293117523,
-0.1409791260957718,
-0.11490495502948761,
-0.03397378325462341,
-0.16267108917236328,
0.003943136427551508,
-0.07176928222179413,
-0.008079469203948975,
0.14373351633548737,
0.10505685210227966,
-0.029359379783272743,
0.15046799182891846,
0.001864396734163165,
-0.09046946465969086,
0.03800148516893387,
-0.0008571551879867911,
0.011518336832523346,
0.08249307423830032,
-0.013746939599514008,
-0.09820631891489029,
-0.06328132003545761,
-0.05615819990634918,
0.033593546599149704,
-0.06689365208148956,
0.06498592346906662,
-0.11260344833135605,
-0.08907514810562134,
-0.06615711003541946,
0.057539209723472595,
-0.08444900065660477,
0.1447383165359497,
-0.008424499072134495,
-0.0017890180461108685,
0.029901770874857903,
0.15413342416286469,
-0.0985504761338234,
-0.14891895651817322,
-0.0424819216132164,
0.19443464279174805,
0.04429808259010315,
0.10342278331518173,
-0.027894888073205948,
0.02225693315267563,
-0.14382264018058777,
0.34634724259376526,
0.32492145895957947,
-0.043455976992845535,
0.057342298328876495,
0.06966358423233032,
0.04097915440797806,
0.07296128571033478,
0.13540644943714142,
0.16955025494098663,
0.3038756549358368,
-0.04763762280344963,
-0.01832793653011322,
-0.04667884483933449,
0.023396367207169533,
-0.14479351043701172,
-0.03268458694219589,
0.06266659498214722,
-0.10129278153181076,
-0.05425725132226944,
0.10771823674440384,
-0.1951032429933548,
0.1284010261297226,
0.03561219945549965,
-0.1726343035697937,
-0.025836525484919548,
-0.0664210319519043,
0.11258262395858765,
-0.0027099433355033398,
0.09391544759273529,
-0.02776833437383175,
-0.10151156783103943,
0.026789000257849693,
0.039524830877780914,
-0.2709296941757202,
-0.1258201003074646,
0.08723197132349014,
0.002342495135962963,
-0.032014865428209305,
-0.017553064972162247,
0.06878726929426193,
0.04626213759183884,
0.040861763060092926,
-0.035927243530750275,
0.06219378486275673,
0.02418755553662777,
-0.1109866201877594,
-0.13087712228298187,
-0.044196534901857376,
-0.006471238099038601,
-0.05989507585763931,
-0.004766522906720638,
-0.18259155750274658,
-0.011606594547629356,
0.028638197109103203,
0.06318861246109009,
-0.035801298916339874,
-0.019884146749973297,
-0.054208725690841675,
0.05405354127287865,
0.05025211349129677,
-0.008530139923095703,
0.006872155703604221,
-0.08099401742219925,
-0.057106226682662964,
0.04184878244996071,
-0.13446347415447235,
-0.11139515787363052,
-0.0863112360239029,
-0.08651722967624664,
0.012481183744966984,
0.01925559528172016,
0.02356692962348461,
-0.004674886353313923,
-0.0714116171002388,
0.02319597639143467,
-0.11449816823005676,
0.03100953996181488,
0.018819572404026985,
0.04330410435795784,
0.020304519683122635,
0.042115505784749985,
0.05427849665284157,
0.06072339415550232,
-0.13074876368045807,
-0.11377722024917603
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-t5
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-t5
|
[
"transformers",
"pytorch",
"tf",
"t5",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
36
] |
[
"passage: TAGS\n#transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.025556957349181175,
-0.0498620942234993,
-0.008333464153110981,
0.010163254104554653,
0.183905690908432,
0.03552944213151932,
0.039415545761585236,
0.12809817492961884,
0.01607143133878708,
-0.02768528461456299,
0.09202709048986435,
0.19759666919708252,
-0.0035786456428468227,
0.01268537063151598,
-0.0913139060139656,
-0.2645035982131958,
0.054143406450748444,
0.08283011615276337,
-0.04624253511428833,
0.11434551328420639,
0.054158348590135574,
-0.04942338541150093,
0.09364448487758636,
-0.05604283884167671,
-0.1655803918838501,
0.058924756944179535,
0.0491061694920063,
-0.10711944103240967,
0.11764702945947647,
0.0500960648059845,
0.10325215011835098,
0.026904484257102013,
-0.11717313528060913,
-0.13344383239746094,
0.04001658037304878,
0.05723687261343002,
-0.1079133003950119,
0.035551518201828,
0.10698103904724121,
-0.10631267726421356,
0.13939082622528076,
0.032482124865055084,
-0.04715101793408394,
0.06392045319080353,
-0.16369040310382843,
-0.08227093517780304,
-0.004003955516964197,
0.04288163036108017,
0.012633047997951508,
0.10157470405101776,
-0.0018055500695481896,
0.11236900091171265,
-0.1049252599477768,
0.14271435141563416,
0.20536589622497559,
-0.32759517431259155,
-0.00848349742591381,
0.10160893201828003,
0.04053305462002754,
0.07959409803152084,
-0.02536590024828911,
0.040535230189561844,
0.022536473348736763,
0.02906200662255287,
0.034367840737104416,
-0.0795237347483635,
-0.1296437829732895,
0.07992076873779297,
-0.10024653375148773,
-0.08414532989263535,
0.23353490233421326,
-0.0324888750910759,
0.0632086992263794,
0.030398860573768616,
-0.13774871826171875,
-0.05180224031209946,
-0.002551209181547165,
0.024579321965575218,
-0.04809703677892685,
0.07276851683855057,
0.04003315791487694,
-0.07091058790683746,
-0.11856009811162949,
-0.01904153637588024,
-0.19612546265125275,
0.17462554574012756,
0.019606463611125946,
0.07688908278942108,
-0.24834725260734558,
0.08626006543636322,
-0.01756729744374752,
-0.08376669138669968,
0.04434282332658768,
-0.1066277027130127,
0.0065461741760373116,
0.008714072406291962,
-0.06969090551137924,
-0.10168756544589996,
0.09103693068027496,
0.04558008164167404,
-0.0666692852973938,
0.011271940544247627,
-0.08008155971765518,
0.08525989949703217,
0.000563145789783448,
0.04464556649327278,
-0.05616409331560135,
0.016020435839891434,
0.02542242407798767,
-0.15492312610149384,
-0.03715027496218681,
-0.06542135775089264,
-0.11301016807556152,
-0.0914255753159523,
0.0667802095413208,
0.0990447923541069,
0.010531237348914146,
0.09883497655391693,
-0.006809319369494915,
-0.03708439692854881,
0.002027304144576192,
-0.07884526997804642,
-0.055706072598695755,
0.02865602634847164,
0.015396103262901306,
0.19092808663845062,
0.0030321641825139523,
-0.036654986441135406,
-0.17816372215747833,
0.03724514693021774,
-0.08006180822849274,
-0.00438503734767437,
-0.017806466668844223,
-0.07035572826862335,
0.027394872158765793,
-0.13568994402885437,
0.017078259959816933,
-0.1723025143146515,
-0.13682103157043457,
0.041577406227588654,
-0.0017318706959486008,
-0.008359063416719437,
0.008716067299246788,
-0.022434130311012268,
-0.08330071717500687,
0.009575878269970417,
-0.05464799329638481,
-0.0041017085313797,
-0.0647754818201065,
0.12626385688781738,
-0.05885883420705795,
0.060884784907102585,
-0.14902332425117493,
0.08254507929086685,
-0.08857745677232742,
-0.0027155906427651644,
-0.11007542908191681,
0.051809001713991165,
0.017728189006447792,
0.12157394737005234,
-0.028951819986104965,
-0.07857056707143784,
-0.13433873653411865,
0.04780864343047142,
-0.0472453311085701,
0.18190929293632507,
-0.09095247834920883,
-0.10094602406024933,
0.28452226519584656,
-0.08246638625860214,
-0.18656042218208313,
0.09771335870027542,
0.017788760364055634,
-0.00179840880446136,
0.06732184439897537,
0.22119303047657013,
0.06240721419453621,
-0.021435562521219254,
0.09157693386077881,
0.15512165427207947,
-0.14987359941005707,
-0.10788632929325104,
0.011071508750319481,
-0.027627790346741676,
-0.12678883969783783,
0.022867780178785324,
0.02477557584643364,
0.07815154641866684,
-0.05604182928800583,
-0.009587670676410198,
-0.05013517290353775,
0.010401515290141106,
0.07555365562438965,
0.010259481146931648,
0.0947667583823204,
-0.0537375882267952,
-0.0046894969418644905,
-0.017959412187337875,
-0.03226599842309952,
-0.05431108921766281,
0.0642724558711052,
-0.013825277797877789,
0.15742531418800354,
-0.012576940469443798,
0.04912221059203148,
-0.2155623883008957,
-0.10367617756128311,
-0.021531831473112106,
0.14617106318473816,
-0.0336466021835804,
0.11827577650547028,
0.05757899954915047,
-0.06318715959787369,
-0.018429161980748177,
-0.002366466913372278,
0.10096500813961029,
-0.012232335284352303,
-0.009225830435752869,
-0.04997078329324722,
0.03945031762123108,
-0.05828569456934929,
-0.08974454551935196,
-0.06650570780038834,
0.019033467397093773,
0.11104564368724823,
0.10449987649917603,
0.01743948645889759,
0.04973798990249634,
-0.001493000192567706,
0.021095281466841698,
-0.04618543013930321,
-0.007430060300976038,
0.1038440614938736,
-0.01610339805483818,
-0.08350814133882523,
0.19724710285663605,
-0.142416849732399,
0.2579944431781769,
0.2010868489742279,
-0.32014158368110657,
0.019308017566800117,
-0.0633518174290657,
-0.03543110936880112,
0.029795274138450623,
0.09046727418899536,
-0.06874571740627289,
0.08165290206670761,
0.004355664364993572,
0.16964320838451385,
-0.0852845087647438,
-0.05545327067375183,
0.005762069020420313,
-0.0006165470695123076,
-0.008433965966105461,
0.08341933786869049,
0.07167886942625046,
-0.15953609347343445,
0.16145820915699005,
0.21865792572498322,
0.05001634359359741,
0.19002819061279297,
-0.06269700080156326,
-0.061197854578495026,
0.09963925927877426,
0.06276369839906693,
-0.04087304323911667,
-0.0739949569106102,
-0.2549766004085541,
-0.007979915477335453,
0.07543255388736725,
0.05608578398823738,
0.12292242050170898,
-0.1067858338356018,
-0.046620018780231476,
-0.007222958840429783,
-0.04764670133590698,
-0.06686270236968994,
0.10487177222967148,
0.08669193089008331,
0.13665570318698883,
-0.006199785508215427,
-0.009834875352680683,
0.11377601325511932,
-0.0015519300941377878,
-0.11270003020763397,
0.21925504505634308,
-0.11924058198928833,
-0.31637507677078247,
-0.12727126479148865,
-0.10278074443340302,
-0.0398365780711174,
0.014633186161518097,
0.10868315398693085,
-0.09761536121368408,
0.0057619474828243256,
-0.0036731541622430086,
0.11580904573202133,
-0.11788947880268097,
0.039633285254240036,
-0.07323426753282547,
0.0595468170940876,
-0.09446215629577637,
-0.10083069652318954,
-0.043692413717508316,
-0.028234899044036865,
-0.07219460606575012,
0.1330248862504959,
-0.16048142313957214,
0.06954684853553772,
0.18819919228553772,
0.01463241595774889,
0.07990624755620956,
-0.057685595005750656,
0.18995347619056702,
-0.08439488708972931,
0.0019481584895402193,
0.21801479160785675,
-0.038922019302845,
0.08304844796657562,
0.07776294648647308,
0.0015106949722394347,
-0.07514775544404984,
0.01477334089577198,
-0.017775820568203926,
-0.1017175167798996,
-0.25402674078941345,
-0.07966533303260803,
-0.15161702036857605,
0.08495477586984634,
0.01294203381985426,
0.05921639874577522,
0.15219491720199585,
0.03763929754495621,
0.00020652097009588033,
-0.01867688074707985,
0.02349923923611641,
0.06400702893733978,
0.1783658266067505,
0.0002663944032974541,
0.07339410483837128,
-0.06838051974773407,
-0.07791364938020706,
0.08894272893667221,
0.05509171634912491,
0.17620018124580383,
0.009151914156973362,
0.06188341975212097,
0.04796423390507698,
0.0801599994301796,
0.11417637020349503,
0.17106471955776215,
-0.01924905739724636,
-0.002256848616525531,
-0.02197531796991825,
-0.041074324399232864,
0.0035322520416229963,
-0.0037987760733813047,
0.02220412716269493,
-0.1309296190738678,
-0.10201948881149292,
-0.1376224309206009,
0.11091916263103485,
0.11759777367115021,
0.05493374541401863,
-0.18601110577583313,
0.016771873459219933,
0.05030904337763786,
-0.02184630185365677,
-0.09830217063426971,
0.10732463747262955,
0.06654834002256393,
-0.10390927642583847,
0.06250216066837311,
-0.055460698902606964,
0.12452973425388336,
0.011497418396174908,
0.09179959446191788,
-0.006194195244461298,
-0.07331494241952896,
0.011689111590385437,
0.09143829345703125,
-0.29856640100479126,
0.23710565268993378,
-0.0036367070861160755,
-0.06061931699514389,
-0.08635854721069336,
-0.03369267284870148,
0.0036088451743125916,
0.13324487209320068,
0.13866761326789856,
0.01396837830543518,
0.026310790330171585,
-0.05534133315086365,
0.049974799156188965,
0.03479206934571266,
0.16440358757972717,
-0.03835839778184891,
-0.010032719932496548,
-0.02447814866900444,
-0.016656886786222458,
-0.010664376430213451,
0.05065653473138809,
0.04040665924549103,
-0.13308249413967133,
0.04235883057117462,
0.008131860755383968,
0.04248732700943947,
0.017106756567955017,
0.00853271596133709,
-0.07079759240150452,
0.11968888342380524,
-0.09617583453655243,
-0.10985630750656128,
-0.11919349431991577,
-0.07692135870456696,
0.08118490874767303,
-0.06434490531682968,
0.052865684032440186,
-0.07111366093158722,
-0.019253671169281006,
-0.058080751448869705,
-0.2695158123970032,
0.11836831271648407,
-0.08295568078756332,
-0.005556707736104727,
0.009515233337879181,
0.22797569632530212,
-0.09032566845417023,
-0.010162961669266224,
0.01487414538860321,
-0.023755919188261032,
-0.05969516560435295,
-0.09297404438257217,
0.00009714216139400378,
-0.030750270932912827,
0.06098182126879692,
0.08827473968267441,
-0.0852227658033371,
0.002266658004373312,
-0.03610032796859741,
0.04211517423391342,
0.2925969660282135,
0.09027515351772308,
-0.0341731533408165,
0.12876473367214203,
0.09531982988119125,
-0.057658981531858444,
-0.2728493809700012,
-0.04262793809175491,
-0.12496571242809296,
-0.05522753670811653,
-0.04513997584581375,
-0.15637081861495972,
0.0794300064444542,
0.01700473576784134,
0.051711875945329666,
0.15676192939281464,
-0.2856941223144531,
-0.05371803045272827,
0.1072702631354332,
0.03666272014379501,
0.37306031584739685,
-0.13205233216285706,
-0.09468915313482285,
0.013840578496456146,
-0.21276232600212097,
0.17850449681282043,
-0.11969884485006332,
0.08775898814201355,
-0.02746591344475746,
0.051830731332302094,
0.04864737018942833,
-0.05216176435351372,
0.04961218684911728,
0.06916505098342896,
0.04563133046030998,
-0.08435709774494171,
-0.0622575506567955,
0.0693272203207016,
0.005957175977528095,
0.032641973346471786,
-0.01140331570059061,
0.050209928303956985,
-0.1310265213251114,
-0.022040031850337982,
-0.14407357573509216,
0.048045068979263306,
0.032926417887210846,
-0.06422007828950882,
0.001121325185522437,
-0.047875575721263885,
0.03705882281064987,
-0.002065138891339302,
0.20496144890785217,
-0.06739066541194916,
0.17923232913017273,
0.10908770561218262,
0.10610055923461914,
-0.12142448127269745,
-0.05304989218711853,
-0.06663328409194946,
-0.04006655141711235,
0.0919639840722084,
-0.12495492398738861,
0.058470796793699265,
0.12055863440036774,
-0.0253214780241251,
0.038314349949359894,
0.1414640247821808,
0.005001508630812168,
-0.039284415543079376,
0.12706930935382843,
-0.24807138741016388,
-0.06288990378379822,
-0.1125563532114029,
-0.13017801940441132,
0.08329693973064423,
0.0999009758234024,
0.16040489077568054,
0.023958658799529076,
0.005424365401268005,
-0.0133462343364954,
-0.016310447826981544,
-0.053614068776369095,
0.015545142814517021,
0.04964972287416458,
0.03636842221021652,
-0.12554973363876343,
0.10050572454929352,
-0.0062594725750386715,
-0.2031954526901245,
-0.008554656058549881,
0.1796879768371582,
-0.15471847355365753,
-0.11152331531047821,
-0.04437955468893051,
0.07551480084657669,
-0.1274695247411728,
-0.02671281062066555,
-0.04382869228720665,
-0.12428800016641617,
0.09411681443452835,
0.29590606689453125,
0.050454281270504,
0.12093295156955719,
-0.021110834553837776,
-0.04295196011662483,
-0.010316254571080208,
-0.02786031737923622,
-0.02891198918223381,
0.0025077909231185913,
-0.09444872289896011,
0.1017536148428917,
-0.04674298316240311,
0.18564322590827942,
-0.08294524252414703,
-0.06106289103627205,
-0.16088467836380005,
0.04434798285365105,
-0.1143086701631546,
-0.05442880839109421,
-0.0701562911272049,
-0.052466023713350296,
-0.010504759848117828,
-0.011848455294966698,
-0.0418703518807888,
-0.029926186427474022,
-0.12049145996570587,
0.03465193510055542,
-0.013616511598229408,
0.020968284457921982,
-0.06962920725345612,
-0.013445517048239708,
0.05946310609579086,
-0.05113865062594414,
0.13957396149635315,
0.14901068806648254,
-0.14242179691791534,
0.1547851860523224,
-0.16689318418502808,
-0.12850835919380188,
0.09802892059087753,
0.01162305660545826,
0.046982746571302414,
0.12089784443378448,
0.03537110239267349,
0.036990437656641006,
-0.00377893028780818,
0.0416903980076313,
-0.0324506051838398,
-0.11853516101837158,
0.017774030566215515,
-0.03746937960386276,
-0.106142558157444,
-0.07016213983297348,
-0.03943901136517525,
0.07231327891349792,
0.038727130740880966,
0.06552328914403915,
-0.026351049542427063,
0.11550283432006836,
-0.055219732224941254,
-0.0028518331237137318,
0.03159605711698532,
-0.1681496798992157,
0.005959310568869114,
-0.05900643393397331,
0.038450490683317184,
-0.01942465826869011,
0.1972542256116867,
-0.0014308348763734102,
0.029102295637130737,
0.018530070781707764,
0.03188104182481766,
0.009606743231415749,
0.01635347306728363,
0.2612278163433075,
0.06819517910480499,
-0.07150661945343018,
-0.1049504429101944,
0.050964973866939545,
-0.00911674089729786,
0.07526625692844391,
0.21529006958007812,
0.10592522472143173,
-0.03359869867563248,
0.10369803011417389,
0.0008446961874142289,
0.021700140088796616,
-0.04190157726407051,
-0.18541476130485535,
0.04876653477549553,
0.08572717756032944,
-0.006427639164030552,
0.07393236458301544,
0.17470023036003113,
-0.02307436242699623,
0.07757359743118286,
0.01953369379043579,
-0.056386757642030716,
-0.1539953649044037,
-0.1295100450515747,
-0.03467527776956558,
-0.12513895332813263,
0.005234878975898027,
-0.13357006013393402,
0.036242686212062836,
0.11597996950149536,
0.08670873939990997,
-0.03868188336491585,
0.1433056890964508,
0.09161774069070816,
-0.12283892929553986,
0.1288304179906845,
-0.02748313918709755,
0.07794909179210663,
0.04079864174127579,
-0.006267481949180365,
-0.052907805889844894,
-0.0630679503083229,
-0.05388902500271797,
0.05091099068522453,
-0.027289077639579773,
0.02472563646733761,
-0.17909595370292664,
-0.10259704291820526,
-0.024562494829297066,
0.07008439302444458,
-0.06822576373815536,
0.15282893180847168,
0.026638206094503403,
-0.059417419135570526,
0.031045621261000633,
0.23384670913219452,
-0.07092951983213425,
-0.03861398994922638,
-0.028752466663718224,
0.19662116467952728,
0.06939003616571426,
0.07309767603874207,
0.007634897716343403,
-0.020341787487268448,
-0.08364520967006683,
0.35340285301208496,
0.26164335012435913,
-0.04843427240848541,
0.03075331822037697,
0.04225361347198486,
0.049149878323078156,
0.1573922336101532,
0.1542154997587204,
0.10521028190851212,
0.28461557626724243,
-0.048442739993333817,
-0.03613089770078659,
-0.01835424080491066,
0.019159501418471336,
-0.09279658645391464,
0.12382310628890991,
0.07880928367376328,
-0.11198298633098602,
-0.021777227520942688,
0.12593349814414978,
-0.251970499753952,
0.0814640074968338,
-0.03499933332204819,
-0.15652987360954285,
-0.04196248576045036,
-0.08169326931238174,
0.06246594712138176,
0.017838072031736374,
0.10109265893697739,
-0.0342007577419281,
-0.11605951935052872,
0.03639279678463936,
0.06594159454107285,
-0.255899041891098,
-0.024570215493440628,
0.06478331983089447,
-0.06042667105793953,
-0.0582529678940773,
-0.022759148851037025,
0.02778058685362339,
0.05834423750638962,
0.059202633798122406,
-0.006635615136474371,
0.04958686977624893,
0.013266797177493572,
-0.003319013165310025,
-0.02386845275759697,
0.04430553689599037,
0.008502352051436901,
-0.13385853171348572,
0.040968477725982666,
-0.16436199843883514,
0.01912422478199005,
0.04370468109846115,
-0.03202611953020096,
-0.02066115103662014,
-0.03308174014091492,
-0.06236361339688301,
0.02541443333029747,
0.1202211007475853,
-0.00047706812620162964,
0.006666057743132114,
-0.09405289590358734,
-0.046339452266693115,
0.010042333975434303,
-0.11937116086483002,
-0.10255646705627441,
-0.04611099511384964,
-0.10297725349664688,
0.07697983086109161,
-0.0336780771613121,
-0.16551463305950165,
0.0338057205080986,
-0.06113516166806221,
0.06882968544960022,
-0.1861218959093094,
0.07513841986656189,
0.07600340992212296,
0.030908476561307907,
0.010894372127950191,
0.02088305354118347,
0.05373983830213547,
0.10203039646148682,
-0.12401337921619415,
-0.07904941588640213
] |
null | null |
transformers
|
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-xlnet
Changes: use old format for `pytorch_model.bin`.
|
{}
| null |
akreal/tiny-random-xlnet
|
[
"transformers",
"pytorch",
"tf",
"xlnet",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tf #xlnet #endpoints_compatible #region-us
|
This is a copy of: URL
Changes: use old format for 'pytorch_model.bin'.
|
[] |
[
"TAGS\n#transformers #pytorch #tf #xlnet #endpoints_compatible #region-us \n"
] |
[
27
] |
[
"passage: TAGS\n#transformers #pytorch #tf #xlnet #endpoints_compatible #region-us \n"
] |
[
-0.0620063878595829,
0.001000062096863985,
-0.008241229690611362,
-0.0329848937690258,
0.10959868133068085,
0.009995062835514545,
0.06873077154159546,
0.10018325597047806,
0.09273205697536469,
-0.05337236821651459,
0.07900480926036835,
0.19148346781730652,
-0.025863638147711754,
0.07210364192724228,
-0.07234466820955276,
-0.16523540019989014,
0.07610983401536942,
0.10342155396938324,
-0.16231049597263336,
0.08745960891246796,
0.07000010460615158,
-0.05573880299925804,
0.06372014433145523,
-0.05611204355955124,
-0.12916645407676697,
0.0621248222887516,
0.06490498036146164,
-0.07919276505708694,
0.11207220703363419,
0.07049522548913956,
0.16601938009262085,
0.026068521663546562,
-0.13803038001060486,
-0.17924773693084717,
0.028063787147402763,
0.05832066014409065,
-0.10522837936878204,
0.01921202801167965,
0.053516801446676254,
-0.05424881726503372,
0.07176093012094498,
0.033471956849098206,
-0.04324575513601303,
0.04095064103603363,
-0.10449293255805969,
-0.15848442912101746,
-0.02020089142024517,
0.08968227356672287,
0.01064209919422865,
0.11435530334711075,
0.0454288050532341,
0.2865484654903412,
-0.11964540928602219,
0.14855429530143738,
0.18396368622779846,
-0.34691452980041504,
-0.0002565456088632345,
0.13969144225120544,
0.10255876928567886,
0.11324334889650345,
0.02552829496562481,
0.043312497437000275,
0.024480875581502914,
0.008666171692311764,
-0.006457780487835407,
-0.07461277395486832,
-0.1188076063990593,
0.09080826491117477,
-0.10929631441831589,
-0.08177009969949722,
0.21581603586673737,
-0.02046920545399189,
0.08560261875391006,
0.0542607381939888,
-0.13706880807876587,
-0.06642575562000275,
0.023722294718027115,
-0.01678142510354519,
-0.01976638473570347,
0.05810272693634033,
0.030283521860837936,
-0.05749678984284401,
-0.10920565575361252,
0.038985129445791245,
-0.24568353593349457,
0.28715068101882935,
0.04071257263422012,
0.13426607847213745,
-0.2507539391517639,
0.03287757560610771,
0.028970107436180115,
-0.0820019543170929,
0.03672781214118004,
-0.10293043404817581,
-0.02341962605714798,
0.02900288626551628,
-0.04760922119021416,
-0.02920468896627426,
0.1116781085729599,
0.07430225610733032,
-0.02884274162352085,
0.008692416362464428,
-0.029596759006381035,
0.11676900833845139,
0.0010673549259081483,
0.06148730218410492,
-0.06500193476676941,
-0.0031344543676823378,
0.06154558062553406,
-0.1711432784795761,
-0.015877926722168922,
-0.057936206459999084,
-0.09043408930301666,
-0.037027932703495026,
0.029537947848439217,
0.13512566685676575,
0.06222888454794884,
0.045862581580877304,
-0.024665022268891335,
-0.03007684461772442,
0.07320273667573929,
-0.06119990348815918,
0.0018113154219463468,
0.007840546779334545,
-0.00763206509873271,
0.16904839873313904,
-0.011954551562666893,
-0.00823933631181717,
-0.09432273358106613,
0.008010483346879482,
-0.07521850615739822,
-0.01213474478572607,
-0.021133622154593468,
-0.0786549523472786,
0.05718424543738365,
-0.09141531586647034,
0.03261802718043327,
-0.1871088147163391,
-0.035279422998428345,
0.021402593702077866,
0.03441128507256508,
0.045065250247716904,
0.010609745979309082,
0.028845584020018578,
-0.09152060002088547,
-0.03645876795053482,
-0.05926947295665741,
-0.04560846835374832,
-0.0701393187046051,
0.0778845027089119,
-0.0399777814745903,
0.06878629326820374,
-0.14309227466583252,
0.039808209985494614,
-0.07359163463115692,
-0.020567920058965683,
-0.08421847224235535,
-0.0007736702100373805,
-0.0899406224489212,
0.15273313224315643,
0.01801292411983013,
-0.07293671369552612,
-0.09943635016679764,
0.028550932183861732,
-0.05340305343270302,
0.09889104962348938,
-0.07438310980796814,
-0.10347006469964981,
0.26997998356819153,
-0.11838965117931366,
-0.19469404220581055,
0.06685681641101837,
0.03419926390051842,
-0.0644017904996872,
0.053325384855270386,
0.16670237481594086,
0.10253003239631653,
-0.10732319951057434,
0.05587601289153099,
0.1614532768726349,
-0.20675256848335266,
-0.18428851664066315,
-0.02601134032011032,
0.05506977066397667,
-0.04774150624871254,
0.014446258544921875,
-0.03651750832796097,
0.12002916634082794,
-0.08245901018381119,
-0.03769063204526901,
-0.040478404611349106,
-0.03846677765250206,
0.033564209938049316,
0.05476948618888855,
0.07810612767934799,
-0.04206100106239319,
0.013314994983375072,
-0.014156472869217396,
0.014838209375739098,
-0.007346230559051037,
0.0732433870434761,
-0.07418923825025558,
0.08243616670370102,
-0.00675581069663167,
0.019844304770231247,
-0.1792452484369278,
-0.19426585733890533,
0.007763166446238756,
0.0845254436135292,
-0.029143329709768295,
0.21137665212154388,
0.07155802845954895,
-0.10233718901872635,
0.023052698001265526,
-0.023625092580914497,
0.1340845227241516,
0.03223258629441261,
-0.016769329085946083,
-0.08379320800304413,
0.039140570908784866,
-0.05838921666145325,
-0.07665029913187027,
-0.037822313606739044,
0.0057016294449567795,
0.08429864048957825,
0.13356971740722656,
0.008861406706273556,
0.05841631442308426,
-0.028338786214590073,
0.027569392696022987,
-0.06048501655459404,
-0.01903838850557804,
0.051167938858270645,
-0.005928621161729097,
-0.11545988917350769,
0.19868716597557068,
-0.06418579816818237,
0.409753680229187,
0.20423857867717743,
-0.297076016664505,
0.04170677065849304,
0.08372659236192703,
-0.031829748302698135,
0.0038078483194112778,
0.11885504424571991,
-0.004208472557365894,
0.041587069630622864,
0.0060802786611020565,
0.10743951797485352,
-0.06278616189956665,
-0.052879128605127335,
0.025320155546069145,
-0.0543072409927845,
-0.001204772386699915,
0.06390979886054993,
0.057084668427705765,
-0.17301273345947266,
0.16498513519763947,
0.15085139870643616,
0.04095928370952606,
0.10622351616621017,
-0.0785432904958725,
0.0007561161764897406,
0.05089409276843071,
0.051057565957307816,
-0.03456123173236847,
0.013937531970441341,
-0.20693199336528778,
-0.022828349843621254,
0.05934295430779457,
0.021329490467905998,
0.1158837303519249,
-0.1448826640844345,
-0.06425953656435013,
0.02229590341448784,
-0.035478778183460236,
-0.06526662409305573,
0.07477542757987976,
0.04340921714901924,
0.10505276918411255,
-0.024698616936802864,
-0.12217893451452255,
0.09735353291034698,
-0.03453472629189491,
-0.09337983280420303,
0.1653895378112793,
-0.13714389503002167,
-0.3322710692882538,
-0.07878145575523376,
-0.03708399832248688,
-0.048504166305065155,
-0.025858810171484947,
0.032505281269550323,
-0.08653740584850311,
-0.03218379244208336,
0.05075662210583687,
-0.04262027144432068,
-0.09435196965932846,
0.07508150488138199,
-0.034296635538339615,
0.06945500522851944,
-0.04878411814570427,
-0.11479582637548447,
-0.04348381981253624,
-0.07480902969837189,
-0.06861492991447449,
0.10400021821260452,
-0.12192613631486893,
0.09912924468517303,
0.18204794824123383,
0.002177812857553363,
0.07088211178779602,
-0.01326457317918539,
0.1533156782388687,
-0.07543645054101944,
-0.008554059080779552,
0.14636823534965515,
-0.014918794855475426,
0.09228634089231491,
0.08521390706300735,
0.0297300573438406,
-0.05876142904162407,
-0.020199721679091454,
-0.050394780933856964,
-0.09898610413074493,
-0.26259925961494446,
-0.12228996306657791,
-0.13522323966026306,
0.01934165507555008,
-0.07348022609949112,
0.08256823569536209,
0.15799258649349213,
0.02026764489710331,
0.04587290436029434,
-0.09394749999046326,
-0.04267440363764763,
0.03000948391854763,
0.1530354768037796,
0.007498880382627249,
0.08269905298948288,
-0.10610106587409973,
-0.06708339601755142,
0.09300393611192703,
0.09473846107721329,
0.20503219962120056,
0.04109900817275047,
0.03249221667647362,
0.07044132053852081,
0.20323455333709717,
0.13342879712581635,
0.12760336697101593,
-0.008627967908978462,
-0.06017173454165459,
0.029324138537049294,
-0.0022001094184815884,
0.006016318220645189,
0.0013871036935597658,
0.05682073161005974,
-0.14965951442718506,
-0.009002555161714554,
-0.16086800396442413,
0.09219370782375336,
0.0644780695438385,
-0.003643330652266741,
-0.12509582936763763,
0.04694252833724022,
0.02322986349463463,
-0.04910191521048546,
-0.015038842335343361,
0.06628622114658356,
0.08317951112985611,
-0.10480725020170212,
0.0815475583076477,
-0.03860880434513092,
0.08476988971233368,
0.01689324527978897,
0.049997229129076004,
0.030223960056900978,
-0.12883439660072327,
0.06223083287477493,
0.06286504864692688,
-0.23209449648857117,
0.2737605571746826,
-0.03037886880338192,
-0.06546991318464279,
-0.06453303247690201,
-0.03987304866313934,
-0.023189974948763847,
0.17686745524406433,
0.08410706371068954,
0.0570346936583519,
-0.03195442631840706,
-0.09457818418741226,
0.025738058611750603,
0.054063450545072556,
0.11704709380865097,
0.0504736490547657,
-0.031150905415415764,
0.011489536613225937,
-0.046049490571022034,
0.011952887289226055,
0.02923007868230343,
0.07901560515165329,
-0.10322222113609314,
0.04518146067857742,
0.06241239979863167,
-0.04651061072945595,
-0.0038910936564207077,
-0.013291750103235245,
-0.10825613141059875,
0.20974206924438477,
-0.09815690666437149,
-0.09886818379163742,
-0.06759274750947952,
-0.139813631772995,
0.11834630370140076,
-0.0909983441233635,
0.06980910152196884,
-0.043146971613168716,
-0.04062481224536896,
-0.06471022218465805,
-0.24019263684749603,
0.12056693434715271,
-0.1251000314950943,
0.028857534751296043,
-0.023659633472561836,
0.19200964272022247,
-0.060060497373342514,
-0.015985194593667984,
-0.006939137354493141,
-0.04885592684149742,
-0.08112539350986481,
-0.10472382605075836,
-0.03619847819209099,
-0.0025538464542478323,
-0.03703485056757927,
0.08591587096452713,
0.021848084405064583,
-0.010769971646368504,
-0.01082563679665327,
0.033993203192949295,
0.20497922599315643,
0.12429767847061157,
-0.07895155251026154,
0.09714052826166153,
0.10771181434392929,
-0.024211637675762177,
-0.2639382779598236,
-0.05262453854084015,
-0.12995749711990356,
-0.08068719506263733,
-0.03131891041994095,
-0.07214917242527008,
0.13615569472312927,
0.010074335150420666,
0.0012417699908837676,
0.19319887459278107,
-0.2850555181503296,
-0.035671550780534744,
0.08810089528560638,
-0.0016808717045933008,
0.400448203086853,
-0.12313386797904968,
-0.06253448128700256,
0.05124089494347572,
-0.20254212617874146,
0.16144096851348877,
-0.024565160274505615,
0.05286779627203941,
0.004470085725188255,
0.0459136888384819,
0.02635948918759823,
-0.08045018464326859,
0.06245186924934387,
0.04041758552193642,
0.04678613319993019,
-0.05634988844394684,
-0.0793590396642685,
0.08654197305440903,
0.015997961163520813,
0.004063392989337444,
0.04854985699057579,
0.022326592355966568,
-0.10018967092037201,
-0.001851408276706934,
-0.14852505922317505,
0.05764375999569893,
0.050985995680093765,
-0.027484016492962837,
-0.046381305903196335,
-0.03841478377580643,
0.0330093577504158,
0.01381667796522379,
0.22716958820819855,
-0.0014397117774933577,
0.155852273106575,
0.1224314495921135,
0.07089588046073914,
-0.24446843564510345,
-0.10953230410814285,
-0.04569065198302269,
-0.040147967636585236,
0.10120565444231033,
-0.06469191610813141,
0.06267519295215607,
0.15121355652809143,
-0.03492235764861107,
-0.032444845885038376,
0.12298569828271866,
-0.0233337190002203,
-0.07285719364881516,
0.13077576458454132,
-0.20095394551753998,
-0.08221974223852158,
-0.05132732167840004,
-0.08788622915744781,
0.1340455412864685,
0.1650165468454361,
0.13247431814670563,
0.029518797993659973,
-0.007089079357683659,
-0.019463054835796356,
-0.015823012217879295,
-0.09080828726291656,
0.048862677067518234,
0.09705335646867752,
0.040729980915784836,
-0.13722234964370728,
0.06904340535402298,
-0.009703157469630241,
-0.18424592912197113,
-0.04246000945568085,
0.15703712403774261,
-0.1392059028148651,
-0.10533322393894196,
-0.03477054089307785,
0.050334054976701736,
-0.1949325054883957,
-0.08109140396118164,
-0.06185157969594002,
-0.09811629354953766,
0.05911293253302574,
0.27579960227012634,
0.07038076967000961,
0.12467239797115326,
0.009164862334728241,
-0.020760608837008476,
0.00434310594573617,
-0.06699346005916595,
-0.01419855747371912,
0.021475326269865036,
-0.15493932366371155,
0.07178088277578354,
-0.00600336492061615,
0.19845512509346008,
-0.09141820669174194,
-0.03701094910502434,
-0.14307831227779388,
0.08325284719467163,
-0.08171186596155167,
-0.08473832905292511,
-0.07714750617742538,
-0.053085289895534515,
0.004274322651326656,
-0.10244595259428024,
-0.04973864555358887,
0.029102278873324394,
-0.11652155220508575,
0.05520881339907646,
0.03398915007710457,
-0.04877103492617607,
-0.0833657756447792,
-0.04039471223950386,
0.0670136958360672,
-0.020496554672718048,
0.09453592449426651,
0.1550806164741516,
-0.10139491409063339,
0.10555852204561234,
-0.14119680225849152,
-0.11739183217287064,
0.11006928980350494,
0.0588628388941288,
0.09634079784154892,
0.10298869758844376,
0.04472830519080162,
0.0977574959397316,
0.011995452456176281,
0.03850288689136505,
-0.06400790065526962,
-0.09532807022333145,
0.004474014975130558,
-0.03600439429283142,
-0.09444613754749298,
-0.023605339229106903,
-0.09050995111465454,
0.16641706228256226,
0.049650464206933975,
0.07574208825826645,
0.01617163047194481,
0.09724637120962143,
-0.05243885889649391,
-0.00899547804147005,
0.011007271707057953,
-0.18176156282424927,
0.06971678137779236,
-0.003780545201152563,
0.009327638894319534,
-0.0407831035554409,
0.25886547565460205,
-0.011394720524549484,
-0.0032503618858754635,
0.018901407718658447,
-0.004550764337182045,
0.011200577951967716,
0.02326693944633007,
0.2057902067899704,
0.07406836003065109,
-0.035219721496105194,
-0.07952340692281723,
0.04040759429335594,
-0.031007546931505203,
-0.027575606480240822,
0.16664990782737732,
0.07241255789995193,
0.054583918303251266,
0.08580703288316727,
0.06062906235456467,
0.013742495328187943,
-0.10168197005987167,
-0.2795138955116272,
-0.08152905851602554,
0.05956319719552994,
-0.0035558410454541445,
0.0009925211779773235,
0.15428075194358826,
-0.008950863964855671,
0.06095722317695618,
0.025857163593173027,
-0.017865171656012535,
-0.14761219918727875,
-0.11622996628284454,
-0.039258893579244614,
-0.14573357999324799,
-0.005090187769383192,
-0.08536633849143982,
-0.0023048645816743374,
0.07981318980455399,
0.06467332690954208,
-0.04412218928337097,
0.08870206028223038,
0.10695809870958328,
-0.06464925408363342,
0.039288803935050964,
0.012812403030693531,
0.015155398286879063,
0.06946312636137009,
0.025641631335020065,
-0.1272287517786026,
-0.04960419237613678,
-0.07336542010307312,
0.03398756682872772,
-0.04472322389483452,
0.0684504508972168,
-0.12742879986763,
-0.08740445971488953,
-0.06803490966558456,
0.04557480290532112,
-0.06870517134666443,
0.13320447504520416,
0.02156226336956024,
0.008682915940880775,
0.025653917342424393,
0.17881140112876892,
-0.08019004017114639,
-0.11980007588863373,
-0.014315673150122166,
0.19364532828330994,
0.03335431218147278,
0.08948379755020142,
-0.01914127916097641,
0.0201540756970644,
-0.13578622043132782,
0.35229015350341797,
0.2989937961101532,
-0.03835005313158035,
0.060002073645591736,
0.0436520129442215,
0.03811877593398094,
0.05532125011086464,
0.14000852406024933,
0.14050869643688202,
0.42444825172424316,
-0.06172548234462738,
-0.056004539132118225,
-0.038612525910139084,
0.032372716814279556,
-0.13507111370563507,
-0.0031156607437878847,
0.045198239386081696,
-0.07220721244812012,
-0.04904163256287575,
0.10916480422019958,
-0.20502953231334686,
0.11666430532932281,
0.03976615145802498,
-0.19773437082767487,
-0.025898145511746407,
-0.05389103293418884,
0.16764873266220093,
-0.012017183005809784,
0.09765532612800598,
-0.03374800831079483,
-0.0995604619383812,
0.04615534469485283,
0.030004212632775307,
-0.2642197012901306,
-0.06803359091281891,
0.09352224320173264,
-0.07788597792387009,
-0.01480918750166893,
-0.03169608488678932,
0.07447225600481033,
0.05623136833310127,
0.06072836369276047,
-0.037827540189027786,
0.05182068794965744,
0.029198942705988884,
-0.11099375784397125,
-0.09387247264385223,
-0.030641432851552963,
0.01257175114005804,
-0.08289051800966263,
0.03775927796959877,
-0.13116870820522308,
0.015005451627075672,
0.011780795641243458,
0.04231681302189827,
-0.030536243692040443,
-0.039263468235731125,
-0.05598432198166847,
0.0458846241235733,
0.048921387642621994,
-0.020923994481563568,
0.009864695370197296,
-0.061982907354831696,
-0.06888643652200699,
0.0406067855656147,
-0.0365934893488884,
-0.11236628890037537,
-0.07520677149295807,
-0.06863021850585938,
0.06525125354528427,
0.01586323231458664,
0.016406651586294174,
0.010851925238966942,
-0.07591118663549423,
0.016210690140724182,
-0.10819441080093384,
0.02704598195850849,
0.07956930994987488,
0.0416533425450325,
0.023928407579660416,
0.019898906350135803,
0.04893673583865166,
0.05336325243115425,
-0.10265221446752548,
-0.09607918560504913
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0475
- Matthews Correlation: 0.6290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| No log | 1.0 | 16 | 1.3863 | 0.0 |
| No log | 2.0 | 32 | 1.2695 | 0.4503 |
| No log | 3.0 | 48 | 1.1563 | 0.6110 |
| No log | 4.0 | 64 | 1.0757 | 0.6290 |
| No log | 5.0 | 80 | 1.0475 | 0.6290 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.6290322580645161}}]}]}
|
text-classification
|
akshara23/distilbert-base-uncased-finetuned-cola
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0475
* Matthews Correlation: 0.6290
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.9.2
* Pytorch 1.9.0+cu102
* Datasets 1.11.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
34
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
-0.09626241773366928,
0.08073006570339203,
-0.0021306832786649466,
0.11727651953697205,
0.1784171611070633,
0.024780025705695152,
0.11319999396800995,
0.12519477307796478,
-0.10626740753650665,
0.013977674767374992,
0.11719918251037598,
0.18385520577430725,
0.007429462857544422,
0.10830631852149963,
-0.05732923001050949,
-0.25896695256233215,
-0.012890186160802841,
0.05172715708613396,
-0.07067227363586426,
0.14067544043064117,
0.09567974507808685,
-0.13412819802761078,
0.07476764172315598,
0.0015775042120367289,
-0.22960594296455383,
0.007221657782793045,
0.013544042594730854,
-0.06545180082321167,
0.1474567949771881,
0.01851491443812847,
0.12872643768787384,
0.008673759177327156,
0.07707008719444275,
-0.18282069265842438,
0.010533387772738934,
0.04877430945634842,
0.004316950216889381,
0.08625390380620956,
0.05753667652606964,
-0.010595539584755898,
0.12675176560878754,
-0.08413282781839371,
0.05708644911646843,
0.02071918360888958,
-0.11939849704504013,
-0.21753011643886566,
-0.08016940206289291,
0.030378038063645363,
0.0688147097826004,
0.10979188978672028,
-0.0010078392224386334,
0.12567484378814697,
-0.10036637634038925,
0.09780725091695786,
0.21301013231277466,
-0.27529409527778625,
-0.06552794575691223,
0.03589961677789688,
0.007590247318148613,
0.07757236808538437,
-0.11335316300392151,
-0.02543598972260952,
0.05258244276046753,
0.051496583968400955,
0.1361183375120163,
-0.03255874291062355,
-0.12748944759368896,
0.009260687045753002,
-0.14320214092731476,
-0.033403731882572174,
0.14457117021083832,
0.025955749675631523,
-0.02515360340476036,
-0.04338903725147247,
-0.055762216448783875,
-0.15554213523864746,
-0.03850909695029259,
-0.010426721535623074,
0.04188404604792595,
-0.033909354358911514,
-0.0483216792345047,
-0.00038933701580390334,
-0.1111488863825798,
-0.06593864411115646,
-0.07066385447978973,
0.1384611874818802,
0.04009566083550453,
0.008230648003518581,
-0.027847345918416977,
0.11172356456518173,
0.02456805109977722,
-0.13090293109416962,
0.029775409027934074,
0.026712706312537193,
0.005430450662970543,
-0.04933469370007515,
-0.06782408803701401,
-0.059997156262397766,
0.006903040688484907,
0.1021312028169632,
-0.056659918278455734,
0.05188463628292084,
0.026369662955403328,
0.046612586826086044,
-0.10126914083957672,
0.19464072585105896,
-0.023915868252515793,
-0.007642640732228756,
0.011079562827944756,
0.0512034110724926,
0.002690799767151475,
-0.008002274669706821,
-0.11936972290277481,
-0.0006796095403842628,
0.11821819096803665,
0.019082769751548767,
-0.06979593634605408,
0.07456149160861969,
-0.05385277047753334,
-0.028332272544503212,
0.011355724185705185,
-0.10253602266311646,
0.03319168463349342,
0.00395246222615242,
-0.08180451393127441,
-0.011527873575687408,
0.031174058094620705,
0.010740038938820362,
-0.03421073406934738,
0.11480197310447693,
-0.07426588982343674,
0.04364701732993126,
-0.10097415745258331,
-0.10679829865694046,
0.016728848218917847,
-0.08315294981002808,
0.02292381413280964,
-0.10533883422613144,
-0.15898765623569489,
-0.022941971197724342,
0.05786075070500374,
-0.020577648654580116,
-0.059296172112226486,
-0.05632341280579567,
-0.0770839974284172,
0.011200936511158943,
-0.018528200685977936,
0.14645451307296753,
-0.059541016817092896,
0.11107553541660309,
0.02821260318160057,
0.0624963603913784,
-0.050708331167697906,
0.06664548069238663,
-0.09111946076154709,
-0.004534520208835602,
-0.18861962854862213,
0.0526968352496624,
-0.051189254969358444,
0.07518991082906723,
-0.08640367537736893,
-0.11503744125366211,
0.015228205360472202,
-0.005930052138864994,
0.0645570382475853,
0.09252604842185974,
-0.16833056509494781,
-0.07620242983102798,
0.14706216752529144,
-0.06920795142650604,
-0.10995445400476456,
0.11338939517736435,
-0.06035267189145088,
0.058732908219099045,
0.08249668031930923,
0.1724911630153656,
0.0915522575378418,
-0.06373323500156403,
0.027123555541038513,
0.00941407959908247,
0.05136363208293915,
-0.0748463124036789,
0.05385633558034897,
0.004369891714304686,
-0.003883133176714182,
0.040317900478839874,
-0.032080233097076416,
0.0693448856472969,
-0.09035898745059967,
-0.09450077265501022,
-0.04010223224759102,
-0.09434336423873901,
0.05687650665640831,
0.08374679088592529,
0.0936022624373436,
-0.08859475702047348,
-0.06380882114171982,
0.08163183182477951,
0.07559874653816223,
-0.06319199502468109,
0.03349822014570236,
-0.0478074848651886,
0.0602516271173954,
-0.02349935658276081,
-0.01627686619758606,
-0.20391681790351868,
0.00034611631417647004,
0.009823348373174667,
0.0008965537999756634,
0.0178462453186512,
0.01963736303150654,
0.06681612879037857,
0.05107984319329262,
-0.05841381847858429,
-0.020856676623225212,
-0.022853750735521317,
-0.004529550671577454,
-0.13815422356128693,
-0.19202184677124023,
-0.0184759721159935,
-0.018428383395075798,
0.12738408148288727,
-0.20250244438648224,
0.040283720940351486,
-0.0072424220852553844,
0.061586566269397736,
0.0008728722459636629,
-0.0033613708801567554,
-0.043416038155555725,
0.09079036861658096,
-0.035034917294979095,
-0.044374898076057434,
0.08376225084066391,
0.006924547720700502,
-0.08570007234811783,
-0.0413597896695137,
-0.09007380902767181,
0.1695825308561325,
0.14191213250160217,
-0.1317339837551117,
-0.07779216021299362,
-0.0037600365467369556,
-0.058370981365442276,
-0.03151828795671463,
-0.03484750911593437,
0.042265668511390686,
0.18953818082809448,
-0.014853660948574543,
0.15729618072509766,
-0.06882724165916443,
-0.04659963771700859,
0.0164375901222229,
-0.02793344296514988,
0.034913185983896255,
0.12356793135404587,
0.1136327013373375,
-0.07068774849176407,
0.140534907579422,
0.1559472531080246,
-0.09987123310565948,
0.12780943512916565,
-0.04463961347937584,
-0.0614800788462162,
-0.0020709196105599403,
-0.016813604161143303,
-0.0031122532673180103,
0.07854892313480377,
-0.1493237316608429,
-0.008464556187391281,
0.0188615620136261,
0.025335736572742462,
0.029286354780197144,
-0.22923247516155243,
-0.03340912237763405,
0.02417391911149025,
-0.04094536602497101,
-0.003890116000548005,
-0.019946210086345673,
0.010561596602201462,
0.10818388313055038,
-0.00005516849341802299,
-0.08182734251022339,
0.043026152998209,
0.0014924104325473309,
-0.08398403972387314,
0.2220461070537567,
-0.09391199052333832,
-0.17229963839054108,
-0.12010848522186279,
-0.07209847867488861,
-0.03968155384063721,
0.009401502087712288,
0.06397872418165207,
-0.09878531843423843,
-0.022225523367524147,
-0.05426587164402008,
0.01836346462368965,
-0.0065048555843532085,
0.03740448132157326,
0.002909648697823286,
0.012423468753695488,
0.0674237459897995,
-0.1093996912240982,
-0.008375965990126133,
-0.05694664269685745,
-0.06437904387712479,
0.05508354306221008,
0.02995975688099861,
0.10260753333568573,
0.16873736679553986,
-0.01929972693324089,
0.008729841560125351,
-0.03388465568423271,
0.21323619782924652,
-0.0685601681470871,
-0.029715679585933685,
0.1346989870071411,
-0.010225120931863785,
0.05180804803967476,
0.10605880618095398,
0.06990615278482437,
-0.0872654840350151,
0.012783003970980644,
0.019590623676776886,
-0.03528563305735588,
-0.2315065860748291,
-0.05541790649294853,
-0.06181982904672623,
-0.023107260465621948,
0.09831573069095612,
0.029797306284308434,
0.04876767843961716,
0.06574049592018127,
0.046631667762994766,
0.08109267055988312,
-0.02595423348248005,
0.04764441400766373,
0.1280403584241867,
0.04125857353210449,
0.12445860356092453,
-0.047221627086400986,
-0.06116866692900658,
0.029621679335832596,
-0.02119501866400242,
0.22151319682598114,
0.000029239286959636956,
0.12041535973548889,
0.059548549354076385,
0.17996914684772491,
0.005116015672683716,
0.08468496799468994,
-0.0011046351864933968,
-0.03968261927366257,
-0.007672102190554142,
-0.03771688789129257,
-0.04871421679854393,
0.011685958132147789,
-0.061884500086307526,
0.054956454783678055,
-0.1256416290998459,
-0.022650064900517464,
0.056308068335056305,
0.25135937333106995,
0.024426491931080818,
-0.31834572553634644,
-0.08577916771173477,
-0.0013843784108757973,
-0.0347592830657959,
-0.01891612447798252,
0.020879223942756653,
0.08761283755302429,
-0.1024685874581337,
0.029581576585769653,
-0.06703582406044006,
0.09491964429616928,
-0.046980760991573334,
0.04726173356175423,
0.06823939830064774,
0.07527843117713928,
0.015279763378202915,
0.08890476077795029,
-0.3291291892528534,
0.2661127746105194,
-0.0004375642747618258,
0.07126319408416748,
-0.08013767004013062,
-0.00024344175471924245,
0.037014205008745193,
0.07096270471811295,
0.05608949065208435,
-0.014731067232787609,
-0.01908187009394169,
-0.19036290049552917,
-0.05711947754025459,
0.02886943891644478,
0.08676663786172867,
-0.025592993944883347,
0.0816814973950386,
-0.02699773758649826,
0.007609362248331308,
0.07498998939990997,
-0.04006475582718849,
-0.052300095558166504,
-0.10218276083469391,
-0.010170921683311462,
0.014795061200857162,
-0.03393843397498131,
-0.06003600358963013,
-0.11615324765443802,
-0.12552988529205322,
0.1522550880908966,
-0.029051383957266808,
-0.03906882926821709,
-0.10985467582941055,
0.08670246601104736,
0.07172330468893051,
-0.08638527989387512,
0.05018032714724541,
0.006710932590067387,
0.059015512466430664,
0.03128667548298836,
-0.07868143171072006,
0.09988108277320862,
-0.06279335170984268,
-0.1573597639799118,
-0.04974396526813507,
0.11391115188598633,
0.03709380701184273,
0.06303239613771439,
-0.006841155234724283,
0.010628650896251202,
-0.03804851323366165,
-0.09560279548168182,
0.01206916943192482,
-0.0018313800683245063,
0.08302471786737442,
0.029848873615264893,
-0.07232965528964996,
-0.007669774815440178,
-0.06778225302696228,
-0.03433554247021675,
0.20348268747329712,
0.20928141474723816,
-0.09690631181001663,
0.03165453299880028,
0.03455410152673721,
-0.07735441625118256,
-0.20856720209121704,
0.048398490995168686,
0.0721183568239212,
0.0028274187352508307,
0.03150421008467674,
-0.18084554374217987,
0.12800849974155426,
0.09692203998565674,
-0.009381653741002083,
0.10642733424901962,
-0.33914756774902344,
-0.12660793960094452,
0.12254606187343597,
0.14530642330646515,
0.11713702976703644,
-0.14445672929286957,
-0.021957717835903168,
-0.024944663047790527,
-0.11031437665224075,
0.10533381998538971,
-0.08021047711372375,
0.12094662338495255,
-0.03444207087159157,
0.0719883069396019,
0.003277322044596076,
-0.0595780611038208,
0.1141546368598938,
0.027873259037733078,
0.0942394807934761,
-0.0636340081691742,
-0.033489029854536057,
0.03752053901553154,
-0.03847679868340492,
0.011887631379067898,
-0.07472129911184311,
0.02506856434047222,
-0.10197938978672028,
-0.020464502274990082,
-0.08736814558506012,
0.04171781241893768,
-0.03517796844244003,
-0.051202449947595596,
-0.030187802389264107,
0.020141934975981712,
0.052566371858119965,
-0.01174870878458023,
0.12443540245294571,
0.017759351059794426,
0.15366633236408234,
0.12032143026590347,
0.07247787714004517,
-0.06299319118261337,
-0.06499059498310089,
-0.019040029495954514,
-0.01394711434841156,
0.05501619353890419,
-0.1460132747888565,
0.02979852817952633,
0.14767158031463623,
0.020279284566640854,
0.13681752979755402,
0.08711590617895126,
-0.01081984955817461,
0.005239889025688171,
0.06614134460687637,
-0.16148433089256287,
-0.07336589694023132,
-0.006211780942976475,
-0.06511392444372177,
-0.10370204597711563,
0.04758455231785774,
0.08281344920396805,
-0.06908401101827621,
-0.010485691018402576,
-0.006813719402998686,
0.004384662955999374,
-0.06105829402804375,
0.20617879927158356,
0.061241570860147476,
0.04811088740825653,
-0.10784398764371872,
0.07665955275297165,
0.05999360606074333,
-0.0835152268409729,
-0.001167581300251186,
0.07906811684370041,
-0.09474040567874908,
-0.0523526668548584,
0.10876408219337463,
0.16205711662769318,
-0.0457330197095871,
-0.04350929334759712,
-0.1356692910194397,
-0.13032697141170502,
0.08112473040819168,
0.15511338412761688,
0.1261809915304184,
0.017754631116986275,
-0.06475166976451874,
0.008576430380344391,
-0.12248962372541428,
0.08219172805547714,
0.03917180374264717,
0.06324601173400879,
-0.13641852140426636,
0.17416971921920776,
0.017949366942048073,
0.04926265776157379,
-0.02342662401497364,
0.02184419333934784,
-0.10188574343919754,
0.02278454601764679,
-0.11289291083812714,
-0.019532402977347374,
-0.01794854737818241,
0.00836322270333767,
-0.008241930045187473,
-0.05163747817277908,
-0.04761829227209091,
0.014408408664166927,
-0.12300614267587662,
-0.02155729942023754,
0.022094085812568665,
0.05890677869319916,
-0.10997230559587479,
-0.04547825828194618,
0.021378785371780396,
-0.06248778849840164,
0.06574094295501709,
0.054574158042669296,
0.009605812840163708,
0.07072918862104416,
-0.13782039284706116,
-0.006134797353297472,
0.08454497158527374,
0.016519038006663322,
0.060180503875017166,
-0.08416066318750381,
-0.0037822998128831387,
0.010745378211140633,
0.06463583558797836,
0.027242591604590416,
0.07794865220785141,
-0.14437437057495117,
0.0028428707737475634,
-0.03728434070944786,
-0.08167241513729095,
-0.06886347383260727,
0.0360909104347229,
0.08140577375888824,
0.015801815316081047,
0.19730152189731598,
-0.08136936277151108,
0.04240375757217407,
-0.20756278932094574,
0.0004410716937854886,
-0.020257754251360893,
-0.11622578650712967,
-0.12926585972309113,
-0.06926107406616211,
0.06733886897563934,
-0.04944871738553047,
0.1294618397951126,
0.03372843191027641,
0.04272034391760826,
0.027334002777934074,
-0.01636645942926407,
0.00458237761631608,
0.027151944115757942,
0.21164269745349884,
0.03486444428563118,
-0.03524976223707199,
0.07665090262889862,
0.055755406618118286,
0.09619861841201782,
0.11549460887908936,
0.19972774386405945,
0.15908050537109375,
-0.021387027576565742,
0.09029453247785568,
0.02094016596674919,
-0.04675118252635002,
-0.1503242552280426,
0.04640911892056465,
-0.05278826132416725,
0.10450619459152222,
-0.029236815869808197,
0.20960792899131775,
0.049177952110767365,
-0.16940772533416748,
0.05131660774350166,
-0.05388747155666351,
-0.09386462718248367,
-0.10165496170520782,
-0.032392192631959915,
-0.08297154307365417,
-0.14126935601234436,
-0.005156505387276411,
-0.10887856781482697,
0.012561633251607418,
0.10949955135583878,
0.007981312461197376,
-0.02925649844110012,
0.15507405996322632,
0.03257724642753601,
0.012603952549397945,
0.07167714089155197,
-0.002082296647131443,
-0.03064855933189392,
-0.1133071631193161,
-0.05805102735757828,
-0.021986601874232292,
-0.008368778973817825,
0.037209782749414444,
-0.0523807592689991,
-0.07118736952543259,
0.03479916229844093,
-0.033907294273376465,
-0.09513261914253235,
0.019217325374484062,
0.02228335104882717,
0.06908734887838364,
0.05594881623983383,
0.011490907520055771,
0.0047878907062113285,
-0.009954859502613544,
0.22247768938541412,
-0.07500739395618439,
-0.08811910450458527,
-0.09102480858564377,
0.26826128363609314,
0.05585658550262451,
-0.010198751464486122,
0.03266879916191101,
-0.059980470687150955,
-0.0004846900701522827,
0.2580872178077698,
0.20283587276935577,
-0.08596722781658173,
-0.007075016852468252,
0.007987482473254204,
-0.00867935549467802,
-0.008464405313134193,
0.12864182889461517,
0.14866642653942108,
0.046213775873184204,
-0.1031038910150528,
-0.03887258097529411,
-0.053404271602630615,
-0.014568895101547241,
-0.04795056954026222,
0.06196599453687668,
0.03871016949415207,
-0.001708327210508287,
-0.036995623260736465,
0.06425849348306656,
-0.07055878639221191,
-0.09490372985601425,
0.05697963386774063,
-0.21254144608974457,
-0.16345122456550598,
-0.01636679656803608,
0.10847347229719162,
-0.0013445595977827907,
0.05838179588317871,
-0.024878157302737236,
0.0010979415383189917,
0.07058481872081757,
-0.024606218561530113,
-0.08800846338272095,
-0.07528714835643768,
0.09389876574277878,
-0.11258109658956528,
0.18048615753650665,
-0.04373558238148689,
0.07093740254640579,
0.11782434582710266,
0.0728365033864975,
-0.06316524744033813,
0.05942832678556442,
0.03158150613307953,
-0.06679727882146835,
0.04050320386886597,
0.08325225859880447,
-0.031655289232730865,
0.03697251155972481,
0.03889520466327667,
-0.11831084638834,
0.02645249478518963,
-0.08079379796981812,
-0.05610472336411476,
-0.04209074378013611,
-0.04246903955936432,
-0.056393589824438095,
0.11895876377820969,
0.22197504341602325,
-0.02582543157041073,
0.01036782469600439,
-0.07644400000572205,
0.0019993905443698168,
0.043422356247901917,
0.023274317383766174,
-0.07948270440101624,
-0.22921860218048096,
0.005667639430612326,
0.0490787997841835,
-0.01957997865974903,
-0.22179949283599854,
-0.09172555804252625,
0.0006795427179895341,
-0.07589062303304672,
-0.10312633216381073,
0.08524785935878754,
0.06501029431819916,
0.04740741848945618,
-0.05425837263464928,
-0.07869448512792587,
-0.0805855393409729,
0.15853507816791534,
-0.15701699256896973,
-0.09074117988348007
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cloud-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0812
- Precision: 0.8975
- Recall: 0.9080
- F1: 0.9027
- Accuracy: 0.9703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 166 | 0.1326 | 0.7990 | 0.8043 | 0.8017 | 0.9338 |
| No log | 2.0 | 332 | 0.0925 | 0.8770 | 0.8946 | 0.8858 | 0.9618 |
| No log | 3.0 | 498 | 0.0812 | 0.8975 | 0.9080 | 0.9027 | 0.9703 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud-ner", "results": []}]}
|
token-classification
|
akshaychaudhary/distilbert-base-uncased-finetuned-cloud-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-cloud-ner
===========================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0812
* Precision: 0.8975
* Recall: 0.9080
* F1: 0.9027
* Accuracy: 0.9703
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.10434503853321075,
0.07932277768850327,
-0.0021542105823755264,
0.12324507534503937,
0.18117885291576385,
0.0154117401689291,
0.10342364758253098,
0.11795366555452347,
-0.11552219837903976,
0.020346563309431076,
0.12737931311130524,
0.19161252677440643,
-0.0003065524506382644,
0.1254022717475891,
-0.053780991584062576,
-0.25177282094955444,
-0.00544909480959177,
0.05693703889846802,
-0.07687465101480484,
0.1344057321548462,
0.10057210922241211,
-0.14128966629505157,
0.08275843411684036,
0.014897349290549755,
-0.23755592107772827,
0.008134117349982262,
0.015916187316179276,
-0.067073754966259,
0.1424940675497055,
0.013324943371117115,
0.13440552353858948,
-0.001248353160917759,
0.08517016470432281,
-0.1563616842031479,
0.004778845235705376,
0.05023762583732605,
0.01713418774306774,
0.09038269519805908,
0.0562928207218647,
-0.0004724233003798872,
0.10107450187206268,
-0.07903352379798889,
0.05318044126033783,
0.016871050000190735,
-0.11750415712594986,
-0.23266716301441193,
-0.08958102017641068,
0.0353231318295002,
0.07206620275974274,
0.09947909414768219,
0.007558758370578289,
0.14441363513469696,
-0.09510201215744019,
0.09222660958766937,
0.2275169938802719,
-0.28139200806617737,
-0.06349701434373856,
0.04011083021759987,
-0.0009026827174238861,
0.04525962099432945,
-0.10695228725671768,
-0.038960039615631104,
0.05867922306060791,
0.05091315880417824,
0.1435626596212387,
-0.036678820848464966,
-0.11880259215831757,
0.012452912516891956,
-0.14897193014621735,
-0.03351792320609093,
0.12184678763151169,
0.026482557877898216,
-0.03515561670064926,
-0.03618975356221199,
-0.05667060986161232,
-0.16723361611366272,
-0.03920105844736099,
-0.011618892662227154,
0.04363185539841652,
-0.042885418981313705,
-0.06566765904426575,
0.01808771677315235,
-0.10324759036302567,
-0.06306828558444977,
-0.0805402547121048,
0.15055160224437714,
0.04445463418960571,
0.014657003805041313,
-0.024619758129119873,
0.10938486456871033,
0.0179300419986248,
-0.12593360245227814,
0.023975374177098274,
0.028178011998534203,
0.0023876905906945467,
-0.059126317501068115,
-0.0674186423420906,
-0.03604665398597717,
0.0036592877004295588,
0.1213681548833847,
-0.06947387754917145,
0.04217692092061043,
0.043851882219314575,
0.042034100741147995,
-0.09761182218790054,
0.19736436009407043,
-0.04331754148006439,
0.014211470261216164,
0.010802814736962318,
0.03631647303700447,
-0.0017010436858981848,
0.005891423672437668,
-0.11279342323541641,
-0.00008191860251827165,
0.12353520095348358,
0.019096611067652702,
-0.0777820348739624,
0.0753462016582489,
-0.05135048180818558,
-0.02845766581594944,
0.027824362739920616,
-0.09827792644500732,
0.03422514721751213,
-0.01282274816185236,
-0.0880250334739685,
-0.009091401472687721,
0.0227163378149271,
0.009979380294680595,
-0.022754371166229248,
0.1250169277191162,
-0.08886996656656265,
0.04094705730676651,
-0.10035109519958496,
-0.09962237626314163,
0.01486019417643547,
-0.08528398722410202,
0.0337212011218071,
-0.1065574362874031,
-0.1556529849767685,
-0.012033786624670029,
0.05532378330826759,
-0.01928732916712761,
-0.05888168886303902,
-0.0359046645462513,
-0.07541327178478241,
-0.0009290911839343607,
-0.01953265070915222,
0.1408023089170456,
-0.05440116673707962,
0.10860501974821091,
0.038193583488464355,
0.0653199553489685,
-0.04218501225113869,
0.05959102883934975,
-0.10567493736743927,
0.010582290589809418,
-0.2022174745798111,
0.03394060209393501,
-0.051403820514678955,
0.08213641494512558,
-0.09558211266994476,
-0.12252257764339447,
0.03218604251742363,
-0.014203127473592758,
0.07364875823259354,
0.08043157309293747,
-0.148633673787117,
-0.06989260017871857,
0.13971179723739624,
-0.06719176471233368,
-0.10949588567018509,
0.10988649725914001,
-0.05908549204468727,
0.04315216839313507,
0.0691341832280159,
0.15094906091690063,
0.07623322308063507,
-0.07394596189260483,
0.014857121743261814,
-0.005518527701497078,
0.03761016204953194,
-0.0852770283818245,
0.054977208375930786,
0.01338272262364626,
-0.005703384056687355,
0.03793494403362274,
-0.0313841886818409,
0.06867477297782898,
-0.10143239051103592,
-0.08946534991264343,
-0.04302152991294861,
-0.10383187979459763,
0.04982125759124756,
0.07696358859539032,
0.09194859117269516,
-0.08907774090766907,
-0.06312383711338043,
0.09003946185112,
0.08162044733762741,
-0.053664952516555786,
0.028555085882544518,
-0.06406388431787491,
0.06912066042423248,
-0.04936804994940758,
-0.029596872627735138,
-0.19602279365062714,
-0.004808553494513035,
0.010299934074282646,
-0.0061147394590079784,
0.014107801020145416,
0.01098197977989912,
0.06761409342288971,
0.056804899126291275,
-0.05139205977320671,
-0.019243307411670685,
-0.01084283646196127,
-0.001834170427173376,
-0.13615812361240387,
-0.1808529794216156,
-0.03599371388554573,
-0.017707888036966324,
0.10132928937673569,
-0.18540474772453308,
0.03112841211259365,
-0.021046895533800125,
0.08332569897174835,
0.0027033728547394276,
-0.004462642129510641,
-0.04626888781785965,
0.09051080793142319,
-0.03311324119567871,
-0.05396990105509758,
0.07307301461696625,
0.006288302130997181,
-0.07276368141174316,
-0.04810195788741112,
-0.0819299966096878,
0.1813729703426361,
0.13940685987472534,
-0.12596426904201508,
-0.0882675051689148,
-0.004028453025966883,
-0.06503946334123611,
-0.031265486031770706,
-0.03857722133398056,
0.05418555811047554,
0.17301344871520996,
-0.017708590254187584,
0.15403792262077332,
-0.06813391298055649,
-0.05623875930905342,
0.028707843273878098,
-0.03532712161540985,
0.029072243720293045,
0.11004670709371567,
0.11974828690290451,
-0.08900817483663559,
0.14554564654827118,
0.15391431748867035,
-0.10160023719072342,
0.10429691523313522,
-0.05077066272497177,
-0.06706634908914566,
-0.01251672487705946,
-0.016507569700479507,
0.0012884426396340132,
0.08919990062713623,
-0.11591503769159317,
-0.0016212787013500929,
0.022870542481541634,
0.02815311960875988,
0.02011319063603878,
-0.224787175655365,
-0.03468577563762665,
0.024974405765533447,
-0.029814599081873894,
0.0004341141029726714,
-0.014815127477049828,
0.015063478611409664,
0.10258816927671432,
0.004534778650850058,
-0.09380156546831131,
0.048520393669605255,
0.014564861543476582,
-0.0756446123123169,
0.21674270927906036,
-0.09022118151187897,
-0.14593826234340668,
-0.11624488234519958,
-0.08634627610445023,
-0.04097432270646095,
0.011721969582140446,
0.058565448969602585,
-0.09158787876367569,
-0.030116815119981766,
-0.04525609686970711,
0.012142973951995373,
-0.005173596553504467,
0.04623739421367645,
0.014842725358903408,
0.0030495289247483015,
0.08009906858205795,
-0.10346952080726624,
-0.008789552375674248,
-0.05431676283478737,
-0.06278429925441742,
0.05348251387476921,
0.03933750092983246,
0.10487201809883118,
0.1569710075855255,
-0.03296894207596779,
0.008718988858163357,
-0.031654637306928635,
0.23456759750843048,
-0.05569463223218918,
-0.03520897403359413,
0.1393730193376541,
-0.0024011090863496065,
0.056997641921043396,
0.10464373975992203,
0.07013674825429916,
-0.08981676399707794,
0.00783043447881937,
0.02534995786845684,
-0.03659265860915184,
-0.21441587805747986,
-0.05255388468503952,
-0.05260797590017319,
-0.029587462544441223,
0.10359252989292145,
0.028790360316634178,
0.049198396503925323,
0.07697372883558273,
0.04570074751973152,
0.09425698965787888,
-0.05499804764986038,
0.05957069993019104,
0.12232394516468048,
0.051078833639621735,
0.12302803993225098,
-0.0427282452583313,
-0.07306575775146484,
0.030765213072299957,
-0.007024371065199375,
0.2321518510580063,
-0.0032628895714879036,
0.10881271958351135,
0.05719037353992462,
0.19342875480651855,
0.0038999069947749376,
0.09198717772960663,
-0.006460243836045265,
-0.044194094836711884,
-0.009633555077016354,
-0.033296313136816025,
-0.04123526066541672,
0.009397660382091999,
-0.06226994842290878,
0.05364649370312691,
-0.1196807250380516,
-0.009289149194955826,
0.050134237855672836,
0.2653961181640625,
0.02273685671389103,
-0.3339793086051941,
-0.09248965978622437,
-0.010218987241387367,
-0.03551657497882843,
-0.025824835523962975,
0.02162111923098564,
0.07296442240476608,
-0.09697280079126358,
0.025622570887207985,
-0.07322702556848526,
0.09153342247009277,
-0.039509810507297516,
0.04308924823999405,
0.08116107434034348,
0.08779045194387436,
0.019290151074528694,
0.08140913397073746,
-0.3185829222202301,
0.26780298352241516,
-0.00021187835955061018,
0.07144036144018173,
-0.07811768352985382,
0.002582176122814417,
0.029215140268206596,
0.06519816815853119,
0.0599852055311203,
-0.01061771996319294,
-0.04804646968841553,
-0.214927077293396,
-0.04657815024256706,
0.022135652601718903,
0.07916843891143799,
-0.011979548260569572,
0.08719421178102493,
-0.029064571484923363,
0.006556238513439894,
0.07196750491857529,
-0.04189407452940941,
-0.0415017195045948,
-0.08471766859292984,
-0.011861145496368408,
0.01880721002817154,
-0.04022407904267311,
-0.06075732409954071,
-0.11136597394943237,
-0.13316084444522858,
0.15359462797641754,
-0.008845236152410507,
-0.04041196033358574,
-0.11783681809902191,
0.0812462642788887,
0.08954789489507675,
-0.08709132671356201,
0.05931941792368889,
0.0036396142095327377,
0.061620306223630905,
0.03669716417789459,
-0.0772317424416542,
0.10600248724222183,
-0.06715934723615646,
-0.15921403467655182,
-0.05289292708039284,
0.09391022473573685,
0.032191697508096695,
0.058982059359550476,
-0.00950258132070303,
0.014814728870987892,
-0.038374051451683044,
-0.09294191002845764,
0.0173097625374794,
-0.01866321638226509,
0.08993133157491684,
0.016889214515686035,
-0.056656207889318466,
0.017102636396884918,
-0.060498014092445374,
-0.026830347254872322,
0.18090897798538208,
0.2196655124425888,
-0.10287491977214813,
0.013686158694326878,
0.034897755831480026,
-0.061918407678604126,
-0.19570067524909973,
0.04034947231411934,
0.06748542934656143,
-0.0012271776795387268,
0.029113899916410446,
-0.16972136497497559,
0.1419256031513214,
0.10551123321056366,
-0.014669899828732014,
0.10172899067401886,
-0.31665295362472534,
-0.1246451586484909,
0.12861160933971405,
0.1473454385995865,
0.12457243353128433,
-0.13186009228229523,
-0.013426575809717178,
-0.01252718549221754,
-0.12497249990701675,
0.09699536859989166,
-0.05247242748737335,
0.11657574772834778,
-0.03681296110153198,
0.09311769157648087,
0.0029251223895698786,
-0.06277438998222351,
0.10715985298156738,
0.035358328372240067,
0.10029197484254837,
-0.05928600952029228,
-0.039941225200891495,
0.031233787536621094,
-0.038289107382297516,
0.016063280403614044,
-0.05333855375647545,
0.03842533752322197,
-0.0916447788476944,
-0.017394354566931725,
-0.08306533098220825,
0.048500906676054,
-0.02767915092408657,
-0.058594394475221634,
-0.04173893481492996,
0.029515543952584267,
0.04780728742480278,
-0.018003428354859352,
0.12610144913196564,
0.038327641785144806,
0.14373327791690826,
0.11571631580591202,
0.05829225480556488,
-0.07512116432189941,
-0.07014336436986923,
-0.017223523929715157,
-0.017133120447397232,
0.0630163848400116,
-0.13097696006298065,
0.033279649913311005,
0.14940913021564484,
0.02116190455853939,
0.11784529685974121,
0.08631695806980133,
-0.014253126457333565,
0.00504465913400054,
0.06137217581272125,
-0.1622716188430786,
-0.05507568269968033,
0.0022119563072919846,
-0.05012131854891777,
-0.09594478458166122,
0.06520457565784454,
0.07917432487010956,
-0.07316941022872925,
-0.016453685238957405,
-0.007480594329535961,
-0.00021205229859333485,
-0.06216226890683174,
0.20866911113262177,
0.062066055834293365,
0.04942914843559265,
-0.11116810888051987,
0.06542086601257324,
0.06073828786611557,
-0.07383694499731064,
-0.007424465846270323,
0.06431394070386887,
-0.0902128666639328,
-0.04236052185297012,
0.10512682795524597,
0.15635254979133606,
-0.08011374622583389,
-0.04144655168056488,
-0.1354675143957138,
-0.12520746886730194,
0.08677853643894196,
0.15890461206436157,
0.12489304691553116,
0.021501824259757996,
-0.054475028067827225,
0.007089800201356411,
-0.13387662172317505,
0.07424519211053848,
0.044379688799381256,
0.07944312691688538,
-0.15576711297035217,
0.1676371842622757,
0.004846530966460705,
0.06041163578629494,
-0.02384825609624386,
0.031517721712589264,
-0.09938129037618637,
0.018574826419353485,
-0.1127130538225174,
-0.027855897322297096,
-0.03126788139343262,
0.007517954800277948,
-0.0004940911894664168,
-0.0592070147395134,
-0.048951685428619385,
0.0237616915255785,
-0.12085966765880585,
-0.015275700017809868,
0.035571567714214325,
0.05154969543218613,
-0.10946477949619293,
-0.043755341321229935,
0.020506858825683594,
-0.05741633474826813,
0.06466024369001389,
0.050522539764642715,
0.014762289822101593,
0.057806890457868576,
-0.1199878677725792,
-0.012177947908639908,
0.08377160131931305,
0.008793972432613373,
0.07745788991451263,
-0.09531646221876144,
-0.0021185618825256824,
0.01195728313177824,
0.06254539638757706,
0.017126072198152542,
0.06622794270515442,
-0.14882692694664001,
-0.010463056154549122,
-0.030604079365730286,
-0.07362741231918335,
-0.07045431435108185,
0.019125239923596382,
0.09593947231769562,
0.009765945374965668,
0.19502024352550507,
-0.07359140366315842,
0.03785576671361923,
-0.20059025287628174,
-0.0062465365044772625,
-0.02424280345439911,
-0.1161719486117363,
-0.12972070276737213,
-0.05458125099539757,
0.060764577239751816,
-0.04407225921750069,
0.13442161679267883,
0.02616490237414837,
0.041718389838933945,
0.028178803622722626,
-0.025959709659218788,
0.006476039998233318,
0.02878553792834282,
0.21156518161296844,
0.02859206683933735,
-0.03443186730146408,
0.07299944758415222,
0.057333022356033325,
0.09157410264015198,
0.10879490524530411,
0.1862693876028061,
0.15255291759967804,
-0.01961454749107361,
0.08521606028079987,
0.020582683384418488,
-0.04829508438706398,
-0.1694210320711136,
0.03316252678632736,
-0.05353350192308426,
0.09272469580173492,
-0.01971045322716236,
0.2052977830171585,
0.05683044344186783,
-0.16701331734657288,
0.0473184697329998,
-0.05388953164219856,
-0.08623956888914108,
-0.09676872193813324,
-0.03370310738682747,
-0.07957352697849274,
-0.141500785946846,
0.002779398113489151,
-0.10325566679239273,
0.011160045862197876,
0.11466927081346512,
0.0076295253820717335,
-0.026781436055898666,
0.15887784957885742,
0.027851175516843796,
0.031885918229818344,
0.04794427379965782,
0.0018722532549872994,
-0.028002673760056496,
-0.09754128754138947,
-0.06250259280204773,
-0.023123936727643013,
-0.01149528194218874,
0.04034755378961563,
-0.06283681839704514,
-0.06379689276218414,
0.036611877381801605,
-0.021615052595734596,
-0.0894995853304863,
0.017238706350326538,
0.022441938519477844,
0.06316918879747391,
0.04359293356537819,
0.0020165627356618643,
0.019972143694758415,
-0.020427267998456955,
0.20192945003509521,
-0.07899655401706696,
-0.08263418823480606,
-0.09927323460578918,
0.289522647857666,
0.051607292145490646,
-0.010741951875388622,
0.03612681105732918,
-0.0561472550034523,
-0.004417481832206249,
0.2550968527793884,
0.18141189217567444,
-0.0769149586558342,
-0.011618032120168209,
0.002433459972962737,
-0.015313426032662392,
-0.024845825508236885,
0.12317108362913132,
0.14786173403263092,
0.04738951101899147,
-0.10228031873703003,
-0.049345821142196655,
-0.06341440230607986,
-0.009089515544474125,
-0.055267687886953354,
0.05001194402575493,
0.03479713574051857,
0.0038770504761487246,
-0.04044526815414429,
0.049030594527721405,
-0.06966245174407959,
-0.09227500110864639,
0.07133441418409348,
-0.19109979271888733,
-0.15919677913188934,
-0.007607383653521538,
0.10158266127109528,
0.0013105421094223857,
0.058238301426172256,
-0.02937724068760872,
0.0035870843566954136,
0.07029356807470322,
-0.02412567473948002,
-0.08252295851707458,
-0.07715246826410294,
0.09691807627677917,
-0.09248333424329758,
0.19446077942848206,
-0.040437471121549606,
0.07648584991693497,
0.12426755577325821,
0.06962809711694717,
-0.08507595956325531,
0.05226566642522812,
0.0339452400803566,
-0.07786066830158234,
0.03587929531931877,
0.08748921006917953,
-0.02562606707215309,
0.04938745126128197,
0.024773404002189636,
-0.13222108781337738,
0.01781325973570347,
-0.07532327622175217,
-0.0348363034427166,
-0.04395242780447006,
-0.04922715201973915,
-0.04891927167773247,
0.1254318505525589,
0.2148224115371704,
-0.026720507070422173,
0.008299464359879494,
-0.07867999374866486,
0.015542326495051384,
0.05134269967675209,
0.004448243882507086,
-0.08130179345607758,
-0.22670459747314453,
0.01274810079485178,
0.05347956344485283,
-0.02750125341117382,
-0.19576425850391388,
-0.09124565124511719,
0.0032196384854614735,
-0.08462370187044144,
-0.09923550486564636,
0.08249048888683319,
0.058607764542102814,
0.054958608001470566,
-0.05453471466898918,
-0.057126108556985855,
-0.09094274789094925,
0.14695580303668976,
-0.15082944929599762,
-0.08961563557386398
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cloud1-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0074
- Precision: 0.9714
- Recall: 0.9855
- F1: 0.9784
- Accuracy: 0.9972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 166 | 0.0160 | 0.9653 | 0.9420 | 0.9535 | 0.9945 |
| No log | 2.0 | 332 | 0.0089 | 0.9623 | 0.9855 | 0.9737 | 0.9965 |
| No log | 3.0 | 498 | 0.0074 | 0.9714 | 0.9855 | 0.9784 | 0.9972 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud1-ner", "results": []}]}
|
token-classification
|
akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-cloud1-ner
============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0074
* Precision: 0.9714
* Recall: 0.9855
* F1: 0.9784
* Accuracy: 0.9972
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.10434503853321075,
0.07932277768850327,
-0.0021542105823755264,
0.12324507534503937,
0.18117885291576385,
0.0154117401689291,
0.10342364758253098,
0.11795366555452347,
-0.11552219837903976,
0.020346563309431076,
0.12737931311130524,
0.19161252677440643,
-0.0003065524506382644,
0.1254022717475891,
-0.053780991584062576,
-0.25177282094955444,
-0.00544909480959177,
0.05693703889846802,
-0.07687465101480484,
0.1344057321548462,
0.10057210922241211,
-0.14128966629505157,
0.08275843411684036,
0.014897349290549755,
-0.23755592107772827,
0.008134117349982262,
0.015916187316179276,
-0.067073754966259,
0.1424940675497055,
0.013324943371117115,
0.13440552353858948,
-0.001248353160917759,
0.08517016470432281,
-0.1563616842031479,
0.004778845235705376,
0.05023762583732605,
0.01713418774306774,
0.09038269519805908,
0.0562928207218647,
-0.0004724233003798872,
0.10107450187206268,
-0.07903352379798889,
0.05318044126033783,
0.016871050000190735,
-0.11750415712594986,
-0.23266716301441193,
-0.08958102017641068,
0.0353231318295002,
0.07206620275974274,
0.09947909414768219,
0.007558758370578289,
0.14441363513469696,
-0.09510201215744019,
0.09222660958766937,
0.2275169938802719,
-0.28139200806617737,
-0.06349701434373856,
0.04011083021759987,
-0.0009026827174238861,
0.04525962099432945,
-0.10695228725671768,
-0.038960039615631104,
0.05867922306060791,
0.05091315880417824,
0.1435626596212387,
-0.036678820848464966,
-0.11880259215831757,
0.012452912516891956,
-0.14897193014621735,
-0.03351792320609093,
0.12184678763151169,
0.026482557877898216,
-0.03515561670064926,
-0.03618975356221199,
-0.05667060986161232,
-0.16723361611366272,
-0.03920105844736099,
-0.011618892662227154,
0.04363185539841652,
-0.042885418981313705,
-0.06566765904426575,
0.01808771677315235,
-0.10324759036302567,
-0.06306828558444977,
-0.0805402547121048,
0.15055160224437714,
0.04445463418960571,
0.014657003805041313,
-0.024619758129119873,
0.10938486456871033,
0.0179300419986248,
-0.12593360245227814,
0.023975374177098274,
0.028178011998534203,
0.0023876905906945467,
-0.059126317501068115,
-0.0674186423420906,
-0.03604665398597717,
0.0036592877004295588,
0.1213681548833847,
-0.06947387754917145,
0.04217692092061043,
0.043851882219314575,
0.042034100741147995,
-0.09761182218790054,
0.19736436009407043,
-0.04331754148006439,
0.014211470261216164,
0.010802814736962318,
0.03631647303700447,
-0.0017010436858981848,
0.005891423672437668,
-0.11279342323541641,
-0.00008191860251827165,
0.12353520095348358,
0.019096611067652702,
-0.0777820348739624,
0.0753462016582489,
-0.05135048180818558,
-0.02845766581594944,
0.027824362739920616,
-0.09827792644500732,
0.03422514721751213,
-0.01282274816185236,
-0.0880250334739685,
-0.009091401472687721,
0.0227163378149271,
0.009979380294680595,
-0.022754371166229248,
0.1250169277191162,
-0.08886996656656265,
0.04094705730676651,
-0.10035109519958496,
-0.09962237626314163,
0.01486019417643547,
-0.08528398722410202,
0.0337212011218071,
-0.1065574362874031,
-0.1556529849767685,
-0.012033786624670029,
0.05532378330826759,
-0.01928732916712761,
-0.05888168886303902,
-0.0359046645462513,
-0.07541327178478241,
-0.0009290911839343607,
-0.01953265070915222,
0.1408023089170456,
-0.05440116673707962,
0.10860501974821091,
0.038193583488464355,
0.0653199553489685,
-0.04218501225113869,
0.05959102883934975,
-0.10567493736743927,
0.010582290589809418,
-0.2022174745798111,
0.03394060209393501,
-0.051403820514678955,
0.08213641494512558,
-0.09558211266994476,
-0.12252257764339447,
0.03218604251742363,
-0.014203127473592758,
0.07364875823259354,
0.08043157309293747,
-0.148633673787117,
-0.06989260017871857,
0.13971179723739624,
-0.06719176471233368,
-0.10949588567018509,
0.10988649725914001,
-0.05908549204468727,
0.04315216839313507,
0.0691341832280159,
0.15094906091690063,
0.07623322308063507,
-0.07394596189260483,
0.014857121743261814,
-0.005518527701497078,
0.03761016204953194,
-0.0852770283818245,
0.054977208375930786,
0.01338272262364626,
-0.005703384056687355,
0.03793494403362274,
-0.0313841886818409,
0.06867477297782898,
-0.10143239051103592,
-0.08946534991264343,
-0.04302152991294861,
-0.10383187979459763,
0.04982125759124756,
0.07696358859539032,
0.09194859117269516,
-0.08907774090766907,
-0.06312383711338043,
0.09003946185112,
0.08162044733762741,
-0.053664952516555786,
0.028555085882544518,
-0.06406388431787491,
0.06912066042423248,
-0.04936804994940758,
-0.029596872627735138,
-0.19602279365062714,
-0.004808553494513035,
0.010299934074282646,
-0.0061147394590079784,
0.014107801020145416,
0.01098197977989912,
0.06761409342288971,
0.056804899126291275,
-0.05139205977320671,
-0.019243307411670685,
-0.01084283646196127,
-0.001834170427173376,
-0.13615812361240387,
-0.1808529794216156,
-0.03599371388554573,
-0.017707888036966324,
0.10132928937673569,
-0.18540474772453308,
0.03112841211259365,
-0.021046895533800125,
0.08332569897174835,
0.0027033728547394276,
-0.004462642129510641,
-0.04626888781785965,
0.09051080793142319,
-0.03311324119567871,
-0.05396990105509758,
0.07307301461696625,
0.006288302130997181,
-0.07276368141174316,
-0.04810195788741112,
-0.0819299966096878,
0.1813729703426361,
0.13940685987472534,
-0.12596426904201508,
-0.0882675051689148,
-0.004028453025966883,
-0.06503946334123611,
-0.031265486031770706,
-0.03857722133398056,
0.05418555811047554,
0.17301344871520996,
-0.017708590254187584,
0.15403792262077332,
-0.06813391298055649,
-0.05623875930905342,
0.028707843273878098,
-0.03532712161540985,
0.029072243720293045,
0.11004670709371567,
0.11974828690290451,
-0.08900817483663559,
0.14554564654827118,
0.15391431748867035,
-0.10160023719072342,
0.10429691523313522,
-0.05077066272497177,
-0.06706634908914566,
-0.01251672487705946,
-0.016507569700479507,
0.0012884426396340132,
0.08919990062713623,
-0.11591503769159317,
-0.0016212787013500929,
0.022870542481541634,
0.02815311960875988,
0.02011319063603878,
-0.224787175655365,
-0.03468577563762665,
0.024974405765533447,
-0.029814599081873894,
0.0004341141029726714,
-0.014815127477049828,
0.015063478611409664,
0.10258816927671432,
0.004534778650850058,
-0.09380156546831131,
0.048520393669605255,
0.014564861543476582,
-0.0756446123123169,
0.21674270927906036,
-0.09022118151187897,
-0.14593826234340668,
-0.11624488234519958,
-0.08634627610445023,
-0.04097432270646095,
0.011721969582140446,
0.058565448969602585,
-0.09158787876367569,
-0.030116815119981766,
-0.04525609686970711,
0.012142973951995373,
-0.005173596553504467,
0.04623739421367645,
0.014842725358903408,
0.0030495289247483015,
0.08009906858205795,
-0.10346952080726624,
-0.008789552375674248,
-0.05431676283478737,
-0.06278429925441742,
0.05348251387476921,
0.03933750092983246,
0.10487201809883118,
0.1569710075855255,
-0.03296894207596779,
0.008718988858163357,
-0.031654637306928635,
0.23456759750843048,
-0.05569463223218918,
-0.03520897403359413,
0.1393730193376541,
-0.0024011090863496065,
0.056997641921043396,
0.10464373975992203,
0.07013674825429916,
-0.08981676399707794,
0.00783043447881937,
0.02534995786845684,
-0.03659265860915184,
-0.21441587805747986,
-0.05255388468503952,
-0.05260797590017319,
-0.029587462544441223,
0.10359252989292145,
0.028790360316634178,
0.049198396503925323,
0.07697372883558273,
0.04570074751973152,
0.09425698965787888,
-0.05499804764986038,
0.05957069993019104,
0.12232394516468048,
0.051078833639621735,
0.12302803993225098,
-0.0427282452583313,
-0.07306575775146484,
0.030765213072299957,
-0.007024371065199375,
0.2321518510580063,
-0.0032628895714879036,
0.10881271958351135,
0.05719037353992462,
0.19342875480651855,
0.0038999069947749376,
0.09198717772960663,
-0.006460243836045265,
-0.044194094836711884,
-0.009633555077016354,
-0.033296313136816025,
-0.04123526066541672,
0.009397660382091999,
-0.06226994842290878,
0.05364649370312691,
-0.1196807250380516,
-0.009289149194955826,
0.050134237855672836,
0.2653961181640625,
0.02273685671389103,
-0.3339793086051941,
-0.09248965978622437,
-0.010218987241387367,
-0.03551657497882843,
-0.025824835523962975,
0.02162111923098564,
0.07296442240476608,
-0.09697280079126358,
0.025622570887207985,
-0.07322702556848526,
0.09153342247009277,
-0.039509810507297516,
0.04308924823999405,
0.08116107434034348,
0.08779045194387436,
0.019290151074528694,
0.08140913397073746,
-0.3185829222202301,
0.26780298352241516,
-0.00021187835955061018,
0.07144036144018173,
-0.07811768352985382,
0.002582176122814417,
0.029215140268206596,
0.06519816815853119,
0.0599852055311203,
-0.01061771996319294,
-0.04804646968841553,
-0.214927077293396,
-0.04657815024256706,
0.022135652601718903,
0.07916843891143799,
-0.011979548260569572,
0.08719421178102493,
-0.029064571484923363,
0.006556238513439894,
0.07196750491857529,
-0.04189407452940941,
-0.0415017195045948,
-0.08471766859292984,
-0.011861145496368408,
0.01880721002817154,
-0.04022407904267311,
-0.06075732409954071,
-0.11136597394943237,
-0.13316084444522858,
0.15359462797641754,
-0.008845236152410507,
-0.04041196033358574,
-0.11783681809902191,
0.0812462642788887,
0.08954789489507675,
-0.08709132671356201,
0.05931941792368889,
0.0036396142095327377,
0.061620306223630905,
0.03669716417789459,
-0.0772317424416542,
0.10600248724222183,
-0.06715934723615646,
-0.15921403467655182,
-0.05289292708039284,
0.09391022473573685,
0.032191697508096695,
0.058982059359550476,
-0.00950258132070303,
0.014814728870987892,
-0.038374051451683044,
-0.09294191002845764,
0.0173097625374794,
-0.01866321638226509,
0.08993133157491684,
0.016889214515686035,
-0.056656207889318466,
0.017102636396884918,
-0.060498014092445374,
-0.026830347254872322,
0.18090897798538208,
0.2196655124425888,
-0.10287491977214813,
0.013686158694326878,
0.034897755831480026,
-0.061918407678604126,
-0.19570067524909973,
0.04034947231411934,
0.06748542934656143,
-0.0012271776795387268,
0.029113899916410446,
-0.16972136497497559,
0.1419256031513214,
0.10551123321056366,
-0.014669899828732014,
0.10172899067401886,
-0.31665295362472534,
-0.1246451586484909,
0.12861160933971405,
0.1473454385995865,
0.12457243353128433,
-0.13186009228229523,
-0.013426575809717178,
-0.01252718549221754,
-0.12497249990701675,
0.09699536859989166,
-0.05247242748737335,
0.11657574772834778,
-0.03681296110153198,
0.09311769157648087,
0.0029251223895698786,
-0.06277438998222351,
0.10715985298156738,
0.035358328372240067,
0.10029197484254837,
-0.05928600952029228,
-0.039941225200891495,
0.031233787536621094,
-0.038289107382297516,
0.016063280403614044,
-0.05333855375647545,
0.03842533752322197,
-0.0916447788476944,
-0.017394354566931725,
-0.08306533098220825,
0.048500906676054,
-0.02767915092408657,
-0.058594394475221634,
-0.04173893481492996,
0.029515543952584267,
0.04780728742480278,
-0.018003428354859352,
0.12610144913196564,
0.038327641785144806,
0.14373327791690826,
0.11571631580591202,
0.05829225480556488,
-0.07512116432189941,
-0.07014336436986923,
-0.017223523929715157,
-0.017133120447397232,
0.0630163848400116,
-0.13097696006298065,
0.033279649913311005,
0.14940913021564484,
0.02116190455853939,
0.11784529685974121,
0.08631695806980133,
-0.014253126457333565,
0.00504465913400054,
0.06137217581272125,
-0.1622716188430786,
-0.05507568269968033,
0.0022119563072919846,
-0.05012131854891777,
-0.09594478458166122,
0.06520457565784454,
0.07917432487010956,
-0.07316941022872925,
-0.016453685238957405,
-0.007480594329535961,
-0.00021205229859333485,
-0.06216226890683174,
0.20866911113262177,
0.062066055834293365,
0.04942914843559265,
-0.11116810888051987,
0.06542086601257324,
0.06073828786611557,
-0.07383694499731064,
-0.007424465846270323,
0.06431394070386887,
-0.0902128666639328,
-0.04236052185297012,
0.10512682795524597,
0.15635254979133606,
-0.08011374622583389,
-0.04144655168056488,
-0.1354675143957138,
-0.12520746886730194,
0.08677853643894196,
0.15890461206436157,
0.12489304691553116,
0.021501824259757996,
-0.054475028067827225,
0.007089800201356411,
-0.13387662172317505,
0.07424519211053848,
0.044379688799381256,
0.07944312691688538,
-0.15576711297035217,
0.1676371842622757,
0.004846530966460705,
0.06041163578629494,
-0.02384825609624386,
0.031517721712589264,
-0.09938129037618637,
0.018574826419353485,
-0.1127130538225174,
-0.027855897322297096,
-0.03126788139343262,
0.007517954800277948,
-0.0004940911894664168,
-0.0592070147395134,
-0.048951685428619385,
0.0237616915255785,
-0.12085966765880585,
-0.015275700017809868,
0.035571567714214325,
0.05154969543218613,
-0.10946477949619293,
-0.043755341321229935,
0.020506858825683594,
-0.05741633474826813,
0.06466024369001389,
0.050522539764642715,
0.014762289822101593,
0.057806890457868576,
-0.1199878677725792,
-0.012177947908639908,
0.08377160131931305,
0.008793972432613373,
0.07745788991451263,
-0.09531646221876144,
-0.0021185618825256824,
0.01195728313177824,
0.06254539638757706,
0.017126072198152542,
0.06622794270515442,
-0.14882692694664001,
-0.010463056154549122,
-0.030604079365730286,
-0.07362741231918335,
-0.07045431435108185,
0.019125239923596382,
0.09593947231769562,
0.009765945374965668,
0.19502024352550507,
-0.07359140366315842,
0.03785576671361923,
-0.20059025287628174,
-0.0062465365044772625,
-0.02424280345439911,
-0.1161719486117363,
-0.12972070276737213,
-0.05458125099539757,
0.060764577239751816,
-0.04407225921750069,
0.13442161679267883,
0.02616490237414837,
0.041718389838933945,
0.028178803622722626,
-0.025959709659218788,
0.006476039998233318,
0.02878553792834282,
0.21156518161296844,
0.02859206683933735,
-0.03443186730146408,
0.07299944758415222,
0.057333022356033325,
0.09157410264015198,
0.10879490524530411,
0.1862693876028061,
0.15255291759967804,
-0.01961454749107361,
0.08521606028079987,
0.020582683384418488,
-0.04829508438706398,
-0.1694210320711136,
0.03316252678632736,
-0.05353350192308426,
0.09272469580173492,
-0.01971045322716236,
0.2052977830171585,
0.05683044344186783,
-0.16701331734657288,
0.0473184697329998,
-0.05388953164219856,
-0.08623956888914108,
-0.09676872193813324,
-0.03370310738682747,
-0.07957352697849274,
-0.141500785946846,
0.002779398113489151,
-0.10325566679239273,
0.011160045862197876,
0.11466927081346512,
0.0076295253820717335,
-0.026781436055898666,
0.15887784957885742,
0.027851175516843796,
0.031885918229818344,
0.04794427379965782,
0.0018722532549872994,
-0.028002673760056496,
-0.09754128754138947,
-0.06250259280204773,
-0.023123936727643013,
-0.01149528194218874,
0.04034755378961563,
-0.06283681839704514,
-0.06379689276218414,
0.036611877381801605,
-0.021615052595734596,
-0.0894995853304863,
0.017238706350326538,
0.022441938519477844,
0.06316918879747391,
0.04359293356537819,
0.0020165627356618643,
0.019972143694758415,
-0.020427267998456955,
0.20192945003509521,
-0.07899655401706696,
-0.08263418823480606,
-0.09927323460578918,
0.289522647857666,
0.051607292145490646,
-0.010741951875388622,
0.03612681105732918,
-0.0561472550034523,
-0.004417481832206249,
0.2550968527793884,
0.18141189217567444,
-0.0769149586558342,
-0.011618032120168209,
0.002433459972962737,
-0.015313426032662392,
-0.024845825508236885,
0.12317108362913132,
0.14786173403263092,
0.04738951101899147,
-0.10228031873703003,
-0.049345821142196655,
-0.06341440230607986,
-0.009089515544474125,
-0.055267687886953354,
0.05001194402575493,
0.03479713574051857,
0.0038770504761487246,
-0.04044526815414429,
0.049030594527721405,
-0.06966245174407959,
-0.09227500110864639,
0.07133441418409348,
-0.19109979271888733,
-0.15919677913188934,
-0.007607383653521538,
0.10158266127109528,
0.0013105421094223857,
0.058238301426172256,
-0.02937724068760872,
0.0035870843566954136,
0.07029356807470322,
-0.02412567473948002,
-0.08252295851707458,
-0.07715246826410294,
0.09691807627677917,
-0.09248333424329758,
0.19446077942848206,
-0.040437471121549606,
0.07648584991693497,
0.12426755577325821,
0.06962809711694717,
-0.08507595956325531,
0.05226566642522812,
0.0339452400803566,
-0.07786066830158234,
0.03587929531931877,
0.08748921006917953,
-0.02562606707215309,
0.04938745126128197,
0.024773404002189636,
-0.13222108781337738,
0.01781325973570347,
-0.07532327622175217,
-0.0348363034427166,
-0.04395242780447006,
-0.04922715201973915,
-0.04891927167773247,
0.1254318505525589,
0.2148224115371704,
-0.026720507070422173,
0.008299464359879494,
-0.07867999374866486,
0.015542326495051384,
0.05134269967675209,
0.004448243882507086,
-0.08130179345607758,
-0.22670459747314453,
0.01274810079485178,
0.05347956344485283,
-0.02750125341117382,
-0.19576425850391388,
-0.09124565124511719,
0.0032196384854614735,
-0.08462370187044144,
-0.09923550486564636,
0.08249048888683319,
0.058607764542102814,
0.054958608001470566,
-0.05453471466898918,
-0.057126108556985855,
-0.09094274789094925,
0.14695580303668976,
-0.15082944929599762,
-0.08961563557386398
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cloud2-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8866
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.8453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 162 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.8447 |
| No log | 2.0 | 324 | 0.8303 | 0.0 | 0.0 | 0.0 | 0.8465 |
| No log | 3.0 | 486 | 0.8866 | 0.0 | 0.0 | 0.0 | 0.8453 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud2-ner", "results": []}]}
|
token-classification
|
akshaychaudhary/distilbert-base-uncased-finetuned-cloud2-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-cloud2-ner
============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8866
* Precision: 0.0
* Recall: 0.0
* F1: 0.0
* Accuracy: 0.8453
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.10434503853321075,
0.07932277768850327,
-0.0021542105823755264,
0.12324507534503937,
0.18117885291576385,
0.0154117401689291,
0.10342364758253098,
0.11795366555452347,
-0.11552219837903976,
0.020346563309431076,
0.12737931311130524,
0.19161252677440643,
-0.0003065524506382644,
0.1254022717475891,
-0.053780991584062576,
-0.25177282094955444,
-0.00544909480959177,
0.05693703889846802,
-0.07687465101480484,
0.1344057321548462,
0.10057210922241211,
-0.14128966629505157,
0.08275843411684036,
0.014897349290549755,
-0.23755592107772827,
0.008134117349982262,
0.015916187316179276,
-0.067073754966259,
0.1424940675497055,
0.013324943371117115,
0.13440552353858948,
-0.001248353160917759,
0.08517016470432281,
-0.1563616842031479,
0.004778845235705376,
0.05023762583732605,
0.01713418774306774,
0.09038269519805908,
0.0562928207218647,
-0.0004724233003798872,
0.10107450187206268,
-0.07903352379798889,
0.05318044126033783,
0.016871050000190735,
-0.11750415712594986,
-0.23266716301441193,
-0.08958102017641068,
0.0353231318295002,
0.07206620275974274,
0.09947909414768219,
0.007558758370578289,
0.14441363513469696,
-0.09510201215744019,
0.09222660958766937,
0.2275169938802719,
-0.28139200806617737,
-0.06349701434373856,
0.04011083021759987,
-0.0009026827174238861,
0.04525962099432945,
-0.10695228725671768,
-0.038960039615631104,
0.05867922306060791,
0.05091315880417824,
0.1435626596212387,
-0.036678820848464966,
-0.11880259215831757,
0.012452912516891956,
-0.14897193014621735,
-0.03351792320609093,
0.12184678763151169,
0.026482557877898216,
-0.03515561670064926,
-0.03618975356221199,
-0.05667060986161232,
-0.16723361611366272,
-0.03920105844736099,
-0.011618892662227154,
0.04363185539841652,
-0.042885418981313705,
-0.06566765904426575,
0.01808771677315235,
-0.10324759036302567,
-0.06306828558444977,
-0.0805402547121048,
0.15055160224437714,
0.04445463418960571,
0.014657003805041313,
-0.024619758129119873,
0.10938486456871033,
0.0179300419986248,
-0.12593360245227814,
0.023975374177098274,
0.028178011998534203,
0.0023876905906945467,
-0.059126317501068115,
-0.0674186423420906,
-0.03604665398597717,
0.0036592877004295588,
0.1213681548833847,
-0.06947387754917145,
0.04217692092061043,
0.043851882219314575,
0.042034100741147995,
-0.09761182218790054,
0.19736436009407043,
-0.04331754148006439,
0.014211470261216164,
0.010802814736962318,
0.03631647303700447,
-0.0017010436858981848,
0.005891423672437668,
-0.11279342323541641,
-0.00008191860251827165,
0.12353520095348358,
0.019096611067652702,
-0.0777820348739624,
0.0753462016582489,
-0.05135048180818558,
-0.02845766581594944,
0.027824362739920616,
-0.09827792644500732,
0.03422514721751213,
-0.01282274816185236,
-0.0880250334739685,
-0.009091401472687721,
0.0227163378149271,
0.009979380294680595,
-0.022754371166229248,
0.1250169277191162,
-0.08886996656656265,
0.04094705730676651,
-0.10035109519958496,
-0.09962237626314163,
0.01486019417643547,
-0.08528398722410202,
0.0337212011218071,
-0.1065574362874031,
-0.1556529849767685,
-0.012033786624670029,
0.05532378330826759,
-0.01928732916712761,
-0.05888168886303902,
-0.0359046645462513,
-0.07541327178478241,
-0.0009290911839343607,
-0.01953265070915222,
0.1408023089170456,
-0.05440116673707962,
0.10860501974821091,
0.038193583488464355,
0.0653199553489685,
-0.04218501225113869,
0.05959102883934975,
-0.10567493736743927,
0.010582290589809418,
-0.2022174745798111,
0.03394060209393501,
-0.051403820514678955,
0.08213641494512558,
-0.09558211266994476,
-0.12252257764339447,
0.03218604251742363,
-0.014203127473592758,
0.07364875823259354,
0.08043157309293747,
-0.148633673787117,
-0.06989260017871857,
0.13971179723739624,
-0.06719176471233368,
-0.10949588567018509,
0.10988649725914001,
-0.05908549204468727,
0.04315216839313507,
0.0691341832280159,
0.15094906091690063,
0.07623322308063507,
-0.07394596189260483,
0.014857121743261814,
-0.005518527701497078,
0.03761016204953194,
-0.0852770283818245,
0.054977208375930786,
0.01338272262364626,
-0.005703384056687355,
0.03793494403362274,
-0.0313841886818409,
0.06867477297782898,
-0.10143239051103592,
-0.08946534991264343,
-0.04302152991294861,
-0.10383187979459763,
0.04982125759124756,
0.07696358859539032,
0.09194859117269516,
-0.08907774090766907,
-0.06312383711338043,
0.09003946185112,
0.08162044733762741,
-0.053664952516555786,
0.028555085882544518,
-0.06406388431787491,
0.06912066042423248,
-0.04936804994940758,
-0.029596872627735138,
-0.19602279365062714,
-0.004808553494513035,
0.010299934074282646,
-0.0061147394590079784,
0.014107801020145416,
0.01098197977989912,
0.06761409342288971,
0.056804899126291275,
-0.05139205977320671,
-0.019243307411670685,
-0.01084283646196127,
-0.001834170427173376,
-0.13615812361240387,
-0.1808529794216156,
-0.03599371388554573,
-0.017707888036966324,
0.10132928937673569,
-0.18540474772453308,
0.03112841211259365,
-0.021046895533800125,
0.08332569897174835,
0.0027033728547394276,
-0.004462642129510641,
-0.04626888781785965,
0.09051080793142319,
-0.03311324119567871,
-0.05396990105509758,
0.07307301461696625,
0.006288302130997181,
-0.07276368141174316,
-0.04810195788741112,
-0.0819299966096878,
0.1813729703426361,
0.13940685987472534,
-0.12596426904201508,
-0.0882675051689148,
-0.004028453025966883,
-0.06503946334123611,
-0.031265486031770706,
-0.03857722133398056,
0.05418555811047554,
0.17301344871520996,
-0.017708590254187584,
0.15403792262077332,
-0.06813391298055649,
-0.05623875930905342,
0.028707843273878098,
-0.03532712161540985,
0.029072243720293045,
0.11004670709371567,
0.11974828690290451,
-0.08900817483663559,
0.14554564654827118,
0.15391431748867035,
-0.10160023719072342,
0.10429691523313522,
-0.05077066272497177,
-0.06706634908914566,
-0.01251672487705946,
-0.016507569700479507,
0.0012884426396340132,
0.08919990062713623,
-0.11591503769159317,
-0.0016212787013500929,
0.022870542481541634,
0.02815311960875988,
0.02011319063603878,
-0.224787175655365,
-0.03468577563762665,
0.024974405765533447,
-0.029814599081873894,
0.0004341141029726714,
-0.014815127477049828,
0.015063478611409664,
0.10258816927671432,
0.004534778650850058,
-0.09380156546831131,
0.048520393669605255,
0.014564861543476582,
-0.0756446123123169,
0.21674270927906036,
-0.09022118151187897,
-0.14593826234340668,
-0.11624488234519958,
-0.08634627610445023,
-0.04097432270646095,
0.011721969582140446,
0.058565448969602585,
-0.09158787876367569,
-0.030116815119981766,
-0.04525609686970711,
0.012142973951995373,
-0.005173596553504467,
0.04623739421367645,
0.014842725358903408,
0.0030495289247483015,
0.08009906858205795,
-0.10346952080726624,
-0.008789552375674248,
-0.05431676283478737,
-0.06278429925441742,
0.05348251387476921,
0.03933750092983246,
0.10487201809883118,
0.1569710075855255,
-0.03296894207596779,
0.008718988858163357,
-0.031654637306928635,
0.23456759750843048,
-0.05569463223218918,
-0.03520897403359413,
0.1393730193376541,
-0.0024011090863496065,
0.056997641921043396,
0.10464373975992203,
0.07013674825429916,
-0.08981676399707794,
0.00783043447881937,
0.02534995786845684,
-0.03659265860915184,
-0.21441587805747986,
-0.05255388468503952,
-0.05260797590017319,
-0.029587462544441223,
0.10359252989292145,
0.028790360316634178,
0.049198396503925323,
0.07697372883558273,
0.04570074751973152,
0.09425698965787888,
-0.05499804764986038,
0.05957069993019104,
0.12232394516468048,
0.051078833639621735,
0.12302803993225098,
-0.0427282452583313,
-0.07306575775146484,
0.030765213072299957,
-0.007024371065199375,
0.2321518510580063,
-0.0032628895714879036,
0.10881271958351135,
0.05719037353992462,
0.19342875480651855,
0.0038999069947749376,
0.09198717772960663,
-0.006460243836045265,
-0.044194094836711884,
-0.009633555077016354,
-0.033296313136816025,
-0.04123526066541672,
0.009397660382091999,
-0.06226994842290878,
0.05364649370312691,
-0.1196807250380516,
-0.009289149194955826,
0.050134237855672836,
0.2653961181640625,
0.02273685671389103,
-0.3339793086051941,
-0.09248965978622437,
-0.010218987241387367,
-0.03551657497882843,
-0.025824835523962975,
0.02162111923098564,
0.07296442240476608,
-0.09697280079126358,
0.025622570887207985,
-0.07322702556848526,
0.09153342247009277,
-0.039509810507297516,
0.04308924823999405,
0.08116107434034348,
0.08779045194387436,
0.019290151074528694,
0.08140913397073746,
-0.3185829222202301,
0.26780298352241516,
-0.00021187835955061018,
0.07144036144018173,
-0.07811768352985382,
0.002582176122814417,
0.029215140268206596,
0.06519816815853119,
0.0599852055311203,
-0.01061771996319294,
-0.04804646968841553,
-0.214927077293396,
-0.04657815024256706,
0.022135652601718903,
0.07916843891143799,
-0.011979548260569572,
0.08719421178102493,
-0.029064571484923363,
0.006556238513439894,
0.07196750491857529,
-0.04189407452940941,
-0.0415017195045948,
-0.08471766859292984,
-0.011861145496368408,
0.01880721002817154,
-0.04022407904267311,
-0.06075732409954071,
-0.11136597394943237,
-0.13316084444522858,
0.15359462797641754,
-0.008845236152410507,
-0.04041196033358574,
-0.11783681809902191,
0.0812462642788887,
0.08954789489507675,
-0.08709132671356201,
0.05931941792368889,
0.0036396142095327377,
0.061620306223630905,
0.03669716417789459,
-0.0772317424416542,
0.10600248724222183,
-0.06715934723615646,
-0.15921403467655182,
-0.05289292708039284,
0.09391022473573685,
0.032191697508096695,
0.058982059359550476,
-0.00950258132070303,
0.014814728870987892,
-0.038374051451683044,
-0.09294191002845764,
0.0173097625374794,
-0.01866321638226509,
0.08993133157491684,
0.016889214515686035,
-0.056656207889318466,
0.017102636396884918,
-0.060498014092445374,
-0.026830347254872322,
0.18090897798538208,
0.2196655124425888,
-0.10287491977214813,
0.013686158694326878,
0.034897755831480026,
-0.061918407678604126,
-0.19570067524909973,
0.04034947231411934,
0.06748542934656143,
-0.0012271776795387268,
0.029113899916410446,
-0.16972136497497559,
0.1419256031513214,
0.10551123321056366,
-0.014669899828732014,
0.10172899067401886,
-0.31665295362472534,
-0.1246451586484909,
0.12861160933971405,
0.1473454385995865,
0.12457243353128433,
-0.13186009228229523,
-0.013426575809717178,
-0.01252718549221754,
-0.12497249990701675,
0.09699536859989166,
-0.05247242748737335,
0.11657574772834778,
-0.03681296110153198,
0.09311769157648087,
0.0029251223895698786,
-0.06277438998222351,
0.10715985298156738,
0.035358328372240067,
0.10029197484254837,
-0.05928600952029228,
-0.039941225200891495,
0.031233787536621094,
-0.038289107382297516,
0.016063280403614044,
-0.05333855375647545,
0.03842533752322197,
-0.0916447788476944,
-0.017394354566931725,
-0.08306533098220825,
0.048500906676054,
-0.02767915092408657,
-0.058594394475221634,
-0.04173893481492996,
0.029515543952584267,
0.04780728742480278,
-0.018003428354859352,
0.12610144913196564,
0.038327641785144806,
0.14373327791690826,
0.11571631580591202,
0.05829225480556488,
-0.07512116432189941,
-0.07014336436986923,
-0.017223523929715157,
-0.017133120447397232,
0.0630163848400116,
-0.13097696006298065,
0.033279649913311005,
0.14940913021564484,
0.02116190455853939,
0.11784529685974121,
0.08631695806980133,
-0.014253126457333565,
0.00504465913400054,
0.06137217581272125,
-0.1622716188430786,
-0.05507568269968033,
0.0022119563072919846,
-0.05012131854891777,
-0.09594478458166122,
0.06520457565784454,
0.07917432487010956,
-0.07316941022872925,
-0.016453685238957405,
-0.007480594329535961,
-0.00021205229859333485,
-0.06216226890683174,
0.20866911113262177,
0.062066055834293365,
0.04942914843559265,
-0.11116810888051987,
0.06542086601257324,
0.06073828786611557,
-0.07383694499731064,
-0.007424465846270323,
0.06431394070386887,
-0.0902128666639328,
-0.04236052185297012,
0.10512682795524597,
0.15635254979133606,
-0.08011374622583389,
-0.04144655168056488,
-0.1354675143957138,
-0.12520746886730194,
0.08677853643894196,
0.15890461206436157,
0.12489304691553116,
0.021501824259757996,
-0.054475028067827225,
0.007089800201356411,
-0.13387662172317505,
0.07424519211053848,
0.044379688799381256,
0.07944312691688538,
-0.15576711297035217,
0.1676371842622757,
0.004846530966460705,
0.06041163578629494,
-0.02384825609624386,
0.031517721712589264,
-0.09938129037618637,
0.018574826419353485,
-0.1127130538225174,
-0.027855897322297096,
-0.03126788139343262,
0.007517954800277948,
-0.0004940911894664168,
-0.0592070147395134,
-0.048951685428619385,
0.0237616915255785,
-0.12085966765880585,
-0.015275700017809868,
0.035571567714214325,
0.05154969543218613,
-0.10946477949619293,
-0.043755341321229935,
0.020506858825683594,
-0.05741633474826813,
0.06466024369001389,
0.050522539764642715,
0.014762289822101593,
0.057806890457868576,
-0.1199878677725792,
-0.012177947908639908,
0.08377160131931305,
0.008793972432613373,
0.07745788991451263,
-0.09531646221876144,
-0.0021185618825256824,
0.01195728313177824,
0.06254539638757706,
0.017126072198152542,
0.06622794270515442,
-0.14882692694664001,
-0.010463056154549122,
-0.030604079365730286,
-0.07362741231918335,
-0.07045431435108185,
0.019125239923596382,
0.09593947231769562,
0.009765945374965668,
0.19502024352550507,
-0.07359140366315842,
0.03785576671361923,
-0.20059025287628174,
-0.0062465365044772625,
-0.02424280345439911,
-0.1161719486117363,
-0.12972070276737213,
-0.05458125099539757,
0.060764577239751816,
-0.04407225921750069,
0.13442161679267883,
0.02616490237414837,
0.041718389838933945,
0.028178803622722626,
-0.025959709659218788,
0.006476039998233318,
0.02878553792834282,
0.21156518161296844,
0.02859206683933735,
-0.03443186730146408,
0.07299944758415222,
0.057333022356033325,
0.09157410264015198,
0.10879490524530411,
0.1862693876028061,
0.15255291759967804,
-0.01961454749107361,
0.08521606028079987,
0.020582683384418488,
-0.04829508438706398,
-0.1694210320711136,
0.03316252678632736,
-0.05353350192308426,
0.09272469580173492,
-0.01971045322716236,
0.2052977830171585,
0.05683044344186783,
-0.16701331734657288,
0.0473184697329998,
-0.05388953164219856,
-0.08623956888914108,
-0.09676872193813324,
-0.03370310738682747,
-0.07957352697849274,
-0.141500785946846,
0.002779398113489151,
-0.10325566679239273,
0.011160045862197876,
0.11466927081346512,
0.0076295253820717335,
-0.026781436055898666,
0.15887784957885742,
0.027851175516843796,
0.031885918229818344,
0.04794427379965782,
0.0018722532549872994,
-0.028002673760056496,
-0.09754128754138947,
-0.06250259280204773,
-0.023123936727643013,
-0.01149528194218874,
0.04034755378961563,
-0.06283681839704514,
-0.06379689276218414,
0.036611877381801605,
-0.021615052595734596,
-0.0894995853304863,
0.017238706350326538,
0.022441938519477844,
0.06316918879747391,
0.04359293356537819,
0.0020165627356618643,
0.019972143694758415,
-0.020427267998456955,
0.20192945003509521,
-0.07899655401706696,
-0.08263418823480606,
-0.09927323460578918,
0.289522647857666,
0.051607292145490646,
-0.010741951875388622,
0.03612681105732918,
-0.0561472550034523,
-0.004417481832206249,
0.2550968527793884,
0.18141189217567444,
-0.0769149586558342,
-0.011618032120168209,
0.002433459972962737,
-0.015313426032662392,
-0.024845825508236885,
0.12317108362913132,
0.14786173403263092,
0.04738951101899147,
-0.10228031873703003,
-0.049345821142196655,
-0.06341440230607986,
-0.009089515544474125,
-0.055267687886953354,
0.05001194402575493,
0.03479713574051857,
0.0038770504761487246,
-0.04044526815414429,
0.049030594527721405,
-0.06966245174407959,
-0.09227500110864639,
0.07133441418409348,
-0.19109979271888733,
-0.15919677913188934,
-0.007607383653521538,
0.10158266127109528,
0.0013105421094223857,
0.058238301426172256,
-0.02937724068760872,
0.0035870843566954136,
0.07029356807470322,
-0.02412567473948002,
-0.08252295851707458,
-0.07715246826410294,
0.09691807627677917,
-0.09248333424329758,
0.19446077942848206,
-0.040437471121549606,
0.07648584991693497,
0.12426755577325821,
0.06962809711694717,
-0.08507595956325531,
0.05226566642522812,
0.0339452400803566,
-0.07786066830158234,
0.03587929531931877,
0.08748921006917953,
-0.02562606707215309,
0.04938745126128197,
0.024773404002189636,
-0.13222108781337738,
0.01781325973570347,
-0.07532327622175217,
-0.0348363034427166,
-0.04395242780447006,
-0.04922715201973915,
-0.04891927167773247,
0.1254318505525589,
0.2148224115371704,
-0.026720507070422173,
0.008299464359879494,
-0.07867999374866486,
0.015542326495051384,
0.05134269967675209,
0.004448243882507086,
-0.08130179345607758,
-0.22670459747314453,
0.01274810079485178,
0.05347956344485283,
-0.02750125341117382,
-0.19576425850391388,
-0.09124565124511719,
0.0032196384854614735,
-0.08462370187044144,
-0.09923550486564636,
0.08249048888683319,
0.058607764542102814,
0.054958608001470566,
-0.05453471466898918,
-0.057126108556985855,
-0.09094274789094925,
0.14695580303668976,
-0.15082944929599762,
-0.08961563557386398
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-hypertuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5683
- Precision: 0.3398
- Recall: 0.6481
- F1: 0.4459
- Accuracy: 0.8762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 84 | 0.3566 | 0.2913 | 0.5556 | 0.3822 | 0.8585 |
| No log | 2.0 | 168 | 0.4698 | 0.3366 | 0.6296 | 0.4387 | 0.8730 |
| No log | 3.0 | 252 | 0.5683 | 0.3398 | 0.6481 | 0.4459 | 0.8762 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-hypertuned-ner", "results": []}]}
|
token-classification
|
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-hypertuned-ner
================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5683
* Precision: 0.3398
* Recall: 0.6481
* F1: 0.4459
* Accuracy: 0.8762
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.10434503853321075,
0.07932277768850327,
-0.0021542105823755264,
0.12324507534503937,
0.18117885291576385,
0.0154117401689291,
0.10342364758253098,
0.11795366555452347,
-0.11552219837903976,
0.020346563309431076,
0.12737931311130524,
0.19161252677440643,
-0.0003065524506382644,
0.1254022717475891,
-0.053780991584062576,
-0.25177282094955444,
-0.00544909480959177,
0.05693703889846802,
-0.07687465101480484,
0.1344057321548462,
0.10057210922241211,
-0.14128966629505157,
0.08275843411684036,
0.014897349290549755,
-0.23755592107772827,
0.008134117349982262,
0.015916187316179276,
-0.067073754966259,
0.1424940675497055,
0.013324943371117115,
0.13440552353858948,
-0.001248353160917759,
0.08517016470432281,
-0.1563616842031479,
0.004778845235705376,
0.05023762583732605,
0.01713418774306774,
0.09038269519805908,
0.0562928207218647,
-0.0004724233003798872,
0.10107450187206268,
-0.07903352379798889,
0.05318044126033783,
0.016871050000190735,
-0.11750415712594986,
-0.23266716301441193,
-0.08958102017641068,
0.0353231318295002,
0.07206620275974274,
0.09947909414768219,
0.007558758370578289,
0.14441363513469696,
-0.09510201215744019,
0.09222660958766937,
0.2275169938802719,
-0.28139200806617737,
-0.06349701434373856,
0.04011083021759987,
-0.0009026827174238861,
0.04525962099432945,
-0.10695228725671768,
-0.038960039615631104,
0.05867922306060791,
0.05091315880417824,
0.1435626596212387,
-0.036678820848464966,
-0.11880259215831757,
0.012452912516891956,
-0.14897193014621735,
-0.03351792320609093,
0.12184678763151169,
0.026482557877898216,
-0.03515561670064926,
-0.03618975356221199,
-0.05667060986161232,
-0.16723361611366272,
-0.03920105844736099,
-0.011618892662227154,
0.04363185539841652,
-0.042885418981313705,
-0.06566765904426575,
0.01808771677315235,
-0.10324759036302567,
-0.06306828558444977,
-0.0805402547121048,
0.15055160224437714,
0.04445463418960571,
0.014657003805041313,
-0.024619758129119873,
0.10938486456871033,
0.0179300419986248,
-0.12593360245227814,
0.023975374177098274,
0.028178011998534203,
0.0023876905906945467,
-0.059126317501068115,
-0.0674186423420906,
-0.03604665398597717,
0.0036592877004295588,
0.1213681548833847,
-0.06947387754917145,
0.04217692092061043,
0.043851882219314575,
0.042034100741147995,
-0.09761182218790054,
0.19736436009407043,
-0.04331754148006439,
0.014211470261216164,
0.010802814736962318,
0.03631647303700447,
-0.0017010436858981848,
0.005891423672437668,
-0.11279342323541641,
-0.00008191860251827165,
0.12353520095348358,
0.019096611067652702,
-0.0777820348739624,
0.0753462016582489,
-0.05135048180818558,
-0.02845766581594944,
0.027824362739920616,
-0.09827792644500732,
0.03422514721751213,
-0.01282274816185236,
-0.0880250334739685,
-0.009091401472687721,
0.0227163378149271,
0.009979380294680595,
-0.022754371166229248,
0.1250169277191162,
-0.08886996656656265,
0.04094705730676651,
-0.10035109519958496,
-0.09962237626314163,
0.01486019417643547,
-0.08528398722410202,
0.0337212011218071,
-0.1065574362874031,
-0.1556529849767685,
-0.012033786624670029,
0.05532378330826759,
-0.01928732916712761,
-0.05888168886303902,
-0.0359046645462513,
-0.07541327178478241,
-0.0009290911839343607,
-0.01953265070915222,
0.1408023089170456,
-0.05440116673707962,
0.10860501974821091,
0.038193583488464355,
0.0653199553489685,
-0.04218501225113869,
0.05959102883934975,
-0.10567493736743927,
0.010582290589809418,
-0.2022174745798111,
0.03394060209393501,
-0.051403820514678955,
0.08213641494512558,
-0.09558211266994476,
-0.12252257764339447,
0.03218604251742363,
-0.014203127473592758,
0.07364875823259354,
0.08043157309293747,
-0.148633673787117,
-0.06989260017871857,
0.13971179723739624,
-0.06719176471233368,
-0.10949588567018509,
0.10988649725914001,
-0.05908549204468727,
0.04315216839313507,
0.0691341832280159,
0.15094906091690063,
0.07623322308063507,
-0.07394596189260483,
0.014857121743261814,
-0.005518527701497078,
0.03761016204953194,
-0.0852770283818245,
0.054977208375930786,
0.01338272262364626,
-0.005703384056687355,
0.03793494403362274,
-0.0313841886818409,
0.06867477297782898,
-0.10143239051103592,
-0.08946534991264343,
-0.04302152991294861,
-0.10383187979459763,
0.04982125759124756,
0.07696358859539032,
0.09194859117269516,
-0.08907774090766907,
-0.06312383711338043,
0.09003946185112,
0.08162044733762741,
-0.053664952516555786,
0.028555085882544518,
-0.06406388431787491,
0.06912066042423248,
-0.04936804994940758,
-0.029596872627735138,
-0.19602279365062714,
-0.004808553494513035,
0.010299934074282646,
-0.0061147394590079784,
0.014107801020145416,
0.01098197977989912,
0.06761409342288971,
0.056804899126291275,
-0.05139205977320671,
-0.019243307411670685,
-0.01084283646196127,
-0.001834170427173376,
-0.13615812361240387,
-0.1808529794216156,
-0.03599371388554573,
-0.017707888036966324,
0.10132928937673569,
-0.18540474772453308,
0.03112841211259365,
-0.021046895533800125,
0.08332569897174835,
0.0027033728547394276,
-0.004462642129510641,
-0.04626888781785965,
0.09051080793142319,
-0.03311324119567871,
-0.05396990105509758,
0.07307301461696625,
0.006288302130997181,
-0.07276368141174316,
-0.04810195788741112,
-0.0819299966096878,
0.1813729703426361,
0.13940685987472534,
-0.12596426904201508,
-0.0882675051689148,
-0.004028453025966883,
-0.06503946334123611,
-0.031265486031770706,
-0.03857722133398056,
0.05418555811047554,
0.17301344871520996,
-0.017708590254187584,
0.15403792262077332,
-0.06813391298055649,
-0.05623875930905342,
0.028707843273878098,
-0.03532712161540985,
0.029072243720293045,
0.11004670709371567,
0.11974828690290451,
-0.08900817483663559,
0.14554564654827118,
0.15391431748867035,
-0.10160023719072342,
0.10429691523313522,
-0.05077066272497177,
-0.06706634908914566,
-0.01251672487705946,
-0.016507569700479507,
0.0012884426396340132,
0.08919990062713623,
-0.11591503769159317,
-0.0016212787013500929,
0.022870542481541634,
0.02815311960875988,
0.02011319063603878,
-0.224787175655365,
-0.03468577563762665,
0.024974405765533447,
-0.029814599081873894,
0.0004341141029726714,
-0.014815127477049828,
0.015063478611409664,
0.10258816927671432,
0.004534778650850058,
-0.09380156546831131,
0.048520393669605255,
0.014564861543476582,
-0.0756446123123169,
0.21674270927906036,
-0.09022118151187897,
-0.14593826234340668,
-0.11624488234519958,
-0.08634627610445023,
-0.04097432270646095,
0.011721969582140446,
0.058565448969602585,
-0.09158787876367569,
-0.030116815119981766,
-0.04525609686970711,
0.012142973951995373,
-0.005173596553504467,
0.04623739421367645,
0.014842725358903408,
0.0030495289247483015,
0.08009906858205795,
-0.10346952080726624,
-0.008789552375674248,
-0.05431676283478737,
-0.06278429925441742,
0.05348251387476921,
0.03933750092983246,
0.10487201809883118,
0.1569710075855255,
-0.03296894207596779,
0.008718988858163357,
-0.031654637306928635,
0.23456759750843048,
-0.05569463223218918,
-0.03520897403359413,
0.1393730193376541,
-0.0024011090863496065,
0.056997641921043396,
0.10464373975992203,
0.07013674825429916,
-0.08981676399707794,
0.00783043447881937,
0.02534995786845684,
-0.03659265860915184,
-0.21441587805747986,
-0.05255388468503952,
-0.05260797590017319,
-0.029587462544441223,
0.10359252989292145,
0.028790360316634178,
0.049198396503925323,
0.07697372883558273,
0.04570074751973152,
0.09425698965787888,
-0.05499804764986038,
0.05957069993019104,
0.12232394516468048,
0.051078833639621735,
0.12302803993225098,
-0.0427282452583313,
-0.07306575775146484,
0.030765213072299957,
-0.007024371065199375,
0.2321518510580063,
-0.0032628895714879036,
0.10881271958351135,
0.05719037353992462,
0.19342875480651855,
0.0038999069947749376,
0.09198717772960663,
-0.006460243836045265,
-0.044194094836711884,
-0.009633555077016354,
-0.033296313136816025,
-0.04123526066541672,
0.009397660382091999,
-0.06226994842290878,
0.05364649370312691,
-0.1196807250380516,
-0.009289149194955826,
0.050134237855672836,
0.2653961181640625,
0.02273685671389103,
-0.3339793086051941,
-0.09248965978622437,
-0.010218987241387367,
-0.03551657497882843,
-0.025824835523962975,
0.02162111923098564,
0.07296442240476608,
-0.09697280079126358,
0.025622570887207985,
-0.07322702556848526,
0.09153342247009277,
-0.039509810507297516,
0.04308924823999405,
0.08116107434034348,
0.08779045194387436,
0.019290151074528694,
0.08140913397073746,
-0.3185829222202301,
0.26780298352241516,
-0.00021187835955061018,
0.07144036144018173,
-0.07811768352985382,
0.002582176122814417,
0.029215140268206596,
0.06519816815853119,
0.0599852055311203,
-0.01061771996319294,
-0.04804646968841553,
-0.214927077293396,
-0.04657815024256706,
0.022135652601718903,
0.07916843891143799,
-0.011979548260569572,
0.08719421178102493,
-0.029064571484923363,
0.006556238513439894,
0.07196750491857529,
-0.04189407452940941,
-0.0415017195045948,
-0.08471766859292984,
-0.011861145496368408,
0.01880721002817154,
-0.04022407904267311,
-0.06075732409954071,
-0.11136597394943237,
-0.13316084444522858,
0.15359462797641754,
-0.008845236152410507,
-0.04041196033358574,
-0.11783681809902191,
0.0812462642788887,
0.08954789489507675,
-0.08709132671356201,
0.05931941792368889,
0.0036396142095327377,
0.061620306223630905,
0.03669716417789459,
-0.0772317424416542,
0.10600248724222183,
-0.06715934723615646,
-0.15921403467655182,
-0.05289292708039284,
0.09391022473573685,
0.032191697508096695,
0.058982059359550476,
-0.00950258132070303,
0.014814728870987892,
-0.038374051451683044,
-0.09294191002845764,
0.0173097625374794,
-0.01866321638226509,
0.08993133157491684,
0.016889214515686035,
-0.056656207889318466,
0.017102636396884918,
-0.060498014092445374,
-0.026830347254872322,
0.18090897798538208,
0.2196655124425888,
-0.10287491977214813,
0.013686158694326878,
0.034897755831480026,
-0.061918407678604126,
-0.19570067524909973,
0.04034947231411934,
0.06748542934656143,
-0.0012271776795387268,
0.029113899916410446,
-0.16972136497497559,
0.1419256031513214,
0.10551123321056366,
-0.014669899828732014,
0.10172899067401886,
-0.31665295362472534,
-0.1246451586484909,
0.12861160933971405,
0.1473454385995865,
0.12457243353128433,
-0.13186009228229523,
-0.013426575809717178,
-0.01252718549221754,
-0.12497249990701675,
0.09699536859989166,
-0.05247242748737335,
0.11657574772834778,
-0.03681296110153198,
0.09311769157648087,
0.0029251223895698786,
-0.06277438998222351,
0.10715985298156738,
0.035358328372240067,
0.10029197484254837,
-0.05928600952029228,
-0.039941225200891495,
0.031233787536621094,
-0.038289107382297516,
0.016063280403614044,
-0.05333855375647545,
0.03842533752322197,
-0.0916447788476944,
-0.017394354566931725,
-0.08306533098220825,
0.048500906676054,
-0.02767915092408657,
-0.058594394475221634,
-0.04173893481492996,
0.029515543952584267,
0.04780728742480278,
-0.018003428354859352,
0.12610144913196564,
0.038327641785144806,
0.14373327791690826,
0.11571631580591202,
0.05829225480556488,
-0.07512116432189941,
-0.07014336436986923,
-0.017223523929715157,
-0.017133120447397232,
0.0630163848400116,
-0.13097696006298065,
0.033279649913311005,
0.14940913021564484,
0.02116190455853939,
0.11784529685974121,
0.08631695806980133,
-0.014253126457333565,
0.00504465913400054,
0.06137217581272125,
-0.1622716188430786,
-0.05507568269968033,
0.0022119563072919846,
-0.05012131854891777,
-0.09594478458166122,
0.06520457565784454,
0.07917432487010956,
-0.07316941022872925,
-0.016453685238957405,
-0.007480594329535961,
-0.00021205229859333485,
-0.06216226890683174,
0.20866911113262177,
0.062066055834293365,
0.04942914843559265,
-0.11116810888051987,
0.06542086601257324,
0.06073828786611557,
-0.07383694499731064,
-0.007424465846270323,
0.06431394070386887,
-0.0902128666639328,
-0.04236052185297012,
0.10512682795524597,
0.15635254979133606,
-0.08011374622583389,
-0.04144655168056488,
-0.1354675143957138,
-0.12520746886730194,
0.08677853643894196,
0.15890461206436157,
0.12489304691553116,
0.021501824259757996,
-0.054475028067827225,
0.007089800201356411,
-0.13387662172317505,
0.07424519211053848,
0.044379688799381256,
0.07944312691688538,
-0.15576711297035217,
0.1676371842622757,
0.004846530966460705,
0.06041163578629494,
-0.02384825609624386,
0.031517721712589264,
-0.09938129037618637,
0.018574826419353485,
-0.1127130538225174,
-0.027855897322297096,
-0.03126788139343262,
0.007517954800277948,
-0.0004940911894664168,
-0.0592070147395134,
-0.048951685428619385,
0.0237616915255785,
-0.12085966765880585,
-0.015275700017809868,
0.035571567714214325,
0.05154969543218613,
-0.10946477949619293,
-0.043755341321229935,
0.020506858825683594,
-0.05741633474826813,
0.06466024369001389,
0.050522539764642715,
0.014762289822101593,
0.057806890457868576,
-0.1199878677725792,
-0.012177947908639908,
0.08377160131931305,
0.008793972432613373,
0.07745788991451263,
-0.09531646221876144,
-0.0021185618825256824,
0.01195728313177824,
0.06254539638757706,
0.017126072198152542,
0.06622794270515442,
-0.14882692694664001,
-0.010463056154549122,
-0.030604079365730286,
-0.07362741231918335,
-0.07045431435108185,
0.019125239923596382,
0.09593947231769562,
0.009765945374965668,
0.19502024352550507,
-0.07359140366315842,
0.03785576671361923,
-0.20059025287628174,
-0.0062465365044772625,
-0.02424280345439911,
-0.1161719486117363,
-0.12972070276737213,
-0.05458125099539757,
0.060764577239751816,
-0.04407225921750069,
0.13442161679267883,
0.02616490237414837,
0.041718389838933945,
0.028178803622722626,
-0.025959709659218788,
0.006476039998233318,
0.02878553792834282,
0.21156518161296844,
0.02859206683933735,
-0.03443186730146408,
0.07299944758415222,
0.057333022356033325,
0.09157410264015198,
0.10879490524530411,
0.1862693876028061,
0.15255291759967804,
-0.01961454749107361,
0.08521606028079987,
0.020582683384418488,
-0.04829508438706398,
-0.1694210320711136,
0.03316252678632736,
-0.05353350192308426,
0.09272469580173492,
-0.01971045322716236,
0.2052977830171585,
0.05683044344186783,
-0.16701331734657288,
0.0473184697329998,
-0.05388953164219856,
-0.08623956888914108,
-0.09676872193813324,
-0.03370310738682747,
-0.07957352697849274,
-0.141500785946846,
0.002779398113489151,
-0.10325566679239273,
0.011160045862197876,
0.11466927081346512,
0.0076295253820717335,
-0.026781436055898666,
0.15887784957885742,
0.027851175516843796,
0.031885918229818344,
0.04794427379965782,
0.0018722532549872994,
-0.028002673760056496,
-0.09754128754138947,
-0.06250259280204773,
-0.023123936727643013,
-0.01149528194218874,
0.04034755378961563,
-0.06283681839704514,
-0.06379689276218414,
0.036611877381801605,
-0.021615052595734596,
-0.0894995853304863,
0.017238706350326538,
0.022441938519477844,
0.06316918879747391,
0.04359293356537819,
0.0020165627356618643,
0.019972143694758415,
-0.020427267998456955,
0.20192945003509521,
-0.07899655401706696,
-0.08263418823480606,
-0.09927323460578918,
0.289522647857666,
0.051607292145490646,
-0.010741951875388622,
0.03612681105732918,
-0.0561472550034523,
-0.004417481832206249,
0.2550968527793884,
0.18141189217567444,
-0.0769149586558342,
-0.011618032120168209,
0.002433459972962737,
-0.015313426032662392,
-0.024845825508236885,
0.12317108362913132,
0.14786173403263092,
0.04738951101899147,
-0.10228031873703003,
-0.049345821142196655,
-0.06341440230607986,
-0.009089515544474125,
-0.055267687886953354,
0.05001194402575493,
0.03479713574051857,
0.0038770504761487246,
-0.04044526815414429,
0.049030594527721405,
-0.06966245174407959,
-0.09227500110864639,
0.07133441418409348,
-0.19109979271888733,
-0.15919677913188934,
-0.007607383653521538,
0.10158266127109528,
0.0013105421094223857,
0.058238301426172256,
-0.02937724068760872,
0.0035870843566954136,
0.07029356807470322,
-0.02412567473948002,
-0.08252295851707458,
-0.07715246826410294,
0.09691807627677917,
-0.09248333424329758,
0.19446077942848206,
-0.040437471121549606,
0.07648584991693497,
0.12426755577325821,
0.06962809711694717,
-0.08507595956325531,
0.05226566642522812,
0.0339452400803566,
-0.07786066830158234,
0.03587929531931877,
0.08748921006917953,
-0.02562606707215309,
0.04938745126128197,
0.024773404002189636,
-0.13222108781337738,
0.01781325973570347,
-0.07532327622175217,
-0.0348363034427166,
-0.04395242780447006,
-0.04922715201973915,
-0.04891927167773247,
0.1254318505525589,
0.2148224115371704,
-0.026720507070422173,
0.008299464359879494,
-0.07867999374866486,
0.015542326495051384,
0.05134269967675209,
0.004448243882507086,
-0.08130179345607758,
-0.22670459747314453,
0.01274810079485178,
0.05347956344485283,
-0.02750125341117382,
-0.19576425850391388,
-0.09124565124511719,
0.0032196384854614735,
-0.08462370187044144,
-0.09923550486564636,
0.08249048888683319,
0.058607764542102814,
0.054958608001470566,
-0.05453471466898918,
-0.057126108556985855,
-0.09094274789094925,
0.14695580303668976,
-0.15082944929599762,
-0.08961563557386398
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9988
- Precision: 0.3
- Recall: 0.6
- F1: 0.4
- Accuracy: 0.7870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 84 | 0.8399 | 0.2105 | 0.4 | 0.2759 | 0.75 |
| No log | 2.0 | 168 | 0.9664 | 0.3 | 0.6 | 0.4 | 0.7870 |
| No log | 3.0 | 252 | 0.9988 | 0.3 | 0.6 | 0.4 | 0.7870 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": []}]}
|
token-classification
|
akshaychaudhary/distilbert-base-uncased-finetuned-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-ner
=====================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9988
* Precision: 0.3
* Recall: 0.6
* F1: 0.4
* Accuracy: 0.7870
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.2
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
58,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
-0.103523850440979,
0.09002135694026947,
-0.0023307478986680508,
0.12332198023796082,
0.17793519794940948,
0.019137302413582802,
0.11481406539678574,
0.11645552515983582,
-0.10948649048805237,
0.01768168807029724,
0.12381846457719803,
0.18894384801387787,
0.00309147615917027,
0.11100766062736511,
-0.04874809458851814,
-0.25168082118034363,
-0.008621321059763432,
0.057939134538173676,
-0.09077204018831253,
0.13570277392864227,
0.0982229933142662,
-0.13980738818645477,
0.08381298929452896,
0.014254722744226456,
-0.2370675504207611,
0.0075003416277468204,
0.01788652502000332,
-0.06403520703315735,
0.14846359193325043,
0.0127682751044631,
0.13606655597686768,
0.0016166832065209746,
0.08619825541973114,
-0.1632784754037857,
0.004477492533624172,
0.04943491518497467,
0.019283030182123184,
0.09391868859529495,
0.05791611224412918,
0.005128996912389994,
0.0950852707028389,
-0.07101569324731827,
0.053626157343387604,
0.021626034751534462,
-0.12032949924468994,
-0.23730754852294922,
-0.08797920495271683,
0.03335510566830635,
0.06430817395448685,
0.09731429815292358,
0.0068978858180344105,
0.1422301083803177,
-0.0965442955493927,
0.0894077718257904,
0.22600644826889038,
-0.27414655685424805,
-0.06281793862581253,
0.04240521788597107,
0.0020039763767272234,
0.050151750445365906,
-0.10845781117677689,
-0.037035271525382996,
0.057543959468603134,
0.04736587405204773,
0.14142584800720215,
-0.034815266728401184,
-0.12058132141828537,
0.015251662582159042,
-0.14953891932964325,
-0.031718909740448,
0.12374020367860794,
0.028785504400730133,
-0.033310480415821075,
-0.03066367283463478,
-0.05874406918883324,
-0.16566236317157745,
-0.03417956456542015,
-0.014829478226602077,
0.046564482152462006,
-0.04221895709633827,
-0.06473833322525024,
0.013675320893526077,
-0.10368451476097107,
-0.07017093151807785,
-0.07630553096532822,
0.1519497185945511,
0.04508072882890701,
0.013284901157021523,
-0.022045906633138657,
0.11426214873790741,
0.019623328000307083,
-0.1246880367398262,
0.03151531517505646,
0.029887696728110313,
-0.00020343836513347924,
-0.05479968711733818,
-0.06558907777070999,
-0.03495404124259949,
0.005982816684991121,
0.12302777916193008,
-0.06780827045440674,
0.03858603164553642,
0.049272213131189346,
0.045483026653528214,
-0.10057242959737778,
0.19782112538814545,
-0.045826300978660583,
0.012913423590362072,
0.002428070642054081,
0.04376833140850067,
-0.0032325731590390205,
0.004926776047796011,
-0.1123630702495575,
-0.002810664940625429,
0.12068270146846771,
0.017927508801221848,
-0.0732434093952179,
0.07089336216449738,
-0.0579686276614666,
-0.030673447996377945,
0.022723589092493057,
-0.0955202579498291,
0.032179683446884155,
-0.009958868846297264,
-0.09079556912183762,
-0.008591748774051666,
0.025252945721149445,
0.011187927797436714,
-0.016273735091090202,
0.12113533914089203,
-0.09071487188339233,
0.038320980966091156,
-0.10026934742927551,
-0.10214843600988388,
0.012138503603637218,
-0.08762586861848831,
0.03197649121284485,
-0.10369838774204254,
-0.15408013761043549,
-0.010835004039108753,
0.055453091859817505,
-0.01820294000208378,
-0.05857075750827789,
-0.037180326879024506,
-0.07385412603616714,
-0.003128922078758478,
-0.015366659499704838,
0.13861867785453796,
-0.05394202470779419,
0.1132793128490448,
0.0367249995470047,
0.06523650884628296,
-0.042824700474739075,
0.06211426481604576,
-0.10657148063182831,
0.009503399953246117,
-0.1924595832824707,
0.03152605518698692,
-0.055809129029512405,
0.073683001101017,
-0.09461696445941925,
-0.12072573602199554,
0.03185691684484482,
-0.012468659318983555,
0.07129773497581482,
0.08298724889755249,
-0.15413887798786163,
-0.07708308100700378,
0.1396806687116623,
-0.06755363196134567,
-0.10638498514890671,
0.11199767142534256,
-0.05613439157605171,
0.04842284694314003,
0.06721840053796768,
0.1507643610239029,
0.08585624396800995,
-0.07001210004091263,
0.018776625394821167,
-0.0031981358770281076,
0.04165051877498627,
-0.07771604508161545,
0.05783223733305931,
0.00664792163297534,
-0.008658998645842075,
0.03643493726849556,
-0.038326870650053024,
0.07219690084457397,
-0.10435257852077484,
-0.09208164364099503,
-0.04117659479379654,
-0.10529254376888275,
0.06258916109800339,
0.07840743660926819,
0.08836015313863754,
-0.08579391241073608,
-0.06233711168169975,
0.09426329284906387,
0.08571615070104599,
-0.052989840507507324,
0.024528177455067635,
-0.05777458846569061,
0.06583128124475479,
-0.04660578817129135,
-0.029178697615861893,
-0.19375228881835938,
-0.006797500886023045,
0.012664127163589,
-0.016681484878063202,
0.019313829019665718,
0.02146596647799015,
0.06870517134666443,
0.06278780102729797,
-0.05139855295419693,
-0.025546975433826447,
-0.02678867243230343,
-0.001299272757023573,
-0.13269847631454468,
-0.18780280649662018,
-0.036188364028930664,
-0.014218314550817013,
0.11757374554872513,
-0.1888873130083084,
0.03451630845665932,
-0.02362501621246338,
0.08321183919906616,
0.006543117109686136,
-0.005493585951626301,
-0.04697544500231743,
0.09375263750553131,
-0.031941018998622894,
-0.05348337069153786,
0.0719749853014946,
0.0018224725499749184,
-0.07672475278377533,
-0.05032527446746826,
-0.08325174450874329,
0.18367688357830048,
0.13815481960773468,
-0.13007916510105133,
-0.08702835440635681,
-0.0029130291659384966,
-0.06545437127351761,
-0.034617215394973755,
-0.038453731685876846,
0.04840536788105965,
0.16777300834655762,
-0.015931766480207443,
0.15222351253032684,
-0.06726092845201492,
-0.052236758172512054,
0.02627328783273697,
-0.038230471312999725,
0.03147832304239273,
0.11538273841142654,
0.12392737716436386,
-0.07904218882322311,
0.14937126636505127,
0.1588374674320221,
-0.1011141687631607,
0.11438107490539551,
-0.05122075229883194,
-0.06876008957624435,
-0.01465247105807066,
-0.017550969496369362,
0.00028601291705854237,
0.09282531589269638,
-0.11664099246263504,
-0.0005226979264989495,
0.022685810923576355,
0.024498162791132927,
0.019732700660824776,
-0.22988493740558624,
-0.03662404790520668,
0.02719832956790924,
-0.03316221758723259,
0.005261830985546112,
-0.015611834824085236,
0.014515242539346218,
0.10363578051328659,
0.0009323123376816511,
-0.09518758207559586,
0.04552336037158966,
0.01452655903995037,
-0.07237675040960312,
0.21590392291545868,
-0.09109693765640259,
-0.14336389303207397,
-0.12567777931690216,
-0.07633742690086365,
-0.04302746802568436,
0.012129033915698528,
0.05547988414764404,
-0.09631235152482986,
-0.025014203041791916,
-0.042335059493780136,
0.023201419040560722,
-0.0041056228801608086,
0.04290562495589256,
0.00573259312659502,
0.006090271286666393,
0.0822301059961319,
-0.10846735537052155,
-0.005153366830199957,
-0.052839767187833786,
-0.06804371625185013,
0.05280553549528122,
0.041342198848724365,
0.10439694672822952,
0.16140033304691315,
-0.030277499929070473,
0.004512588959187269,
-0.027677491307258606,
0.22955340147018433,
-0.056287333369255066,
-0.03435760363936424,
0.14315977692604065,
-0.003324405290186405,
0.05846130847930908,
0.0981723889708519,
0.07544912397861481,
-0.08716627210378647,
0.006883478257805109,
0.0283210389316082,
-0.03248230740427971,
-0.2183467596769333,
-0.051219794899225235,
-0.04683661460876465,
-0.024035532027482986,
0.10198020190000534,
0.026556970551609993,
0.05035755783319473,
0.07551625370979309,
0.04508015513420105,
0.0921197384595871,
-0.055001504719257355,
0.053043801337480545,
0.1212063729763031,
0.045953910797834396,
0.11917310953140259,
-0.04107346013188362,
-0.07394959777593613,
0.02982577495276928,
-0.005856236442923546,
0.22784601151943207,
0.0014808905543759465,
0.11742263287305832,
0.060430366545915604,
0.1963503062725067,
0.0002233405684819445,
0.08806688338518143,
-0.0017995794769376516,
-0.04055476933717728,
-0.009502105414867401,
-0.03595626726746559,
-0.04178489372134209,
0.009213004261255264,
-0.054908230900764465,
0.0602562353014946,
-0.11763007193803787,
-0.010901407338678837,
0.04740725830197334,
0.2610776722431183,
0.02233097329735756,
-0.3299938142299652,
-0.09298993647098541,
-0.012608028016984463,
-0.02950277552008629,
-0.022882655262947083,
0.019141806289553642,
0.07972758263349533,
-0.09674673527479172,
0.01692850887775421,
-0.07223603874444962,
0.08933446556329727,
-0.04675116389989853,
0.043983761221170425,
0.08182378113269806,
0.09104738384485245,
0.020170170813798904,
0.08249643445014954,
-0.3123118579387665,
0.26955685019493103,
0.000245244475081563,
0.06537347286939621,
-0.07295243442058563,
0.0019444922218099236,
0.031657926738262177,
0.06372953206300735,
0.05246962606906891,
-0.008799213916063309,
-0.02219465933740139,
-0.22373031079769135,
-0.04871239885687828,
0.019570423290133476,
0.08464066684246063,
-0.025386588647961617,
0.08456537127494812,
-0.030345510691404343,
0.006804472766816616,
0.07434047013521194,
-0.044416800141334534,
-0.046676646918058395,
-0.08163462579250336,
-0.008387481793761253,
0.016577359288930893,
-0.03619827702641487,
-0.06438055634498596,
-0.11277648061513901,
-0.13270467519760132,
0.14678384363651276,
-0.018349261954426765,
-0.03722056746482849,
-0.11526377499103546,
0.07934606820344925,
0.09414194524288177,
-0.08741575479507446,
0.05978747457265854,
0.004112620372325182,
0.05924085155129433,
0.03602294996380806,
-0.07191424816846848,
0.10662755370140076,
-0.06451771408319473,
-0.16620144248008728,
-0.055251311510801315,
0.09464073926210403,
0.03539089858531952,
0.06045255810022354,
-0.014887126162648201,
0.01239735260605812,
-0.03909507021307945,
-0.09123867750167847,
0.020685477182269096,
-0.01511969044804573,
0.07852889597415924,
0.024222271516919136,
-0.0570831261575222,
0.021217379719018936,
-0.062417708337306976,
-0.0290946327149868,
0.17705167829990387,
0.22855964303016663,
-0.10225839167833328,
0.009908817708492279,
0.04403967782855034,
-0.06237529218196869,
-0.1941889375448227,
0.0423082560300827,
0.06619076430797577,
-0.0019965912215411663,
0.036201704293489456,
-0.1780216246843338,
0.13713295757770538,
0.10940836369991302,
-0.0144343301653862,
0.10750558227300644,
-0.3273228704929352,
-0.12194806337356567,
0.1290854960680008,
0.1494370549917221,
0.11566872149705887,
-0.13361084461212158,
-0.018262138590216637,
-0.011364636942744255,
-0.12643295526504517,
0.09991973638534546,
-0.05644288659095764,
0.1195039302110672,
-0.03924344480037689,
0.08999133855104446,
0.0038653272204101086,
-0.061524953693151474,
0.11436808854341507,
0.03091161698102951,
0.10197840631008148,
-0.05496754124760628,
-0.04043542593717575,
0.032753221690654755,
-0.03457799181342125,
0.01306205615401268,
-0.0550130158662796,
0.03887125104665756,
-0.08554333448410034,
-0.014205732382833958,
-0.08447744697332382,
0.05135143920779228,
-0.03131064027547836,
-0.06328026950359344,
-0.04008864983916283,
0.03031952865421772,
0.03871610015630722,
-0.01824844628572464,
0.11672954261302948,
0.03968855366110802,
0.14448599517345428,
0.11667755246162415,
0.052596379071474075,
-0.06279274076223373,
-0.07734628766775131,
-0.020103875547647476,
-0.01675282046198845,
0.0668715089559555,
-0.1282029002904892,
0.02893090806901455,
0.14871834218502045,
0.02395712025463581,
0.12351254373788834,
0.08457334339618683,
-0.019290566444396973,
0.003652875777333975,
0.05842416360974312,
-0.16276150941848755,
-0.05974629148840904,
-0.0030656808521598577,
-0.05172562226653099,
-0.09656640142202377,
0.06421303749084473,
0.08266670256853104,
-0.07499280571937561,
-0.014050150290131569,
-0.0048558977432549,
-0.0023589786142110825,
-0.06351251155138016,
0.21077285706996918,
0.06714652478694916,
0.05067985877394676,
-0.10665497183799744,
0.07064145058393478,
0.06198551505804062,
-0.06930447369813919,
-0.013701705262064934,
0.056779686361551285,
-0.08711104840040207,
-0.041084397584199905,
0.09784757345914841,
0.15849274396896362,
-0.08018616586923599,
-0.04184921458363533,
-0.1400337517261505,
-0.12230776995420456,
0.08014452457427979,
0.1550964117050171,
0.12442366033792496,
0.024990029633045197,
-0.05552133917808533,
0.009892783127725124,
-0.1286093145608902,
0.07551945745944977,
0.042930129915475845,
0.08080665022134781,
-0.15535800158977509,
0.17075224220752716,
0.009831945411860943,
0.05655563995242119,
-0.02144085243344307,
0.029179802164435387,
-0.10028686374425888,
0.016932109370827675,
-0.10946930199861526,
-0.035173460841178894,
-0.021861227229237556,
0.006769904866814613,
-0.0016000405885279179,
-0.062378209084272385,
-0.04474789649248123,
0.021059205755591393,
-0.12163746356964111,
-0.018797913566231728,
0.03969725966453552,
0.056493647396564484,
-0.11306740343570709,
-0.04419030249118805,
0.026350488886237144,
-0.057282041758298874,
0.0639113113284111,
0.04742217808961868,
0.018172618001699448,
0.05878259614109993,
-0.12336495518684387,
-0.008165509440004826,
0.08023056387901306,
0.01217541005462408,
0.0741843655705452,
-0.09355204552412033,
-0.006634257268160582,
0.0009356401860713959,
0.06323288381099701,
0.015033851377665997,
0.06872585415840149,
-0.1492055505514145,
-0.009786555543541908,
-0.031927306205034256,
-0.07672324776649475,
-0.07081486284732819,
0.0184498131275177,
0.09436232596635818,
0.010294074192643166,
0.1937616765499115,
-0.07056774944067001,
0.040055468678474426,
-0.20554177463054657,
-0.004947849083691835,
-0.022964347153902054,
-0.11542605608701706,
-0.1293366700410843,
-0.05716276541352272,
0.058261383324861526,
-0.04796980321407318,
0.12991084158420563,
0.02331746742129326,
0.03930681198835373,
0.024594223126769066,
-0.023596957325935364,
0.003051033476367593,
0.02756418101489544,
0.20987069606781006,
0.03380899131298065,
-0.030048120766878128,
0.06811060011386871,
0.05753975361585617,
0.08964644372463226,
0.10208504647016525,
0.17998355627059937,
0.1532122939825058,
-0.026005838066339493,
0.08077444136142731,
0.028686869889497757,
-0.04917507618665695,
-0.1679028868675232,
0.037772275507450104,
-0.05061795189976692,
0.09181970357894897,
-0.01910395920276642,
0.21811388432979584,
0.0532693974673748,
-0.16522841155529022,
0.04825202748179436,
-0.04797956347465515,
-0.08590587973594666,
-0.09651808440685272,
-0.025417102500796318,
-0.07647500932216644,
-0.14166919887065887,
-0.0002146112674381584,
-0.1001775786280632,
0.008847066201269627,
0.11832146346569061,
0.004922278691083193,
-0.026346983388066292,
0.16093847155570984,
0.033011045306921005,
0.02959277294576168,
0.04740205407142639,
0.002913497155532241,
-0.03211793676018715,
-0.11153016984462738,
-0.06835832446813583,
-0.019957317039370537,
-0.0027760383673012257,
0.037131574004888535,
-0.06491725891828537,
-0.07167203724384308,
0.034432895481586456,
-0.020047910511493683,
-0.09364856779575348,
0.018608998507261276,
0.01650502346456051,
0.058116525411605835,
0.03277217969298363,
0.0009806762682273984,
0.020700454711914062,
-0.01944326050579548,
0.20407052338123322,
-0.0792548730969429,
-0.08256815373897552,
-0.09220407903194427,
0.2877435088157654,
0.0455317422747612,
-0.007295149844139814,
0.03940923511981964,
-0.058039989322423935,
-0.004805226344615221,
0.24884240329265594,
0.18317806720733643,
-0.08214227110147476,
-0.011675294488668442,
0.00852639228105545,
-0.016375070437788963,
-0.029682613909244537,
0.12004382908344269,
0.14246028661727905,
0.038612544536590576,
-0.10193292796611786,
-0.04305018484592438,
-0.06390916556119919,
-0.010249001905322075,
-0.04920705035328865,
0.04913453012704849,
0.036681752651929855,
0.004532736260443926,
-0.04460112750530243,
0.04989233613014221,
-0.06560081243515015,
-0.09551385790109634,
0.07586084306240082,
-0.19357670843601227,
-0.16103370487689972,
-0.012913677841424942,
0.10718011856079102,
-0.001199452206492424,
0.05816245824098587,
-0.03222138434648514,
0.003664691699668765,
0.07044289261102676,
-0.02364170551300049,
-0.08374470472335815,
-0.08221457153558731,
0.09622860699892044,
-0.08963325619697571,
0.19356124103069305,
-0.04231574758887291,
0.07720644026994705,
0.1211271807551384,
0.06829093396663666,
-0.07902681082487106,
0.05250030755996704,
0.038347601890563965,
-0.08160073310136795,
0.028835419565439224,
0.0833013504743576,
-0.022538913413882256,
0.05541090667247772,
0.025272930040955544,
-0.1327611804008484,
0.019293705001473427,
-0.06713301688432693,
-0.04141637310385704,
-0.041503410786390305,
-0.04997856542468071,
-0.04697557911276817,
0.12384640425443649,
0.21486571431159973,
-0.02652636356651783,
0.0071188597939908504,
-0.07881058752536774,
0.013701810501515865,
0.05773432180285454,
0.004662684164941311,
-0.07962428778409958,
-0.2235136181116104,
0.011743240989744663,
0.05167457461357117,
-0.025384174659848213,
-0.19894814491271973,
-0.09304486960172653,
0.004637226462364197,
-0.08378882706165314,
-0.09568104892969131,
0.08021291345357895,
0.05895943194627762,
0.05803563445806503,
-0.051636215299367905,
-0.06228886544704437,
-0.09224717319011688,
0.14899340271949768,
-0.15480521321296692,
-0.09021805226802826
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0611
- Precision: 0.9250
- Recall: 0.9321
- F1: 0.9285
- Accuracy: 0.9834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2399 | 1.0 | 878 | 0.0702 | 0.9118 | 0.9208 | 0.9163 | 0.9805 |
| 0.0503 | 2.0 | 1756 | 0.0614 | 0.9176 | 0.9311 | 0.9243 | 0.9824 |
| 0.0304 | 3.0 | 2634 | 0.0611 | 0.9250 | 0.9321 | 0.9285 | 0.9834 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9833669595056158}}]}]}
|
token-classification
|
al00014/distilbert-base-uncased-finetuned-ner
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-ner
=====================================
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0611
* Precision: 0.9250
* Recall: 0.9321
* F1: 0.9285
* Accuracy: 0.9834
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.9.1
* Pytorch 1.9.0+cu102
* Datasets 1.11.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
65,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] |
[
-0.10255871713161469,
0.10539267212152481,
-0.00214369292370975,
0.12020950019359589,
0.15903787314891815,
0.029840590432286263,
0.10807906836271286,
0.12274046242237091,
-0.11434255540370941,
0.030879756435751915,
0.12895672023296356,
0.1712215095758438,
0.010373823344707489,
0.12424161285161972,
-0.05817195773124695,
-0.25059065222740173,
-0.0032364886719733477,
0.05006325989961624,
-0.07109494507312775,
0.1261829435825348,
0.098833829164505,
-0.13841308653354645,
0.09173785150051117,
0.00905834324657917,
-0.2146635502576828,
0.0054509988985955715,
0.008342849090695381,
-0.05729762837290764,
0.13314498960971832,
0.0294477678835392,
0.13272933661937714,
-0.005307616200298071,
0.08937913924455643,
-0.18023383617401123,
0.005790883209556341,
0.051778294146060944,
0.005606415681540966,
0.08844007551670074,
0.045780837535858154,
0.008998177014291286,
0.12307481467723846,
-0.07930007576942444,
0.05701543390750885,
0.013293053954839706,
-0.11489178240299225,
-0.21894565224647522,
-0.0935593843460083,
0.045796558260917664,
0.0761847272515297,
0.10102034360170364,
0.0023126546293497086,
0.1392800509929657,
-0.08791504055261612,
0.09048745781183243,
0.2130136936903,
-0.29831841588020325,
-0.06735406816005707,
0.04121851921081543,
0.008643759414553642,
0.029652465134859085,
-0.10871141403913498,
-0.04120428115129471,
0.05491676554083824,
0.048971615731716156,
0.12907281517982483,
-0.038429588079452515,
-0.1241060346364975,
0.01602264679968357,
-0.13965150713920593,
-0.028238222002983093,
0.16118167340755463,
0.03782263398170471,
-0.029685530811548233,
-0.046535979956388474,
-0.05643749609589577,
-0.16367700695991516,
-0.029003163799643517,
-0.008906164206564426,
0.046756912022829056,
-0.03568905219435692,
-0.0653354674577713,
0.009853038005530834,
-0.10899555683135986,
-0.061145033687353134,
-0.08953680098056793,
0.13629408180713654,
0.03519825637340546,
0.01534251868724823,
-0.025256918743252754,
0.10268127918243408,
0.007348612416535616,
-0.12443239241838455,
0.015354856848716736,
0.028674136847257614,
-0.007664091419428587,
-0.05595702677965164,
-0.05627155303955078,
-0.04410756751894951,
0.009763343259692192,
0.14286161959171295,
-0.0551065094769001,
0.03977460786700249,
0.04810221493244171,
0.03960094228386879,
-0.0797455906867981,
0.1808391660451889,
-0.05106561258435249,
-0.021555554121732712,
0.008259857073426247,
0.03902958706021309,
0.023277325555682182,
-0.0025662092957645655,
-0.12032413482666016,
0.007747654803097248,
0.09660116583108902,
0.0040515405125916,
-0.06651708483695984,
0.0730704590678215,
-0.06183464825153351,
-0.020003343001008034,
0.01817041076719761,
-0.09099721163511276,
0.03842529281973839,
-0.006828721612691879,
-0.08226842433214188,
-0.020809387788176537,
0.01680723764002323,
0.018180305138230324,
-0.008505401201546192,
0.12702760100364685,
-0.09571273624897003,
0.021716414019465446,
-0.09561675041913986,
-0.10818422585725784,
0.030209079384803772,
-0.09415706992149353,
0.03555135056376457,
-0.09849019348621368,
-0.17402802407741547,
-0.013611898757517338,
0.06176286190748215,
-0.024734605103731155,
-0.06315313279628754,
-0.04590883105993271,
-0.08352536708116531,
0.012991010211408138,
-0.016811631619930267,
0.13133253157138824,
-0.06592542678117752,
0.09349852800369263,
0.03145521506667137,
0.06399993598461151,
-0.055257976055145264,
0.052310626953840256,
-0.10168170928955078,
0.015354696661233902,
-0.15835103392601013,
0.024904433637857437,
-0.054766733199357986,
0.07197403162717819,
-0.08802897483110428,
-0.10300497710704803,
0.015688220039010048,
-0.0035176698584109545,
0.06792531162500381,
0.07805366814136505,
-0.17569856345653534,
-0.06900952756404877,
0.13671861588954926,
-0.07240164279937744,
-0.12708479166030884,
0.10982917249202728,
-0.061615075916051865,
0.03930359706282616,
0.05871294066309929,
0.15466563403606415,
0.06886140257120132,
-0.08944302052259445,
-0.016654985025525093,
0.01159551553428173,
0.04444773122668266,
-0.0795292928814888,
0.06750805675983429,
0.012015139684081078,
0.03366333991289139,
0.02637074701488018,
-0.023802215233445168,
0.05433901771903038,
-0.09033822268247604,
-0.09238622337579727,
-0.03826386481523514,
-0.0954262986779213,
0.030527226626873016,
0.07869496196508408,
0.07085664570331573,
-0.09471679478883743,
-0.0809638723731041,
0.07729575783014297,
0.08897162228822708,
-0.05464771389961243,
0.02784215286374092,
-0.06983672082424164,
0.07134678959846497,
-0.040605880320072174,
-0.029259810224175453,
-0.1829642802476883,
-0.03815934807062149,
0.007149900775402784,
0.006162608973681927,
0.011257500387728214,
0.022818520665168762,
0.06436146795749664,
0.05666200444102287,
-0.05284673720598221,
-0.019797371700406075,
-0.01938941702246666,
0.004207075107842684,
-0.1307034194469452,
-0.19992096722126007,
-0.04014269635081291,
-0.026497695595026016,
0.1340215653181076,
-0.2040887326002121,
0.030343223363161087,
0.006814993917942047,
0.08995074778795242,
0.021637320518493652,
-0.00744190439581871,
-0.042293254286050797,
0.08087989687919617,
-0.05045080557465553,
-0.054142266511917114,
0.06192508712410927,
0.01419511716812849,
-0.08415275812149048,
-0.05454101413488388,
-0.0939415693283081,
0.16774924099445343,
0.13817903399467468,
-0.11088939011096954,
-0.07995755225419998,
-0.011100038886070251,
-0.0654543861746788,
-0.03531641885638237,
-0.042984869331121445,
0.031054645776748657,
0.16384954750537872,
-0.013983982615172863,
0.1446874588727951,
-0.06793694198131561,
-0.05619462952017784,
0.021522950381040573,
-0.031580302864313126,
0.010691829957067966,
0.11220297962427139,
0.13252931833267212,
-0.07942965626716614,
0.15882043540477753,
0.14937682449817657,
-0.09987214207649231,
0.11904339492321014,
-0.04426578804850578,
-0.07158004492521286,
-0.02429875358939171,
-0.026336602866649628,
-0.0012476415140554309,
0.1112217828631401,
-0.1292998045682907,
0.0008620929438620806,
0.02950410731136799,
0.01927774026989937,
0.020746439695358276,
-0.22200416028499603,
-0.03319869190454483,
0.026686644181609154,
-0.032270800322294235,
-0.0031534326262772083,
-0.016403915360569954,
0.003174364333972335,
0.1022149994969368,
0.006655949167907238,
-0.09113230556249619,
0.048952046781778336,
0.0060211182571947575,
-0.0736173689365387,
0.21127358078956604,
-0.09660577028989792,
-0.14268377423286438,
-0.11910218745470047,
-0.08141279965639114,
-0.043917980045080185,
0.012048646807670593,
0.05558047071099281,
-0.07520835846662521,
-0.04131796956062317,
-0.06639181077480316,
0.00021024837042205036,
-0.003499555867165327,
0.035326629877090454,
0.013547747395932674,
0.0031348238699138165,
0.06111876294016838,
-0.10602512210607529,
-0.010456521064043045,
-0.05505097284913063,
-0.05424712598323822,
0.04503130912780762,
0.04131161794066429,
0.1163402646780014,
0.1537008434534073,
-0.017999986186623573,
0.009490380063652992,
-0.0336737297475338,
0.23124487698078156,
-0.06609251350164413,
-0.02330223098397255,
0.12554895877838135,
-0.00951826199889183,
0.0449853353202343,
0.12645560503005981,
0.06893262267112732,
-0.08906316012144089,
0.005683759693056345,
0.03745684772729874,
-0.03216558322310448,
-0.21715915203094482,
-0.054123278707265854,
-0.05746140331029892,
-0.010680216364562511,
0.09318132698535919,
0.028766386210918427,
0.04183909296989441,
0.06918559968471527,
0.0412612147629261,
0.09088438749313354,
-0.04288830980658531,
0.06200990453362465,
0.12676793336868286,
0.047381915152072906,
0.12393561750650406,
-0.04535255208611488,
-0.056591663509607315,
0.04485660791397095,
0.0022848325315862894,
0.22837412357330322,
-0.00172429031226784,
0.13078740239143372,
0.05701349303126335,
0.1728784739971161,
-0.008542804047465324,
0.07629839330911636,
-0.007966768927872181,
-0.0417538620531559,
-0.011562676168978214,
-0.03622130677103996,
-0.03469984978437424,
0.028467679396271706,
-0.05803490802645683,
0.061164744198322296,
-0.11257600784301758,
0.01060679741203785,
0.05745697021484375,
0.24646691977977753,
0.045760538429021835,
-0.3299061954021454,
-0.09469916671514511,
0.004172604531049728,
-0.032193563878536224,
-0.02332271821796894,
0.03050384856760502,
0.09870076924562454,
-0.08401627838611603,
0.035188447684049606,
-0.06494250148534775,
0.086822010576725,
-0.05109543725848198,
0.0391472727060318,
0.09541983902454376,
0.08947321027517319,
0.011277154088020325,
0.08123572915792465,
-0.2940250039100647,
0.2708354890346527,
0.008317360654473305,
0.07414139807224274,
-0.07809005677700043,
0.010528163984417915,
0.024364527314901352,
0.06269776821136475,
0.0747823640704155,
-0.015394425019621849,
-0.055797722190618515,
-0.1899176836013794,
-0.049145329743623734,
0.02222060039639473,
0.07336984574794769,
-0.015231622382998466,
0.09306584298610687,
-0.030092580243945122,
0.004327957518398762,
0.07561472803354263,
-0.015698770061135292,
-0.03639249503612518,
-0.10491389781236649,
-0.008064720779657364,
0.03538157790899277,
-0.054746005684137344,
-0.06477759778499603,
-0.1089787408709526,
-0.1210339367389679,
0.16081374883651733,
-0.04243415594100952,
-0.0333956703543663,
-0.11013834923505783,
0.09151466935873032,
0.08043131977319717,
-0.08476796746253967,
0.047682181000709534,
0.006375346798449755,
0.07160719484090805,
0.03735918924212456,
-0.06775209307670593,
0.10653603076934814,
-0.07269534468650818,
-0.16217678785324097,
-0.06661860644817352,
0.09736999124288559,
0.02713370881974697,
0.06402166187763214,
-0.008831274695694447,
0.0209132619202137,
-0.0418827123939991,
-0.08689725399017334,
0.01845110021531582,
-0.002724801190197468,
0.09766784310340881,
0.013398203067481518,
-0.05929989740252495,
0.010071508586406708,
-0.0424175038933754,
-0.02767971158027649,
0.1879597157239914,
0.23286621272563934,
-0.101857490837574,
0.013352539390325546,
0.02542305178940296,
-0.06980051100254059,
-0.20460721850395203,
0.041747644543647766,
0.05582985654473305,
0.005550634115934372,
0.025357704609632492,
-0.1710343211889267,
0.1492459625005722,
0.11691849678754807,
-0.014687232673168182,
0.10239079594612122,
-0.315012663602829,
-0.1228574886918068,
0.1207168698310852,
0.13372543454170227,
0.1005958542227745,
-0.13921672105789185,
-0.017086707055568695,
-0.02037505991756916,
-0.13995309174060822,
0.1232801154255867,
-0.08145967125892639,
0.11192669719457626,
-0.025964654982089996,
0.08104658126831055,
0.0027495794929564,
-0.06324520707130432,
0.11274782568216324,
0.033715713769197464,
0.10195375978946686,
-0.058011073619127274,
-0.04634901508688927,
0.04752787575125694,
-0.0372588224709034,
0.02029898762702942,
-0.06743178516626358,
0.0265213530510664,
-0.10176746547222137,
-0.02213866263628006,
-0.07029411196708679,
0.04483870789408684,
-0.034767914563417435,
-0.06590957939624786,
-0.04667966440320015,
0.034587591886520386,
0.05000005662441254,
-0.01564815267920494,
0.14994733035564423,
0.03694634512066841,
0.13751836121082306,
0.10205323249101639,
0.07660824060440063,
-0.07855729758739471,
-0.06558439135551453,
-0.013557902537286282,
-0.01867561787366867,
0.057752255350351334,
-0.13447393476963043,
0.028717368841171265,
0.15170200169086456,
0.023830588907003403,
0.13155825436115265,
0.08513402938842773,
-0.018760744482278824,
0.00518178241327405,
0.06711912900209427,
-0.16196799278259277,
-0.0666874572634697,
0.0038276375271379948,
-0.053676776587963104,
-0.11391056329011917,
0.058184895664453506,
0.08980128914117813,
-0.06336728483438492,
-0.007139119319617748,
-0.0007776335114613175,
0.007409744430333376,
-0.05734283849596977,
0.19641217589378357,
0.05983427166938782,
0.04118388146162033,
-0.10457219928503036,
0.0754469707608223,
0.05222151800990105,
-0.08310344070196152,
0.0048354915343225,
0.058728016912937164,
-0.0839768648147583,
-0.04587981849908829,
0.07194583863019943,
0.16140908002853394,
-0.05818604305386543,
-0.05290941148996353,
-0.12691229581832886,
-0.11901950091123581,
0.08315069228410721,
0.15765614807605743,
0.11749260872602463,
0.02649836428463459,
-0.05480186268687248,
0.010587423108518124,
-0.1283111423254013,
0.08981902152299881,
0.036831989884376526,
0.07396987080574036,
-0.15676289796829224,
0.15613619983196259,
0.0006779058021493256,
0.04166571795940399,
-0.019920246675610542,
0.03746664896607399,
-0.10788169503211975,
0.007682627998292446,
-0.10297049582004547,
-0.02030145935714245,
-0.047142960131168365,
0.008031056262552738,
0.009526154957711697,
-0.054700031876564026,
-0.06317801028490067,
0.014586035162210464,
-0.10991515219211578,
-0.015512466430664062,
0.036923062056303024,
0.058389436453580856,
-0.11796459555625916,
-0.042472101747989655,
0.018437759950757027,
-0.05966944620013237,
0.0707550048828125,
0.04257848858833313,
0.029574135318398476,
0.052835047245025635,
-0.1258050948381424,
0.00467936135828495,
0.07774938642978668,
0.020596295595169067,
0.08053634315729141,
-0.091107077896595,
-0.009126297198235989,
0.009439350105822086,
0.045556068420410156,
0.016294773668050766,
0.07165581732988358,
-0.13621610403060913,
-0.003663061885163188,
-0.02752789855003357,
-0.08306777477264404,
-0.06870593130588531,
0.028025049716234207,
0.1082243099808693,
0.007815671153366566,
0.21064017713069916,
-0.07027922570705414,
0.029456323012709618,
-0.19844001531600952,
0.005108644720166922,
-0.014156145043671131,
-0.1081426590681076,
-0.1250874251127243,
-0.05312085151672363,
0.06025192141532898,
-0.05603271350264549,
0.1442091017961502,
0.023293036967515945,
0.03336489200592041,
0.031485188752412796,
-0.019543586298823357,
0.013052559457719326,
0.026209186762571335,
0.20525917410850525,
0.03234351426362991,
-0.039444610476493835,
0.057822298258543015,
0.047072168439626694,
0.10399540513753891,
0.11122884601354599,
0.19408397376537323,
0.1397150307893753,
-0.00891692005097866,
0.09733594954013824,
0.035476647317409515,
-0.07342521101236343,
-0.16167418658733368,
0.048152558505535126,
-0.05573197081685066,
0.1032773032784462,
-0.02105819433927536,
0.21575519442558289,
0.057336531579494476,
-0.1711810678243637,
0.03205676004290581,
-0.060859475284814835,
-0.08630422502756119,
-0.10390761494636536,
-0.05391940474510193,
-0.08464612811803818,
-0.1275969296693802,
0.0032541851978749037,
-0.12194564938545227,
0.00920549314469099,
0.11332584172487259,
0.007986009120941162,
-0.021867569535970688,
0.1516396552324295,
0.0014760080957785249,
0.03924177959561348,
0.042710062116384506,
0.016632605344057083,
-0.033798184245824814,
-0.10919508337974548,
-0.06237000599503517,
-0.028679436072707176,
-0.020354369655251503,
0.03518085926771164,
-0.0604061521589756,
-0.0418475978076458,
0.03757363185286522,
-0.01605609618127346,
-0.08790703117847443,
0.00806200411170721,
0.019143646582961082,
0.06022847816348076,
0.03706628829240799,
0.00912408996373415,
0.023310424759984016,
-0.009646313264966011,
0.2022438496351242,
-0.0813668966293335,
-0.07103036344051361,
-0.11440453678369522,
0.24390852451324463,
0.04189208894968033,
-0.008028020150959492,
0.03683219105005264,
-0.06896308064460754,
-0.001963095273822546,
0.24045848846435547,
0.19993019104003906,
-0.08220750093460083,
-0.011341658420860767,
0.014833211898803711,
-0.009544946253299713,
-0.036027658730745316,
0.10189886391162872,
0.13757722079753876,
0.06809039413928986,
-0.08984304219484329,
-0.0591716393828392,
-0.05800410732626915,
-0.008065124042332172,
-0.03937043249607086,
0.0541689433157444,
0.039688728749752045,
0.0012721430975943804,
-0.03690909221768379,
0.04527153819799423,
-0.06546895205974579,
-0.098318912088871,
0.07862482964992523,
-0.20992493629455566,
-0.16069597005844116,
-0.005525708664208651,
0.10550935566425323,
-0.0000876415433594957,
0.06282360106706619,
-0.029260316863656044,
-0.004250907339155674,
0.0838538333773613,
-0.01927582174539566,
-0.10224735736846924,
-0.07042324542999268,
0.09658117592334747,
-0.09357200562953949,
0.2178979367017746,
-0.04769809544086456,
0.07653883099555969,
0.13215474784374237,
0.06536200642585754,
-0.08546527475118637,
0.05732695385813713,
0.04735957831144333,
-0.07671468704938889,
0.027728749439120293,
0.0704755038022995,
-0.03631087765097618,
0.08122333884239197,
0.04328911378979683,
-0.13387589156627655,
0.018757767975330353,
-0.06392120569944382,
-0.05029890686273575,
-0.048373471945524216,
-0.031536199152469635,
-0.05816710740327835,
0.1353703737258911,
0.21123410761356354,
-0.02813940867781639,
-0.004653877578675747,
-0.06623878329992294,
0.018248744308948517,
0.054806340485811234,
0.030365293845534325,
-0.06334705650806427,
-0.22013364732265472,
0.02294909954071045,
0.03632303699851036,
-0.020299240946769714,
-0.20515450835227966,
-0.09090075641870499,
0.004679001402109861,
-0.074192114174366,
-0.09909754246473312,
0.07688712328672409,
0.08126982301473618,
0.04818067327141762,
-0.06442708522081375,
-0.03695191815495491,
-0.07877697050571442,
0.14135105907917023,
-0.13996361196041107,
-0.09635888040065765
] |
null | null |
transformers
|
# BART Pretrained
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
[2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.
데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
|
{"language": ["ko"], "widget": [{"text": "[BOS]\ubb50 \ud574?[SEP][MASK]\ud558\ub2e4\uac00 \uc774\uc81c [MASK]\ub824\uace0[EOS]"}], "inference": {"parameters": {"max_length": 64}}}
|
text2text-generation
|
alaggung/bart-pretrained
|
[
"transformers",
"pytorch",
"tf",
"bart",
"text2text-generation",
"ko",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ko"
] |
TAGS
#transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us
|
# BART Pretrained
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.
데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
|
[
"# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
"TAGS\n#transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us \n",
"# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
43,
89
] |
[
"passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us \n# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
0.00237730098888278,
-0.017256710678339005,
-0.0067395842634141445,
-0.0009646045509725809,
0.09113293886184692,
-0.0304929930716753,
0.14525561034679413,
0.062046147882938385,
0.030861910432577133,
-0.031774017959833145,
0.10147423297166824,
0.11211138963699341,
0.03516906872391701,
0.20527863502502441,
-0.036521945148706436,
-0.2827666997909546,
0.04692839831113815,
0.03146747872233391,
0.09984122961759567,
0.12841014564037323,
0.13461054861545563,
-0.05317196995019913,
0.0529363751411438,
0.034579772502183914,
-0.10740834474563599,
0.030850160866975784,
-0.02280198596417904,
-0.11465262621641159,
0.09480981528759003,
0.00955253280699253,
0.08795958757400513,
0.06387601047754288,
-0.04507270082831383,
-0.044903289526700974,
0.04863521084189415,
-0.03818279504776001,
-0.019755378365516663,
0.03986566141247749,
-0.034833598881959915,
-0.08291233330965042,
0.1752915382385254,
0.10188128054141998,
0.02250555157661438,
0.04511919617652893,
-0.1343814879655838,
-0.03618370369076729,
-0.030927924439311028,
0.017527861520648003,
0.11638760566711426,
0.044199198484420776,
-0.043502114713191986,
0.16815678775310516,
-0.11042585223913193,
0.0994674414396286,
0.007250434253364801,
-0.34726598858833313,
-0.04836523160338402,
0.02735172025859356,
0.07593413442373276,
0.03428863734006882,
-0.04228654131293297,
0.02845875173807144,
0.06908449530601501,
0.037951964884996414,
-0.010650848969817162,
-0.08251558244228363,
-0.1641022264957428,
-0.013832099735736847,
-0.09185922890901566,
0.012790375389158726,
0.27309340238571167,
-0.026970986276865005,
-0.018429076299071312,
-0.09144634008407593,
-0.00962223019450903,
-0.0895850732922554,
-0.02274283580482006,
-0.08611396700143814,
-0.052358485758304596,
0.0022359229624271393,
-0.05596974492073059,
-0.03511066734790802,
-0.08866257220506668,
-0.026975171640515327,
-0.14513376355171204,
0.26770657300949097,
0.02799387089908123,
0.01464442815631628,
-0.16847673058509827,
0.07121765613555908,
0.10211054235696793,
-0.1127028837800026,
-0.011727118864655495,
-0.09382550418376923,
-0.04423844814300537,
-0.010426116175949574,
-0.047555577009916306,
-0.10187076777219772,
0.02718406729400158,
0.15108060836791992,
0.09319913387298584,
0.016444751992821693,
-0.0049219392240047455,
0.05395971238613129,
0.08149997144937515,
0.10687321424484253,
0.004812933504581451,
-0.05437785014510155,
0.0022545952815562487,
-0.03700956702232361,
0.014767277054488659,
-0.03924638777971268,
-0.11326869577169418,
0.001563398283906281,
0.048691052943468094,
0.04142332449555397,
0.0007464916561730206,
0.12672142684459686,
-0.08299129456281662,
-0.02499016560614109,
0.0407654233276844,
-0.03075018711388111,
-0.045730940997600555,
-0.027592787519097328,
-0.06398718804121017,
0.05981253832578659,
0.011411214247345924,
0.06422794610261917,
-0.026488477364182472,
0.03858722373843193,
-0.03162066265940666,
-0.02432708814740181,
-0.018659478053450584,
-0.03263241797685623,
0.035510268062353134,
-0.014573825523257256,
0.02906857617199421,
-0.18200531601905823,
-0.12247999757528305,
-0.020076250657439232,
-0.0053150830790400505,
-0.026870448142290115,
-0.0425305999815464,
-0.09893222898244858,
0.019453659653663635,
-0.010486523620784283,
-0.05989480018615723,
0.007729323580861092,
-0.021554674953222275,
0.0749981477856636,
-0.012372785247862339,
0.10561701655387878,
-0.07890242338180542,
0.05637499317526817,
-0.15273205935955048,
-0.01721610128879547,
-0.09135449677705765,
0.07941972464323044,
-0.028094220906496048,
0.07650293409824371,
-0.0255611389875412,
0.012519612908363342,
-0.15016302466392517,
0.04828939959406853,
0.02434777468442917,
0.1894117146730423,
-0.10885756462812424,
-0.07246001809835434,
0.18225505948066711,
-0.05820325016975403,
-0.14694081246852875,
0.13801135122776031,
-0.014737309888005257,
0.13393564522266388,
0.13760915398597717,
0.21291090548038483,
-0.0008276253356598318,
-0.042398568242788315,
0.004789601545780897,
0.044498980045318604,
-0.08257997781038284,
0.001487169647589326,
0.06527731567621231,
0.062004454433918,
-0.14323580265045166,
0.05667756870388985,
0.0843793973326683,
0.08778190612792969,
-0.09153732657432556,
-0.027368979528546333,
0.040020231157541275,
-0.039764586836099625,
0.1189451515674591,
0.0294235497713089,
0.10934675484895706,
-0.07421980053186417,
-0.04018859192728996,
-0.0234342310577631,
0.04437989741563797,
0.0017412559827789664,
0.00955970585346222,
-0.12676800787448883,
0.07677175849676132,
0.03617668151855469,
0.03656740486621857,
-0.09719040989875793,
-0.01585409604012966,
0.005998918320983648,
0.11318264901638031,
0.06017309054732323,
0.1285179853439331,
0.023903140798211098,
-0.0512024387717247,
0.009202061221003532,
0.019484592601656914,
0.10111238807439804,
-0.00342559814453125,
-0.08080047369003296,
-0.09022873640060425,
0.053641363978385925,
-0.06921378523111343,
0.14166651666164398,
-0.026134934276342392,
0.0019499597838148475,
0.0025700803380459547,
0.1561504453420639,
-0.00046376162208616734,
0.024458158761262894,
0.06503172218799591,
0.06226896494626999,
-0.036674585193395615,
0.030908893793821335,
0.06304938346147537,
0.020402075722813606,
-0.0984911397099495,
0.23680585622787476,
-0.09839193522930145,
0.09942179918289185,
0.1415841281414032,
-0.11950165778398514,
-0.04137082025408745,
-0.03014424629509449,
-0.03894126042723656,
0.00032331180409528315,
0.06205478310585022,
0.004586583469063044,
0.19462350010871887,
-0.016872737556695938,
0.1516222357749939,
-0.04357453063130379,
-0.05362419784069061,
-0.010226981714367867,
-0.07347863912582397,
-0.001083113718777895,
0.09525345265865326,
-0.003650031052529812,
-0.17253360152244568,
0.10653527081012726,
0.09272401034832001,
0.04673127830028534,
0.26295700669288635,
0.03798794746398926,
0.016761885955929756,
-0.005683422088623047,
0.0007533606258220971,
-0.07332174479961395,
0.02877025119960308,
-0.23156781494617462,
-0.05491713806986809,
0.05288750305771828,
-0.03317464143037796,
0.051805272698402405,
-0.07479453086853027,
-0.04946604743599892,
0.0021242250222712755,
0.012268414720892906,
0.021850809454917908,
0.12145517766475677,
-0.003392681246623397,
0.11540569365024567,
0.008864949457347393,
-0.08077022433280945,
0.03775634244084358,
0.004448361694812775,
-0.09414653480052948,
0.1315329521894455,
-0.059850748628377914,
-0.3087500035762787,
-0.03974515572190285,
-0.043846555054187775,
-0.002971203997731209,
0.010028265416622162,
0.06664572656154633,
-0.056386664509773254,
-0.011452716775238514,
0.0039482335560023785,
0.05557302385568619,
-0.019996605813503265,
-0.002535757375881076,
0.012016783468425274,
-0.03009248524904251,
-0.08229280263185501,
-0.10704082250595093,
-0.056015729904174805,
-0.059449538588523865,
-0.053376730531454086,
0.0918085128068924,
-0.12283487617969513,
0.08637262135744095,
0.11234310269355774,
0.0023198784328997135,
0.031084323301911354,
-0.06998828053474426,
0.15648043155670166,
-0.1300089806318283,
-0.002547285985201597,
0.10288049280643463,
-0.052821166813373566,
0.0013637448428198695,
0.10247451066970825,
-0.010375306941568851,
-0.0460088811814785,
0.08761909604072571,
-0.04074542224407196,
-0.07144797593355179,
-0.20704220235347748,
-0.11164993792772293,
-0.06605736911296844,
0.10065159946680069,
-0.015351630747318268,
0.016613399609923363,
0.12597966194152832,
0.06983481347560883,
-0.03530631586909294,
0.021609844639897346,
-0.009575813077390194,
0.04638414457440376,
0.12726157903671265,
-0.04835175722837448,
0.13353483378887177,
-0.05963559076189995,
-0.11026980727910995,
0.06818893551826477,
-0.007204280700534582,
0.05167091637849808,
0.08779042959213257,
-0.004501474089920521,
0.06607824563980103,
0.11002261936664581,
0.12411961704492569,
0.03878108412027359,
-0.0006828566547483206,
-0.03877400606870651,
-0.030542436987161636,
-0.027027754113078117,
-0.07444886118173599,
0.05914187431335449,
0.03721674531698227,
-0.09270995855331421,
-0.053256720304489136,
-0.05679309368133545,
0.09929831326007843,
0.123944491147995,
0.051347363740205765,
-0.16958951950073242,
-0.046040128916502,
0.02755865268409252,
-0.07621616125106812,
-0.0354287214577198,
0.08329443633556366,
0.021687716245651245,
-0.17225678265094757,
0.07912909984588623,
0.00106431997846812,
0.07481008023023605,
-0.039155032485723495,
0.04548516869544983,
-0.09962218999862671,
-0.08326945453882217,
-0.006622631102800369,
0.07524800300598145,
-0.341255247592926,
0.22069376707077026,
-0.01382134947925806,
-0.018362240865826607,
-0.11822519451379776,
-0.0438627228140831,
0.01557084359228611,
0.03237244486808777,
0.09494411200284958,
0.00639704754576087,
0.019154822453856468,
-0.08767533302307129,
-0.0490092895925045,
0.05994700640439987,
0.05933540686964989,
-0.04955735802650452,
0.0013372179819270968,
0.01296556368470192,
-0.00028692945488728583,
-0.04217072203755379,
-0.056764643639326096,
-0.07471281290054321,
-0.05962357670068741,
0.05054597556591034,
0.0740819200873375,
0.10820623487234116,
0.02289409562945366,
-0.07664752751588821,
-0.06217799335718155,
0.11159562319517136,
-0.02150675281882286,
-0.07349332422018051,
-0.07619684934616089,
-0.004576309584081173,
0.018863148987293243,
-0.07176059484481812,
-0.004340143874287605,
-0.049245793372392654,
-0.025187281891703606,
-0.05353327840566635,
-0.13331852853298187,
0.08774570375680923,
-0.07593192905187607,
-0.0857435092329979,
-0.0166526660323143,
0.1284586638212204,
0.025159209966659546,
0.05845269560813904,
0.03453787788748741,
-0.029534602537751198,
-0.02303485758602619,
-0.07609770447015762,
-0.015332398936152458,
-0.033532433211803436,
-0.0011314006987959146,
-0.01932036504149437,
0.017730092629790306,
-0.08006521314382553,
-0.089805968105793,
-0.02398834004998207,
0.17114543914794922,
0.14742642641067505,
-0.05373374745249748,
0.1384531408548355,
0.16277651488780975,
0.008696244098246098,
-0.22774800658226013,
-0.10209739953279495,
-0.005882585421204567,
0.03380719944834709,
-0.028844408690929413,
-0.14967966079711914,
0.036952584981918335,
0.0023950955364853144,
-0.04379997402429581,
0.006134620402008295,
-0.21014022827148438,
-0.12872052192687988,
0.17047908902168274,
-0.03402049466967583,
0.3444059193134308,
-0.06792575120925903,
-0.04348565638065338,
0.013976069167256355,
-0.11168414354324341,
0.11420085281133652,
-0.002632793504744768,
0.07189980894327164,
0.008100149221718311,
0.07759460806846619,
0.02505628764629364,
0.006510575767606497,
0.08326886594295502,
-0.021524028852581978,
0.002617500489577651,
-0.09338119626045227,
-0.08063782751560211,
-0.036779340356588364,
0.017418615520000458,
0.1228678897023201,
-0.041472140699625015,
0.023599648848176003,
-0.15785987675189972,
-0.041649047285318375,
-0.07004669308662415,
0.07159505039453506,
0.021055618301033974,
-0.06719034910202026,
-0.045169465243816376,
0.025894928723573685,
-0.04646556079387665,
0.018704337999224663,
0.1377771943807602,
-0.04913724586367607,
0.11497630178928375,
0.03623843193054199,
0.18237940967082977,
-0.07960744202136993,
0.1624172478914261,
-0.05455901101231575,
-0.07461611926555634,
0.09202523529529572,
-0.07248444855213165,
-0.02330966852605343,
0.10850534588098526,
0.001178692327812314,
0.07194085419178009,
0.029282666742801666,
-0.07033083587884903,
0.06501239538192749,
0.12528622150421143,
-0.18502411246299744,
-0.054201047867536545,
-0.09484943002462387,
0.016088023781776428,
0.1034373864531517,
0.08618149906396866,
0.1440390646457672,
-0.06951753050088882,
-0.05007617548108101,
-0.01351745706051588,
-0.018282130360603333,
-0.07203369587659836,
0.03653804585337639,
0.04540548473596573,
0.02828405238687992,
-0.09685672074556351,
0.03538482263684273,
0.040970172733068466,
-0.04999779164791107,
0.06847169250249863,
0.0823405459523201,
-0.07135675102472305,
-0.07817628979682922,
-0.12760664522647858,
0.15402962267398834,
-0.013833250850439072,
-0.05395093560218811,
-0.05582476779818535,
-0.076716847717762,
0.030519556254148483,
0.21226835250854492,
0.05981126427650452,
0.09146445989608765,
-0.02939577028155327,
0.00934538058936596,
-0.0011294097639620304,
0.020696336403489113,
0.05967942252755165,
-0.00021616544108837843,
-0.04517596587538719,
0.11074197292327881,
0.018054714426398277,
0.14197348058223724,
-0.1054128035902977,
-0.0999315083026886,
-0.12030744552612305,
0.04119640588760376,
-0.07485172152519226,
-0.10841795802116394,
-0.1349269151687622,
-0.057187557220458984,
-0.00781216798350215,
-0.10688905417919159,
-0.06651949882507324,
-0.02674521505832672,
-0.09428144991397858,
0.06625592708587646,
0.013585190288722515,
0.054396264255046844,
-0.07525541633367538,
-0.0043399580754339695,
0.07589922100305557,
-0.012898480519652367,
0.11289167404174805,
0.12274735420942307,
-0.04888428747653961,
0.07225479185581207,
-0.12292184680700302,
-0.0043477704748511314,
0.05808491259813309,
0.019922463223338127,
0.03663147985935211,
0.04849684610962868,
-0.007854276336729527,
0.06805812567472458,
0.09892028570175171,
0.06646096706390381,
0.05576783046126366,
-0.10738663375377655,
-0.00934372004121542,
0.035439420491456985,
-0.09794853627681732,
-0.05671873688697815,
-0.001875712419860065,
0.021445082500576973,
0.05203362554311752,
0.0968901515007019,
-0.05111711844801903,
0.05009562149643898,
-0.08566087484359741,
0.029760785400867462,
-0.016322975978255272,
-0.11990287899971008,
-0.060413382947444916,
-0.10167806595563889,
0.025436334311962128,
-0.0078020174987614155,
0.19191361963748932,
0.08970140665769577,
-0.057857759296894073,
0.026094797998666763,
0.03700634837150574,
0.006074478849768639,
0.01003602147102356,
0.057051919400691986,
0.08475715667009354,
-0.009679839946329594,
-0.09880213439464569,
0.042695071548223495,
-0.00881923083215952,
-0.053511716425418854,
0.06872983276844025,
0.08383865654468536,
0.0027310808654874563,
0.0650862604379654,
0.018351957201957703,
0.04218770191073418,
-0.05627427250146866,
-0.17874065041542053,
-0.11174044013023376,
0.025921041145920753,
-0.04379647225141525,
0.08408534526824951,
0.1264435201883316,
-0.052426427602767944,
0.008189208805561066,
-0.0055518620647490025,
-0.03291192650794983,
-0.12739647924900055,
-0.16850480437278748,
-0.07213897258043289,
-0.09922021627426147,
0.017844844609498978,
-0.07578819990158081,
0.016173603013157845,
0.05883931368589401,
0.08071854710578918,
-0.06456427276134491,
0.11278299987316132,
-0.0006083069019950926,
-0.06956851482391357,
0.147197425365448,
-0.05052090063691139,
0.04272688552737236,
-0.13512998819351196,
-0.026940416544675827,
-0.07601368427276611,
0.07854001224040985,
-0.026484133675694466,
0.028385238721966743,
-0.07056205719709396,
-0.01251394022256136,
-0.05812046304345131,
-0.10691972821950912,
-0.024887559935450554,
0.012041118927299976,
0.059317078441381454,
0.05542314425110817,
0.04002464562654495,
0.02483559399843216,
0.01626766286790371,
0.2338835895061493,
-0.012000980786979198,
-0.08257395029067993,
-0.14637742936611176,
0.1851954162120819,
-0.02435298264026642,
0.028894364833831787,
-0.013618716970086098,
0.002903774380683899,
-0.06366290897130966,
0.29855769872665405,
0.21378298103809357,
-0.04104582965373993,
0.009598095901310444,
-0.03718011826276779,
0.041329629719257355,
0.053261835128068924,
0.1310437023639679,
0.05906219407916069,
0.25295862555503845,
-0.06207708641886711,
-0.030382689088582993,
-0.05157783627510071,
-0.017525259405374527,
-0.0014934802893549204,
0.05945852771401405,
0.050434570759534836,
-0.0720866397023201,
-0.05602395534515381,
0.10142465680837631,
-0.19106587767601013,
0.037513162940740585,
-0.13803544640541077,
-0.16573674976825714,
-0.09695840626955032,
-0.007719099521636963,
0.0816965401172638,
0.0810398980975151,
0.091909259557724,
0.0022631827741861343,
-0.0014806193066760898,
0.010657310485839844,
0.025524655357003212,
-0.09590655565261841,
-0.03313348814845085,
0.12656307220458984,
-0.09688080847263336,
0.018420910462737083,
-0.029418209567666054,
0.09774977713823318,
0.06216542795300484,
0.05389837175607681,
-0.02153019607067108,
0.05603238567709923,
0.030506659299135208,
0.011423502117395401,
0.011781028471887112,
0.08861783891916275,
0.05393461510539055,
0.023696739226579666,
0.07186762243509293,
-0.13430249691009521,
0.06764307618141174,
-0.04718608781695366,
-0.008104019798338413,
-0.07711844146251678,
0.09930949658155441,
-0.03697973117232323,
0.12981396913528442,
0.12429188191890717,
-0.04117133468389511,
-0.012220540083944798,
-0.02415858581662178,
0.009208738803863525,
-0.004067994188517332,
-0.08347602188587189,
-0.0751722976565361,
-0.17571090161800385,
-0.06799381971359253,
0.0415017232298851,
-0.027684826403856277,
-0.17742803692817688,
0.04471343755722046,
-0.12468823045492172,
0.017792578786611557,
-0.03901931643486023,
0.0544976070523262,
0.05616316944360733,
0.013321652077138424,
0.01962926983833313,
-0.0502508170902729,
0.03976093605160713,
0.054655469954013824,
-0.12421058118343353,
-0.07720380276441574
] |
null | null |
transformers
|
# BART R3F
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
[bart-pretrained](https://huggingface.co/alaggung/bart-pretrained) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.
데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
|
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
|
summarization
|
alaggung/bart-r3f
|
[
"transformers",
"pytorch",
"tf",
"bart",
"text2text-generation",
"summarization",
"ko",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ko"
] |
TAGS
#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# BART R3F
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
bart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.
데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
|
[
"# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
"TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
51,
103
] |
[
"passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us \n# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
0.0043957470916211605,
0.03843561187386513,
-0.005781741347163916,
-0.010108175687491894,
0.08787675946950912,
-0.02153603546321392,
0.13030803203582764,
0.07137732207775116,
0.01625755801796913,
-0.028576219454407692,
0.10615841299295425,
0.1026599109172821,
0.019381945952773094,
0.21675238013267517,
-0.07707476615905762,
-0.2617667615413666,
0.06733972579240799,
-0.002719886600971222,
0.002211296930909157,
0.12420449405908585,
0.1464022547006607,
-0.04353144019842148,
0.06316617876291275,
0.011014112271368504,
-0.14226384460926056,
0.04838995262980461,
-0.017780745401978493,
-0.1093340516090393,
0.0867377519607544,
0.07422489672899246,
0.09270909428596497,
0.10385093092918396,
-0.02008751779794693,
-0.04979657754302025,
0.047955792397260666,
-0.02866065874695778,
-0.04415997490286827,
0.06515228003263474,
-0.053475651890039444,
-0.07248228043317795,
0.19626691937446594,
0.05120475962758064,
0.023979026824235916,
0.045789480209350586,
-0.1231071874499321,
0.0037075525615364313,
-0.028881803154945374,
-0.00784122385084629,
0.0727662444114685,
0.024562962353229523,
-0.030515043064951897,
0.1484849900007248,
-0.12489567697048187,
0.09357742965221405,
0.04714876785874367,
-0.2999151349067688,
-0.05111618712544441,
0.13692684471607208,
0.07496029883623123,
0.041562799364328384,
-0.039151616394519806,
0.05097230523824692,
0.06942011415958405,
0.03662382811307907,
0.03494248539209366,
-0.06344839930534363,
-0.16349154710769653,
0.01677924580872059,
-0.0946260467171669,
-0.015124918892979622,
0.31902655959129333,
-0.006867510732263327,
0.007088354788720608,
-0.11072900146245956,
-0.04740247130393982,
-0.08096000552177429,
-0.02167939394712448,
-0.060054682195186615,
-0.0512278713285923,
-0.007715520914644003,
-0.062446750700473785,
-0.01730976440012455,
-0.09185585379600525,
-0.033498045057058334,
-0.14561812579631805,
0.2595866918563843,
-0.006948238704353571,
0.03003448247909546,
-0.1580161154270172,
0.05621417984366417,
0.05175098404288292,
-0.10857478529214859,
0.012546339072287083,
-0.11313331127166748,
-0.09063940495252609,
0.01796610653400421,
-0.07138574123382568,
-0.12646938860416412,
0.06060921400785446,
0.11385840177536011,
0.06873767077922821,
0.01768757402896881,
0.027873117476701736,
0.06383074820041656,
0.10743743926286697,
0.10846636444330215,
-0.060777127742767334,
-0.07310338318347931,
-0.006200417410582304,
-0.036367855966091156,
-0.0031160188373178244,
-0.05314922332763672,
-0.11026941239833832,
0.012415348552167416,
0.00900630746036768,
0.038014356046915054,
0.007984676398336887,
0.13257935643196106,
-0.08489488810300827,
-0.033634986728429794,
0.09287125617265701,
-0.040319863706827164,
-0.05562850460410118,
-0.01095972117036581,
-0.06404029577970505,
0.03877696394920349,
0.01736333779990673,
0.037525150924921036,
0.006514487322419882,
0.03714509308338165,
-0.042895276099443436,
-0.05629310756921768,
-0.046002306044101715,
-0.07612164318561554,
0.02476184070110321,
0.02014831081032753,
0.043213214725255966,
-0.1796339899301529,
-0.09207471460103989,
-0.032276228070259094,
0.019705411046743393,
-0.06252281367778778,
-0.04659431055188179,
-0.08479588478803635,
-0.020281286910176277,
0.018492067232728004,
-0.05892188102006912,
0.05656300485134125,
-0.02549096569418907,
0.055538393557071686,
-0.03948747739195824,
0.13079577684402466,
-0.14690592885017395,
0.06011663377285004,
-0.12274417281150818,
-0.016065610572695732,
-0.08323682844638824,
0.10718228667974472,
-0.061105016618967056,
0.028956051915884018,
-0.040926262736320496,
0.012501193210482597,
-0.1337224543094635,
0.04763737693428993,
0.01899411901831627,
0.18687519431114197,
-0.15023508667945862,
-0.0490332692861557,
0.1321788877248764,
-0.06292807310819626,
-0.1199149489402771,
0.11575469374656677,
-0.012427057139575481,
0.11678475886583328,
0.08901949226856232,
0.2266746163368225,
0.0008767528343014419,
-0.010378506034612656,
-0.02341463975608349,
0.05682200565934181,
-0.08307132124900818,
-0.006358294747769833,
0.07337905466556549,
0.10512495785951614,
-0.10863883793354034,
0.061931006610393524,
0.0635751411318779,
0.07756083458662033,
-0.08432997018098831,
-0.024502677842974663,
0.025886686518788338,
-0.036722034215927124,
0.12201859802007675,
0.015091871842741966,
0.11267975717782974,
-0.07171755284070969,
-0.0435471311211586,
-0.009216473437845707,
0.055983591824769974,
-0.01438173744827509,
-0.015071581117808819,
-0.1283651739358902,
0.08466900140047073,
-0.00950520671904087,
0.042655427008867264,
-0.13754379749298096,
-0.07034275680780411,
-0.019730109721422195,
0.11153775453567505,
0.06676049530506134,
0.20062251389026642,
0.03677622973918915,
-0.05914662778377533,
-0.008225478231906891,
0.010604750365018845,
0.1036757305264473,
0.02041337825357914,
-0.05535563826560974,
-0.08192183077335358,
0.017576098442077637,
-0.09293217211961746,
0.11469553411006927,
-0.0406346395611763,
0.008475994691252708,
0.01800340786576271,
0.1651906818151474,
0.01580011658370495,
0.029905719682574272,
0.0590183325111866,
0.026978420093655586,
-0.0369340181350708,
0.027687299996614456,
0.04365084692835808,
0.006326287519186735,
-0.10503638535737991,
0.24581177532672882,
-0.08150612562894821,
0.164146289229393,
0.13832491636276245,
-0.06477496027946472,
-0.033235106617212296,
-0.013880462385714054,
-0.042786065489053726,
0.02782665379345417,
0.03327159956097603,
-0.02727103792130947,
0.13706134259700775,
-0.004693510942161083,
0.1305585354566574,
-0.04084846004843712,
-0.04664544016122818,
-0.012514994479715824,
-0.054125793278217316,
-0.033411599695682526,
0.10355086624622345,
0.020832424983382225,
-0.2138829529285431,
0.11387118697166443,
0.09611091017723083,
0.05527343600988388,
0.255362868309021,
0.05144717916846275,
0.004429374355822802,
-0.0027845546137541533,
-0.024640735238790512,
-0.07577186077833176,
0.05401336029171944,
-0.1806643009185791,
-0.05312086641788483,
0.07381386309862137,
-0.03041171096265316,
0.06775066256523132,
-0.05932976305484772,
-0.0447106659412384,
0.00023244641488417983,
0.007742065470665693,
-0.0043401652947068214,
0.1404750645160675,
0.009006875567138195,
0.12875084578990936,
-0.001865497906692326,
-0.09669458121061325,
0.014015339314937592,
-0.021817810833454132,
-0.07142694294452667,
0.1346278190612793,
-0.05029373615980148,
-0.31873250007629395,
-0.055991094559431076,
-0.010777180083096027,
-0.024299699813127518,
0.0031074904836714268,
0.05828572064638138,
-0.056580133736133575,
-0.03139220550656319,
-0.024287384003400803,
0.07359377294778824,
-0.049076713621616364,
-0.019948547706007957,
0.00899551622569561,
-0.012256172485649586,
-0.06274213641881943,
-0.1253386288881302,
-0.050103943794965744,
-0.043895423412323,
-0.017657019197940826,
0.11531570553779602,
-0.12083768099546432,
0.10443022102117538,
0.10989632457494736,
-0.03494922071695328,
0.03642336279153824,
-0.0620090626180172,
0.15622131526470184,
-0.09959578514099121,
-0.007653978653252125,
0.08499430119991302,
-0.016989151015877724,
-0.0130238626152277,
0.13179512321949005,
0.002283091889694333,
-0.0668775737285614,
0.08186034113168716,
-0.03437439724802971,
-0.091995969414711,
-0.2016080766916275,
-0.14967991411685944,
-0.08276686817407608,
0.0884333997964859,
-0.01708168536424637,
0.031637564301490784,
0.05278957262635231,
0.06686699390411377,
-0.008236908353865147,
-0.01872892491519451,
-0.012730673886835575,
0.03541635721921921,
0.1356048583984375,
-0.06067577376961708,
0.14967896044254303,
-0.069090336561203,
-0.1112881526350975,
0.07895133644342422,
0.005483553279191256,
0.0828295573592186,
0.06326740235090256,
0.010809244588017464,
0.06175553798675537,
0.06794130057096481,
0.12399592250585556,
0.08345365524291992,
0.017949266359210014,
-0.04205230996012688,
-0.06832550466060638,
-0.027591409161686897,
-0.08931870758533478,
0.07834849506616592,
0.06737197190523148,
-0.11862904578447342,
-0.040522102266550064,
-0.0397462360560894,
0.09220916032791138,
0.12245460599660873,
0.05596303194761276,
-0.2029031664133072,
-0.04751289635896683,
0.04105198383331299,
-0.06117348000407219,
-0.01295486930757761,
0.08269765973091125,
0.09349711984395981,
-0.13481192290782928,
0.04207967221736908,
0.004161507822573185,
0.0741078108549118,
-0.022620422765612602,
0.034269485622644424,
-0.10238591581583023,
-0.06607402116060257,
-0.0015169470570981503,
0.08046507090330124,
-0.29175707697868347,
0.238169327378273,
-0.019637983292341232,
-0.06702200323343277,
-0.1107509583234787,
-0.055041905492544174,
0.012676356360316277,
0.013509804382920265,
0.1061645969748497,
-0.0002812467864714563,
-0.06380175054073334,
-0.07367382943630219,
-0.04428621381521225,
0.07163684815168381,
0.03805419057607651,
-0.03531494364142418,
0.013036241754889488,
-0.005537604447454214,
0.0027020499110221863,
-0.009148201905190945,
0.005831799935549498,
-0.046310920268297195,
-0.11923526972532272,
0.04189231991767883,
0.0978730246424675,
0.06432216614484787,
0.005825386848300695,
-0.07967231422662735,
-0.031001368537545204,
0.13665762543678284,
0.10398414731025696,
-0.05887657403945923,
-0.09584317356348038,
0.023616597056388855,
0.07248429208993912,
-0.06859903037548065,
-0.008317508734762669,
-0.03546139970421791,
0.01341354288160801,
-0.04042283818125725,
-0.16269829869270325,
0.10341848433017731,
-0.09508006274700165,
-0.05208827927708626,
-0.02797509729862213,
0.09679929167032242,
0.005980298388749361,
0.07707078754901886,
0.030182380229234695,
0.0039970302022993565,
-0.029347410425543785,
-0.08726917207241058,
-0.013450294733047485,
-0.017968209460377693,
-0.004042373970150948,
0.029221782460808754,
0.011412827298045158,
-0.09181708097457886,
-0.024320097640156746,
-0.020390769466757774,
0.2064320594072342,
0.11598310619592667,
-0.09274698793888092,
0.13025376200675964,
0.12173504382371902,
0.025916215032339096,
-0.2569325268268585,
-0.10018884390592575,
-0.01566576398909092,
0.06938693672418594,
-0.001521583180874586,
-0.10289514809846878,
0.005906551145017147,
0.0006914953701198101,
-0.049436457455158234,
-0.03789243847131729,
-0.21722789108753204,
-0.11132707446813583,
0.15244416892528534,
-0.02078641578555107,
0.310398668050766,
-0.07749176770448685,
-0.022702444344758987,
-0.015097348019480705,
-0.15355584025382996,
0.1720244586467743,
-0.03531557694077492,
0.0809372290968895,
0.0059165358543396,
0.08429618179798126,
0.030143529176712036,
-0.016762467101216316,
0.08880770206451416,
-0.019816281273961067,
-0.01144680380821228,
-0.06667698919773102,
-0.11169195920228958,
0.007113730069249868,
0.014945236966013908,
0.12093356996774673,
-0.06345176696777344,
0.03686968609690666,
-0.1527540534734726,
-0.032519854605197906,
-0.08862252533435822,
0.049638304859399796,
0.024044610559940338,
-0.05756573751568794,
-0.057672206312417984,
0.04478653892874718,
-0.014477036893367767,
0.025074129924178123,
0.1582091897726059,
-0.08046888560056686,
0.09702075272798538,
0.1400463581085205,
0.159454345703125,
-0.1021842509508133,
0.14240863919258118,
-0.01721186749637127,
-0.05721891298890114,
0.07588960230350494,
-0.13892483711242676,
0.0025560359936207533,
0.11140574514865875,
-0.0025466433726251125,
0.08682303130626678,
0.042884405702352524,
-0.042054589837789536,
0.06122784689068794,
0.15543651580810547,
-0.16238491237163544,
-0.10717812180519104,
-0.06829869747161865,
0.04061761870980263,
0.07512962073087692,
0.07828278094530106,
0.14987438917160034,
-0.07120439410209656,
-0.034966934472322464,
-0.018841691315174103,
0.0006220170762389898,
-0.08064223825931549,
0.07357537001371384,
0.03748897835612297,
0.046415235847234726,
-0.10990462452173233,
0.02777443639934063,
0.04449436813592911,
-0.04113716259598732,
0.04476805403828621,
0.05533118173480034,
-0.07166627049446106,
-0.08650723099708557,
-0.12659958004951477,
0.0950176790356636,
-0.058846451342105865,
-0.03275026008486748,
-0.054139621555805206,
-0.08386276662349701,
0.017834162339568138,
0.14229871332645416,
0.06191949173808098,
0.08134964108467102,
-0.044112008064985275,
-0.02596605196595192,
0.0013347764033824205,
0.009053632616996765,
0.05882120132446289,
0.008281231857836246,
-0.05804210528731346,
0.043003011494874954,
-0.01385386660695076,
0.10303165018558502,
-0.11409241706132889,
-0.06103234365582466,
-0.12965473532676697,
0.019481981173157692,
-0.1003725528717041,
-0.09510461241006851,
-0.10645376145839691,
-0.04615410044789314,
-0.007487500552088022,
-0.09415159374475479,
-0.07730346918106079,
-0.018833905458450317,
-0.11170696467161179,
0.06177455559372902,
-0.0049113743007183075,
0.06469441205263138,
-0.06305136531591415,
0.007258034311234951,
0.05680672824382782,
-0.01883092150092125,
0.11334789544343948,
0.1128082424402237,
-0.056675951927900314,
0.07799547910690308,
-0.11693300306797028,
-0.049617741256952286,
0.06931760907173157,
0.024727007374167442,
0.07028540223836899,
0.012252225540578365,
0.00195796275511384,
0.0764140859246254,
0.08541412651538849,
0.05526069551706314,
0.004360145889222622,
-0.09387723356485367,
0.003843380603939295,
-0.022492138668894768,
-0.0747966319322586,
-0.060594089329242706,
-0.004642641171813011,
0.03880941495299339,
0.08434055745601654,
0.09379411488771439,
-0.03939982131123543,
0.035907723009586334,
-0.10815764963626862,
0.03652186319231987,
-0.01451465766876936,
-0.12473957240581512,
-0.052936017513275146,
-0.09447118639945984,
0.0295072291046381,
-0.013059457764029503,
0.22805950045585632,
0.10356143862009048,
-0.07859380543231964,
0.032160673290491104,
0.034317731857299805,
0.031824011355638504,
0.006741353310644627,
0.05828185752034187,
0.06615131348371506,
0.005729057360440493,
-0.08063172549009323,
0.03700052946805954,
-0.003925237338989973,
-0.048202019184827805,
0.08671663701534271,
0.07534804940223694,
-0.012080497108399868,
0.06431246548891068,
0.04146388918161392,
0.018294360488653183,
-0.01422071736305952,
-0.09248856455087662,
-0.08615241199731827,
0.040826525539159775,
-0.06754610687494278,
0.04927040636539459,
0.12827609479427338,
-0.06645163148641586,
0.04038112610578537,
-0.04293586686253548,
-0.02203274890780449,
-0.10787751525640488,
-0.13427700102329254,
-0.0941881313920021,
-0.12971457839012146,
0.00884074904024601,
-0.11816057562828064,
0.025130268186330795,
0.10223983973264694,
0.07531704008579254,
-0.036432474851608276,
0.0819663256406784,
-0.004506620112806559,
-0.05396837368607521,
0.11370629817247391,
-0.0512322299182415,
0.038558825850486755,
-0.1247687041759491,
0.012415524572134018,
-0.044741176068782806,
0.10303483158349991,
-0.020895175635814667,
0.04975634068250656,
-0.059275947511196136,
-0.029242655262351036,
-0.0529620386660099,
-0.0904693752527237,
-0.06004022806882858,
0.03569003567099571,
0.037744469940662384,
0.07451687753200531,
0.043241504579782486,
0.0020280638709664345,
0.024436751380562782,
0.25115707516670227,
-0.04894232377409935,
-0.08095114678144455,
-0.17452651262283325,
0.155814066529274,
-0.025292472913861275,
0.07652875781059265,
-0.004800789058208466,
-0.025549130514264107,
-0.10931628197431564,
0.22277520596981049,
0.28772181272506714,
-0.06903822720050812,
0.017527835443615913,
-0.02397935464978218,
0.035180576145648956,
0.01571793109178543,
0.1053178533911705,
0.07260973006486893,
0.24472224712371826,
-0.07236523181200027,
-0.018902283161878586,
-0.04336152970790863,
-0.012164480052888393,
0.05426175147294998,
0.0738920196890831,
0.04657714068889618,
-0.07648348063230515,
-0.04753149300813675,
0.08758393675088882,
-0.16043072938919067,
-0.029756400734186172,
-0.16469761729240417,
-0.20141765475273132,
-0.10523560643196106,
-0.013616167940199375,
0.028661975637078285,
0.06381133943796158,
0.12410743534564972,
-0.031203806400299072,
-0.007534870412200689,
0.015516533516347408,
0.009449006989598274,
-0.12135324627161026,
-0.0045209480449557304,
0.124655582010746,
-0.10423944890499115,
0.021208524703979492,
-0.03331334516406059,
0.07613822817802429,
0.08366262912750244,
0.022297488525509834,
-0.03261415660381317,
0.0685788169503212,
0.0204894058406353,
-0.012910820543766022,
0.017050525173544884,
0.09690477699041367,
0.025787679478526115,
0.0761098861694336,
0.0629744678735733,
-0.17145095765590668,
0.07539267092943192,
-0.02154918573796749,
0.012950132600963116,
-0.06720837205648422,
0.07029042392969131,
-0.039841365069150925,
0.14623530209064484,
0.13749496638774872,
-0.041455212980508804,
0.001038656453602016,
-0.022594744339585304,
0.04044954106211662,
0.01473139226436615,
-0.04826592653989792,
-0.08254579454660416,
-0.16151104867458344,
-0.06599879264831543,
0.03883727639913559,
-0.02408944070339203,
-0.20367497205734253,
0.05090534687042236,
-0.11059287935495377,
0.03572038933634758,
0.0030799659434705973,
0.07687298208475113,
0.08216223865747452,
0.01266297698020935,
0.0031440663151443005,
-0.06826607137918472,
0.03702389448881149,
0.05883019044995308,
-0.119697704911232,
-0.07433880120515823
] |
null | null |
transformers
|
# BART R3F
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
[bart-r3f](https://huggingface.co/alaggung/bart-r3f) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.
데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
|
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
|
summarization
|
alaggung/bart-rl
|
[
"transformers",
"pytorch",
"tf",
"bart",
"text2text-generation",
"summarization",
"ko",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ko"
] |
TAGS
#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us
|
# BART R3F
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
bart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.
데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
|
[
"# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
"TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us \n",
"# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
47,
103
] |
[
"passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us \n# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다."
] |
[
-0.0011565162567421794,
0.014731353148818016,
-0.006296293810009956,
0.0014817863702774048,
0.10146302729845047,
-0.007712916936725378,
0.12115488201379776,
0.06756991893053055,
0.04513048753142357,
-0.04735687002539635,
0.09774233400821686,
0.13588741421699524,
0.0310000441968441,
0.20809243619441986,
-0.09323526173830032,
-0.25699785351753235,
0.047412723302841187,
0.010521452873945236,
0.04752982780337334,
0.12555082142353058,
0.14988583326339722,
-0.026863589882850647,
0.0669671893119812,
0.0036801977548748255,
-0.1375093311071396,
0.0472143292427063,
-0.00269743031822145,
-0.10328183323144913,
0.09237959235906601,
0.07478897273540497,
0.07254679501056671,
0.09715055674314499,
-0.013337666168808937,
-0.05295991897583008,
0.05122952163219452,
-0.04292042925953865,
-0.03443817049264908,
0.06818225979804993,
-0.061530523002147675,
-0.08968652784824371,
0.19967737793922424,
0.07593346387147903,
0.0220112893730402,
0.05680950731039047,
-0.11421345919370651,
0.03777691721916199,
-0.020500924438238144,
0.003291990142315626,
0.08779045194387436,
0.030657725408673286,
-0.022315753623843193,
0.1551761031150818,
-0.1156759038567543,
0.11035008728504181,
0.06083759665489197,
-0.31138888001441956,
-0.04778888076543808,
0.10854021459817886,
0.04707518219947815,
0.021292023360729218,
-0.03843226283788681,
0.03142489492893219,
0.06642937660217285,
0.041755180805921555,
0.008313799276947975,
-0.07101009041070938,
-0.17581094801425934,
0.00018717473722063005,
-0.07533067464828491,
-0.007460111286491156,
0.3124907910823822,
-0.0069321501068770885,
-0.006003058049827814,
-0.09891258925199509,
-0.04137882590293884,
-0.07756103575229645,
-0.02971668355166912,
-0.04900616779923439,
-0.06568188965320587,
-0.01181865856051445,
-0.05998243764042854,
-0.006323426961898804,
-0.07473690807819366,
-0.05569298192858696,
-0.13317717611789703,
0.27229198813438416,
0.00799600500613451,
0.02858836017549038,
-0.15894900262355804,
0.06308714300394058,
0.07429223507642746,
-0.10068686306476593,
0.0015810977201908827,
-0.10676392912864685,
-0.09467214345932007,
0.027830302715301514,
-0.0528649277985096,
-0.12355883419513702,
0.06110956147313118,
0.1082950308918953,
0.05824076011776924,
0.021687492728233337,
0.0193448755890131,
0.06068076565861702,
0.09236025810241699,
0.09366965293884277,
-0.03358175605535507,
-0.05588677525520325,
0.013388670980930328,
-0.05140838027000427,
-0.008098702877759933,
-0.03690125793218613,
-0.0949041023850441,
0.022979851812124252,
0.006585938390344381,
0.04613015800714493,
-0.028303425759077072,
0.1409623771905899,
-0.09803839772939682,
-0.03711643069982529,
0.07706963270902634,
-0.04502618685364723,
-0.07360415905714035,
-0.006768415682017803,
-0.07749433815479279,
0.04646528884768486,
0.019961269572377205,
0.027299029752612114,
-0.01694643311202526,
0.05139840394258499,
-0.02776176854968071,
-0.05217037722468376,
-0.04512661322951317,
-0.052971914410591125,
0.024818528443574905,
0.0035861630458384752,
0.04624376818537712,
-0.1722293347120285,
-0.13631325960159302,
-0.026933444663882256,
0.002690340857952833,
-0.062764972448349,
-0.04999072477221489,
-0.10983029007911682,
0.0035081692039966583,
-0.007252627983689308,
-0.05404391139745712,
0.044547975063323975,
-0.013330305926501751,
0.07822047173976898,
-0.03220626339316368,
0.12123952805995941,
-0.14309468865394592,
0.058888986706733704,
-0.13361847400665283,
-0.02618410438299179,
-0.06942987442016602,
0.1181199923157692,
-0.05739377439022064,
0.033174216747283936,
-0.02960723638534546,
0.017147745937108994,
-0.12777429819107056,
0.040573734790086746,
0.013786732219159603,
0.1955142319202423,
-0.1418805867433548,
-0.05378027632832527,
0.1593266874551773,
-0.065806545317173,
-0.12361124902963638,
0.12244746088981628,
-0.01739451102912426,
0.1224595382809639,
0.12417984008789062,
0.21971504390239716,
-0.006959074642509222,
0.006214233115315437,
-0.027748486027121544,
0.04399175941944122,
-0.08684497326612473,
-0.017265578731894493,
0.06353524327278137,
0.12441208958625793,
-0.13733331859111786,
0.08066157251596451,
0.07198045402765274,
0.07853130996227264,
-0.0903642401099205,
-0.014684366062283516,
0.02321750484406948,
-0.04438074678182602,
0.10227230936288834,
0.02646065317094326,
0.11000484973192215,
-0.06572126597166061,
-0.032641150057315826,
-0.045643534511327744,
0.06612823903560638,
-0.016591493040323257,
-0.021266093477606773,
-0.1557740569114685,
0.07243750244379044,
0.023208018392324448,
0.05590616539120674,
-0.13468922674655914,
-0.05315178632736206,
-0.013776283711194992,
0.1285104900598526,
0.08066379278898239,
0.16161517798900604,
0.03164874017238617,
-0.0566532276570797,
-0.008226861245930195,
0.013744470663368702,
0.11752749234437943,
-0.00022940048074815422,
-0.04647652804851532,
-0.09384088963270187,
0.0353020615875721,
-0.08242242783308029,
0.12528565526008606,
-0.04388410225510597,
0.0023796262685209513,
0.0023433140013366938,
0.17065595090389252,
0.017173293977975845,
0.025421468541026115,
0.0607006810605526,
0.02884065918624401,
-0.03146779164671898,
0.03641928359866142,
0.05195855349302292,
0.0126663101837039,
-0.12667614221572876,
0.22853147983551025,
-0.048105936497449875,
0.14095556735992432,
0.11579231172800064,
-0.05691555514931679,
-0.041995178908109665,
-0.010081619024276733,
-0.04531736671924591,
0.024714887142181396,
0.02111733891069889,
-0.014006715267896652,
0.1805001050233841,
0.005626260302960873,
0.14696004986763,
-0.04074082896113396,
-0.05826698616147041,
-0.011889642104506493,
-0.05296636372804642,
0.007628804072737694,
0.12306658923625946,
0.030924109742045403,
-0.22867617011070251,
0.08749688416719437,
0.032891929149627686,
0.060023073107004166,
0.2592826187610626,
0.04499124735593796,
0.013395031914114952,
0.015137073583900928,
0.0013766908086836338,
-0.06805146485567093,
0.03472619131207466,
-0.17848025262355804,
-0.03163960203528404,
0.06781169027090073,
-0.040790725499391556,
0.06106899306178093,
-0.06460283696651459,
-0.04351457208395004,
-0.016406040638685226,
-0.005857792682945728,
-0.01931673474609852,
0.13822539150714874,
0.012809830717742443,
0.14113277196884155,
-0.015190472826361656,
-0.10224352031946182,
0.015089605003595352,
-0.022773176431655884,
-0.08432581275701523,
0.14383868873119354,
-0.019838212057948112,
-0.3221571445465088,
-0.06052139773964882,
-0.025617163628339767,
-0.030068060383200645,
-0.005459173116832972,
0.05876510217785835,
-0.061850473284721375,
-0.032615646719932556,
-0.00420534610748291,
0.07043587416410446,
-0.007079425733536482,
-0.02689112350344658,
0.02853199653327465,
-0.0046769711188972,
-0.0664224773645401,
-0.11827833950519562,
-0.054010260850191116,
-0.05389733612537384,
-0.030196230858564377,
0.11084801703691483,
-0.14210158586502075,
0.10193973034620285,
0.09657204896211624,
-0.03250768035650253,
0.04164041206240654,
-0.06259520351886749,
0.13679689168930054,
-0.0980670228600502,
-0.01720302738249302,
0.08107604086399078,
-0.05156170576810837,
-0.020346486940979958,
0.10138525068759918,
-0.00251389155164361,
-0.0785529613494873,
0.08913737535476685,
-0.03081352636218071,
-0.08757542073726654,
-0.2471904307603836,
-0.13724103569984436,
-0.07355217635631561,
0.10892781615257263,
-0.021011734381318092,
0.03416946902871132,
0.03188847005367279,
0.07208510488271713,
-0.010845356620848179,
0.005527576431632042,
-0.006137739401310682,
0.03190319612622261,
0.11413716524839401,
-0.053862374275922775,
0.13870906829833984,
-0.07866134494543076,
-0.11453688144683838,
0.07835610210895538,
0.005093442741781473,
0.09701698273420334,
0.05211584270000458,
0.01794969104230404,
0.05829588696360588,
0.05950652062892914,
0.11754576861858368,
0.10246775299310684,
-0.00874005164951086,
-0.04271972179412842,
-0.06294132024049759,
-0.011192567646503448,
-0.10778521001338959,
0.06468843668699265,
0.015198602341115475,
-0.10101617127656937,
-0.048095256090164185,
-0.0035832494031637907,
0.09055045992136002,
0.15621092915534973,
0.029590900987386703,
-0.19766968488693237,
-0.06022874265909195,
0.0355336032807827,
-0.0725671797990799,
-0.01293849665671587,
0.09803029894828796,
0.06549418717622757,
-0.14739766716957092,
0.05426277592778206,
-0.005045454483479261,
0.0860879048705101,
-0.05993429571390152,
0.029834434390068054,
-0.10378417372703552,
-0.0598505362868309,
0.00728707667440176,
0.09211692214012146,
-0.28996193408966064,
0.23186036944389343,
-0.021537961438298225,
-0.051161643117666245,
-0.12346108257770538,
-0.06276139616966248,
0.010118704289197922,
-0.0036443534772843122,
0.12713396549224854,
-0.007160478737205267,
-0.04456920921802521,
-0.08951077610254288,
-0.045481111854314804,
0.08503684401512146,
0.03620784357190132,
-0.030747605487704277,
0.014145578257739544,
-0.009580417536199093,
0.006416525226086378,
-0.02684914320707321,
-0.07063199579715729,
-0.04087793827056885,
-0.1045737937092781,
0.02506376802921295,
0.10706927627325058,
0.08728258311748505,
0.01246698759496212,
-0.0704105868935585,
0.002072129165753722,
0.14995068311691284,
0.06863335520029068,
-0.06956271827220917,
-0.08763270825147629,
0.04760202020406723,
0.04066396877169609,
-0.08390267193317413,
-0.03353015333414078,
-0.040214914828538895,
0.00477611692622304,
-0.03266415372490883,
-0.16086557507514954,
0.09498029947280884,
-0.08946692198514938,
-0.062017083168029785,
-0.01829804852604866,
0.1151694655418396,
0.014137504622340202,
0.0808931440114975,
0.03291742131114006,
-0.027288157492876053,
-0.0029008116107434034,
-0.09210051596164703,
-0.01631682552397251,
-0.02635873667895794,
-0.02612522430717945,
0.04021630808711052,
-0.015285298228263855,
-0.08521860092878342,
-0.057429175823926926,
-0.03962074592709541,
0.2192445993423462,
0.11331384629011154,
-0.07924669235944748,
0.13933347165584564,
0.1232854425907135,
0.021782223135232925,
-0.24386177957057953,
-0.11791730672121048,
-0.004497977904975414,
0.06439439952373505,
-0.020123213529586792,
-0.1172369047999382,
0.021475734189152718,
-0.000671136484015733,
-0.03563043475151062,
-0.030276663601398468,
-0.20524483919143677,
-0.10691605508327484,
0.16036191582679749,
-0.001425981754437089,
0.32053762674331665,
-0.06280741840600967,
-0.028581563383340836,
-0.02038213610649109,
-0.15280473232269287,
0.1563107818365097,
-0.013882056809961796,
0.09020821750164032,
-0.009699328802525997,
0.10040083527565002,
0.026959139853715897,
-0.004177526570856571,
0.055751461535692215,
-0.005574269685894251,
-0.007358925882726908,
-0.05749163031578064,
-0.09581662714481354,
-0.03126230835914612,
0.037516042590141296,
0.14252910017967224,
-0.06732263416051865,
0.052465446293354034,
-0.15327948331832886,
-0.04461283981800079,
-0.07929787784814835,
0.03645126894116402,
0.035449784249067307,
-0.05032488331198692,
-0.044226814061403275,
0.041802454739809036,
-0.02522892691195011,
0.03003750927746296,
0.14724978804588318,
-0.08071976900100708,
0.09663048386573792,
0.10382606089115143,
0.1883966326713562,
-0.0987725779414177,
0.16443300247192383,
-0.04766103997826576,
-0.05122165009379387,
0.06416775286197662,
-0.12095469981431961,
0.007399083115160465,
0.1231977641582489,
0.006923151668161154,
0.09232964366674423,
0.039712436497211456,
-0.04250813648104668,
0.0699281096458435,
0.15260544419288635,
-0.17581824958324432,
-0.10081563889980316,
-0.07747747004032135,
0.04950956255197525,
0.08397004008293152,
0.09339925646781921,
0.15809334814548492,
-0.074909508228302,
-0.04424066096544266,
-0.020784705877304077,
0.005481936037540436,
-0.08013435453176498,
0.0806291475892067,
0.019463293254375458,
0.04630859196186066,
-0.12466657161712646,
0.026090122759342194,
0.030863070860505104,
-0.03378777951002121,
0.04366891086101532,
0.08065915107727051,
-0.08685969561338425,
-0.07100587338209152,
-0.1293845921754837,
0.1312636137008667,
-0.06802567094564438,
-0.04512231796979904,
-0.0898408517241478,
-0.0902818888425827,
0.027680493891239166,
0.15065111219882965,
0.05474695563316345,
0.0879368931055069,
-0.0432732030749321,
-0.03556828200817108,
-0.007361747324466705,
0.017956562340259552,
0.07714374363422394,
-0.005303975194692612,
-0.055119652301073074,
0.013835226185619831,
0.00134372990578413,
0.11317320913076401,
-0.10668786615133286,
-0.05659399926662445,
-0.1270809918642044,
0.037309031933546066,
-0.10464666038751602,
-0.08004835993051529,
-0.08982440829277039,
-0.03500654920935631,
-0.008790258318185806,
-0.0850648432970047,
-0.07106467336416245,
-0.014829886145889759,
-0.1054159477353096,
0.06094048172235489,
0.004430543165653944,
0.06029721722006798,
-0.05832802876830101,
0.011983438394963741,
0.06314852833747864,
-0.015314233489334583,
0.1206306591629982,
0.1284082978963852,
-0.0659639835357666,
0.09666597098112106,
-0.14101211726665497,
-0.0322624035179615,
0.07461488246917725,
0.030160997062921524,
0.06377192586660385,
0.010261835530400276,
0.02031399868428707,
0.08565306663513184,
0.07788509875535965,
0.056457847356796265,
0.010683112777769566,
-0.10810153186321259,
0.004345687571913004,
-0.021675243973731995,
-0.07975514233112335,
-0.0770430862903595,
-0.009982812218368053,
0.022319147363305092,
0.0998963937163353,
0.10184817761182785,
-0.052210863679647446,
0.04957231134176254,
-0.11055271327495575,
0.040659453719854355,
0.003687761491164565,
-0.12398328632116318,
-0.07852764427661896,
-0.10071002691984177,
0.02842012047767639,
-0.010720168240368366,
0.20984773337841034,
0.08712311834096909,
-0.07847736775875092,
0.03175982087850571,
0.029007744044065475,
0.01661783456802368,
-0.01737617887556553,
0.0377432219684124,
0.05926059931516647,
0.0061863260343670845,
-0.08106130361557007,
0.023717017844319344,
-0.012888909317553043,
-0.0580148808658123,
0.10557198524475098,
0.06143945828080177,
-0.010697534307837486,
0.0437336191534996,
0.05328132584691048,
0.047084107995033264,
0.00062127027194947,
-0.0870593786239624,
-0.08577029407024384,
0.021587742492556572,
-0.04762004315853119,
0.08343242108821869,
0.12907616794109344,
-0.054642800241708755,
0.034235015511512756,
-0.045217353850603104,
-0.029512764886021614,
-0.11888167262077332,
-0.13012701272964478,
-0.1046316847205162,
-0.12590204179286957,
0.03376055136322975,
-0.121361643075943,
0.009227368980646133,
0.07934857904911041,
0.07796399295330048,
-0.039584897458553314,
0.07842139154672623,
-0.01030553039163351,
-0.042804788798093796,
0.1201862245798111,
-0.05447465553879738,
0.023811986669898033,
-0.11330386251211166,
0.014953729696571827,
-0.04778331145644188,
0.09838397800922394,
-0.017393171787261963,
0.05060059577226639,
-0.05368073657155037,
-0.032151006162166595,
-0.053634196519851685,
-0.08785932511091232,
-0.05131195858120918,
0.03606817126274109,
0.04714931920170784,
0.07569567859172821,
0.044863611459732056,
0.009765634313225746,
0.026318268850445747,
0.2510119676589966,
-0.03566531836986542,
-0.08789829909801483,
-0.18398723006248474,
0.17623098194599152,
-0.019823195412755013,
0.054029688239097595,
0.011818420141935349,
-0.016581831499934196,
-0.08834107220172882,
0.25322777032852173,
0.26033279299736023,
-0.05618349462747574,
0.006921340711414814,
-0.04113601893186569,
0.04257126525044441,
0.021072419360280037,
0.11754677444696426,
0.07937374711036682,
0.26492083072662354,
-0.07583414763212204,
-0.025650056079030037,
-0.05315592885017395,
-0.00681552616879344,
0.06819359958171844,
0.08298231661319733,
0.0472441129386425,
-0.06125706434249878,
-0.05351328104734421,
0.09527730196714401,
-0.18694783747196198,
-0.04199129715561867,
-0.1834750771522522,
-0.17807932198047638,
-0.10087373107671738,
-0.030225327238440514,
0.009640187956392765,
0.0746491327881813,
0.11849885433912277,
-0.027343900874257088,
-0.00806492194533348,
0.024508945643901825,
0.012941034510731697,
-0.1384568214416504,
-0.003107971278950572,
0.11436288058757782,
-0.10254113376140594,
0.005546777509152889,
-0.029589839279651642,
0.09992603957653046,
0.06849852204322815,
0.021252570673823357,
-0.027239836752414703,
0.07640697807073593,
0.0009718747460283339,
-0.002765046199783683,
0.02528132125735283,
0.12812866270542145,
0.03245186060667038,
0.08061704784631729,
0.052192606031894684,
-0.1605152189731598,
0.0677206814289093,
-0.017699705436825752,
0.0051599666476249695,
-0.07560320943593979,
0.09499157220125198,
-0.03746910020709038,
0.13584643602371216,
0.15709316730499268,
-0.03564547747373581,
0.009062228724360466,
-0.04323406517505646,
0.05116589739918709,
0.012534432113170624,
-0.07857563346624374,
-0.0703115239739418,
-0.1745031476020813,
-0.06423823535442352,
0.060323361307382584,
-0.03261963278055191,
-0.23216913640499115,
0.05450628325343132,
-0.13269329071044922,
0.027196472510695457,
-0.018288269639015198,
0.07587815076112747,
0.08065089583396912,
0.030447548255324364,
0.013262833468616009,
-0.08992069959640503,
0.04242429509758949,
0.047369398176670074,
-0.11601565778255463,
-0.08739861845970154
] |
null | null |
transformers
|
# mt5-large-finetuned-mnli-xtreme-xnli
## Model Description
This model takes a pretrained large [multilingual-t5](https://github.com/google-research/multilingual-t5) (also available from [models](https://huggingface.co/google/mt5-large)) and fine-tunes it on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set. It is intended to be used for zero-shot text classification, inspired by [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli).
## Intended Use
This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set, a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus:
- Arabic
- Bulgarian
- Chinese
- English
- French
- German
- Greek
- Hindi
- Russian
- Spanish
- Swahili
- Thai
- Turkish
- Urdu
- Vietnamese
As per recommendations in [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli), for English-only classification, you might want to check out:
- [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli)
- [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
### Zero-shot example:
The model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, "xnli:".
Below is an example, using PyTorch, of the model's use in a similar fashion to the `zero-shot-classification` pipeline. We use the logits from the LM output at the first token to represent confidence.
```python
from torch.nn.functional import softmax
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
model.eval()
sequence_to_classify = "¿A quién vas a votar en 2020?"
candidate_labels = ["Europa", "salud pública", "política"]
hypothesis_template = "Este ejemplo es {}."
ENTAILS_LABEL = "▁0"
NEUTRAL_LABEL = "▁1"
CONTRADICTS_LABEL = "▁2"
label_inds = tokenizer.convert_tokens_to_ids(
[ENTAILS_LABEL, NEUTRAL_LABEL, CONTRADICTS_LABEL])
def process_nli(premise: str, hypothesis: str):
""" process to required xnli format with task prefix """
return "".join(['xnli: premise: ', premise, ' hypothesis: ', hypothesis])
# construct sequence of premise, hypothesis pairs
pairs = [(sequence_to_classify, hypothesis_template.format(label)) for label in
candidate_labels]
# format for mt5 xnli task
seqs = [process_nli(premise=premise, hypothesis=hypothesis) for
premise, hypothesis in pairs]
print(seqs)
# ['xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es Europa.',
# 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es salud pública.',
# 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es política.']
inputs = tokenizer.batch_encode_plus(seqs, return_tensors="pt", padding=True)
out = model.generate(**inputs, output_scores=True, return_dict_in_generate=True,
num_beams=1)
# sanity check that our sequences are expected length (1 + start token + end token = 3)
for i, seq in enumerate(out.sequences):
assert len(
seq) == 3, f"generated sequence {i} not of expected length, 3." \\\\
f" Actual length: {len(seq)}"
# get the scores for our only token of interest
# we'll now treat these like the output logits of a `*ForSequenceClassification` model
scores = out.scores[0]
# scores has a size of the model's vocab.
# However, for this task we have a fixed set of labels
# sanity check that these labels are always the top 3 scoring
for i, sequence_scores in enumerate(scores):
top_scores = sequence_scores.argsort()[-3:]
assert set(top_scores.tolist()) == set(label_inds), \\\\
f"top scoring tokens are not expected for this task." \\\\
f" Expected: {label_inds}. Got: {top_scores.tolist()}."
# cut down scores to our task labels
scores = scores[:, label_inds]
print(scores)
# tensor([[-2.5697, 1.0618, 0.2088],
# [-5.4492, -2.1805, -0.1473],
# [ 2.2973, 3.7595, -0.1769]])
# new indices of entailment and contradiction in scores
entailment_ind = 0
contradiction_ind = 2
# we can show, per item, the entailment vs contradiction probas
entail_vs_contra_scores = scores[:, [entailment_ind, contradiction_ind]]
entail_vs_contra_probas = softmax(entail_vs_contra_scores, dim=1)
print(entail_vs_contra_probas)
# tensor([[0.0585, 0.9415],
# [0.0050, 0.9950],
# [0.9223, 0.0777]])
# or we can show probas similar to `ZeroShotClassificationPipeline`
# this gives a zero-shot classification style output across labels
entail_scores = scores[:, entailment_ind]
entail_probas = softmax(entail_scores, dim=0)
print(entail_probas)
# tensor([7.6341e-03, 4.2873e-04, 9.9194e-01])
print(dict(zip(candidate_labels, entail_probas.tolist())))
# {'Europa': 0.007634134963154793,
# 'salud pública': 0.0004287279152777046,
# 'política': 0.9919371604919434}
```
Unfortunately, the `generate` function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.
The model is currently not compatible with the existing `zero-shot-classification` pipeline.
## Training
This model was pre-trained on a set of 101 languages in the mC4, as described in [the mt5 paper](https://arxiv.org/abs/2010.11934). It was then fine-tuned on the [mt5_xnli_translate_train](https://github.com/google-research/multilingual-t5/blob/78d102c830d76bd68f27596a97617e2db2bfc887/multilingual_t5/tasks.py#L190) task for 8k steps in a similar manner to that described in the [offical repo](https://github.com/google-research/multilingual-t5#fine-tuning), with guidance from [Stephen Mayhew's notebook](https://github.com/mayhewsw/multilingual-t5/blob/master/notebooks/mt5-xnli.ipynb). The resulting model was then converted to :hugging_face: format.
## Eval results
Accuracy over XNLI test set:
| ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vi | zh | average |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 81.0 | 85.0 | 84.3 | 84.3 | 88.8 | 85.3 | 83.9 | 79.9 | 82.6 | 78.0 | 81.0 | 81.6 | 76.4 | 81.7 | 82.3 | 82.4 |
|
{"language": ["multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur"], "license": "apache-2.0", "tags": ["pytorch"], "datasets": ["multi_nli", "xnli"], "metrics": ["xnli"]}
|
text2text-generation
|
alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"mt5",
"text2text-generation",
"multilingual",
"en",
"fr",
"es",
"de",
"el",
"bg",
"ru",
"tr",
"ar",
"vi",
"th",
"zh",
"hi",
"sw",
"ur",
"dataset:multi_nli",
"dataset:xnli",
"arxiv:2010.11934",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2010.11934"
] |
[
"multilingual",
"en",
"fr",
"es",
"de",
"el",
"bg",
"ru",
"tr",
"ar",
"vi",
"th",
"zh",
"hi",
"sw",
"ur"
] |
TAGS
#transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
mt5-large-finetuned-mnli-xtreme-xnli
====================================
Model Description
-----------------
This model takes a pretrained large multilingual-t5 (also available from models) and fine-tunes it on English MNLI and the xtreme\_xnli training set. It is intended to be used for zero-shot text classification, inspired by xlm-roberta-large-xnli.
Intended Use
------------
This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on English MNLI and the xtreme\_xnli training set, a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus:
* Arabic
* Bulgarian
* Chinese
* English
* French
* German
* Greek
* Hindi
* Russian
* Spanish
* Swahili
* Thai
* Turkish
* Urdu
* Vietnamese
As per recommendations in xlm-roberta-large-xnli, for English-only classification, you might want to check out:
* bart-large-mnli
* a distilled bart MNLI model.
### Zero-shot example:
The model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, "xnli:".
Below is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.
Unfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.
The model is currently not compatible with the existing 'zero-shot-classification' pipeline.
Training
--------
This model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\_xnli\_translate\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\_face: format.
Eval results
------------
Accuracy over XNLI test set:
|
[
"### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:"
] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:"
] |
[
127,
319
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:"
] |
[
-0.08033962547779083,
0.012305120006203651,
-0.0027980762533843517,
0.04184078052639961,
0.06199819594621658,
-0.009021353907883167,
0.018513327464461327,
0.10350955277681351,
-0.06426726281642914,
0.10635777562856674,
0.07003865391016006,
0.10388332605361938,
0.04221488535404205,
0.118998683989048,
0.013676495291292667,
-0.24543076753616333,
0.021749790757894516,
-0.050106633454561234,
0.07672390341758728,
0.09798926115036011,
0.10251547396183014,
-0.03451091796159744,
0.06719377636909485,
-0.02137508988380432,
-0.03277575224637985,
-0.006265142001211643,
0.055045563727617264,
-0.04371023550629616,
0.10132044553756714,
0.08311749249696732,
0.043311648070812225,
0.008209779858589172,
0.010133760049939156,
-0.1526019275188446,
0.01931733824312687,
0.12519685924053192,
0.032356180250644684,
0.09204205125570297,
0.0451643280684948,
-0.09993232041597366,
0.13842371106147766,
-0.0403682217001915,
0.04444153606891632,
0.03043322265148163,
-0.11527632921934128,
-0.13088871538639069,
-0.05038847029209137,
0.10934887081384659,
-0.0021346164867281914,
0.02837875857949257,
-0.01545677799731493,
0.15715935826301575,
0.03169381618499756,
0.12489413470029831,
0.17598958313465118,
-0.22257740795612335,
-0.03170998394489288,
0.09183032810688019,
-0.014301937073469162,
0.07087631523609161,
-0.002215089276432991,
0.02170563116669655,
-0.020710360258817673,
0.065917007625103,
0.05536540597677231,
-0.018758192658424377,
-0.021394655108451843,
0.0089727146551013,
-0.14843598008155823,
-0.05675917863845825,
0.18629759550094604,
-0.0390586256980896,
-0.08761674910783768,
-0.07479348033666611,
-0.0967649444937706,
-0.005957648158073425,
0.004557562060654163,
-0.08431866019964218,
-0.018090980127453804,
0.03877614811062813,
0.0026693788822740316,
-0.004411741159856319,
-0.10342732816934586,
0.017244596034288406,
-0.09184285253286362,
0.1420813798904419,
0.0403495691716671,
0.07123786956071854,
-0.09585613012313843,
0.1572074592113495,
-0.14322468638420105,
-0.06054386496543884,
-0.04507927969098091,
-0.09808164834976196,
-0.02415645681321621,
0.004533287603408098,
-0.04287378862500191,
-0.18270139396190643,
0.010994351468980312,
0.13827021420001984,
-0.08271203190088272,
0.0315660685300827,
0.0003611658758018166,
0.08497940748929977,
-0.008021069690585136,
0.19771511852741241,
-0.07950229197740555,
0.030207712203264236,
0.053206685930490494,
-0.02916027046740055,
0.04999887943267822,
-0.05585954338312149,
-0.015851285308599472,
-0.01725912280380726,
0.07387828081846237,
0.03885766863822937,
0.025256529450416565,
0.10042046755552292,
-0.04437573626637459,
-0.015413962304592133,
0.013933730311691761,
-0.12684836983680725,
-0.03220820426940918,
-0.014304135926067829,
-0.057491276413202286,
0.06364906579256058,
0.15173257887363434,
-0.06916283816099167,
-0.12091828882694244,
0.045294832438230515,
-0.05834180861711502,
-0.034862980246543884,
-0.09638509154319763,
-0.12080861628055573,
0.019190914928913116,
0.0532289557158947,
-0.058245450258255005,
-0.15827415883541107,
-0.09124471247196198,
-0.02022184245288372,
0.03177667781710625,
0.025092175230383873,
0.06995061039924622,
0.015854617580771446,
-0.03880169242620468,
-0.03878927603363991,
0.03254231810569763,
-0.00885794498026371,
-0.03704372048377991,
0.07051266729831696,
-0.01938832364976406,
0.054019443690776825,
-0.04630414396524429,
0.002903130603954196,
-0.14869488775730133,
0.011354515329003334,
-0.24308021366596222,
0.05492686852812767,
-0.014833166263997555,
-0.07257425040006638,
-0.09217390418052673,
-0.0761248916387558,
-0.078725665807724,
0.0032599761616438627,
0.08188267797231674,
0.0991189256310463,
-0.19280782341957092,
-0.01398817915469408,
0.17270375788211823,
-0.14326171576976776,
-0.01893552951514721,
0.1408369094133377,
0.009993307292461395,
0.08671963214874268,
0.1064516082406044,
0.16208133101463318,
0.040052805095911026,
-0.09007561206817627,
-0.01819080300629139,
0.06338558346033096,
-0.1220109760761261,
0.11153548955917358,
0.01718311384320259,
-0.003341169096529484,
-0.06386049091815948,
0.07726117223501205,
-0.04590526223182678,
-0.017192775383591652,
-0.07778465002775192,
-0.012781741097569466,
-0.03230960667133331,
0.059841860085725784,
-0.01598329469561577,
0.00004708554843091406,
-0.0690971091389656,
-0.07878482341766357,
-0.11196645349264145,
-0.019225770607590675,
0.09272876381874084,
-0.061791419982910156,
0.02115420624613762,
-0.08379305154085159,
0.1265561282634735,
-0.014457233250141144,
-0.009052600711584091,
-0.15260572731494904,
-0.08941085636615753,
0.023996839299798012,
-0.04889592528343201,
0.0433322973549366,
0.044775042682886124,
0.01681826449930668,
0.07233983278274536,
-0.019970174878835678,
-0.019503017887473106,
0.02336934395134449,
-0.00930709857493639,
-0.053733740001916885,
-0.1356239765882492,
-0.022394167259335518,
-0.02242041565477848,
0.07905743271112442,
-0.15642768144607544,
0.01963329315185547,
0.0000028032727641402744,
0.07057411223649979,
0.007896419614553452,
-0.020864183083176613,
-0.001321746502071619,
0.020678646862506866,
-0.016436712816357613,
-0.05186494439840317,
0.05252715200185776,
0.04825306311249733,
-0.06285136938095093,
0.13985197246074677,
-0.2903304100036621,
-0.08869196474552155,
0.07891687750816345,
-0.045628514140844345,
-0.12151609361171722,
0.03640471026301384,
-0.06158147007226944,
-0.017107056453824043,
-0.07071483880281448,
-0.03476909175515175,
0.1443120837211609,
0.0052586765959858894,
0.11432831734418869,
-0.09483543038368225,
-0.030223440378904343,
0.01570972427725792,
-0.08204025030136108,
-0.03126734495162964,
0.12176235765218735,
0.015882963314652443,
-0.1512303650379181,
0.002285618335008621,
-0.013483393006026745,
-0.0061822435818612576,
0.16969899833202362,
-0.004486492369323969,
-0.058864131569862366,
-0.061249829828739166,
0.031406041234731674,
0.03134646639227867,
0.06925778836011887,
0.05862776190042496,
0.015239652246236801,
0.061917733401060104,
0.020848626270890236,
0.026337670162320137,
-0.1130494773387909,
0.03305964916944504,
0.05054441839456558,
-0.03503412753343582,
0.011620663106441498,
0.0774436965584755,
-0.00838232971727848,
0.110170878469944,
-0.0361715629696846,
-0.0033637150190770626,
-0.013365209102630615,
-0.017014693468809128,
-0.1369280368089676,
0.17185017466545105,
-0.13554520905017853,
-0.28444308042526245,
-0.13825282454490662,
0.09732192754745483,
-0.07392396032810211,
-0.031199701130390167,
0.04694732651114464,
0.02298939786851406,
-0.054910480976104736,
-0.12028038501739502,
0.01490008644759655,
-0.0722881332039833,
-0.007511231116950512,
-0.20466738939285278,
-0.034552983939647675,
0.052602313458919525,
-0.1734631359577179,
-0.059438128024339676,
-0.01850687898695469,
-0.10091008991003036,
0.09238644689321518,
-0.04327598959207535,
0.05469971522688866,
0.1329285055398941,
-0.05066636949777603,
0.02794901467859745,
-0.03958113491535187,
0.1544603854417801,
-0.010870815254747868,
0.10568102449178696,
0.16704003512859344,
-0.005647880956530571,
0.0726504698395729,
0.030531682074069977,
-0.011605294421315193,
-0.026285311207175255,
0.031604986637830734,
-0.008128336630761623,
-0.09315960109233856,
-0.1616920828819275,
-0.08913316577672958,
-0.00823842640966177,
0.050872623920440674,
0.015263759531080723,
0.0545651838183403,
0.07128819823265076,
-0.004217279609292746,
-0.06786338984966278,
-0.0816764160990715,
0.06326565146446228,
0.1017148345708847,
0.040274396538734436,
-0.029420191422104836,
0.09510535001754761,
-0.03460398316383362,
0.006493678782135248,
0.08485666662454605,
-0.0645294114947319,
0.12541188299655914,
-0.11566809564828873,
0.017596030607819557,
0.11656995862722397,
0.10786660015583038,
0.04188293591141701,
0.06025313958525658,
-0.0563274510204792,
0.059080541133880615,
-0.04609326645731926,
-0.13081921637058258,
-0.01705336943268776,
0.05081897974014282,
-0.06999167054891586,
0.067380391061306,
-0.07684513181447983,
0.02570389211177826,
0.07739856839179993,
0.17455624043941498,
0.06955403089523315,
-0.24527236819267273,
-0.12572486698627472,
-0.058126382529735565,
0.012719041667878628,
-0.02515772543847561,
0.03221951052546501,
0.11887964606285095,
-0.08559185266494751,
0.03969983756542206,
-0.005037001334130764,
0.06693315505981445,
-0.02939731255173683,
0.03537759557366371,
-0.0070578670129179955,
0.1501348465681076,
-0.01647380366921425,
0.07636263221502304,
-0.1875268965959549,
0.1693543791770935,
0.024955516681075096,
0.05807946249842644,
-0.020562712103128433,
0.005157403647899628,
0.025638682767748833,
0.0965517982840538,
0.07897055894136429,
0.03942372277379036,
0.0037591499276459217,
-0.14206428825855255,
-0.015986496582627296,
0.034622982144355774,
0.10089848935604095,
-0.007260225247591734,
0.05649954453110695,
-0.04152650758624077,
-0.003338234731927514,
0.03617163375020027,
0.07819584012031555,
-0.04971298947930336,
-0.06863424181938171,
0.05849046632647514,
-0.016460075974464417,
-0.060620713979005814,
-0.0839657410979271,
-0.030311692506074905,
0.03979559242725372,
0.08150941878557205,
0.010297931730747223,
-0.0385676771402359,
-0.0947798565030098,
0.04559161886572838,
0.09056320041418076,
-0.08686845749616623,
-0.04461335763335228,
-0.05542949587106705,
0.0912175178527832,
0.02416587807238102,
-0.1513877660036087,
0.06077471747994423,
-0.07195326685905457,
-0.12271711230278015,
-0.03458879142999649,
0.13175328075885773,
0.052215151488780975,
0.007488077040761709,
0.0061572520062327385,
0.05948762968182564,
-0.023744583129882812,
-0.10343939810991287,
0.006468380801379681,
0.1678227186203003,
0.05383547022938728,
0.054504647850990295,
-0.08060182631015778,
0.052942465990781784,
-0.08571433275938034,
0.0069190869107842445,
0.03634141385555267,
0.07632414996623993,
-0.10376754403114319,
0.08743703365325928,
0.13657566905021667,
-0.12437529116868973,
-0.20275239646434784,
-0.06173649802803993,
-0.008857868611812592,
0.03528856486082077,
0.03327382728457451,
-0.008359807543456554,
0.13715803623199463,
0.0529184527695179,
0.0427003912627697,
-0.011487931944429874,
-0.3365367650985718,
-0.09083984047174454,
0.04030508175492287,
0.054681092500686646,
0.046666793525218964,
-0.07860619574785233,
0.024607429280877113,
0.04454542696475983,
-0.0029618428088724613,
0.05590757727622986,
-0.1468677818775177,
0.08200684934854507,
0.0008113975054584444,
0.050436750054359436,
0.05949189141392708,
-0.014831474982202053,
0.07822535187005997,
-0.07160351425409317,
0.03502625599503517,
-0.04845447838306427,
0.005578016862273216,
0.034107696264982224,
-0.053619105368852615,
0.15851590037345886,
0.005934515967965126,
0.10438347607851028,
0.0014291630359366536,
-0.022763431072235107,
-0.08585949242115021,
0.14727750420570374,
-0.08030861616134644,
-0.08046434074640274,
-0.045856550335884094,
0.058300890028476715,
0.08187264204025269,
-0.03010605461895466,
-0.10612347722053528,
-0.07882915437221527,
0.10232865810394287,
0.15342262387275696,
0.029671724885702133,
-0.05881350487470627,
-0.14441721141338348,
0.016774117946624756,
0.004998265765607357,
0.06612411141395569,
-0.0522175095975399,
0.023648886010050774,
0.10572192817926407,
0.03270174562931061,
0.12292810529470444,
0.04284097999334335,
-0.15252313017845154,
-0.07469658553600311,
0.03200751170516014,
-0.18993233144283295,
-0.11476877331733704,
-0.055983658879995346,
0.004358698148280382,
0.02253233641386032,
-0.00659244554117322,
0.15493999421596527,
-0.09054339677095413,
0.010649009607732296,
0.0015076438430696726,
0.04800737276673317,
-0.03974803537130356,
0.08665220439434052,
0.052202172577381134,
0.021056853234767914,
-0.03815590590238571,
0.05106654763221741,
0.037226252257823944,
-0.05084604769945145,
0.041349392384290695,
0.09803502261638641,
-0.11785659939050674,
-0.045488856732845306,
-0.03277280554175377,
0.12488582730293274,
-0.020698513835668564,
-0.07669035345315933,
-0.05164118483662605,
-0.024431757628917694,
0.01273529976606369,
0.2223372459411621,
0.026934118941426277,
0.05952543392777443,
-0.06498036533594131,
-0.006682573817670345,
-0.10234096646308899,
0.10244457423686981,
0.060092993080616,
0.01906413584947586,
-0.04240070655941963,
0.2796768248081207,
0.03665667399764061,
0.017837872728705406,
-0.026122504845261574,
-0.08061253279447556,
-0.12074028700590134,
-0.0013310399372130632,
-0.04390079155564308,
0.019465001299977303,
0.004245811142027378,
-0.02863936871290207,
0.014586321078240871,
-0.029688233509659767,
0.017305592074990273,
0.037661124020814896,
-0.029065482318401337,
-0.001317528891377151,
-0.0015016389079391956,
0.07347234338521957,
-0.11018040776252747,
-0.04163985326886177,
0.012196093797683716,
-0.0367400199174881,
0.054577358067035675,
0.07344041764736176,
-0.08308879286050797,
0.04240494966506958,
-0.12323153018951416,
0.026936396956443787,
-0.01887447014451027,
0.04757697135210037,
-0.01608295924961567,
-0.10930245369672775,
0.02206265553832054,
-0.015348614193499088,
-0.07418981194496155,
-0.004764891695231199,
0.06314033269882202,
-0.12086547911167145,
-0.008513649925589561,
0.02084173448383808,
-0.00948396697640419,
-0.1191278025507927,
0.042547743767499924,
-0.022819459438323975,
0.1443055421113968,
0.03514641523361206,
-0.11849948763847351,
0.04445374757051468,
-0.1585652381181717,
-0.03622385114431381,
0.02967330999672413,
-0.03811776638031006,
-0.01534816063940525,
-0.00153297686483711,
0.05231062322854996,
-0.05765484273433685,
0.04371444880962372,
0.0760021060705185,
0.020192299038171768,
0.010826812125742435,
-0.08219575881958008,
-0.06109962612390518,
-0.026849832385778427,
0.009000747464597225,
-0.05149726942181587,
0.015018708072602749,
-0.011587828397750854,
0.030310839414596558,
-0.01445428654551506,
0.004137205891311169,
0.13242699205875397,
0.08495257794857025,
0.12310776114463806,
0.0008210144005715847,
0.01309262216091156,
0.02348567359149456,
-0.05523029714822769,
-0.1136142760515213,
-0.014506425708532333,
0.10395511239767075,
-0.005277232266962528,
0.06575778871774673,
0.1726900190114975,
-0.06674423068761826,
0.11662953346967697,
-0.025793075561523438,
-0.06431429833173752,
-0.11012756079435349,
-0.27502667903900146,
-0.01745297946035862,
-0.01272409688681364,
-0.049621887505054474,
-0.11853824555873871,
0.014945000410079956,
0.06669504940509796,
0.07269515842199326,
-0.0494050495326519,
0.049869902431964874,
-0.08052615821361542,
-0.09898573160171509,
0.02367645688354969,
0.0013934294693171978,
0.04157249629497528,
0.03514529764652252,
0.012738409452140331,
0.02532052807509899,
0.054274071007966995,
0.020041748881340027,
0.060143448412418365,
0.13037371635437012,
-0.007613231893628836,
-0.05491740629076958,
-0.05782431364059448,
0.013382850214838982,
-0.01669454574584961,
0.01304535660892725,
0.08830764889717102,
0.06607867777347565,
-0.08810760825872421,
-0.005837295204401016,
0.2361891269683838,
-0.028114251792430878,
-0.1597837209701538,
-0.12342964857816696,
0.37049391865730286,
-0.003429484087973833,
-0.024129781872034073,
0.004042583052068949,
-0.08327186107635498,
-0.052286844700574875,
0.14580950140953064,
0.20099155604839325,
0.03460118919610977,
0.00683737313374877,
-0.0046401177532970905,
-0.0027858400717377663,
0.013965312391519547,
0.07575760036706924,
0.07245246320962906,
0.2801052927970886,
-0.0481523722410202,
0.12467574328184128,
-0.07059166580438614,
0.05384891852736473,
-0.08401662856340408,
0.06750200688838959,
-0.00039060396375134587,
-0.037517525255680084,
-0.050303295254707336,
0.05201561748981476,
-0.0034525995142757893,
-0.22829851508140564,
-0.03998752310872078,
-0.09930064529180527,
-0.055369745939970016,
-0.01103071216493845,
-0.027131984010338783,
-0.07095316052436829,
0.08433312177658081,
-0.04702272266149521,
0.0034174718894064426,
0.11969141662120819,
0.014181542210280895,
-0.06644245982170105,
-0.046146880835294724,
0.03117438033223152,
-0.051166024059057236,
0.10615909099578857,
0.008086087182164192,
0.06880657374858856,
0.10241639614105225,
0.048083607107400894,
-0.03204135596752167,
0.10586993396282196,
-0.010484929196536541,
-0.038901492953300476,
-0.023904643952846527,
0.07017994672060013,
0.00039526409818790853,
0.050156962126493454,
0.03507857769727707,
-0.12701232731342316,
0.022641608491539955,
-0.04130702465772629,
-0.0409076102077961,
-0.04459049925208092,
0.034704793244600296,
-0.058389171957969666,
0.1351688653230667,
0.19950740039348602,
-0.006764967925846577,
-0.004561202600598335,
-0.1319545954465866,
-0.007212243042886257,
0.025042714551091194,
-0.07340388000011444,
0.02667011320590973,
-0.039282143115997314,
0.034084293991327286,
-0.030375400558114052,
0.02024468407034874,
-0.19005146622657776,
-0.04588670656085014,
0.05276409909129143,
-0.05399331822991371,
-0.012946870177984238,
0.12727996706962585,
0.03725758194923401,
0.04331629350781441,
-0.04789106547832489,
0.05222563073039055,
0.005477473605424166,
0.11773762851953506,
-0.10451459884643555,
-0.09982491284608841
] |
null | null |
transformers
|
# Rick Sanchez DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
alankar/DialoGPT-small-rick
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick Sanchez DialoGPT Model
|
[
"# Rick Sanchez DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick Sanchez DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick Sanchez DialoGPT Model"
] |
[
-0.05704520270228386,
0.1080707237124443,
-0.005703833419829607,
0.024355918169021606,
0.1347416192293167,
-0.009864812716841698,
0.13915762305259705,
0.13641619682312012,
-0.014821183867752552,
-0.025234131142497063,
0.13788719475269318,
0.23441068828105927,
-0.0040086545050144196,
0.0579121895134449,
-0.09891517460346222,
-0.29657089710235596,
0.032161157578229904,
0.05994465947151184,
-0.0033263780642300844,
0.11953802406787872,
0.0843273475766182,
-0.043882302939891815,
0.08131924271583557,
0.0018995096907019615,
-0.14373421669006348,
0.011346335522830486,
0.04636937007308006,
-0.13702289760112762,
0.11601521074771881,
0.08168332278728485,
0.03479677438735962,
0.06183161959052086,
-0.03211790323257446,
-0.10245182365179062,
0.03838932886719704,
-0.008999419398605824,
-0.03427799046039581,
0.06022527068853378,
0.031745243817567825,
-0.1152564138174057,
0.09468080848455429,
0.0923495814204216,
-0.005728692281991243,
0.049891795963048935,
-0.17913517355918884,
-0.010704654268920422,
-0.021677182987332344,
0.055929314345121384,
0.08334671705961227,
0.09012723714113235,
-0.03841714933514595,
0.09080751240253448,
-0.04324564337730408,
0.07660475373268127,
0.08530165255069733,
-0.28937292098999023,
-0.030906030908226967,
0.06582700461149216,
0.05632982775568962,
0.06222769245505333,
-0.012348905205726624,
0.10370101034641266,
0.04712950810790062,
-0.014536825940012932,
-0.020318668335676193,
-0.09295357018709183,
-0.08654087781906128,
0.01945175603032112,
-0.06887777894735336,
-0.00602162629365921,
0.2560831606388092,
-0.030627258121967316,
0.0731891319155693,
-0.08859450370073318,
-0.10249431431293488,
0.004030927084386349,
-0.03497277945280075,
-0.05301825329661369,
-0.08995666354894638,
0.0700719803571701,
-0.003147976705804467,
-0.07389466464519501,
-0.1290099322795868,
-0.021585101261734962,
-0.1774103045463562,
0.19141581654548645,
0.030293408781290054,
0.023750921711325645,
-0.2208036631345749,
0.08902101963758469,
0.045917924493551254,
-0.11613845080137253,
0.04777151718735695,
-0.0842585563659668,
0.027763593941926956,
0.03184368088841438,
-0.015087970532476902,
-0.059821996837854385,
0.06819985806941986,
0.09782791137695312,
0.01923726685345173,
0.009750176221132278,
-0.024553336203098297,
0.05652669072151184,
0.04215332120656967,
0.09357214719057083,
-0.002894732868298888,
-0.0361810103058815,
0.015707144513726234,
-0.09473340213298798,
0.013285800814628601,
-0.06974472850561142,
-0.20285023748874664,
-0.01343308761715889,
0.030690573155879974,
0.06404593586921692,
0.0605037696659565,
0.11637318879365921,
-0.016192488372325897,
-0.07014694064855576,
0.04394420608878136,
-0.011219148524105549,
-0.02391223981976509,
0.008600763976573944,
0.005595726426690817,
0.1813707947731018,
0.011592349968850613,
0.04672492668032646,
-0.08541523665189743,
0.0021381767001003027,
-0.04958593100309372,
-0.03829700127243996,
-0.02637419104576111,
-0.043410710990428925,
0.004262345843017101,
-0.01814153417944908,
0.01607448235154152,
-0.16901227831840515,
-0.1370115429162979,
-0.022032571956515312,
-0.023941930383443832,
-0.05494401231408119,
-0.10453005880117416,
-0.1106305792927742,
0.010454395785927773,
0.0411594994366169,
-0.07347700744867325,
-0.006038041319698095,
-0.05349244922399521,
0.10734197497367859,
-0.0012300090165808797,
0.07703675329685211,
-0.07842288166284561,
0.07365122437477112,
-0.06573385000228882,
-0.025447865948081017,
-0.10093135386705399,
0.13386206328868866,
0.00915649812668562,
0.06603219360113144,
-0.046941112726926804,
-0.007621072698384523,
-0.10842157155275345,
0.08102882653474808,
-0.06603449583053589,
0.25178468227386475,
-0.10469595342874527,
-0.11071616411209106,
0.2805403769016266,
-0.03361968696117401,
-0.1264788806438446,
0.10199446976184845,
-0.01158563606441021,
0.11561296135187149,
0.15402540564537048,
0.2052226960659027,
0.02928532473742962,
-0.02268681675195694,
0.10423996299505234,
0.1035756841301918,
-0.057625655084848404,
-0.03801124170422554,
0.041060492396354675,
-0.03943869471549988,
-0.08562899380922318,
0.029806632548570633,
0.017141755670309067,
0.06328166276216507,
-0.04716106131672859,
-0.014570656232535839,
0.02421940304338932,
0.004092389717698097,
0.07496705651283264,
-0.024279450997710228,
0.13514691591262817,
-0.023218633607029915,
-0.0656837597489357,
-0.06177486851811409,
0.01964477449655533,
-0.04003036767244339,
0.020440705120563507,
-0.08908485621213913,
0.06243852525949478,
-0.03572830185294151,
0.057841621339321136,
-0.13513502478599548,
-0.06440334767103195,
-0.052385009825229645,
0.2330688089132309,
0.06854398548603058,
0.08484960347414017,
0.04045721888542175,
-0.06823423504829407,
-0.0003254515759181231,
0.0230836383998394,
0.19774475693702698,
-0.012182417325675488,
-0.07111652195453644,
-0.1060645654797554,
0.09369703382253647,
-0.06330309808254242,
0.08606080710887909,
-0.059275124222040176,
0.007605451624840498,
-0.026874825358390808,
0.06961184740066528,
-0.0269512627273798,
0.040469661355018616,
0.0006163049256429076,
-0.023647982627153397,
-0.07465367019176483,
-0.0149429552257061,
0.10460925847291946,
0.010055731050670147,
-0.10779253393411636,
0.2434917390346527,
-0.19769670069217682,
0.11526761204004288,
0.16096965968608856,
-0.22217433154582977,
-0.008169818669557571,
-0.11098682880401611,
-0.011975600384175777,
0.010464251041412354,
0.03273862600326538,
-0.04017077758908272,
0.22867226600646973,
-0.010608958080410957,
0.1853235810995102,
-0.052233923226594925,
-0.01996525749564171,
-0.027332648634910583,
-0.06422537565231323,
0.019287196919322014,
0.10971896350383759,
0.12856750190258026,
-0.161560520529747,
0.1724557876586914,
0.06672785431146622,
0.08213970810174942,
0.16275310516357422,
0.023765239864587784,
0.018852105364203453,
0.055699001997709274,
0.014213238842785358,
-0.01790653169155121,
-0.06882723420858383,
-0.18352845311164856,
-0.02486453764140606,
0.06696174293756485,
0.03141540661454201,
0.11100433766841888,
-0.11560750752687454,
-0.04409283027052879,
0.01155218854546547,
-0.007257997989654541,
0.04618756100535393,
0.12712539732456207,
-0.003129301592707634,
0.12465701252222061,
-0.008397440426051617,
-0.08989791572093964,
0.06356243789196014,
0.025369787588715553,
-0.09814108163118362,
0.182835653424263,
-0.1034003496170044,
-0.32152217626571655,
-0.1001197025179863,
-0.18328212201595306,
-0.03920574113726616,
0.07533707469701767,
0.11137884855270386,
-0.13466644287109375,
0.003127885051071644,
0.03510995954275131,
0.09001503139734268,
-0.10122435539960861,
-0.0034966380335390568,
-0.012268266640603542,
-0.018193284049630165,
-0.13420377671718597,
-0.08291704952716827,
-0.06102906912565231,
-0.04295424371957779,
-0.03346853703260422,
0.10250663757324219,
-0.17059698700904846,
0.0539877749979496,
0.26917001605033875,
0.09507580101490021,
0.05430034175515175,
-0.04344318434596062,
0.1592034101486206,
-0.10573985427618027,
0.012773060239851475,
0.22541004419326782,
-0.028745699673891068,
0.05365750566124916,
0.0892547219991684,
-0.01033081579953432,
-0.0708671286702156,
0.020250815898180008,
-0.02718094177544117,
-0.0714477151632309,
-0.2280162125825882,
-0.13114430010318756,
-0.10388115793466568,
0.05737285315990448,
0.06432957202196121,
0.0326518714427948,
0.1693384051322937,
0.10345755517482758,
-0.042771194130182266,
0.014231901615858078,
0.04525286331772804,
0.08099555969238281,
0.24561424553394318,
-0.07478486001491547,
0.13777120411396027,
-0.020003067329525948,
-0.17604942619800568,
0.06821287423372269,
0.08701446652412415,
0.07066261768341064,
0.0939561203122139,
0.13011965155601501,
0.02880261279642582,
0.03623313829302788,
0.09038466960191727,
0.045518048107624054,
0.022583454847335815,
-0.03737230971455574,
-0.06662941724061966,
-0.044609375298023224,
-0.041899174451828,
0.021367410197854042,
0.03182210028171539,
-0.14257657527923584,
-0.05327456444501877,
0.004599247593432665,
0.04934147000312805,
0.04460717737674713,
0.04937165975570679,
-0.1958761215209961,
-0.01135042030364275,
0.08069007098674774,
0.0008143498562276363,
-0.08933985978364944,
0.0729956179857254,
-0.010731075890362263,
-0.11471421271562576,
0.046170588582754135,
-0.02729932591319084,
0.12909768521785736,
-0.07558268308639526,
0.08029930293560028,
-0.14030702412128448,
-0.06785701215267181,
0.011536509729921818,
0.11896203458309174,
-0.2636930048465729,
0.20840856432914734,
-0.008380764164030552,
-0.049465201795101166,
-0.1043824851512909,
-0.009141412563621998,
0.0023304640781134367,
0.0944279134273529,
0.1368221640586853,
-0.028159884735941887,
-0.02392721176147461,
0.024199169129133224,
-0.06698837131261826,
0.03141431510448456,
0.08238276839256287,
-0.08262956887483597,
0.0013082197401672602,
-0.04166802391409874,
0.0039241621270775795,
0.009456396102905273,
-0.06101514399051666,
0.01121380366384983,
-0.195927694439888,
0.0798632875084877,
0.05245203897356987,
0.06079527735710144,
0.04320540651679039,
-0.030458878725767136,
-0.12451554834842682,
0.21634705364704132,
-0.01915883459150791,
-0.09401129186153412,
-0.09610380977392197,
-0.02037319913506508,
0.01868581213057041,
-0.08247993141412735,
-0.029365237802267075,
-0.05376124754548073,
0.03249189257621765,
-0.0736650601029396,
-0.1903923898935318,
0.12846902012825012,
-0.11052907258272171,
-0.028645969927310944,
-0.05812210589647293,
0.2216455489397049,
-0.030725445598363876,
0.015262283384799957,
0.059073857963085175,
-0.026270287111401558,
-0.09585471451282501,
-0.09591566771268845,
-0.007837353274226189,
0.022675657644867897,
0.027353649958968163,
-0.013003773055970669,
-0.04600683972239494,
-0.03253196179866791,
-0.07994730770587921,
-0.018432755023241043,
0.3114815652370453,
0.10657966881990433,
-0.053566571325063705,
0.1609998643398285,
0.08925200253725052,
-0.07996044307947159,
-0.24130167067050934,
-0.11830049753189087,
-0.06823843717575073,
-0.04297657683491707,
-0.04875720292329788,
-0.17909106612205505,
0.07042492181062698,
-0.01572689227759838,
-0.0246592964977026,
0.0796264261007309,
-0.34351006150245667,
-0.09367087483406067,
0.17016243934631348,
-0.044724494218826294,
0.4543110132217407,
-0.1197502538561821,
-0.10162397474050522,
-0.06263615190982819,
-0.1313125193119049,
0.18072150647640228,
-0.0014751619892194867,
0.10033301264047623,
0.004829281009733677,
0.16866052150726318,
0.05691388249397278,
0.007217222824692726,
0.091414675116539,
0.01798011176288128,
-0.0663527175784111,
-0.07840543240308762,
-0.10491379350423813,
-0.03505389019846916,
0.005603624042123556,
-0.0021735846530646086,
-0.070311039686203,
0.020419610664248466,
-0.15853211283683777,
-0.06377539038658142,
-0.08453743904829025,
0.02356107160449028,
0.030920391902327538,
-0.05867331475019455,
0.013508422300219536,
-0.06677638739347458,
0.018330350518226624,
-0.001379468129016459,
0.19494818150997162,
-0.11257137358188629,
0.17101415991783142,
0.04597465693950653,
0.1332368403673172,
-0.08957637846469879,
-0.0664193332195282,
-0.09592875093221664,
-0.04850716516375542,
0.07897713780403137,
-0.12196645140647888,
0.028588851913809776,
0.10687820613384247,
-0.026256760582327843,
0.08356694877147675,
0.0898364707827568,
-0.007075367029756308,
0.034319691359996796,
0.09755269438028336,
-0.21034450829029083,
-0.08239499479532242,
-0.0750756561756134,
0.03635190799832344,
0.08414819836616516,
0.09669569879770279,
0.19893206655979156,
0.012653730809688568,
-0.042145922780036926,
0.017787763848900795,
0.012123693712055683,
-0.02111114002764225,
0.07857295125722885,
0.018965713679790497,
0.005439399741590023,
-0.1433452069759369,
0.052979227155447006,
0.010302988812327385,
-0.08479844033718109,
0.010003048926591873,
0.1269667148590088,
-0.0933220237493515,
-0.11143316328525543,
-0.03672108054161072,
0.14701539278030396,
-0.17777521908283234,
-0.0062329513020813465,
-0.0675484910607338,
-0.13784073293209076,
0.0540735125541687,
0.08879818022251129,
0.04015353322029114,
0.03582773730158806,
-0.09314056485891342,
-0.023970693349838257,
-0.027464643120765686,
-0.025517743080854416,
0.06011157110333443,
-0.016900639981031418,
-0.06295756995677948,
0.07077009975910187,
-0.024854036048054695,
0.11451400071382523,
-0.08354704827070236,
-0.08851433545351028,
-0.16065533459186554,
0.05232835188508034,
-0.0971856415271759,
-0.051306720823049545,
-0.09556061774492264,
-0.050184283405542374,
-0.01728140190243721,
-0.018070710822939873,
-0.02822391875088215,
-0.04367216303944588,
-0.10629069805145264,
0.04816720634698868,
-0.03879733756184578,
0.02260771207511425,
-0.06238244101405144,
0.02379411831498146,
0.03523104265332222,
-0.015178869478404522,
0.1198926493525505,
0.12207183241844177,
-0.09698602557182312,
0.09035449475049973,
-0.16394847631454468,
-0.06776027381420135,
0.11319122463464737,
0.01993078552186489,
0.060301147401332855,
0.06648512184619904,
0.011058407835662365,
0.06193515285849571,
0.047181855887174606,
0.04019154608249664,
0.0011482342379167676,
-0.0998595729470253,
0.05959494039416313,
-0.025470629334449768,
-0.11498484015464783,
-0.05095286667346954,
0.004914015997201204,
0.01974906586110592,
0.04762796312570572,
0.09024947136640549,
-0.07045641541481018,
0.10133861005306244,
-0.0719725638628006,
0.042781490832567215,
0.013207492418587208,
-0.1567831039428711,
-0.009022838436067104,
-0.07855422794818878,
0.051177605986595154,
0.018598362803459167,
0.16054493188858032,
0.01182752288877964,
0.026072200387716293,
0.010315481573343277,
0.07682152092456818,
0.04349011927843094,
-0.014741134829819202,
0.21185405552387238,
0.10036209225654602,
-0.025498010218143463,
-0.09448950737714767,
0.10583885759115219,
0.05347297713160515,
0.04882397875189781,
0.13073812425136566,
0.00329616479575634,
-0.014263730496168137,
0.08692904561758041,
0.002064551692456007,
0.02444906160235405,
-0.11166326701641083,
-0.12022344022989273,
-0.034913238137960434,
0.03916458785533905,
-0.018694007769227028,
0.07413183152675629,
0.13662488758563995,
-0.011044695042073727,
0.01868942379951477,
-0.006493001710623503,
-0.044404536485672,
-0.19629815220832825,
-0.21793615818023682,
-0.07676366716623306,
-0.13648608326911926,
-0.0023855564650148153,
-0.11510718613862991,
0.041815925389528275,
0.008664922788739204,
0.07993809133768082,
-0.08146228641271591,
0.05119030550122261,
0.06000566482543945,
-0.1558382213115692,
0.07134677469730377,
-0.023100191727280617,
0.1049720048904419,
-0.07798602432012558,
0.0240509994328022,
-0.06541567295789719,
0.07175038009881973,
0.01739879511296749,
0.029955588281154633,
-0.01989707536995411,
0.008211890235543251,
-0.12742145359516144,
-0.08334774523973465,
-0.06036959961056709,
0.06557390093803406,
0.020560268312692642,
0.1673227995634079,
0.009943484328687191,
-0.023078134283423424,
0.028660951182246208,
0.24841417372226715,
-0.0622759610414505,
-0.06388328224420547,
-0.06632015854120255,
0.20368391275405884,
-0.019206369295716286,
0.09927452355623245,
-0.04167409613728523,
0.010532806627452374,
-0.07129248231649399,
0.3616236448287964,
0.2931338846683502,
-0.10953228175640106,
0.007534074131399393,
-0.023572852835059166,
0.042554765939712524,
0.11510708183050156,
0.1042989119887352,
0.07050987333059311,
0.29585832357406616,
-0.05323539301753044,
-0.035456158220767975,
-0.00002445635254844092,
0.0010794458212330937,
-0.06095365062355995,
0.08202893286943436,
0.03708086162805557,
-0.050908174365758896,
-0.00022808888752479106,
0.14211015403270721,
-0.2293669879436493,
0.05093219503760338,
-0.1549203097820282,
-0.17726412415504456,
-0.08134126663208008,
-0.008463856764137745,
0.11377648264169693,
0.03384561836719513,
0.10970432311296463,
-0.004765030462294817,
-0.0765727236866951,
0.0467694029211998,
0.03101363778114319,
-0.19725514948368073,
0.009119519963860512,
0.06916453689336777,
-0.02850601077079773,
-0.030441200360655785,
-0.02334762178361416,
0.06269988417625427,
0.07391422241926193,
0.05389029160141945,
-0.01931828074157238,
0.03749391436576843,
-0.00035577634116634727,
-0.041961804032325745,
0.07208401709794998,
-0.0301519688218832,
0.008827175945043564,
-0.0679439827799797,
0.08395512402057648,
-0.18772968649864197,
0.04201417416334152,
0.018391063436865807,
-0.04758477583527565,
-0.04135806858539581,
0.04440581426024437,
-0.07019207626581192,
0.08052141219377518,
0.07222563028335571,
-0.01630892977118492,
-0.02569187991321087,
-0.013696021400392056,
-0.005180103238672018,
0.000036183802876621485,
-0.011484390124678612,
-0.10217433422803879,
-0.1737447828054428,
-0.13257969915866852,
0.06753268837928772,
0.018290087580680847,
-0.20535635948181152,
0.03693879395723343,
-0.12776882946491241,
0.02865419164299965,
-0.10825670510530472,
0.07439035177230835,
0.07718028128147125,
0.02790611796081066,
-0.0036239037290215492,
-0.022755812853574753,
0.03530992195010185,
0.0841168612241745,
-0.12845547497272491,
-0.06076517328619957
] |
null | null |
transformers
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 1311135
## Validation Metrics
- Loss: 0.35616958141326904
- Accuracy: 0.8979447200566973
- Macro F1: 0.8545383956197669
- Micro F1: 0.8979447200566975
- Weighted F1: 0.8983951947775538
- Macro Precision: 0.8615833774439791
- Micro Precision: 0.8979447200566973
- Weighted Precision: 0.9013559365881655
- Macro Recall: 0.8516503001777104
- Micro Recall: 0.8979447200566973
- Weighted Recall: 0.8979447200566973
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
|
text-classification
|
albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autonlp",
"bn",
"dataset:albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"bn"
] |
TAGS
#transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 1311135
## Validation Metrics
- Loss: 0.35616958141326904
- Accuracy: 0.8979447200566973
- Macro F1: 0.8545383956197669
- Micro F1: 0.8979447200566975
- Weighted F1: 0.8983951947775538
- Macro Precision: 0.8615833774439791
- Micro Precision: 0.8979447200566973
- Weighted Precision: 0.9013559365881655
- Macro Recall: 0.8516503001777104
- Micro Recall: 0.8979447200566973
- Weighted Recall: 0.8979447200566973
## Usage
You can use cURL to access this model:
Or Python API:
|
[
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135",
"## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
"TAGS\n#transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135",
"## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
74,
25,
151,
17
] |
[
"passage: TAGS\n#transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
-0.07918614149093628,
0.18374678492546082,
-0.003503861604258418,
0.13563503324985504,
0.12141451984643936,
0.05811679735779762,
0.09033432602882385,
0.1548585444688797,
0.014859529212117195,
0.13370682299137115,
0.1085161492228508,
0.16687382757663727,
0.06170359626412392,
0.14822152256965637,
-0.0844932422041893,
-0.1495373696088791,
0.0001619576069060713,
0.019550511613488197,
0.07071222364902496,
0.066168412566185,
0.06432050466537476,
-0.04407142847776413,
0.0993487536907196,
-0.03941948339343071,
-0.11474259942770004,
0.03301991522312164,
0.08557375520467758,
-0.06980183720588684,
0.05426493659615517,
0.09306018054485321,
0.10043462365865707,
-0.03508484736084938,
0.06769607216119766,
-0.09409445524215698,
-0.020645512267947197,
0.054266076534986496,
-0.00997204426676035,
0.07305639982223511,
0.18119357526302338,
-0.004386925138533115,
0.023733189329504967,
-0.13382083177566528,
0.07444977015256882,
0.09505479037761688,
-0.08579932153224945,
-0.16168871521949768,
-0.14322243630886078,
0.07711107283830643,
0.10296688228845596,
0.057786066085100174,
0.008179794996976852,
0.1696678251028061,
-0.006326046772301197,
0.1072888895869255,
0.07605297863483429,
-0.2780580222606659,
-0.0467480793595314,
0.21004575490951538,
-0.04725354537367821,
-0.02904338575899601,
0.0030757500790059566,
0.010637435130774975,
0.0528089813888073,
0.029089801013469696,
0.0017018248327076435,
-0.0759892538189888,
-0.06751363724470139,
-0.0435960553586483,
-0.11933667212724686,
-0.029892118647694588,
0.12670812010765076,
0.014968608506023884,
-0.07565020024776459,
-0.09333197772502899,
-0.041652776300907135,
-0.07346264272928238,
-0.04448617249727249,
-0.0023233972024172544,
0.015538488514721394,
-0.03648267686367035,
-0.009968513622879982,
0.05946273356676102,
0.009837176650762558,
-0.04796665906906128,
-0.13428747653961182,
0.015805624425411224,
0.008529022336006165,
0.04608961567282677,
0.014667563140392303,
-0.0027869734913110733,
-0.06624358892440796,
-0.03919445350766182,
-0.0042446269653737545,
0.014816264621913433,
-0.07702919840812683,
-0.07051178067922592,
0.012863396666944027,
0.044405173510313034,
0.04629884660243988,
0.16807794570922852,
-0.029638070613145828,
0.13214914500713348,
0.039387743920087814,
-0.01468192134052515,
-0.04864073917269707,
0.09288886934518814,
-0.104136161506176,
-0.11266569793224335,
0.043283503502607346,
-0.01634104549884796,
0.011696659959852695,
-0.04034149646759033,
-0.05753490701317787,
-0.06549043208360672,
0.06602559238672256,
0.06531674414873123,
0.031613435596227646,
0.03349308669567108,
-0.060164518654346466,
-0.06253787130117416,
-0.019553184509277344,
-0.11854388564825058,
0.0638599619269371,
0.007121329661458731,
-0.11181151121854782,
0.10382883250713348,
0.05064881965517998,
-0.008766165934503078,
-0.11973598599433899,
0.03529497981071472,
-0.10771925002336502,
0.008826391771435738,
-0.08254310488700867,
-0.132012277841568,
0.04869275912642479,
0.0012333202175796032,
-0.029391711577773094,
-0.09660723805427551,
-0.17345012724399567,
-0.0864916443824768,
0.005080035421997309,
-0.10843957960605621,
-0.0432458259165287,
0.016014834865927696,
-0.027659114450216293,
0.045464515686035156,
0.018782909959554672,
0.05688532441854477,
-0.021999601274728775,
0.013513571582734585,
0.05854246765375137,
0.07665913552045822,
-0.057719793170690536,
0.0228695347905159,
-0.01934770680963993,
0.031576573848724365,
-0.11005926877260208,
0.07080361247062683,
-0.0901983380317688,
0.04071114957332611,
-0.16707554459571838,
-0.03678029403090477,
0.11973848193883896,
-0.03487146645784378,
0.06918061524629593,
0.09393437951803207,
-0.13991518318653107,
0.00813229288905859,
0.10590014606714249,
-0.03836758807301521,
-0.10204523056745529,
0.08681098371744156,
0.012277357280254364,
-0.011681163683533669,
0.030577730387449265,
0.12178681045770645,
0.14581504464149475,
-0.04136557877063751,
-0.07752535492181778,
0.0040153320878744125,
0.029305223375558853,
-0.058699220418930054,
0.10392313450574875,
-0.03335766866803169,
-0.13900762796401978,
0.006547258701175451,
0.06277091801166534,
-0.013929211534559727,
-0.03244747966527939,
-0.05095377564430237,
-0.026208123192191124,
-0.029149236157536507,
-0.009378431364893913,
0.005279995035380125,
0.024281678721308708,
-0.03600100055336952,
-0.032022036612033844,
0.04615495353937149,
0.14095637202262878,
-0.01981404796242714,
-0.02885410189628601,
-0.14150503277778625,
0.08859223872423172,
-0.0927773118019104,
-0.021328182891011238,
-0.21619610488414764,
-0.07189904153347015,
0.014472017996013165,
-0.17995187640190125,
0.02024242654442787,
-0.04925685375928879,
0.07396040856838226,
0.04650997743010521,
0.04735545441508293,
0.03951659053564072,
0.09467743337154388,
-0.030514968559145927,
-0.09702687710523605,
-0.07061183452606201,
-0.05822337418794632,
0.0038931001909077168,
0.22619347274303436,
-0.18062029778957367,
0.012444223277270794,
0.02326223812997341,
0.05214023217558861,
-0.014508684165775776,
-0.048408541828393936,
-0.018970362842082977,
0.07961070537567139,
0.022569457069039345,
-0.07132207602262497,
0.107240229845047,
-0.019523179158568382,
-0.0396694578230381,
-0.06236700341105461,
-0.2340230643749237,
0.12053138017654419,
0.09688285738229752,
0.04495725780725479,
-0.08978957682847977,
-0.033265333622694016,
0.03776136785745621,
-0.0360686220228672,
-0.0013172610197216272,
0.04242899641394615,
0.13955317437648773,
0.04280812665820122,
0.11665157228708267,
-0.04091178625822067,
-0.03231329843401909,
0.0151592455804348,
-0.05345610901713371,
-0.023816514760255814,
0.19315628707408905,
0.04348725453019142,
-0.1112840548157692,
0.0905759334564209,
0.010163708589971066,
-0.09355796873569489,
0.05506850406527519,
0.022764530032873154,
-0.02316092699766159,
-0.08982717245817184,
-0.001913438318297267,
0.0706428736448288,
0.00012882200826425105,
0.030136719346046448,
0.0614515095949173,
0.0730651319026947,
-0.013143264688551426,
0.018199047073721886,
-0.07618758827447891,
0.021609628573060036,
0.013731083832681179,
-0.024987880140542984,
-0.020074520260095596,
0.010016879998147488,
0.05922854691743851,
0.12793900072574615,
0.019222963601350784,
0.015546994283795357,
0.012285229749977589,
-0.012468014843761921,
-0.1068982258439064,
0.2349998503923416,
-0.09624147415161133,
-0.15221518278121948,
-0.16850201785564423,
-0.18882907927036285,
-0.11339019984006882,
-0.08175177127122879,
-0.02625197544693947,
-0.05863845720887184,
-0.09477589279413223,
-0.06472942233085632,
-0.02398940734565258,
-0.02333029918372631,
-0.06522931158542633,
0.037078000605106354,
-0.01356985978782177,
0.10902151465415955,
-0.11263886094093323,
-0.035245876759290695,
0.025611095130443573,
-0.10509984195232391,
0.04734531417489052,
0.02361023984849453,
0.06433513015508652,
0.14635181427001953,
-0.03502781316637993,
0.03459823876619339,
0.006797957234084606,
0.21587391197681427,
0.03935036435723305,
-0.02452307753264904,
0.20794916152954102,
0.051686856895685196,
0.04890640452504158,
0.08584176003932953,
0.06352142989635468,
-0.0834469199180603,
-0.021791134029626846,
0.08209573477506638,
-0.013398639857769012,
-0.20561400055885315,
-0.18365293741226196,
-0.004762358032166958,
0.10773075371980667,
0.12017574906349182,
0.02077503502368927,
0.011577274650335312,
0.07872871309518814,
0.046411462128162384,
0.09111011028289795,
-0.051973164081573486,
0.07387150079011917,
0.1373259723186493,
0.03200775384902954,
0.1337013840675354,
-0.0738358274102211,
0.030474822968244553,
0.1117606982588768,
-0.011570806615054607,
0.06542760878801346,
0.051494624465703964,
0.07194673269987106,
-0.017494510859251022,
0.07917499542236328,
0.0316796749830246,
0.10988491773605347,
0.012976882047951221,
-0.014756754972040653,
0.041813768446445465,
-0.06895323842763901,
-0.07628925889730453,
-0.030428558588027954,
0.013134152628481388,
0.04630280286073685,
-0.11267757415771484,
0.017325833439826965,
-0.0001321237359661609,
0.10749510675668716,
0.06480368226766586,
-0.42579981684684753,
-0.03844217583537102,
0.02547258883714676,
-0.009664816781878471,
-0.10381338000297546,
-0.028023958206176758,
-0.03119216114282608,
-0.14381112158298492,
0.07148760557174683,
-0.04611813649535179,
0.12024358659982681,
-0.09535864740610123,
-0.022816702723503113,
0.006631779950112104,
0.07900490611791611,
0.009015632793307304,
0.05334244295954704,
-0.14912879467010498,
0.12706796824932098,
0.05429413169622421,
0.03405972197651863,
-0.06521567702293396,
0.03882880508899689,
0.029952237382531166,
-0.009560475125908852,
0.1410585641860962,
0.016496051102876663,
-0.12187878042459488,
-0.3246164619922638,
-0.10676375776529312,
0.010584412142634392,
-0.01052831206470728,
0.010566651821136475,
0.09247647225856781,
-0.056950170546770096,
-0.0019007048103958368,
-0.04602830857038498,
-0.023196272552013397,
-0.09353002905845642,
-0.07717181742191315,
0.03819971904158592,
0.08189750462770462,
-0.08025497198104858,
-0.03088112734258175,
-0.02104462869465351,
-0.02202582359313965,
0.14332301914691925,
-0.1206003949046135,
-0.049394574016332626,
-0.15097051858901978,
0.042763907462358475,
0.10911143571138382,
-0.1142992302775383,
0.04494359716773033,
-0.047221217304468155,
0.05849473923444748,
-0.011546269059181213,
-0.1382206827402115,
0.07095982879400253,
-0.05732632800936699,
-0.027007373049855232,
0.009928712621331215,
0.02117316983640194,
-0.0374746136367321,
0.06585643440485,
0.027010437101125717,
0.022008489817380905,
0.010852005332708359,
-0.12074431777000427,
-0.024960532784461975,
0.03233076259493828,
0.12288671731948853,
0.06032219156622887,
-0.05189263075590134,
-0.08911660313606262,
-0.035952068865299225,
0.07149527966976166,
0.17425395548343658,
0.3047806918621063,
-0.06941795349121094,
-0.02083153836429119,
0.06664878875017166,
-0.04478662088513374,
-0.23548947274684906,
-0.029625210911035538,
0.02450799010694027,
-0.0025179502554237843,
-0.018188374117016792,
-0.09790387004613876,
0.148448184132576,
0.19983389973640442,
-0.01648346334695816,
-0.022500181570649147,
-0.28336894512176514,
-0.11187124252319336,
0.13680996000766754,
0.11166869103908539,
0.051681116223335266,
-0.1803441047668457,
-0.05065430328249931,
-0.11205972731113434,
-0.1385147124528885,
0.13623209297657013,
-0.07947953790426254,
0.07312249392271042,
-0.05433506518602371,
0.05680721253156662,
0.03748229891061783,
-0.0640191063284874,
0.1668574959039688,
-0.023483386263251305,
0.03873935714364052,
-0.061937116086483,
-0.05321027711033821,
-0.06266947090625763,
-0.08171216398477554,
0.10955740511417389,
0.003719043917953968,
0.06860680878162384,
-0.2520736753940582,
0.005933800246566534,
-0.0012965237256139517,
0.06433131545782089,
-0.06060870736837387,
-0.020346319302916527,
-0.0035420602653175592,
0.06047888845205307,
-0.03305951878428459,
-0.025345098227262497,
-0.012487790547311306,
-0.03648873046040535,
0.10192079097032547,
0.20710106194019318,
0.07242331653833389,
-0.0448325015604496,
-0.0848848894238472,
0.03845858573913574,
-0.04791706055402756,
0.03303363546729088,
-0.11143074184656143,
0.055415455251932144,
0.1319856494665146,
0.033790022134780884,
0.08341962844133377,
0.05285936966538429,
-0.021149443462491035,
-0.029194846749305725,
0.039817795157432556,
-0.12715069949626923,
0.029660329222679138,
0.029017161577939987,
0.05019909143447876,
-0.09040280431509018,
-0.07050397992134094,
0.13567699491977692,
0.020847709849476814,
-0.03218913450837135,
0.02905827946960926,
-0.0007464832160621881,
-0.031200408935546875,
0.238693967461586,
-0.0080126216635108,
0.0829925611615181,
-0.09991627931594849,
0.0905826985836029,
0.10255562514066696,
-0.12802450358867645,
0.005731670185923576,
0.15808869898319244,
-0.06796219199895859,
-0.07012603431940079,
0.021054554730653763,
0.16813205182552338,
-0.11366072297096252,
-0.04743737354874611,
-0.02199614606797695,
-0.10171279311180115,
0.06416879594326019,
0.1679515242576599,
0.08959820121526718,
-0.008650439791381359,
-0.008921949192881584,
-0.11350832879543304,
-0.12463528662919998,
0.04132488742470741,
0.08133444935083389,
0.004652426578104496,
-0.11059575527906418,
0.14993484318256378,
-0.01504514366388321,
0.020863614976406097,
-0.01170647144317627,
0.025244997814297676,
-0.22570264339447021,
-0.044050704687833786,
-0.06914100050926208,
0.050855014473199844,
-0.05877471715211868,
0.043739546090364456,
-0.01703157275915146,
0.0436633862555027,
-0.05866292491555214,
0.005887952167540789,
-0.05816412717103958,
-0.08892270177602768,
-0.0032366919331252575,
0.07865028828382492,
-0.06752011924982071,
-0.023023994639515877,
0.041305407881736755,
-0.021642472594976425,
0.039156533777713776,
0.040698084980249405,
0.06650882959365845,
-0.023060301318764687,
-0.028894629329442978,
-0.028681263327598572,
0.03398888558149338,
0.011379443109035492,
0.07856465131044388,
-0.21770937740802765,
0.05045458301901817,
-0.020880986005067825,
0.031051503494381905,
0.07030340284109116,
0.12484602630138397,
-0.1044495701789856,
0.011702990159392357,
-0.11172980815172195,
-0.05166340991854668,
-0.10265396535396576,
0.03079906292259693,
0.14204442501068115,
0.06786468625068665,
0.0736665204167366,
-0.09506979584693909,
0.06237592548131943,
-0.19117358326911926,
-0.025028645992279053,
-0.039671193808317184,
-0.05337781831622124,
-0.004128897096961737,
0.0006030782824382186,
0.09144563972949982,
-0.019227560609579086,
0.07573432475328445,
0.012157655321061611,
0.014983206987380981,
0.043046142905950546,
0.07976917922496796,
-0.01861991174519062,
-0.02848215401172638,
0.15153147280216217,
0.07392536103725433,
0.00007265544263646007,
0.11843011528253555,
0.10740151256322861,
0.03473925217986107,
0.06769481301307678,
0.06010238453745842,
0.09897277504205704,
-0.10245528072118759,
0.06353704631328583,
0.02615741826593876,
-0.1053234338760376,
-0.025272220373153687,
0.14408999681472778,
-0.0581589974462986,
0.04899870231747627,
-0.08213479071855545,
0.03064166009426117,
0.12028324604034424,
-0.12440504878759384,
0.032793160527944565,
-0.0061533767729997635,
-0.06099534034729004,
-0.20873425900936127,
-0.088008813560009,
-0.11520873755216599,
-0.013073755428195,
-0.03415488824248314,
-0.1011420413851738,
0.038182854652404785,
0.17816397547721863,
0.019216733053326607,
0.0283734779804945,
0.07950834184885025,
-0.2644311189651489,
-0.013468516990542412,
-0.02511235699057579,
-0.00455387681722641,
-0.023521462455391884,
-0.024654792621731758,
-0.016597438603639603,
0.011987052857875824,
0.009630847722291946,
0.08827167004346848,
0.034298233687877655,
0.031923916190862656,
0.08397810161113739,
-0.04325886815786362,
-0.09670862555503845,
-0.03854287415742874,
0.01168394461274147,
0.031117167323827744,
0.17123034596443176,
0.021455982699990273,
-0.008472524583339691,
-0.047323938459157944,
0.1686202734708786,
-0.07584255188703537,
0.01774272695183754,
-0.10718132555484772,
0.2539577782154083,
-0.013934800401329994,
0.04367464780807495,
0.00001295036418014206,
-0.004091476555913687,
-0.001479231403209269,
0.17936591804027557,
0.10969537496566772,
-0.016115369275212288,
-0.03277626261115074,
0.034678131341934204,
-0.006273518316447735,
-0.039826493710279465,
0.14227522909641266,
0.04837901145219803,
0.11015349626541138,
-0.060824599117040634,
0.04806212708353996,
-0.01427923422306776,
-0.02607407048344612,
-0.12121056765317917,
0.08170253038406372,
0.02922799438238144,
0.008483722805976868,
0.03856036439538002,
0.09108293801546097,
-0.05554323270916939,
0.1001381129026413,
0.09186576306819916,
-0.1139221265912056,
-0.1688959300518036,
0.019657060503959656,
-0.03150247037410736,
-0.04991157725453377,
0.10507780313491821,
-0.033792514353990555,
0.004202853422611952,
0.014009840786457062,
-0.02571198157966137,
-0.16567274928092957,
-0.11992056667804718,
-0.011660851538181305,
0.11089693754911423,
0.29815059900283813,
0.027404645457863808,
0.08470702171325684,
0.1844908446073532,
-0.04265379160642624,
-0.18110623955726624,
0.05620372295379639,
0.013328355737030506,
-0.10238829255104065,
0.10109755396842957,
0.07809177041053772,
-0.05446814373135567,
0.15858440101146698,
0.029039671644568443,
-0.16059616208076477,
-0.0185944065451622,
0.0203635785728693,
0.05340099334716797,
-0.056937288492918015,
0.017859280109405518,
-0.09397899359464645,
0.12418399006128311,
0.17997409403324127,
-0.029383579269051552,
-0.015308300033211708,
-0.057287149131298065,
0.06251677125692368,
-0.01384355966001749,
0.0380006767809391,
-0.04315865784883499,
-0.11939679831266403,
0.08223499357700348,
-0.260165810585022,
0.01717124879360199,
-0.28640905022621155,
-0.017893334850668907,
-0.018929537385702133,
-0.051771506667137146,
-0.0918433889746666,
0.10898449271917343,
0.03619454428553581,
-0.0021755751222372055,
-0.04224887117743492,
-0.2547591030597687,
0.012261520139873028,
0.13867394626140594,
-0.09319468587636948,
-0.11839031428098679
] |
null | null |
transformers
|
# Model Trained Using AutoNLP
- Problem type: Entity Extraction
- Model ID: 1301123
## Validation Metrics
- Loss: 0.14097803831100464
- Accuracy: 0.9740097463451206
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
|
token-classification
|
albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
|
[
"transformers",
"pytorch",
"safetensors",
"albert",
"token-classification",
"autonlp",
"bn",
"dataset:albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"bn"
] |
TAGS
#transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Entity Extraction
- Model ID: 1301123
## Validation Metrics
- Loss: 0.14097803831100464
- Accuracy: 0.9740097463451206
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
## Usage
You can use cURL to access this model:
Or Python API:
|
[
"# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123",
"## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
"TAGS\n#transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123",
"## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
76,
24,
46,
17
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
-0.1732017993927002,
0.18005973100662231,
-0.0017610753420740366,
0.12011082470417023,
0.12407881766557693,
0.00012012081424472854,
0.06556486338376999,
0.06301893293857574,
0.041378989815711975,
0.05255093052983284,
0.15745128691196442,
0.19385212659835815,
0.021568099036812782,
0.15999476611614227,
-0.11828342080116272,
-0.13779164850711823,
0.07371252030134201,
0.04840654879808426,
0.20820248126983643,
0.1279243528842926,
0.05296429991722107,
-0.11184705793857574,
0.09069584310054779,
0.029301593080163002,
-0.1272103190422058,
-0.002590615302324295,
0.10416604578495026,
-0.14385908842086792,
0.1116722822189331,
0.03532283008098602,
0.13850367069244385,
0.007039234507828951,
0.12694436311721802,
-0.10256189107894897,
-0.014938018284738064,
-0.0013049726840108633,
0.015383961610496044,
0.07772212475538254,
0.05507669970393181,
-0.05334460362792015,
-0.07044081389904022,
0.027111278846859932,
0.07272805273532867,
0.017544090747833252,
-0.09869313985109329,
-0.12661950290203094,
-0.047555726021528244,
0.0979180634021759,
0.09901529550552368,
0.10920160263776779,
-0.006432647351175547,
0.27372288703918457,
-0.05768290162086487,
0.10317163914442062,
0.044158145785331726,
-0.3043954372406006,
-0.020081063732504845,
0.07697086781263351,
-0.044496774673461914,
-0.0719686970114708,
0.009718278422951698,
0.031222892925143242,
0.07359706610441208,
0.03203080594539642,
0.1133691817522049,
-0.027232935652136803,
-0.1233936995267868,
-0.02665061689913273,
-0.10401740670204163,
-0.07552090287208557,
0.21080522239208221,
0.02704118750989437,
-0.08904676884412766,
-0.03381052240729332,
-0.09905213862657547,
-0.0757291242480278,
-0.07040592283010483,
-0.05522669106721878,
-0.006968055851757526,
-0.044933706521987915,
-0.05113370716571808,
0.06720227003097534,
-0.07775379717350006,
-0.06375142931938171,
-0.13976047933101654,
0.13872559368610382,
0.030827432870864868,
0.08797523379325867,
-0.03115069307386875,
0.09224222600460052,
-0.08038023859262466,
-0.07595992088317871,
-0.010202435776591301,
-0.028527095913887024,
-0.022542821243405342,
-0.06227388232946396,
-0.01664823666214943,
0.030121754854917526,
0.014659060165286064,
0.14834266901016235,
0.039521511644124985,
0.005708445329219103,
0.006404861342161894,
0.018139773979783058,
0.02366398088634014,
0.1810676008462906,
-0.12794293463230133,
0.0110621377825737,
0.08836082369089127,
0.0031658143270760775,
0.02687578648328781,
-0.019244734197854996,
-0.03073727898299694,
-0.0528496615588665,
0.2237953394651413,
0.04872598499059677,
-0.0030942598823457956,
0.0764886885881424,
-0.05715217813849449,
-0.03669384494423866,
0.012903958559036255,
-0.10145042091608047,
0.0038158188108354807,
0.002276359824463725,
-0.12004046142101288,
0.07611912488937378,
0.0840320885181427,
-0.017122464254498482,
-0.09269537031650543,
0.008433341979980469,
-0.09695377200841904,
0.019738776609301567,
-0.024404728785157204,
-0.1318090409040451,
0.020538929849863052,
-0.005972317885607481,
0.04230782389640808,
-0.20025670528411865,
-0.28868526220321655,
-0.0038777505978941917,
0.0471951961517334,
-0.0293225459754467,
-0.003490006783977151,
-0.03796340897679329,
-0.002736339345574379,
-0.017411358654499054,
-0.060925256460905075,
-0.11590872704982758,
-0.05602407082915306,
0.06028113141655922,
0.03387058526277542,
0.04296574369072914,
-0.07616113126277924,
0.03307230398058891,
-0.13031242787837982,
-0.00006166312232380733,
-0.09837415814399719,
0.038670651614665985,
-0.03384527191519737,
0.019363341853022575,
-0.1321049928665161,
-0.036401789635419846,
0.10091017186641693,
-0.0074595240876078606,
0.07434087991714478,
0.16278183460235596,
-0.0891546681523323,
-0.0022436471190303564,
0.11213625222444534,
-0.09867357462644577,
-0.1134955957531929,
0.13263677060604095,
-0.05816100165247917,
0.026125961914658546,
0.10528700053691864,
0.057398125529289246,
0.06569941341876984,
-0.09617584198713303,
-0.04948393255472183,
0.004316486418247223,
-0.033024340867996216,
-0.10707546025514603,
0.03396839648485184,
0.06337767094373703,
-0.20983363687992096,
0.058473553508520126,
-0.0017089579487219453,
0.013717018067836761,
-0.08033724129199982,
-0.08884994685649872,
-0.04365845397114754,
-0.085983507335186,
0.08923648297786713,
0.00009626943938201293,
0.08364361524581909,
-0.013189367949962616,
-0.0689312219619751,
0.011552238836884499,
0.11253988742828369,
-0.035608354955911636,
-0.05083591863512993,
-0.15571632981300354,
0.1728115826845169,
-0.20307622849941254,
-0.038353994488716125,
-0.18657808005809784,
-0.04601563885807991,
-0.0057080453261733055,
-0.001403435948304832,
-0.03719507157802582,
-0.02012898027896881,
0.05536319687962532,
0.06520211696624756,
0.041405946016311646,
-0.040641192346811295,
0.07642564177513123,
0.01227581687271595,
-0.10704190284013748,
-0.0020948888268321753,
-0.030324842780828476,
-0.034674327820539474,
0.18989713490009308,
-0.1585984081029892,
-0.000650073925498873,
-0.11289787292480469,
0.014398555271327496,
-0.00018012091459240764,
0.00597058329731226,
-0.03638117387890816,
0.025280755013227463,
-0.022174062207341194,
-0.02377225086092949,
0.04439477622509003,
-0.012101145461201668,
-0.06126844137907028,
-0.004258890636265278,
-0.18953098356723785,
0.2460888922214508,
0.13711810111999512,
-0.0441259928047657,
-0.05592426285147667,
0.008782684803009033,
0.013986059464514256,
0.013873850926756859,
-0.05688006430864334,
0.037854600697755814,
0.11401789635419846,
0.03976854309439659,
0.13802213966846466,
-0.06651259958744049,
0.011547494679689407,
0.054480794817209244,
-0.10472124069929123,
-0.0455528162419796,
0.08896477520465851,
0.002796002896502614,
-0.15326976776123047,
0.08533842861652374,
0.06722551584243774,
-0.12845447659492493,
0.011987878009676933,
0.017127761617302895,
-0.0401589535176754,
-0.022753139957785606,
-0.042000774294137955,
-0.004818824585527182,
0.09402953088283539,
0.010699121281504631,
0.03796566277742386,
0.07300522178411484,
-0.017705094069242477,
-0.0052427309565246105,
-0.1022808700799942,
-0.010456650517880917,
0.03489270433783531,
-0.0005679839523509145,
-0.07535398006439209,
-0.020149122923612595,
0.03384917974472046,
0.10446009039878845,
0.00629799161106348,
-0.12239381670951843,
0.04328084737062454,
0.033129457384347916,
-0.09971465170383453,
0.22065305709838867,
-0.0645352452993393,
-0.19793233275413513,
-0.13772813975811005,
-0.08292631059885025,
-0.0814158022403717,
-0.008410842157900333,
0.012700012885034084,
-0.0003691107558552176,
-0.08408643305301666,
-0.07521680742502213,
-0.07713496685028076,
0.0328991673886776,
-0.061509907245635986,
0.014574605040252209,
-0.07298639416694641,
0.06414631754159927,
-0.09821826219558716,
-0.06032755225896835,
-0.051477160304784775,
-0.09336858987808228,
0.15142330527305603,
-0.028892194852232933,
0.07434208691120148,
0.14904259145259857,
-0.07242538034915924,
0.03200894594192505,
0.019511906430125237,
0.2026457041501999,
0.025866320356726646,
-0.042089879512786865,
0.21634116768836975,
-0.007601513527333736,
0.02520873211324215,
0.10479195415973663,
0.025582652539014816,
-0.07376287132501602,
-0.02336971089243889,
-0.0006415616371668875,
-0.01699201948940754,
-0.1426868885755539,
-0.1614454984664917,
0.05965055525302887,
0.04782741144299507,
0.14109620451927185,
0.004470318555831909,
0.07317185401916504,
0.15274207293987274,
0.03480720520019531,
0.036512020975351334,
-0.03401154279708862,
0.06952521950006485,
0.13720326125621796,
0.005226702895015478,
0.13206368684768677,
-0.009112591855227947,
-0.06509324163198471,
0.033764246851205826,
0.006148430053144693,
0.10608989000320435,
0.02694682590663433,
-0.11842367798089981,
0.00196696980856359,
0.14146657288074493,
0.03239470720291138,
0.1843854784965515,
0.053135015070438385,
-0.009683990851044655,
0.004144853446632624,
-0.040540944784879684,
-0.14497056603431702,
-0.009281473234295845,
-0.020638080313801765,
0.07026812434196472,
-0.14193275570869446,
0.008150971494615078,
0.01156536303460598,
0.10417642444372177,
0.15964250266551971,
-0.4937567114830017,
-0.12214281409978867,
0.0026385881938040257,
-0.037782538682222366,
-0.1347752958536148,
0.019252518191933632,
-0.09097598493099213,
-0.11881166696548462,
-0.01302432268857956,
-0.0654727965593338,
0.08789978176355362,
-0.08229487389326096,
0.025414982810616493,
-0.11120913922786713,
0.015761584043502808,
-0.014576369896531105,
0.08402841538190842,
-0.1951061487197876,
0.2520958483219147,
0.05056656524538994,
0.08114099502563477,
-0.08525988459587097,
-0.004456558730453253,
0.04562196135520935,
0.08813638985157013,
0.1728047877550125,
-0.01419668085873127,
0.06930438429117203,
-0.2787889242172241,
-0.14959491789340973,
0.07369165867567062,
-0.09224262833595276,
0.021549560129642487,
0.08504509180784225,
0.005848069209605455,
0.016651462763547897,
-0.01481904648244381,
0.03529738262295723,
-0.1650410294532776,
-0.010069706477224827,
-0.017970411106944084,
0.07087364792823792,
0.03232075646519661,
-0.022337978705763817,
-0.0655868649482727,
-0.09426160156726837,
0.105830617249012,
0.05567183718085289,
-0.05495079234242439,
-0.11875161528587341,
0.05260462313890457,
0.0720314234495163,
-0.11211065948009491,
0.0435076467692852,
-0.029306279495358467,
0.058808259665966034,
-0.01996314898133278,
-0.13275735080242157,
0.08016529679298401,
-0.08914466202259064,
-0.012115532532334328,
0.013587902300059795,
-0.020584166049957275,
0.04027977213263512,
0.006905869580805302,
0.10690156370401382,
0.03481043130159378,
-0.0440911129117012,
-0.07586623728275299,
-0.006913819815963507,
0.09065242856740952,
0.06245313584804535,
0.07811833918094635,
-0.029366251081228256,
-0.2232556790113449,
-0.07647355645895004,
0.11494456976652145,
0.1677331030368805,
0.1662668138742447,
-0.06974194943904877,
-0.04891212284564972,
0.1997475028038025,
0.0105125168338418,
-0.2527344524860382,
-0.043748997151851654,
-0.03939869999885559,
0.030418993905186653,
-0.028777379542589188,
-0.03827584534883499,
0.14169378578662872,
0.1346447914838791,
-0.06476132571697235,
-0.030598383396863937,
-0.1864091157913208,
-0.08453574776649475,
0.3166627287864685,
0.14340299367904663,
0.20760035514831543,
-0.05390723794698715,
-0.0018325666896998882,
-0.07582330703735352,
-0.1805468052625656,
0.11550585925579071,
-0.061550579965114594,
0.05446027219295502,
-0.04389381781220436,
0.12360107898712158,
0.04516363888978958,
-0.06300784647464752,
0.09252181649208069,
-0.006941637955605984,
0.07758202403783798,
-0.03173523023724556,
-0.037041179835796356,
-0.011631393805146217,
-0.10059648007154465,
0.21677763760089874,
0.02535202167928219,
0.07760607451200485,
-0.16300565004348755,
-0.03808402642607689,
-0.04774414747953415,
0.12870930135250092,
-0.0021548231597989798,
-0.06550826877355576,
0.04032214730978012,
0.0023364785593003035,
0.0004923955420963466,
-0.04057024046778679,
-0.02014116756618023,
0.015133093111217022,
0.06605701893568039,
0.16289281845092773,
0.049214012920856476,
-0.030219942331314087,
0.005222003906965256,
0.00799911841750145,
-0.07248040288686752,
0.11944260448217392,
-0.10687841475009918,
0.0856727659702301,
0.106756292283535,
-0.01661767065525055,
0.10594252496957779,
0.03686320781707764,
-0.05019594728946686,
0.00288048735819757,
0.02034163847565651,
-0.1509910523891449,
0.03305599093437195,
0.004654955584555864,
-0.00265133916400373,
-0.029093774035573006,
0.0667899027466774,
0.14091739058494568,
-0.11278584599494934,
-0.030855480581521988,
-0.02552907168865204,
0.003437567735090852,
-0.015121341682970524,
0.20328593254089355,
0.016211766749620438,
0.05786672234535217,
-0.11533059924840927,
0.08160529285669327,
0.042224958539009094,
-0.05642944946885109,
0.03984517976641655,
-0.07923180609941483,
-0.10191641002893448,
-0.12841254472732544,
-0.0031576724722981453,
0.17659248411655426,
-0.1478438377380371,
-0.06222250312566757,
-0.057737767696380615,
-0.07797857373952866,
0.019512031227350235,
0.15851347148418427,
0.08707454055547714,
0.03844274580478668,
-0.032433412969112396,
-0.0939440205693245,
-0.1320917010307312,
0.07196731120347977,
0.19099609553813934,
0.03181104734539986,
-0.15668512880802155,
0.10742226988077164,
-0.023336779326200485,
0.06628970056772232,
-0.05196990445256233,
-0.020705867558717728,
-0.13232196867465973,
0.03023308888077736,
-0.18593916296958923,
0.040513552725315094,
-0.0861404612660408,
0.03292965516448021,
0.011996808461844921,
0.030682915821671486,
-0.0324099175632,
0.016206812113523483,
-0.08460380136966705,
0.02742450125515461,
0.05979466810822487,
0.02399394102394581,
-0.09672226011753082,
-0.06467718631029129,
0.0049233390018343925,
-0.022800002247095108,
0.07304786145687103,
0.12603087723255157,
-0.004434772301465273,
0.08799107372760773,
-0.121817946434021,
-0.024117106571793556,
0.08495311439037323,
0.020278625190258026,
0.09707716852426529,
-0.0754295065999031,
0.07386776059865952,
0.05601773038506508,
-0.004755891859531403,
0.03476906940340996,
0.11317833513021469,
-0.09680002182722092,
-0.0548667274415493,
-0.029137983918190002,
-0.05748295038938522,
-0.10289882868528366,
0.014220320619642735,
0.10196243226528168,
0.019297538325190544,
0.13425672054290771,
-0.09292270243167877,
0.04371950775384903,
-0.1371353566646576,
-0.009298537857830524,
-0.028180740773677826,
-0.07675953954458237,
-0.0970069020986557,
-0.035002391785383224,
0.05994948372244835,
-0.026394609361886978,
0.07995866984128952,
0.02824607491493225,
0.0484306700527668,
-0.025356024503707886,
0.010785621590912342,
-0.0063908835873007774,
-0.03897090628743172,
0.15821687877178192,
0.06622285395860672,
-0.01716502755880356,
-0.013458846136927605,
0.08563018590211868,
0.07715754210948944,
-0.012546677142381668,
0.001772575662471354,
0.07282421737909317,
-0.10307040065526962,
0.12641049921512604,
0.04591802507638931,
-0.03491510823369026,
-0.05498626083135605,
-0.1462477445602417,
-0.11387511342763901,
0.06296777725219727,
0.04081040620803833,
-0.013329977169632912,
0.12585075199604034,
-0.02134671062231064,
-0.026495736092329025,
-0.023623796179890633,
-0.0632140040397644,
-0.19070163369178772,
-0.14657799899578094,
-0.1252242922782898,
-0.03634754940867424,
0.007496505044400692,
-0.08289545029401779,
-0.0696338638663292,
0.1196194738149643,
0.022521082311868668,
-0.04956052824854851,
0.10340791195631027,
-0.05437790974974632,
-0.006504817865788937,
0.03353746235370636,
-0.012278864160180092,
-0.03958556801080704,
-0.016931885853409767,
-0.0010427035158500075,
-0.00433987844735384,
0.042207568883895874,
0.0604591928422451,
-0.002595256082713604,
0.01729653589427471,
0.11453574150800705,
-0.03018607199192047,
-0.11598669737577438,
-0.04665447771549225,
0.02808641456067562,
0.03037993237376213,
0.07674045115709305,
0.027406828477978706,
0.011283498257398605,
-0.029655756428837776,
0.2091284990310669,
-0.08539438247680664,
-0.013166917487978935,
-0.1342071145772934,
0.42476537823677063,
0.006757332012057304,
0.04253210872411728,
0.02479652315378189,
-0.0413905531167984,
0.06100903078913689,
0.1943964958190918,
0.12341132760047913,
0.001056801644153893,
0.011592564173042774,
-0.030975237488746643,
-0.01964784599840641,
-0.06586943566799164,
0.08560360968112946,
0.032185833901166916,
0.13283777236938477,
-0.089513398706913,
0.05987901985645294,
-0.03259516507387161,
-0.033773861825466156,
-0.07606541365385056,
0.01969391293823719,
-0.006634359713643789,
-0.010341192595660686,
-0.08752460777759552,
0.09340909868478775,
-0.09400084614753723,
0.08550950139760971,
0.04077187553048134,
-0.008332820609211922,
-0.11248161643743515,
-0.008600391447544098,
-0.05019568279385567,
0.01569243147969246,
0.11927041411399841,
-0.08668014407157898,
0.026450086385011673,
0.05631667375564575,
0.0035857888869941235,
-0.12471642345190048,
-0.05844748392701149,
0.03722459450364113,
0.1882276087999344,
0.2791876196861267,
0.06205352395772934,
0.10111622512340546,
0.1064433827996254,
0.009531001560389996,
-0.1111559346318245,
0.1526644080877304,
-0.015192133374512196,
-0.05029131472110748,
0.08583931624889374,
0.013934575952589512,
0.004554955754429102,
0.06841088831424713,
0.029377218335866928,
-0.1853310465812683,
-0.020685827359557152,
-0.045840825885534286,
0.004332152660936117,
-0.06538432836532593,
0.03137228637933731,
-0.010493585839867592,
0.10046197474002838,
0.11514748632907867,
-0.04491432011127472,
0.007964040152728558,
-0.07862494885921478,
0.09875840693712234,
0.04549966752529144,
-0.11243479698896408,
-0.010152163915336132,
-0.1149534061551094,
0.05275549739599228,
-0.09602364897727966,
-0.010416022501885891,
-0.2506324350833893,
0.014558924362063408,
-0.06107233092188835,
-0.09403970837593079,
-0.04926850646734238,
0.05143669992685318,
0.09896539151668549,
0.045426104217767715,
-0.03351711109280586,
-0.007287273649126291,
-0.003860635217279196,
0.1008983850479126,
-0.07893623411655426,
-0.11951223015785217
] |
null | null | null |
# Configuration
`title`: _string_
Display title for the Space
`emoji`: _string_
Space emoji (emoji-only character allowed)
`colorFrom`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`colorTo`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`sdk`: _string_
Can be either `gradio` or `streamlit`
`sdk_version` : _string_
Only applicable for `streamlit` SDK.
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
`app_file`: _string_
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
Path is relative to the root of the repository.
`pinned`: _boolean_
Whether the Space stays on top of your list.
|
{"title": "clip", "emoji": "\ud83d\udc41", "colorFrom": "indigo", "colorTo": "blue", "sdk": "streamlit", "app_file": "app.py", "pinned": true}
| null |
allen0s/clip
|
[
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#region-us
|
# Configuration
'title': _string_
Display title for the Space
'emoji': _string_
Space emoji (emoji-only character allowed)
'colorFrom': _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
'colorTo': _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
'sdk': _string_
Can be either 'gradio' or 'streamlit'
'sdk_version' : _string_
Only applicable for 'streamlit' SDK.
See doc for more info on supported versions.
'app_file': _string_
Path to your main application file (which contains either 'gradio' or 'streamlit' Python code).
Path is relative to the root of the repository.
'pinned': _boolean_
Whether the Space stays on top of your list.
|
[
"# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list."
] |
[
"TAGS\n#region-us \n",
"# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list."
] |
[
6,
223
] |
[
"passage: TAGS\n#region-us \n# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list."
] |
[
0.01188071072101593,
0.07758358120918274,
-0.005383076146245003,
-0.017373213544487953,
0.08687979727983475,
-0.014924844726920128,
0.014434631913900375,
0.06603410094976425,
0.10808582603931427,
0.1384299099445343,
0.02763586863875389,
0.09634341299533844,
0.009154659695923328,
0.1522364765405655,
0.006923646666109562,
-0.22283697128295898,
0.042200393974781036,
-0.0709344744682312,
0.04902972653508186,
0.06943602859973907,
0.06273981928825378,
-0.059291329234838486,
0.07202128320932388,
-0.0033088354393839836,
-0.14888131618499756,
0.00013695177040062845,
-0.010616403073072433,
-0.049460891634225845,
0.014828769490122795,
-0.0402386374771595,
0.08266407251358032,
-0.04675670340657234,
-0.07371697574853897,
-0.1268932968378067,
0.033357325941324234,
0.12697471678256989,
0.033907450735569,
0.002259220229461789,
0.12230198830366135,
-0.12981177866458893,
0.21807576715946198,
-0.1327449381351471,
0.05513199418783188,
-0.014647294767200947,
-0.018211161717772484,
-0.15117362141609192,
-0.0412733368575573,
-0.05453411117196083,
0.14670124650001526,
0.009025073610246181,
-0.008476284332573414,
0.01575237512588501,
-0.12312111258506775,
0.08234678208827972,
0.06933248043060303,
-0.04727475345134735,
-0.002634770004078746,
0.1116911768913269,
0.08801890909671783,
0.037870731204748154,
-0.12108538299798965,
0.0075067500583827496,
-0.03785065934062004,
-0.010196342132985592,
-0.03730084374547005,
-0.05277198180556297,
-0.10130736231803894,
0.02550225891172886,
-0.08296948671340942,
-0.0009194708545692265,
0.25919461250305176,
0.012544205412268639,
-0.05758257955312729,
-0.11951438337564468,
-0.06565803289413452,
-0.045700762420892715,
0.02577689290046692,
0.060137517750263214,
0.053701069205999374,
0.06539168953895569,
0.10311403125524521,
-0.0007050674175843596,
-0.12313074618577957,
-0.010358340106904507,
-0.12153321504592896,
0.15558311343193054,
-0.027887029573321342,
0.020990798249840736,
-0.11456135660409927,
0.08364246785640717,
-0.08822081238031387,
-0.13817736506462097,
0.014043902978301048,
-0.10895320028066635,
0.00031807392952032387,
0.06523092091083527,
-0.0740472599864006,
-0.17337968945503235,
0.0711340457201004,
0.1878124326467514,
0.055560074746608734,
0.0983857661485672,
-0.0769592747092247,
0.04823235049843788,
0.10609938204288483,
0.191655695438385,
-0.07476762682199478,
0.00942059326916933,
0.02892918698489666,
-0.1705435961484909,
0.09933915734291077,
-0.08998927474021912,
-0.1121046394109726,
0.018870292231440544,
-0.001934586907736957,
-0.000014767882021260448,
0.10403572767972946,
0.0064650182612240314,
-0.08259890973567963,
-0.06819719076156616,
0.11214480549097061,
-0.08646366745233536,
0.08762615919113159,
0.04516882076859474,
-0.03648534417152405,
0.05987478047609329,
-0.027545860037207603,
0.033786140382289886,
0.03255436569452286,
0.18013893067836761,
-0.04335426539182663,
-0.03640882298350334,
-0.1593049317598343,
-0.10343391448259354,
0.04724676534533501,
-0.09820203483104706,
0.05610208958387375,
-0.06877691298723221,
-0.045289840549230576,
-0.044973164796829224,
0.014098557643592358,
-0.000728745711967349,
0.05700746551156044,
0.05061240494251251,
-0.11077108979225159,
0.12225869297981262,
0.0473838746547699,
-0.010428318753838539,
-0.045939430594444275,
0.04395761713385582,
-0.014665937051177025,
0.08389930427074432,
-0.07425318658351898,
0.006531501188874245,
-0.08674965053796768,
0.030134806409478188,
-0.31573250889778137,
0.0038507028948515654,
-0.01876232586801052,
0.10097015649080276,
-0.001635766588151455,
-0.00516595458611846,
-0.03464873880147934,
-0.03676575794816017,
-0.05587775260210037,
0.046409010887145996,
-0.25948604941368103,
0.011800145730376244,
0.1486954241991043,
-0.00558213796466589,
-0.010950867086648941,
0.039532337337732315,
0.015502169728279114,
-0.19489143788814545,
0.0033431637566536665,
0.382671982049942,
0.12433561682701111,
-0.15602239966392517,
-0.038460731506347656,
0.002253052545711398,
-0.12435132265090942,
0.05122614651918411,
0.10650063306093216,
-0.028285304084420204,
0.06810537725687027,
0.06492038071155548,
-0.13770891726016998,
0.03194277361035347,
0.08137232065200806,
0.07254006713628769,
-0.06185802444815636,
0.03309902548789978,
0.12447807937860489,
-0.001426891190931201,
-0.09820882230997086,
-0.12830325961112976,
-0.044034551829099655,
0.05778408423066139,
0.12614697217941284,
0.010718805715441704,
-0.005161978770047426,
-0.08368363976478577,
0.15632237493991852,
0.046334970742464066,
-0.01825164072215557,
-0.11742157489061356,
-0.10392706096172333,
0.039694882929325104,
0.15260495245456696,
-0.04313033074140549,
0.00972882192581892,
0.02338254079222679,
0.0057436628267169,
0.06214966997504234,
-0.06808450818061829,
0.005501836538314819,
-0.0404035858809948,
0.07184121012687683,
-0.06626638770103455,
0.0597655288875103,
-0.04996529221534729,
-0.07479199767112732,
-0.054193515330553055,
-0.01938489079475403,
0.154617577791214,
0.16577643156051636,
0.08953801542520523,
-0.08143158257007599,
0.07282175868749619,
-0.0971396267414093,
-0.07091189175844193,
-0.05644267797470093,
-0.0658361092209816,
-0.014500929042696953,
0.10139623284339905,
0.12220189720392227,
-0.18264023959636688,
0.05132247507572174,
0.12537862360477448,
0.0016902342904359102,
0.06873060762882233,
0.0471314862370491,
0.000008568487828597426,
0.07041674107313156,
-0.03394358977675438,
-0.026566192507743835,
0.039171043783426285,
0.06057918071746826,
-0.004764103796333075,
-0.045834168791770935,
-0.03129440173506737,
0.0007111160084605217,
-0.08782535046339035,
-0.046953946352005005,
0.01650119572877884,
0.09927795827388763,
0.021815184503793716,
0.06723066419363022,
0.07200349122285843,
0.11227423697710037,
0.23267285525798798,
-0.01663021929562092,
-0.04860781878232956,
-0.05390782281756401,
-0.0038662166334688663,
-0.072230763733387,
0.05298231542110443,
-0.044093791395425797,
-0.013703000731766224,
0.06197461113333702,
0.02880055084824562,
-0.0241240244358778,
-0.07767774909734726,
-0.048432767391204834,
0.015537015162408352,
0.01294061541557312,
0.058635298162698746,
0.13916529715061188,
0.03883228823542595,
0.013341385871171951,
-0.03627052530646324,
0.03799179568886757,
-0.08247525244951248,
-0.06778591871261597,
-0.009052245877683163,
0.0850275531411171,
-0.2374516725540161,
-0.27590590715408325,
-0.06182103976607323,
-0.1899542510509491,
-0.05442836135625839,
0.10173444449901581,
0.06149669736623764,
-0.0981135293841362,
-0.06572254002094269,
-0.010261597111821175,
-0.017206426709890366,
-0.10618901252746582,
-0.030549757182598114,
-0.19057513773441315,
-0.00282036024145782,
-0.0530216358602047,
-0.08368751406669617,
-0.04087941721081734,
0.07227448374032974,
0.07781261950731277,
0.13454799354076385,
0.11990272998809814,
0.13019338250160217,
0.14590215682983398,
-0.04064978286623955,
-0.017342550680041313,
0.030587121844291687,
0.1189412996172905,
-0.11379950493574142,
0.09215140342712402,
0.15846885740756989,
0.04160125181078911,
0.10976667702198029,
0.17799557745456696,
-0.01809956505894661,
-0.08431658893823624,
0.09001435339450836,
0.03243125602602959,
0.002199815586209297,
-0.14897596836090088,
-0.09807609766721725,
-0.09747834503650665,
-0.024533651769161224,
-0.01050117053091526,
0.08103906363248825,
-0.02973933517932892,
0.00024748386931605637,
0.007691757287830114,
-0.031353335827589035,
-0.11500386148691177,
0.10164745151996613,
0.10783034563064575,
-0.051677361130714417,
0.06240885704755783,
-0.03621061518788338,
0.013111197389662266,
0.12872914969921112,
-0.005574287846684456,
0.05351933091878891,
0.0009217691840603948,
0.02266230620443821,
0.07706180214881897,
0.12979085743427277,
0.05972360819578171,
-0.06920131295919418,
-0.012724172323942184,
-0.018883759155869484,
-0.02852329984307289,
-0.04018702358007431,
-0.051866352558135986,
0.016110291704535484,
0.07158230245113373,
-0.07070600986480713,
0.007464050315320492,
-0.09313590079545975,
0.04392194375395775,
-0.013408638536930084,
0.040764421224594116,
-0.09933379292488098,
0.11283421516418457,
0.11212150752544403,
0.06982560455799103,
-0.20660647749900818,
-0.0049742055125534534,
0.1760960966348648,
-0.06036512181162834,
0.026148896664381027,
0.044760819524526596,
0.07438094913959503,
-0.013310940004885197,
-0.014131118543446064,
-0.011971941217780113,
0.04165353998541832,
0.008321966044604778,
0.10816291719675064,
-0.06053003668785095,
-0.06731956452131271,
-0.009565652348101139,
-0.01802060380578041,
0.0145226139575243,
-0.031234830617904663,
0.023711146786808968,
0.15951348841190338,
-0.0065234447829425335,
0.05780748277902603,
-0.17307095229625702,
-0.08096909523010254,
-0.054502543061971664,
-0.021976597607135773,
0.16028445959091187,
-0.09405897557735443,
0.021642018109560013,
-0.017742451280355453,
-0.03450736030936241,
-0.029039451852440834,
-0.06952325999736786,
-0.0375576987862587,
-0.08077406883239746,
0.022223329171538353,
0.004659013357013464,
0.04072054848074913,
-0.07474403083324432,
0.03581817448139191,
0.04575775936245918,
0.07663757354021072,
0.008526667021214962,
-0.027415957301855087,
-0.09199786931276321,
-0.1843370795249939,
0.06291311979293823,
-0.049490317702293396,
0.04931570217013359,
-0.0418127179145813,
0.1938740313053131,
0.06365559250116348,
-0.05853547528386116,
0.05742616578936577,
-0.03859667852520943,
0.03838387504220009,
-0.13857907056808472,
0.07207682728767395,
-0.07659886032342911,
-0.016371112316846848,
-0.007355353329330683,
0.11035165935754776,
-0.1062881276011467,
-0.15562652051448822,
0.06501084566116333,
0.16950535774230957,
0.10116761177778244,
0.000806302996352315,
-0.022203318774700165,
0.0725877434015274,
0.05569668486714363,
0.0068956539034843445,
0.06090042367577553,
0.1454852670431137,
-0.12914572656154633,
0.1224699541926384,
-0.022552968934178352,
-0.016733380034565926,
-0.13407345116138458,
0.03897436335682869,
-0.02403831109404564,
0.05824385955929756,
0.03790315240621567,
-0.18016976118087769,
0.08470097184181213,
-0.03233107551932335,
0.01641049236059189,
0.23477694392204285,
-0.18917188048362732,
-0.06158251315355301,
0.05588087812066078,
0.024497007951140404,
-0.04277771711349487,
-0.11648520082235336,
-0.09813736379146576,
-0.029879916459321976,
-0.05052601546049118,
0.11488782614469528,
-0.04573405534029007,
0.04909282177686691,
-0.031638309359550476,
0.1112939864397049,
0.047230225056409836,
-0.045135047286748886,
0.1427699476480484,
-0.14035338163375854,
0.0977340042591095,
-0.12127474695444107,
0.019972048699855804,
0.09111752361059189,
-0.07159112393856049,
0.10494855046272278,
-0.06665443629026413,
0.06383790075778961,
-0.2465050369501114,
0.0022746575996279716,
-0.008453061804175377,
0.036550372838974,
0.0271987933665514,
-0.05680028721690178,
-0.12901988625526428,
-0.03715227171778679,
-0.027381405234336853,
-0.01813647337257862,
-0.11713598668575287,
-0.0031143249943852425,
-0.14133024215698242,
-0.057005152106285095,
-0.08749523013830185,
0.02312685362994671,
-0.21061889827251434,
-0.004185882862657309,
0.008126300759613514,
0.020437484607100487,
-0.17857614159584045,
-0.04297766089439392,
0.03774886205792427,
0.004375527147203684,
0.08832122385501862,
-0.023119816556572914,
-0.04940380901098251,
0.014956346713006496,
0.13044969737529755,
-0.12233772873878479,
-0.0006630075513385236,
-0.03437092527747154,
0.14777947962284088,
-0.011739841662347317,
-0.11739847809076309,
0.0032358316238969564,
0.07741342484951019,
-0.032717783004045486,
-0.003090545302256942,
0.04521242901682854,
0.08729007840156555,
-0.016245700418949127,
0.05914886295795441,
0.0005832412862218916,
-0.07385926693677902,
0.01753399521112442,
0.07166670262813568,
-0.03103218413889408,
0.0253831148147583,
0.04003673419356346,
-0.0640636757016182,
-0.036020029336214066,
0.11157411336898804,
0.08526992052793503,
0.14425128698349,
0.0024558203294873238,
0.07784372568130493,
-0.022310519590973854,
0.00008107958274194971,
0.007436560466885567,
0.06408929824829102,
0.039241448044776917,
-0.06688732653856277,
-0.048639725893735886,
0.0198516845703125,
0.10516323149204254,
-0.026003355160355568,
0.057434793561697006,
-0.12909218668937683,
-0.08399637043476105,
0.037286579608917236,
-0.0039027638267725706,
-0.01567487232387066,
-0.08358988910913467,
-0.04786192625761032,
-0.05242536962032318,
-0.04371176287531853,
0.0586145780980587,
0.1470838487148285,
-0.0020743575878441334,
0.005813091527670622,
-0.01973113976418972,
-0.04642482101917267,
-0.025618139654397964,
-0.055881984531879425,
-0.07332699000835419,
-0.048941005021333694,
0.06819722801446915,
-0.11012738198041916,
-0.07231386750936508,
0.16018956899642944,
-0.03682415932416916,
-0.03815343603491783,
0.024433957412838936,
0.01551902573555708,
-0.00039856525836512446,
-0.14088329672813416,
-0.10607647895812988,
0.14317864179611206,
0.029827237129211426,
0.012417588382959366,
-0.15009038150310516,
0.02611035853624344,
-0.01723400130867958,
0.014754951931536198,
-0.06131420657038689,
0.018221061676740646,
-0.1636582612991333,
-0.01831182837486267,
-0.043449562042951584,
-0.1960551142692566,
-0.07952366024255753,
-0.02105804532766342,
-0.006272517144680023,
0.11141568422317505,
0.16052664816379547,
0.051811136305332184,
0.006949711591005325,
0.005004440434277058,
-0.02623261883854866,
-0.006475407164543867,
-0.013523302972316742,
0.06349780410528183,
0.039204467087984085,
0.0024625249207019806,
-0.02758321352303028,
0.0603170283138752,
0.10930006951093674,
-0.12960131466388702,
-0.036593466997146606,
0.15204331278800964,
-0.012650004588067532,
0.031441085040569305,
0.1599513441324234,
-0.011068953201174736,
0.02534940093755722,
0.08766882121562958,
0.05402905493974686,
0.06659457087516785,
-0.011877855286002159,
0.022817092016339302,
0.12724968791007996,
0.02715393155813217,
-0.05997871980071068,
-0.08889736980199814,
-0.01388144213706255,
-0.2833007872104645,
-0.07705571502447128,
-0.03963233903050423,
0.08437919616699219,
-0.036246880888938904,
0.26679450273513794,
0.12403151392936707,
-0.1266176998615265,
0.0516984798014164,
0.0333801694214344,
-0.04046184569597244,
-0.0784478411078453,
-0.15067048370838165,
-0.02651614509522915,
-0.1089402586221695,
0.002701305551454425,
-0.10374482721090317,
0.08816846460103989,
-0.03821096569299698,
-0.0022927771788090467,
-0.025286901742219925,
0.08528466522693634,
-0.04238740727305412,
-0.14017419517040253,
-0.0010722818551585078,
-0.005889455787837505,
-0.05190213397145271,
0.08433298766613007,
0.07148399204015732,
-0.01335175707936287,
-0.02401786483824253,
0.07422652095556259,
0.024782950058579445,
-0.004932098090648651,
0.009790784679353237,
-0.14268329739570618,
-0.02815517596900463,
0.03501781448721886,
0.007378872949630022,
-0.05755603685975075,
0.06268104165792465,
0.07430897653102875,
-0.02182610146701336,
-0.0035758463200181723,
0.3859916031360626,
-0.002008322160691023,
-0.00420699967071414,
0.021913999691605568,
-0.17859221994876862,
0.0202576145529747,
0.050627049058675766,
-0.06285877525806427,
-0.1814487725496292,
-0.12856777012348175,
0.1440022885799408,
0.010789863765239716,
0.04751095920801163,
0.00413023354485631,
0.0036507844924926758,
0.01860237494111061,
0.024117661640048027,
0.12237895280122757,
0.05381025746464729,
0.20935729146003723,
0.02940075471997261,
0.037343814969062805,
-0.013649571686983109,
-0.039105575531721115,
-0.1428230255842209,
-0.08808896690607071,
-0.041783563792705536,
-0.10876533389091492,
-0.06712602078914642,
0.07452433556318283,
0.03308483213186264,
0.08906224370002747,
-0.017640581354498863,
0.012726355344057083,
-0.047113630920648575,
0.05965685844421387,
0.17941376566886902,
-0.03781856968998909,
0.06464013457298279,
0.0029464554972946644,
-0.07043617963790894,
0.08819912374019623,
0.0008902386180125177,
-0.12900254130363464,
-0.004896699916571379,
0.0014196228003129363,
-0.07022278755903244,
0.15389502048492432,
-0.02325236052274704,
0.005016704089939594,
0.06732019782066345,
0.04813087359070778,
-0.08010302484035492,
0.059342797845602036,
0.0013369007501751184,
-0.08320751786231995,
0.03120153211057186,
0.17014345526695251,
0.010565650649368763,
-0.07222873717546463,
0.12183177471160889,
-0.01722615398466587,
0.013417752459645271,
-0.08210001140832901,
0.16389773786067963,
-0.1405809074640274,
0.08207181096076965,
-0.16919106245040894,
0.029745303094387054,
0.022214224562048912,
0.012673028744757175,
-0.008893320336937904,
-0.06229591369628906,
-0.008654721081256866,
-0.01413356140255928,
-0.040051933377981186,
-0.010774712078273296,
0.05027569457888603,
-0.026332490146160126,
0.2655848264694214,
0.013165590353310108,
-0.08682727068662643,
-0.07146721333265305,
-0.027951331809163094,
0.04633788391947746,
-0.0429544635117054,
0.09822317212820053,
-0.024975966662168503,
0.008648942224681377,
-0.08020338416099548,
-0.11325552314519882,
0.0160344447940588,
0.07119356095790863,
-0.12669649720191956,
-0.05326187238097191
] |
null | null |
transformers
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 441411446
- CO2 Emissions (in grams): 0.4362732160754736
## Validation Metrics
- Loss: 0.7598486542701721
- Accuracy: 0.8222222222222222
- Macro F1: 0.2912091747693842
- Micro F1: 0.8222222222222222
- Weighted F1: 0.7707160863181806
- Macro Precision: 0.29631463146314635
- Micro Precision: 0.8222222222222222
- Weighted Precision: 0.7341339689524508
- Macro Recall: 0.30174603174603176
- Micro Recall: 0.8222222222222222
- Weighted Recall: 0.8222222222222222
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alecmullen/autonlp-group-classification-441411446
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
{"language": "en", "tags": "autonlp", "datasets": ["alecmullen/autonlp-data-group-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 0.4362732160754736}
|
text-classification
|
alecmullen/autonlp-group-classification-441411446
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"en",
"dataset:alecmullen/autonlp-data-group-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 441411446
- CO2 Emissions (in grams): 0.4362732160754736
## Validation Metrics
- Loss: 0.7598486542701721
- Accuracy: 0.8222222222222222
- Macro F1: 0.2912091747693842
- Micro F1: 0.8222222222222222
- Weighted F1: 0.7707160863181806
- Macro Precision: 0.29631463146314635
- Micro Precision: 0.8222222222222222
- Weighted Precision: 0.7341339689524508
- Macro Recall: 0.30174603174603176
- Micro Recall: 0.8222222222222222
- Weighted Recall: 0.8222222222222222
## Usage
You can use cURL to access this model:
Or Python API:
|
[
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736",
"## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
"TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736",
"## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
71,
44,
150,
17
] |
[
"passage: TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
-0.08660732954740524,
0.21990026533603668,
-0.003738943487405777,
0.06986107677221298,
0.1000184416770935,
0.03149009123444557,
0.04852662980556488,
0.10617169737815857,
-0.003051609033718705,
0.14506559073925018,
0.07359719276428223,
0.17444415390491486,
0.0794019028544426,
0.09401383996009827,
-0.09055162221193314,
-0.13091294467449188,
0.02607928402721882,
0.004119678400456905,
0.04751916229724884,
0.08808556199073792,
0.06896656006574631,
-0.08913375437259674,
0.1165238469839096,
0.010292576625943184,
-0.09857349842786789,
0.048021797090768814,
0.06926756352186203,
-0.07990813255310059,
0.07179656624794006,
0.10258666425943375,
0.1469396948814392,
-0.004953327588737011,
0.0933084785938263,
-0.15191128849983215,
-0.017694957554340363,
0.05562731996178627,
-0.03001714125275612,
0.08358936756849289,
0.17104138433933258,
-0.004510907921940088,
0.07103254646062851,
-0.07861898839473724,
0.10768156498670578,
0.0800967589020729,
-0.07429422438144684,
-0.07741281390190125,
-0.09875819832086563,
0.07969959080219269,
0.09942806512117386,
0.07973912358283997,
0.0031354757957160473,
0.18093103170394897,
-0.03475860506296158,
0.09372372925281525,
0.09984622150659561,
-0.22879433631896973,
-0.052814919501543045,
0.168997123837471,
-0.018448805436491966,
0.015062747523188591,
-0.005839487072080374,
-0.012874801643192768,
0.03855736926198006,
0.009108196943998337,
0.018041521310806274,
-0.05984960496425629,
-0.049031805247068405,
-0.008788959123194218,
-0.12696072459220886,
-0.0727299302816391,
0.14011889696121216,
0.00838788878172636,
-0.06482209265232086,
-0.08108944445848465,
-0.08049673587083817,
-0.07282200455665588,
-0.031245853751897812,
-0.04125034809112549,
0.00006607919931411743,
-0.03918240964412689,
-0.05669514462351799,
0.06475619226694107,
-0.04191838204860687,
-0.0812661200761795,
-0.1285688877105713,
0.013622213155031204,
0.027885926887392998,
0.05928827077150345,
0.022959019988775253,
0.031069841235876083,
-0.05208495259284973,
-0.050487007945775986,
0.0018151222029700875,
0.004343659617006779,
-0.11619285494089127,
-0.060374777764081955,
0.001174566918052733,
0.10633818060159683,
0.05243798717856407,
0.17189262807369232,
-0.013937827199697495,
0.10518811643123627,
0.04641055688261986,
-0.01880338415503502,
-0.04189590364694595,
0.10553501546382904,
-0.12509818375110626,
-0.10165650397539139,
0.0024068080820143223,
-0.04605476185679436,
0.014252517372369766,
-0.033676307648420334,
-0.049801964312791824,
-0.07738333940505981,
0.040307123214006424,
0.04984205216169357,
0.038698066025972366,
0.0044768257066607475,
-0.05336718261241913,
-0.07435090839862823,
0.05705007538199425,
-0.11079537868499756,
0.031819239258766174,
0.034212153404951096,
-0.1294289082288742,
0.05647754669189453,
0.032814908772706985,
0.01727212220430374,
-0.13591310381889343,
0.02012093923985958,
-0.10019808262586594,
0.006633694749325514,
-0.0865604504942894,
-0.12643344700336456,
0.05623258650302887,
0.048579830676317215,
-0.036217257380485535,
-0.11303719878196716,
-0.1513497531414032,
-0.07138915359973907,
0.015438957139849663,
-0.07189062237739563,
-0.049830302596092224,
0.0015069146174937487,
0.021754128858447075,
0.035171858966350555,
-0.016418570652604103,
0.039869729429483414,
-0.024602094665169716,
0.04111769422888756,
0.044499415904283524,
0.05419665202498436,
-0.005917271599173546,
0.037476420402526855,
-0.028189148753881454,
0.026690563187003136,
-0.10382393002510071,
0.05725301802158356,
-0.08682867884635925,
0.030909180641174316,
-0.18482047319412231,
-0.06875036656856537,
0.09559285640716553,
-0.045905981212854385,
0.05575873330235481,
0.03736200928688049,
-0.10387290269136429,
0.023482026532292366,
0.10606458783149719,
-0.07455462217330933,
-0.09776323288679123,
0.06658896803855896,
-0.008610168471932411,
-0.010604027658700943,
0.04124658182263374,
0.08972755074501038,
0.19867244362831116,
-0.14457136392593384,
-0.057317402213811874,
0.0044768378138542175,
0.015049480833113194,
-0.05778798833489418,
0.09569455683231354,
-0.029045986011624336,
-0.1463746875524521,
0.0048360321670770645,
0.00008762544894125313,
-0.02312719263136387,
-0.01119296345859766,
-0.07756568491458893,
-0.025425957515835762,
-0.031209757551550865,
-0.016031362116336823,
0.0036860976833850145,
-0.003047431353479624,
-0.02937941811978817,
-0.028424812480807304,
0.04651296138763428,
0.17228451371192932,
-0.04612039774656296,
-0.054411131888628006,
-0.14902831614017487,
0.05877979099750519,
-0.09884678572416306,
-0.05504642054438591,
-0.20466996729373932,
-0.07852500677108765,
0.010094506666064262,
-0.1414276510477066,
0.0165446437895298,
-0.021689647808670998,
0.06743314117193222,
0.051643893122673035,
0.057012591511011124,
0.04550359025597572,
0.10571365058422089,
-0.02298366278409958,
-0.04962541535496712,
-0.022023774683475494,
-0.037242479622364044,
0.01903834193944931,
0.1915457844734192,
-0.1657455712556839,
0.019973034039139748,
0.04047800600528717,
0.037725143134593964,
-0.021175747737288475,
-0.05359075963497162,
-0.045937538146972656,
0.05834868177771568,
0.026106081902980804,
-0.0477103665471077,
0.05385685712099075,
-0.028363697230815887,
-0.05044439062476158,
-0.034569308161735535,
-0.25897324085235596,
0.1777837872505188,
0.11154130101203918,
-0.0022216946817934513,
-0.07009147852659225,
-0.07003286480903625,
0.02826468087732792,
-0.03803596645593643,
-0.04431696608662605,
0.03358514606952667,
0.14355367422103882,
0.03764845430850983,
0.09079588204622269,
-0.08592239022254944,
-0.0387745201587677,
0.009494300931692123,
-0.03457827866077423,
-0.02454821951687336,
0.18948115408420563,
0.09866280108690262,
-0.11935096234083176,
0.04741749167442322,
-0.026589741930365562,
-0.09791040420532227,
0.008455143310129642,
0.04676051437854767,
-0.05491764098405838,
-0.08668001741170883,
0.01613447070121765,
0.04891514778137207,
0.027445128187537193,
0.013257856480777264,
0.08731107413768768,
0.06797688454389572,
-0.028234515339136124,
0.03448127210140228,
-0.1337997019290924,
0.01878570392727852,
0.023206599056720734,
-0.049647655338048935,
-0.06102091819047928,
0.0022502578794956207,
0.04053182899951935,
0.10130714625120163,
0.00866781733930111,
-0.013548239134252071,
-0.03384457156062126,
-0.032226476818323135,
-0.12013472616672516,
0.20663616061210632,
-0.09460663050413132,
-0.18505536019802094,
-0.1596672534942627,
-0.16708557307720184,
-0.07516507059335709,
-0.044379547238349915,
-0.007181336637586355,
-0.0349128283560276,
-0.11689344793558121,
-0.04631902649998665,
-0.08445283770561218,
-0.03315932676196098,
-0.09943247586488724,
0.01256774552166462,
-0.010088055394589901,
0.09217951446771622,
-0.13385039567947388,
-0.025662431493401527,
0.014163615182042122,
-0.14119090139865875,
0.04778296500444412,
0.006349046714603901,
0.10134491324424744,
0.17426469922065735,
-0.023384789004921913,
0.0357302688062191,
0.012224998325109482,
0.21458815038204193,
0.00032658863347023726,
-0.04092404618859291,
0.21014618873596191,
0.07972298562526703,
0.08435054868459702,
0.11948111653327942,
0.06677893549203873,
-0.06244164705276489,
-0.00750219589099288,
0.05768105760216713,
-0.01749701239168644,
-0.1961444467306137,
-0.17808689177036285,
0.01764042116701603,
-0.005217419937252998,
0.17230696976184845,
0.029841890558600426,
0.014552788808941841,
0.10055892169475555,
0.011713479645550251,
0.04640074074268341,
-0.012041452340781689,
0.07167913764715195,
0.16576632857322693,
0.03045271895825863,
0.1161118745803833,
-0.07241233438253403,
0.0032255323603749275,
0.09396827220916748,
0.03390930965542793,
0.10444524139165878,
0.05289798974990845,
0.11265023797750473,
-0.016011890023946762,
0.15163405239582062,
0.021987004205584526,
0.10477079451084137,
0.02933673746883869,
0.0038455931935459375,
0.05171884596347809,
-0.07913635671138763,
-0.11112222075462341,
-0.024105293676257133,
0.030245482921600342,
0.02947479858994484,
-0.06707175076007843,
-0.021234741434454918,
-0.00744737358763814,
0.0600329227745533,
0.03558040037751198,
-0.4266813099384308,
-0.021962525323033333,
0.016652682796120644,
-0.03829209506511688,
-0.1019035205245018,
-0.008162237703800201,
0.0035372665151953697,
-0.14407813549041748,
0.03936196118593216,
-0.021046621724963188,
0.13187426328659058,
-0.057617902755737305,
-0.04656754434108734,
-0.018508296459913254,
0.06140245497226715,
0.0024512012023478746,
0.09775018692016602,
-0.12062258273363113,
0.14212815463542938,
0.035295963287353516,
0.04835374653339386,
-0.07140501588582993,
0.002273100893944502,
0.028349485248327255,
-0.014551566913723946,
0.12062079459428787,
0.010774490423500538,
-0.12209323048591614,
-0.3226514160633087,
-0.14770735800266266,
0.030799008905887604,
-0.009769376367330551,
-0.005166264716535807,
0.08867660164833069,
-0.03905706852674484,
0.0002917024539783597,
-0.03330829739570618,
-0.0828627496957779,
-0.09080309420824051,
-0.0824490487575531,
0.030575139448046684,
0.07026452571153641,
-0.033665530383586884,
-0.04327095299959183,
-0.021729035302996635,
-0.01663086749613285,
0.11327145993709564,
-0.10279621183872223,
-0.05533851310610771,
-0.1296532154083252,
-0.044100720435380936,
0.1399262547492981,
-0.12090619653463364,
0.04187082499265671,
-0.015387128107249737,
0.10594634711742401,
-0.0036614590790122747,
-0.1024453267455101,
0.04535537585616112,
-0.04292219504714012,
-0.038689833134412766,
0.03490319475531578,
0.0333726704120636,
0.020180314779281616,
0.0570385716855526,
0.06434936821460724,
0.030267497524619102,
-0.06153571605682373,
-0.14939537644386292,
-0.06133846938610077,
0.061381325125694275,
0.13892176747322083,
0.0776827484369278,
0.011462729424238205,
-0.13376981019973755,
-0.0688343420624733,
0.08246174454689026,
0.13767176866531372,
0.21981768310070038,
-0.07454853504896164,
-0.01591859944164753,
0.09345999360084534,
-0.02702534757554531,
-0.184505894780159,
-0.04991693049669266,
0.027721084654331207,
-0.0077402060851454735,
-0.05578668415546417,
-0.06708233803510666,
0.12240142375230789,
0.20614033937454224,
-0.04944351315498352,
-0.05634722486138344,
-0.2975572347640991,
-0.12546546757221222,
0.17243269085884094,
0.1299157291650772,
-0.0076488652266561985,
-0.15478509664535522,
-0.06320980191230774,
-0.12879453599452972,
-0.15546518564224243,
0.15915507078170776,
-0.060761842876672745,
0.05625741183757782,
-0.0367417074739933,
0.10648559033870697,
0.03446393460035324,
-0.06842663139104843,
0.16738277673721313,
0.013049766421318054,
0.016365036368370056,
-0.050245560705661774,
-0.039925459772348404,
-0.025138825178146362,
-0.08309818804264069,
0.12073265016078949,
0.046048540621995926,
0.07518842816352844,
-0.22184652090072632,
-0.018192818388342857,
0.004079270176589489,
0.05848783999681473,
-0.05683545768260956,
-0.010106063447892666,
-0.034562818706035614,
0.023525111377239227,
0.003348297905176878,
-0.03056238777935505,
-0.06857561320066452,
-0.044974394142627716,
0.05359186232089996,
0.20484627783298492,
0.08351889252662659,
0.03377918899059296,
-0.10669920593500137,
0.04762132465839386,
-0.029542677104473114,
0.04690353199839592,
-0.09436748921871185,
0.07423070073127747,
0.12723308801651,
0.02959715947508812,
0.08364394307136536,
0.018662001937627792,
-0.050942208617925644,
-0.017864827066659927,
0.038019608706235886,
-0.12140215933322906,
0.010258221998810768,
0.014873240143060684,
0.0750841423869133,
-0.09590377658605576,
-0.06686977297067642,
0.08088749647140503,
0.016398295760154724,
-0.03874754533171654,
0.022623348981142044,
0.00924532301723957,
-0.010803897865116596,
0.2411951720714569,
0.025121336802840233,
0.0864395871758461,
-0.10782250761985779,
0.058937497437000275,
0.12341000139713287,
-0.14045386016368866,
-0.012705603614449501,
0.07468856871128082,
-0.07286227494478226,
-0.06368058174848557,
0.010130315087735653,
0.0906606987118721,
-0.14493204653263092,
-0.07585400342941284,
0.014627720229327679,
-0.07313671708106995,
0.06635270267724991,
0.21185071766376495,
0.10176709294319153,
0.008092931471765041,
0.014479155652225018,
-0.08029678463935852,
-0.1013323962688446,
0.05012865737080574,
0.09175526350736618,
0.013771874830126762,
-0.09327684342861176,
0.1503332555294037,
0.016722947359085083,
-0.013583098538219929,
0.0026874893810600042,
-0.02149888314306736,
-0.1832839846611023,
-0.02064601145684719,
-0.09668060392141342,
0.09218332916498184,
-0.06511130183935165,
0.06413614004850388,
0.0021759674418717623,
0.02345048449933529,
-0.05186973139643669,
0.002987462794408202,
-0.06114601343870163,
-0.05899719521403313,
0.0016148576978594065,
0.06339544802904129,
-0.12425185739994049,
-0.007244060281664133,
0.10418929904699326,
-0.02218143828213215,
0.01910613477230072,
0.08501002192497253,
0.05365484207868576,
0.016726873815059662,
-0.04653032124042511,
-0.020023444667458534,
0.029232170432806015,
0.060688700526952744,
0.08012574911117554,
-0.19979214668273926,
0.0755416676402092,
0.014908898621797562,
0.015073824673891068,
0.044483669102191925,
0.09477656334638596,
-0.12244141101837158,
0.014456008560955524,
-0.09374679625034332,
-0.0990242063999176,
-0.12406054884195328,
0.01965436153113842,
0.12264784425497055,
0.0639917179942131,
0.06720033288002014,
-0.05623573064804077,
0.04963596165180206,
-0.16942079365253448,
-0.0205087848007679,
-0.024118339642882347,
-0.015104035846889019,
0.03200968727469444,
-0.020248383283615112,
0.07881299406290054,
-0.0070288884453475475,
0.11182078719139099,
-0.014247868210077286,
0.02507462538778782,
0.007908722385764122,
0.0641663447022438,
-0.013516757637262344,
-0.047055598348379135,
0.17444030940532684,
0.08223918825387955,
0.01748063415288925,
0.1117275059223175,
0.06760333478450775,
0.000369630433851853,
-0.057540349662303925,
-0.0010461198398843408,
0.10922881960868835,
-0.09119001775979996,
0.007686492521315813,
0.05474131926894188,
-0.11204804480075836,
-0.009990844875574112,
0.07123943418264389,
-0.11244119703769684,
-0.0015802200650796294,
-0.04648290574550629,
0.07076112926006317,
0.1439831554889679,
-0.15684416890144348,
0.01450932864099741,
-0.005772078409790993,
-0.07559654116630554,
-0.20997153222560883,
-0.09742680191993713,
-0.1236632764339447,
-0.029611676931381226,
-0.02120722085237503,
-0.11409436166286469,
0.018852416425943375,
0.1662689745426178,
0.0115855373442173,
0.03324912488460541,
0.0802639052271843,
-0.19966661930084229,
-0.02133195288479328,
-0.07382465898990631,
0.01894807629287243,
0.016540758311748505,
-0.011753984726965427,
0.0022524595260620117,
0.03404776751995087,
-0.008435587398707867,
0.11998675763607025,
0.01700965315103531,
0.03986161947250366,
0.07685258984565735,
-0.047619178891181946,
-0.05138717591762543,
-0.040892694145441055,
0.012592127546668053,
0.032776471227407455,
0.12520240247249603,
0.033025071024894714,
0.014230204746127129,
-0.03371603041887283,
0.20155347883701324,
-0.0999784916639328,
-0.0007290736539289355,
-0.1122567355632782,
0.2619626820087433,
0.0018602965865284204,
0.04525652155280113,
0.045202020555734634,
-0.0055760047398507595,
0.013364133425056934,
0.19311659038066864,
0.10426667332649231,
0.002643766812980175,
-0.01789771020412445,
0.018758879974484444,
-0.00825499091297388,
-0.017864692956209183,
0.08493684977293015,
0.07350011169910431,
0.2137344479560852,
-0.07303954660892487,
0.02554890513420105,
0.017607221379876137,
0.016286706551909447,
-0.10730002820491791,
0.02966170199215412,
-0.0046983580105006695,
-0.0024613968562334776,
-0.013073951005935669,
0.11925021559000015,
-0.018108513206243515,
0.044653017073869705,
0.08405002951622009,
-0.033650510013103485,
-0.1389327496290207,
0.04104743152856827,
-0.024496497586369514,
-0.0671141967177391,
0.07566835731267929,
-0.053257763385772705,
-0.02697569504380226,
0.0370573066174984,
0.013237967155873775,
-0.20299285650253296,
-0.07865855097770691,
0.025111624971032143,
0.1634071320295334,
0.2864135801792145,
0.034105896949768066,
0.13348183035850525,
0.17231784760951996,
-0.020214542746543884,
-0.1309344619512558,
0.12807567417621613,
0.02771345153450966,
-0.15690071880817413,
0.09216070920228958,
0.05366141349077225,
-0.03606243431568146,
0.14995205402374268,
0.061440978199243546,
-0.14894436299800873,
-0.00031481674523092806,
-0.03110831044614315,
0.11408543586730957,
-0.0722300335764885,
0.023978471755981445,
-0.09150098264217377,
0.10705730319023132,
0.16187751293182373,
-0.03400273993611336,
0.02748323418200016,
-0.05132879316806793,
0.055551037192344666,
-0.018076328560709953,
0.024008167907595634,
-0.010663073509931564,
-0.10092349350452423,
0.056844957172870636,
-0.20970609784126282,
0.00792204961180687,
-0.27279290556907654,
-0.03260401636362076,
0.005357377231121063,
-0.06426659971475601,
-0.031207071617245674,
0.10872933268547058,
0.013401895761489868,
0.0025107944384217262,
-0.04644957557320595,
-0.1402980536222458,
-0.011832518503069878,
0.14742709696292877,
-0.11950518190860748,
-0.12601089477539062
] |
null | null |
transformers
|
## Classifier to check if two sequences are paraphrase or not
Trained based on ruBert by DeepPavlov.
Use this way:
```
import torch
import torch.nn as nn
import os
import copy
import random
import numpy as np
import pandas as pd
from torch.utils.data import DataLoader, Dataset
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup
from transformers.file_utils import (
cached_path,
hf_bucket_url,
is_remote_url,
)
archive_file = hf_bucket_url(
"alenusch/par_cls_bert",
filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt",
revision=None,
mirror=None,
)
resolved_archive_file = cached_path(
archive_file,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
local_files_only=False,
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class SentencePairClassifier(nn.Module):
def __init__(self, bert_model):
super(SentencePairClassifier, self).__init__()
self.bert_layer = AutoModel.from_pretrained(bert_model)
self.cls_layer = nn.Linear(768, 1)
self.dropout = nn.Dropout(p=0.1)
@autocast()
def forward(self, input_ids, attn_masks, token_type_ids):
cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False)
logits = self.cls_layer(self.dropout(pooler_output))
return logits
class CustomDataset(Dataset):
def __init__(self, data, maxlen, bert_model):
self.data = data
self.tokenizer = AutoTokenizer.from_pretrained(bert_model)
self.maxlen = maxlen
self.targets = False
def __len__(self):
return len(self.data)
def __getitem__(self, index):
sent1 = str(self.data[index][0])
sent2 = str(self.data[index][1])
encoded_pair = self.tokenizer(sent1, sent2,
padding='max_length', # Pad to max_length
truncation=True, # Truncate to max_length
max_length=self.maxlen,
return_tensors='pt') # Return torch.Tensor objects
token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids
attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values
token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens
return token_ids, attn_masks, token_type_ids
def get_probs_from_logits(logits):
probs = torch.sigmoid(logits.unsqueeze(-1))
return probs.detach().cpu().numpy()
def test_prediction(net, device, dataloader, with_labels=False):
net.eval()
probs_all = []
with torch.no_grad():
for seq, attn_masks, token_type_ids in tqdm(dataloader):
seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device)
logits = net(seq, attn_masks, token_type_ids)
probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1)
probs_all += probs.tolist()
return probs_all
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert")
if torch.cuda.device_count() > 1:
cls_model = nn.DataParallel(model)
cls_model.load_state_dict(torch.load(resolved_archive_file))
cls_model.to(device)
variants = [["sentence1", "sentence2"]]
test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert")
test_loader = DataLoader(test_set, batch_size=16, num_workers=5)
res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False)
```
|
{}
|
feature-extraction
|
alenusch/par_cls_bert
|
[
"transformers",
"pytorch",
"jax",
"bert",
"feature-extraction",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
|
## Classifier to check if two sequences are paraphrase or not
Trained based on ruBert by DeepPavlov.
Use this way:
|
[
"## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:"
] |
[
"TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n",
"## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:"
] |
[
32,
33
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:"
] |
[
-0.007634428795427084,
-0.0379219688475132,
-0.006064954213798046,
0.12069746106863022,
0.11466033011674881,
-0.043656449764966965,
0.05050041899085045,
0.11600874364376068,
-0.00660090334713459,
0.03844907134771347,
0.13556623458862305,
0.11757727712392807,
-0.027405621483922005,
-0.06754011660814285,
-0.052852433174848557,
-0.26726484298706055,
0.054550085216760635,
0.026095639914274216,
-0.002449007472023368,
0.1371990442276001,
0.11105465888977051,
-0.09630761295557022,
0.026674235239624977,
0.0003544096543919295,
-0.049600861966609955,
0.09181360900402069,
0.01639713905751705,
-0.0437326580286026,
0.1134372130036354,
0.010800756514072418,
0.12685222923755646,
0.02315574325621128,
-0.00761049659922719,
-0.11987093091011047,
0.03864764794707298,
0.01354686077684164,
-0.036142174154520035,
0.005504067521542311,
0.15891985595226288,
-0.18412025272846222,
-0.04778337478637695,
0.03938857465982437,
0.047666095197200775,
-0.02811511978507042,
-0.16389229893684387,
-0.16195110976696014,
-0.08423037827014923,
0.023610493168234825,
0.1554821878671646,
0.09250432252883911,
-0.030661683529615402,
0.0924399122595787,
-0.15415963530540466,
0.0817590206861496,
0.2919231355190277,
-0.3838105797767639,
-0.03718097135424614,
0.019339151680469513,
0.007651779800653458,
0.008206220343708992,
-0.047440312802791595,
0.010800137184560299,
-0.010328837670385838,
-0.016571659594774246,
0.026619412004947662,
-0.07612151652574539,
-0.11889877915382385,
0.0630413368344307,
-0.19174709916114807,
-0.016575347632169724,
0.11493796855211258,
-0.03975794091820717,
0.07283177226781845,
-0.04034962132573128,
-0.04447956755757332,
-0.019951900467276573,
-0.010669686831533909,
-0.06340648978948593,
-0.04998862370848656,
0.02137857861816883,
-0.02582034468650818,
0.015744324773550034,
-0.09385285526514053,
-0.07696425169706345,
-0.07251603901386261,
0.10385677963495255,
0.049811434000730515,
0.012695270590484142,
-0.106959767639637,
0.03036905638873577,
-0.0005497439997270703,
-0.09076304733753204,
0.04339231178164482,
-0.06408759206533432,
0.007159506902098656,
-0.025719989091157913,
-0.18480312824249268,
-0.12693825364112854,
0.05386572331190109,
0.2268960028886795,
0.10393057018518448,
0.06990177929401398,
0.009539508260786533,
0.05615357682108879,
0.019679950550198555,
0.12865859270095825,
-0.022251006215810776,
0.05782346427440643,
0.009148425422608852,
-0.06328394263982773,
-0.027713727205991745,
-0.02704073116183281,
-0.1382012516260147,
-0.015875253826379776,
0.1830819547176361,
0.08828006684780121,
-0.08840575069189072,
0.003420027904212475,
-0.03900806978344917,
-0.01926942728459835,
-0.10542750358581543,
-0.14855462312698364,
0.04322011396288872,
0.06013013422489166,
-0.025921573862433434,
-0.013353862799704075,
-0.06602072715759277,
-0.008222064934670925,
-0.10741487145423889,
0.012843926437199116,
-0.01655091717839241,
0.08365699648857117,
-0.009322217665612698,
-0.1169300377368927,
-0.0010496481554582715,
-0.11616246402263641,
0.022824985906481743,
-0.17711971700191498,
-0.04371093958616257,
-0.06000925973057747,
0.038533005863428116,
-0.04914313182234764,
0.09172658622264862,
-0.06901729106903076,
0.0009648566483519971,
-0.020018896088004112,
0.021788470447063446,
-0.04287615418434143,
-0.03958398848772049,
0.08925234526395798,
-0.016693342477083206,
0.02921966277062893,
0.06399621069431305,
0.08697180449962616,
-0.16475273668766022,
-0.010561701841652393,
-0.10161153972148895,
0.05636470392346382,
-0.02976546809077263,
-0.027218230068683624,
-0.11874352395534515,
-0.07305525243282318,
-0.06834422796964645,
0.004903397988528013,
-0.0007249739137478173,
0.11261854320764542,
-0.17559513449668884,
-0.08014627546072006,
0.18875759840011597,
-0.08335236459970474,
-0.0874410942196846,
0.12543578445911407,
-0.08516614884138107,
-0.03021879494190216,
0.03886999934911728,
0.2710631489753723,
0.10799938440322876,
-0.010076403617858887,
0.1263420581817627,
0.02673581801354885,
-0.019708512350916862,
0.061536360532045364,
0.1308000236749649,
-0.023441731929779053,
0.0007884770166128874,
-0.04644616320729256,
-0.020420126616954803,
-0.029307041317224503,
-0.014666973613202572,
-0.1121237501502037,
0.011031999252736568,
0.02562883123755455,
0.09780290722846985,
-0.009814336895942688,
0.11257737874984741,
-0.05920059233903885,
-0.05692792683839798,
-0.005859155207872391,
-0.008694477379322052,
-0.06286581605672836,
0.03409027308225632,
-0.0826248899102211,
0.18031542003154755,
0.05313115194439888,
-0.0048487489111721516,
-0.24261371791362762,
0.04359259828925133,
0.01681116409599781,
0.08352640271186829,
-0.0381709448993206,
0.09901302307844162,
0.062384605407714844,
-0.007397930603474379,
0.02268260531127453,
0.000881435233168304,
0.055903349071741104,
-0.006358637008816004,
-0.04737909883260727,
-0.05100414901971817,
-0.031209319829940796,
-0.05716675892472267,
-0.0229786466807127,
-0.05890572443604469,
-0.026362909004092216,
0.025221696123480797,
0.12899483740329742,
0.02163798362016678,
0.03605293855071068,
-0.03854607418179512,
0.08921443670988083,
0.008142713457345963,
-0.012045586481690407,
0.09439333528280258,
-0.05570223182439804,
-0.009359864518046379,
0.04977152496576309,
-0.0747067779302597,
0.11191670596599579,
0.08854468911886215,
-0.27900007367134094,
-0.06190284714102745,
-0.004477076698094606,
-0.0013037241296842694,
0.0624956376850605,
-0.028303023427724838,
0.08054069429636002,
0.19257701933383942,
0.02238386869430542,
0.13389530777931213,
-0.09077859669923782,
-0.03363286331295967,
-0.0330103300511837,
-0.08984008431434631,
0.0439630001783371,
0.14480681717395782,
0.03954298794269562,
-0.18591083586215973,
0.08844238519668579,
0.18072958290576935,
-0.10516885668039322,
0.03519636020064354,
-0.06599853932857513,
-0.06604151427745819,
-0.013331272639334202,
0.09136638045310974,
-0.000983219244517386,
-0.04201936721801758,
-0.07469163089990616,
-0.07325387746095657,
0.040951114147901535,
0.016316652297973633,
0.020857462659478188,
-0.15695640444755554,
-0.004906693939119577,
0.015575111843645573,
-0.027555720880627632,
0.030466090887784958,
0.07256539911031723,
0.03496230021119118,
0.041260816156864166,
0.02330724708735943,
-0.12153791636228561,
0.060620907694101334,
-0.030873406678438187,
-0.09826996177434921,
0.20294757187366486,
-0.06616377830505371,
-0.21566316485404968,
-0.09126744419336319,
-0.11280739307403564,
-0.017691221088171005,
0.046394266188144684,
0.11378321051597595,
-0.07535974681377411,
0.030423365533351898,
-0.01179379690438509,
0.04362824186682701,
-0.08368537575006485,
-0.004241331946104765,
-0.1369743049144745,
0.05392744019627571,
-0.04908469319343567,
-0.03271897882223129,
-0.03750385716557503,
-0.04775957390666008,
-0.059329211711883545,
0.08562865108251572,
-0.050302937626838684,
0.002821591915562749,
0.0998951718211174,
0.013083445839583874,
0.048046525567770004,
-0.061256490647792816,
0.16117602586746216,
-0.032291922718286514,
-0.12652119994163513,
0.22421497106552124,
-0.10090788453817368,
0.06181499361991882,
0.04502783715724945,
0.014606506563723087,
-0.04012392833828926,
-0.022134149447083473,
-0.003570093307644129,
-0.052310023456811905,
-0.1286243498325348,
-0.05845398083329201,
-0.06751661002635956,
-0.008654664270579815,
0.10235907882452011,
0.013461841270327568,
-0.09367381781339645,
0.016529088839888573,
0.04251165688037872,
-0.10212288796901703,
0.02132709138095379,
0.06624805182218552,
0.1731862872838974,
-0.0012207007966935635,
0.13140161335468292,
0.012599549256265163,
-0.11694037169218063,
-0.02490079589188099,
0.013405960984528065,
0.11998404562473297,
0.07932056486606598,
-0.04198974743485451,
0.030107218772172928,
0.19480180740356445,
0.05556892603635788,
0.01507154107093811,
0.0008705832879059017,
-0.0022458478342741728,
-0.03447336703538895,
-0.049726396799087524,
-0.09099871665239334,
0.05748215317726135,
0.0820130929350853,
-0.07491523772478104,
-0.0875072032213211,
-0.061527419835329056,
0.0626334697008133,
0.2391243577003479,
0.11056781560182571,
-0.1823388636112213,
-0.010545321740210056,
-0.005278376396745443,
-0.07676275074481964,
0.026159008964896202,
0.10009580850601196,
-0.10943068563938141,
-0.15778402984142303,
-0.042980849742889404,
-0.05842314660549164,
0.11070011556148529,
-0.03039989247918129,
0.04276420921087265,
-0.07438685745000839,
-0.12439306080341339,
0.054484445601701736,
0.12534639239311218,
-0.20955857634544373,
0.15816046297550201,
-0.016710912808775902,
-0.008040569722652435,
-0.05038033798336983,
-0.0002122590522048995,
0.008180858567357063,
-0.010266599245369434,
0.13715295493602753,
-0.0273719672113657,
-0.044554054737091064,
-0.1296621561050415,
0.018710723146796227,
0.02040911465883255,
0.18725714087486267,
-0.10283062607049942,
0.04852201044559479,
-0.06786011904478073,
0.008295901119709015,
-0.04066124185919762,
0.08657670021057129,
0.043342456221580505,
-0.08492877334356308,
0.012116280384361744,
-0.17280644178390503,
0.05268215760588646,
-0.01252495963126421,
-0.031080646440386772,
-0.12402508407831192,
0.04547376558184624,
-0.18360620737075806,
-0.02411957085132599,
-0.063690684735775,
0.01460986863821745,
0.032210707664489746,
-0.08739068359136581,
0.05325176939368248,
-0.033498141914606094,
0.023227162659168243,
-0.03698747232556343,
-0.1318228840827942,
0.08926133811473846,
-0.06849513202905655,
-0.02052840031683445,
-0.014997122809290886,
0.2038639634847641,
-0.03923696652054787,
0.04539948329329491,
0.06684655696153641,
0.12008469551801682,
-0.07405129075050354,
-0.026396220549941063,
0.0020934701897203922,
-0.11908408254384995,
0.00751663651317358,
0.040837377309799194,
-0.10662383586168289,
0.08124346286058426,
-0.1280619502067566,
0.0782068520784378,
0.2890838384628296,
0.16538171470165253,
-0.07935486733913422,
0.16519853472709656,
0.042023688554763794,
0.019571876153349876,
-0.26544666290283203,
-0.10685001313686371,
0.04001284018158913,
0.006205620709806681,
-0.00512396264821291,
-0.20357781648635864,
0.14056289196014404,
0.05348408594727516,
0.0026037446223199368,
-0.08337973058223724,
-0.2924104928970337,
-0.07838752865791321,
0.16244608163833618,
-0.005575410556048155,
0.19140471518039703,
-0.1232815608382225,
-0.07601578533649445,
0.03070118837058544,
0.022437961772084236,
0.09944718331098557,
-0.0048014698550105095,
0.11742958426475525,
0.017037132754921913,
-0.04914109781384468,
-0.0041181715205311775,
0.01268990058451891,
0.09964598715305328,
-0.032827626913785934,
0.07617777585983276,
-0.029306622222065926,
-0.07999372482299805,
-0.01760941930115223,
-0.020467914640903473,
-0.03245348855853081,
0.027069030329585075,
0.07036077976226807,
-0.22223208844661713,
-0.011217121034860611,
-0.03610512241721153,
0.05619761347770691,
0.03350303694605827,
-0.049043942242860794,
-0.019645284861326218,
0.025942722335457802,
0.030738692730665207,
-0.0004798344452865422,
0.26927676796913147,
-0.06166176125407219,
0.10064274817705154,
0.07273717224597931,
0.0032012765295803547,
0.039513833820819855,
-0.12954190373420715,
-0.05888746678829193,
-0.033138636499643326,
0.14293478429317474,
-0.025369547307491302,
0.06427392363548279,
0.051780253648757935,
0.03142858296632767,
0.08727732300758362,
0.10010921210050583,
0.01679997704923153,
-0.02438552863895893,
0.06675919890403748,
-0.19545702636241913,
-0.010483086109161377,
-0.03532428294420242,
-0.0020325533114373684,
0.036785632371902466,
0.008871205151081085,
0.17936831712722778,
-0.017232276499271393,
-0.06429029256105423,
0.021955328062176704,
0.012407945469021797,
-0.08154528588056564,
0.054015614092350006,
0.05777265131473541,
0.06936745345592499,
-0.09332495182752609,
0.04523307457566261,
0.048680614680051804,
-0.10184706747531891,
0.04721216484904289,
0.0729592889547348,
-0.08806004375219345,
-0.0844523087143898,
-0.05517952889204025,
0.21148833632469177,
-0.07402567565441132,
-0.014601249247789383,
-0.11833774298429489,
-0.043209582567214966,
0.06900928914546967,
0.19931916892528534,
0.1778314709663391,
0.08047100156545639,
-0.04426492378115654,
-0.028857465833425522,
0.03598674014210701,
0.02580324560403824,
0.09582871943712234,
-0.030741583555936813,
-0.07782755047082901,
0.028587065637111664,
-0.026058189570903778,
0.11211251467466354,
-0.08092641085386276,
-0.07419445365667343,
-0.1689659059047699,
0.06170922517776489,
-0.08812406659126282,
0.0021574152633547783,
-0.03190673515200615,
-0.007360465358942747,
0.019497543573379517,
0.041794996708631516,
-0.03588394448161125,
-0.019183754920959473,
-0.09498399496078491,
0.023487837985157967,
-0.08016514778137207,
0.05953184887766838,
-0.1210685670375824,
-0.004961112048476934,
0.07254741340875626,
-0.050238579511642456,
0.052658289670944214,
0.14132875204086304,
-0.02815108373761177,
0.11002916097640991,
-0.08035025745630264,
-0.168070450425148,
0.030792390927672386,
0.023860935121774673,
0.0018994130659848452,
-0.09935373067855835,
0.037430308759212494,
-0.0034413121175020933,
-0.039528246968984604,
0.021498119458556175,
0.10570217669010162,
-0.11975719779729843,
0.0056392415426671505,
-0.07563824206590652,
-0.12030158936977386,
-0.05904189497232437,
0.015997640788555145,
0.008159762248396873,
0.14791087806224823,
0.1797865331172943,
-0.08636070787906647,
0.1479552835226059,
-0.008644678629934788,
-0.014860467985272408,
-0.04238817095756531,
-0.09156165271997452,
-0.11076704412698746,
-0.08055363595485687,
0.021229838952422142,
-0.038607072085142136,
0.14602892100811005,
0.12449680268764496,
0.025881895795464516,
0.03317297250032425,
0.059314943850040436,
0.09002703428268433,
0.07482296228408813,
0.21545103192329407,
0.14024069905281067,
-0.05830046162009239,
-0.06919825077056885,
0.08312496542930603,
0.006894009653478861,
0.1322239339351654,
0.08233781903982162,
0.3193102777004242,
-0.007200518157333136,
0.0911487266421318,
0.047626372426748276,
0.010669580660760403,
0.07212509959936142,
-0.02750803343951702,
0.10929346829652786,
0.06946112215518951,
-0.011833676137030125,
0.13031433522701263,
0.1394955962896347,
-0.07805393636226654,
0.033211007714271545,
0.0037870588712394238,
-0.04286966100335121,
-0.13206812739372253,
-0.07066013664007187,
-0.10773253440856934,
-0.11953075975179672,
0.014664062298834324,
-0.04862693324685097,
-0.05659942328929901,
0.09302689880132675,
0.07070595026016235,
-0.006832834333181381,
0.09017449617385864,
-0.05306074768304825,
-0.09049446880817413,
0.09099414944648743,
-0.06507892906665802,
0.007185858208686113,
0.13939914107322693,
-0.08919768035411835,
0.04189638793468475,
-0.10198316723108292,
0.004667976871132851,
-0.017011258751153946,
0.038764093071222305,
-0.029710758477449417,
-0.17802667617797852,
-0.13166113197803497,
0.024241935461759567,
0.020275196060538292,
-0.02959396503865719,
0.1678794026374817,
0.042227935045957565,
-0.0031014427077025175,
0.004858098458498716,
0.28149864077568054,
-0.04462368041276932,
-0.032545000314712524,
-0.08763158321380615,
0.2853855788707733,
0.11119108647108078,
0.1459577977657318,
-0.04010700061917305,
-0.05172426626086235,
-0.003941384144127369,
0.18320855498313904,
0.16911181807518005,
-0.07791921496391296,
0.041683170944452286,
0.12258785218000412,
0.05155187100172043,
0.08858085423707962,
0.05939699336886406,
0.047100793570280075,
0.13173507153987885,
-0.11231708526611328,
-0.08891342580318451,
-0.07359880954027176,
-0.04419896751642227,
-0.18032023310661316,
0.021103693172335625,
0.1337222307920456,
-0.05085530877113342,
-0.02987850271165371,
0.1445855051279068,
-0.12848606705665588,
-0.003368627978488803,
-0.008680848404765129,
-0.15776529908180237,
-0.16641691327095032,
-0.04208867624402046,
0.0873802900314331,
0.038200754672288895,
0.1377815455198288,
-0.0016640500398352742,
-0.0321170836687088,
-0.06533870100975037,
0.0808684304356575,
-0.026734162122011185,
-0.0778074711561203,
0.10290899127721786,
-0.0034912931732833385,
-0.08115116506814957,
-0.02316315285861492,
0.12753553688526154,
0.08805926144123077,
0.0829673781991005,
0.0797383114695549,
0.07722063362598419,
0.058049339801073074,
-0.032441284507513046,
-0.022288689389824867,
0.09449893981218338,
0.0021309196017682552,
-0.00025012873811647296,
0.07643704116344452,
-0.13869008421897888,
0.054903630167245865,
-0.052877165377140045,
-0.05301552265882492,
-0.08770791441202164,
0.07232587039470673,
-0.06437141448259354,
0.030002987012267113,
0.17822113633155823,
-0.020905928686261177,
-0.01042468287050724,
-0.06478400528430939,
0.016017014160752296,
0.08092225342988968,
-0.14910843968391418,
-0.11625125259160995,
-0.1375209093093872,
-0.035512182861566544,
-0.024857712909579277,
-0.0606921911239624,
-0.05461396649479866,
-0.05988410487771034,
-0.0008235137793235481,
0.056677237153053284,
-0.0407206229865551,
0.09057480096817017,
-0.005438198335468769,
0.01746305264532566,
0.007255490403622389,
-0.18193349242210388,
0.06109783798456192,
0.028706055134534836,
-0.10624359548091888,
-0.07504230737686157
] |
null | null |
transformers
|
alex6095/SanctiMolyOH_Cpu
|
{}
|
feature-extraction
|
alex6095/SanctiMolyOH_Cpu
|
[
"transformers",
"pytorch",
"distilbert",
"feature-extraction",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us
|
alex6095/SanctiMolyOH_Cpu
|
[] |
[
"TAGS\n#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us \n"
] |
[
35
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us \n"
] |
[
-0.03586828336119652,
-0.007227653171867132,
-0.007106279022991657,
0.011765087954699993,
0.10185123980045319,
0.0250946544110775,
-0.008171798661351204,
0.10367301851511002,
0.030566126108169556,
0.04913673549890518,
0.11326921731233597,
0.18179652094841003,
-0.06470964848995209,
0.03216451406478882,
-0.05907301977276802,
-0.2641049921512604,
0.08687902987003326,
0.07409008592367172,
-0.0706201121211052,
0.07971625030040741,
0.06671436876058578,
-0.11998610943555832,
0.05405344069004059,
-0.003166471142321825,
-0.13981661200523376,
0.05541599541902542,
-0.011467360891401768,
-0.07783560454845428,
0.11843696236610413,
0.002543775364756584,
0.18368855118751526,
0.02878868207335472,
-0.09733621776103973,
-0.10494343191385269,
0.026334600523114204,
-0.0005765886162407696,
-0.06466273963451385,
0.040379974991083145,
0.01881226897239685,
-0.10266336053609848,
0.07063997536897659,
0.011560525745153427,
0.016938362270593643,
-0.010460183955729008,
-0.15190665423870087,
-0.19968245923519135,
-0.060142334550619125,
0.02897001802921295,
-0.04073324427008629,
0.0869261622428894,
0.0052718170918524265,
0.11900104582309723,
-0.17618095874786377,
0.06861619651317596,
0.23259852826595306,
-0.2761138379573822,
-0.002889614552259445,
0.13458770513534546,
0.15654024481773376,
0.0023080562241375446,
-0.03179965913295746,
0.044667262583971024,
0.006725247949361801,
0.023825598880648613,
0.06087098270654678,
-0.07139581441879272,
-0.07870741188526154,
0.07933799922466278,
-0.11773696541786194,
-0.07995781302452087,
0.22571423649787903,
-0.052127864211797714,
0.07784111052751541,
-0.013646330684423447,
-0.11122461408376694,
-0.07818561792373657,
-0.0007318395655602217,
0.01008523814380169,
-0.005049367435276508,
0.034697696566581726,
0.022310635074973106,
-0.028894735500216484,
-0.13873295485973358,
0.03748829662799835,
-0.1885480135679245,
0.19744306802749634,
-0.013403203338384628,
0.06793820858001709,
-0.15522608160972595,
0.06493815779685974,
-0.0610017292201519,
-0.11574546992778778,
0.04280242696404457,
-0.09876697510480881,
0.0301814042031765,
0.028473153710365295,
-0.11846214532852173,
0.0066393599845469,
0.04226609319448471,
0.13319723308086395,
-0.05206705257296562,
-0.0024519057478755713,
0.05602516233921051,
0.11136669665575027,
0.058009855449199677,
0.12105301022529602,
-0.017770687118172646,
-0.03376851975917816,
-0.02841206081211567,
-0.07650628685951233,
-0.010367226786911488,
-0.07390295714139938,
-0.12479449808597565,
-0.06547264754772186,
0.039378754794597626,
0.039733678102493286,
0.06375925242900848,
0.014129860326647758,
-0.06693372875452042,
0.015226171351969242,
0.0628439337015152,
-0.07235398888587952,
0.030523261055350304,
-0.019653519615530968,
0.051213912665843964,
0.14244671165943146,
0.00838479120284319,
-0.03092159889638424,
0.01634375937283039,
0.06970255076885223,
-0.09812282770872116,
0.029045309871435165,
-0.06000455841422081,
-0.10947763174772263,
0.03262295201420784,
-0.18401284515857697,
0.042666856199502945,
-0.1619766652584076,
-0.0403791107237339,
0.013203529641032219,
0.05711207538843155,
-0.01356083806604147,
0.010121683590114117,
0.05435818433761597,
-0.06857789307832718,
0.060798607766628265,
-0.05839039012789726,
-0.07662069797515869,
-0.061660535633563995,
0.08428262174129486,
-0.03194637969136238,
0.11258833110332489,
-0.15456707775592804,
0.08864046633243561,
-0.07954438775777817,
0.051892079412937164,
-0.1555408537387848,
0.0031252724584192038,
-0.04200313612818718,
0.13177406787872314,
0.0156808290630579,
-0.08801625669002533,
-0.15487506985664368,
0.06257664412260056,
-0.013454561121761799,
0.10526096075773239,
-0.14061298966407776,
-0.08149804174900055,
0.12855952978134155,
-0.09836628288030624,
-0.12797538936138153,
0.06721343100070953,
-0.012312627397477627,
-0.014841021969914436,
-0.01444244384765625,
0.24947376549243927,
0.09144466370344162,
-0.05774447321891785,
-0.0031983095686882734,
0.15128207206726074,
-0.08515218645334244,
-0.07167953997850418,
0.03378273919224739,
-0.010295073501765728,
0.027508549392223358,
0.01495450921356678,
0.015130385756492615,
0.07379838079214096,
-0.05779631435871124,
-0.05692914128303528,
-0.06014931574463844,
-0.015523102134466171,
0.12285853922367096,
0.05427170544862747,
0.1069798693060875,
-0.04687274247407913,
-0.02795972302556038,
0.057359181344509125,
0.004027002025395632,
0.013850129209458828,
0.058843307197093964,
-0.02205454185605049,
0.23178315162658691,
-0.06934854388237,
-0.027589034289121628,
-0.252134770154953,
-0.06835669279098511,
-0.03715498000383377,
0.07289566099643707,
-0.04067099839448929,
0.25396478176116943,
0.07207833975553513,
-0.07126013189554214,
0.02738051488995552,
-0.03791596367955208,
0.04390706121921539,
0.05562272295355797,
-0.04398482292890549,
-0.035186655819416046,
-0.0447789765894413,
-0.09696626663208008,
-0.06667213886976242,
-0.009102840907871723,
0.019014352932572365,
0.10552380979061127,
0.11304107308387756,
-0.007903965190052986,
0.03795725107192993,
-0.053872957825660706,
0.06724975258111954,
-0.0617629811167717,
-0.004031750839203596,
0.05685737729072571,
-0.022382525727152824,
-0.03941845893859863,
0.15622714161872864,
-0.1402655690908432,
0.32330507040023804,
0.20446453988552094,
-0.2955980598926544,
0.007241822313517332,
0.0148446224629879,
-0.030513256788253784,
0.06294690817594528,
0.061183586716651917,
-0.052890289574861526,
-0.00641755573451519,
-0.02985508367419243,
0.09863146394491196,
-0.010558289475739002,
-0.024358514696359634,
-0.008276243694126606,
-0.04583839699625969,
-0.08343597501516342,
0.03776467591524124,
0.021569689735770226,
-0.08339648693799973,
0.18350912630558014,
0.346650093793869,
-0.025387000292539597,
0.15436924993991852,
-0.028869224712252617,
-0.01891612447798252,
-0.0037470124661922455,
-0.025243490934371948,
-0.07561580091714859,
0.08275091648101807,
-0.26184841990470886,
-0.07223458588123322,
0.07975579798221588,
0.01896769367158413,
0.08848392963409424,
-0.12101346999406815,
-0.03907785564661026,
0.059695445001125336,
0.059757526963949203,
-0.07918118685483932,
0.11404460668563843,
0.0715535581111908,
0.05955228954553604,
0.008530588820576668,
-0.06906856596469879,
0.06661130487918854,
0.014591744169592857,
0.01100672036409378,
0.1311105340719223,
-0.13185198605060577,
-0.25986459851264954,
-0.08974624425172806,
-0.0923813208937645,
0.016858011484146118,
0.024434952065348625,
0.11410384625196457,
-0.06168951094150543,
-0.01801270991563797,
0.013524253852665424,
0.031079567968845367,
-0.1317896693944931,
0.03836982697248459,
-0.06973250210285187,
0.014014548622071743,
-0.06394863873720169,
-0.10197395086288452,
-0.07433243095874786,
-0.05067472904920578,
-0.012391156516969204,
0.11185909807682037,
-0.028093062341213226,
0.11433625966310501,
0.13770020008087158,
0.014962649904191494,
0.056581657379865646,
-0.0037146760150790215,
0.21357402205467224,
-0.057746488600969315,
-0.039804648607969284,
0.2165786474943161,
0.011531202122569084,
0.08381747454404831,
0.10947564989328384,
0.042077939957380295,
-0.032068416476249695,
-0.03620868921279907,
-0.03389858454465866,
-0.12376949191093445,
-0.08628050237894058,
-0.12962716817855835,
-0.16640034317970276,
-0.021229233592748642,
0.005044606979936361,
0.04387074336409569,
0.09003828465938568,
0.05406472459435463,
0.0499216690659523,
-0.04723566398024559,
-0.08551345020532608,
0.017573527991771698,
0.2131788283586502,
-0.05398481339216232,
0.13507254421710968,
-0.03691045939922333,
-0.10175710171461105,
0.06402328610420227,
0.04590795561671257,
0.204873189330101,
0.05583775416016579,
-0.009915217757225037,
0.07540249079465866,
0.2062719613313675,
0.12367431819438934,
0.1308516412973404,
-0.00006655928154941648,
-0.02540554665029049,
-0.021899480372667313,
-0.012544054538011551,
-0.02653125673532486,
0.060505419969558716,
0.21552225947380066,
-0.1284836232662201,
-0.07114206254482269,
-0.1891143023967743,
0.09440284222364426,
0.04228971153497696,
0.06684017926454544,
-0.17648793756961823,
-0.014165720902383327,
0.08273662626743317,
0.012474458664655685,
-0.03835710138082504,
0.04783192649483681,
0.07894586771726608,
-0.07281693071126938,
0.005856414791196585,
-0.017084812745451927,
0.083010233938694,
0.05231071636080742,
0.08940298110246658,
-0.07086192071437836,
-0.16106732189655304,
0.05622848495841026,
0.04152369126677513,
-0.19092674553394318,
0.2351415902376175,
-0.032608795911073685,
-0.10023269057273865,
-0.040479499846696854,
0.013403975404798985,
0.039906881749629974,
0.14524942636489868,
0.0945974811911583,
0.0388307198882103,
-0.09145765751600266,
-0.14727036654949188,
0.07478954643011093,
-0.011656657792627811,
0.11705063283443451,
-0.04645493999123573,
0.006578507367521524,
-0.01442163996398449,
0.01154015026986599,
0.007946042343974113,
0.18378345668315887,
0.052540503442287445,
-0.17075838148593903,
0.07792503386735916,
-0.02273085154592991,
-0.012907665222883224,
-0.0233532153069973,
-0.032358940690755844,
-0.1374739557504654,
0.11796700954437256,
-0.023329611867666245,
-0.035829413682222366,
-0.10604437440633774,
-0.09128814190626144,
0.15575812757015228,
-0.05086423084139824,
0.10165033489465714,
-0.05174450948834419,
-0.021173421293497086,
-0.08280864357948303,
-0.1736634373664856,
0.11528674513101578,
-0.09381315857172012,
0.03473001345992088,
-0.025615448132157326,
0.13100962340831757,
-0.11074601858854294,
0.03487255796790123,
0.01460545975714922,
0.07890342175960541,
-0.17040623724460602,
-0.09641982614994049,
-0.007879178039729595,
-0.018400060012936592,
0.06307539343833923,
0.0745219960808754,
-0.02905113622546196,
0.0245179645717144,
0.06849006563425064,
0.08931822329759598,
0.23749811947345734,
0.12055620551109314,
-0.10896579176187515,
0.1225501075387001,
0.03146236017346382,
0.003753908909857273,
-0.3061577379703522,
-0.057508695870637894,
-0.14836417138576508,
-0.0046733529306948185,
0.06589016318321228,
-0.07834797352552414,
0.10059424489736557,
0.01852148212492466,
-0.03813715651631355,
0.07519499212503433,
-0.2562706172466278,
-0.06092860922217369,
0.12446127086877823,
-0.04825843870639801,
0.3869050443172455,
-0.12048480659723282,
-0.051119983196258545,
0.022741304710507393,
-0.2313285917043686,
0.09289323538541794,
-0.05352924391627312,
0.0839860737323761,
-0.02570013515651226,
0.038001421838998795,
0.04514504224061966,
-0.0697057694196701,
0.15896403789520264,
0.012373993173241615,
0.04864038527011871,
-0.08216524124145508,
-0.13205884397029877,
0.12471912056207657,
-0.05378478765487671,
0.0021780224051326513,
0.0029090933967381716,
0.019226370379328728,
-0.18197225034236908,
0.014515829272568226,
-0.13804250955581665,
0.10699842870235443,
0.01038310769945383,
-0.03745346516370773,
-0.04464242234826088,
-0.005139571148902178,
0.0287045668810606,
0.027404576539993286,
0.25281471014022827,
-0.02485978975892067,
0.15840239822864532,
0.07015623897314072,
-0.01294673141092062,
-0.18495488166809082,
-0.1677575409412384,
0.0020151122007519007,
-0.026839064434170723,
0.10245270282030106,
-0.09914609789848328,
0.03912299498915672,
0.10949800163507462,
-0.013176367618143559,
0.021400174126029015,
0.14117901027202606,
0.02262410707771778,
0.009955300949513912,
0.15123489499092102,
-0.18919861316680908,
-0.053242962807416916,
-0.03388158604502678,
-0.09336650371551514,
0.07737039774656296,
0.03620844706892967,
0.10703817009925842,
0.04239247366786003,
0.004174217116087675,
-0.02176537550985813,
-0.03248616307973862,
-0.09066055715084076,
0.03520906716585159,
0.05302615836262703,
0.06053451821208,
-0.11972786486148834,
-0.004818298853933811,
0.020311787724494934,
-0.229909747838974,
-0.036481574177742004,
0.060924138873815536,
-0.07148376852273941,
-0.152117058634758,
-0.13000300526618958,
0.02427787333726883,
-0.13110202550888062,
0.007553974166512489,
-0.019129620864987373,
-0.11019285768270493,
0.03415050730109215,
0.16423140466213226,
0.1177273616194725,
0.11286264657974243,
-0.03502098098397255,
0.0009021764853969216,
0.03046506829559803,
-0.04122273623943329,
0.02791205421090126,
0.04427554830908775,
-0.12446190416812897,
0.048674218356609344,
-0.03274786099791527,
0.15662413835525513,
-0.08785759657621384,
-0.042671699076890945,
-0.12414193898439407,
0.008496235124766827,
-0.059626150876283646,
-0.11096788197755814,
-0.13875789940357208,
-0.0784224420785904,
0.02385111339390278,
-0.05957423895597458,
-0.04101422056555748,
-0.018460653722286224,
-0.1392393559217453,
0.005553402006626129,
-0.022527996450662613,
0.02962581068277359,
-0.08974350243806839,
-0.025846851989626884,
0.09413492679595947,
-0.06659086793661118,
0.0807354524731636,
0.14068566262722015,
-0.06530646234750748,
0.07647939771413803,
-0.044939033687114716,
-0.17997923493385315,
0.10601289570331573,
0.02491965889930725,
0.08875089138746262,
0.07359633594751358,
-0.0007731757941655815,
0.0316067710518837,
0.030436735600233078,
0.020361995324492455,
-0.03465941175818443,
-0.10008499026298523,
-0.0004677054239436984,
-0.022281216457486153,
-0.15229493379592896,
-0.019925514236092567,
-0.06119677424430847,
0.16523882746696472,
0.039337579160928726,
0.10876079648733139,
0.020534496754407883,
0.07234757393598557,
-0.06416996568441391,
0.0005208576912991703,
-0.022474002093076706,
-0.17034316062927246,
0.033730942755937576,
-0.05728153511881828,
0.019531384110450745,
-0.009447495453059673,
0.263528436422348,
0.05094461515545845,
-0.012598887085914612,
0.026646152138710022,
0.06536554545164108,
0.052866313606500626,
0.016608422622084618,
0.2186870127916336,
0.1074996218085289,
-0.05750394985079765,
-0.09202317893505096,
0.07762658596038818,
0.022015567868947983,
0.006913629826158285,
0.09317916631698608,
0.15893326699733734,
0.07078346610069275,
0.11557279527187347,
0.041092466562986374,
-0.003519495250657201,
-0.15323634445667267,
-0.18579284846782684,
-0.000408829451771453,
0.07505831122398376,
-0.039223603904247284,
-0.0029882239177823067,
0.12262741476297379,
-0.04344509169459343,
0.1125507727265358,
-0.024645093828439713,
-0.007533808704465628,
-0.10206058621406555,
-0.036394502967596054,
-0.032310985028743744,
-0.13173574209213257,
-0.03273128718137741,
-0.07084482163190842,
0.042141713201999664,
0.18303702771663666,
0.0008343450608663261,
0.0026737248990684748,
0.16341349482536316,
0.034453317523002625,
-0.038467466831207275,
0.04468446597456932,
-0.004841686226427555,
0.02252330631017685,
0.003916345536708832,
0.0014058098895475268,
-0.09491833299398422,
-0.04739758372306824,
-0.04784678295254707,
0.021489320322871208,
-0.0941084623336792,
-0.01777615211904049,
-0.12145070731639862,
-0.10620544850826263,
-0.05270243436098099,
0.036480799317359924,
-0.06759178638458252,
0.1437578797340393,
0.0011852913303300738,
0.003073543542996049,
-0.016469772905111313,
0.19765762984752655,
-0.11170663684606552,
-0.01871301420032978,
-0.019288036972284317,
0.14682219922542572,
0.08933477103710175,
0.09206400066614151,
-0.031037231907248497,
-0.010515240952372551,
-0.0946112796664238,
0.1860930621623993,
0.2867399752140045,
-0.051731061190366745,
0.08605033904314041,
0.07755344361066818,
0.02455322816967964,
0.056216612458229065,
0.047714002430438995,
0.11646021157503128,
0.28737470507621765,
-0.08083236217498779,
-0.04880659282207489,
-0.06303567439317703,
-0.01763940416276455,
-0.10530674457550049,
0.013043400831520557,
0.06783310323953629,
-0.07656772434711456,
-0.052870579063892365,
0.060389529913663864,
-0.15102487802505493,
0.09899251908063889,
0.13713805377483368,
-0.2600216865539551,
-0.05322295427322388,
-0.023655854165554047,
0.21092860400676727,
-0.025788387283682823,
0.13237175345420837,
-0.05603526160120964,
-0.12780939042568207,
0.05126282572746277,
0.019423190504312515,
-0.1982308030128479,
-0.026285095140337944,
0.11793976277112961,
-0.004832139238715172,
-0.007333625573664904,
-0.049036089330911636,
-0.03213796392083168,
0.08716367930173874,
0.12154696881771088,
-0.01198945939540863,
0.045460011810064316,
0.04534458741545677,
-0.10852556675672531,
-0.08893349766731262,
0.02988322824239731,
0.007136424537748098,
-0.08733206242322922,
0.06247463449835777,
-0.23836663365364075,
0.047921061515808105,
0.0330115482211113,
-0.008724546059966087,
-0.00047336594434455037,
-0.07198839634656906,
-0.03818441554903984,
0.055014532059431076,
0.07593701034784317,
0.01164654828608036,
-0.040992677211761475,
-0.02162739634513855,
-0.027900341898202896,
0.06050776690244675,
-0.048432569950819016,
-0.19193069636821747,
-0.05997200682759285,
-0.049881771206855774,
0.05363297462463379,
-0.047490183264017105,
-0.03022567369043827,
-0.07714047282934189,
0.002975807059556246,
0.06495482474565506,
-0.06808404624462128,
0.047733742743730545,
0.0675477460026741,
0.022355737164616585,
0.010628639720380306,
-0.016509970650076866,
0.01815125346183777,
0.07772675901651382,
-0.1396608054637909,
-0.054062120616436005
] |
null | null |
transformers
|
# DanBERT
## Model description
DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis.
The model can be found at:
* [danbert-da](https://huggingface.co/alexanderfalk/danbert-small-cased)
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("alexanderfalk/danbert-small-cased")
model = AutoModel.from_pretrained("alexanderfalk/danbert-small-cased")
```
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020},
title={Anonymization of Danish, Real-Time Data, and Personalized Modelling},
author={Alexander Falk},
}
```
|
{"language": ["da", "en"], "license": "apache-2.0", "tags": ["named entity recognition", "token criticality"], "datasets": ["custom danish dataset"], "metrics": ["array of metric identifiers"], "inference": false}
|
fill-mask
|
alexanderfalk/danbert-small-cased
|
[
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"named entity recognition",
"token criticality",
"da",
"en",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"da",
"en"
] |
TAGS
#transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us
|
# DanBERT
## Model description
DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis.
The model can be found at:
* danbert-da
## Intended uses & limitations
#### How to use
### BibTeX entry and citation info
|
[
"# DanBERT",
"## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da",
"## Intended uses & limitations",
"#### How to use",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us \n",
"# DanBERT",
"## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da",
"## Intended uses & limitations",
"#### How to use",
"### BibTeX entry and citation info"
] |
[
54,
4,
72,
9,
5,
11
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us \n# DanBERT## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da## Intended uses & limitations#### How to use### BibTeX entry and citation info"
] |
[
-0.011106355115771294,
0.04705578833818436,
0.0003008160274475813,
0.0705963596701622,
0.05409131199121475,
-0.027636265382170677,
0.2548733651638031,
0.03581715747714043,
0.12007012218236923,
-0.026415595784783363,
0.17082303762435913,
0.046575967222452164,
0.012707576155662537,
0.17983582615852356,
0.015552802011370659,
-0.35231900215148926,
0.0875810831785202,
0.04195309802889824,
-0.0036788589786738157,
0.054139357060194016,
0.12423893064260483,
-0.09139250218868256,
0.02397020533680916,
-0.0311095230281353,
-0.08367988467216492,
-0.023942310363054276,
-0.043304599821567535,
-0.05830308049917221,
0.15327663719654083,
0.00007821656618034467,
0.06889975070953369,
0.09026335179805756,
0.0883905440568924,
-0.07272946089506149,
0.019714927300810814,
-0.05257898569107056,
-0.02282574400305748,
0.10014907270669937,
-0.06612224876880646,
0.14978301525115967,
0.051070570945739746,
0.07734786719083786,
0.07814573496580124,
-0.04073421657085419,
-0.07117100059986115,
-0.11846760660409927,
0.007940026000142097,
0.17123427987098694,
0.10658935457468033,
0.04898893088102341,
-0.018976885825395584,
0.07587504386901855,
-0.06720094382762909,
0.02899486944079399,
-0.10858727991580963,
-0.1719120740890503,
-0.009158051572740078,
0.1812065690755844,
0.08207456767559052,
-0.001887153135612607,
-0.060066454112529755,
0.07476554811000824,
0.051062725484371185,
0.0635933130979538,
0.026425987482070923,
-0.06200969219207764,
0.14940807223320007,
-0.030370861291885376,
-0.10788184404373169,
0.00483607966452837,
0.17230284214019775,
0.033087845891714096,
-0.09938342124223709,
-0.11405883729457855,
0.03447388485074043,
0.17517271637916565,
-0.03996922820806503,
-0.12586870789527893,
-0.011946158483624458,
-0.006073622032999992,
0.02575473114848137,
-0.09290015697479248,
-0.05790776014328003,
-0.09251123666763306,
-0.03351673483848572,
0.10700615495443344,
0.004783024545758963,
-0.014319604262709618,
-0.07655598223209381,
0.02775454893708229,
-0.14732681214809418,
-0.09524310380220413,
-0.0001801852195058018,
-0.07399283349514008,
0.05710089951753616,
-0.04179849475622177,
-0.014601643197238445,
-0.0540483184158802,
0.028807902708649635,
0.11702897399663925,
0.11550352722406387,
-0.043496329337358475,
-0.05737532302737236,
0.08643684536218643,
0.052214365452528,
0.16795381903648376,
-0.06067659333348274,
0.012475693598389626,
0.043936602771282196,
0.09915341436862946,
-0.005705283954739571,
-0.027817130088806152,
-0.24627923965454102,
-0.004862438887357712,
0.12873414158821106,
0.0028293542563915253,
0.004422906786203384,
0.08462901413440704,
-0.023418821394443512,
-0.03314709663391113,
0.11183152347803116,
-0.02181369625031948,
0.01886233314871788,
0.008851454593241215,
-0.08412114530801773,
-0.013228656724095345,
0.017633667215704918,
0.01947137527167797,
-0.03564203530550003,
0.09962902963161469,
-0.035251278430223465,
-0.07340686023235321,
-0.03123600408434868,
-0.21780531108379364,
0.05742543935775757,
-0.061250798404216766,
0.06326005607843399,
-0.12364771217107773,
-0.13586051762104034,
-0.0019922368228435516,
0.10214100033044815,
-0.03759782388806343,
-0.07212281972169876,
-0.05510135740041733,
-0.021705951541662216,
-0.029611065983772278,
-0.059791721403598785,
0.0011326575186103582,
0.0024867120664566755,
0.024766337126493454,
-0.11257879436016083,
0.07910577952861786,
-0.16716733574867249,
0.0644414871931076,
-0.08635847270488739,
-0.006960665341466665,
-0.11303897202014923,
0.04808489978313446,
-0.051869988441467285,
-0.0037670035380870104,
-0.1025124341249466,
-0.03444412723183632,
0.008759632706642151,
0.06982700526714325,
0.04018029570579529,
0.21141231060028076,
-0.17684438824653625,
-0.047178518027067184,
0.09810087829828262,
-0.05946829915046692,
-0.09091334044933319,
0.13921859860420227,
-0.07144264131784439,
0.1938769668340683,
0.09913180768489838,
0.1484387069940567,
0.02159077301621437,
-0.16740313172340393,
0.13771334290504456,
0.11893417686223984,
0.08172513544559479,
0.011393018998205662,
0.0813659280538559,
-0.022371765226125717,
-0.10798187553882599,
0.00909077376127243,
-0.08847402036190033,
0.02391854301095009,
-0.0363992303609848,
-0.06440531462430954,
0.09694220125675201,
-0.041909873485565186,
0.08909836411476135,
0.021565942093729973,
0.08991307020187378,
-0.008728047832846642,
-0.0457586795091629,
0.19110345840454102,
0.01892542466521263,
-0.03397785872220993,
-0.020792735740542412,
-0.031287483870983124,
0.03054559789597988,
-0.08666475862264633,
0.06395120918750763,
-0.10551933944225311,
0.04572763293981552,
0.01545497216284275,
0.02779024839401245,
0.06551969796419144,
0.16810296475887299,
0.0493694506585598,
0.06600405275821686,
0.0031797096598893404,
0.010451248846948147,
-0.05219726637005806,
0.048372782766819,
-0.09651033580303192,
-0.13878607749938965,
-0.041650403290987015,
-0.1075095683336258,
0.08547135442495346,
-0.13521258533000946,
0.04065823554992676,
-0.12035677582025528,
-0.025804948061704636,
-0.0058189923875033855,
0.03825438767671585,
-0.0007726079784333706,
0.06499578058719635,
-0.05548318475484848,
0.025520596653223038,
0.08256955444812775,
-0.029253417626023293,
-0.09294816851615906,
0.0850735679268837,
0.01624506153166294,
0.08914656192064285,
0.13752910494804382,
-0.05215445160865784,
-0.0038998760282993317,
-0.007909674197435379,
-0.005038549657911062,
-0.015336637385189533,
-0.022439289838075638,
-0.09531550854444504,
0.1277063488960266,
0.0432201512157917,
0.13266389071941376,
-0.06399103999137878,
0.048190947622060776,
0.009678056463599205,
-0.04804862290620804,
-0.08488043397665024,
0.09490201622247696,
0.01971076801419258,
-0.07978694140911102,
0.1495184302330017,
0.15301835536956787,
-0.041284821927547455,
0.10717268288135529,
-0.01416931115090847,
-0.017330532893538475,
0.009306127205491066,
-0.06768181920051575,
-0.013944369740784168,
0.15802383422851562,
-0.11334862560033798,
-0.05655404180288315,
0.03483300656080246,
0.015275776386260986,
-0.018411917611956596,
-0.0856480523943901,
-0.05252668261528015,
0.0031047097872942686,
-0.05020780488848686,
-0.09207183122634888,
0.024943653494119644,
-0.1054258942604065,
0.07331065088510513,
0.09258205443620682,
-0.2064342051744461,
0.07737256586551666,
0.009967817924916744,
-0.11119228601455688,
0.18954624235630035,
-0.07116225361824036,
-0.24669937789440155,
-0.12844862043857574,
-0.012575489468872547,
-0.045302096754312515,
0.05331144481897354,
-0.008464423008263111,
-0.017859607934951782,
-0.030347784981131554,
-0.021609202027320862,
0.13186869025230408,
-0.07971422374248505,
-0.04792548716068268,
-0.04372519627213478,
-0.05365545675158501,
-0.05017215013504028,
-0.11764384806156158,
-0.030833259224891663,
-0.05260521173477173,
0.028395825996994972,
0.011146645061671734,
-0.1404278725385666,
0.021279647946357727,
0.12207921594381332,
-0.040498439222574234,
0.009851733222603798,
-0.010579368099570274,
0.2277548760175705,
-0.03097456321120262,
0.10549458116292953,
0.09910382330417633,
-0.09068400412797928,
-0.00810407754033804,
0.20909154415130615,
0.03983031213283539,
-0.007298958953469992,
0.0020246882922947407,
-0.01668868400156498,
-0.0770110934972763,
-0.07677145302295685,
-0.08007977902889252,
-0.024167437106370926,
0.11725054681301117,
0.15882053971290588,
0.03870456665754318,
0.1122351884841919,
0.06522839516401291,
0.007546012755483389,
0.0883241668343544,
0.08004718273878098,
0.07332278788089752,
0.06722626835107803,
-0.05127464979887009,
0.10931191593408585,
0.03379061818122864,
-0.06757910549640656,
0.009894165210425854,
0.04403216019272804,
-0.001972617581486702,
0.1072542667388916,
0.01584424078464508,
0.051296722143888474,
-0.031214933842420578,
0.057740092277526855,
0.1744208037853241,
-0.08234946429729462,
0.00010244474106002599,
-0.05947994440793991,
-0.08322381973266602,
-0.027182433754205704,
0.09591545909643173,
0.03465729206800461,
0.005218032747507095,
-0.10473243147134781,
-0.13950935006141663,
-0.014626519754529,
0.028615880757570267,
0.16437242925167084,
-0.1627173125743866,
-0.1373959481716156,
0.043825842440128326,
-0.002021599793806672,
-0.08553777635097504,
0.027097761631011963,
0.03600136563181877,
-0.10865749418735504,
-0.0496751144528389,
-0.04975789785385132,
0.13488194346427917,
-0.03933217376470566,
0.05264543741941452,
-0.13633425533771515,
-0.0516354963183403,
-0.0012680029030889273,
0.10654287040233612,
-0.4564644694328308,
0.20919795334339142,
-0.001431837328709662,
0.04117153584957123,
-0.10018566995859146,
-0.009020105004310608,
0.016620170325040817,
0.1707286685705185,
0.12716975808143616,
0.00613199919462204,
0.16490799188613892,
-0.05708271265029907,
-0.11156205087900162,
0.014662039466202259,
-0.07871945947408676,
-0.08825042843818665,
-0.025925982743501663,
0.03531891852617264,
0.02760247327387333,
0.030833061784505844,
0.09508609771728516,
-0.17239370942115784,
-0.036401212215423584,
0.023835843428969383,
-0.0451354905962944,
0.0689052939414978,
-0.0035860962234437466,
-0.1321689635515213,
-0.08924973756074905,
0.05886662006378174,
-0.07286951690912247,
-0.06599434465169907,
-0.0685921162366867,
0.09325750172138214,
-0.0022124070674180984,
-0.04755052551627159,
-0.01868089661002159,
-0.07686074078083038,
0.04478384926915169,
-0.13304968178272247,
-0.09241512417793274,
0.06844769418239594,
-0.12156450748443604,
-0.044191937893629074,
-0.04498562961816788,
0.034332118928432465,
0.07460466027259827,
0.05550768971443176,
0.10735808312892914,
-0.019537117332220078,
-0.019490007311105728,
-0.06284961104393005,
0.05389222502708435,
-0.049010105431079865,
0.07526518404483795,
-0.0770738273859024,
-0.16868604719638824,
-0.05365246534347534,
-0.04776576906442642,
0.042516883462667465,
0.10012970864772797,
0.1894831657409668,
-0.033532388508319855,
0.08327552676200867,
0.3772449195384979,
-0.06858741492033005,
-0.3437846601009369,
0.041488297283649445,
0.0020993631333112717,
0.08230604231357574,
-0.07135862112045288,
-0.252668172121048,
0.04842677712440491,
-0.011574980802834034,
-0.04954091086983681,
-0.0148971201851964,
-0.1381399929523468,
-0.11781968921422958,
0.3193950057029724,
0.07706709206104279,
0.25973474979400635,
-0.08699400722980499,
-0.03933050110936165,
-0.05350843071937561,
-0.10929858684539795,
0.18085166811943054,
-0.02221137285232544,
0.01555177103728056,
0.027956625446677208,
0.08198751509189606,
0.046142399311065674,
-0.03475435823202133,
0.12171383947134018,
0.015597003512084484,
0.014772998169064522,
-0.09460459649562836,
-0.20913009345531464,
0.034727878868579865,
-0.025962267071008682,
0.15507221221923828,
-0.04659292846918106,
0.006352386437356472,
-0.049706749618053436,
-0.06963878870010376,
-0.0969262644648552,
0.09965796768665314,
-0.0652226135134697,
-0.19267061352729797,
0.011132429353892803,
0.12104275077581406,
-0.03292737528681755,
0.011304264888167381,
0.1654558777809143,
-0.05382530763745308,
0.026022816076874733,
0.09625179320573807,
0.10931430011987686,
-0.006373806856572628,
0.1359671652317047,
0.05249955505132675,
-0.10565897077322006,
0.15313765406608582,
-0.08772017061710358,
0.00958908163011074,
0.10784792900085449,
0.01706196740269661,
0.16531217098236084,
0.04155411198735237,
-0.10419578850269318,
-0.05196550488471985,
0.02091592364013195,
-0.12538129091262817,
-0.11717672646045685,
-0.027005329728126526,
-0.048571761697530746,
0.04330230504274368,
0.048453353345394135,
0.10276730358600616,
-0.12434514611959457,
-0.006009998265653849,
0.031182298436760902,
0.009981085546314716,
-0.09537996351718903,
0.1036515086889267,
0.08385391533374786,
0.08048011362552643,
-0.04743902385234833,
0.01644933968782425,
0.029547851532697678,
-0.07893580198287964,
0.06714845448732376,
-0.06418602168560028,
-0.10129646956920624,
-0.08808788657188416,
-0.030560027807950974,
0.1915612667798996,
0.017360977828502655,
-0.0492657870054245,
-0.005345277022570372,
-0.11957772821187973,
0.012038679793477058,
0.08159372955560684,
0.06771775335073471,
-0.018665069714188576,
-0.08089043200016022,
0.01206931658089161,
-0.10302586853504181,
0.09721999615430832,
-0.061612825840711594,
-0.025714313611388206,
0.0009240575018338859,
0.06692399084568024,
-0.02003399096429348,
0.12315629422664642,
-0.08514939248561859,
-0.05814812332391739,
-0.1760779768228531,
0.014796512201428413,
-0.1955527812242508,
-0.04430051147937775,
-0.07600052654743195,
-0.013367131352424622,
-0.010503226891160011,
-0.04919939488172531,
0.05341874808073044,
-0.035337407141923904,
-0.1075534075498581,
0.016619140282273293,
0.008477229624986649,
0.02558301016688347,
-0.05953967571258545,
-0.07687317579984665,
0.014873802661895752,
-0.012525925412774086,
0.080663301050663,
0.00500867422670126,
-0.007517101708799601,
0.052542544901371,
-0.1382424384355545,
0.0667523518204689,
0.035763271152973175,
0.02687917649745941,
0.06538268178701401,
-0.055880360305309296,
-0.009932177141308784,
-0.004034415818750858,
-0.008189942687749863,
0.026053840294480324,
0.15047766268253326,
-0.04164385795593262,
-0.03266037255525589,
0.028111189603805542,
-0.07364048063755035,
-0.03897934406995773,
0.1406129002571106,
-0.019271288067102432,
0.08955664932727814,
0.13448813557624817,
-0.03507484868168831,
0.07637526839971542,
-0.007200865540653467,
0.0037832558155059814,
-0.03399205580353737,
-0.10312807559967041,
-0.02202092483639717,
-0.10692764818668365,
-0.003256519790738821,
-0.06585901230573654,
0.18304874002933502,
0.11262084543704987,
-0.009826327674090862,
0.009930498898029327,
-0.0690927505493164,
0.04483041912317276,
0.009875505231320858,
0.2842983603477478,
0.02617618441581726,
0.010482408106327057,
-0.162479966878891,
0.13112743198871613,
-0.0034922107588499784,
0.17705194652080536,
0.05697087198495865,
0.11091474443674088,
-0.016764158383011818,
0.0747116357088089,
0.1233804002404213,
0.03842610493302345,
-0.036795638501644135,
-0.11179746687412262,
0.11536383628845215,
0.0815812200307846,
-0.020687531679868698,
0.124686099588871,
0.05420569330453873,
-0.1148856058716774,
0.04722493141889572,
0.002085518091917038,
-0.09495611488819122,
-0.13397355377674103,
-0.16678377985954285,
-0.039680175483226776,
0.007419479079544544,
-0.01053852029144764,
-0.07236100733280182,
-0.09472665190696716,
-0.007777076214551926,
0.05650174617767334,
-0.06828314065933228,
0.021565604954957962,
-0.1336083859205246,
-0.026405850425362587,
0.11481164395809174,
-0.015350783243775368,
-0.024739710614085197,
-0.1255112886428833,
-0.023052187636494637,
-0.07470154017210007,
0.0304829441010952,
-0.012479742057621479,
-0.020025838166475296,
0.0013764018658548594,
-0.02513906918466091,
-0.010407392866909504,
-0.072633758187294,
-0.030104076489806175,
-0.007790282368659973,
0.08587004244327545,
0.18936850130558014,
-0.0020896007772535086,
-0.09874502569437027,
0.028424937278032303,
0.08062721788883209,
0.0050413585267961025,
-0.1370047628879547,
-0.0952530950307846,
0.27821460366249084,
-0.04109066352248192,
0.08768517524003983,
-0.014864934608340263,
-0.01607276126742363,
-0.04521612077951431,
0.23283331096172333,
0.3494679927825928,
-0.07326247543096542,
-0.012433596886694431,
0.02015840820968151,
0.0011127728503197432,
0.011996431276202202,
0.14845189452171326,
-0.028245577588677406,
0.20606729388237,
-0.05425019934773445,
0.04240540415048599,
-0.04889119416475296,
-0.06250932812690735,
-0.04497960954904556,
0.0683898776769638,
0.1037534698843956,
-0.08841513097286224,
-0.13119064271450043,
0.08115146309137344,
-0.09413112699985504,
-0.17808794975280762,
-0.02050694450736046,
-0.0934581533074379,
-0.10172145068645477,
-0.0596679225564003,
-0.09929820150136948,
0.031567931175231934,
0.06870287656784058,
-0.037267692387104034,
0.07943232357501984,
0.0015263550449162722,
-0.028823086991906166,
-0.008735351264476776,
-0.014809143729507923,
0.15278007090091705,
0.15025874972343445,
0.10791327059268951,
0.007576978299766779,
0.13727495074272156,
0.08784051984548569,
0.040540266782045364,
-0.0008027019212022424,
0.08197630941867828,
0.03699376434087753,
0.07246866077184677,
0.010027267038822174,
-0.003315643174573779,
-0.03419109806418419,
0.009794327430427074,
0.03724121302366257,
-0.18318459391593933,
0.018768813461065292,
-0.11354367434978485,
-0.241825133562088,
-0.10855169594287872,
0.15699145197868347,
-0.05551483482122421,
0.09526057541370392,
0.11939086765050888,
-0.0093312356621027,
-0.10411115735769272,
-0.06487911939620972,
0.08405081927776337,
0.034515317529439926,
-0.06502209603786469,
-0.08618653565645218,
-0.04729700833559036,
-0.05086991935968399,
-0.10113493353128433,
-0.006075242534279823,
-0.3553820550441742,
0.015400695614516735,
-0.08817905932664871,
0.002054422628134489,
-0.013769266195595264,
0.013437986373901367,
0.07760567963123322,
0.015335681848227978,
-0.039842911064624786,
-0.07391636073589325,
-0.00008249394886661321,
0.06553499400615692,
-0.08485449105501175,
-0.08888839185237885
] |
null | null |
transformers
|
# ArcheoBERTje-NER
A Dutch BERT model for Named Entity Recognition in the Archaeology domain
This is the [ArcheoBERTje](https://huggingface.co/alexbrandsen/ArcheoBERTje) model finetuned for NER, targeting the following entities:
- Time periods
- Places
- Artefacts
- Contexts
- Materials
- Species
|
{}
|
token-classification
|
alexbrandsen/ArcheoBERTje-NER
|
[
"transformers",
"pytorch",
"jax",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# ArcheoBERTje-NER
A Dutch BERT model for Named Entity Recognition in the Archaeology domain
This is the ArcheoBERTje model finetuned for NER, targeting the following entities:
- Time periods
- Places
- Artefacts
- Contexts
- Materials
- Species
|
[
"# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species"
] |
[
"TAGS\n#transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species"
] |
[
40,
72
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species"
] |
[
0.03161006420850754,
0.08138449490070343,
-0.00460828049108386,
0.10351991653442383,
0.03510697931051254,
-0.0350106880068779,
-0.016599826514720917,
0.04209291189908981,
0.11789091676473618,
0.009630711749196053,
0.06503094732761383,
0.1309264749288559,
-0.008995257318019867,
-0.15291324257850647,
-0.04690518602728844,
-0.2663203477859497,
0.045761268585920334,
0.07800902426242828,
0.059398505836725235,
0.09413141012191772,
0.05620848760008812,
-0.09991738945245743,
0.09516933560371399,
0.07070634514093399,
-0.10238250344991684,
0.03921493515372276,
-0.07454166561365128,
-0.09298601001501083,
0.1599346250295639,
-0.10164988785982132,
0.12298978120088577,
-0.0197906531393528,
0.012631879188120365,
-0.07805100828409195,
-0.014055061154067516,
-0.10152918100357056,
-0.02095826156437397,
-0.0053019034676253796,
0.04303233325481415,
-0.12350860238075256,
0.05438908934593201,
0.06303422898054123,
-0.017148679122328758,
-0.07947864383459091,
-0.11229858547449112,
-0.10681313276290894,
0.036722347140312195,
0.05539129674434662,
-0.08897798508405685,
0.07460961490869522,
0.006859629414975643,
0.12294140458106995,
-0.14296680688858032,
0.031748685985803604,
0.13450083136558533,
-0.1972953826189041,
-0.07538887858390808,
-0.015830721706151962,
-0.01324019767343998,
0.0648309588432312,
-0.051047276705503464,
0.09313615411520004,
-0.06606343388557434,
0.07845396548509598,
0.07307019084692001,
-0.08406036347150803,
-0.13434270024299622,
0.029551099985837936,
-0.13313131034374237,
0.01911204867064953,
0.15883611142635345,
0.0266510471701622,
0.0712655708193779,
0.04215764254331589,
-0.05129313841462135,
0.0074822306632995605,
0.010484887287020683,
-0.09456957876682281,
-0.021143941208720207,
-0.08346255123615265,
0.12358744442462921,
0.03986407443881035,
0.01379196997731924,
0.05624089390039444,
-0.17540423572063446,
0.20174013078212738,
0.032725270837545395,
0.03624388203024864,
-0.12601834535598755,
-0.02314186841249466,
-0.12251925468444824,
-0.03757316991686821,
-0.020720984786748886,
0.02957254834473133,
-0.07169821858406067,
-0.05036517232656479,
-0.010621016845107079,
0.12957793474197388,
0.03547811135649681,
0.1521516740322113,
0.11275998502969742,
0.027257131412625313,
-0.0648118406534195,
0.1050536185503006,
0.04745280370116234,
0.11363428086042404,
-0.025523575022816658,
-0.1089995950460434,
0.07077737152576447,
-0.1228957325220108,
-0.05081065371632576,
-0.005669126287102699,
-0.20261050760746002,
-0.11463873833417892,
0.18598130345344543,
0.03137454763054848,
0.07053688168525696,
0.04287277162075043,
0.03544236347079277,
-0.05313778296113014,
-0.11712909489870071,
-0.0038062434177845716,
0.05657186359167099,
-0.033380817621946335,
-0.057377807796001434,
0.059014689177274704,
-0.12902536988258362,
0.01978357508778572,
-0.02723751962184906,
0.04875059053301811,
-0.005243946332484484,
0.03936903923749924,
0.07270079106092453,
-0.12592293322086334,
0.07148642092943192,
-0.10760683566331863,
0.03462141007184982,
-0.3157096207141876,
-0.09485432505607605,
0.04244612529873848,
0.08711277693510056,
-0.05272092670202255,
-0.012408167123794556,
-0.04059005528688431,
-0.04342908039689064,
0.0031448048539459705,
-0.07843385636806488,
-0.13729353249073029,
-0.07576855272054672,
-0.0559735968708992,
-0.07398378103971481,
0.14164581894874573,
-0.1287352293729782,
0.06529468297958374,
-0.11625700443983078,
0.001450725132599473,
-0.09236795455217361,
-0.06985768675804138,
-0.04412194341421127,
0.028092486783862114,
-0.08423791825771332,
0.0036085639148950577,
-0.12082182615995407,
0.013883127830922604,
0.01944415271282196,
0.046988893300294876,
-0.050285208970308304,
-0.12301404774188995,
0.04147878289222717,
-0.016078030690550804,
-0.05488193780183792,
0.13685759902000427,
0.021141408011317253,
0.0123941320925951,
0.02851085551083088,
0.2558128833770752,
-0.04874114692211151,
-0.03020341694355011,
0.05891471728682518,
-0.035289913415908813,
-0.04005589336156845,
-0.06217380613088608,
0.0007996176136657596,
0.08434520661830902,
-0.009684020653367043,
0.033064331859350204,
-0.12651130557060242,
0.050436750054359436,
-0.02377781830728054,
-0.01212508138269186,
0.015433074906468391,
-0.028124649077653885,
0.20531779527664185,
-0.039432182908058167,
0.15999510884284973,
-0.06376475840806961,
-0.0256486926227808,
0.10142756998538971,
-0.08336438983678818,
0.05393187701702118,
0.06811290979385376,
0.014824045822024345,
0.2498735785484314,
0.013481765054166317,
0.02264222875237465,
-0.15906521677970886,
-0.055820152163505554,
0.13788489997386932,
-0.12043746560811996,
0.13712529838085175,
-0.011112576350569725,
0.05057153478264809,
-0.035302285104990005,
-0.05580827221274376,
0.017420709133148193,
-0.004096189513802528,
0.03308818116784096,
-0.04484948515892029,
-0.061406996101140976,
0.025792373344302177,
0.020972056314349174,
-0.025683652609586716,
-0.026046637445688248,
0.027836989611387253,
-0.010017289780080318,
0.09928157180547714,
-0.040437184274196625,
0.05293864756822586,
-0.11944025754928589,
0.07614922523498535,
-0.05280311033129692,
0.06623319536447525,
0.10110694915056229,
-0.040446870028972626,
-0.05807109549641609,
0.19860830903053284,
-0.018969066441059113,
0.14791885018348694,
0.13632646203041077,
-0.32665032148361206,
0.04283209517598152,
0.04300661385059357,
0.03058711253106594,
-0.0443766750395298,
-0.002483768854290247,
-0.07880213111639023,
0.23547892272472382,
0.03831997513771057,
0.050015855580568314,
-0.08398931473493576,
-0.057428423315286636,
-0.04830454662442207,
-0.03495578467845917,
-0.08962832391262054,
0.12698175013065338,
0.053051892668008804,
-0.20473195612430573,
0.16430063545703888,
0.23073123395442963,
-0.17945657670497894,
0.017450369894504547,
0.10344044119119644,
0.00002054959986708127,
0.03273655101656914,
-0.06380122900009155,
0.016422156244516373,
0.019657064229249954,
-0.16784444451332092,
-0.06896066665649414,
0.06358854472637177,
0.04789089784026146,
-0.024640804156661034,
-0.02429725043475628,
0.05367481708526611,
0.030945638194680214,
0.09142185747623444,
0.05928545817732811,
0.035370178520679474,
0.002660677768290043,
0.15422187745571136,
0.014974123798310757,
-0.2229936271905899,
0.001284326077438891,
0.017871402204036713,
-0.037814877927303314,
0.12629260122776031,
-0.0764920637011528,
-0.3069973587989807,
-0.07315797358751297,
-0.132597416639328,
-0.155385822057724,
-0.04354767128825188,
0.05535440519452095,
-0.040704648941755295,
0.03797637298703194,
0.05727514252066612,
0.044850513339042664,
-0.11894167214632034,
-0.014335954561829567,
-0.09399788826704025,
-0.0436028391122818,
-0.1142173483967781,
0.013672193512320518,
-0.10875377058982849,
-0.11449719965457916,
0.028894424438476562,
0.16358409821987152,
-0.10339563339948654,
0.1518235057592392,
0.065372534096241,
-0.11740905046463013,
0.03125031292438507,
-0.036095961928367615,
0.1200016587972641,
-0.029201703146100044,
0.07308678328990936,
0.12962262332439423,
-0.10958155244588852,
0.05940857529640198,
0.11322061717510223,
0.008009285666048527,
-0.00903165340423584,
-0.10165213793516159,
0.05828266590833664,
-0.106285959482193,
-0.034504760056734085,
-0.11034229397773743,
-0.11457165330648422,
0.03352392092347145,
0.1531478613615036,
0.0046614245511591434,
0.16821135580539703,
-0.06263955682516098,
0.05130139738321304,
0.01920771785080433,
0.010281195864081383,
0.10120806843042374,
0.22881264984607697,
0.06307986378669739,
0.10144850611686707,
0.1038815975189209,
-0.11843241751194,
-0.011322983540594578,
0.12714649736881256,
0.15597519278526306,
0.20428799092769623,
0.02547479048371315,
-0.009612299501895905,
0.0670841783285141,
0.17431338131427765,
-0.011886811815202236,
-0.05494999140501022,
0.005626535043120384,
-0.009006405249238014,
-0.0547928661108017,
0.07263556867837906,
0.06774814426898956,
0.13959743082523346,
-0.00873170979321003,
-0.014661630615592003,
-0.18357037007808685,
0.06561572849750519,
0.06579210609197617,
0.03858359903097153,
-0.20356979966163635,
0.05638759210705757,
0.0026679891161620617,
-0.07817243039608002,
-0.05328959599137306,
0.04399001970887184,
-0.10520727187395096,
-0.1388169229030609,
0.056435227394104004,
-0.04917563125491142,
0.11921554058790207,
-0.0336187444627285,
0.10713862627744675,
-0.04621477797627449,
-0.16695095598697662,
0.03276609629392624,
-0.03136706352233887,
-0.17190590500831604,
0.32685765624046326,
-0.034961409866809845,
-0.14248418807983398,
-0.04540935158729553,
-0.10745280981063843,
0.04623541608452797,
0.1370042860507965,
0.1287573128938675,
0.044707272201776505,
-0.20614087581634521,
0.05336780846118927,
-0.008118241094052792,
0.03231129050254822,
0.016989124938845634,
-0.11398758739233017,
0.032409995794296265,
0.03413143754005432,
0.030711371451616287,
-0.017194127663969994,
0.17140185832977295,
0.0356900580227375,
-0.0374753512442112,
-0.02384178154170513,
0.041905477643013,
-0.02113172970712185,
0.08423544466495514,
-0.07532849162817001,
-0.18064922094345093,
0.10799653828144073,
-0.05131015181541443,
0.03750054910778999,
-0.09256459772586823,
0.02008705586194992,
-0.012172096408903599,
-0.06941340118646622,
0.018947292119264603,
-0.09645277261734009,
0.04448501020669937,
-0.07261578738689423,
-0.20347164571285248,
0.10638292878866196,
-0.06422416865825653,
0.04823480546474457,
-0.06356725096702576,
-0.030377177521586418,
0.12790551781654358,
0.08369778841733932,
0.02329808473587036,
0.05700181797146797,
-0.059845756739377975,
0.013725532218813896,
0.08214525878429413,
0.09173813462257385,
-0.06297086924314499,
0.005849584937095642,
-0.1322624683380127,
-0.03472384437918663,
-0.09859108179807663,
0.05304870754480362,
0.19661326706409454,
0.07682598382234573,
-0.03623127192258835,
0.03493742272257805,
0.20020098984241486,
-0.04675852134823799,
-0.4232824146747589,
0.07438737154006958,
0.014838595874607563,
0.019152116030454636,
-0.05158615857362747,
-0.08403947949409485,
0.25853726267814636,
0.13612236082553864,
-0.01184857077896595,
-0.04608537256717682,
-0.01154547743499279,
-0.07151501625776291,
0.23020051419734955,
-0.02461269125342369,
0.2767576277256012,
0.03841579332947731,
0.04276144132018089,
-0.051562707871198654,
-0.17799066007137299,
0.009471320547163486,
0.04044622927904129,
-0.008196369744837284,
-0.08939329534769058,
0.1484314203262329,
-0.0005504029104486108,
0.04188767820596695,
0.030834626406431198,
0.17430199682712555,
0.019469691440463066,
-0.03250499442219734,
-0.1754516065120697,
-0.011750375851988792,
-0.11581826955080032,
-0.037000589072704315,
0.06520751118659973,
-0.06633671373128891,
0.0112614706158638,
0.02968980185687542,
-0.1301114559173584,
0.25659042596817017,
0.034383900463581085,
-0.04065787047147751,
-0.0016972196754068136,
0.031688496470451355,
0.009788471274077892,
0.027791321277618408,
0.2839498817920685,
-0.04109833389520645,
0.09906750917434692,
0.03395918756723404,
0.029614383354783058,
-0.006668258924037218,
-0.01350906491279602,
-0.06680590659379959,
-0.021021896973252296,
0.07125090807676315,
0.13945171236991882,
0.01704401895403862,
0.15548452734947205,
-0.010401650331914425,
-0.0033066472969949245,
0.09081480652093887,
0.02275315299630165,
-0.04901760071516037,
-0.01715852878987789,
-0.03463677689433098,
0.004684996325522661,
-0.031748928129673004,
-0.14940209686756134,
0.07674985378980637,
0.024526115506887436,
0.10390350222587585,
-0.04018133133649826,
-0.03934955224394798,
0.023243237286806107,
-0.030184511095285416,
-0.024370593950152397,
-0.07661779969930649,
-0.05579015612602234,
0.004364680964499712,
-0.03203520178794861,
0.06489133089780807,
0.02571551501750946,
0.009939060546457767,
0.01211489550769329,
0.028149716556072235,
-0.09286670386791229,
-0.07796809822320938,
-0.038863781839609146,
0.15683607757091522,
-0.2183273434638977,
0.003467370057478547,
0.04638490080833435,
-0.14240168035030365,
0.05126252397894859,
0.22260336577892303,
0.07633160054683685,
-0.08102051168680191,
-0.0743064433336258,
0.02027781307697296,
-0.000637565681245178,
0.06901902705430984,
-0.09519433230161667,
0.10235191136598587,
-0.0812082439661026,
-0.09728662669658661,
-0.05734773352742195,
0.11635039746761322,
-0.06817708909511566,
-0.05263299494981766,
-0.2119138538837433,
0.07958593964576721,
-0.14555922150611877,
-0.021312877535820007,
-0.0976584181189537,
-0.03439333662390709,
0.022095002233982086,
-0.06197346746921539,
-0.06302788853645325,
0.026037171483039856,
-0.11974591016769409,
0.028976380825042725,
0.04243648797273636,
0.06832366436719894,
0.022986674681305885,
-0.09293023496866226,
0.04257912188768387,
-0.05705241858959198,
0.08005518466234207,
0.17693205177783966,
0.008412966504693031,
0.20816706120967865,
-0.14886964857578278,
-0.07396671175956726,
0.07566272467374802,
0.10483495891094208,
0.12527677416801453,
0.04889271408319473,
-0.030139628797769547,
0.03202565014362335,
-0.0203620083630085,
0.08546970784664154,
-0.04675658419728279,
-0.01703622378408909,
-0.00397128239274025,
-0.07556883245706558,
-0.18125808238983154,
0.008217147551476955,
0.06942463666200638,
0.07817284017801285,
-0.012320846319198608,
0.032168079167604446,
0.009304781444370747,
0.033579275012016296,
0.03468726947903633,
0.04503358528017998,
-0.01965751126408577,
-0.18961471319198608,
-0.05088039115071297,
-0.1424061357975006,
0.052154555916786194,
-0.015937697142362595,
0.20063763856887817,
0.13849110901355743,
-0.04613244906067848,
0.03529149666428566,
0.018656373023986816,
-0.10549535602331161,
0.04566962271928787,
0.03777814283967018,
0.04818585142493248,
-0.10015884041786194,
0.019134601578116417,
0.023944849148392677,
-0.0046601612120866776,
0.14400836825370789,
0.22636932134628296,
0.2586395740509033,
0.004831766709685326,
0.03339921683073044,
0.1859218031167984,
0.004283278714865446,
-0.08527054637670517,
-0.12422242760658264,
0.04091228172183037,
0.17981988191604614,
0.06520622968673706,
0.1611562967300415,
0.06667899340391159,
0.014421037398278713,
0.037276871502399445,
-0.05368911474943161,
-0.03268233314156532,
-0.1251201331615448,
-0.22398239374160767,
-0.06208694353699684,
-0.018645143136382103,
-0.0589313879609108,
-0.03525721654295921,
-0.08097277581691742,
-0.03622007742524147,
0.019995376467704773,
-0.05007914826273918,
-0.02173445001244545,
-0.010957220569252968,
-0.08089186996221542,
0.1001979261636734,
-0.06914099305868149,
-0.023897957056760788,
-0.03957585617899895,
-0.028382522985339165,
-0.09255368262529373,
0.0409824512898922,
-0.050131406635046005,
-0.02207222394645214,
-0.09948877990245819,
-0.06870390474796295,
-0.13580623269081116,
-0.0783623605966568,
0.02147579751908779,
-0.0868406817317009,
-0.14535346627235413,
-0.08543552458286285,
0.05169646441936493,
-0.10565073788166046,
0.02765672281384468,
0.044426947832107544,
0.027382291853427887,
0.0013421067269518971,
0.06299367547035217,
0.3215678334236145,
0.01786540262401104,
0.0725046694278717,
-0.004276604391634464,
0.06049606204032898,
0.0038471007719635963,
0.17653129994869232,
0.23570382595062256,
-0.007999472320079803,
0.02566450461745262,
0.023647073656320572,
0.018222106620669365,
0.048140667378902435,
0.003856286406517029,
0.042129866778850555,
0.18762937188148499,
-0.039528876543045044,
-0.050187014043331146,
-0.07926574349403381,
-0.0043296185322105885,
-0.13154587149620056,
0.03157064691185951,
0.14774572849273682,
-0.06569985300302505,
-0.14169633388519287,
0.03629699721932411,
-0.21523556113243103,
0.05677814781665802,
0.052193477749824524,
-0.12728513777256012,
-0.1348705142736435,
-0.0649893581867218,
-0.11178436130285263,
-0.012348620221018791,
0.06852485984563828,
-0.11284137517213821,
-0.10521450638771057,
-0.022751491516828537,
0.029332812875509262,
-0.12641938030719757,
-0.05017487332224846,
0.10376942902803421,
0.09109672158956528,
0.05264516547322273,
-0.039174653589725494,
0.014217458665370941,
0.12326795607805252,
0.07542077451944351,
0.050081368535757065,
-0.04320090264081955,
0.01700557954609394,
0.011123809963464737,
-0.003312096232548356,
0.02399482950568199,
0.010777699761092663,
0.06938841938972473,
0.11081814765930176,
-0.0548093244433403,
0.021089794114232063,
-0.025974823161959648,
-0.08547210693359375,
-0.02053399384021759,
0.07146504521369934,
0.02610761672258377,
0.03907644748687744,
0.08972878009080887,
0.001315187313593924,
-0.05718532204627991,
-0.08165008574724197,
-0.11229323595762253,
0.112523652613163,
0.046408187597990036,
-0.06383543461561203,
-0.08283920586109161,
-0.07256675511598587,
-0.05284234508872032,
-0.01661248505115509,
-0.1454465240240097,
-0.11045020818710327,
-0.04098224267363548,
0.020942728966474533,
0.003008622443303466,
-0.03740259259939194,
0.09564344584941864,
-0.04522078484296799,
0.006558522116392851,
-0.07925835251808167,
0.04865965247154236,
0.14181607961654663,
-0.04378692805767059,
-0.05577242746949196
] |
null | null |
transformers
|
# ArcheoBERTje
A Dutch BERT model for the Archaeology domain
This model is based on the Dutch BERTje model by wietsedv (https://github.com/wietsedv/bertje).
We further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (https://easy.dans.knaw.nl/ui/home).
|
{}
|
fill-mask
|
alexbrandsen/ArcheoBERTje
|
[
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
|
# ArcheoBERTje
A Dutch BERT model for the Archaeology domain
This model is based on the Dutch BERTje model by wietsedv (URL
We further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL
|
[
"# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL"
] |
[
"TAGS\n#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n",
"# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL"
] |
[
39,
72
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL"
] |
[
0.0019821133464574814,
0.06830266118049622,
-0.002828224329277873,
0.11940990388393402,
-0.019379904493689537,
-0.0719759538769722,
0.031051402911543846,
0.03539545461535454,
0.14995379745960236,
-0.048501674085855484,
0.13667909801006317,
0.13155460357666016,
-0.04211318865418434,
-0.03119264915585518,
-0.025294534862041473,
-0.2914571464061737,
0.024872316047549248,
0.06088151037693024,
-0.07988179475069046,
0.059229038655757904,
0.05480824038386345,
-0.14002889394760132,
0.1040513888001442,
0.02342214435338974,
-0.07226032763719559,
0.0983797088265419,
-0.12546201050281525,
-0.06613714247941971,
0.14552925527095795,
-0.07815016061067581,
0.13568955659866333,
-0.019552841782569885,
0.09158272296190262,
0.07398273795843124,
-0.011612631380558014,
-0.12114480882883072,
-0.0022261019330471754,
0.04022003710269928,
0.05098133906722069,
0.03779752179980278,
-0.028428224846720695,
0.0853976309299469,
-0.04529225826263428,
-0.07012423127889633,
-0.0808413103222847,
-0.07136105000972748,
-0.04094548523426056,
-0.06259817630052567,
0.04729578644037247,
0.04351949691772461,
0.0011638510040938854,
0.1283690631389618,
-0.1319863647222519,
0.04600892215967178,
0.14009049534797668,
-0.28630709648132324,
-0.027524305507540703,
0.049083542078733444,
0.03880270943045616,
0.020556163042783737,
-0.06822535395622253,
0.1357019692659378,
-0.012204065918922424,
0.06635580956935883,
0.03951927646994591,
-0.1327986717224121,
-0.04554710537195206,
-0.017008308321237564,
-0.061395857483148575,
-0.00948786549270153,
0.23023302853107452,
0.006342277862131596,
-0.002327573485672474,
0.05305718258023262,
-0.05622362717986107,
0.14848659932613373,
-0.020585771650075912,
-0.0048456331714987755,
-0.0375368669629097,
-0.04831424728035927,
0.0017081322148442268,
-0.04800579324364662,
-0.04009304568171501,
0.01319228857755661,
-0.146196186542511,
0.20648467540740967,
-0.000397305004298687,
-0.004204040393233299,
-0.11102161556482315,
0.09106747061014175,
-0.105825275182724,
-0.11291009932756424,
0.0009377259411849082,
0.04256414249539375,
0.009748745709657669,
-0.05059662461280823,
0.002573292702436447,
-0.08027321100234985,
0.04417087137699127,
0.14289747178554535,
0.1461487114429474,
0.02416076697409153,
-0.11321976780891418,
0.08314938843250275,
0.07246170192956924,
0.08241860568523407,
-0.08115887641906738,
-0.13779164850711823,
0.06730301678180695,
-0.11012867838144302,
0.010804574005305767,
0.0361398309469223,
-0.15491609275341034,
-0.13887888193130493,
0.07785621285438538,
0.01637101359665394,
0.06164945662021637,
-0.0034719742834568024,
0.05664694681763649,
-0.0324295274913311,
-0.031338442116975784,
-0.018802443519234657,
0.04515162482857704,
-0.08291874080896378,
-0.013714230619370937,
0.034443292766809464,
-0.028495056554675102,
0.036404337733983994,
0.035792648792266846,
0.10431885719299316,
-0.021317483857274055,
0.01780722662806511,
0.010918451473116875,
-0.17179767787456512,
0.03382771089673042,
-0.0748366117477417,
0.03453003242611885,
-0.20943845808506012,
-0.17508363723754883,
0.06207387521862984,
0.09046343713998795,
-0.05718086659908295,
0.024877389892935753,
-0.018689392134547234,
-0.003805311396718025,
0.03203579783439636,
-0.06892701238393784,
0.09104488044977188,
-0.03298148140311241,
0.0031036497093737125,
-0.1044110506772995,
0.10714686661958694,
-0.178097665309906,
0.040128372609615326,
-0.09011691063642502,
0.003684686031192541,
-0.23542946577072144,
-0.04501374438405037,
-0.0017026012064889073,
0.07069581747055054,
-0.07482190430164337,
0.002599194413051009,
-0.10955796390771866,
0.025467492640018463,
0.12816186249256134,
0.14423805475234985,
-0.09519968181848526,
-0.02784438617527485,
0.14773203432559967,
-0.026143796741962433,
-0.08215486258268356,
0.15852472186088562,
-0.05059327185153961,
0.02710157074034214,
0.021546052768826485,
0.1410340815782547,
-0.10699909180402756,
-0.10425460338592529,
0.056341689079999924,
0.027476638555526733,
0.082177072763443,
-0.10447958111763,
0.07138187438249588,
-0.046614207327365875,
0.020214559510350227,
0.012450329028069973,
-0.07703729718923569,
0.058444615453481674,
-0.029190078377723694,
0.02533595636487007,
0.012919933535158634,
-0.10231827944517136,
0.16565366089344025,
-0.017630193382501602,
0.16296343505382538,
-0.12357157468795776,
-0.011078444309532642,
0.08123288303613663,
-0.015156480483710766,
-0.009320580400526524,
-0.0025643242988735437,
0.004648193717002869,
0.15298683941364288,
-0.1548762321472168,
0.02036147750914097,
-0.1400323510169983,
-0.0465720035135746,
0.09221860766410828,
-0.028075451031327248,
-0.001887134276330471,
0.12905661761760712,
0.14613299071788788,
0.037860844284296036,
-0.04705582931637764,
0.015184273943305016,
-0.03705413267016411,
0.04021196812391281,
-0.12065070122480392,
-0.05307647958397865,
-0.03998700901865959,
-0.054916780441999435,
-0.15228603780269623,
0.08963067084550858,
-0.0326373316347599,
-0.05164959654211998,
0.1736895740032196,
-0.020207645371556282,
0.012159942649304867,
-0.06602656841278076,
0.05793324112892151,
-0.054679784923791885,
0.03776697814464569,
0.010390319861471653,
-0.020374389365315437,
0.005048038437962532,
0.11813703924417496,
0.051409587264060974,
0.16053834557533264,
0.16083277761936188,
-0.23084020614624023,
0.07991212606430054,
0.04722663387656212,
0.0021266965195536613,
-0.030216895043849945,
-0.07492794096469879,
-0.23562420904636383,
0.21906572580337524,
0.059277214109897614,
0.09062045067548752,
-0.04654978960752487,
-0.03324555605649948,
-0.02004670910537243,
-0.04322056472301483,
-0.05590170621871948,
0.12024010717868805,
0.0033482469152659178,
-0.11898691207170486,
0.13316784799098969,
0.21991212666034698,
-0.09938260167837143,
-0.005484180990606546,
0.05125514045357704,
-0.025682007893919945,
-0.003510594367980957,
-0.07684480398893356,
-0.005753715056926012,
0.09373801201581955,
-0.17227794229984283,
-0.06124921143054962,
0.08514748513698578,
-0.017527781426906586,
-0.01267003919929266,
0.02512587420642376,
0.01885814405977726,
0.020931480452418327,
0.11928888410329819,
0.012253818102180958,
0.04632144421339035,
-0.029239242896437645,
0.11433631181716919,
-0.023269077762961388,
-0.13720352947711945,
-0.01998254284262657,
0.005522727034986019,
0.035405632108449936,
0.11049485951662064,
-0.06870001554489136,
-0.3012915849685669,
-0.10362135618925095,
-0.214339017868042,
-0.04810540750622749,
-0.00586664630100131,
0.0610039159655571,
-0.11134389042854309,
-0.0604572594165802,
0.065340057015419,
0.07413812726736069,
-0.06683746725320816,
0.026618266478180885,
-0.01579819619655609,
-0.10386557877063751,
-0.10250195115804672,
-0.07157613337039948,
-0.12055429071187973,
-0.08286973834037781,
0.001555263763293624,
0.14051955938339233,
-0.0731876865029335,
0.11672291159629822,
-0.06662314385175705,
-0.08482147753238678,
0.058169592171907425,
0.019458958879113197,
0.07662926614284515,
0.03795187547802925,
0.04343413561582565,
0.16925311088562012,
-0.1146640032529831,
0.023425834253430367,
0.0890992134809494,
0.06656413525342941,
-0.059303347021341324,
-0.03878529742360115,
0.024886010214686394,
-0.1097949743270874,
-0.0635492205619812,
-0.09237267822027206,
-0.09379666298627853,
-0.04328247532248497,
0.15974149107933044,
-0.021551700308918953,
0.023569626733660698,
0.056083690375089645,
0.04922017082571983,
0.058984074741601944,
-0.07715880125761032,
0.016059983521699905,
0.0656619668006897,
0.018768634647130966,
0.08907661586999893,
0.0704231783747673,
-0.1451152265071869,
-0.005639348644763231,
0.011238993145525455,
0.06002364680171013,
0.09783229231834412,
0.006457696668803692,
-0.042142678052186966,
0.07427337020635605,
0.11121898144483566,
0.18881455063819885,
-0.04337267577648163,
-0.037984929978847504,
-0.023582881316542625,
-0.0721132755279541,
0.03724570944905281,
0.02787592262029648,
0.09577952325344086,
0.02396155707538128,
-0.034815117716789246,
-0.11452947556972504,
0.032494593411684036,
0.05445655435323715,
0.1201702207326889,
-0.16720269620418549,
0.01931801252067089,
0.020366817712783813,
-0.015991270542144775,
-0.08759869635105133,
0.011011072434484959,
-0.013305535539984703,
-0.1289808452129364,
-0.0055888039059937,
-0.07028309255838394,
0.1215692013502121,
-0.05327608436346054,
0.08001796901226044,
-0.07850704342126846,
-0.07317066192626953,
-0.020466534420847893,
-0.042497701942920685,
-0.29111313819885254,
0.3168836534023285,
-0.019805867224931717,
-0.006544492207467556,
-0.06759031116962433,
-0.0008245527860708535,
0.07153329998254776,
-0.006315004080533981,
0.16963854432106018,
0.027764683589339256,
0.10254448652267456,
0.08677051216363907,
-0.19282490015029907,
0.028436336666345596,
-0.07706385105848312,
-0.13877339661121368,
0.055358901619911194,
0.0801553949713707,
0.0008518345421180129,
-0.049456387758255005,
0.11488483846187592,
-0.04511483386158943,
-0.006316895596683025,
-0.03223060071468353,
-0.006961809936910868,
0.01667516864836216,
0.058628033846616745,
-0.09780003875494003,
-0.19953899085521698,
0.1492626965045929,
0.11725302040576935,
-0.06282040476799011,
-0.09477711468935013,
0.1592395156621933,
0.10945924371480942,
-0.04725665971636772,
0.030367104336619377,
-0.05473746731877327,
-0.010538475587964058,
-0.07895994931459427,
-0.12820589542388916,
0.08290920406579971,
-0.14936962723731995,
0.11174100637435913,
-0.07911255210638046,
0.012971475720405579,
0.09595241397619247,
0.06355512887239456,
0.04599811136722565,
0.04323755204677582,
-0.03744221851229668,
-0.017564423382282257,
0.03905302286148071,
-0.06092100217938423,
0.05095003545284271,
-0.0393727608025074,
-0.10759287327528,
0.09831079095602036,
-0.022236282005906105,
0.02672727033495903,
0.17918117344379425,
0.08715086430311203,
-0.03885143622756004,
0.002079149940982461,
0.22313575446605682,
-0.01975724659860134,
-0.3930031955242157,
-0.004126596264541149,
0.04715311527252197,
0.08238623291254044,
-0.0050152139738202095,
-0.11947944760322571,
0.2382686734199524,
0.07671957463026047,
-0.007464392110705376,
-0.12934884428977966,
-0.06456451117992401,
-0.08628707379102707,
0.32488203048706055,
0.02202797308564186,
0.38123342394828796,
0.014342752285301685,
0.012561448849737644,
-0.011650887317955494,
-0.27969399094581604,
-0.050693072378635406,
0.07829028367996216,
-0.03815750032663345,
-0.05850806087255478,
0.12701064348220825,
0.0666913315653801,
-0.03493441268801689,
0.062072668224573135,
0.0756107047200203,
0.031151244416832924,
-0.05105706676840782,
-0.09728991985321045,
-0.017071764916181564,
-0.06156393140554428,
0.0581633597612381,
0.037428613752126694,
-0.05366060137748718,
-0.08493220061063766,
0.0455717034637928,
-0.07192691415548325,
0.16829238831996918,
-0.0006219504866749048,
-0.0963502824306488,
0.10335803776979446,
-0.01755906641483307,
-0.047285184264183044,
0.05557939037680626,
0.30426427721977234,
0.06538303941488266,
0.027062850072979927,
0.003168125869706273,
0.07092399895191193,
-0.028543421998620033,
-0.058790650218725204,
0.019796498119831085,
-0.025341404601931572,
0.018551265820860863,
0.12429436296224594,
0.018251094967126846,
0.17353130877017975,
0.04274595156311989,
-0.006259596906602383,
0.054328106343746185,
-0.008555357344448566,
0.011218960396945477,
0.027557989582419395,
-0.12926779687404633,
0.013442796654999256,
-0.026955945417284966,
-0.03150911256670952,
0.07845095545053482,
-0.006058196537196636,
0.14824286103248596,
-0.027890264987945557,
-0.012534953653812408,
0.008470572531223297,
-0.028231531381607056,
0.0028853376861661673,
0.07277676463127136,
-0.05104675143957138,
-0.0023839634377509356,
-0.08305613696575165,
0.08055827766656876,
-0.04939589276909828,
-0.0048741730861365795,
0.03902725130319595,
-0.027051430195569992,
-0.05974455177783966,
-0.04811035469174385,
0.03506256639957428,
0.16518902778625488,
-0.10696419328451157,
0.023757804185152054,
-0.04269295930862427,
-0.08501625061035156,
-0.015121047385036945,
0.03444612771272659,
0.10438760370016098,
-0.078832246363163,
-0.08529520779848099,
-0.016484593972563744,
-0.0463445819914341,
0.10080622136592865,
0.040936920791864395,
0.06701985001564026,
-0.026582768186926842,
-0.04173802211880684,
-0.1081836149096489,
0.03584995120763779,
-0.05866606906056404,
0.008151024580001831,
-0.09632258862257004,
0.021315187215805054,
-0.19242605566978455,
-0.0781613141298294,
-0.11654429137706757,
-0.08184965699911118,
-0.030847543850541115,
-0.11855469644069672,
-0.018825124949216843,
0.027725592255592346,
-0.12681755423545837,
0.042781904339790344,
0.06994634866714478,
0.026601210236549377,
0.005500294733792543,
-0.11689788848161697,
0.05603477731347084,
-0.06712955981492996,
0.05956530198454857,
0.182462677359581,
0.025881066918373108,
0.1359117329120636,
-0.06679262220859528,
-0.05457000806927681,
0.05246156081557274,
0.10537628829479218,
0.16610737144947052,
0.07096608728170395,
-0.0355612151324749,
0.02918209694325924,
0.017066797241568565,
0.03858131915330887,
0.10196203738451004,
-0.03575586527585983,
0.029614755883812904,
0.03257915750145912,
-0.10851214826107025,
-0.00215289113111794,
0.10678854584693909,
0.12210603058338165,
0.044433776289224625,
-0.016629884019494057,
-0.004865844734013081,
0.03420083224773407,
-0.03151802346110344,
0.027624379843473434,
-0.04151751846075058,
-0.12852440774440765,
-0.058358605951070786,
-0.09857470542192459,
0.059503089636564255,
-0.02336806431412697,
0.07707953453063965,
0.10809606313705444,
0.01083131693303585,
-0.01011724304407835,
0.004641713108867407,
0.022990068420767784,
0.011686280369758606,
0.1627955436706543,
-0.006792807951569557,
-0.08236908167600632,
-0.08943962305784225,
0.06630581617355347,
0.044771503657102585,
0.15358614921569824,
0.1568758487701416,
0.14470545947551727,
0.03481519967317581,
0.024366656318306923,
0.08479847759008408,
-0.021212497726082802,
-0.1362798810005188,
-0.15881729125976562,
0.12239187955856323,
0.175190269947052,
0.03167007863521576,
0.08859279006719589,
0.01629732921719551,
0.016309596598148346,
-0.017360903322696686,
0.023031027987599373,
0.0011005671694874763,
-0.10509533435106277,
-0.07315225154161453,
-0.0332738421857357,
0.0733339712023735,
-0.02855127863585949,
-0.11525251716375351,
-0.010381382890045643,
-0.034092020243406296,
0.029994577169418335,
-0.0379161536693573,
0.09740809351205826,
-0.01375439390540123,
-0.07982277870178223,
0.060419969260692596,
-0.03000073879957199,
0.028915509581565857,
-0.05152294412255287,
-0.003384398529306054,
-0.16287927329540253,
0.08743449300527573,
-0.09342394769191742,
0.011634763330221176,
-0.1111636683344841,
-0.05211303010582924,
-0.030950471758842468,
-0.06200803443789482,
-0.047454528510570526,
-0.11690283566713333,
-0.06602759659290314,
-0.021722489967942238,
0.048511289060115814,
-0.06293002516031265,
-0.05026276037096977,
0.02594156749546528,
-0.0006569410325028002,
0.046873822808265686,
0.028281010687351227,
0.1558557152748108,
0.024224471300840378,
0.07367351651191711,
0.04356728494167328,
0.05779024958610535,
0.001535580842755735,
0.201381117105484,
0.16370241343975067,
0.03521280735731125,
0.019131537526845932,
0.041718147695064545,
0.00991076324135065,
0.03719080984592438,
0.026316260918974876,
-0.01887531764805317,
0.19983933866024017,
-0.055639855563640594,
-0.042918745428323746,
-0.09518328309059143,
-0.06832543015480042,
-0.0835169106721878,
-0.051997486501932144,
0.06848763674497604,
-0.05498956888914108,
-0.09016945958137512,
0.060213759541511536,
-0.010780736804008484,
0.009517173282802105,
-0.04867284372448921,
-0.1700509637594223,
-0.08928081393241882,
-0.0434018149971962,
-0.09835989773273468,
0.06045576184988022,
0.10410153120756149,
-0.14034631848335266,
0.016156380996108055,
0.10220794379711151,
0.004657410550862551,
-0.08498521149158478,
-0.07058297842741013,
0.10458673536777496,
0.05376981198787689,
0.06126667931675911,
-0.024217261001467705,
0.007598002441227436,
0.12201756983995438,
0.0041011059656739235,
0.014645970426499844,
-0.0655122846364975,
0.02634209394454956,
0.01140130776911974,
0.03284088522195816,
-0.019263243302702904,
-0.01626082882285118,
0.0029798659961670637,
-0.009903729893267155,
-0.017175249755382538,
0.026952948421239853,
-0.012111795134842396,
-0.10718100517988205,
0.0034812460653483868,
0.07662743330001831,
0.005235792137682438,
0.07163523137569427,
0.07692868262529373,
-0.03380412608385086,
-0.030033862218260765,
-0.040649838745594025,
0.015057381242513657,
0.12405390292406082,
-0.013944551348686218,
-0.12672942876815796,
-0.15484674274921417,
-0.06612648069858551,
-0.04289339855313301,
-0.08667263388633728,
-0.15099084377288818,
-0.0772748664021492,
-0.1087658703327179,
0.026888828724622726,
-0.06651244312524796,
-0.0847756639122963,
0.07451238483190536,
-0.026094183325767517,
0.027302023023366928,
0.19190195202827454,
-0.0027272910811007023,
0.0767928883433342,
-0.06292138248682022,
-0.06788837909698486
] |
null | null |
transformers
|
# wav2vec2-large-xlsr-polish
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Polish using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pl", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish")
model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Turkish test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pl", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish")
model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 24.846030
## Training
The Common Voice `train`, `validation` datasets were used for training.
|
{"language": "pl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2vec2 Large 53 Polish by Alex Leu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pl", "type": "common_voice", "args": "pl"}, "metrics": [{"type": "wer", "value": 24.84603, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
alexcleu/wav2vec2-large-xlsr-polish
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"pl",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"pl"
] |
TAGS
#transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-polish
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Turkish test data of Common Voice.
Test Result: 24.846030
## Training
The Common Voice 'train', 'validation' datasets were used for training.
|
[
"# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030",
"## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] |
[
"TAGS\n#transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030",
"## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] |
[
85,
60,
20,
29,
23
] |
[
"passage: TAGS\n#transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] |
[
-0.1590825617313385,
-0.0023187820333987474,
-0.0030325329862535,
-0.02981872484087944,
0.08129357546567917,
-0.041220523416996,
0.22326013445854187,
0.07158166170120239,
-0.012995102442800999,
0.0031583241652697325,
0.04994583502411842,
0.03436199203133583,
0.039906542748212814,
0.09431580454111099,
-0.019647175446152687,
-0.19828060269355774,
0.04716802015900612,
-0.0068880910985171795,
0.07587869465351105,
0.12892761826515198,
0.10765763372182846,
-0.08071917295455933,
-0.02153952419757843,
0.08091961592435837,
-0.12730421125888824,
0.0451839305460453,
0.04197857901453972,
-0.13134296238422394,
0.14854660630226135,
0.05405512824654579,
0.07774119079113007,
0.03617745637893677,
0.04669434204697609,
-0.18355251848697662,
0.02640010230243206,
0.03596419468522072,
0.012951607815921307,
0.012230264954268932,
0.06636231392621994,
-0.06603507697582245,
0.1257314234972,
0.02683623693883419,
-0.009850723668932915,
0.03147632256150246,
-0.05723124369978905,
-0.24184446036815643,
-0.02913082018494606,
0.050482284277677536,
0.10088032484054565,
0.12780511379241943,
-0.07047277688980103,
0.12483876198530197,
-0.13028179109096527,
0.1110791489481926,
0.08206852525472641,
-0.21474336087703705,
-0.028122391551733017,
-0.002063743770122528,
0.005370993632823229,
0.10868722200393677,
-0.043639328330755234,
0.041433729231357574,
0.021631043404340744,
0.0164751298725605,
-0.00849661324173212,
-0.030565481632947922,
-0.1532287299633026,
-0.054927315562963486,
-0.13291113078594208,
-0.050439972430467606,
0.21038444340229034,
-0.027499040588736534,
-0.06547997891902924,
-0.17225822806358337,
0.00007035077578620985,
0.01821405068039894,
-0.010828564874827862,
-0.046959396451711655,
-0.03931235894560814,
-0.006063763052225113,
-0.012101828120648861,
-0.011869723908603191,
-0.10470195859670639,
-0.12248487025499344,
0.00160744518507272,
0.1846531331539154,
0.039629705250263214,
0.02219907008111477,
-0.0935063511133194,
0.07335779815912247,
-0.04473338648676872,
-0.07813896238803864,
0.015324393287301064,
0.042562779039144516,
-0.06432195007801056,
0.01708448864519596,
-0.07217129319906235,
-0.1706761121749878,
0.049460042268037796,
-0.02122393436729908,
0.021989302709698677,
0.02851944789290428,
-0.017271187156438828,
0.07400208711624146,
0.015813840553164482,
0.07721073925495148,
-0.043521348387002945,
-0.01866201125085354,
0.008771995082497597,
0.003902643220499158,
-0.02282392978668213,
-0.01780015602707863,
-0.05397317558526993,
-0.04969552904367447,
0.050813812762498856,
0.09140626341104507,
-0.034268029034137726,
0.018350055441260338,
0.009424376301467419,
-0.017092788591980934,
0.007371974177658558,
-0.10353909432888031,
-0.05835467949509621,
0.07303804159164429,
0.007984551601111889,
0.0867694765329361,
0.00011549756891326979,
0.0391363799571991,
-0.08729998022317886,
0.026802033185958862,
0.046877797693014145,
0.03799539804458618,
0.009412730112671852,
-0.10353632271289825,
0.007232400588691235,
-0.010487126186490059,
-0.0016529493732377887,
-0.11724425107240677,
-0.09621153771877289,
-0.07015534490346909,
-0.009825407527387142,
0.04043092951178551,
0.015805473551154137,
-0.08607347309589386,
-0.015545478090643883,
-0.005884304642677307,
-0.06164101883769035,
0.024073993787169456,
-0.05886824056506157,
0.09513606876134872,
-0.019006328657269478,
0.025064950808882713,
0.03563333675265312,
0.05796203389763832,
-0.12094420194625854,
-0.06945566087961197,
-0.015668489038944244,
0.11064303666353226,
-0.0303784366697073,
-0.05915715545415878,
-0.06764807552099228,
-0.0742080956697464,
-0.026851920410990715,
0.05753599852323532,
0.05055765062570572,
0.10249672085046768,
-0.23531171679496765,
-0.08311081677675247,
0.19815467298030853,
-0.1585419476032257,
-0.035622354596853256,
0.21688857674598694,
-0.013192768208682537,
0.10315877199172974,
0.15830275416374207,
0.280003160238266,
0.12134689837694168,
-0.17326463758945465,
0.00978787150233984,
-0.013318629004061222,
-0.01476626843214035,
-0.0052661593072116375,
0.06158997491002083,
-0.05941707640886307,
-0.03120402991771698,
0.03848157450556755,
-0.08252663910388947,
0.08144906908273697,
-0.02937428466975689,
-0.06371694803237915,
-0.01169454213231802,
-0.09338830411434174,
0.09914062172174454,
0.03859499469399452,
0.011793091893196106,
-0.08180099725723267,
-0.06623216718435287,
0.04166775569319725,
0.13536670804023743,
-0.14570201933383942,
0.022699818015098572,
-0.08743353933095932,
0.10035792738199234,
-0.10300431400537491,
-0.020032230764627457,
-0.13080771267414093,
0.12655501067638397,
-0.03611969202756882,
0.05932847782969475,
0.04063022509217262,
0.11423800140619278,
0.027355758473277092,
0.024158364161849022,
-0.04129553213715553,
-0.04214868322014809,
0.012794839218258858,
0.003883163910359144,
-0.04143359139561653,
-0.11134030669927597,
0.00405991030856967,
-0.053868819028139114,
0.09818863123655319,
-0.14580972492694855,
-0.0003016248519998044,
0.038840893656015396,
0.03238958492875099,
-0.001782032079063356,
-0.012347652576863766,
0.03216792643070221,
0.09347677230834961,
0.027591852471232414,
0.0009852530201897025,
0.03990579769015312,
0.01336669921875,
-0.028506223112344742,
0.1489701271057129,
-0.20434975624084473,
0.050817470997571945,
0.11670859903097153,
-0.025875240564346313,
-0.04012376442551613,
0.031525421887636185,
-0.03431099280714989,
-0.009622658602893353,
-0.0649946853518486,
-0.01155196875333786,
0.27375030517578125,
-0.011028905399143696,
0.0990365743637085,
-0.10149115324020386,
-0.0020276575814932585,
0.04352947697043419,
-0.08526051044464111,
0.0389380156993866,
0.08742881566286087,
-0.04445502907037735,
-0.018500953912734985,
0.06304743140935898,
-0.00918187852948904,
-0.06168275326490402,
0.2594539225101471,
-0.029809454455971718,
-0.08895353972911835,
0.019277414306998253,
0.023307058960199356,
-0.01523754745721817,
0.1286955177783966,
-0.16738739609718323,
-0.032604482024908066,
0.03044811449944973,
0.04857949540019035,
0.07429224252700806,
-0.13862086832523346,
0.012954638339579105,
0.012814892455935478,
-0.1242070198059082,
-0.15149390697479248,
0.0721760243177414,
-0.025904597714543343,
0.07789731025695801,
-0.12417010962963104,
-0.03258669376373291,
0.007821829989552498,
-0.038049113005399704,
-0.1664542257785797,
0.13209283351898193,
-0.06870490312576294,
-0.23380546271800995,
-0.1087198406457901,
0.032813165336847305,
0.000020172579752397723,
-0.0027500097639858723,
0.1003318652510643,
-0.11739836633205414,
0.011371065862476826,
-0.020230203866958618,
0.10517425090074539,
0.003480303566902876,
-0.020042071118950844,
-0.11793084442615509,
0.011002754792571068,
0.0562182292342186,
-0.12762704491615295,
0.0007868435932323337,
-0.06797705590724945,
-0.03690728545188904,
0.015766361728310585,
0.002055840101093054,
0.017393197864294052,
0.13916075229644775,
-0.014289408922195435,
0.014545023441314697,
-0.045507047325372696,
0.16982921957969666,
-0.1288636028766632,
-0.04913773015141487,
0.17027533054351807,
-0.030922042205929756,
-0.026633361354470253,
0.09625666588544846,
0.02767680399119854,
-0.05016692727804184,
-0.013584769330918789,
-0.014033906161785126,
-0.07725491374731064,
-0.20979717373847961,
-0.1523246467113495,
-0.05434606224298477,
-0.05316441133618355,
-0.01656375452876091,
0.009196015074849129,
0.05495309829711914,
0.029676347970962524,
-0.06371299922466278,
-0.1213424950838089,
0.05748015269637108,
-0.014572879299521446,
0.11666689068078995,
0.0047703953459858894,
0.08522601425647736,
-0.05683022364974022,
-0.05588725954294205,
0.018626917153596878,
-0.012690653093159199,
0.15737493336200714,
0.03047451563179493,
0.029245059937238693,
0.08630179613828659,
0.14833641052246094,
0.0951945036649704,
0.10598423331975937,
-0.03816549852490425,
-0.007299347314983606,
0.028887039050459862,
-0.08967886865139008,
-0.03294076398015022,
0.011622046120464802,
0.08837946504354477,
-0.02114430069923401,
-0.08368583023548126,
-0.05480896309018135,
0.06379234045743942,
0.16568708419799805,
0.05631198361515999,
-0.18917281925678253,
-0.09671062231063843,
-0.051321059465408325,
-0.06754916906356812,
0.0016366401687264442,
0.038361188024282455,
0.16682353615760803,
-0.1331423819065094,
0.016223439946770668,
-0.021376673132181168,
0.06620897352695465,
-0.02865060232579708,
0.026529798284173012,
-0.10184542089700699,
0.0006125638610683382,
-0.020825373008847237,
0.10671169310808182,
-0.23786762356758118,
0.22638042271137238,
0.016486044973134995,
0.16796588897705078,
-0.08292634785175323,
-0.02379353530704975,
0.018889296799898148,
0.039340727031230927,
0.11628808826208115,
0.009778080508112907,
0.01645982451736927,
-0.10407885164022446,
-0.10702186822891235,
0.07081519067287445,
0.013743768446147442,
0.03955078125,
0.03832182288169861,
0.013575292192399502,
0.023867372423410416,
0.0050004408694803715,
-0.08429523557424545,
-0.1457240730524063,
-0.09083632379770279,
0.005509717855602503,
0.15042580664157867,
0.07976865768432617,
-0.02652062475681305,
-0.09525061398744583,
-0.08554573357105255,
0.05477296561002731,
-0.04958188906311989,
-0.0794377326965332,
-0.06945805996656418,
-0.07713790982961655,
0.11114222556352615,
-0.06986291706562042,
-0.006382819265127182,
0.09164348989725113,
0.09129225462675095,
-0.05013936758041382,
-0.04053565487265587,
0.02450193464756012,
-0.11342664062976837,
-0.11967985332012177,
0.006008156109601259,
0.192402645945549,
0.12290000170469284,
0.06829718500375748,
0.07733222097158432,
0.010702711530029774,
-0.004114787094295025,
-0.05854066461324692,
-0.02435714192688465,
0.04262777045369148,
-0.10892721265554428,
0.03057306818664074,
0.04895959421992302,
-0.15933488309383392,
-0.13645817339420319,
-0.04321695491671562,
0.16717137396335602,
0.09779274463653564,
-0.05180852860212326,
0.1770484298467636,
0.19048869609832764,
-0.07057950645685196,
-0.1852758675813675,
-0.024337351322174072,
0.08323252946138382,
0.11243126541376114,
-0.017725158482789993,
-0.12993210554122925,
0.06898406893014908,
0.016607893630862236,
-0.027874603867530823,
-0.037848711013793945,
-0.2885313928127289,
-0.14393830299377441,
0.19586774706840515,
-0.0004130386223550886,
0.14683587849140167,
-0.009870601817965508,
-0.012857935391366482,
-0.0033461605198681355,
0.0657220184803009,
0.03474341705441475,
-0.1816340684890747,
0.09162848442792892,
0.04301866888999939,
0.09132303297519684,
0.060065388679504395,
-0.025978203862905502,
0.11064545810222626,
0.06126880645751953,
0.0040369597263634205,
-0.020022636279463768,
0.0630105510354042,
0.026452306658029556,
0.027163280174136162,
0.11771930754184723,
-0.12887011468410492,
0.04656454175710678,
-0.11053680628538132,
-0.09136544913053513,
-0.08263576775789261,
0.09054700285196304,
0.001060677575878799,
-0.041582487523555756,
0.02281864359974861,
-0.04783899337053299,
0.01753241941332817,
0.0052610174752771854,
-0.06334930658340454,
-0.12148724496364594,
0.06950157135725021,
0.07818017899990082,
0.17161788046360016,
-0.05066242069005966,
-0.09751186519861221,
-0.010784103535115719,
-0.037102628499269485,
0.11167363077402115,
-0.042156659066677094,
0.019352871924638748,
0.06681791692972183,
0.046821217983961105,
0.10606859624385834,
0.008589165285229683,
-0.0898727998137474,
0.0749715119600296,
0.03510485962033272,
-0.10973549634218216,
-0.11672861129045486,
-0.015547730959951878,
-0.027609065175056458,
-0.010902220383286476,
0.045761995017528534,
0.11646466702222824,
-0.10483457148075104,
-0.0008142534643411636,
-0.053039733320474625,
-0.008331057615578175,
-0.10710091888904572,
0.2364993393421173,
0.027375679463148117,
0.0568348653614521,
-0.11395759135484695,
0.023981435224413872,
-0.022962938994169235,
-0.07464831322431564,
0.048869650810956955,
-0.039165593683719635,
-0.08410505950450897,
-0.06016051024198532,
-0.006852095481008291,
0.06794925779104233,
0.06776957213878632,
-0.16512398421764374,
-0.0740509033203125,
-0.11330854147672653,
-0.02232699654996395,
0.09730909764766693,
0.06648308038711548,
0.010763860307633877,
-0.1052076444029808,
-0.06371786445379257,
-0.13029880821704865,
0.0807441920042038,
0.10089840739965439,
-0.027652259916067123,
-0.0892447680234909,
0.23380586504936218,
0.07490994036197662,
0.013049593195319176,
-0.04798546060919762,
-0.05506464093923569,
-0.013302044942975044,
0.08750659972429276,
-0.07453130930662155,
-0.005901131313294172,
-0.060459066182374954,
0.011217459104955196,
0.006880690809339285,
-0.05921739712357521,
-0.00932092871516943,
0.060921769589185715,
-0.08444763720035553,
0.07856065034866333,
0.007773932069540024,
0.04357760399580002,
-0.09614791721105576,
0.033425845205783844,
0.003180608619004488,
-0.05484844371676445,
0.10611142218112946,
0.16545924544334412,
-0.1075543537735939,
0.1359487920999527,
-0.21730439364910126,
-0.02285804972052574,
0.046921905130147934,
0.05067940801382065,
-0.03346971422433853,
-0.08743716031312943,
0.03851386159658432,
0.10758465528488159,
0.04684128239750862,
0.029478760436177254,
0.0847042053937912,
-0.06651825457811356,
0.03553884103894234,
-0.035045091062784195,
0.0003787976165767759,
-0.03636768460273743,
0.04543965309858322,
0.03374561294913292,
0.11414898186922073,
0.16926611959934235,
-0.12641358375549316,
0.10212554782629013,
-0.10127126425504684,
0.008726942352950573,
-0.04638528823852539,
-0.04702837020158768,
-0.10445119440555573,
-0.04737478867173195,
0.07136311382055283,
-0.04215490445494652,
0.13841846585273743,
0.03915462642908096,
0.05199342966079712,
-0.023784492164850235,
-0.08338027447462082,
0.049098122864961624,
-0.01266529131680727,
0.26898640394210815,
0.02628229930996895,
0.019838586449623108,
-0.059302665293216705,
-0.010248697362840176,
0.0032588657923042774,
0.07816942036151886,
0.0039970953948795795,
0.19094140827655792,
0.02422155812382698,
0.059869322925806046,
0.08886361867189407,
-0.045402444899082184,
-0.024196384474635124,
-0.09576426446437836,
-0.09375102818012238,
0.023283230140805244,
-0.04543081298470497,
0.18691234290599823,
0.17374013364315033,
-0.07888798415660858,
0.06574995815753937,
0.02946721576154232,
-0.08909623324871063,
-0.1343037635087967,
-0.10356055200099945,
-0.04244346544146538,
-0.12549670040607452,
0.013191699981689453,
-0.09394921362400055,
0.0065145306289196014,
0.06573367863893509,
0.05310690775513649,
-0.02987476997077465,
0.18681098520755768,
0.010686805471777916,
-0.07883130759000778,
0.09960772097110748,
-0.07806801795959473,
0.005280968267470598,
-0.09277479350566864,
-0.0013419894967228174,
0.12899726629257202,
-0.0245891772210598,
0.075278140604496,
0.011558083817362785,
-0.06599491089582443,
0.011143626645207405,
-0.08446604013442993,
-0.055282048881053925,
-0.00044435527524910867,
-0.01809750124812126,
0.11072512716054916,
0.14977607131004333,
0.12333802878856659,
-0.06774367392063141,
-0.03003707155585289,
0.13184459507465363,
-0.012593603692948818,
-0.1725318878889084,
-0.12330017238855362,
0.12169761955738068,
0.01927344501018524,
0.026261087507009506,
0.006931822746992111,
-0.04441915079951286,
0.02005109004676342,
0.21883010864257812,
0.25089341402053833,
0.08112162351608276,
0.05332900956273079,
-0.05570018291473389,
-0.004373172298073769,
-0.033842120319604874,
0.06663971394300461,
0.04981445148587227,
0.26210346817970276,
-0.017537543550133705,
0.047202568501234055,
-0.10423137247562408,
-0.05293067917227745,
-0.019000159576535225,
0.069831982254982,
-0.04612519592046738,
-0.1121479719877243,
-0.0024123580660670996,
0.16709838807582855,
-0.04343307390809059,
-0.09018721431493759,
-0.1041751578450203,
-0.07147544622421265,
-0.09977806359529495,
0.010955365374684334,
0.038220979273319244,
0.09621238708496094,
0.025226447731256485,
-0.07313283532857895,
0.014269880950450897,
0.08811508864164352,
0.009608296677470207,
-0.06174590066075325,
-0.08538258820772171,
0.03446900472044945,
-0.056307315826416016,
0.06386291235685349,
-0.0005328567349351943,
0.16930420696735382,
0.02719666250050068,
0.08608420938253403,
-0.009413942694664001,
0.14527174830436707,
0.00417304364964366,
-0.07339660078287125,
0.05194512754678726,
0.11683294922113419,
-0.029584158211946487,
0.0955645963549614,
0.04610692709684372,
-0.12848395109176636,
0.07491660118103027,
-0.11462368816137314,
-0.015752404928207397,
-0.06839703023433685,
0.06340985000133514,
-0.020257817581295967,
0.07220906019210815,
0.0947861596941948,
-0.05893244594335556,
-0.017279131338000298,
-0.04850311204791069,
0.05127478763461113,
0.05268799886107445,
-0.06395523995161057,
-0.010677238926291466,
-0.26829665899276733,
-0.01506196428090334,
-0.057166796177625656,
-0.043213289231061935,
-0.22370004653930664,
-0.020260049030184746,
-0.009592147544026375,
-0.07925926148891449,
0.0035598964896053076,
0.02783268131315708,
0.07475855201482773,
0.0013406752841547132,
-0.006160991732031107,
0.028967073187232018,
0.028113780543208122,
0.1328548640012741,
-0.1358172446489334,
-0.09470009803771973
] |
null | null |
transformers
|
t5_boolq
|
{}
|
text2text-generation
|
alexcruz0202/t5_boolq
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5_boolq
|
[] |
[
"TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.00556661281734705,
0.0164349228143692,
-0.007315334863960743,
0.024348841980099678,
0.166501984000206,
0.024344393983483315,
0.11518356949090958,
0.1412411630153656,
-0.0020334594883024693,
-0.035958148539066315,
0.1319235861301422,
0.21714316308498383,
-0.006268311757594347,
0.08315006643533707,
-0.08710680902004242,
-0.2602083683013916,
0.03483840078115463,
0.05276213958859444,
0.0049579935148358345,
0.12762698531150818,
0.08691143244504929,
-0.0646481066942215,
0.09440414607524872,
-0.03804538771510124,
-0.17094822227954865,
0.05289003252983093,
0.06358526647090912,
-0.12921307981014252,
0.11203359812498093,
0.04470131918787956,
0.10704579949378967,
0.035496506839990616,
-0.04978400841355324,
-0.14172321557998657,
0.0296106468886137,
0.026950722560286522,
-0.06861023604869843,
0.06236075982451439,
0.1136597990989685,
-0.09615244716405869,
0.08870459347963333,
0.0556039921939373,
-0.004051631316542625,
0.062145017087459564,
-0.15644147992134094,
-0.029072636738419533,
-0.01713588647544384,
0.023426201194524765,
0.07808161526918411,
0.09537342935800552,
-0.008744281716644764,
0.1289428174495697,
-0.09439463913440704,
0.13085374236106873,
0.15587438642978668,
-0.3147599399089813,
0.001229330780915916,
0.04856342077255249,
0.05912892520427704,
0.08336716890335083,
-0.016771415248513222,
0.03740086406469345,
0.02475069649517536,
0.028233950957655907,
0.042602118104696274,
-0.08473630249500275,
-0.1701638251543045,
0.042069677263498306,
-0.0844234824180603,
-0.05861080437898636,
0.24913406372070312,
-0.05834462493658066,
0.06408444046974182,
-0.01192506030201912,
-0.11543367058038712,
-0.06456129997968674,
-0.011278037913143635,
-0.012939955107867718,
-0.04709155857563019,
0.06321226805448532,
0.02679656445980072,
-0.05803138390183449,
-0.13286004960536957,
-0.009396729059517384,
-0.17277660965919495,
0.11429595947265625,
0.011107098311185837,
0.055417537689208984,
-0.23684222996234894,
0.0894838273525238,
0.045466348528862,
-0.10835321247577667,
0.06076562777161598,
-0.09032987058162689,
0.01951918564736843,
-0.019337479025125504,
-0.05594807490706444,
-0.14819347858428955,
0.06912460923194885,
0.09622079879045486,
0.022458840161561966,
0.029469674453139305,
-0.06034425273537636,
0.08020190894603729,
0.030660733580589294,
0.07118292897939682,
0.002764588687568903,
-0.035829924046993256,
0.05543043091893196,
-0.11155472695827484,
-0.008295934647321701,
-0.06744275242090225,
-0.14817972481250763,
-0.05471540614962578,
0.08553145080804825,
0.09807302802801132,
0.029591085389256477,
0.0872388631105423,
-0.044323358684778214,
-0.042564451694488525,
0.010892827063798904,
-0.08642291277647018,
-0.011313864029943943,
-0.000025251778424717486,
0.017184332013130188,
0.13600346446037292,
0.016563422977924347,
0.014259100891649723,
-0.15025922656059265,
0.051360122859478,
-0.07618893682956696,
-0.003882812336087227,
-0.03447994589805603,
-0.07451999187469482,
0.026431044563651085,
-0.0926901325583458,
0.016483480110764503,
-0.1643074005842209,
-0.153541699051857,
0.019637132063508034,
0.019818242639303207,
-0.01814674586057663,
-0.05446401610970497,
-0.04473382234573364,
-0.03356395289301872,
0.050795428454875946,
-0.06109105795621872,
0.007418809924274683,
-0.04204783961176872,
0.09961801022291183,
-0.03490151837468147,
0.0686439722776413,
-0.10930459946393967,
0.07527212053537369,
-0.1283227801322937,
-0.024262387305498123,
-0.07863514870405197,
0.05983925983309746,
0.0200795941054821,
0.13076506555080414,
-0.03833391144871712,
-0.023659348487854004,
-0.060193415731191635,
0.03925630450248718,
-0.0268486887216568,
0.19988413155078888,
-0.1042189672589302,
-0.10171450674533844,
0.2354324758052826,
-0.06842701882123947,
-0.1713089793920517,
0.09375571459531784,
0.0027509552892297506,
0.05962032452225685,
0.08849970251321793,
0.1733561009168625,
0.0375605970621109,
-0.020121192559599876,
0.10614369064569473,
0.09608419239521027,
-0.10053163021802902,
-0.0855114683508873,
0.012432892806828022,
-0.017932431772351265,
-0.12291114777326584,
0.042022403329610825,
0.09157063812017441,
0.07639165967702866,
-0.048442572355270386,
-0.037454720586538315,
-0.04233349487185478,
-0.0037850758526474237,
0.07970551401376724,
0.003191957715898752,
0.12530799210071564,
-0.060514260083436966,
-0.017125345766544342,
-0.00970730371773243,
-0.021197473630309105,
-0.02157456800341606,
0.0427994504570961,
-0.029060563072562218,
0.11202826350927353,
-0.044375836849212646,
0.04996176064014435,
-0.19708573818206787,
-0.07950518280267715,
-0.00009459419379709288,
0.14823977649211884,
0.0025853270199149847,
0.08866212517023087,
0.053792256861925125,
-0.03104301728308201,
-0.0064215571619570255,
-0.01630372181534767,
0.13401302695274353,
-0.006087199319154024,
-0.07446936517953873,
-0.07821033149957657,
0.04426480084657669,
-0.06450248509645462,
-0.025050701573491096,
-0.07281817495822906,
0.016727562993764877,
0.009908524341881275,
0.11566682159900665,
0.031677234917879105,
0.05078164488077164,
-0.01658935472369194,
0.016670551151037216,
-0.08533018827438354,
0.014296403154730797,
0.09961540251970291,
-0.01141710951924324,
-0.05103765428066254,
0.20229773223400116,
-0.17161768674850464,
0.23491214215755463,
0.18393823504447937,
-0.28944259881973267,
0.006632600445300341,
-0.03537070378661156,
-0.025985898450016975,
0.0020077917724847794,
0.056325092911720276,
-0.024217087775468826,
0.08345092087984085,
-0.0014518649550154805,
0.19566179811954498,
-0.061056189239025116,
-0.053328365087509155,
0.005299531389027834,
-0.0574905127286911,
-0.008797192946076393,
0.06659712642431259,
0.08905737847089767,
-0.18937712907791138,
0.16803357005119324,
0.23161664605140686,
0.02284090220928192,
0.16994214057922363,
-0.006134420167654753,
-0.04078718274831772,
0.06990283727645874,
-0.010529168881475925,
-0.03422388434410095,
-0.09309064596891403,
-0.17318937182426453,
-0.02589605376124382,
0.07576539367437363,
0.03613846004009247,
0.08636131882667542,
-0.10028368979692459,
-0.03196824714541435,
-0.0030699449125677347,
0.0036774331238120794,
-0.0154800433665514,
0.09314090013504028,
0.07135064154863358,
0.12889064848423004,
-0.02095034345984459,
-0.013992778956890106,
0.11097750067710876,
0.009291634894907475,
-0.11979115754365921,
0.1863044798374176,
-0.1367644965648651,
-0.33287522196769714,
-0.14580926299095154,
-0.172042116522789,
-0.028890058398246765,
0.034660134464502335,
0.11098358780145645,
-0.09576473385095596,
-0.024381177499890327,
-0.00200450187548995,
0.07208182662725449,
-0.08791472017765045,
0.026362471282482147,
-0.08504201471805573,
0.06435829401016235,
-0.06155692785978317,
-0.07484325021505356,
-0.04913013055920601,
-0.009192944504320621,
-0.03951077535748482,
0.1387929618358612,
-0.12161171436309814,
0.05527077242732048,
0.18643830716609955,
0.0024109859950840473,
0.055052563548088074,
-0.03348764404654503,
0.1838768720626831,
-0.06276846677064896,
0.011544623412191868,
0.21395781636238098,
-0.06411220878362656,
0.0745253935456276,
0.1306767761707306,
-0.0033746296539902687,
-0.06828748434782028,
0.03352054953575134,
-0.03297126665711403,
-0.07394568622112274,
-0.26617541909217834,
-0.0919879674911499,
-0.13333486020565033,
0.07579639554023743,
0.0671529769897461,
0.05104738473892212,
0.17074435949325562,
0.06376895308494568,
-0.0021396984811872244,
0.04823816567659378,
0.02085288241505623,
0.08897827565670013,
0.17748302221298218,
-0.0035200107377022505,
0.12296830117702484,
-0.05708124861121178,
-0.11661257594823837,
0.07658019661903381,
0.06053204461932182,
0.11748291552066803,
0.06144772842526436,
0.0673404335975647,
0.009640947915613651,
0.09566781669855118,
0.13296754658222198,
0.14900599420070648,
0.02468167617917061,
-0.008608612231910229,
-0.030044887214899063,
-0.03201429173350334,
-0.039632637053728104,
0.03699196130037308,
0.027697665616869926,
-0.11566830426454544,
-0.09036512672901154,
-0.08160438388586044,
0.06716005504131317,
0.13062477111816406,
0.07317515462636948,
-0.22939440608024597,
0.021544968709349632,
0.07740186899900436,
-0.04538768529891968,
-0.1127815991640091,
0.08245086669921875,
-0.011997534893453121,
-0.1321650892496109,
0.05299573391675949,
-0.059155527502298355,
0.12868814170360565,
-0.03321857377886772,
0.09155638515949249,
-0.036200251430273056,
-0.07173743844032288,
0.023195916786789894,
0.1081700548529625,
-0.3327305316925049,
0.19491779804229736,
0.004171358421444893,
-0.06359637528657913,
-0.10467778891324997,
-0.0019751235377043486,
0.0009388330508954823,
0.11369986087083817,
0.10460136085748672,
-0.001098173321224749,
-0.044636908918619156,
-0.07322456687688828,
-0.004860122688114643,
0.020925045013427734,
0.1282682567834854,
-0.03900206461548805,
0.012867438606917858,
-0.060800474137067795,
-0.020295564085245132,
-0.018256759271025658,
-0.0022203531116247177,
-0.02081105299293995,
-0.16639147698879242,
0.0740898847579956,
0.018359249457716942,
0.06382673978805542,
0.017137285321950912,
-0.023163197562098503,
-0.04883239418268204,
0.2122536450624466,
-0.05754205211997032,
-0.0916326716542244,
-0.12432167679071426,
-0.06284135580062866,
0.05895516648888588,
-0.07722198963165283,
0.0446588434278965,
-0.0745319053530693,
0.022527653723955154,
-0.04819094017148018,
-0.243226557970047,
0.1347477287054062,
-0.09412279725074768,
-0.03712499886751175,
-0.05321687459945679,
0.1769246608018875,
-0.08598630130290985,
0.004587682895362377,
0.019671428948640823,
0.005797455552965403,
-0.09387195110321045,
-0.05803963914513588,
0.005930939689278603,
-0.007833045907318592,
0.043111652135849,
0.027385283261537552,
-0.08851016312837601,
-0.04925180599093437,
-0.04387403652071953,
0.0025156724732369184,
0.32157042622566223,
0.13255396485328674,
-0.0451158843934536,
0.17638471722602844,
0.11866987496614456,
-0.09226285666227341,
-0.28666549921035767,
-0.09232616424560547,
-0.08508557081222534,
-0.02612167038023472,
-0.014090736396610737,
-0.17296333611011505,
0.07169285416603088,
-0.011569414287805557,
0.001220228150486946,
0.11183511465787888,
-0.25064438581466675,
-0.08535761386156082,
0.13973328471183777,
0.0218928512185812,
0.3438052237033844,
-0.11660566926002502,
-0.09572115540504456,
-0.037015512585639954,
-0.16204795241355896,
0.17565034329891205,
-0.05098377540707588,
0.08589936047792435,
-0.02931063622236252,
0.09435304999351501,
0.05406441166996956,
-0.035384826362133026,
0.049389392137527466,
0.004597121383994818,
0.008760917000472546,
-0.10559062659740448,
-0.057581186294555664,
0.06263675540685654,
-0.015296169556677341,
0.03261565789580345,
-0.052770473062992096,
0.040970027446746826,
-0.12462522089481354,
-0.029079878702759743,
-0.09401141107082367,
0.04943455010652542,
0.022681253030896187,
-0.06377900391817093,
0.03368838131427765,
-0.07297802716493607,
0.02431732974946499,
-0.004222060553729534,
0.22948065400123596,
-0.03911164030432701,
0.16924336552619934,
0.14965012669563293,
0.12832023203372955,
-0.10761105269193649,
0.023132294416427612,
-0.07074703276157379,
-0.06771499663591385,
0.07442385703325272,
-0.11606685817241669,
0.06824298948049545,
0.11452312767505646,
-0.03803333640098572,
0.06692792475223541,
0.11090198904275894,
0.007042061071842909,
-0.018452122807502747,
0.13045786321163177,
-0.2555803954601288,
0.01838049292564392,
-0.09133486449718475,
-0.034731827676296234,
0.04473074525594711,
0.059897102415561676,
0.1758844554424286,
0.013937903568148613,
-0.046279918402433395,
-0.006654669996351004,
0.009265775792300701,
-0.05292464420199394,
0.06189149618148804,
0.021519040688872337,
0.028436847031116486,
-0.12892818450927734,
0.09216773509979248,
0.04164006561040878,
-0.15696687996387482,
0.014136283658444881,
0.20570343732833862,
-0.12955474853515625,
-0.11714471131563187,
0.009732695296406746,
0.1272372156381607,
-0.12340531498193741,
-0.0131310960277915,
-0.06835518032312393,
-0.12049886584281921,
0.08346058428287506,
0.1870250254869461,
0.05310768634080887,
0.08864229917526245,
-0.04889966920018196,
-0.052613768726587296,
-0.0414779894053936,
0.019885722547769547,
0.010466893203556538,
0.024678871035575867,
-0.10123980790376663,
0.0558118037879467,
-0.03420061618089676,
0.1606583297252655,
-0.08762852847576141,
-0.06293909251689911,
-0.15223504602909088,
0.029476208612322807,
-0.1285882592201233,
-0.05573326349258423,
-0.06554782390594482,
-0.04992866516113281,
-0.00988073367625475,
-0.016155900433659554,
-0.04487239196896553,
-0.039896611124277115,
-0.12048979848623276,
0.01255242433398962,
-0.0355960987508297,
0.040716752409935,
-0.06325489282608032,
-0.015957634896039963,
0.06713803857564926,
-0.04783564805984497,
0.1234511286020279,
0.1244230642914772,
-0.10297807306051254,
0.13015666604042053,
-0.12901681661605835,
-0.10247262567281723,
0.10341163724660873,
0.022168707102537155,
0.05857599526643753,
0.07140576094388962,
0.014355037361383438,
0.06138899549841881,
0.020014280453324318,
0.030626345425844193,
0.014497648924589157,
-0.11934783309698105,
0.020539645105600357,
-0.028154902160167694,
-0.1567612886428833,
-0.06687948107719421,
-0.03541361168026924,
0.032845932990312576,
0.005566192790865898,
0.12214449048042297,
-0.04963922128081322,
0.12121456861495972,
-0.0739358589053154,
0.01540429051965475,
0.0030216770246624947,
-0.1645183116197586,
-0.07887569069862366,
-0.08572901785373688,
0.028631536290049553,
-0.01980959065258503,
0.1820257008075714,
0.028917625546455383,
0.04076537489891052,
0.028494594618678093,
0.0580499991774559,
0.0030040740966796875,
0.027813585475087166,
0.2076839804649353,
0.07256311923265457,
-0.07106154412031174,
-0.10604323446750641,
0.06415551900863647,
0.010025255382061005,
0.050124362111091614,
0.15928223729133606,
0.047759078443050385,
-0.0001553031470393762,
0.0993572399020195,
-0.015316850505769253,
0.029706554487347603,
-0.08815840631723404,
-0.14614541828632355,
0.010274967178702354,
0.07664129137992859,
-0.008370366878807545,
0.08240756392478943,
0.17205661535263062,
-0.008965100161731243,
0.028628967702388763,
-0.021051079034805298,
-0.050595544278621674,
-0.17782315611839294,
-0.14621272683143616,
-0.08161406964063644,
-0.10460387915372849,
-0.009174822829663754,
-0.10601648688316345,
0.058225058019161224,
0.039410240948200226,
0.06155374273657799,
-0.06584067642688751,
0.07655779272317886,
0.09756571054458618,
-0.11320552229881287,
0.07725733518600464,
-0.030474407598376274,
0.06184573471546173,
-0.002521720016375184,
0.005873269401490688,
-0.08997280895709991,
-0.004574684891849756,
-0.03502881899476051,
0.04654679447412491,
-0.055807504802942276,
0.02598988637328148,
-0.14996908605098724,
-0.1267300844192505,
-0.023885613307356834,
0.05561595410108566,
-0.048713523894548416,
0.11875221878290176,
0.01903730072081089,
-0.02826787903904915,
0.03075653687119484,
0.22936390340328217,
-0.08101353794336319,
-0.06313319504261017,
-0.045722268521785736,
0.2392023652791977,
0.05798419192433357,
0.08968336880207062,
0.0011541121639311314,
-0.004275737330317497,
-0.08654017746448517,
0.33573782444000244,
0.2875623404979706,
-0.06669571250677109,
0.02185043878853321,
0.020036788657307625,
0.03247951716184616,
0.10445816069841385,
0.14738473296165466,
0.0807812362909317,
0.25269845128059387,
-0.07112409919500351,
0.004070702008903027,
-0.020794164389371872,
-0.0035252978559583426,
-0.094292551279068,
0.12061961740255356,
0.04871074855327606,
-0.07605911046266556,
-0.016266820952296257,
0.09616681933403015,
-0.234622985124588,
0.1442924290895462,
-0.09042277187108994,
-0.16555511951446533,
-0.0650661438703537,
-0.022269470617175102,
0.12511363625526428,
0.0057012471370399,
0.08388835191726685,
-0.013910903595387936,
-0.09222894161939621,
0.06527531147003174,
0.026899857446551323,
-0.2155075967311859,
-0.001321874326094985,
0.0646858662366867,
-0.11317645013332367,
-0.013093317858874798,
-0.01084262877702713,
0.04255429282784462,
0.06837044656276703,
0.06063440442085266,
-0.052938252687454224,
0.02750498242676258,
-0.0017553698271512985,
-0.0005278441240079701,
0.02887236885726452,
0.05862223729491234,
0.019802596420049667,
-0.08147921413183212,
0.05538501590490341,
-0.14378812909126282,
0.031788941472768784,
-0.04858637601137161,
-0.02897854894399643,
0.0008240027818828821,
0.0006675400654785335,
-0.032527755945920944,
0.054671213030815125,
0.09969543665647507,
-0.01098863035440445,
0.0038473340682685375,
-0.08210724592208862,
-0.030329594388604164,
0.014884191565215588,
-0.09322559833526611,
-0.10513637214899063,
-0.10709530115127563,
-0.0982118621468544,
0.10922635346651077,
-0.005953612271696329,
-0.20968568325042725,
0.01261181477457285,
-0.10233365744352341,
0.03503730893135071,
-0.20695984363555908,
0.0975503996014595,
0.10488341748714447,
0.01344336662441492,
0.0057689351961016655,
-0.03261208534240723,
0.051563702523708344,
0.1015261709690094,
-0.12671351432800293,
-0.08701961487531662
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 136 | 1.7446 | 9.0564 | 17.8356 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned-en-to-de
===========================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
74,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.0889618918299675,
0.10018717497587204,
-0.0038034876342862844,
0.0875915065407753,
0.10987268388271332,
-0.006065878085792065,
0.1548226922750473,
0.15311281383037567,
-0.12781468033790588,
0.05975473299622536,
0.14377059042453766,
0.13524594902992249,
0.04719994217157364,
0.1622452586889267,
-0.07003141194581985,
-0.2509947121143341,
0.04694842919707298,
0.05292709171772003,
-0.024515189230442047,
0.1250804364681244,
0.08556091785430908,
-0.12100115418434143,
0.09253433346748352,
0.026408683508634567,
-0.18699954450130463,
-0.006213481072336435,
-0.0036945375613868237,
-0.08250162750482559,
0.10384908318519592,
0.03392484784126282,
0.0943026915192604,
0.0359443798661232,
0.050692059099674225,
-0.16067081689834595,
0.007637455593794584,
0.06008118763566017,
0.005335124209523201,
0.09981442987918854,
0.05680391192436218,
-0.011764120310544968,
0.11047093570232391,
-0.07125017791986465,
0.06808391958475113,
0.02578830160200596,
-0.1286083608865738,
-0.2486647665500641,
-0.10707380622625351,
0.03615095466375351,
0.06913943588733673,
0.08334584534168243,
-0.0034911809489130974,
0.17422205209732056,
-0.024854348972439766,
0.11302846670150757,
0.2573734521865845,
-0.30541113018989563,
-0.05738135054707527,
-0.011187662370502949,
0.04940136894583702,
0.07208728045225143,
-0.07599978148937225,
-0.0335182324051857,
0.026652071624994278,
0.04799387976527214,
0.14402137696743011,
-0.013358701020479202,
-0.030273912474513054,
-0.015802348032593727,
-0.1358109563589096,
-0.06817124038934708,
0.16067858040332794,
0.0331592783331871,
-0.0404660627245903,
-0.06097012758255005,
-0.07883435487747192,
-0.1956735998392105,
-0.049151234328746796,
0.005347377620637417,
0.04561522603034973,
-0.03460345044732094,
-0.09236953407526016,
-0.011077901348471642,
-0.06884627789258957,
-0.044534437358379364,
-0.0591474212706089,
0.14221684634685516,
0.04652761295437813,
0.020285094156861305,
-0.06731901317834854,
0.07181817293167114,
-0.037953414022922516,
-0.1601819396018982,
-0.01698904298245907,
0.01943247765302658,
0.009004397317767143,
-0.037600353360176086,
-0.038418397307395935,
-0.12897749245166779,
0.009250171482563019,
0.16273121535778046,
-0.10580261051654816,
0.0819801464676857,
-0.03743277117609978,
0.03924175724387169,
-0.07957291603088379,
0.18343903124332428,
-0.013169340789318085,
0.015672575682401657,
0.011536928825080395,
0.06097846478223801,
0.051767125725746155,
-0.0281629990786314,
-0.11016197502613068,
0.03777598589658737,
0.10943955928087234,
0.02440483681857586,
-0.03822707757353783,
0.07109023630619049,
-0.04037937894463539,
-0.022119438275694847,
0.04845936968922615,
-0.10463885962963104,
0.03516760841012001,
-0.017063098028302193,
-0.06567388772964478,
-0.0033286684192717075,
0.022152649238705635,
0.00037023439654149115,
-0.04419801011681557,
0.09527205675840378,
-0.08407957851886749,
0.022050870582461357,
-0.08436626940965652,
-0.13485689461231232,
0.034500665962696075,
-0.08937765657901764,
0.002971746027469635,
-0.10042174160480499,
-0.14661282300949097,
-0.008515236899256706,
0.05994325503706932,
-0.0475052110850811,
-0.04512200132012367,
-0.05026707053184509,
-0.09856995195150375,
0.050555892288684845,
-0.022451147437095642,
0.07744697481393814,
-0.07160860300064087,
0.08438809216022491,
0.04234414920210838,
0.0809149444103241,
-0.05101334676146507,
0.046328771859407425,
-0.08941980451345444,
0.0432528480887413,
-0.22246547043323517,
0.055213361978530884,
-0.05586071312427521,
0.09496485441923141,
-0.10505664348602295,
-0.10117320716381073,
0.014916041865944862,
-0.024406567215919495,
0.10363724827766418,
0.083235003054142,
-0.16368018090724945,
-0.0705142468214035,
0.2040679156780243,
-0.08537935465574265,
-0.132719025015831,
0.12734933197498322,
-0.04489300400018692,
0.007412342354655266,
0.0514046773314476,
0.2173624187707901,
0.05093968287110329,
-0.10109665989875793,
-0.013638305477797985,
-0.04937012493610382,
0.041749563068151474,
-0.056164953857660294,
0.06600240617990494,
0.007654708344489336,
0.07759273797273636,
0.0060957917012274265,
0.03418958932161331,
0.02877034805715084,
-0.08474141359329224,
-0.07506627589464188,
-0.05957686901092529,
-0.07280667126178741,
0.009806346148252487,
0.03671940788626671,
0.0699932724237442,
-0.1340281367301941,
-0.10551224648952484,
0.06443066149950027,
0.0730585902929306,
-0.08123745024204254,
0.05893176421523094,
-0.11029735207557678,
0.0983676016330719,
-0.05753879249095917,
0.004173141438513994,
-0.18576739728450775,
-0.012712741270661354,
0.034700099378824234,
-0.007434891536831856,
0.027131114155054092,
-0.043978672474622726,
0.07337325811386108,
0.06556110084056854,
-0.034277208149433136,
-0.02971459925174713,
-0.019985290244221687,
0.003781670704483986,
-0.11572112888097763,
-0.19584612548351288,
-0.0321429967880249,
-0.035036493092775345,
0.07160268723964691,
-0.16012562811374664,
0.04448380693793297,
0.06861530989408493,
0.11636024713516235,
0.042730044573545456,
-0.021229762583971024,
-0.01255827210843563,
0.07361818850040436,
-0.051086924970149994,
-0.070628322660923,
0.05500299483537674,
0.02782449685037136,
-0.08551867306232452,
0.0018194757867604494,
-0.16175806522369385,
0.154799222946167,
0.14245985448360443,
-0.025168202817440033,
-0.0554656982421875,
0.0033412091434001923,
-0.05259142443537712,
-0.02913234569132328,
-0.017089268192648888,
0.01796439103782177,
0.16147151589393616,
0.016629355028271675,
0.16156162321567535,
-0.0970781072974205,
-0.05230238661170006,
0.05127745494246483,
-0.03647667169570923,
-0.004355373326689005,
0.10980631411075592,
0.03899703547358513,
-0.11948812752962112,
0.13681532442569733,
0.14531607925891876,
-0.06026061624288559,
0.13393163681030273,
-0.06679556518793106,
-0.06732750684022903,
-0.029002675786614418,
-0.006800261326134205,
0.03426207974553108,
0.08658391982316971,
-0.11938536167144775,
-0.016079893335700035,
0.033992163836956024,
0.038633279502391815,
0.010428558103740215,
-0.18911288678646088,
0.01215033046901226,
0.03870466351509094,
-0.056264664977788925,
-0.04045813903212547,
-0.00988764688372612,
0.015177085064351559,
0.10035194456577301,
0.019329704344272614,
-0.06183362752199173,
0.03273870423436165,
0.014217282645404339,
-0.06118536740541458,
0.1749614179134369,
-0.10991654545068741,
-0.1608627736568451,
-0.12575273215770721,
-0.10769690573215485,
-0.05757590010762215,
-0.0019224989227950573,
0.08612291514873505,
-0.07656458020210266,
-0.05460170656442642,
-0.10109291225671768,
-0.017100568860769272,
-0.01290886290371418,
0.02786404639482498,
0.06264768540859222,
-0.00901100318878889,
0.07225117832422256,
-0.1141415387392044,
-0.028893403708934784,
-0.014110361225903034,
-0.0004329607472755015,
0.06530620157718658,
0.01298973336815834,
0.11306057870388031,
0.12546204030513763,
-0.03624982759356499,
0.04133879393339157,
-0.037483811378479004,
0.23114866018295288,
-0.06967732310295105,
-0.014262578450143337,
0.12877319753170013,
-0.01002978254109621,
0.08610434830188751,
0.11538460105657578,
0.04814082384109497,
-0.09886609762907028,
0.00244920770637691,
0.010083095170557499,
-0.04951471835374832,
-0.22090914845466614,
-0.01716863177716732,
-0.051388904452323914,
0.01471567340195179,
0.104718416929245,
0.03373697027564049,
0.04137340560555458,
0.04467182606458664,
0.01906985603272915,
0.07308189570903778,
-0.013730555772781372,
0.11503862589597702,
0.12489750981330872,
0.06437566876411438,
0.14160650968551636,
-0.06303827464580536,
-0.028852084651589394,
0.050609856843948364,
0.007656233385205269,
0.22086907923221588,
0.007228535134345293,
0.20208941400051117,
0.046651940792798996,
0.143122136592865,
0.0326094925403595,
0.06933867186307907,
-0.018387332558631897,
-0.012851139530539513,
-0.012561392039060593,
-0.04697495326399803,
-0.036881256848573685,
0.021444279700517654,
-0.07183002680540085,
0.027003398165106773,
-0.10479747503995895,
0.0204644612967968,
0.05386028811335564,
0.2982966899871826,
0.025294557213783264,
-0.36833131313323975,
-0.10606665909290314,
0.010138831101357937,
-0.06051772087812424,
-0.04396027326583862,
0.018265828490257263,
0.0825275331735611,
-0.06561599671840668,
0.0809062048792839,
-0.08091625571250916,
0.11449533700942993,
-0.04751993715763092,
0.04110082611441612,
0.0490453727543354,
0.09785151481628418,
-0.00889129564166069,
0.045181747525930405,
-0.3011925220489502,
0.2654477655887604,
0.024175632745027542,
0.07286050915718079,
-0.07133463770151138,
0.017550664022564888,
0.00662947865203023,
0.05419699102640152,
0.04937662184238434,
-0.014630620367825031,
-0.12910081446170807,
-0.14813919365406036,
-0.08631867915391922,
0.011116819456219673,
0.09800343215465546,
0.027759475633502007,
0.12220645695924759,
-0.017010929062962532,
-0.00002501258859410882,
0.046614088118076324,
-0.036256831139326096,
-0.04672054946422577,
-0.10230942815542221,
0.024601366370916367,
0.05529299005866051,
-0.007192531600594521,
-0.06919382512569427,
-0.09014382213354111,
-0.07264269888401031,
0.17319455742835999,
0.009034284390509129,
-0.06025511398911476,
-0.12295106053352356,
0.037891000509262085,
0.08032338321208954,
-0.08426667749881744,
0.03359789401292801,
-0.013128218241035938,
0.11393196135759354,
0.009590060450136662,
-0.08163774758577347,
0.12319160252809525,
-0.051789022982120514,
-0.17225110530853271,
-0.04307409003376961,
0.10639934241771698,
0.004715582821518183,
0.06030649691820145,
-0.013616231270134449,
0.03849664703011513,
-0.03048780746757984,
-0.07237827032804489,
0.026521455496549606,
-0.003804456442594528,
0.0829302966594696,
-0.03673078864812851,
-0.009207946248352528,
0.023086044937372208,
-0.06286559998989105,
-0.026891257613897324,
0.17408393323421478,
0.2580972909927368,
-0.08685941249132156,
0.06270705908536911,
0.03934316337108612,
-0.055402252823114395,
-0.1551039069890976,
0.012106400914490223,
0.05088965222239494,
-0.002042846754193306,
-0.009857390075922012,
-0.17474021017551422,
0.03459995612502098,
0.09835419058799744,
-0.014358550310134888,
0.08447948098182678,
-0.3101573586463928,
-0.13019220530986786,
0.08451607078313828,
0.1248011663556099,
0.09267030656337738,
-0.16537512838840485,
-0.0445391982793808,
-0.03659622743725777,
-0.15378986299037933,
0.13217517733573914,
-0.11072412133216858,
0.11804161965847015,
-0.030744118615984917,
0.11028193682432175,
0.008513242937624454,
-0.05913268402218819,
0.11324562877416611,
-0.006611996330320835,
0.08476176112890244,
-0.07566628605127335,
0.03790871798992157,
0.10735906660556793,
-0.08159590512514114,
0.04977639392018318,
-0.09693151712417603,
0.03211710974574089,
-0.1041845977306366,
-0.01444699615240097,
-0.057022400200366974,
-0.0006707028369419277,
-0.02680104412138462,
-0.03217508643865585,
-0.048764459788799286,
-0.0003845257742796093,
0.07141455262899399,
-0.02152969501912594,
0.20483402907848358,
0.015946265310049057,
0.13606402277946472,
0.16108080744743347,
0.09986325353384018,
-0.132023885846138,
-0.04206868261098862,
0.010358831845223904,
-0.028196940198540688,
0.04948762431740761,
-0.1694498211145401,
0.04418465495109558,
0.1406477689743042,
-0.00015520719171036035,
0.11992725729942322,
0.07032907754182816,
-0.05864020437002182,
0.027852090075612068,
0.05507712811231613,
-0.16705912351608276,
-0.10706877708435059,
0.011340298689901829,
0.051287151873111725,
-0.10960327088832855,
0.06106821820139885,
0.13331277668476105,
-0.05658911541104317,
-0.01304624043405056,
0.00838756188750267,
0.018102802336215973,
-0.022916948422789574,
0.17573466897010803,
0.022673746570944786,
0.062439367175102234,
-0.10821185261011124,
0.08385340869426727,
0.05282314121723175,
-0.1086616963148117,
0.05389882251620293,
0.1233585998415947,
-0.0969887375831604,
-0.025160573422908783,
0.04061412438750267,
0.16254658997058868,
-0.05832265317440033,
-0.05789635330438614,
-0.15426459908485413,
-0.12379501760005951,
0.1044270321726799,
0.19633923470973969,
0.059792764484882355,
0.0074940999038517475,
-0.035445984452962875,
0.0010553509928286076,
-0.12584267556667328,
0.08493409305810928,
0.04083512723445892,
0.08571337908506393,
-0.12995398044586182,
0.12459170818328857,
-0.012515992857515812,
0.03594915568828583,
-0.014508889056742191,
0.020290417596697807,
-0.11302360892295837,
0.008788900449872017,
-0.1400783658027649,
0.003786991583183408,
-0.050736553966999054,
-0.003594272769987583,
-0.011953326873481274,
-0.03968077898025513,
-0.06483050435781479,
0.019401853904128075,
-0.11472497880458832,
-0.03059404157102108,
0.012182301841676235,
0.026761310175061226,
-0.11252160370349884,
-0.01770937070250511,
0.008882529102265835,
-0.08476942032575607,
0.07711406797170639,
0.04965311661362648,
-0.014612595550715923,
0.028151432052254677,
-0.0427568145096302,
0.0005170538206584752,
0.060175348073244095,
0.005754841025918722,
0.076975017786026,
-0.09736845642328262,
-0.02463458850979805,
0.013580533675849438,
0.03075076825916767,
0.027737542986869812,
0.10168669372797012,
-0.11851734668016434,
0.005333000794053078,
-0.00827743485569954,
-0.0640556812286377,
-0.06912565976381302,
0.05891118571162224,
0.10030189156532288,
0.015579627826809883,
0.18520799279212952,
-0.07800532877445221,
0.02439546026289463,
-0.1891445368528366,
0.0029481006786227226,
0.017541419714689255,
-0.14603017270565033,
-0.0557294562458992,
-0.04303717240691185,
0.06539062410593033,
-0.07098278403282166,
0.12075351923704147,
-0.0011569955386221409,
0.021919503808021545,
0.050985440611839294,
-0.04577350988984108,
-0.04533423110842705,
0.015661561861634254,
0.17541365325450897,
0.033101532608270645,
-0.0444985069334507,
0.06799964606761932,
0.01606045663356781,
0.08962514251470566,
0.1074957475066185,
0.1960233598947525,
0.13658182322978973,
0.042333297431468964,
0.10927547514438629,
0.03039924055337906,
-0.032990068197250366,
-0.1804201751947403,
0.06466136872768402,
-0.043692849576473236,
0.1490284949541092,
-0.010319146327674389,
0.19452378153800964,
0.12665902078151703,
-0.13991506397724152,
0.04713459312915802,
-0.040486134588718414,
-0.0859677866101265,
-0.108208067715168,
-0.08314966410398483,
-0.09306423366069794,
-0.15479591488838196,
-0.0073462058790028095,
-0.1201031357049942,
0.06425068527460098,
0.0529496893286705,
0.020022930577397346,
0.0007071530562825501,
0.12408716976642609,
0.024245090782642365,
0.013213171623647213,
0.05724010244011879,
-0.007572897244244814,
-0.042386844754219055,
-0.05228404700756073,
-0.07993343472480774,
0.013838911429047585,
0.002043097512796521,
0.05337490513920784,
0.006395380012691021,
-0.012339613400399685,
0.040672678500413895,
-0.026810528710484505,
-0.11085304617881775,
0.015736492350697517,
0.03723237290978432,
0.054509811103343964,
0.030476436018943787,
0.011228226125240326,
-0.005428374279290438,
-0.011219194158911705,
0.1924048364162445,
-0.08198820054531097,
-0.07071993499994278,
-0.11487160623073578,
0.22960267961025238,
0.02375829964876175,
-0.03510696440935135,
0.02668762393295765,
-0.062320683151483536,
-0.01713687554001808,
0.19934654235839844,
0.16954658925533295,
-0.026265615597367287,
-0.011713625863194466,
-0.025644907727837563,
-0.007407497148960829,
-0.02550303004682064,
0.10090558975934982,
0.1294013410806656,
0.01921679638326168,
-0.06390310078859329,
-0.039078619331121445,
-0.06077705696225166,
-0.008595924824476242,
-0.061323706060647964,
0.059153057634830475,
0.018955357372760773,
-0.005986575968563557,
-0.03195764869451523,
0.047469109296798706,
-0.06376256048679352,
-0.05825977399945259,
0.010574703104794025,
-0.20286200940608978,
-0.1521214246749878,
0.005458497442305088,
0.08741406351327896,
-0.01396067626774311,
0.05628187209367752,
-0.0019079222111031413,
-0.0029863896779716015,
0.08260838687419891,
-0.02030239626765251,
-0.07490933686494827,
-0.06666035205125809,
0.09186477959156036,
-0.17081722617149353,
0.1766585111618042,
-0.03232965245842934,
0.025107553228735924,
0.14256949722766876,
0.050191160291433334,
-0.10890831798315048,
0.06518226116895676,
0.03907470777630806,
-0.05728655308485031,
0.00679123355075717,
0.13023218512535095,
-0.03004981391131878,
0.08009734749794006,
0.0408703051507473,
-0.12585115432739258,
-0.01938614435493946,
-0.07527001947164536,
-0.02483987994492054,
-0.01966194435954094,
-0.05457032471895218,
-0.044267114251852036,
0.11975893378257751,
0.19763976335525513,
-0.04218223690986633,
0.0025521493516862392,
-0.060464419424533844,
0.01717217266559601,
0.058490999042987823,
-0.017820322886109352,
-0.05998595058917999,
-0.26374825835227966,
0.0008293183636851609,
0.08817808330059052,
-0.006519087590277195,
-0.2610302269458771,
-0.08783864229917526,
-0.0025086316745728254,
-0.03645826876163483,
-0.10744258016347885,
0.08932945877313614,
0.08979803323745728,
0.04611853510141373,
-0.0649639144539833,
-0.031316179782152176,
-0.06646561622619629,
0.17030535638332367,
-0.1382666826248169,
-0.06668490916490555
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned128-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned128-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned128-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# t5-small-finetuned128-en-to-de
This model is a fine-tuned version of t5-small on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
[
"# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
74,
39,
6,
12,
8,
3,
103,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
-0.08020960539579391,
0.1339806765317917,
-0.0033827435690909624,
0.0869351178407669,
0.13309738039970398,
0.025282016023993492,
0.0943756178021431,
0.16219645738601685,
-0.11810790002346039,
0.060355160385370255,
0.06467720866203308,
0.06432444602251053,
0.06146895885467529,
0.11928745359182358,
-0.03411496430635452,
-0.22895190119743347,
-0.0018889415077865124,
-0.005835506599396467,
-0.0491192527115345,
0.10184066742658615,
0.11203839629888535,
-0.07551619410514832,
0.07989783585071564,
-0.010170976631343365,
-0.15790966153144836,
0.04625462740659714,
-0.035975366830825806,
-0.051658470183610916,
0.08972794562578201,
0.03422525152564049,
0.08339491486549377,
0.017605217173695564,
0.11721784621477127,
-0.22602027654647827,
-0.00013034297444391996,
0.08724229037761688,
0.01990438997745514,
0.07794451713562012,
0.05177105963230133,
-0.013135823421180248,
0.1057717427611351,
-0.16624131798744202,
0.09664440155029297,
0.02772963047027588,
-0.06979571282863617,
-0.13483040034770966,
-0.08821891248226166,
0.07592564821243286,
0.0788799524307251,
0.1018173098564148,
0.013430380262434483,
0.14687588810920715,
-0.07483388483524323,
0.08611313998699188,
0.21066626906394958,
-0.23777437210083008,
-0.037350017577409744,
0.042180199176073074,
0.04990245774388313,
0.074187271296978,
-0.10029780119657516,
-0.02856064774096012,
0.036080773919820786,
0.040377888828516006,
0.09170915186405182,
-0.016089053824543953,
-0.13528412580490112,
0.0051500494591891766,
-0.12319027632474899,
-0.026545841246843338,
0.18798430263996124,
0.03368932381272316,
-0.02860509417951107,
-0.10260536521673203,
-0.06456679850816727,
-0.12470807880163193,
-0.011610327288508415,
-0.024191493168473244,
0.03893483057618141,
-0.04444876313209534,
-0.03198349475860596,
-0.05076416954398155,
-0.07783946394920349,
-0.04735523462295532,
-0.012397931888699532,
0.06806374341249466,
0.04952462017536163,
0.013224954716861248,
-0.04138229787349701,
0.10285894572734833,
0.000035868877603206784,
-0.11614414304494858,
-0.025964941829442978,
0.004093031864613295,
-0.09071551263332367,
-0.05803851783275604,
-0.027987658977508545,
-0.06032779812812805,
-0.007349598687142134,
0.14106635749340057,
-0.0544428713619709,
0.07274509221315384,
0.0018461012514308095,
0.0003500480088405311,
-0.004667291883379221,
0.11872120946645737,
-0.04817318543791771,
-0.031332988291978836,
0.015345118008553982,
0.07525912672281265,
0.017582986503839493,
-0.010182554833590984,
-0.09349147975444794,
-0.02965797856450081,
0.09036724269390106,
0.07889934629201889,
-0.01932941935956478,
0.04302653670310974,
-0.029226772487163544,
-0.039811961352825165,
0.04862647503614426,
-0.1530320942401886,
0.03640254586935043,
-0.016415273770689964,
-0.08351258933544159,
-0.017508305609226227,
0.04327280446887016,
-0.016156699508428574,
-0.07120711356401443,
0.05276473984122276,
-0.06775667518377304,
-0.0014073261991143227,
-0.07244416326284409,
-0.07805950939655304,
0.04051865637302399,
-0.06945732980966568,
-0.006270101293921471,
-0.07097716629505157,
-0.20644035935401917,
-0.038024406880140305,
0.027076007798314095,
-0.06480500102043152,
-0.05356312543153763,
-0.04115191102027893,
-0.07072027027606964,
0.022767620161175728,
-0.01250499952584505,
0.14329709112644196,
-0.05163419246673584,
0.06380850076675415,
-0.010016925632953644,
0.024327674880623817,
0.023174181580543518,
0.05352648347616196,
-0.08554787188768387,
0.014970708638429642,
-0.10957290232181549,
0.09132301807403564,
-0.08430369943380356,
0.02625873312354088,
-0.12777496874332428,
-0.0933583453297615,
0.0072015756741166115,
-0.021239854395389557,
0.04736705496907234,
0.1200854629278183,
-0.1751057654619217,
-0.021254291757941246,
0.15205033123493195,
-0.059813350439071655,
-0.05823998525738716,
0.0957011803984642,
-0.04432874172925949,
0.021485747769474983,
0.06425351649522781,
0.15651382505893707,
0.12685634195804596,
-0.14720748364925385,
-0.0283662136644125,
0.028115911409258842,
0.0331619530916214,
-0.006687004119157791,
0.05570690333843231,
0.006621913984417915,
0.06228076294064522,
0.0055462270975112915,
-0.03178573027253151,
-0.008185259066522121,
-0.06300820410251617,
-0.08131307363510132,
-0.06120718643069267,
-0.07383986562490463,
0.016972165554761887,
0.03778525069355965,
0.025339001789689064,
-0.07830123603343964,
-0.12911222875118256,
0.11987055093050003,
0.14410407841205597,
-0.0661378800868988,
0.029871342703700066,
-0.07962285727262497,
0.01884372904896736,
-0.02424013428390026,
-0.017509691417217255,
-0.20091161131858826,
-0.1231643408536911,
0.03353185951709747,
-0.06183767318725586,
0.0489153116941452,
0.019017541781067848,
0.059088874608278275,
0.0546451173722744,
-0.05064063519239426,
-0.018424885347485542,
-0.06563707441091537,
0.0016621926333755255,
-0.08935247361660004,
-0.18754278123378754,
-0.05571544170379639,
-0.029552534222602844,
0.14079852402210236,
-0.2318703830242157,
0.02300873212516308,
0.013145431876182556,
0.12846998870372772,
0.023472877219319344,
-0.04922926053404808,
0.017728814855217934,
0.032724007964134216,
-0.021914655342698097,
-0.10051582008600235,
0.02878057397902012,
-0.0028129464481025934,
-0.06731709092855453,
-0.019832085818052292,
-0.1435105800628662,
0.04972204566001892,
0.0821552723646164,
0.06729431450366974,
-0.09751180559396744,
-0.002599342493340373,
-0.05763104930520058,
-0.05032606050372124,
-0.08565375208854675,
-0.013239909894764423,
0.18932363390922546,
0.012303626164793968,
0.13041071593761444,
-0.061635132879018784,
-0.08213154226541519,
0.005992493592202663,
0.011499078013002872,
-0.015959760174155235,
0.09997839480638504,
0.062380723655223846,
-0.11950506269931793,
0.1000514104962349,
0.06087552383542061,
-0.02364315278828144,
0.13863709568977356,
-0.050314921885728836,
-0.09910321980714798,
-0.013976050540804863,
0.009362070821225643,
-0.010799378156661987,
0.09475184231996536,
-0.09233667701482773,
-0.0012004576856270432,
0.04069985821843147,
0.020187705755233765,
0.038917943835258484,
-0.1648225039243698,
-0.0003886064514517784,
0.03223216533660889,
-0.04973684251308441,
-0.01195947453379631,
-0.027790116146206856,
0.036058489233255386,
0.09169204533100128,
0.011610644869506359,
-0.01197370421141386,
0.02428375743329525,
-0.006484984885901213,
-0.09750549495220184,
0.17717882990837097,
-0.12084095925092697,
-0.18559925258159637,
-0.12421370297670364,
0.00352701754309237,
-0.03708648681640625,
-0.042235117405653,
0.01827663742005825,
-0.08294647186994553,
-0.06377311795949936,
-0.10665254294872284,
0.010155589319765568,
-0.055957596749067307,
-0.021578378975391388,
0.030121907591819763,
0.03508313000202179,
0.06707026809453964,
-0.1387321650981903,
0.012062860652804375,
0.0043041519820690155,
-0.0871531218290329,
0.0025155283510684967,
0.031014002859592438,
0.10093814879655838,
0.1393730491399765,
-0.020340630784630775,
0.02064940519630909,
-0.04426092281937599,
0.18844765424728394,
-0.06998080760240555,
0.026768432930111885,
0.11049880087375641,
0.010829024948179722,
0.057948097586631775,
0.12043865770101547,
0.02796247787773609,
-0.08310674130916595,
0.029013097286224365,
0.06702493131160736,
-0.019964715465903282,
-0.2777654230594635,
-0.04586805775761604,
-0.032124754041433334,
-0.05360230430960655,
0.09874093532562256,
0.06204501539468765,
0.03399868309497833,
0.025762617588043213,
-0.016658058390021324,
0.06408735364675522,
-0.0028353072702884674,
0.0803096741437912,
0.10818048566579819,
0.03815671056509018,
0.0886366069316864,
-0.05844720080494881,
-0.013393345288932323,
0.0779556855559349,
0.037391453981399536,
0.2491808831691742,
-0.04119351878762245,
0.16381458938121796,
0.02638261765241623,
0.1247100681066513,
-0.01331640500575304,
0.03191883862018585,
0.020914291962981224,
0.012934122234582901,
0.011938287876546383,
-0.066597118973732,
-0.010985802859067917,
0.028819091618061066,
-0.01673031412065029,
0.013921307399868965,
-0.08425341546535492,
0.03240744024515152,
0.010986424051225185,
0.25252166390419006,
0.04407632350921631,
-0.2926322817802429,
-0.07203977555036545,
0.011406117118895054,
-0.04288777336478233,
-0.0588187649846077,
0.011352604255080223,
0.11146766692399979,
-0.12214459478855133,
0.07504002004861832,
-0.04451735317707062,
0.09672100096940994,
-0.06494064629077911,
-0.01419456209987402,
0.04769935831427574,
0.12373515963554382,
-0.005659734830260277,
0.09948287159204483,
-0.2149471789598465,
0.20301568508148193,
0.029460852965712547,
0.09855733066797256,
-0.07520495355129242,
0.03318985924124718,
0.0039007999002933502,
0.0826709121465683,
0.11313503235578537,
0.0009336637449450791,
-0.0589226596057415,
-0.13711294531822205,
-0.1084023118019104,
0.02185564488172531,
0.10468827188014984,
0.0017616560216993093,
0.08446868509054184,
-0.04769027605652809,
-0.009305348619818687,
0.049701619893312454,
-0.0975692942738533,
-0.14917205274105072,
-0.1495409905910492,
0.031738389283418655,
0.00993905495852232,
-0.061448801308870316,
-0.06607888638973236,
-0.1026289239525795,
-0.01617518812417984,
0.1958310902118683,
0.009280126541852951,
-0.06151727959513664,
-0.14773032069206238,
0.07719120383262634,
0.12169891595840454,
-0.07463288307189941,
0.0038286102935671806,
0.022148599848151207,
0.13074491918087006,
0.03179197758436203,
-0.11528998613357544,
0.058016106486320496,
-0.061167676001787186,
-0.14100061357021332,
-0.04548227787017822,
0.13353577256202698,
0.04816748574376106,
0.05739981681108475,
-0.013141453266143799,
0.009479106403887272,
0.016426166519522667,
-0.07351909577846527,
0.013159525580704212,
0.09253523498773575,
0.080555260181427,
0.060079123824834824,
-0.08635455369949341,
-0.003992500714957714,
-0.04221298173069954,
-0.029063936322927475,
0.1557566225528717,
0.1709316521883011,
-0.08479128777980804,
0.10610829293727875,
0.057377319782972336,
-0.10073117911815643,
-0.19469033181667328,
0.06123385578393936,
0.08699613064527512,
0.008143468759953976,
0.03589889034628868,
-0.205245703458786,
0.09500548243522644,
0.10838881880044937,
-0.0004382136685308069,
0.07002226263284683,
-0.3548920750617981,
-0.12964391708374023,
0.06953732669353485,
0.08788160979747772,
-0.010320017114281654,
-0.13612514734268188,
-0.037846360355615616,
-0.0286959670484066,
-0.16716991364955902,
0.12393718957901001,
-0.07893925905227661,
0.10964788496494293,
-0.0096893934533,
0.10694848001003265,
0.02369813434779644,
-0.037810202687978745,
0.1127082109451294,
0.051964033395051956,
0.06741560995578766,
-0.06646768748760223,
0.029896045103669167,
0.1086096540093422,
-0.07123761624097824,
0.0800253227353096,
-0.036569006741046906,
0.059252336621284485,
-0.17029157280921936,
-0.023656226694583893,
-0.06445658951997757,
0.06650949269533157,
-0.05268704518675804,
-0.05517583340406418,
-0.05790785700082779,
0.04587837681174278,
0.07677248865365982,
-0.04563533142209053,
0.07613546401262283,
0.022773537784814835,
0.06222048029303551,
0.09691585600376129,
0.10416372865438461,
-0.0195968896150589,
-0.12545646727085114,
-0.012118969112634659,
-0.021212397143244743,
0.03632723167538643,
-0.1487971395254135,
0.02482893504202366,
0.12812288105487823,
0.04192063957452774,
0.13154084980487823,
0.025009052827954292,
-0.06204521656036377,
-0.012359208427369595,
0.029336033388972282,
-0.10003456473350525,
-0.13753215968608856,
-0.01623864844441414,
-0.03154279664158821,
-0.12621735036373138,
0.009064090438187122,
0.10411994159221649,
-0.06344670802354813,
-0.020174767822027206,
-0.011148540303111076,
0.04095666855573654,
-0.01798648200929165,
0.18331579864025116,
0.048791494220495224,
0.059688352048397064,
-0.08929812908172607,
0.1356881707906723,
0.09196335077285767,
-0.08714710921049118,
0.0661177784204483,
0.1051512137055397,
-0.08327699452638626,
-0.03253401070833206,
0.08540679514408112,
0.13942043483257294,
-0.04711197316646576,
-0.0499175600707531,
-0.0675891786813736,
-0.08594518154859543,
0.07497876137495041,
0.12323088198900223,
0.03562070056796074,
-0.0038677924312651157,
-0.02652880735695362,
0.004495453089475632,
-0.15397098660469055,
0.09422679245471954,
0.035025544464588165,
0.06920216232538223,
-0.13506309688091278,
0.10844148695468903,
0.01658317632973194,
0.05671612545847893,
-0.014633425511419773,
0.01620342768728733,
-0.07044443488121033,
-0.014499098062515259,
-0.12988993525505066,
0.005078453570604324,
-0.014724167063832283,
0.015463157556951046,
-0.02573099359869957,
-0.03329648822546005,
-0.04061831906437874,
0.05904611572623253,
-0.06575893610715866,
-0.0681242048740387,
-0.001207405817694962,
0.053133655339479446,
-0.14025045931339264,
-0.015102104283869267,
0.017191793769598007,
-0.0950324609875679,
0.0766364187002182,
0.04990334436297417,
0.0045461589470505714,
0.03235211223363876,
-0.07411476224660873,
-0.0222641509026289,
0.02825092524290085,
0.04687601327896118,
0.07191840559244156,
-0.09262745082378387,
-0.005233153700828552,
-0.014967527240514755,
0.031586915254592896,
0.020819958299398422,
0.06261943280696869,
-0.11582598835229874,
-0.016039002686738968,
-0.07807435095310211,
-0.04920579865574837,
-0.07116605341434479,
0.06632911413908005,
0.10005082935094833,
0.02008982002735138,
0.15122027695178986,
-0.07056515663862228,
0.04982072860002518,
-0.20360413193702698,
-0.03337414935231209,
0.004621809348464012,
-0.032535817474126816,
-0.034913431853055954,
-0.0230835173279047,
0.08073709905147552,
-0.057879429310560226,
0.1317404955625534,
0.002393158385530114,
0.06854239851236343,
0.0465923547744751,
-0.027892043814063072,
-0.05010255053639412,
0.004943295381963253,
0.15590012073516846,
0.049618128687143326,
-0.02223321422934532,
0.09074575453996658,
-0.02643810771405697,
0.07627405226230621,
0.05163662135601044,
0.1902768611907959,
0.14003892242908478,
-0.008618111722171307,
0.06643141806125641,
0.059361476451158524,
-0.124261774122715,
-0.14807608723640442,
0.10532581061124802,
-0.031143615022301674,
0.130814790725708,
-0.049717988818883896,
0.158839151263237,
0.10095673054456711,
-0.1561897248029709,
0.0635424330830574,
-0.05686052888631821,
-0.1179717406630516,
-0.1186666190624237,
-0.06654734164476395,
-0.083839550614357,
-0.09962266683578491,
0.009893333539366722,
-0.1251889020204544,
0.05279770866036415,
0.07181503623723984,
0.022637614980340004,
0.013552600517868996,
0.13735635578632355,
-0.02174343168735504,
0.0006662060040980577,
0.04687417298555374,
0.009894495829939842,
-0.004969549365341663,
-0.06903347373008728,
-0.028977928683161736,
0.061871085315942764,
0.01938687451183796,
0.07632078975439072,
-0.028118757531046867,
0.03271449729800224,
0.04487134888768196,
-0.03127644583582878,
-0.0675007700920105,
0.014299392700195312,
0.024752847850322723,
0.029934121295809746,
0.050119031220674515,
0.06262200325727463,
-0.006708100438117981,
-0.03387344628572464,
0.26983842253685,
-0.059538859874010086,
-0.1063893586397171,
-0.12761013209819794,
0.18079382181167603,
0.046550095081329346,
-0.02246970310807228,
0.08485212922096252,
-0.11274909973144531,
-0.012029353529214859,
0.17159326374530792,
0.16609913110733032,
-0.030389927327632904,
-0.020510060712695122,
-0.010660001076757908,
-0.011016858741641045,
-0.03911810368299484,
0.12427179515361786,
0.11245053261518478,
0.044892873615026474,
-0.060709401965141296,
-0.03085024654865265,
-0.007857616990804672,
-0.02946912683546543,
-0.08482396602630615,
0.09009341895580292,
0.009313808754086494,
0.008519037626683712,
-0.011982114054262638,
0.06671142578125,
0.0009617547621019185,
-0.18681399524211884,
0.02188427560031414,
-0.17011035978794098,
-0.17219100892543793,
-0.022821752354502678,
0.09342272579669952,
-0.02345976233482361,
0.03493763878941536,
0.0009378176182508469,
-0.004998312797397375,
0.14918252825737,
-0.010533316060900688,
-0.10723583400249481,
-0.08612777292728424,
0.08327208459377289,
-0.0998031347990036,
0.19978149235248566,
-0.005582168698310852,
0.0679573118686676,
0.10684096813201904,
0.014698794111609459,
-0.14981196820735931,
0.045671358704566956,
0.060972899198532104,
-0.02398400567471981,
0.03585872799158096,
0.1697588711977005,
-0.04854457452893257,
0.0802120715379715,
0.031839195638895035,
-0.10526493936777115,
-0.020462585613131523,
-0.03469584509730339,
-0.006231307052075863,
-0.07336646318435669,
-0.013410866260528564,
-0.059753935784101486,
0.14954371750354767,
0.19882164895534515,
-0.028941040858626366,
0.013199076056480408,
-0.09674437344074249,
0.004675372038036585,
0.048611391335725784,
0.0774431824684143,
-0.014323358424007893,
-0.18386542797088623,
0.016979707404971123,
0.0030885778833180666,
0.05297994613647461,
-0.23371706902980804,
-0.08555186539888382,
0.047728005796670914,
-0.05776224657893181,
-0.07871709764003754,
0.12969230115413666,
0.0748501867055893,
0.04782041907310486,
-0.03898893669247627,
-0.08006827533245087,
-0.03405943885445595,
0.1387293040752411,
-0.16862493753433228,
-0.04002987593412399
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned16-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 136 | 2.1906 | 23.3821 | 12.956 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned16-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned16-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned16-en-to-de
=============================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
74,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.0889618918299675,
0.10018717497587204,
-0.0038034876342862844,
0.0875915065407753,
0.10987268388271332,
-0.006065878085792065,
0.1548226922750473,
0.15311281383037567,
-0.12781468033790588,
0.05975473299622536,
0.14377059042453766,
0.13524594902992249,
0.04719994217157364,
0.1622452586889267,
-0.07003141194581985,
-0.2509947121143341,
0.04694842919707298,
0.05292709171772003,
-0.024515189230442047,
0.1250804364681244,
0.08556091785430908,
-0.12100115418434143,
0.09253433346748352,
0.026408683508634567,
-0.18699954450130463,
-0.006213481072336435,
-0.0036945375613868237,
-0.08250162750482559,
0.10384908318519592,
0.03392484784126282,
0.0943026915192604,
0.0359443798661232,
0.050692059099674225,
-0.16067081689834595,
0.007637455593794584,
0.06008118763566017,
0.005335124209523201,
0.09981442987918854,
0.05680391192436218,
-0.011764120310544968,
0.11047093570232391,
-0.07125017791986465,
0.06808391958475113,
0.02578830160200596,
-0.1286083608865738,
-0.2486647665500641,
-0.10707380622625351,
0.03615095466375351,
0.06913943588733673,
0.08334584534168243,
-0.0034911809489130974,
0.17422205209732056,
-0.024854348972439766,
0.11302846670150757,
0.2573734521865845,
-0.30541113018989563,
-0.05738135054707527,
-0.011187662370502949,
0.04940136894583702,
0.07208728045225143,
-0.07599978148937225,
-0.0335182324051857,
0.026652071624994278,
0.04799387976527214,
0.14402137696743011,
-0.013358701020479202,
-0.030273912474513054,
-0.015802348032593727,
-0.1358109563589096,
-0.06817124038934708,
0.16067858040332794,
0.0331592783331871,
-0.0404660627245903,
-0.06097012758255005,
-0.07883435487747192,
-0.1956735998392105,
-0.049151234328746796,
0.005347377620637417,
0.04561522603034973,
-0.03460345044732094,
-0.09236953407526016,
-0.011077901348471642,
-0.06884627789258957,
-0.044534437358379364,
-0.0591474212706089,
0.14221684634685516,
0.04652761295437813,
0.020285094156861305,
-0.06731901317834854,
0.07181817293167114,
-0.037953414022922516,
-0.1601819396018982,
-0.01698904298245907,
0.01943247765302658,
0.009004397317767143,
-0.037600353360176086,
-0.038418397307395935,
-0.12897749245166779,
0.009250171482563019,
0.16273121535778046,
-0.10580261051654816,
0.0819801464676857,
-0.03743277117609978,
0.03924175724387169,
-0.07957291603088379,
0.18343903124332428,
-0.013169340789318085,
0.015672575682401657,
0.011536928825080395,
0.06097846478223801,
0.051767125725746155,
-0.0281629990786314,
-0.11016197502613068,
0.03777598589658737,
0.10943955928087234,
0.02440483681857586,
-0.03822707757353783,
0.07109023630619049,
-0.04037937894463539,
-0.022119438275694847,
0.04845936968922615,
-0.10463885962963104,
0.03516760841012001,
-0.017063098028302193,
-0.06567388772964478,
-0.0033286684192717075,
0.022152649238705635,
0.00037023439654149115,
-0.04419801011681557,
0.09527205675840378,
-0.08407957851886749,
0.022050870582461357,
-0.08436626940965652,
-0.13485689461231232,
0.034500665962696075,
-0.08937765657901764,
0.002971746027469635,
-0.10042174160480499,
-0.14661282300949097,
-0.008515236899256706,
0.05994325503706932,
-0.0475052110850811,
-0.04512200132012367,
-0.05026707053184509,
-0.09856995195150375,
0.050555892288684845,
-0.022451147437095642,
0.07744697481393814,
-0.07160860300064087,
0.08438809216022491,
0.04234414920210838,
0.0809149444103241,
-0.05101334676146507,
0.046328771859407425,
-0.08941980451345444,
0.0432528480887413,
-0.22246547043323517,
0.055213361978530884,
-0.05586071312427521,
0.09496485441923141,
-0.10505664348602295,
-0.10117320716381073,
0.014916041865944862,
-0.024406567215919495,
0.10363724827766418,
0.083235003054142,
-0.16368018090724945,
-0.0705142468214035,
0.2040679156780243,
-0.08537935465574265,
-0.132719025015831,
0.12734933197498322,
-0.04489300400018692,
0.007412342354655266,
0.0514046773314476,
0.2173624187707901,
0.05093968287110329,
-0.10109665989875793,
-0.013638305477797985,
-0.04937012493610382,
0.041749563068151474,
-0.056164953857660294,
0.06600240617990494,
0.007654708344489336,
0.07759273797273636,
0.0060957917012274265,
0.03418958932161331,
0.02877034805715084,
-0.08474141359329224,
-0.07506627589464188,
-0.05957686901092529,
-0.07280667126178741,
0.009806346148252487,
0.03671940788626671,
0.0699932724237442,
-0.1340281367301941,
-0.10551224648952484,
0.06443066149950027,
0.0730585902929306,
-0.08123745024204254,
0.05893176421523094,
-0.11029735207557678,
0.0983676016330719,
-0.05753879249095917,
0.004173141438513994,
-0.18576739728450775,
-0.012712741270661354,
0.034700099378824234,
-0.007434891536831856,
0.027131114155054092,
-0.043978672474622726,
0.07337325811386108,
0.06556110084056854,
-0.034277208149433136,
-0.02971459925174713,
-0.019985290244221687,
0.003781670704483986,
-0.11572112888097763,
-0.19584612548351288,
-0.0321429967880249,
-0.035036493092775345,
0.07160268723964691,
-0.16012562811374664,
0.04448380693793297,
0.06861530989408493,
0.11636024713516235,
0.042730044573545456,
-0.021229762583971024,
-0.01255827210843563,
0.07361818850040436,
-0.051086924970149994,
-0.070628322660923,
0.05500299483537674,
0.02782449685037136,
-0.08551867306232452,
0.0018194757867604494,
-0.16175806522369385,
0.154799222946167,
0.14245985448360443,
-0.025168202817440033,
-0.0554656982421875,
0.0033412091434001923,
-0.05259142443537712,
-0.02913234569132328,
-0.017089268192648888,
0.01796439103782177,
0.16147151589393616,
0.016629355028271675,
0.16156162321567535,
-0.0970781072974205,
-0.05230238661170006,
0.05127745494246483,
-0.03647667169570923,
-0.004355373326689005,
0.10980631411075592,
0.03899703547358513,
-0.11948812752962112,
0.13681532442569733,
0.14531607925891876,
-0.06026061624288559,
0.13393163681030273,
-0.06679556518793106,
-0.06732750684022903,
-0.029002675786614418,
-0.006800261326134205,
0.03426207974553108,
0.08658391982316971,
-0.11938536167144775,
-0.016079893335700035,
0.033992163836956024,
0.038633279502391815,
0.010428558103740215,
-0.18911288678646088,
0.01215033046901226,
0.03870466351509094,
-0.056264664977788925,
-0.04045813903212547,
-0.00988764688372612,
0.015177085064351559,
0.10035194456577301,
0.019329704344272614,
-0.06183362752199173,
0.03273870423436165,
0.014217282645404339,
-0.06118536740541458,
0.1749614179134369,
-0.10991654545068741,
-0.1608627736568451,
-0.12575273215770721,
-0.10769690573215485,
-0.05757590010762215,
-0.0019224989227950573,
0.08612291514873505,
-0.07656458020210266,
-0.05460170656442642,
-0.10109291225671768,
-0.017100568860769272,
-0.01290886290371418,
0.02786404639482498,
0.06264768540859222,
-0.00901100318878889,
0.07225117832422256,
-0.1141415387392044,
-0.028893403708934784,
-0.014110361225903034,
-0.0004329607472755015,
0.06530620157718658,
0.01298973336815834,
0.11306057870388031,
0.12546204030513763,
-0.03624982759356499,
0.04133879393339157,
-0.037483811378479004,
0.23114866018295288,
-0.06967732310295105,
-0.014262578450143337,
0.12877319753170013,
-0.01002978254109621,
0.08610434830188751,
0.11538460105657578,
0.04814082384109497,
-0.09886609762907028,
0.00244920770637691,
0.010083095170557499,
-0.04951471835374832,
-0.22090914845466614,
-0.01716863177716732,
-0.051388904452323914,
0.01471567340195179,
0.104718416929245,
0.03373697027564049,
0.04137340560555458,
0.04467182606458664,
0.01906985603272915,
0.07308189570903778,
-0.013730555772781372,
0.11503862589597702,
0.12489750981330872,
0.06437566876411438,
0.14160650968551636,
-0.06303827464580536,
-0.028852084651589394,
0.050609856843948364,
0.007656233385205269,
0.22086907923221588,
0.007228535134345293,
0.20208941400051117,
0.046651940792798996,
0.143122136592865,
0.0326094925403595,
0.06933867186307907,
-0.018387332558631897,
-0.012851139530539513,
-0.012561392039060593,
-0.04697495326399803,
-0.036881256848573685,
0.021444279700517654,
-0.07183002680540085,
0.027003398165106773,
-0.10479747503995895,
0.0204644612967968,
0.05386028811335564,
0.2982966899871826,
0.025294557213783264,
-0.36833131313323975,
-0.10606665909290314,
0.010138831101357937,
-0.06051772087812424,
-0.04396027326583862,
0.018265828490257263,
0.0825275331735611,
-0.06561599671840668,
0.0809062048792839,
-0.08091625571250916,
0.11449533700942993,
-0.04751993715763092,
0.04110082611441612,
0.0490453727543354,
0.09785151481628418,
-0.00889129564166069,
0.045181747525930405,
-0.3011925220489502,
0.2654477655887604,
0.024175632745027542,
0.07286050915718079,
-0.07133463770151138,
0.017550664022564888,
0.00662947865203023,
0.05419699102640152,
0.04937662184238434,
-0.014630620367825031,
-0.12910081446170807,
-0.14813919365406036,
-0.08631867915391922,
0.011116819456219673,
0.09800343215465546,
0.027759475633502007,
0.12220645695924759,
-0.017010929062962532,
-0.00002501258859410882,
0.046614088118076324,
-0.036256831139326096,
-0.04672054946422577,
-0.10230942815542221,
0.024601366370916367,
0.05529299005866051,
-0.007192531600594521,
-0.06919382512569427,
-0.09014382213354111,
-0.07264269888401031,
0.17319455742835999,
0.009034284390509129,
-0.06025511398911476,
-0.12295106053352356,
0.037891000509262085,
0.08032338321208954,
-0.08426667749881744,
0.03359789401292801,
-0.013128218241035938,
0.11393196135759354,
0.009590060450136662,
-0.08163774758577347,
0.12319160252809525,
-0.051789022982120514,
-0.17225110530853271,
-0.04307409003376961,
0.10639934241771698,
0.004715582821518183,
0.06030649691820145,
-0.013616231270134449,
0.03849664703011513,
-0.03048780746757984,
-0.07237827032804489,
0.026521455496549606,
-0.003804456442594528,
0.0829302966594696,
-0.03673078864812851,
-0.009207946248352528,
0.023086044937372208,
-0.06286559998989105,
-0.026891257613897324,
0.17408393323421478,
0.2580972909927368,
-0.08685941249132156,
0.06270705908536911,
0.03934316337108612,
-0.055402252823114395,
-0.1551039069890976,
0.012106400914490223,
0.05088965222239494,
-0.002042846754193306,
-0.009857390075922012,
-0.17474021017551422,
0.03459995612502098,
0.09835419058799744,
-0.014358550310134888,
0.08447948098182678,
-0.3101573586463928,
-0.13019220530986786,
0.08451607078313828,
0.1248011663556099,
0.09267030656337738,
-0.16537512838840485,
-0.0445391982793808,
-0.03659622743725777,
-0.15378986299037933,
0.13217517733573914,
-0.11072412133216858,
0.11804161965847015,
-0.030744118615984917,
0.11028193682432175,
0.008513242937624454,
-0.05913268402218819,
0.11324562877416611,
-0.006611996330320835,
0.08476176112890244,
-0.07566628605127335,
0.03790871798992157,
0.10735906660556793,
-0.08159590512514114,
0.04977639392018318,
-0.09693151712417603,
0.03211710974574089,
-0.1041845977306366,
-0.01444699615240097,
-0.057022400200366974,
-0.0006707028369419277,
-0.02680104412138462,
-0.03217508643865585,
-0.048764459788799286,
-0.0003845257742796093,
0.07141455262899399,
-0.02152969501912594,
0.20483402907848358,
0.015946265310049057,
0.13606402277946472,
0.16108080744743347,
0.09986325353384018,
-0.132023885846138,
-0.04206868261098862,
0.010358831845223904,
-0.028196940198540688,
0.04948762431740761,
-0.1694498211145401,
0.04418465495109558,
0.1406477689743042,
-0.00015520719171036035,
0.11992725729942322,
0.07032907754182816,
-0.05864020437002182,
0.027852090075612068,
0.05507712811231613,
-0.16705912351608276,
-0.10706877708435059,
0.011340298689901829,
0.051287151873111725,
-0.10960327088832855,
0.06106821820139885,
0.13331277668476105,
-0.05658911541104317,
-0.01304624043405056,
0.00838756188750267,
0.018102802336215973,
-0.022916948422789574,
0.17573466897010803,
0.022673746570944786,
0.062439367175102234,
-0.10821185261011124,
0.08385340869426727,
0.05282314121723175,
-0.1086616963148117,
0.05389882251620293,
0.1233585998415947,
-0.0969887375831604,
-0.025160573422908783,
0.04061412438750267,
0.16254658997058868,
-0.05832265317440033,
-0.05789635330438614,
-0.15426459908485413,
-0.12379501760005951,
0.1044270321726799,
0.19633923470973969,
0.059792764484882355,
0.0074940999038517475,
-0.035445984452962875,
0.0010553509928286076,
-0.12584267556667328,
0.08493409305810928,
0.04083512723445892,
0.08571337908506393,
-0.12995398044586182,
0.12459170818328857,
-0.012515992857515812,
0.03594915568828583,
-0.014508889056742191,
0.020290417596697807,
-0.11302360892295837,
0.008788900449872017,
-0.1400783658027649,
0.003786991583183408,
-0.050736553966999054,
-0.003594272769987583,
-0.011953326873481274,
-0.03968077898025513,
-0.06483050435781479,
0.019401853904128075,
-0.11472497880458832,
-0.03059404157102108,
0.012182301841676235,
0.026761310175061226,
-0.11252160370349884,
-0.01770937070250511,
0.008882529102265835,
-0.08476942032575607,
0.07711406797170639,
0.04965311661362648,
-0.014612595550715923,
0.028151432052254677,
-0.0427568145096302,
0.0005170538206584752,
0.060175348073244095,
0.005754841025918722,
0.076975017786026,
-0.09736845642328262,
-0.02463458850979805,
0.013580533675849438,
0.03075076825916767,
0.027737542986869812,
0.10168669372797012,
-0.11851734668016434,
0.005333000794053078,
-0.00827743485569954,
-0.0640556812286377,
-0.06912565976381302,
0.05891118571162224,
0.10030189156532288,
0.015579627826809883,
0.18520799279212952,
-0.07800532877445221,
0.02439546026289463,
-0.1891445368528366,
0.0029481006786227226,
0.017541419714689255,
-0.14603017270565033,
-0.0557294562458992,
-0.04303717240691185,
0.06539062410593033,
-0.07098278403282166,
0.12075351923704147,
-0.0011569955386221409,
0.021919503808021545,
0.050985440611839294,
-0.04577350988984108,
-0.04533423110842705,
0.015661561861634254,
0.17541365325450897,
0.033101532608270645,
-0.0444985069334507,
0.06799964606761932,
0.01606045663356781,
0.08962514251470566,
0.1074957475066185,
0.1960233598947525,
0.13658182322978973,
0.042333297431468964,
0.10927547514438629,
0.03039924055337906,
-0.032990068197250366,
-0.1804201751947403,
0.06466136872768402,
-0.043692849576473236,
0.1490284949541092,
-0.010319146327674389,
0.19452378153800964,
0.12665902078151703,
-0.13991506397724152,
0.04713459312915802,
-0.040486134588718414,
-0.0859677866101265,
-0.108208067715168,
-0.08314966410398483,
-0.09306423366069794,
-0.15479591488838196,
-0.0073462058790028095,
-0.1201031357049942,
0.06425068527460098,
0.0529496893286705,
0.020022930577397346,
0.0007071530562825501,
0.12408716976642609,
0.024245090782642365,
0.013213171623647213,
0.05724010244011879,
-0.007572897244244814,
-0.042386844754219055,
-0.05228404700756073,
-0.07993343472480774,
0.013838911429047585,
0.002043097512796521,
0.05337490513920784,
0.006395380012691021,
-0.012339613400399685,
0.040672678500413895,
-0.026810528710484505,
-0.11085304617881775,
0.015736492350697517,
0.03723237290978432,
0.054509811103343964,
0.030476436018943787,
0.011228226125240326,
-0.005428374279290438,
-0.011219194158911705,
0.1924048364162445,
-0.08198820054531097,
-0.07071993499994278,
-0.11487160623073578,
0.22960267961025238,
0.02375829964876175,
-0.03510696440935135,
0.02668762393295765,
-0.062320683151483536,
-0.01713687554001808,
0.19934654235839844,
0.16954658925533295,
-0.026265615597367287,
-0.011713625863194466,
-0.025644907727837563,
-0.007407497148960829,
-0.02550303004682064,
0.10090558975934982,
0.1294013410806656,
0.01921679638326168,
-0.06390310078859329,
-0.039078619331121445,
-0.06077705696225166,
-0.008595924824476242,
-0.061323706060647964,
0.059153057634830475,
0.018955357372760773,
-0.005986575968563557,
-0.03195764869451523,
0.047469109296798706,
-0.06376256048679352,
-0.05825977399945259,
0.010574703104794025,
-0.20286200940608978,
-0.1521214246749878,
0.005458497442305088,
0.08741406351327896,
-0.01396067626774311,
0.05628187209367752,
-0.0019079222111031413,
-0.0029863896779716015,
0.08260838687419891,
-0.02030239626765251,
-0.07490933686494827,
-0.06666035205125809,
0.09186477959156036,
-0.17081722617149353,
0.1766585111618042,
-0.03232965245842934,
0.025107553228735924,
0.14256949722766876,
0.050191160291433334,
-0.10890831798315048,
0.06518226116895676,
0.03907470777630806,
-0.05728655308485031,
0.00679123355075717,
0.13023218512535095,
-0.03004981391131878,
0.08009734749794006,
0.0408703051507473,
-0.12585115432739258,
-0.01938614435493946,
-0.07527001947164536,
-0.02483987994492054,
-0.01966194435954094,
-0.05457032471895218,
-0.044267114251852036,
0.11975893378257751,
0.19763976335525513,
-0.04218223690986633,
0.0025521493516862392,
-0.060464419424533844,
0.01717217266559601,
0.058490999042987823,
-0.017820322886109352,
-0.05998595058917999,
-0.26374825835227966,
0.0008293183636851609,
0.08817808330059052,
-0.006519087590277195,
-0.2610302269458771,
-0.08783864229917526,
-0.0025086316745728254,
-0.03645826876163483,
-0.10744258016347885,
0.08932945877313614,
0.08979803323745728,
0.04611853510141373,
-0.0649639144539833,
-0.031316179782152176,
-0.06646561622619629,
0.17030535638332367,
-0.1382666826248169,
-0.06668490916490555
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned300-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 136 | 1.1454 | 14.2319 | 17.8329 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned300-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned300-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned300-en-to-de
==============================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
74,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.0889618918299675,
0.10018717497587204,
-0.0038034876342862844,
0.0875915065407753,
0.10987268388271332,
-0.006065878085792065,
0.1548226922750473,
0.15311281383037567,
-0.12781468033790588,
0.05975473299622536,
0.14377059042453766,
0.13524594902992249,
0.04719994217157364,
0.1622452586889267,
-0.07003141194581985,
-0.2509947121143341,
0.04694842919707298,
0.05292709171772003,
-0.024515189230442047,
0.1250804364681244,
0.08556091785430908,
-0.12100115418434143,
0.09253433346748352,
0.026408683508634567,
-0.18699954450130463,
-0.006213481072336435,
-0.0036945375613868237,
-0.08250162750482559,
0.10384908318519592,
0.03392484784126282,
0.0943026915192604,
0.0359443798661232,
0.050692059099674225,
-0.16067081689834595,
0.007637455593794584,
0.06008118763566017,
0.005335124209523201,
0.09981442987918854,
0.05680391192436218,
-0.011764120310544968,
0.11047093570232391,
-0.07125017791986465,
0.06808391958475113,
0.02578830160200596,
-0.1286083608865738,
-0.2486647665500641,
-0.10707380622625351,
0.03615095466375351,
0.06913943588733673,
0.08334584534168243,
-0.0034911809489130974,
0.17422205209732056,
-0.024854348972439766,
0.11302846670150757,
0.2573734521865845,
-0.30541113018989563,
-0.05738135054707527,
-0.011187662370502949,
0.04940136894583702,
0.07208728045225143,
-0.07599978148937225,
-0.0335182324051857,
0.026652071624994278,
0.04799387976527214,
0.14402137696743011,
-0.013358701020479202,
-0.030273912474513054,
-0.015802348032593727,
-0.1358109563589096,
-0.06817124038934708,
0.16067858040332794,
0.0331592783331871,
-0.0404660627245903,
-0.06097012758255005,
-0.07883435487747192,
-0.1956735998392105,
-0.049151234328746796,
0.005347377620637417,
0.04561522603034973,
-0.03460345044732094,
-0.09236953407526016,
-0.011077901348471642,
-0.06884627789258957,
-0.044534437358379364,
-0.0591474212706089,
0.14221684634685516,
0.04652761295437813,
0.020285094156861305,
-0.06731901317834854,
0.07181817293167114,
-0.037953414022922516,
-0.1601819396018982,
-0.01698904298245907,
0.01943247765302658,
0.009004397317767143,
-0.037600353360176086,
-0.038418397307395935,
-0.12897749245166779,
0.009250171482563019,
0.16273121535778046,
-0.10580261051654816,
0.0819801464676857,
-0.03743277117609978,
0.03924175724387169,
-0.07957291603088379,
0.18343903124332428,
-0.013169340789318085,
0.015672575682401657,
0.011536928825080395,
0.06097846478223801,
0.051767125725746155,
-0.0281629990786314,
-0.11016197502613068,
0.03777598589658737,
0.10943955928087234,
0.02440483681857586,
-0.03822707757353783,
0.07109023630619049,
-0.04037937894463539,
-0.022119438275694847,
0.04845936968922615,
-0.10463885962963104,
0.03516760841012001,
-0.017063098028302193,
-0.06567388772964478,
-0.0033286684192717075,
0.022152649238705635,
0.00037023439654149115,
-0.04419801011681557,
0.09527205675840378,
-0.08407957851886749,
0.022050870582461357,
-0.08436626940965652,
-0.13485689461231232,
0.034500665962696075,
-0.08937765657901764,
0.002971746027469635,
-0.10042174160480499,
-0.14661282300949097,
-0.008515236899256706,
0.05994325503706932,
-0.0475052110850811,
-0.04512200132012367,
-0.05026707053184509,
-0.09856995195150375,
0.050555892288684845,
-0.022451147437095642,
0.07744697481393814,
-0.07160860300064087,
0.08438809216022491,
0.04234414920210838,
0.0809149444103241,
-0.05101334676146507,
0.046328771859407425,
-0.08941980451345444,
0.0432528480887413,
-0.22246547043323517,
0.055213361978530884,
-0.05586071312427521,
0.09496485441923141,
-0.10505664348602295,
-0.10117320716381073,
0.014916041865944862,
-0.024406567215919495,
0.10363724827766418,
0.083235003054142,
-0.16368018090724945,
-0.0705142468214035,
0.2040679156780243,
-0.08537935465574265,
-0.132719025015831,
0.12734933197498322,
-0.04489300400018692,
0.007412342354655266,
0.0514046773314476,
0.2173624187707901,
0.05093968287110329,
-0.10109665989875793,
-0.013638305477797985,
-0.04937012493610382,
0.041749563068151474,
-0.056164953857660294,
0.06600240617990494,
0.007654708344489336,
0.07759273797273636,
0.0060957917012274265,
0.03418958932161331,
0.02877034805715084,
-0.08474141359329224,
-0.07506627589464188,
-0.05957686901092529,
-0.07280667126178741,
0.009806346148252487,
0.03671940788626671,
0.0699932724237442,
-0.1340281367301941,
-0.10551224648952484,
0.06443066149950027,
0.0730585902929306,
-0.08123745024204254,
0.05893176421523094,
-0.11029735207557678,
0.0983676016330719,
-0.05753879249095917,
0.004173141438513994,
-0.18576739728450775,
-0.012712741270661354,
0.034700099378824234,
-0.007434891536831856,
0.027131114155054092,
-0.043978672474622726,
0.07337325811386108,
0.06556110084056854,
-0.034277208149433136,
-0.02971459925174713,
-0.019985290244221687,
0.003781670704483986,
-0.11572112888097763,
-0.19584612548351288,
-0.0321429967880249,
-0.035036493092775345,
0.07160268723964691,
-0.16012562811374664,
0.04448380693793297,
0.06861530989408493,
0.11636024713516235,
0.042730044573545456,
-0.021229762583971024,
-0.01255827210843563,
0.07361818850040436,
-0.051086924970149994,
-0.070628322660923,
0.05500299483537674,
0.02782449685037136,
-0.08551867306232452,
0.0018194757867604494,
-0.16175806522369385,
0.154799222946167,
0.14245985448360443,
-0.025168202817440033,
-0.0554656982421875,
0.0033412091434001923,
-0.05259142443537712,
-0.02913234569132328,
-0.017089268192648888,
0.01796439103782177,
0.16147151589393616,
0.016629355028271675,
0.16156162321567535,
-0.0970781072974205,
-0.05230238661170006,
0.05127745494246483,
-0.03647667169570923,
-0.004355373326689005,
0.10980631411075592,
0.03899703547358513,
-0.11948812752962112,
0.13681532442569733,
0.14531607925891876,
-0.06026061624288559,
0.13393163681030273,
-0.06679556518793106,
-0.06732750684022903,
-0.029002675786614418,
-0.006800261326134205,
0.03426207974553108,
0.08658391982316971,
-0.11938536167144775,
-0.016079893335700035,
0.033992163836956024,
0.038633279502391815,
0.010428558103740215,
-0.18911288678646088,
0.01215033046901226,
0.03870466351509094,
-0.056264664977788925,
-0.04045813903212547,
-0.00988764688372612,
0.015177085064351559,
0.10035194456577301,
0.019329704344272614,
-0.06183362752199173,
0.03273870423436165,
0.014217282645404339,
-0.06118536740541458,
0.1749614179134369,
-0.10991654545068741,
-0.1608627736568451,
-0.12575273215770721,
-0.10769690573215485,
-0.05757590010762215,
-0.0019224989227950573,
0.08612291514873505,
-0.07656458020210266,
-0.05460170656442642,
-0.10109291225671768,
-0.017100568860769272,
-0.01290886290371418,
0.02786404639482498,
0.06264768540859222,
-0.00901100318878889,
0.07225117832422256,
-0.1141415387392044,
-0.028893403708934784,
-0.014110361225903034,
-0.0004329607472755015,
0.06530620157718658,
0.01298973336815834,
0.11306057870388031,
0.12546204030513763,
-0.03624982759356499,
0.04133879393339157,
-0.037483811378479004,
0.23114866018295288,
-0.06967732310295105,
-0.014262578450143337,
0.12877319753170013,
-0.01002978254109621,
0.08610434830188751,
0.11538460105657578,
0.04814082384109497,
-0.09886609762907028,
0.00244920770637691,
0.010083095170557499,
-0.04951471835374832,
-0.22090914845466614,
-0.01716863177716732,
-0.051388904452323914,
0.01471567340195179,
0.104718416929245,
0.03373697027564049,
0.04137340560555458,
0.04467182606458664,
0.01906985603272915,
0.07308189570903778,
-0.013730555772781372,
0.11503862589597702,
0.12489750981330872,
0.06437566876411438,
0.14160650968551636,
-0.06303827464580536,
-0.028852084651589394,
0.050609856843948364,
0.007656233385205269,
0.22086907923221588,
0.007228535134345293,
0.20208941400051117,
0.046651940792798996,
0.143122136592865,
0.0326094925403595,
0.06933867186307907,
-0.018387332558631897,
-0.012851139530539513,
-0.012561392039060593,
-0.04697495326399803,
-0.036881256848573685,
0.021444279700517654,
-0.07183002680540085,
0.027003398165106773,
-0.10479747503995895,
0.0204644612967968,
0.05386028811335564,
0.2982966899871826,
0.025294557213783264,
-0.36833131313323975,
-0.10606665909290314,
0.010138831101357937,
-0.06051772087812424,
-0.04396027326583862,
0.018265828490257263,
0.0825275331735611,
-0.06561599671840668,
0.0809062048792839,
-0.08091625571250916,
0.11449533700942993,
-0.04751993715763092,
0.04110082611441612,
0.0490453727543354,
0.09785151481628418,
-0.00889129564166069,
0.045181747525930405,
-0.3011925220489502,
0.2654477655887604,
0.024175632745027542,
0.07286050915718079,
-0.07133463770151138,
0.017550664022564888,
0.00662947865203023,
0.05419699102640152,
0.04937662184238434,
-0.014630620367825031,
-0.12910081446170807,
-0.14813919365406036,
-0.08631867915391922,
0.011116819456219673,
0.09800343215465546,
0.027759475633502007,
0.12220645695924759,
-0.017010929062962532,
-0.00002501258859410882,
0.046614088118076324,
-0.036256831139326096,
-0.04672054946422577,
-0.10230942815542221,
0.024601366370916367,
0.05529299005866051,
-0.007192531600594521,
-0.06919382512569427,
-0.09014382213354111,
-0.07264269888401031,
0.17319455742835999,
0.009034284390509129,
-0.06025511398911476,
-0.12295106053352356,
0.037891000509262085,
0.08032338321208954,
-0.08426667749881744,
0.03359789401292801,
-0.013128218241035938,
0.11393196135759354,
0.009590060450136662,
-0.08163774758577347,
0.12319160252809525,
-0.051789022982120514,
-0.17225110530853271,
-0.04307409003376961,
0.10639934241771698,
0.004715582821518183,
0.06030649691820145,
-0.013616231270134449,
0.03849664703011513,
-0.03048780746757984,
-0.07237827032804489,
0.026521455496549606,
-0.003804456442594528,
0.0829302966594696,
-0.03673078864812851,
-0.009207946248352528,
0.023086044937372208,
-0.06286559998989105,
-0.026891257613897324,
0.17408393323421478,
0.2580972909927368,
-0.08685941249132156,
0.06270705908536911,
0.03934316337108612,
-0.055402252823114395,
-0.1551039069890976,
0.012106400914490223,
0.05088965222239494,
-0.002042846754193306,
-0.009857390075922012,
-0.17474021017551422,
0.03459995612502098,
0.09835419058799744,
-0.014358550310134888,
0.08447948098182678,
-0.3101573586463928,
-0.13019220530986786,
0.08451607078313828,
0.1248011663556099,
0.09267030656337738,
-0.16537512838840485,
-0.0445391982793808,
-0.03659622743725777,
-0.15378986299037933,
0.13217517733573914,
-0.11072412133216858,
0.11804161965847015,
-0.030744118615984917,
0.11028193682432175,
0.008513242937624454,
-0.05913268402218819,
0.11324562877416611,
-0.006611996330320835,
0.08476176112890244,
-0.07566628605127335,
0.03790871798992157,
0.10735906660556793,
-0.08159590512514114,
0.04977639392018318,
-0.09693151712417603,
0.03211710974574089,
-0.1041845977306366,
-0.01444699615240097,
-0.057022400200366974,
-0.0006707028369419277,
-0.02680104412138462,
-0.03217508643865585,
-0.048764459788799286,
-0.0003845257742796093,
0.07141455262899399,
-0.02152969501912594,
0.20483402907848358,
0.015946265310049057,
0.13606402277946472,
0.16108080744743347,
0.09986325353384018,
-0.132023885846138,
-0.04206868261098862,
0.010358831845223904,
-0.028196940198540688,
0.04948762431740761,
-0.1694498211145401,
0.04418465495109558,
0.1406477689743042,
-0.00015520719171036035,
0.11992725729942322,
0.07032907754182816,
-0.05864020437002182,
0.027852090075612068,
0.05507712811231613,
-0.16705912351608276,
-0.10706877708435059,
0.011340298689901829,
0.051287151873111725,
-0.10960327088832855,
0.06106821820139885,
0.13331277668476105,
-0.05658911541104317,
-0.01304624043405056,
0.00838756188750267,
0.018102802336215973,
-0.022916948422789574,
0.17573466897010803,
0.022673746570944786,
0.062439367175102234,
-0.10821185261011124,
0.08385340869426727,
0.05282314121723175,
-0.1086616963148117,
0.05389882251620293,
0.1233585998415947,
-0.0969887375831604,
-0.025160573422908783,
0.04061412438750267,
0.16254658997058868,
-0.05832265317440033,
-0.05789635330438614,
-0.15426459908485413,
-0.12379501760005951,
0.1044270321726799,
0.19633923470973969,
0.059792764484882355,
0.0074940999038517475,
-0.035445984452962875,
0.0010553509928286076,
-0.12584267556667328,
0.08493409305810928,
0.04083512723445892,
0.08571337908506393,
-0.12995398044586182,
0.12459170818328857,
-0.012515992857515812,
0.03594915568828583,
-0.014508889056742191,
0.020290417596697807,
-0.11302360892295837,
0.008788900449872017,
-0.1400783658027649,
0.003786991583183408,
-0.050736553966999054,
-0.003594272769987583,
-0.011953326873481274,
-0.03968077898025513,
-0.06483050435781479,
0.019401853904128075,
-0.11472497880458832,
-0.03059404157102108,
0.012182301841676235,
0.026761310175061226,
-0.11252160370349884,
-0.01770937070250511,
0.008882529102265835,
-0.08476942032575607,
0.07711406797170639,
0.04965311661362648,
-0.014612595550715923,
0.028151432052254677,
-0.0427568145096302,
0.0005170538206584752,
0.060175348073244095,
0.005754841025918722,
0.076975017786026,
-0.09736845642328262,
-0.02463458850979805,
0.013580533675849438,
0.03075076825916767,
0.027737542986869812,
0.10168669372797012,
-0.11851734668016434,
0.005333000794053078,
-0.00827743485569954,
-0.0640556812286377,
-0.06912565976381302,
0.05891118571162224,
0.10030189156532288,
0.015579627826809883,
0.18520799279212952,
-0.07800532877445221,
0.02439546026289463,
-0.1891445368528366,
0.0029481006786227226,
0.017541419714689255,
-0.14603017270565033,
-0.0557294562458992,
-0.04303717240691185,
0.06539062410593033,
-0.07098278403282166,
0.12075351923704147,
-0.0011569955386221409,
0.021919503808021545,
0.050985440611839294,
-0.04577350988984108,
-0.04533423110842705,
0.015661561861634254,
0.17541365325450897,
0.033101532608270645,
-0.0444985069334507,
0.06799964606761932,
0.01606045663356781,
0.08962514251470566,
0.1074957475066185,
0.1960233598947525,
0.13658182322978973,
0.042333297431468964,
0.10927547514438629,
0.03039924055337906,
-0.032990068197250366,
-0.1804201751947403,
0.06466136872768402,
-0.043692849576473236,
0.1490284949541092,
-0.010319146327674389,
0.19452378153800964,
0.12665902078151703,
-0.13991506397724152,
0.04713459312915802,
-0.040486134588718414,
-0.0859677866101265,
-0.108208067715168,
-0.08314966410398483,
-0.09306423366069794,
-0.15479591488838196,
-0.0073462058790028095,
-0.1201031357049942,
0.06425068527460098,
0.0529496893286705,
0.020022930577397346,
0.0007071530562825501,
0.12408716976642609,
0.024245090782642365,
0.013213171623647213,
0.05724010244011879,
-0.007572897244244814,
-0.042386844754219055,
-0.05228404700756073,
-0.07993343472480774,
0.013838911429047585,
0.002043097512796521,
0.05337490513920784,
0.006395380012691021,
-0.012339613400399685,
0.040672678500413895,
-0.026810528710484505,
-0.11085304617881775,
0.015736492350697517,
0.03723237290978432,
0.054509811103343964,
0.030476436018943787,
0.011228226125240326,
-0.005428374279290438,
-0.011219194158911705,
0.1924048364162445,
-0.08198820054531097,
-0.07071993499994278,
-0.11487160623073578,
0.22960267961025238,
0.02375829964876175,
-0.03510696440935135,
0.02668762393295765,
-0.062320683151483536,
-0.01713687554001808,
0.19934654235839844,
0.16954658925533295,
-0.026265615597367287,
-0.011713625863194466,
-0.025644907727837563,
-0.007407497148960829,
-0.02550303004682064,
0.10090558975934982,
0.1294013410806656,
0.01921679638326168,
-0.06390310078859329,
-0.039078619331121445,
-0.06077705696225166,
-0.008595924824476242,
-0.061323706060647964,
0.059153057634830475,
0.018955357372760773,
-0.005986575968563557,
-0.03195764869451523,
0.047469109296798706,
-0.06376256048679352,
-0.05825977399945259,
0.010574703104794025,
-0.20286200940608978,
-0.1521214246749878,
0.005458497442305088,
0.08741406351327896,
-0.01396067626774311,
0.05628187209367752,
-0.0019079222111031413,
-0.0029863896779716015,
0.08260838687419891,
-0.02030239626765251,
-0.07490933686494827,
-0.06666035205125809,
0.09186477959156036,
-0.17081722617149353,
0.1766585111618042,
-0.03232965245842934,
0.025107553228735924,
0.14256949722766876,
0.050191160291433334,
-0.10890831798315048,
0.06518226116895676,
0.03907470777630806,
-0.05728655308485031,
0.00679123355075717,
0.13023218512535095,
-0.03004981391131878,
0.08009734749794006,
0.0408703051507473,
-0.12585115432739258,
-0.01938614435493946,
-0.07527001947164536,
-0.02483987994492054,
-0.01966194435954094,
-0.05457032471895218,
-0.044267114251852036,
0.11975893378257751,
0.19763976335525513,
-0.04218223690986633,
0.0025521493516862392,
-0.060464419424533844,
0.01717217266559601,
0.058490999042987823,
-0.017820322886109352,
-0.05998595058917999,
-0.26374825835227966,
0.0008293183636851609,
0.08817808330059052,
-0.006519087590277195,
-0.2610302269458771,
-0.08783864229917526,
-0.0025086316745728254,
-0.03645826876163483,
-0.10744258016347885,
0.08932945877313614,
0.08979803323745728,
0.04611853510141373,
-0.0649639144539833,
-0.031316179782152176,
-0.06646561622619629,
0.17030535638332367,
-0.1382666826248169,
-0.06668490916490555
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned32-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 136 | 1.4226 | 21.9554 | 17.8089 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned32-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned32-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned32-en-to-de
=============================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
74,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.0889618918299675,
0.10018717497587204,
-0.0038034876342862844,
0.0875915065407753,
0.10987268388271332,
-0.006065878085792065,
0.1548226922750473,
0.15311281383037567,
-0.12781468033790588,
0.05975473299622536,
0.14377059042453766,
0.13524594902992249,
0.04719994217157364,
0.1622452586889267,
-0.07003141194581985,
-0.2509947121143341,
0.04694842919707298,
0.05292709171772003,
-0.024515189230442047,
0.1250804364681244,
0.08556091785430908,
-0.12100115418434143,
0.09253433346748352,
0.026408683508634567,
-0.18699954450130463,
-0.006213481072336435,
-0.0036945375613868237,
-0.08250162750482559,
0.10384908318519592,
0.03392484784126282,
0.0943026915192604,
0.0359443798661232,
0.050692059099674225,
-0.16067081689834595,
0.007637455593794584,
0.06008118763566017,
0.005335124209523201,
0.09981442987918854,
0.05680391192436218,
-0.011764120310544968,
0.11047093570232391,
-0.07125017791986465,
0.06808391958475113,
0.02578830160200596,
-0.1286083608865738,
-0.2486647665500641,
-0.10707380622625351,
0.03615095466375351,
0.06913943588733673,
0.08334584534168243,
-0.0034911809489130974,
0.17422205209732056,
-0.024854348972439766,
0.11302846670150757,
0.2573734521865845,
-0.30541113018989563,
-0.05738135054707527,
-0.011187662370502949,
0.04940136894583702,
0.07208728045225143,
-0.07599978148937225,
-0.0335182324051857,
0.026652071624994278,
0.04799387976527214,
0.14402137696743011,
-0.013358701020479202,
-0.030273912474513054,
-0.015802348032593727,
-0.1358109563589096,
-0.06817124038934708,
0.16067858040332794,
0.0331592783331871,
-0.0404660627245903,
-0.06097012758255005,
-0.07883435487747192,
-0.1956735998392105,
-0.049151234328746796,
0.005347377620637417,
0.04561522603034973,
-0.03460345044732094,
-0.09236953407526016,
-0.011077901348471642,
-0.06884627789258957,
-0.044534437358379364,
-0.0591474212706089,
0.14221684634685516,
0.04652761295437813,
0.020285094156861305,
-0.06731901317834854,
0.07181817293167114,
-0.037953414022922516,
-0.1601819396018982,
-0.01698904298245907,
0.01943247765302658,
0.009004397317767143,
-0.037600353360176086,
-0.038418397307395935,
-0.12897749245166779,
0.009250171482563019,
0.16273121535778046,
-0.10580261051654816,
0.0819801464676857,
-0.03743277117609978,
0.03924175724387169,
-0.07957291603088379,
0.18343903124332428,
-0.013169340789318085,
0.015672575682401657,
0.011536928825080395,
0.06097846478223801,
0.051767125725746155,
-0.0281629990786314,
-0.11016197502613068,
0.03777598589658737,
0.10943955928087234,
0.02440483681857586,
-0.03822707757353783,
0.07109023630619049,
-0.04037937894463539,
-0.022119438275694847,
0.04845936968922615,
-0.10463885962963104,
0.03516760841012001,
-0.017063098028302193,
-0.06567388772964478,
-0.0033286684192717075,
0.022152649238705635,
0.00037023439654149115,
-0.04419801011681557,
0.09527205675840378,
-0.08407957851886749,
0.022050870582461357,
-0.08436626940965652,
-0.13485689461231232,
0.034500665962696075,
-0.08937765657901764,
0.002971746027469635,
-0.10042174160480499,
-0.14661282300949097,
-0.008515236899256706,
0.05994325503706932,
-0.0475052110850811,
-0.04512200132012367,
-0.05026707053184509,
-0.09856995195150375,
0.050555892288684845,
-0.022451147437095642,
0.07744697481393814,
-0.07160860300064087,
0.08438809216022491,
0.04234414920210838,
0.0809149444103241,
-0.05101334676146507,
0.046328771859407425,
-0.08941980451345444,
0.0432528480887413,
-0.22246547043323517,
0.055213361978530884,
-0.05586071312427521,
0.09496485441923141,
-0.10505664348602295,
-0.10117320716381073,
0.014916041865944862,
-0.024406567215919495,
0.10363724827766418,
0.083235003054142,
-0.16368018090724945,
-0.0705142468214035,
0.2040679156780243,
-0.08537935465574265,
-0.132719025015831,
0.12734933197498322,
-0.04489300400018692,
0.007412342354655266,
0.0514046773314476,
0.2173624187707901,
0.05093968287110329,
-0.10109665989875793,
-0.013638305477797985,
-0.04937012493610382,
0.041749563068151474,
-0.056164953857660294,
0.06600240617990494,
0.007654708344489336,
0.07759273797273636,
0.0060957917012274265,
0.03418958932161331,
0.02877034805715084,
-0.08474141359329224,
-0.07506627589464188,
-0.05957686901092529,
-0.07280667126178741,
0.009806346148252487,
0.03671940788626671,
0.0699932724237442,
-0.1340281367301941,
-0.10551224648952484,
0.06443066149950027,
0.0730585902929306,
-0.08123745024204254,
0.05893176421523094,
-0.11029735207557678,
0.0983676016330719,
-0.05753879249095917,
0.004173141438513994,
-0.18576739728450775,
-0.012712741270661354,
0.034700099378824234,
-0.007434891536831856,
0.027131114155054092,
-0.043978672474622726,
0.07337325811386108,
0.06556110084056854,
-0.034277208149433136,
-0.02971459925174713,
-0.019985290244221687,
0.003781670704483986,
-0.11572112888097763,
-0.19584612548351288,
-0.0321429967880249,
-0.035036493092775345,
0.07160268723964691,
-0.16012562811374664,
0.04448380693793297,
0.06861530989408493,
0.11636024713516235,
0.042730044573545456,
-0.021229762583971024,
-0.01255827210843563,
0.07361818850040436,
-0.051086924970149994,
-0.070628322660923,
0.05500299483537674,
0.02782449685037136,
-0.08551867306232452,
0.0018194757867604494,
-0.16175806522369385,
0.154799222946167,
0.14245985448360443,
-0.025168202817440033,
-0.0554656982421875,
0.0033412091434001923,
-0.05259142443537712,
-0.02913234569132328,
-0.017089268192648888,
0.01796439103782177,
0.16147151589393616,
0.016629355028271675,
0.16156162321567535,
-0.0970781072974205,
-0.05230238661170006,
0.05127745494246483,
-0.03647667169570923,
-0.004355373326689005,
0.10980631411075592,
0.03899703547358513,
-0.11948812752962112,
0.13681532442569733,
0.14531607925891876,
-0.06026061624288559,
0.13393163681030273,
-0.06679556518793106,
-0.06732750684022903,
-0.029002675786614418,
-0.006800261326134205,
0.03426207974553108,
0.08658391982316971,
-0.11938536167144775,
-0.016079893335700035,
0.033992163836956024,
0.038633279502391815,
0.010428558103740215,
-0.18911288678646088,
0.01215033046901226,
0.03870466351509094,
-0.056264664977788925,
-0.04045813903212547,
-0.00988764688372612,
0.015177085064351559,
0.10035194456577301,
0.019329704344272614,
-0.06183362752199173,
0.03273870423436165,
0.014217282645404339,
-0.06118536740541458,
0.1749614179134369,
-0.10991654545068741,
-0.1608627736568451,
-0.12575273215770721,
-0.10769690573215485,
-0.05757590010762215,
-0.0019224989227950573,
0.08612291514873505,
-0.07656458020210266,
-0.05460170656442642,
-0.10109291225671768,
-0.017100568860769272,
-0.01290886290371418,
0.02786404639482498,
0.06264768540859222,
-0.00901100318878889,
0.07225117832422256,
-0.1141415387392044,
-0.028893403708934784,
-0.014110361225903034,
-0.0004329607472755015,
0.06530620157718658,
0.01298973336815834,
0.11306057870388031,
0.12546204030513763,
-0.03624982759356499,
0.04133879393339157,
-0.037483811378479004,
0.23114866018295288,
-0.06967732310295105,
-0.014262578450143337,
0.12877319753170013,
-0.01002978254109621,
0.08610434830188751,
0.11538460105657578,
0.04814082384109497,
-0.09886609762907028,
0.00244920770637691,
0.010083095170557499,
-0.04951471835374832,
-0.22090914845466614,
-0.01716863177716732,
-0.051388904452323914,
0.01471567340195179,
0.104718416929245,
0.03373697027564049,
0.04137340560555458,
0.04467182606458664,
0.01906985603272915,
0.07308189570903778,
-0.013730555772781372,
0.11503862589597702,
0.12489750981330872,
0.06437566876411438,
0.14160650968551636,
-0.06303827464580536,
-0.028852084651589394,
0.050609856843948364,
0.007656233385205269,
0.22086907923221588,
0.007228535134345293,
0.20208941400051117,
0.046651940792798996,
0.143122136592865,
0.0326094925403595,
0.06933867186307907,
-0.018387332558631897,
-0.012851139530539513,
-0.012561392039060593,
-0.04697495326399803,
-0.036881256848573685,
0.021444279700517654,
-0.07183002680540085,
0.027003398165106773,
-0.10479747503995895,
0.0204644612967968,
0.05386028811335564,
0.2982966899871826,
0.025294557213783264,
-0.36833131313323975,
-0.10606665909290314,
0.010138831101357937,
-0.06051772087812424,
-0.04396027326583862,
0.018265828490257263,
0.0825275331735611,
-0.06561599671840668,
0.0809062048792839,
-0.08091625571250916,
0.11449533700942993,
-0.04751993715763092,
0.04110082611441612,
0.0490453727543354,
0.09785151481628418,
-0.00889129564166069,
0.045181747525930405,
-0.3011925220489502,
0.2654477655887604,
0.024175632745027542,
0.07286050915718079,
-0.07133463770151138,
0.017550664022564888,
0.00662947865203023,
0.05419699102640152,
0.04937662184238434,
-0.014630620367825031,
-0.12910081446170807,
-0.14813919365406036,
-0.08631867915391922,
0.011116819456219673,
0.09800343215465546,
0.027759475633502007,
0.12220645695924759,
-0.017010929062962532,
-0.00002501258859410882,
0.046614088118076324,
-0.036256831139326096,
-0.04672054946422577,
-0.10230942815542221,
0.024601366370916367,
0.05529299005866051,
-0.007192531600594521,
-0.06919382512569427,
-0.09014382213354111,
-0.07264269888401031,
0.17319455742835999,
0.009034284390509129,
-0.06025511398911476,
-0.12295106053352356,
0.037891000509262085,
0.08032338321208954,
-0.08426667749881744,
0.03359789401292801,
-0.013128218241035938,
0.11393196135759354,
0.009590060450136662,
-0.08163774758577347,
0.12319160252809525,
-0.051789022982120514,
-0.17225110530853271,
-0.04307409003376961,
0.10639934241771698,
0.004715582821518183,
0.06030649691820145,
-0.013616231270134449,
0.03849664703011513,
-0.03048780746757984,
-0.07237827032804489,
0.026521455496549606,
-0.003804456442594528,
0.0829302966594696,
-0.03673078864812851,
-0.009207946248352528,
0.023086044937372208,
-0.06286559998989105,
-0.026891257613897324,
0.17408393323421478,
0.2580972909927368,
-0.08685941249132156,
0.06270705908536911,
0.03934316337108612,
-0.055402252823114395,
-0.1551039069890976,
0.012106400914490223,
0.05088965222239494,
-0.002042846754193306,
-0.009857390075922012,
-0.17474021017551422,
0.03459995612502098,
0.09835419058799744,
-0.014358550310134888,
0.08447948098182678,
-0.3101573586463928,
-0.13019220530986786,
0.08451607078313828,
0.1248011663556099,
0.09267030656337738,
-0.16537512838840485,
-0.0445391982793808,
-0.03659622743725777,
-0.15378986299037933,
0.13217517733573914,
-0.11072412133216858,
0.11804161965847015,
-0.030744118615984917,
0.11028193682432175,
0.008513242937624454,
-0.05913268402218819,
0.11324562877416611,
-0.006611996330320835,
0.08476176112890244,
-0.07566628605127335,
0.03790871798992157,
0.10735906660556793,
-0.08159590512514114,
0.04977639392018318,
-0.09693151712417603,
0.03211710974574089,
-0.1041845977306366,
-0.01444699615240097,
-0.057022400200366974,
-0.0006707028369419277,
-0.02680104412138462,
-0.03217508643865585,
-0.048764459788799286,
-0.0003845257742796093,
0.07141455262899399,
-0.02152969501912594,
0.20483402907848358,
0.015946265310049057,
0.13606402277946472,
0.16108080744743347,
0.09986325353384018,
-0.132023885846138,
-0.04206868261098862,
0.010358831845223904,
-0.028196940198540688,
0.04948762431740761,
-0.1694498211145401,
0.04418465495109558,
0.1406477689743042,
-0.00015520719171036035,
0.11992725729942322,
0.07032907754182816,
-0.05864020437002182,
0.027852090075612068,
0.05507712811231613,
-0.16705912351608276,
-0.10706877708435059,
0.011340298689901829,
0.051287151873111725,
-0.10960327088832855,
0.06106821820139885,
0.13331277668476105,
-0.05658911541104317,
-0.01304624043405056,
0.00838756188750267,
0.018102802336215973,
-0.022916948422789574,
0.17573466897010803,
0.022673746570944786,
0.062439367175102234,
-0.10821185261011124,
0.08385340869426727,
0.05282314121723175,
-0.1086616963148117,
0.05389882251620293,
0.1233585998415947,
-0.0969887375831604,
-0.025160573422908783,
0.04061412438750267,
0.16254658997058868,
-0.05832265317440033,
-0.05789635330438614,
-0.15426459908485413,
-0.12379501760005951,
0.1044270321726799,
0.19633923470973969,
0.059792764484882355,
0.0074940999038517475,
-0.035445984452962875,
0.0010553509928286076,
-0.12584267556667328,
0.08493409305810928,
0.04083512723445892,
0.08571337908506393,
-0.12995398044586182,
0.12459170818328857,
-0.012515992857515812,
0.03594915568828583,
-0.014508889056742191,
0.020290417596697807,
-0.11302360892295837,
0.008788900449872017,
-0.1400783658027649,
0.003786991583183408,
-0.050736553966999054,
-0.003594272769987583,
-0.011953326873481274,
-0.03968077898025513,
-0.06483050435781479,
0.019401853904128075,
-0.11472497880458832,
-0.03059404157102108,
0.012182301841676235,
0.026761310175061226,
-0.11252160370349884,
-0.01770937070250511,
0.008882529102265835,
-0.08476942032575607,
0.07711406797170639,
0.04965311661362648,
-0.014612595550715923,
0.028151432052254677,
-0.0427568145096302,
0.0005170538206584752,
0.060175348073244095,
0.005754841025918722,
0.076975017786026,
-0.09736845642328262,
-0.02463458850979805,
0.013580533675849438,
0.03075076825916767,
0.027737542986869812,
0.10168669372797012,
-0.11851734668016434,
0.005333000794053078,
-0.00827743485569954,
-0.0640556812286377,
-0.06912565976381302,
0.05891118571162224,
0.10030189156532288,
0.015579627826809883,
0.18520799279212952,
-0.07800532877445221,
0.02439546026289463,
-0.1891445368528366,
0.0029481006786227226,
0.017541419714689255,
-0.14603017270565033,
-0.0557294562458992,
-0.04303717240691185,
0.06539062410593033,
-0.07098278403282166,
0.12075351923704147,
-0.0011569955386221409,
0.021919503808021545,
0.050985440611839294,
-0.04577350988984108,
-0.04533423110842705,
0.015661561861634254,
0.17541365325450897,
0.033101532608270645,
-0.0444985069334507,
0.06799964606761932,
0.01606045663356781,
0.08962514251470566,
0.1074957475066185,
0.1960233598947525,
0.13658182322978973,
0.042333297431468964,
0.10927547514438629,
0.03039924055337906,
-0.032990068197250366,
-0.1804201751947403,
0.06466136872768402,
-0.043692849576473236,
0.1490284949541092,
-0.010319146327674389,
0.19452378153800964,
0.12665902078151703,
-0.13991506397724152,
0.04713459312915802,
-0.040486134588718414,
-0.0859677866101265,
-0.108208067715168,
-0.08314966410398483,
-0.09306423366069794,
-0.15479591488838196,
-0.0073462058790028095,
-0.1201031357049942,
0.06425068527460098,
0.0529496893286705,
0.020022930577397346,
0.0007071530562825501,
0.12408716976642609,
0.024245090782642365,
0.013213171623647213,
0.05724010244011879,
-0.007572897244244814,
-0.042386844754219055,
-0.05228404700756073,
-0.07993343472480774,
0.013838911429047585,
0.002043097512796521,
0.05337490513920784,
0.006395380012691021,
-0.012339613400399685,
0.040672678500413895,
-0.026810528710484505,
-0.11085304617881775,
0.015736492350697517,
0.03723237290978432,
0.054509811103343964,
0.030476436018943787,
0.011228226125240326,
-0.005428374279290438,
-0.011219194158911705,
0.1924048364162445,
-0.08198820054531097,
-0.07071993499994278,
-0.11487160623073578,
0.22960267961025238,
0.02375829964876175,
-0.03510696440935135,
0.02668762393295765,
-0.062320683151483536,
-0.01713687554001808,
0.19934654235839844,
0.16954658925533295,
-0.026265615597367287,
-0.011713625863194466,
-0.025644907727837563,
-0.007407497148960829,
-0.02550303004682064,
0.10090558975934982,
0.1294013410806656,
0.01921679638326168,
-0.06390310078859329,
-0.039078619331121445,
-0.06077705696225166,
-0.008595924824476242,
-0.061323706060647964,
0.059153057634830475,
0.018955357372760773,
-0.005986575968563557,
-0.03195764869451523,
0.047469109296798706,
-0.06376256048679352,
-0.05825977399945259,
0.010574703104794025,
-0.20286200940608978,
-0.1521214246749878,
0.005458497442305088,
0.08741406351327896,
-0.01396067626774311,
0.05628187209367752,
-0.0019079222111031413,
-0.0029863896779716015,
0.08260838687419891,
-0.02030239626765251,
-0.07490933686494827,
-0.06666035205125809,
0.09186477959156036,
-0.17081722617149353,
0.1766585111618042,
-0.03232965245842934,
0.025107553228735924,
0.14256949722766876,
0.050191160291433334,
-0.10890831798315048,
0.06518226116895676,
0.03907470777630806,
-0.05728655308485031,
0.00679123355075717,
0.13023218512535095,
-0.03004981391131878,
0.08009734749794006,
0.0408703051507473,
-0.12585115432739258,
-0.01938614435493946,
-0.07527001947164536,
-0.02483987994492054,
-0.01966194435954094,
-0.05457032471895218,
-0.044267114251852036,
0.11975893378257751,
0.19763976335525513,
-0.04218223690986633,
0.0025521493516862392,
-0.060464419424533844,
0.01717217266559601,
0.058490999042987823,
-0.017820322886109352,
-0.05998595058917999,
-0.26374825835227966,
0.0008293183636851609,
0.08817808330059052,
-0.006519087590277195,
-0.2610302269458771,
-0.08783864229917526,
-0.0025086316745728254,
-0.03645826876163483,
-0.10744258016347885,
0.08932945877313614,
0.08979803323745728,
0.04611853510141373,
-0.0649639144539833,
-0.031316179782152176,
-0.06646561622619629,
0.17030535638332367,
-0.1382666826248169,
-0.06668490916490555
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned8-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 136 | 3.6717 | 3.9127 | 4.0207 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned8-en-to-de", "results": []}]}
|
text2text-generation
|
alexrfelicio/t5-small-finetuned8-en-to-de
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned8-en-to-de
============================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
74,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.0889618918299675,
0.10018717497587204,
-0.0038034876342862844,
0.0875915065407753,
0.10987268388271332,
-0.006065878085792065,
0.1548226922750473,
0.15311281383037567,
-0.12781468033790588,
0.05975473299622536,
0.14377059042453766,
0.13524594902992249,
0.04719994217157364,
0.1622452586889267,
-0.07003141194581985,
-0.2509947121143341,
0.04694842919707298,
0.05292709171772003,
-0.024515189230442047,
0.1250804364681244,
0.08556091785430908,
-0.12100115418434143,
0.09253433346748352,
0.026408683508634567,
-0.18699954450130463,
-0.006213481072336435,
-0.0036945375613868237,
-0.08250162750482559,
0.10384908318519592,
0.03392484784126282,
0.0943026915192604,
0.0359443798661232,
0.050692059099674225,
-0.16067081689834595,
0.007637455593794584,
0.06008118763566017,
0.005335124209523201,
0.09981442987918854,
0.05680391192436218,
-0.011764120310544968,
0.11047093570232391,
-0.07125017791986465,
0.06808391958475113,
0.02578830160200596,
-0.1286083608865738,
-0.2486647665500641,
-0.10707380622625351,
0.03615095466375351,
0.06913943588733673,
0.08334584534168243,
-0.0034911809489130974,
0.17422205209732056,
-0.024854348972439766,
0.11302846670150757,
0.2573734521865845,
-0.30541113018989563,
-0.05738135054707527,
-0.011187662370502949,
0.04940136894583702,
0.07208728045225143,
-0.07599978148937225,
-0.0335182324051857,
0.026652071624994278,
0.04799387976527214,
0.14402137696743011,
-0.013358701020479202,
-0.030273912474513054,
-0.015802348032593727,
-0.1358109563589096,
-0.06817124038934708,
0.16067858040332794,
0.0331592783331871,
-0.0404660627245903,
-0.06097012758255005,
-0.07883435487747192,
-0.1956735998392105,
-0.049151234328746796,
0.005347377620637417,
0.04561522603034973,
-0.03460345044732094,
-0.09236953407526016,
-0.011077901348471642,
-0.06884627789258957,
-0.044534437358379364,
-0.0591474212706089,
0.14221684634685516,
0.04652761295437813,
0.020285094156861305,
-0.06731901317834854,
0.07181817293167114,
-0.037953414022922516,
-0.1601819396018982,
-0.01698904298245907,
0.01943247765302658,
0.009004397317767143,
-0.037600353360176086,
-0.038418397307395935,
-0.12897749245166779,
0.009250171482563019,
0.16273121535778046,
-0.10580261051654816,
0.0819801464676857,
-0.03743277117609978,
0.03924175724387169,
-0.07957291603088379,
0.18343903124332428,
-0.013169340789318085,
0.015672575682401657,
0.011536928825080395,
0.06097846478223801,
0.051767125725746155,
-0.0281629990786314,
-0.11016197502613068,
0.03777598589658737,
0.10943955928087234,
0.02440483681857586,
-0.03822707757353783,
0.07109023630619049,
-0.04037937894463539,
-0.022119438275694847,
0.04845936968922615,
-0.10463885962963104,
0.03516760841012001,
-0.017063098028302193,
-0.06567388772964478,
-0.0033286684192717075,
0.022152649238705635,
0.00037023439654149115,
-0.04419801011681557,
0.09527205675840378,
-0.08407957851886749,
0.022050870582461357,
-0.08436626940965652,
-0.13485689461231232,
0.034500665962696075,
-0.08937765657901764,
0.002971746027469635,
-0.10042174160480499,
-0.14661282300949097,
-0.008515236899256706,
0.05994325503706932,
-0.0475052110850811,
-0.04512200132012367,
-0.05026707053184509,
-0.09856995195150375,
0.050555892288684845,
-0.022451147437095642,
0.07744697481393814,
-0.07160860300064087,
0.08438809216022491,
0.04234414920210838,
0.0809149444103241,
-0.05101334676146507,
0.046328771859407425,
-0.08941980451345444,
0.0432528480887413,
-0.22246547043323517,
0.055213361978530884,
-0.05586071312427521,
0.09496485441923141,
-0.10505664348602295,
-0.10117320716381073,
0.014916041865944862,
-0.024406567215919495,
0.10363724827766418,
0.083235003054142,
-0.16368018090724945,
-0.0705142468214035,
0.2040679156780243,
-0.08537935465574265,
-0.132719025015831,
0.12734933197498322,
-0.04489300400018692,
0.007412342354655266,
0.0514046773314476,
0.2173624187707901,
0.05093968287110329,
-0.10109665989875793,
-0.013638305477797985,
-0.04937012493610382,
0.041749563068151474,
-0.056164953857660294,
0.06600240617990494,
0.007654708344489336,
0.07759273797273636,
0.0060957917012274265,
0.03418958932161331,
0.02877034805715084,
-0.08474141359329224,
-0.07506627589464188,
-0.05957686901092529,
-0.07280667126178741,
0.009806346148252487,
0.03671940788626671,
0.0699932724237442,
-0.1340281367301941,
-0.10551224648952484,
0.06443066149950027,
0.0730585902929306,
-0.08123745024204254,
0.05893176421523094,
-0.11029735207557678,
0.0983676016330719,
-0.05753879249095917,
0.004173141438513994,
-0.18576739728450775,
-0.012712741270661354,
0.034700099378824234,
-0.007434891536831856,
0.027131114155054092,
-0.043978672474622726,
0.07337325811386108,
0.06556110084056854,
-0.034277208149433136,
-0.02971459925174713,
-0.019985290244221687,
0.003781670704483986,
-0.11572112888097763,
-0.19584612548351288,
-0.0321429967880249,
-0.035036493092775345,
0.07160268723964691,
-0.16012562811374664,
0.04448380693793297,
0.06861530989408493,
0.11636024713516235,
0.042730044573545456,
-0.021229762583971024,
-0.01255827210843563,
0.07361818850040436,
-0.051086924970149994,
-0.070628322660923,
0.05500299483537674,
0.02782449685037136,
-0.08551867306232452,
0.0018194757867604494,
-0.16175806522369385,
0.154799222946167,
0.14245985448360443,
-0.025168202817440033,
-0.0554656982421875,
0.0033412091434001923,
-0.05259142443537712,
-0.02913234569132328,
-0.017089268192648888,
0.01796439103782177,
0.16147151589393616,
0.016629355028271675,
0.16156162321567535,
-0.0970781072974205,
-0.05230238661170006,
0.05127745494246483,
-0.03647667169570923,
-0.004355373326689005,
0.10980631411075592,
0.03899703547358513,
-0.11948812752962112,
0.13681532442569733,
0.14531607925891876,
-0.06026061624288559,
0.13393163681030273,
-0.06679556518793106,
-0.06732750684022903,
-0.029002675786614418,
-0.006800261326134205,
0.03426207974553108,
0.08658391982316971,
-0.11938536167144775,
-0.016079893335700035,
0.033992163836956024,
0.038633279502391815,
0.010428558103740215,
-0.18911288678646088,
0.01215033046901226,
0.03870466351509094,
-0.056264664977788925,
-0.04045813903212547,
-0.00988764688372612,
0.015177085064351559,
0.10035194456577301,
0.019329704344272614,
-0.06183362752199173,
0.03273870423436165,
0.014217282645404339,
-0.06118536740541458,
0.1749614179134369,
-0.10991654545068741,
-0.1608627736568451,
-0.12575273215770721,
-0.10769690573215485,
-0.05757590010762215,
-0.0019224989227950573,
0.08612291514873505,
-0.07656458020210266,
-0.05460170656442642,
-0.10109291225671768,
-0.017100568860769272,
-0.01290886290371418,
0.02786404639482498,
0.06264768540859222,
-0.00901100318878889,
0.07225117832422256,
-0.1141415387392044,
-0.028893403708934784,
-0.014110361225903034,
-0.0004329607472755015,
0.06530620157718658,
0.01298973336815834,
0.11306057870388031,
0.12546204030513763,
-0.03624982759356499,
0.04133879393339157,
-0.037483811378479004,
0.23114866018295288,
-0.06967732310295105,
-0.014262578450143337,
0.12877319753170013,
-0.01002978254109621,
0.08610434830188751,
0.11538460105657578,
0.04814082384109497,
-0.09886609762907028,
0.00244920770637691,
0.010083095170557499,
-0.04951471835374832,
-0.22090914845466614,
-0.01716863177716732,
-0.051388904452323914,
0.01471567340195179,
0.104718416929245,
0.03373697027564049,
0.04137340560555458,
0.04467182606458664,
0.01906985603272915,
0.07308189570903778,
-0.013730555772781372,
0.11503862589597702,
0.12489750981330872,
0.06437566876411438,
0.14160650968551636,
-0.06303827464580536,
-0.028852084651589394,
0.050609856843948364,
0.007656233385205269,
0.22086907923221588,
0.007228535134345293,
0.20208941400051117,
0.046651940792798996,
0.143122136592865,
0.0326094925403595,
0.06933867186307907,
-0.018387332558631897,
-0.012851139530539513,
-0.012561392039060593,
-0.04697495326399803,
-0.036881256848573685,
0.021444279700517654,
-0.07183002680540085,
0.027003398165106773,
-0.10479747503995895,
0.0204644612967968,
0.05386028811335564,
0.2982966899871826,
0.025294557213783264,
-0.36833131313323975,
-0.10606665909290314,
0.010138831101357937,
-0.06051772087812424,
-0.04396027326583862,
0.018265828490257263,
0.0825275331735611,
-0.06561599671840668,
0.0809062048792839,
-0.08091625571250916,
0.11449533700942993,
-0.04751993715763092,
0.04110082611441612,
0.0490453727543354,
0.09785151481628418,
-0.00889129564166069,
0.045181747525930405,
-0.3011925220489502,
0.2654477655887604,
0.024175632745027542,
0.07286050915718079,
-0.07133463770151138,
0.017550664022564888,
0.00662947865203023,
0.05419699102640152,
0.04937662184238434,
-0.014630620367825031,
-0.12910081446170807,
-0.14813919365406036,
-0.08631867915391922,
0.011116819456219673,
0.09800343215465546,
0.027759475633502007,
0.12220645695924759,
-0.017010929062962532,
-0.00002501258859410882,
0.046614088118076324,
-0.036256831139326096,
-0.04672054946422577,
-0.10230942815542221,
0.024601366370916367,
0.05529299005866051,
-0.007192531600594521,
-0.06919382512569427,
-0.09014382213354111,
-0.07264269888401031,
0.17319455742835999,
0.009034284390509129,
-0.06025511398911476,
-0.12295106053352356,
0.037891000509262085,
0.08032338321208954,
-0.08426667749881744,
0.03359789401292801,
-0.013128218241035938,
0.11393196135759354,
0.009590060450136662,
-0.08163774758577347,
0.12319160252809525,
-0.051789022982120514,
-0.17225110530853271,
-0.04307409003376961,
0.10639934241771698,
0.004715582821518183,
0.06030649691820145,
-0.013616231270134449,
0.03849664703011513,
-0.03048780746757984,
-0.07237827032804489,
0.026521455496549606,
-0.003804456442594528,
0.0829302966594696,
-0.03673078864812851,
-0.009207946248352528,
0.023086044937372208,
-0.06286559998989105,
-0.026891257613897324,
0.17408393323421478,
0.2580972909927368,
-0.08685941249132156,
0.06270705908536911,
0.03934316337108612,
-0.055402252823114395,
-0.1551039069890976,
0.012106400914490223,
0.05088965222239494,
-0.002042846754193306,
-0.009857390075922012,
-0.17474021017551422,
0.03459995612502098,
0.09835419058799744,
-0.014358550310134888,
0.08447948098182678,
-0.3101573586463928,
-0.13019220530986786,
0.08451607078313828,
0.1248011663556099,
0.09267030656337738,
-0.16537512838840485,
-0.0445391982793808,
-0.03659622743725777,
-0.15378986299037933,
0.13217517733573914,
-0.11072412133216858,
0.11804161965847015,
-0.030744118615984917,
0.11028193682432175,
0.008513242937624454,
-0.05913268402218819,
0.11324562877416611,
-0.006611996330320835,
0.08476176112890244,
-0.07566628605127335,
0.03790871798992157,
0.10735906660556793,
-0.08159590512514114,
0.04977639392018318,
-0.09693151712417603,
0.03211710974574089,
-0.1041845977306366,
-0.01444699615240097,
-0.057022400200366974,
-0.0006707028369419277,
-0.02680104412138462,
-0.03217508643865585,
-0.048764459788799286,
-0.0003845257742796093,
0.07141455262899399,
-0.02152969501912594,
0.20483402907848358,
0.015946265310049057,
0.13606402277946472,
0.16108080744743347,
0.09986325353384018,
-0.132023885846138,
-0.04206868261098862,
0.010358831845223904,
-0.028196940198540688,
0.04948762431740761,
-0.1694498211145401,
0.04418465495109558,
0.1406477689743042,
-0.00015520719171036035,
0.11992725729942322,
0.07032907754182816,
-0.05864020437002182,
0.027852090075612068,
0.05507712811231613,
-0.16705912351608276,
-0.10706877708435059,
0.011340298689901829,
0.051287151873111725,
-0.10960327088832855,
0.06106821820139885,
0.13331277668476105,
-0.05658911541104317,
-0.01304624043405056,
0.00838756188750267,
0.018102802336215973,
-0.022916948422789574,
0.17573466897010803,
0.022673746570944786,
0.062439367175102234,
-0.10821185261011124,
0.08385340869426727,
0.05282314121723175,
-0.1086616963148117,
0.05389882251620293,
0.1233585998415947,
-0.0969887375831604,
-0.025160573422908783,
0.04061412438750267,
0.16254658997058868,
-0.05832265317440033,
-0.05789635330438614,
-0.15426459908485413,
-0.12379501760005951,
0.1044270321726799,
0.19633923470973969,
0.059792764484882355,
0.0074940999038517475,
-0.035445984452962875,
0.0010553509928286076,
-0.12584267556667328,
0.08493409305810928,
0.04083512723445892,
0.08571337908506393,
-0.12995398044586182,
0.12459170818328857,
-0.012515992857515812,
0.03594915568828583,
-0.014508889056742191,
0.020290417596697807,
-0.11302360892295837,
0.008788900449872017,
-0.1400783658027649,
0.003786991583183408,
-0.050736553966999054,
-0.003594272769987583,
-0.011953326873481274,
-0.03968077898025513,
-0.06483050435781479,
0.019401853904128075,
-0.11472497880458832,
-0.03059404157102108,
0.012182301841676235,
0.026761310175061226,
-0.11252160370349884,
-0.01770937070250511,
0.008882529102265835,
-0.08476942032575607,
0.07711406797170639,
0.04965311661362648,
-0.014612595550715923,
0.028151432052254677,
-0.0427568145096302,
0.0005170538206584752,
0.060175348073244095,
0.005754841025918722,
0.076975017786026,
-0.09736845642328262,
-0.02463458850979805,
0.013580533675849438,
0.03075076825916767,
0.027737542986869812,
0.10168669372797012,
-0.11851734668016434,
0.005333000794053078,
-0.00827743485569954,
-0.0640556812286377,
-0.06912565976381302,
0.05891118571162224,
0.10030189156532288,
0.015579627826809883,
0.18520799279212952,
-0.07800532877445221,
0.02439546026289463,
-0.1891445368528366,
0.0029481006786227226,
0.017541419714689255,
-0.14603017270565033,
-0.0557294562458992,
-0.04303717240691185,
0.06539062410593033,
-0.07098278403282166,
0.12075351923704147,
-0.0011569955386221409,
0.021919503808021545,
0.050985440611839294,
-0.04577350988984108,
-0.04533423110842705,
0.015661561861634254,
0.17541365325450897,
0.033101532608270645,
-0.0444985069334507,
0.06799964606761932,
0.01606045663356781,
0.08962514251470566,
0.1074957475066185,
0.1960233598947525,
0.13658182322978973,
0.042333297431468964,
0.10927547514438629,
0.03039924055337906,
-0.032990068197250366,
-0.1804201751947403,
0.06466136872768402,
-0.043692849576473236,
0.1490284949541092,
-0.010319146327674389,
0.19452378153800964,
0.12665902078151703,
-0.13991506397724152,
0.04713459312915802,
-0.040486134588718414,
-0.0859677866101265,
-0.108208067715168,
-0.08314966410398483,
-0.09306423366069794,
-0.15479591488838196,
-0.0073462058790028095,
-0.1201031357049942,
0.06425068527460098,
0.0529496893286705,
0.020022930577397346,
0.0007071530562825501,
0.12408716976642609,
0.024245090782642365,
0.013213171623647213,
0.05724010244011879,
-0.007572897244244814,
-0.042386844754219055,
-0.05228404700756073,
-0.07993343472480774,
0.013838911429047585,
0.002043097512796521,
0.05337490513920784,
0.006395380012691021,
-0.012339613400399685,
0.040672678500413895,
-0.026810528710484505,
-0.11085304617881775,
0.015736492350697517,
0.03723237290978432,
0.054509811103343964,
0.030476436018943787,
0.011228226125240326,
-0.005428374279290438,
-0.011219194158911705,
0.1924048364162445,
-0.08198820054531097,
-0.07071993499994278,
-0.11487160623073578,
0.22960267961025238,
0.02375829964876175,
-0.03510696440935135,
0.02668762393295765,
-0.062320683151483536,
-0.01713687554001808,
0.19934654235839844,
0.16954658925533295,
-0.026265615597367287,
-0.011713625863194466,
-0.025644907727837563,
-0.007407497148960829,
-0.02550303004682064,
0.10090558975934982,
0.1294013410806656,
0.01921679638326168,
-0.06390310078859329,
-0.039078619331121445,
-0.06077705696225166,
-0.008595924824476242,
-0.061323706060647964,
0.059153057634830475,
0.018955357372760773,
-0.005986575968563557,
-0.03195764869451523,
0.047469109296798706,
-0.06376256048679352,
-0.05825977399945259,
0.010574703104794025,
-0.20286200940608978,
-0.1521214246749878,
0.005458497442305088,
0.08741406351327896,
-0.01396067626774311,
0.05628187209367752,
-0.0019079222111031413,
-0.0029863896779716015,
0.08260838687419891,
-0.02030239626765251,
-0.07490933686494827,
-0.06666035205125809,
0.09186477959156036,
-0.17081722617149353,
0.1766585111618042,
-0.03232965245842934,
0.025107553228735924,
0.14256949722766876,
0.050191160291433334,
-0.10890831798315048,
0.06518226116895676,
0.03907470777630806,
-0.05728655308485031,
0.00679123355075717,
0.13023218512535095,
-0.03004981391131878,
0.08009734749794006,
0.0408703051507473,
-0.12585115432739258,
-0.01938614435493946,
-0.07527001947164536,
-0.02483987994492054,
-0.01966194435954094,
-0.05457032471895218,
-0.044267114251852036,
0.11975893378257751,
0.19763976335525513,
-0.04218223690986633,
0.0025521493516862392,
-0.060464419424533844,
0.01717217266559601,
0.058490999042987823,
-0.017820322886109352,
-0.05998595058917999,
-0.26374825835227966,
0.0008293183636851609,
0.08817808330059052,
-0.006519087590277195,
-0.2610302269458771,
-0.08783864229917526,
-0.0025086316745728254,
-0.03645826876163483,
-0.10744258016347885,
0.08932945877313614,
0.08979803323745728,
0.04611853510141373,
-0.0649639144539833,
-0.031316179782152176,
-0.06646561622619629,
0.17030535638332367,
-0.1382666826248169,
-0.06668490916490555
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# alexrink/t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.6399
- Validation Loss: 6.0028
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.2, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 11.4991 | 6.9902 | 0 |
| 6.5958 | 6.2502 | 1 |
| 6.1443 | 6.1638 | 2 |
| 5.9379 | 6.0765 | 3 |
| 5.7739 | 5.9393 | 4 |
| 5.7033 | 6.0061 | 5 |
| 5.7070 | 5.9305 | 6 |
| 5.7000 | 5.9698 | 7 |
| 5.6888 | 5.9223 | 8 |
| 5.6657 | 5.9773 | 9 |
| 5.6827 | 5.9734 | 10 |
| 5.6380 | 5.9428 | 11 |
| 5.6532 | 5.9799 | 12 |
| 5.6617 | 5.9974 | 13 |
| 5.6402 | 5.9563 | 14 |
| 5.6710 | 5.9926 | 15 |
| 5.6999 | 5.9764 | 16 |
| 5.6573 | 5.9557 | 17 |
| 5.6297 | 5.9678 | 18 |
| 5.6399 | 6.0028 | 19 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2
|
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "alexrink/t5-small-finetuned-xsum", "results": []}]}
|
text2text-generation
|
alexrink/t5-small-finetuned-xsum
|
[
"transformers",
"tf",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
alexrink/t5-small-finetuned-xsum
================================
This model is a fine-tuned version of t5-small on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 5.6399
* Validation Loss: 6.0028
* Epoch: 19
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 0.2, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.26.1
* TensorFlow 2.11.0
* Datasets 2.9.0
* Tokenizers 0.13.2
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2"
] |
[
"TAGS\n#transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2"
] |
[
70,
116,
4,
32
] |
[
"passage: TAGS\n#transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2"
] |
[
-0.03629407659173012,
0.05577809363603592,
-0.005083226598799229,
0.06489390134811401,
0.09230822324752808,
-0.0010928722331300378,
0.17223040759563446,
0.15891525149345398,
-0.1285303682088852,
0.08340493589639664,
0.14134933054447174,
0.1692872941493988,
0.05335000529885292,
0.15901324152946472,
-0.1100078895688057,
-0.1721276342868805,
0.0637342557311058,
0.018630584701895714,
-0.01193480845540762,
0.10408586263656616,
0.078789122402668,
-0.08585981279611588,
0.10426372289657593,
0.00548179354518652,
-0.17420147359371185,
0.029164088889956474,
0.08826000988483429,
-0.09593707323074341,
0.09718174487352371,
0.06634508818387985,
0.061773549765348434,
0.04115656763315201,
0.000022836311472929083,
-0.17516446113586426,
0.011396043933928013,
0.10088668018579483,
-0.021719714626669884,
0.08600364625453949,
0.013393274508416653,
-0.03424724191427231,
0.14117351174354553,
-0.08623149245977402,
0.04113662615418434,
0.055386513471603394,
-0.12898105382919312,
-0.2305542230606079,
-0.1315830945968628,
0.04520675539970398,
0.05154220014810562,
0.06161230430006981,
-0.006089452188462019,
0.2182055413722992,
-0.0009554697899147868,
0.12111162394285202,
0.23297221958637238,
-0.3641201853752136,
-0.043738093227148056,
0.03409230336546898,
0.045826975256204605,
0.060570795089006424,
-0.05180948227643967,
0.04490107297897339,
0.05564914271235466,
0.043733660131692886,
0.0967082604765892,
-0.03978341817855835,
-0.036838598549366,
-0.03915939852595329,
-0.0992487296462059,
-0.04492225870490074,
0.1357719749212265,
0.022865476086735725,
-0.07242081314325333,
-0.06366750597953796,
-0.07367877662181854,
-0.1779475212097168,
-0.03071354515850544,
-0.05113689973950386,
0.04196145758032799,
0.007081576623022556,
-0.085062675178051,
-0.055906057357788086,
-0.0716605857014656,
-0.03707315772771835,
-0.08575575798749924,
0.14627805352210999,
0.022508902475237846,
0.04937781020998955,
-0.06478584557771683,
0.03939824923872948,
-0.08950807899236679,
-0.14057333767414093,
-0.032913051545619965,
-0.003882823046296835,
-0.0015572757693007588,
-0.045342158526182175,
-0.061859775334596634,
-0.17308174073696136,
0.06913504749536514,
0.16615474224090576,
-0.10554257780313492,
0.10839146375656128,
-0.13771706819534302,
0.041350193321704865,
-0.10181491076946259,
0.1386500746011734,
-0.003504797350615263,
0.01722867414355278,
0.03601091355085373,
0.024900393560528755,
0.09311416000127792,
-0.047169990837574005,
-0.10003077238798141,
0.02842104621231556,
0.09649031609296799,
0.0379520058631897,
-0.02730327844619751,
0.09753204882144928,
-0.05038968846201897,
-0.008200197480618954,
-0.018798360601067543,
-0.10234109312295914,
0.028644438832998276,
-0.01264228392392397,
-0.055934496223926544,
0.024697067216038704,
0.05568329244852066,
0.004402593709528446,
-0.06326153129339218,
0.03694311901926994,
-0.061857130378484726,
0.003804730484262109,
-0.06314343214035034,
-0.13543230295181274,
0.04780469462275505,
-0.14005358517169952,
-0.03576807305216789,
-0.0857502818107605,
-0.13905949890613556,
0.00045014912029728293,
0.06234673783183098,
-0.05330873653292656,
0.01140721794217825,
-0.05218499153852463,
-0.1452329307794571,
0.052670713514089584,
-0.018446514382958412,
0.0690300390124321,
-0.05942843481898308,
0.06644177436828613,
0.015476874075829983,
0.08863214403390884,
-0.09798232465982437,
0.02472684718668461,
-0.06358151882886887,
0.02298608422279358,
-0.2457691878080368,
0.07647836208343506,
-0.05951380357146263,
0.06580452620983124,
-0.14643262326717377,
-0.05677357688546181,
0.00853700004518032,
-0.006690128706395626,
0.11003924906253815,
0.10917134582996368,
-0.19659510254859924,
-0.06392998993396759,
0.1833559274673462,
-0.11094845086336136,
-0.11838138848543167,
0.11908979713916779,
-0.0430053174495697,
0.028978286311030388,
0.08498094230890274,
0.18414373695850372,
-0.03829308599233627,
-0.10737989097833633,
-0.011027813889086246,
-0.04156596213579178,
-0.03800395503640175,
0.00424317317083478,
0.014154008589684963,
-0.029343755915760994,
0.028843317180871964,
0.005962517578154802,
0.03357464447617531,
-0.0038153512869030237,
-0.05808725580573082,
-0.057853128761053085,
-0.06714415550231934,
-0.04313516616821289,
0.060306698083877563,
0.005161427427083254,
0.05758949741721153,
-0.13276375830173492,
-0.1319836527109146,
0.057172391563653946,
0.012044201605021954,
-0.05334924906492233,
0.07489798963069916,
-0.1272285133600235,
0.07796984910964966,
-0.023908419534564018,
0.023419061675667763,
-0.17631305754184723,
-0.02960730530321598,
0.030522748827934265,
0.04837280511856079,
0.042172085493803024,
-0.03765581175684929,
0.07881796360015869,
0.010492443107068539,
-0.05715182423591614,
0.022092964500188828,
0.008635357953608036,
0.01296002883464098,
-0.09487240761518478,
-0.241228848695755,
0.001965607050806284,
-0.040643446147441864,
0.03694237396121025,
-0.18270549178123474,
0.0431734099984169,
0.13278134167194366,
0.13516375422477722,
0.05507727339863777,
-0.016490254551172256,
-0.024855827912688255,
0.03660491853952408,
-0.04997139051556587,
-0.06662058085203171,
0.03681638091802597,
0.03527460992336273,
-0.1379251480102539,
0.039882682263851166,
-0.18976947665214539,
0.1458897888660431,
0.16875804960727692,
-0.053849536925554276,
-0.09849320352077484,
0.04600108414888382,
-0.024908021092414856,
-0.012284704484045506,
-0.00034198485082015395,
0.010930664837360382,
0.14746494591236115,
0.03269677981734276,
0.14798173308372498,
-0.08710227161645889,
-0.06076423451304436,
0.05856085568666458,
-0.05039738863706589,
-0.020587993785738945,
0.06108429282903671,
-0.04723029211163521,
-0.15266171097755432,
0.1135677844285965,
0.12907490134239197,
-0.07000254839658737,
0.12396460026502609,
-0.055995874106884,
-0.050928663462400436,
-0.059745870530605316,
0.034830447286367416,
0.054831258952617645,
0.06887983530759811,
-0.11927872151136398,
-0.013333207927644253,
0.01808461733162403,
0.02601185254752636,
-0.008953915908932686,
-0.16632816195487976,
0.025598347187042236,
0.005843617953360081,
-0.07273352891206741,
0.0014308299869298935,
0.020330825820565224,
0.015836497768759727,
0.12572357058525085,
0.03748762607574463,
-0.02108803391456604,
0.07790929079055786,
0.0015252105658873916,
-0.08656372129917145,
0.18694958090782166,
-0.11809708178043365,
-0.1482614427804947,
-0.11099016666412354,
-0.11466323584318161,
-0.09040306508541107,
-0.002483277814462781,
0.0543067529797554,
-0.10248645395040512,
-0.06105485558509827,
-0.09584963321685791,
-0.018503183498978615,
-0.013258621096611023,
0.05336512252688408,
0.06102504953742027,
-0.004311005584895611,
0.11130790412425995,
-0.10737741738557816,
-0.05601268261671066,
-0.036199621856212616,
-0.01980462111532688,
0.04067855700850487,
0.009429254569113255,
0.04535066708922386,
0.1105293408036232,
-0.052881594747304916,
0.049806393682956696,
-0.06425414234399796,
0.19089475274085999,
-0.05547120049595833,
0.009588176384568214,
0.13508135080337524,
-0.03457032889127731,
0.08237951248884201,
0.12471050024032593,
0.04106273874640465,
-0.11737636476755142,
0.01937960647046566,
0.06387684494256973,
-0.05403011292219162,
-0.25753411650657654,
0.0003992076381109655,
-0.037529684603214264,
-0.026939895004034042,
0.04503818601369858,
0.05056401714682579,
0.1614873856306076,
0.02546146884560585,
0.02278777025640011,
0.09803862869739532,
0.03217785432934761,
0.11452384293079376,
0.1797424703836441,
0.05936293676495552,
0.13450945913791656,
-0.07379709184169769,
0.004618450999259949,
0.06392313539981842,
-0.004515491425991058,
0.18527865409851074,
0.03804808855056763,
0.13752798736095428,
0.0880580022931099,
0.07341478019952774,
0.015412194654345512,
0.016530945897102356,
-0.009032147005200386,
-0.028179030865430832,
-0.0029930435121059418,
-0.07152386009693146,
-0.035724345594644547,
0.03659757226705551,
-0.084534652531147,
0.039298467338085175,
-0.07567846775054932,
0.050743699073791504,
0.0934973806142807,
0.28606149554252625,
0.05815408378839493,
-0.33805349469184875,
-0.09727996587753296,
0.018408741801977158,
-0.04147301986813545,
-0.028284285217523575,
-0.008380276151001453,
0.07729276269674301,
-0.05488751083612442,
0.13985732197761536,
-0.08340897411108017,
0.07489832490682602,
-0.023988621309399605,
0.05645181983709335,
0.029636304825544357,
0.09407088905572891,
-0.015415667556226254,
0.0006884634494781494,
-0.3576626181602478,
0.2691783905029297,
0.05590105056762695,
0.11309321969747543,
-0.0735924243927002,
0.03567790240049362,
0.03375011309981346,
0.0386313796043396,
0.10284820944070816,
-0.02793702855706215,
-0.1438802182674408,
-0.1123594269156456,
-0.06327465176582336,
-0.006466918159276247,
0.14051853120326996,
0.07348780333995819,
0.10295426845550537,
-0.03180878981947899,
0.006326713599264622,
0.05972321704030037,
-0.01708369143307209,
-0.1148296371102333,
-0.06749509274959564,
0.030893530696630478,
0.06882266700267792,
-0.04844038560986519,
-0.059851936995983124,
-0.07242297381162643,
-0.06140121445059776,
0.2354406863451004,
-0.06861986964941025,
-0.06567598134279251,
-0.13502219319343567,
0.07162429392337799,
0.04595988988876343,
-0.05703701823949814,
0.03465970233082771,
-0.0192489642649889,
0.09827753156423569,
0.01287919282913208,
-0.12927888333797455,
0.1419164091348648,
-0.023065267130732536,
-0.17665258049964905,
-0.041609879583120346,
0.11777474731206894,
0.012820308096706867,
0.04796328768134117,
0.009313568472862244,
0.060514118522405624,
0.04493827000260353,
-0.08589015156030655,
0.07603033632040024,
0.013554044999182224,
0.053237129002809525,
-0.03324992582201958,
0.004075231961905956,
-0.0412764772772789,
-0.056529540568590164,
0.02003663219511509,
0.16635389626026154,
0.2618183195590973,
-0.0915815681219101,
0.08906711637973785,
0.024055883288383484,
-0.0830804780125618,
-0.19306392967700958,
0.07205348461866379,
0.03542263060808182,
-0.019217537716031075,
-0.034468576312065125,
-0.14236190915107727,
0.03790253400802612,
0.08044798672199249,
-0.009052207693457603,
0.07548587024211884,
-0.28697553277015686,
-0.14446993172168732,
0.06107578054070473,
0.11537192761898041,
0.1539028137922287,
-0.1623198240995407,
-0.07430875301361084,
-0.06109800934791565,
-0.09146154671907425,
0.13980211317539215,
-0.1873505562543869,
0.10119090229272842,
0.007963773794472218,
0.04222914204001427,
0.004980857949703932,
-0.04252105578780174,
0.08064983040094376,
-0.024360571056604385,
0.0922769159078598,
-0.08239669352769852,
-0.007230755873024464,
0.1775859147310257,
-0.08669697493314743,
0.060056257992982864,
-0.09906763583421707,
0.016176996752619743,
-0.05473758652806282,
0.00043612837907858193,
-0.06228739023208618,
0.0427192859351635,
-0.041932929307222366,
-0.030186742544174194,
-0.04029199108481407,
-0.0023360487539321184,
0.07898630201816559,
-0.03339753672480583,
0.18993784487247467,
-0.02133936621248722,
0.18901048600673676,
0.23531706631183624,
0.12621961534023285,
-0.11246759444475174,
0.03367888182401657,
0.06938380748033524,
-0.056183550506830215,
0.04653766378760338,
-0.19760027527809143,
0.057517144829034805,
0.10594097524881363,
-0.008102190680801868,
0.12160194665193558,
0.06980736553668976,
-0.07371792942285538,
0.050965048372745514,
0.06560744345188141,
-0.1524990350008011,
-0.1231316477060318,
0.03760755807161331,
-0.007794479839503765,
-0.08052056282758713,
0.10026835650205612,
0.17083312571048737,
-0.03195823356509209,
0.019900713115930557,
0.02463621087372303,
0.020490212365984917,
-0.06847091764211655,
0.11332987248897552,
-0.0024091035593301058,
0.04464363679289818,
-0.10135539621114731,
0.126358762383461,
0.020489662885665894,
-0.09347690641880035,
0.12023462355136871,
0.08943043649196625,
-0.09442925453186035,
-0.013413100503385067,
0.025876270607113838,
0.14574173092842102,
-0.021640107035636902,
-0.0510387122631073,
-0.14835989475250244,
-0.15054123103618622,
0.07581876963376999,
0.30457478761672974,
0.045124806463718414,
0.0451538972556591,
-0.04173296317458153,
-0.002852329518646002,
-0.0980062335729599,
0.057298123836517334,
0.024141812697052956,
0.0614045150578022,
-0.12821434438228607,
0.1523793488740921,
-0.0020114604849368334,
0.015583313070237637,
-0.03382643684744835,
0.019029079005122185,
-0.1472252458333969,
0.0015717636561021209,
-0.15320846438407898,
0.015350988134741783,
-0.0333314947783947,
-0.021184053272008896,
0.004134767688810825,
-0.04506001994013786,
-0.08509133756160736,
0.03612278029322624,
-0.09764442592859268,
-0.02972523868083954,
0.0372866690158844,
0.016494255512952805,
-0.1435636430978775,
-0.02961362712085247,
-0.016582641750574112,
-0.08270027488470078,
0.07184503972530365,
0.049771733582019806,
-0.03424016386270523,
0.042759817093610764,
-0.07606298476457596,
0.002671748399734497,
0.0842624306678772,
-0.020415300503373146,
0.06361741572618484,
-0.08705426752567291,
-0.015305534936487675,
0.010675567202270031,
0.04116183519363403,
0.050512611865997314,
0.1326688528060913,
-0.08591760694980621,
-0.013945132493972778,
-0.024530695751309395,
-0.037809040397405624,
-0.04884777218103409,
0.07365018874406815,
0.15383315086364746,
-0.00765629019588232,
0.17147128283977509,
-0.11518002301454544,
-0.00978894717991352,
-0.16738823056221008,
0.015812432393431664,
0.02263290248811245,
-0.13445863127708435,
-0.08562357723712921,
-0.020549220964312553,
0.07521165907382965,
-0.09108524769544601,
0.1147913858294487,
-0.019887303933501244,
0.04346776008605957,
0.07801822572946548,
-0.06344833970069885,
-0.09523008018732071,
0.03653136268258095,
0.18652044236660004,
0.030139770358800888,
-0.051096849143505096,
0.03336545079946518,
-0.009734941646456718,
0.08585047721862793,
0.04521862417459488,
0.2374543845653534,
0.12124497443437576,
0.02121351659297943,
0.13946817815303802,
0.06072961166501045,
0.003120338311418891,
-0.14875784516334534,
0.14132060110569,
-0.08661014586687088,
0.16079282760620117,
-0.029458776116371155,
0.10079393535852432,
0.14023683965206146,
-0.1451198309659958,
0.028439095243811607,
-0.033811744302511215,
-0.07046284526586533,
-0.13987986743450165,
-0.11266005784273148,
-0.10375447571277618,
-0.14737041294574738,
0.00026936657377518713,
-0.11207815259695053,
0.08037625253200531,
0.030521210283041,
0.03952240198850632,
-0.0028943622019141912,
0.11282861977815628,
-0.04805981367826462,
0.004231580533087254,
0.09716211259365082,
-0.023391926661133766,
-0.04816177487373352,
-0.03452164679765701,
-0.06432212144136429,
0.042441226541996,
0.014281823299825191,
0.039350979030132294,
0.0399964265525341,
0.03146887198090553,
0.04137980192899704,
-0.06081051751971245,
-0.11192537844181061,
0.05317145213484764,
0.0551738515496254,
0.04018101096153259,
0.03187105804681778,
0.046156056225299835,
-0.03250526264309883,
-0.01591808907687664,
0.14700044691562653,
-0.10016156733036041,
-0.052153345197439194,
-0.15337207913398743,
0.2543925344944,
0.014115078374743462,
0.01359941903501749,
-0.008509056642651558,
-0.07552935183048248,
-0.03707931190729141,
0.19501258432865143,
0.15488268435001373,
-0.005440519191324711,
-0.004333126358687878,
0.004826931748539209,
-0.003559976350516081,
-0.027860043570399284,
0.11074589192867279,
0.0813707709312439,
-0.023790303617715836,
-0.04546672850847244,
-0.05221765860915184,
-0.01742413267493248,
-0.028046783059835434,
-0.04802806302905083,
0.09170401096343994,
0.009525598026812077,
-0.013390491716563702,
-0.017434241250157356,
0.056604381650686264,
-0.06816507130861282,
-0.07599055767059326,
0.041675079613924026,
-0.21562230587005615,
-0.12166088819503784,
0.017799830064177513,
0.02374142035841942,
-0.015607817098498344,
0.05563933402299881,
0.00717174680903554,
-0.009132909588515759,
0.08710779994726181,
-0.029690038412809372,
-0.06717319041490555,
-0.06953523308038712,
0.06569506973028183,
-0.14126168191432953,
0.1642618328332901,
-0.023427089676260948,
0.018617477267980576,
0.15149998664855957,
0.03402264788746834,
-0.09175711125135422,
0.06125933676958084,
0.02913535200059414,
-0.0695742592215538,
-0.017173053696751595,
0.10055416077375412,
-0.01518100593239069,
0.10729122906923294,
0.0692092552781105,
-0.1078280359506607,
0.011626959778368473,
-0.09770800173282623,
-0.07113722711801529,
-0.04048573970794678,
-0.050434261560440063,
-0.07849974185228348,
0.10050968825817108,
0.19992509484291077,
-0.03567371889948845,
0.026635395362973213,
-0.04985400661826134,
-0.006324784364551306,
0.07351791113615036,
-0.03922899439930916,
-0.05820143222808838,
-0.25035515427589417,
0.046705763787031174,
0.11928499490022659,
0.012530856765806675,
-0.25152865052223206,
-0.08218491077423096,
0.00015077846182975918,
0.0012581205228343606,
-0.12894119322299957,
0.07506214082241058,
0.10833507776260376,
0.04844828322529793,
-0.05524326488375664,
-0.11968863010406494,
-0.015041785314679146,
0.17362527549266815,
-0.09817136079072952,
-0.05380959063768387
] |
null | null |
transformers
|
Paper: https://arxiv.org/abs/2204.03951
Code: https://github.com/alexyalunin/RuBioRoBERTa
|
{}
|
fill-mask
|
alexyalunin/RuBioBERT
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"arxiv:2204.03951",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2204.03951"
] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
Paper: URL
Code: URL
|
[] |
[
"TAGS\n#transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
49
] |
[
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.04768984392285347,
0.04198440536856651,
-0.0054769739508628845,
0.03899885714054108,
0.09409639984369278,
0.028139764443039894,
0.08185535669326782,
0.09388740360736847,
0.06674682348966599,
0.052584338933229446,
0.19400733709335327,
0.13616640865802765,
-0.03838194161653519,
0.14948871731758118,
-0.04446394369006157,
-0.22308404743671417,
0.06647691875696182,
0.04873301461338997,
-0.08657428622245789,
0.09648778289556503,
0.06418158113956451,
-0.1010613963007927,
0.07746853679418564,
-0.017143312841653824,
-0.12099923938512802,
0.06165138632059097,
0.03977824002504349,
-0.10620954632759094,
0.14004819095134735,
0.02434084191918373,
0.2019290328025818,
0.02450105920433998,
-0.044457826763391495,
-0.0517442524433136,
0.03264748677611351,
0.013627885840833187,
-0.07646842300891876,
0.07924357056617737,
-0.0005122603033669293,
-0.038264594972133636,
-0.016545061022043228,
0.006562038324773312,
0.010448361746966839,
0.020108448341488838,
-0.15212278068065643,
-0.16162951290607452,
-0.04228335618972778,
0.045670539140701294,
-0.008306656964123249,
0.08241574466228485,
0.0205089058727026,
0.20772750675678253,
-0.10073261708021164,
0.07318927347660065,
0.22384224832057953,
-0.34943559765815735,
-0.00039609873783774674,
0.11955477297306061,
0.07201234251260757,
-0.01352872047573328,
-0.03510645776987076,
0.07410911470651627,
0.039627619087696075,
0.01902635581791401,
0.07842040807008743,
-0.05831284821033478,
-0.08625064790248871,
0.05062029883265495,
-0.10396579653024673,
-0.0744696781039238,
0.18343095481395721,
-0.03796140477061272,
0.06742019206285477,
0.023092690855264664,
-0.13492846488952637,
-0.10062544047832489,
0.014349536970257759,
0.0005119067500345409,
-0.006119986530393362,
0.01620006002485752,
-0.011465992778539658,
-0.013958992436528206,
-0.15019957721233368,
0.018686683848500252,
-0.22756847739219666,
0.21898388862609863,
-0.018766900524497032,
0.07586516439914703,
-0.14802318811416626,
0.062487728893756866,
-0.0587083175778389,
-0.1316055804491043,
0.08305957913398743,
-0.07430703938007355,
0.02405470795929432,
0.03477742150425911,
-0.08976465463638306,
-0.02329685539007187,
0.04224285110831261,
0.1557917296886444,
0.046037331223487854,
0.01970418356359005,
0.07322658598423004,
0.10625694692134857,
0.019756371155381203,
0.0907653421163559,
-0.04031074419617653,
-0.04748614504933357,
0.023769542574882507,
-0.04630982130765915,
0.04240171238780022,
-0.06949133425951004,
-0.15186969935894012,
-0.08843167871236801,
0.041441403329372406,
0.04179856926202774,
0.06688874959945679,
0.027407169342041016,
-0.06041167303919792,
0.03157107159495354,
0.10269654542207718,
-0.05440077185630798,
0.02970869280397892,
-0.028810104355216026,
0.04603910818696022,
0.05748417600989342,
0.05042509362101555,
-0.025520604103803635,
0.024396393448114395,
0.1021268293261528,
-0.1097983866930008,
-0.018924258649349213,
-0.05316717550158501,
-0.1192491352558136,
0.04823404550552368,
-0.10960733890533447,
0.019954629242420197,
-0.20674565434455872,
-0.021959463134407997,
0.03835136815905571,
0.04860618710517883,
-0.02694551646709442,
-0.024831393733620644,
0.08790737390518188,
-0.04059649258852005,
0.08871641010046005,
-0.04523544758558273,
-0.008815083652734756,
-0.03960063308477402,
0.07542567700147629,
0.012540159747004509,
0.15494613349437714,
-0.12364929914474487,
0.042210452258586884,
-0.06787453591823578,
0.026798423379659653,
-0.14863350987434387,
-0.07707054167985916,
-0.04787087067961693,
0.09948280453681946,
-0.01093229278922081,
-0.05200875923037529,
-0.11090750247240067,
0.039147429168224335,
0.04489395394921303,
0.14281941950321198,
-0.10844249278306961,
-0.07711867243051529,
0.13375289738178253,
-0.0757455825805664,
-0.11790190637111664,
0.07806502282619476,
0.008905713446438313,
-0.04123137146234512,
-0.02624627761542797,
0.14246465265750885,
-0.01899070292711258,
-0.13944828510284424,
-0.00009580237383488566,
0.11703115701675415,
-0.09168365597724915,
-0.11157166957855225,
0.050300486385822296,
0.008596224710345268,
-0.07554912567138672,
0.011452068574726582,
0.05970023572444916,
0.08442680537700653,
-0.05706658959388733,
-0.051922302693128586,
-0.049823980778455734,
-0.045947637408971786,
0.15350064635276794,
0.021940119564533234,
0.1127251535654068,
-0.07465316355228424,
-0.053697068244218826,
-0.008078662678599358,
0.02192440629005432,
0.08778481185436249,
0.041770171374082565,
-0.0414840504527092,
0.1664549857378006,
-0.12523719668388367,
-0.011210350319743156,
-0.1678677350282669,
-0.08735392242670059,
-0.04603823274374008,
0.053678061813116074,
-0.01719708740711212,
0.18325275182724,
0.10789401829242706,
-0.04807617515325546,
-0.008106913417577744,
-0.03563805669546127,
0.06151926890015602,
0.05752572417259216,
-0.06766541302204132,
-0.08627021312713623,
-0.03070581890642643,
-0.08406470715999603,
-0.023067431524395943,
-0.030490798875689507,
0.003931384067982435,
-0.00637074513360858,
0.13437454402446747,
-0.011589720845222473,
0.05026448890566826,
-0.03375188261270523,
0.04133949056267738,
-0.05611512437462807,
-0.0016473543364554644,
0.053483955562114716,
-0.010522988624870777,
-0.030810726806521416,
0.17944753170013428,
-0.1686781346797943,
0.3838282525539398,
0.19843833148479462,
-0.26949942111968994,
-0.03854069113731384,
0.07639606297016144,
-0.010179063305258751,
0.013291430659592152,
0.04952636733651161,
-0.03660266473889351,
-0.03306133300065994,
-0.03491131216287613,
0.13243362307548523,
-0.009791102260351181,
-0.005521673709154129,
0.03745640814304352,
-0.09451232850551605,
-0.08227456361055374,
0.0515376441180706,
0.043054863810539246,
-0.12023068964481354,
0.19950902462005615,
0.3286515474319458,
-0.053973011672496796,
0.10728171467781067,
0.05569528788328171,
-0.016975246369838715,
-0.03984130918979645,
-0.08053971827030182,
-0.04368600621819496,
0.09336452931165695,
-0.1553843766450882,
-0.06074095517396927,
0.0919763520359993,
-0.012220113538205624,
0.05364920198917389,
-0.1315215528011322,
-0.04702957719564438,
0.052499573677778244,
0.08687666058540344,
-0.08795544505119324,
0.14287686347961426,
0.03701653704047203,
0.10094856470823288,
0.026016172021627426,
-0.06850042939186096,
0.06430460512638092,
0.02487533912062645,
-0.010618036612868309,
0.12583650648593903,
-0.1319504976272583,
-0.31038567423820496,
-0.14402726292610168,
-0.13547083735466003,
0.010197900235652924,
0.03981519490480423,
0.06891359388828278,
-0.09104925394058228,
-0.053083404898643494,
0.036411017179489136,
-0.023716788738965988,
-0.0901007354259491,
0.06753808259963989,
-0.04614793509244919,
-0.010883733630180359,
-0.0024390423204749823,
-0.07622887939214706,
-0.07458822429180145,
-0.018523450940847397,
-0.009825755842030048,
0.1271316260099411,
-0.005666573066264391,
0.10214672982692719,
0.12604638934135437,
-0.012762135826051235,
0.04199233651161194,
0.021369189023971558,
0.2006591558456421,
-0.05590235814452171,
0.007460400927811861,
0.18494360148906708,
-0.0026747819501906633,
0.07980712503194809,
0.15076413750648499,
0.029120249673724174,
-0.01951306313276291,
-0.015027998015284538,
-0.04204370081424713,
-0.1132979467511177,
-0.12210790812969208,
-0.10452062636613846,
-0.13011877238750458,
-0.040445633232593536,
0.053090088069438934,
0.059529826045036316,
0.11342330276966095,
0.06516577303409576,
0.051019348204135895,
-0.0034849282819777727,
-0.1426943838596344,
0.046134836971759796,
0.20325669646263123,
-0.04893520474433899,
0.14737270772457123,
-0.046421922743320465,
-0.10897248983383179,
0.05802741274237633,
0.04720309376716614,
0.08008906245231628,
0.08533304929733276,
-0.02780299074947834,
0.02616284415125847,
0.18946410715579987,
0.13945399224758148,
0.12369006872177124,
0.03783585876226425,
-0.0812472552061081,
-0.00985136441886425,
-0.012446300126612186,
-0.01815001852810383,
0.06659303605556488,
0.13788779079914093,
-0.10008560121059418,
-0.03620730713009834,
-0.15100938081741333,
0.03350865840911865,
0.06047596037387848,
0.10985773056745529,
-0.23520328104496002,
-0.017803573980927467,
0.05382052809000015,
0.00518902949988842,
-0.06727079302072525,
0.017732219770550728,
0.051155563443899155,
-0.08096060901880264,
0.021100779995322227,
-0.0031252852641046047,
0.0677669569849968,
0.0767115131020546,
0.07635987550020218,
-0.0741046890616417,
-0.0834052711725235,
0.008772405795753002,
0.05237038806080818,
-0.24608206748962402,
0.27908414602279663,
-0.006853717844933271,
-0.10687670856714249,
-0.05269067734479904,
-0.013268346898257732,
0.05035173520445824,
0.10679960995912552,
0.07326816022396088,
0.051981836557388306,
-0.054298993200063705,
-0.16321995854377747,
0.00045351459993980825,
-0.013036467134952545,
0.07702884823083878,
-0.004611389711499214,
0.006221852730959654,
-0.01517669390887022,
-0.03211575001478195,
0.017218340188264847,
0.211772158741951,
0.003680215682834387,
-0.11878879368305206,
0.10111071169376373,
0.08510402590036392,
-0.04108458757400513,
-0.01571536995470524,
-0.08474501967430115,
-0.1665991246700287,
0.1462855041027069,
0.01999051310122013,
-0.006363578140735626,
-0.10743767023086548,
-0.08753720670938492,
0.14570261538028717,
-0.08415794372558594,
0.11256642639636993,
-0.0814516618847847,
-0.001757505931891501,
-0.08774800598621368,
-0.13724775612354279,
0.16719090938568115,
-0.11829572170972824,
-0.01951119862496853,
-0.06615332514047623,
0.09752949327230453,
-0.1065872460603714,
0.05818556249141693,
-0.028310246765613556,
0.08377803862094879,
-0.15640847384929657,
-0.04923313483595848,
0.07974669337272644,
-0.0719839334487915,
0.06357888132333755,
0.010431958362460136,
-0.007943419739603996,
-0.014956044964492321,
0.05914454907178879,
0.028727388009428978,
0.23862801492214203,
0.2454454004764557,
-0.10885597765445709,
0.11461430788040161,
0.11752220243215561,
0.005396722815930843,
-0.32412323355674744,
-0.08092799037694931,
-0.1447363793849945,
0.021826043725013733,
0.04197831079363823,
-0.08108645677566528,
0.04817013815045357,
-0.016266046091914177,
-0.0763927549123764,
0.11302301287651062,
-0.172568216919899,
-0.0926266610622406,
0.21051079034805298,
-0.03846398741006851,
0.45760592818260193,
-0.10836850106716156,
-0.03390217199921608,
-0.029132109135389328,
-0.170298770070076,
0.04244031384587288,
0.00918392650783062,
0.09725238382816315,
-0.04827917367219925,
0.10231577605009079,
0.03362075239419937,
-0.09239505976438522,
0.1400974541902542,
-0.07884691655635834,
0.025664320215582848,
-0.12016179412603378,
-0.1548464298248291,
0.0926034227013588,
-0.05126146972179413,
-0.01102896686643362,
-0.017444586381316185,
0.01399289071559906,
-0.09507972747087479,
0.02036120556294918,
-0.11987114697694778,
0.10037319362163544,
0.01775582693517208,
-0.04683757200837135,
-0.0038483955431729555,
-0.013867387548089027,
-0.018263189122080803,
-0.015849290415644646,
0.21588079631328583,
-0.015533501282334328,
0.18432065844535828,
0.15130357444286346,
-0.03783879056572914,
-0.14073088765144348,
-0.08117297291755676,
0.021323131397366524,
-0.07865037769079208,
0.1160578802227974,
-0.08614964783191681,
0.03543677553534508,
0.09570105373859406,
-0.014001944102346897,
0.029459528625011444,
0.10461292415857315,
-0.0017396443290635943,
-0.01995977573096752,
0.16512353718280792,
-0.21757593750953674,
0.030815621837973595,
-0.007336492650210857,
0.03183821216225624,
0.05231039971113205,
0.03969847038388252,
0.11472948640584946,
0.00699254497885704,
-0.022839149460196495,
0.006325834430754185,
-0.020139621570706367,
-0.08009395003318787,
0.05990658327937126,
0.08494064211845398,
0.06753049790859222,
-0.10062076151371002,
0.009206431917846203,
0.013564037159085274,
-0.1680932492017746,
0.007971251383423805,
0.08413760364055634,
-0.06854626536369324,
-0.1323147416114807,
-0.047502510249614716,
0.023981204256415367,
-0.09712020307779312,
-0.016527391970157623,
-0.04657256230711937,
-0.07947840541601181,
0.04714353755116463,
0.18390290439128876,
0.09444441646337509,
0.039029721170663834,
-0.022259509190917015,
-0.020725753158330917,
0.016669852659106255,
-0.019077405333518982,
0.01117974054068327,
0.061015911400318146,
-0.1201920211315155,
0.04574232175946236,
-0.026633370667696,
0.149873286485672,
-0.09947305917739868,
-0.01953709125518799,
-0.15793685615062714,
-0.001213564071804285,
-0.09188174456357956,
-0.10639498382806778,
-0.08257059752941132,
-0.09007135778665543,
0.011117021553218365,
-0.09396037459373474,
-0.06982161849737167,
-0.02640477754175663,
-0.1379171758890152,
-0.009784298948943615,
0.01741655170917511,
0.011303999461233616,
-0.07323438674211502,
-0.03686794638633728,
0.11416735500097275,
-0.029783494770526886,
0.0692344680428505,
0.12593242526054382,
-0.039092592895030975,
0.04539116472005844,
-0.04254370182752609,
-0.13674207031726837,
0.08589078485965729,
0.012282826006412506,
0.10097256302833557,
0.02873544581234455,
-0.0024805336724966764,
0.017375661060214043,
0.05078309774398804,
0.0265851691365242,
0.09882466495037079,
-0.08312450349330902,
0.03598194569349289,
-0.006240434944629669,
-0.15930792689323425,
-0.008643211796879768,
-0.08428402990102768,
0.1187366172671318,
0.004561570473015308,
0.08221043646335602,
-0.022215422242879868,
0.0617203451693058,
-0.07937536388635635,
0.025066407397389412,
-0.055527638643980026,
-0.15214158594608307,
-0.004484177567064762,
-0.026689313352108,
0.029624128714203835,
-0.024402616545557976,
0.21691852807998657,
-0.0018835557857528329,
-0.04015781730413437,
0.03907531499862671,
0.09560038149356842,
-0.031005162745714188,
-0.016690533608198166,
0.12297140061855316,
0.07850528508424759,
-0.06373797357082367,
-0.07826829701662064,
0.10697351396083832,
0.02120949886739254,
0.00011086379527114332,
0.09074472635984421,
0.08047637343406677,
0.09857024252414703,
0.11322218179702759,
0.00853549875319004,
-0.04734160751104355,
-0.16300112009048462,
-0.18629257380962372,
-0.07671298086643219,
0.07874128967523575,
-0.03496376797556877,
0.01366705447435379,
0.16838206350803375,
0.0021683110389858484,
0.04178355261683464,
-0.07274743169546127,
0.003750563133507967,
-0.1536714732646942,
-0.10821975022554398,
-0.06551484018564224,
-0.09658653289079666,
-0.010774798691272736,
-0.009098571725189686,
0.04298233240842819,
0.14936015009880066,
0.013202395290136337,
0.0009663768578320742,
0.1401377022266388,
0.031379133462905884,
-0.022502386942505836,
-0.005588180385529995,
0.017259031534194946,
0.031685855239629745,
-0.018177315592765808,
-0.0022528364788740873,
-0.11413080245256424,
-0.020144004374742508,
-0.047221314162015915,
0.0007872036076150835,
-0.0696951150894165,
0.006633572280406952,
-0.06433869153261185,
-0.12357812374830246,
-0.07526148110628128,
0.03895939886569977,
-0.02082538791000843,
0.12829461693763733,
-0.01815110817551613,
0.07106931507587433,
-0.0245589017868042,
0.1814662516117096,
-0.115017369389534,
-0.04901530221104622,
-0.023581577464938164,
0.1701391041278839,
0.0082699004560709,
0.0860823318362236,
-0.061823390424251556,
0.01241448987275362,
-0.1294655203819275,
0.24370338022708893,
0.334825724363327,
-0.0788978710770607,
0.0872768834233284,
0.06354408711194992,
0.018879583105444908,
0.03521665185689926,
0.08055557310581207,
0.09832116216421127,
0.23505595326423645,
-0.10885081440210342,
-0.033538006246089935,
-0.07438891381025314,
-0.011330404318869114,
-0.08237868547439575,
0.03336421400308609,
0.023665405809879303,
-0.054421622306108475,
-0.06607059389352798,
0.019546646624803543,
-0.11029909551143646,
0.08592695742845535,
0.06641119718551636,
-0.2610234022140503,
-0.07135523855686188,
0.02368789352476597,
0.19713139533996582,
-0.01541893370449543,
0.12113150954246521,
-0.04765249788761139,
-0.07729929685592651,
0.04004139453172684,
0.004403234459459782,
-0.1558080017566681,
-0.06501562148332596,
0.11829107999801636,
-0.026116013526916504,
0.0723000094294548,
-0.040727727115154266,
0.02252173237502575,
0.11666088551282883,
0.08907435089349747,
-0.07041994482278824,
0.037384577095508575,
0.033823274075984955,
-0.13395045697689056,
-0.0830523669719696,
0.007219805382192135,
0.006501058582216501,
-0.08917518705129623,
0.05123177543282509,
-0.1854313313961029,
0.0383419506251812,
-0.043855972588062286,
0.011157361790537834,
0.008170800283551216,
-0.004846916068345308,
-0.023162268102169037,
0.07295000553131104,
0.06123819947242737,
-0.009891750290989876,
-0.056660234928131104,
-0.024826614186167717,
-0.039782267063856125,
0.06446734070777893,
-0.07897438108921051,
-0.1671392321586609,
-0.07852254807949066,
-0.01726680062711239,
0.03140037879347801,
-0.003707950934767723,
-0.12804411351680756,
-0.05742552503943443,
-0.07272939383983612,
0.01845128834247589,
-0.08231974393129349,
0.0327061302959919,
0.06728635728359222,
0.028696417808532715,
0.006543188355863094,
-0.03959718719124794,
0.035797785967588425,
0.06964999437332153,
-0.15872685611248016,
-0.08216789364814758
] |
null | null |
transformers
|
### Contact
[email protected]
https://t.me/pavel_blinoff
### Paper
https://arxiv.org/abs/2204.03951
### Code
https://github.com/alexyalunin/RuBioRoBERTa
### Citation
```
@misc{alex2022rubioroberta,
title={RuBioRoBERTa: a pre-trained biomedical language model for Russian language biomedical text mining},
author={Alexander Yalunin and Alexander Nesterov and Dmitriy Umerenkov},
year={2022},
eprint={2204.03951},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
{"language": ["ru"], "multilinguality": ["monolingual"], "widget": [{"text": "\u0416\u0430\u043b\u043e\u0431\u044b \u043d\u0430 \u0431\u043e\u043b\u044c \u0432\u043d\u0438\u0437\u0443 <mask> \u043f\u043e\u0441\u043b\u0435 \u043f\u0440\u0438\u0451\u043c\u0430 \u043f\u0438\u0449\u0438.", "example_title": "pain_example"}, {"text": "\u041f\u0430\u0446\u0438\u0435\u043d\u0442\u043a\u0430 \u043d\u0430\u0431\u043b\u044e\u0434\u0430\u043b\u0430\u0441\u044c \u0443 <mask> \u043f\u043e \u043f\u043e\u0432\u043e\u0434\u0443 \u0433\u0440\u0438\u0431\u043a\u043e\u0432\u043e\u0433\u043e \u043f\u043e\u0440\u0430\u0436\u0435\u043d\u0438\u044f \u043a\u043e\u0436\u0438.", "example_title": "spec_example"}, {"text": "\u041f\u043e\u044f\u0432\u0438\u043b\u0441\u044f \u0437\u0443\u0434 \u0442\u0435\u043b\u0430, <mask> \u0432\u0435\u0441\u0430, \u043f\u043e\u0442\u043b\u0438\u0432\u043e\u0441\u0442\u044c, \u043f\u0440\u043e\u0432\u043e\u0434\u0438\u043b \u043a\u043e\u043d\u0442\u0440\u043e\u043b\u044c \u0441\u0430\u0445\u0430\u0440\u0430 \u043a\u0440\u043e\u0432\u0438.", "example_title": "weight_example"}]}
|
fill-mask
|
alexyalunin/RuBioRoBERTa
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ru",
"arxiv:2204.03951",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2204.03951"
] |
[
"ru"
] |
TAGS
#transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us
|
### Contact
URL@URL
https://t.me/pavel_blinoff
### Paper
URL
### Code
URL
|
[
"### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff",
"### Paper\nURL",
"### Code\nURL"
] |
[
"TAGS\n#transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff",
"### Paper\nURL",
"### Code\nURL"
] |
[
48,
18,
4,
4
] |
[
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us \n### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff### Paper\nURL### Code\nURL"
] |
[
-0.0704975351691246,
0.10873851925134659,
-0.006773879751563072,
0.06896120309829712,
0.13539406657218933,
0.019770454615354538,
0.09687109291553497,
0.07841484248638153,
-0.015175455249845982,
0.03352852165699005,
0.22969549894332886,
0.17399632930755615,
0.00218045711517334,
0.18509232997894287,
-0.01722044311463833,
-0.2216392606496811,
0.003996353596448898,
0.03581155464053154,
-0.03605265915393829,
0.11831162869930267,
0.07256434112787247,
-0.06248236447572708,
0.09879428148269653,
-0.0015275885816663504,
-0.09170639514923096,
0.09468311816453934,
0.03641793131828308,
-0.0976954996585846,
0.11035400629043579,
0.03478027880191803,
0.13856784999370575,
0.024780049920082092,
-0.010578839108347893,
-0.07661215960979462,
0.03398270532488823,
-0.026960203424096107,
-0.09322631359100342,
0.06553462892770767,
0.025430073961615562,
-0.09513276815414429,
0.07678266614675522,
-0.026563778519630432,
-0.053795281797647476,
0.05790778249502182,
-0.14928868412971497,
-0.15277737379074097,
-0.029072178527712822,
0.12954246997833252,
0.04769958183169365,
0.10962508618831635,
0.022455643862485886,
0.21022897958755493,
-0.02776515483856201,
0.10747542977333069,
0.27069830894470215,
-0.3041283190250397,
-0.04674382135272026,
0.01744154468178749,
0.0009056953131221235,
-0.013584240339696407,
-0.007113645784556866,
0.07048636674880981,
0.058567989617586136,
0.0004771138192154467,
-0.01589861698448658,
-0.08382214605808258,
-0.09960706532001495,
0.009010943584144115,
-0.07430881261825562,
-0.04607294872403145,
0.1788281947374344,
-0.017538247630000114,
0.010524706915020943,
0.14390668272972107,
-0.06939952075481415,
-0.08716659992933273,
-0.0217424388974905,
0.008889429271221161,
-0.013339770026504993,
0.012383392080664635,
-0.07435503602027893,
-0.021974464878439903,
-0.13829457759857178,
-0.016906144097447395,
-0.1254480928182602,
0.19398218393325806,
-0.015762286260724068,
0.04882011190056801,
-0.1377256214618683,
0.037677060812711716,
-0.06461486965417862,
-0.11761655658483505,
0.04615427181124687,
-0.04940300062298775,
0.08728925883769989,
0.016069192439317703,
-0.025407925248146057,
-0.10293176025152206,
0.08093380928039551,
0.20812352001667023,
0.09216215461492538,
0.021062837913632393,
0.05729746073484421,
0.08399730920791626,
-0.05724334716796875,
0.08214046061038971,
-0.05507174879312515,
-0.04053156450390816,
0.055643271654844284,
-0.1048082634806633,
0.07705144584178925,
-0.030752411112189293,
-0.1707419753074646,
-0.09500271826982498,
0.0071789780631661415,
0.10301093757152557,
0.032646145671606064,
0.028177723288536072,
-0.08166263997554779,
0.026825565844774246,
0.11488571017980576,
-0.05948598310351372,
-0.014447666704654694,
-0.03477708250284195,
0.00353303668089211,
0.06307047605514526,
0.019519038498401642,
-0.027062341570854187,
-0.050396449863910675,
0.12586793303489685,
-0.09101685881614685,
0.015153458341956139,
-0.02514299750328064,
-0.06383106857538223,
0.062404815107584,
-0.12750142812728882,
0.035398248583078384,
-0.21921153366565704,
-0.08289840072393417,
0.04181739315390587,
0.04988442733883858,
-0.02973034791648388,
0.004533777944743633,
0.02350066415965557,
-0.036682307720184326,
0.03715141490101814,
-0.008010252378880978,
-0.014258728362619877,
-0.03822857514023781,
0.08063901215791702,
0.024512091651558876,
0.15133145451545715,
-0.08435473591089249,
0.016503620892763138,
-0.08300438523292542,
-0.02508769929409027,
-0.14604079723358154,
-0.11419908702373505,
-0.05392875894904137,
0.13398627936840057,
-0.05399784445762634,
-0.0475345142185688,
-0.04870019108057022,
-0.021993422880768776,
0.08716771006584167,
0.20192928612232208,
-0.03132858872413635,
-0.08390384912490845,
0.18401138484477997,
-0.06717748939990997,
-0.08171145617961884,
0.08954820036888123,
0.04396401718258858,
-0.018171580508351326,
0.019746001809835434,
0.055759578943252563,
0.048884179443120956,
-0.1821429282426834,
0.01844383403658867,
0.08363140374422073,
-0.16434097290039062,
-0.16626770794391632,
0.0671512559056282,
-0.05421359837055206,
-0.061046261340379715,
0.026741931214928627,
0.09150727838277817,
0.07533712685108185,
-0.03768225759267807,
-0.05751439929008484,
-0.002090709051117301,
-0.07078644633293152,
0.11573678255081177,
0.02481910027563572,
0.08962863683700562,
-0.09905990958213806,
-0.06846850365400314,
-0.1222994476556778,
0.03891678526997566,
0.10181596130132675,
0.03386107087135315,
-0.07397138327360153,
0.08564459532499313,
-0.08654094487428665,
-0.007600939366966486,
-0.13730108737945557,
0.0083100451156497,
-0.05789259076118469,
0.054267432540655136,
0.029859229922294617,
0.03930456191301346,
0.12234381586313248,
-0.044747792184352875,
-0.025270739570260048,
-0.042771872133016586,
0.03344878926873207,
0.01024105865508318,
-0.03429025039076805,
-0.08794189989566803,
0.04047267884016037,
-0.043053217232227325,
-0.00009662462252890691,
-0.033931661397218704,
-0.01821957156062126,
0.04958590865135193,
0.10975399613380432,
0.002125196624547243,
0.022637659683823586,
-0.02425612136721611,
0.030571376904845238,
-0.03959392011165619,
0.0031602145172655582,
0.09006664901971817,
-0.0032340362668037415,
-0.04161033034324646,
0.05985002592206001,
-0.03234553337097168,
0.3037153482437134,
0.15747612714767456,
-0.2668024003505707,
-0.09452473372220993,
0.13695071637630463,
-0.02445925399661064,
0.008127295412123203,
0.07080402225255966,
0.01685124821960926,
0.007234171964228153,
-0.008370419964194298,
0.1319877803325653,
-0.01022239401936531,
0.0074931117706000805,
0.06060919165611267,
-0.1170605719089508,
-0.044634900987148285,
0.09057822078466415,
0.1129206120967865,
-0.12398681044578552,
0.1439313143491745,
0.17796288430690765,
-0.05330463498830795,
0.13288594782352448,
0.05142313987016678,
-0.04283398762345314,
-0.03929497301578522,
-0.010225929319858551,
0.031209582462906837,
0.07639214396476746,
-0.0846431627869606,
-0.039874184876680374,
0.046858157962560654,
-0.06615195423364639,
0.024094274267554283,
-0.13152644038200378,
-0.06860377639532089,
0.017904331907629967,
0.013936526142060757,
-0.08300502598285675,
0.11666697263717651,
-0.06386622786521912,
0.09820280969142914,
0.06682204455137253,
-0.06398902088403702,
0.06759162992238998,
0.032708995044231415,
-0.05112886428833008,
0.14149412512779236,
-0.09230104088783264,
-0.33225545287132263,
-0.21722067892551422,
-0.1406327784061432,
0.007067006081342697,
0.03989747539162636,
0.05879553407430649,
-0.17645856738090515,
-0.06920842081308365,
0.06641494482755661,
-0.036333490163087845,
-0.04314340278506279,
0.02873862348496914,
-0.025131316855549812,
0.04760057479143143,
0.014346147887408733,
-0.04539022594690323,
-0.042203404009342194,
-0.011531596072018147,
0.027089746668934822,
0.10595130920410156,
-0.0647541731595993,
0.12869219481945038,
0.07080719619989395,
0.013817092403769493,
0.053334664553403854,
0.01159792859107256,
0.14265350997447968,
-0.06726031005382538,
0.031274229288101196,
0.19512660801410675,
-0.02501733973622322,
0.09693814069032669,
0.17032447457313538,
0.0457787849009037,
-0.04225592687726021,
0.011404621414840221,
-0.039705585688352585,
-0.09546656161546707,
-0.19657614827156067,
-0.092990443110466,
-0.07686477154493332,
0.05346609279513359,
0.0541277676820755,
0.049232158809900284,
0.10796874761581421,
0.10741620510816574,
0.06085829809308052,
0.0037674056366086006,
-0.10273490846157074,
0.10765967518091202,
0.10553274303674698,
-0.006945061031728983,
0.08737808465957642,
-0.10709988325834274,
-0.09920705109834671,
0.08872760087251663,
-0.0010779974982142448,
0.04777511954307556,
0.09010518342256546,
0.045557647943496704,
0.010035673156380653,
0.12405373901128769,
0.10952938348054886,
0.11322423070669174,
0.08161529153585434,
-0.08178108930587769,
0.0233029555529356,
-0.03626616299152374,
-0.01152848731726408,
0.033589690923690796,
0.03591010347008705,
-0.04225657507777214,
-0.04315831884741783,
-0.10736826807260513,
0.020901519805192947,
0.07456818968057632,
0.09778159856796265,
-0.21926017105579376,
-0.03152593597769737,
0.010296568274497986,
0.02761065401136875,
-0.042576033622026443,
-0.012077772989869118,
-0.0685817077755928,
-0.10978469252586365,
0.06240822747349739,
-0.02920829877257347,
0.07090705633163452,
0.05036349967122078,
0.052331190556287766,
-0.06253234297037125,
0.009620587341487408,
-0.00431104376912117,
0.07924899458885193,
-0.21141166985034943,
0.32054176926612854,
0.03858979418873787,
0.007731813471764326,
-0.05191250890493393,
-0.031174572184681892,
0.0432964451611042,
0.11479110270738602,
0.14730103313922882,
0.04180469736456871,
0.015214725397527218,
-0.17439186573028564,
-0.008230351842939854,
0.008481048047542572,
0.12872730195522308,
0.019078826531767845,
0.006481298711150885,
-0.021086109802126884,
-0.06514135003089905,
-0.034322112798690796,
0.07376580685377121,
-0.046426981687545776,
-0.08811851590871811,
0.08809665590524673,
0.04238826036453247,
0.04129881039261818,
-0.011211065575480461,
-0.060739342123270035,
-0.05104987695813179,
0.21449553966522217,
-0.04179222136735916,
-0.03351512551307678,
-0.10311315208673477,
-0.06422960758209229,
0.0788227915763855,
-0.14898578822612762,
0.11105342954397202,
-0.07919647544622421,
-0.0075078378431499004,
-0.07003802061080933,
-0.08468208461999893,
0.11558455973863602,
-0.09937942773103714,
-0.009204527363181114,
-0.052867401391267776,
0.15298433601856232,
-0.04418127238750458,
0.02882520854473114,
-0.05035652592778206,
0.042404357343912125,
-0.10587730258703232,
-0.0742262676358223,
0.09762363135814667,
-0.10433866083621979,
0.06143650785088539,
0.008204671554267406,
-0.023316795006394386,
-0.05479670688509941,
-0.03467412292957306,
-0.022101882845163345,
0.21806848049163818,
0.30586329102516174,
-0.07666455954313278,
0.06895474344491959,
0.17958208918571472,
0.005643259733915329,
-0.3018656373023987,
-0.08559390157461166,
-0.11730669438838959,
-0.008092091418802738,
-0.03332003206014633,
-0.11326699703931808,
0.0090928440913558,
0.00047437610919587314,
-0.04359717667102814,
0.13970860838890076,
-0.14129765331745148,
-0.11083958297967911,
0.18640321493148804,
0.023698389530181885,
0.37646687030792236,
-0.10146043449640274,
-0.041819799691438675,
-0.10015270859003067,
-0.22512784600257874,
-0.028277914971113205,
0.031967971473932266,
0.09471200406551361,
-0.04108409211039543,
0.07806451618671417,
0.00837485771626234,
-0.08570247143507004,
0.09691715240478516,
-0.06224043667316437,
-0.0028333212248981,
-0.10953567177057266,
-0.14860543608665466,
0.06689856201410294,
0.0005941363633610308,
0.03741832077503204,
-0.0006460529984906316,
0.004038281738758087,
-0.04266193509101868,
-0.015905695036053658,
-0.061255499720573425,
0.1085786446928978,
0.025892790406942368,
-0.07836346328258514,
-0.02714003063738346,
-0.012982062995433807,
-0.06521502137184143,
-0.025132372975349426,
0.1498015820980072,
-0.031328704208135605,
0.13528646528720856,
0.14523553848266602,
0.0306420736014843,
-0.1002482995390892,
-0.015186378732323647,
0.01765565574169159,
-0.11146657168865204,
0.07004731148481369,
-0.07713363319635391,
0.007893565110862255,
0.1058785542845726,
0.013979093171656132,
0.013914117589592934,
0.04506613314151764,
-0.043775513768196106,
-0.00754113495349884,
0.159703329205513,
-0.23860248923301697,
0.02642492577433586,
-0.03891899064183235,
-0.048471368849277496,
0.011981979943811893,
0.09574291855096817,
0.11038627475500107,
-0.02270451933145523,
-0.0360884852707386,
0.021734297275543213,
-0.012574870139360428,
-0.07847709208726883,
0.06318444013595581,
0.1367037296295166,
0.023735279217362404,
-0.0780111700296402,
0.04942953586578369,
-0.026062287390232086,
-0.16381962597370148,
0.0028738854452967644,
0.12788011133670807,
-0.12702761590480804,
-0.11649294942617416,
0.02642454020678997,
0.0669570192694664,
-0.1701524704694748,
-0.04079148918390274,
-0.13416777551174164,
-0.0014548858162015676,
0.0643482431769371,
0.2044963389635086,
0.08681709319353104,
-0.0013595485361292958,
-0.0075311181135475636,
-0.015019547194242477,
-0.054074663668870926,
0.005778441671282053,
0.06517674773931503,
0.047204285860061646,
-0.10835100710391998,
0.06378712505102158,
0.000008279310350189917,
0.14336547255516052,
-0.07606638967990875,
-0.01048923097550869,
-0.16873395442962646,
0.015501861460506916,
-0.05649155005812645,
-0.08610352873802185,
-0.08228885382413864,
-0.0531967394053936,
-0.011728255078196526,
-0.08999345451593399,
-0.07253335416316986,
-0.01280294544994831,
-0.11439472436904907,
0.0006206614198163152,
0.03710320219397545,
-0.014527187682688236,
-0.09386678785085678,
-0.01400893647223711,
0.11462479829788208,
0.012256319634616375,
0.059911325573921204,
0.11690276861190796,
-0.0101090706884861,
0.07228418439626694,
-0.12617917358875275,
-0.05274735763669014,
0.05981746315956116,
-0.020583391189575195,
0.08169977366924286,
0.025440692901611328,
0.027378050610423088,
-0.0016603756230324507,
0.03587929531931877,
0.03919258341193199,
0.09451556950807571,
-0.10323560982942581,
0.10598170012235641,
-0.0033785414416342974,
-0.1452147215604782,
-0.06329254806041718,
-0.022707708179950714,
0.09912306070327759,
-0.025572162121534348,
0.10246787965297699,
-0.07580757886171341,
0.10000874102115631,
-0.028272554278373718,
0.038914669305086136,
-0.039320532232522964,
-0.1385253667831421,
-0.04597696661949158,
-0.06528089195489883,
0.0014834939502179623,
-0.037496499717235565,
0.07564622163772583,
-0.03267360478639603,
0.04137381166219711,
0.04057901352643967,
0.07039007544517517,
-0.02071671560406685,
-0.018830860033631325,
0.07115565985441208,
0.06298461556434631,
-0.06556739658117294,
-0.1219521090388298,
0.09541071951389313,
0.014227316714823246,
-0.05165770277380943,
0.11899179965257645,
0.05605301633477211,
0.09889113157987595,
0.0916956439614296,
-0.024525389075279236,
0.0060099647380411625,
-0.12926241755485535,
-0.19549301266670227,
-0.026282310485839844,
0.04145096614956856,
0.0050129699520766735,
0.06589025259017944,
0.22906720638275146,
-0.0023605083115398884,
-0.014259886927902699,
0.004893860314041376,
-0.0034118290059268475,
-0.14697831869125366,
-0.1385134905576706,
-0.0741209089756012,
-0.08377207070589066,
0.0511971153318882,
0.0063620153814554214,
0.027631398290395737,
0.019807862117886543,
0.014266557060182095,
-0.04080432653427124,
0.14893339574337006,
-0.018028296530246735,
-0.042418770492076874,
0.04484458267688751,
-0.015797801315784454,
-0.004652827978134155,
-0.006850223056972027,
0.03533686324954033,
-0.11092966794967651,
-0.0747026801109314,
-0.03825904801487923,
0.008480288088321686,
-0.0501626655459404,
-0.006606059614568949,
-0.057703662663698196,
-0.11068349331617355,
-0.02668602764606476,
0.10764112323522568,
0.011203130707144737,
0.10939060896635056,
-0.013200943358242512,
0.055940546095371246,
0.007023850455880165,
0.11472566425800323,
-0.06307119131088257,
-0.09055126458406448,
-0.03743964061141014,
0.166904017329216,
0.03482040390372276,
0.08607420325279236,
-0.07281316071748734,
-0.0032435946632176638,
-0.05079348757863045,
0.3216474950313568,
0.25795698165893555,
0.0001801997423171997,
0.06609755754470825,
0.02775302715599537,
0.04425663501024246,
0.05327950045466423,
0.07505609095096588,
0.08630647510290146,
0.23339951038360596,
-0.09280699491500854,
-0.04169159755110741,
-0.07491185516119003,
-0.005387493874877691,
-0.11007270961999893,
0.030757179483771324,
0.049747537821531296,
-0.04181138798594475,
-0.05923652648925781,
0.09716208279132843,
-0.1587979942560196,
0.0691564604640007,
0.04014691710472107,
-0.16681630909442902,
-0.06321161240339279,
0.030444860458374023,
0.11419729143381119,
0.04688456654548645,
0.11788021773099899,
-0.033321280032396317,
-0.0563855804502964,
0.049987781792879105,
0.049735452979803085,
-0.17751240730285645,
-0.09220960736274719,
0.05676765367388725,
-0.09463135898113251,
0.08112845569849014,
-0.06289823353290558,
0.013216591440141201,
0.14804206788539886,
0.03503704071044922,
-0.08932336419820786,
0.07081515341997147,
0.05246637389063835,
-0.09752359241247177,
-0.0027107486966997385,
-0.018198521807789803,
0.013671407476067543,
-0.09528984129428864,
0.02214447595179081,
-0.0695984810590744,
0.04402316361665726,
-0.008316384628415108,
0.06011679396033287,
-0.029668312519788742,
0.10358303785324097,
-0.08898860216140747,
0.0690860003232956,
0.08050760626792908,
-0.010830573737621307,
-0.058549314737319946,
-0.04209278151392937,
0.0008622531313449144,
0.08535145968198776,
-0.12449213117361069,
-0.08438580483198166,
-0.06409677863121033,
-0.021195536479353905,
0.026245221495628357,
0.023948753252625465,
-0.15968899428844452,
-0.02097504772245884,
-0.11912589520215988,
0.014824283309280872,
-0.10992481559515,
0.03296520188450813,
0.05611329898238182,
0.03528836369514465,
0.007816197350621223,
-0.03774894401431084,
0.030764397233724594,
0.05396832898259163,
-0.15234026312828064,
-0.09917060285806656
] |
null | null |
transformers
|
# RuBio
for paper: dsdfsfsdf
|
{}
|
fill-mask
|
alexyalunin/my-awesome-model
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
|
# RuBio
for paper: dsdfsfsdf
|
[
"# RuBio\n\nfor paper: dsdfsfsdf"
] |
[
"TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n",
"# RuBio\n\nfor paper: dsdfsfsdf"
] |
[
36,
13
] |
[
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# RuBio\n\nfor paper: dsdfsfsdf"
] |
[
-0.040277283638715744,
0.004631409887224436,
-0.008436281234025955,
0.0006507636280730367,
0.11426199972629547,
0.017937928438186646,
0.16581815481185913,
0.07740416377782822,
0.04926438629627228,
0.03303806483745575,
0.17085935175418854,
0.161610946059227,
0.00013601499085780233,
0.2207765281200409,
-0.10988669842481613,
-0.25484710931777954,
0.07345712929964066,
0.06539313495159149,
-0.09965340793132782,
0.06707591563463211,
0.08845683932304382,
-0.06850770115852356,
0.05091173201799393,
-0.06218243017792702,
-0.17566116154193878,
0.015916790813207626,
-0.009776916354894638,
-0.07450756430625916,
0.07007578015327454,
0.06724477559328079,
0.16258926689624786,
0.09528595209121704,
-0.02156909927725792,
-0.05279767885804176,
0.06302939355373383,
-0.043197162449359894,
-0.058808743953704834,
0.06572945415973663,
0.017203014343976974,
-0.016743052750825882,
0.09306372702121735,
0.018318360671401024,
-0.03738172724843025,
-0.010612843558192253,
-0.11889796704053879,
-0.24505427479743958,
-0.04654702916741371,
0.12398354709148407,
0.03039093129336834,
0.023887796327471733,
0.008422689512372017,
0.10701063275337219,
0.011367649771273136,
0.09439186006784439,
0.17858199775218964,
-0.22219200432300568,
-0.06855718791484833,
0.13694258034229279,
0.030134225264191628,
-0.08589676022529602,
-0.021325256675481796,
0.06880456954240799,
-0.009562555700540543,
0.012463434599339962,
-0.02162468433380127,
-0.08776351809501648,
0.005844093859195709,
-0.02160695753991604,
-0.07621617615222931,
0.030060669407248497,
0.21653702855110168,
-0.041610267013311386,
-0.0019600223749876022,
-0.01009124331176281,
-0.08679560571908951,
0.07184936851263046,
-0.08109676837921143,
-0.04624290391802788,
-0.05363927409052849,
0.02569529227912426,
0.02317546308040619,
-0.019932996481657028,
-0.10352714359760284,
0.043007783591747284,
-0.16353023052215576,
0.28687724471092224,
0.004996113479137421,
0.04535139724612236,
-0.15806365013122559,
0.03957076370716095,
-0.055455271154642105,
-0.12792083621025085,
0.01920400746166706,
-0.12621578574180603,
0.07774737477302551,
0.02073785662651062,
-0.04686775803565979,
-0.16833490133285522,
0.10263188928365707,
0.22327278554439545,
0.13828356564044952,
0.017644597217440605,
0.05035325139760971,
0.10525372624397278,
0.01408072467893362,
0.059285081923007965,
-0.007986360229551792,
0.015402132645249367,
0.06001117452979088,
-0.0781102105975151,
0.05413167551159859,
-0.0674005001783371,
-0.14722062647342682,
-0.011925259605050087,
-0.01977436989545822,
-0.0017501632682979107,
0.021724509075284004,
0.02116919867694378,
-0.03745223581790924,
0.0037903289776295424,
0.21165823936462402,
-0.04126279428601265,
-0.05892690271139145,
-0.04483424872159958,
0.04937952756881714,
0.1846788227558136,
0.04031218960881233,
-0.008854313753545284,
0.013988385908305645,
0.250436395406723,
-0.014879577793180943,
-0.02828178182244301,
0.002277114661410451,
-0.08521150052547455,
0.012651599012315273,
-0.13542068004608154,
0.07039378583431244,
-0.17310383915901184,
-0.174772247672081,
0.024016065523028374,
0.0401562824845314,
-0.041375115513801575,
0.023889945819973946,
0.05978931859135628,
-0.02471250854432583,
0.005232393275946379,
0.023627683520317078,
-0.04267703741788864,
-0.0062979296781122684,
0.09913746267557144,
0.04571790620684624,
0.14982707798480988,
-0.20750078558921814,
0.03737950325012207,
-0.022509800270199776,
-0.022499021142721176,
-0.12709568440914154,
-0.032451797276735306,
-0.08414475619792938,
0.09805196523666382,
0.011138126254081726,
-0.051302988082170486,
-0.15766116976737976,
0.023154031485319138,
-0.003501683473587036,
0.1591263711452484,
-0.13927637040615082,
-0.11215391755104065,
0.26255592703819275,
-0.12691587209701538,
-0.09511272609233856,
0.06964364647865295,
0.01185289304703474,
0.06957970559597015,
0.024066057056188583,
0.10640156269073486,
0.07773476839065552,
-0.13978634774684906,
0.016231324523687363,
0.12491503357887268,
-0.06434259563684464,
-0.07364658266305923,
0.05043666809797287,
0.03234485909342766,
-0.019550219178199768,
0.06290005147457123,
0.05119989067316055,
0.062015097588300705,
-0.05205778032541275,
-0.026544244959950447,
-0.010912411846220493,
-0.03401673212647438,
0.14737986028194427,
0.04004305601119995,
0.12271586060523987,
-0.020759671926498413,
-0.0020211192313581705,
-0.057274527847766876,
0.003559444798156619,
0.05312040075659752,
-0.008638719096779823,
-0.05840117484331131,
0.15230022370815277,
-0.01744520105421543,
0.04929358884692192,
-0.1828812062740326,
-0.07390372455120087,
-0.02166709303855896,
0.09001029282808304,
0.005093252751976252,
0.15879864990711212,
0.08894804120063782,
-0.009570030495524406,
-0.050855860114097595,
0.030220141634345055,
0.06951919198036194,
-0.0015626903623342514,
-0.02238084003329277,
-0.024915529415011406,
0.05750126764178276,
-0.12712591886520386,
0.0033196823205798864,
-0.054251253604888916,
0.032504789531230927,
0.054970573633909225,
0.10996560007333755,
0.051961008459329605,
0.03497782349586487,
0.0024688271805644035,
0.019390860572457314,
-0.018894052132964134,
-0.0009005089523270726,
0.07030200213193893,
0.009735994972288609,
-0.08162498474121094,
0.024033285677433014,
-0.03692181780934334,
0.38491907715797424,
0.12790891528129578,
-0.14012400805950165,
-0.06079983338713646,
-0.009144028648734093,
-0.0073901885189116,
0.02164170891046524,
-0.01024605892598629,
-0.0015014668460935354,
0.007795217912644148,
0.0043446640484035015,
0.09379420429468155,
-0.013406318612396717,
0.02427343651652336,
0.03636346384882927,
-0.07504123449325562,
-0.029362637549638748,
0.037111930549144745,
0.0632004663348198,
-0.11251793056726456,
0.13338689506053925,
0.21218125522136688,
0.01926429383456707,
0.11533153057098389,
-0.028786692768335342,
0.009223167784512043,
0.01842055656015873,
0.006708130706101656,
0.011072680354118347,
0.028670350089669228,
-0.025220120325684547,
0.006091502029448748,
0.10130076855421066,
-0.07776634395122528,
0.02457098662853241,
-0.07966504245996475,
-0.061367228627204895,
-0.0006704049301333725,
0.031899504363536835,
-0.06317373365163803,
0.2122674137353897,
-0.0135438721626997,
0.07994650304317474,
-0.010907876305282116,
-0.022784816101193428,
0.08866669237613678,
0.03783276304602623,
-0.017988920211791992,
0.153791144490242,
-0.08308339864015579,
-0.31981292366981506,
-0.15073953568935394,
-0.09393790364265442,
0.025511611253023148,
0.04079929739236832,
0.08821622282266617,
-0.08133498579263687,
-0.0703861191868782,
0.06731914728879929,
-0.03376254439353943,
0.01932329125702381,
0.022365756332874298,
-0.0004959207726642489,
0.0067900740541517735,
-0.06299082189798355,
-0.059491924941539764,
-0.04401066154241562,
-0.011472485959529877,
0.12642423808574677,
0.20265048742294312,
-0.05358697846531868,
0.11150816082954407,
0.041602764278650284,
0.009005241096019745,
0.05656108260154724,
0.002895898651331663,
0.199886292219162,
-0.07975573092699051,
0.04139697924256325,
0.2559658885002136,
-0.05827638506889343,
0.07779066264629364,
0.13498428463935852,
0.03145492449402809,
-0.054665736854076385,
0.010196344926953316,
-0.08865034580230713,
-0.12697255611419678,
-0.12390400469303131,
-0.05864014849066734,
-0.10866989195346832,
0.00927470251917839,
0.001002345816232264,
0.05716630816459656,
0.05755099654197693,
0.12260039150714874,
0.036666374653577805,
0.008618536405265331,
-0.0025114906020462513,
0.04452148452401161,
0.10064729303121567,
0.0016112945741042495,
0.14357689023017883,
-0.08901084959506989,
-0.13669031858444214,
0.08588609844446182,
-0.03871666640043259,
0.16319723427295685,
0.0752953290939331,
-0.07974079996347427,
0.029348675161600113,
0.028917456045746803,
0.15915587544441223,
0.18884244561195374,
0.04449447616934776,
-0.0684381052851677,
-0.04444264620542526,
-0.032893721014261246,
-0.013895705342292786,
0.018294138833880424,
-0.016741633415222168,
-0.13570836186408997,
0.029576843604445457,
-0.08695385605096817,
0.007965080440044403,
0.03840557485818863,
0.04144800454378128,
-0.1367001086473465,
-0.0026139942929148674,
0.04469054192304611,
0.10443557053804398,
-0.07566187530755997,
-0.035185668617486954,
-0.03142000734806061,
-0.10756083577871323,
0.09225299209356308,
-0.0733635276556015,
0.0673481822013855,
0.02850395254790783,
0.06257110089063644,
-0.054427627474069595,
-0.08118129521608353,
0.04412828013300896,
0.058904435485601425,
-0.24034340679645538,
0.21496360003948212,
-0.00017465032578911632,
-0.02868405357003212,
-0.04949287697672844,
0.02264590933918953,
0.05909085273742676,
0.11146990954875946,
0.12509725987911224,
-0.0024589032400399446,
-0.06089640036225319,
-0.10778066515922546,
-0.024648644030094147,
0.019704902544617653,
0.1343640238046646,
-0.030499467626214027,
-0.02235664241015911,
-0.004308608360588551,
-0.04152839630842209,
-0.023600401356816292,
0.0710349828004837,
-0.01811293698847294,
-0.14823490381240845,
0.16046611964702606,
-0.02215060219168663,
0.005317772272974253,
-0.018010053783655167,
-0.05158614367246628,
-0.11245007812976837,
0.1390390843153,
-0.018956830725073814,
-0.1045118197798729,
-0.13593728840351105,
-0.038379598408937454,
0.044586434960365295,
-0.11459878832101822,
0.06274821609258652,
-0.09646082669496536,
0.019976120442152023,
-0.09040383249521255,
-0.17382945120334625,
0.08460255712270737,
-0.11665096879005432,
-0.04035453870892525,
-0.05754369497299194,
0.04660844802856445,
-0.07683304697275162,
0.011286139488220215,
-0.013956275768578053,
0.019775917753577232,
-0.07232239842414856,
-0.07524214684963226,
0.08877494931221008,
-0.07696999609470367,
-0.030341992154717445,
0.031955890357494354,
-0.08822906017303467,
-0.04873841628432274,
0.0167362242937088,
-0.015082104131579399,
0.14117403328418732,
0.28279656171798706,
-0.06924227625131607,
0.08255600184202194,
0.10846700519323349,
0.008842183277010918,
-0.3541300296783447,
-0.13660384714603424,
-0.07740377634763718,
0.011082840152084827,
-0.023466045036911964,
-0.14574730396270752,
0.1064407154917717,
0.0004748466017190367,
-0.05006628483533859,
0.17565111815929413,
-0.10734067112207413,
-0.09331318736076355,
0.24768541753292084,
0.002777955261990428,
0.4464254081249237,
-0.14849908649921417,
-0.05970064178109169,
-0.05604389309883118,
-0.15143783390522003,
0.0391010157763958,
-0.011754159815609455,
0.04935096204280853,
-0.05295586585998535,
0.01920425146818161,
0.012347433716058731,
-0.06349065899848938,
0.09265375137329102,
-0.05450109764933586,
0.039743125438690186,
-0.09712020307779312,
-0.09701500087976456,
0.011036774143576622,
0.020308872684836388,
0.029302183538675308,
0.01587560400366783,
0.027666548267006874,
-0.055813029408454895,
-0.04220607504248619,
-0.045774541795253754,
0.07701641321182251,
0.02524290606379509,
-0.05221795663237572,
-0.026363322511315346,
-0.017609700560569763,
-0.09065587818622589,
-0.013950714841485023,
0.18094687163829803,
-0.031084928661584854,
0.17056874930858612,
0.1469852477312088,
-0.026223452761769295,
-0.04788525775074959,
0.020440852269530296,
-0.06913479417562485,
-0.08057195693254471,
0.021607941016554832,
-0.0016266023740172386,
0.00009406822209712118,
0.11596814543008804,
-0.025360792875289917,
0.0670168325304985,
0.0705370306968689,
0.02936497889459133,
0.0050811246037483215,
0.14512236416339874,
-0.21756070852279663,
-0.043153315782547,
-0.055010855197906494,
-0.015168232843279839,
0.009768202900886536,
0.037028998136520386,
0.08952340483665466,
0.013834632933139801,
-0.024030903354287148,
0.013511109165847301,
0.006753831170499325,
-0.018410637974739075,
0.07586228102445602,
0.08393660187721252,
0.0492476187646389,
-0.08601178228855133,
-0.02878601849079132,
-0.014506330713629723,
-0.12503601610660553,
-0.05969739705324173,
0.0621003694832325,
-0.13615548610687256,
-0.12330964207649231,
-0.00470638507977128,
0.10670740157365799,
-0.07891042530536652,
-0.007696195039898157,
-0.07619091123342514,
-0.14035972952842712,
0.04036790132522583,
0.19863414764404297,
0.10679806768894196,
-0.023336131125688553,
-0.016211826354265213,
-0.030308615416288376,
0.012566706165671349,
0.014899484813213348,
0.08316913992166519,
0.07697030901908875,
-0.05211947113275528,
-0.04657754302024841,
-0.06391005963087082,
0.12523554265499115,
-0.12062150985002518,
-0.004594049882143736,
-0.15429411828517914,
-0.03220139443874359,
-0.0664701983332634,
-0.034870609641075134,
-0.02198796533048153,
-0.08569934964179993,
0.0027583111077547073,
-0.05263744667172432,
0.04062359407544136,
-0.07047285884618759,
-0.11369506269693375,
0.05521686002612114,
0.01802884042263031,
-0.00957423634827137,
-0.03776289522647858,
-0.08077877014875412,
0.08898775279521942,
-0.013870498165488243,
0.0659107193350792,
0.12495261430740356,
-0.051760777831077576,
0.06528348475694656,
-0.10100679844617844,
-0.06755867600440979,
0.1394762396812439,
0.04435262456536293,
0.024229755625128746,
0.06363166123628616,
0.01619911380112171,
0.0033160673920065165,
-0.009627406485378742,
0.06447149813175201,
0.09553948789834976,
-0.0822988972067833,
0.07680534571409225,
-0.13039718568325043,
-0.12078318744897842,
-0.047019246965646744,
-0.042103372514247894,
0.11645745486021042,
0.10147470980882645,
0.10290631651878357,
-0.07251183688640594,
0.10488182306289673,
0.00402967119589448,
0.023572852835059166,
-0.004376292694360018,
-0.2088475078344345,
0.003892664099112153,
-0.06998254358768463,
-0.010935230180621147,
-0.0032605845481157303,
0.1668367087841034,
-0.05587717890739441,
-0.0791650339961052,
0.024514302611351013,
-0.01889031194150448,
-0.02299116924405098,
-0.02662917599081993,
0.07153288275003433,
0.12699119746685028,
-0.03916553407907486,
-0.13177435100078583,
0.08626420795917511,
-0.002530569676309824,
-0.08715754002332687,
0.17677980661392212,
0.10385134816169739,
-0.06356294453144073,
0.08254174143075943,
-0.04429830610752106,
0.03441910073161125,
0.014125668443739414,
-0.12688885629177094,
-0.021303877234458923,
0.04671894758939743,
0.009088842198252678,
0.07083616405725479,
0.13488005101680756,
-0.006779316812753677,
0.007124162279069424,
0.014233827590942383,
-0.027747754007577896,
-0.1460048109292984,
-0.0561620332300663,
-0.08354552090167999,
-0.01631893776357174,
0.0161333866417408,
-0.012855392880737782,
-0.0385129377245903,
-0.0066800545901060104,
0.023375945165753365,
-0.03489288315176964,
0.10864142328500748,
-0.04410993307828903,
-0.008845336735248566,
0.07481633126735687,
-0.053187549114227295,
-0.0771392434835434,
0.01866862177848816,
-0.0026445172261446714,
-0.13379402458667755,
0.0509851835668087,
-0.005796603858470917,
0.006303167436271906,
-0.043068770319223404,
-0.04340308532118797,
-0.10126082599163055,
-0.12478204816579819,
-0.05965812876820564,
0.0776134729385376,
-0.024483876302838326,
0.08908259868621826,
-0.006623034365475178,
0.03752049803733826,
0.006926406174898148,
0.05050789192318916,
-0.04457571730017662,
-0.08381826430559158,
-0.03195761516690254,
0.02366825006902218,
0.012890120968222618,
0.10667267441749573,
-0.04142700508236885,
0.010150476358830929,
-0.08583958446979523,
0.2623392343521118,
0.28264477849006653,
-0.013101078569889069,
0.08395382016897202,
0.07687226682901382,
0.04727378860116005,
0.08887773752212524,
0.07445307821035385,
0.07073934376239777,
0.26589417457580566,
-0.06455443054437637,
-0.056316912174224854,
-0.05119315907359123,
-0.01463345531374216,
-0.13301712274551392,
0.021112356334924698,
0.09606675058603287,
-0.04436590522527695,
-0.02824072167277336,
0.10150177776813507,
-0.2017398178577423,
0.022969907149672508,
0.04000317305326462,
-0.15836289525032043,
-0.06270308047533035,
-0.030300993472337723,
-0.023571275174617767,
0.005776329431682825,
0.08796969056129456,
-0.07478126138448715,
-0.04417210817337036,
0.09913115203380585,
0.010833303444087505,
-0.1322963684797287,
0.049603044986724854,
0.030882205814123154,
-0.0776083841919899,
-0.06546995043754578,
-0.021459495648741722,
0.009941019117832184,
0.07698548585176468,
0.03404887393116951,
0.0016520002391189337,
0.0777299627661705,
-0.01065230555832386,
-0.04091261327266693,
-0.029000243172049522,
0.06624386459589005,
-0.026593558490276337,
-0.12181974202394485,
0.0722101554274559,
-0.13869662582874298,
0.020275434479117393,
-0.005436318460851908,
-0.07399911433458328,
-0.012034958228468895,
0.1299898326396942,
-0.0984424352645874,
0.03669259324669838,
0.10352278500795364,
0.04040605202317238,
-0.020486559718847275,
-0.00046198631753213704,
0.02858479879796505,
0.06480610370635986,
-0.07857705652713776,
-0.10274069011211395,
-0.010343567468225956,
-0.05924718454480171,
0.013644893653690815,
0.010571004822850227,
-0.2212991565465927,
-0.0188448429107666,
-0.19165457785129547,
0.07226124405860901,
-0.08822986483573914,
0.04933638498187065,
0.049315717071294785,
0.005956774111837149,
0.0061796968802809715,
-0.07822782546281815,
0.012601347640156746,
0.014834338799118996,
-0.11941061913967133,
-0.047712475061416626
] |
null | null |
transformers
|
<img src="https://raw.githubusercontent.com/alger-ia/dziribert/main/dziribert_drawing.png" alt="drawing" width="25%" height="25%" align="right"/>
# DziriBERT
DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).
For more information, please visit our paper: https://arxiv.org/pdf/2109.12346.pdf.
## How to use
```python
from transformers import BertTokenizer, BertForMaskedLM
tokenizer = BertTokenizer.from_pretrained("alger-ia/dziribert")
model = BertForMaskedLM.from_pretrained("alger-ia/dziribert")
```
You can find a fine-tuning script in our Github repo: https://github.com/alger-ia/dziribert
## Limitations
The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.
### How to cite
```bibtex
@article{dziribert,
title={DziriBERT: a Pre-trained Language Model for the Algerian Dialect},
author={Abdaoui, Amine and Berrimi, Mohamed and Oussalah, Mourad and Moussaoui, Abdelouahab},
journal={arXiv preprint arXiv:2109.12346},
year={2021}
}
```
## Contact
Please contact [email protected] for any question, feedback or request.
|
{"language": ["ar", "dz"], "license": "apache-2.0", "tags": ["pytorch", "bert", "multilingual", "ar", "dz"], "widget": [{"text": " \u0623\u0646\u0627 \u0645\u0646 \u0627\u0644\u062c\u0632\u0627\u0626\u0631 \u0645\u0646 \u0648\u0644\u0627\u064a\u0629 [MASK] "}, {"text": "rabi [MASK] khouya sami"}, {"text": " \u0631\u0628\u064a [MASK] \u062e\u0648\u064a\u0627 \u0644\u0639\u0632\u064a\u0632"}, {"text": "tahya el [MASK]."}, {"text": "rouhi ya dzayer [MASK]"}], "inference": true}
|
fill-mask
|
alger-ia/dziribert
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"ar",
"dz",
"arxiv:2109.12346",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.12346"
] |
[
"ar",
"dz"
] |
TAGS
#transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
<img src="URL alt="drawing" width="25%" height="25%" align="right"/>
# DziriBERT
DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).
For more information, please visit our paper: URL
## How to use
You can find a fine-tuning script in our Github repo: URL
## Limitations
The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.
### How to cite
## Contact
Please contact URL@URL for any question, feedback or request.
|
[
"# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL",
"## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL",
"## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.",
"### How to cite",
"## Contact \n\nPlease contact URL@URL for any question, feedback or request."
] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL",
"## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL",
"## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.",
"### How to cite",
"## Contact \n\nPlease contact URL@URL for any question, feedback or request."
] |
[
72,
102,
21,
114,
5,
15
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.### How to cite## Contact \n\nPlease contact URL@URL for any question, feedback or request."
] |
[
-0.030770329758524895,
-0.003591852495446801,
-0.0025083282962441444,
0.031641989946365356,
0.08195275068283081,
-0.042080655694007874,
0.1776677817106247,
-0.01224369928240776,
0.09639892727136612,
0.010929090902209282,
0.09302758425474167,
-0.03031623549759388,
0.05276607722043991,
0.16031844913959503,
0.0677853375673294,
-0.16287465393543243,
0.031282536685466766,
-0.11183576285839081,
0.0203029066324234,
0.11511801183223724,
0.10519622266292572,
-0.013882771134376526,
0.07053393870592117,
0.035478562116622925,
-0.044992849230766296,
0.056695595383644104,
0.00729122431948781,
-0.08101161569356918,
0.07057628780603409,
0.09653264284133911,
0.1256846934556961,
0.03897791728377342,
0.044916704297065735,
-0.07714065164327621,
0.03227242827415466,
0.07330971956253052,
-0.024889187887310982,
-0.051599860191345215,
0.041551485657691956,
-0.10380014777183533,
0.1663416177034378,
-0.06127816438674927,
0.03244411572813988,
0.03593146428465843,
-0.11408457159996033,
-0.05192660912871361,
-0.011533803306519985,
0.019944777712225914,
0.16381299495697021,
0.11618606746196747,
-0.041055914014577866,
0.06048337370157242,
-0.06941406428813934,
0.061689939349889755,
0.10260436683893204,
-0.10625530779361725,
-0.006808953359723091,
-0.0011877960059791803,
-0.03887007385492325,
0.06402157247066498,
-0.028213560581207275,
0.06178601458668709,
0.029464296996593475,
0.017177674919366837,
0.055276017636060715,
-0.0601985864341259,
0.11370767652988434,
-0.08058305084705353,
-0.13803286850452423,
-0.09113994240760803,
0.06583816558122635,
-0.009595437906682491,
-0.09530787169933319,
-0.1767609417438507,
-0.01952061615884304,
0.10027772933244705,
0.005956356413662434,
-0.043666090816259384,
-0.0207925233989954,
-0.02140398509800434,
0.0812632143497467,
0.035569459199905396,
-0.055590011179447174,
-0.08947449177503586,
-0.09806518256664276,
0.24313707649707794,
-0.00646203150972724,
0.023164890706539154,
-0.07081368565559387,
0.11874494701623917,
-0.050456464290618896,
-0.12879244983196259,
-0.06526049971580505,
-0.08386997133493423,
-0.10636108368635178,
0.003294198540970683,
-0.03234118968248367,
-0.1335250586271286,
-0.03287379816174507,
0.07054001837968826,
0.0038149249739944935,
0.0314665324985981,
-0.023578772321343422,
0.018272677436470985,
0.09296309947967529,
0.07078465074300766,
-0.0813097134232521,
0.0024531492963433266,
-0.007271253038197756,
-0.006585574708878994,
0.03099149465560913,
-0.027386462315917015,
-0.0253822673112154,
-0.021551920101046562,
-0.0632595494389534,
0.10525050014257431,
0.018997827544808388,
0.0611986368894577,
-0.042862068861722946,
-0.07340391725301743,
0.13808487355709076,
-0.12596553564071655,
-0.08239655941724777,
-0.026888152584433556,
-0.124465212225914,
-0.05320989713072777,
0.04891558364033699,
-0.008887169882655144,
-0.10709146410226822,
0.032888446003198624,
-0.024579402059316635,
-0.02832544781267643,
-0.05876470357179642,
-0.1474958211183548,
0.001481904648244381,
0.005491102114319801,
-0.05993085354566574,
-0.17944848537445068,
-0.1431337296962738,
-0.0364203080534935,
0.030964409932494164,
0.016049129888415337,
0.055024467408657074,
-0.042357075959444046,
-0.009300487115979195,
0.03974200412631035,
0.010195483453571796,
-0.0877142921090126,
-0.04955829307436943,
0.029404569417238235,
-0.042890675365924835,
0.10739641636610031,
0.08192727714776993,
0.02635279670357704,
-0.08602471649646759,
0.017994966357946396,
-0.2516086995601654,
0.18521903455257416,
-0.05834825336933136,
0.018070831894874573,
-0.10266613960266113,
-0.04811669513583183,
-0.05857347697019577,
0.055827438831329346,
0.04269172623753548,
0.21839486062526703,
-0.14833173155784607,
-0.04953938350081444,
0.21140797436237335,
-0.14092333614826202,
-0.04620850831270218,
0.1573442965745926,
-0.028377220034599304,
-0.01714913547039032,
0.14660416543483734,
0.09314331412315369,
0.047045618295669556,
-0.13547122478485107,
0.0027768323197960854,
0.05073060467839241,
-0.14326252043247223,
0.1687643826007843,
0.07670868933200836,
0.004401740152388811,
0.03591085225343704,
-0.03345112502574921,
0.0008457995136268437,
0.11245511472225189,
-0.007285989820957184,
-0.059241052716970444,
0.06100054457783699,
0.03311951830983162,
0.09684249758720398,
0.007983815856277943,
-0.029052944853901863,
0.014681183733046055,
-0.12812727689743042,
-0.16329072415828705,
0.0695805624127388,
-0.04621477425098419,
-0.02799946255981922,
-0.12166700512170792,
-0.06333265453577042,
-0.024678563699126244,
0.05137982591986656,
-0.17425911128520966,
-0.10102005302906036,
-0.03945856913924217,
-0.04806961491703987,
0.08263003081083298,
-0.037188488990068436,
0.035973649471998215,
0.03883424773812294,
-0.02398093417286873,
-3.373444883436605e-7,
-0.0012295629130676389,
-0.045567724853754044,
-0.045927390456199646,
-0.09286490827798843,
0.031060384586453438,
-0.03560319170355797,
0.070949487388134,
-0.1418774127960205,
0.016346456483006477,
0.006573294289410114,
-0.03426807001233101,
0.018403377383947372,
0.01849588006734848,
0.05208514630794525,
0.02835492417216301,
-0.015545896254479885,
-0.06046811118721962,
-0.03296516835689545,
-0.08282152563333511,
-0.12683358788490295,
0.10500365495681763,
-0.17434197664260864,
-0.008414911106228828,
0.07551702111959457,
0.036198366433382034,
-0.0981922447681427,
0.10134325176477432,
-0.0184067003428936,
-0.00821662787348032,
0.0024559604935348034,
0.002331071998924017,
0.15503105521202087,
0.04537830501794815,
0.06899426877498627,
-0.09502968937158585,
0.028468117117881775,
0.03729861229658127,
-0.025680556893348694,
-0.00010144105908693746,
0.07947441190481186,
-0.04514133930206299,
-0.23882576823234558,
0.02316974848508835,
0.03397000953555107,
0.040879447013139725,
0.1474592238664627,
0.05252201482653618,
-0.05216323956847191,
0.049168601632118225,
0.031865596771240234,
0.004889064002782106,
0.04655604436993599,
0.04771072044968605,
-0.03849716857075691,
0.023294834420084953,
0.014605578035116196,
-0.025523900985717773,
-0.0411037914454937,
-0.0039008406456559896,
0.02948934957385063,
-0.08492312580347061,
-0.1819261759519577,
0.06698212772607803,
-0.026761578395962715,
0.11452624201774597,
0.04260075464844704,
-0.054368797689676285,
-0.009645887650549412,
-0.07849396765232086,
-0.1314399540424347,
0.23064975440502167,
-0.05691435560584068,
-0.33493006229400635,
-0.021615561097860336,
0.027490412816405296,
-0.1008155569434166,
0.07833068817853928,
0.036068957298994064,
-0.11518190056085587,
-0.05704718083143234,
-0.08063946664333344,
0.06672749668359756,
-0.028506102040410042,
-0.058061376214027405,
-0.08290788531303406,
-0.04744624346494675,
-0.08179419487714767,
-0.16494131088256836,
-0.011291618458926678,
-0.05863653123378754,
-0.069969043135643,
0.04159630462527275,
-0.08889777213335037,
0.07314775139093399,
0.1477963775396347,
0.020856071263551712,
-0.03535635769367218,
-0.05231153592467308,
0.17504194378852844,
-0.1573847085237503,
0.015932394191622734,
0.12319700419902802,
0.007059201132506132,
0.09835725277662277,
0.1752392053604126,
0.004080424550920725,
-0.09807782620191574,
0.09434734284877777,
0.05890565738081932,
-0.09852144867181778,
-0.11967244744300842,
-0.11107172071933746,
-0.04431414231657982,
-0.06898580491542816,
0.05398797616362572,
0.038370367139577866,
0.11252889037132263,
0.012215078808367252,
-0.13090473413467407,
-0.03824002668261528,
0.10377510637044907,
0.0785275474190712,
-0.0546562634408474,
0.028616763651371002,
0.0681014358997345,
-0.0477396622300148,
-0.06456369906663895,
0.08233185857534409,
-0.07792450487613678,
0.23896700143814087,
-0.03782346844673157,
0.10685019195079803,
0.1323106437921524,
-0.04456986486911774,
0.04049494490027428,
0.07788775861263275,
0.0030500604771077633,
-0.024268807843327522,
-0.024213576689362526,
-0.07998242974281311,
-0.062403131276369095,
0.05138746649026871,
-0.011328794062137604,
-0.03466573730111122,
-0.060833483934402466,
0.0005300777847878635,
0.05864929035305977,
0.17494192719459534,
-0.05059065669775009,
-0.22443453967571259,
-0.06052793934941292,
0.020158926025032997,
-0.026734821498394012,
-0.04688439890742302,
0.010735495947301388,
0.10060647875070572,
-0.13324332237243652,
0.1072126105427742,
0.0030053481459617615,
0.10285842418670654,
0.001357751083560288,
0.008795633912086487,
-0.13634994626045227,
0.014037830755114555,
-0.041895631700754166,
0.09544376283884048,
-0.25190117955207825,
0.16668404638767242,
0.009107986465096474,
0.08449966460466385,
-0.11966709047555923,
-0.029941612854599953,
0.07655584812164307,
0.08088532835245132,
0.19289858639240265,
0.043909940868616104,
0.05464709922671318,
-0.09396742284297943,
-0.03652024269104004,
-0.006009902339428663,
0.06010979041457176,
-0.06457206606864929,
0.016370832920074463,
0.10773857682943344,
-0.01300422940403223,
-0.008572510443627834,
-0.01947670243680477,
-0.17165754735469818,
-0.11301220208406448,
0.05015880614519119,
-0.04292584955692291,
0.029478419572114944,
-0.0038531594909727573,
-0.0253815446048975,
0.06468899548053741,
0.12665222585201263,
-0.13073290884494781,
-0.1450221985578537,
-0.10814733058214188,
-0.02231365069746971,
0.007978701032698154,
-0.10967625677585602,
0.009204120375216007,
0.01261618360877037,
0.06915576010942459,
-0.0494009405374527,
-0.08584099262952805,
0.07906398177146912,
-0.09606364369392395,
0.006325269117951393,
-0.03416261076927185,
0.06198537349700928,
0.19737912714481354,
0.018340153619647026,
0.043361883610486984,
-0.058678969740867615,
0.009967656806111336,
-0.16550037264823914,
-0.06162063404917717,
0.05424002930521965,
-0.009776412509381771,
0.11339271813631058,
0.02985631674528122,
-0.11946843564510345,
-0.13950230181217194,
0.053397756069898605,
0.049175459891557693,
0.10559273511171341,
-0.029510073363780975,
0.1491757333278656,
0.1938193440437317,
-0.03684402257204056,
-0.232129767537117,
-0.07193850725889206,
0.09582239389419556,
0.06640305370092392,
0.015417622402310371,
-0.16494561731815338,
0.007514569908380508,
-0.053976111114025116,
0.014690219424664974,
0.08498433977365494,
-0.31499603390693665,
-0.13567711412906647,
0.11888324469327927,
0.058479536324739456,
0.16186653077602386,
-0.0636608749628067,
0.02470995858311653,
-0.09026157110929489,
-0.009881881065666676,
0.10934443771839142,
-0.04975982382893562,
0.06036560237407684,
0.04000836983323097,
0.05059102922677994,
0.020069347694516182,
0.01174942310899496,
0.1281481385231018,
0.11127860099077225,
0.1250629723072052,
-0.10374459624290466,
0.03581973537802696,
0.06150663644075394,
-0.05139263719320297,
0.12657204270362854,
0.03537364304065704,
0.018904095515608788,
-0.16269941627979279,
-0.10174715518951416,
-0.068264439702034,
0.0659710243344307,
-0.00627132086083293,
-0.036610186100006104,
0.006669950671494007,
0.04079870134592056,
0.10401276499032974,
0.01245144847780466,
-0.04965668171644211,
-0.11843889206647873,
-0.0034073928836733103,
-0.040771979838609695,
0.1980876475572586,
-0.029199853539466858,
-0.04810987040400505,
0.01459952350705862,
0.05968143418431282,
0.1311308741569519,
-0.19912996888160706,
0.05673632398247719,
0.0646413266658783,
0.04959980025887489,
0.06269636005163193,
0.03614642098546028,
-0.08481910079717636,
0.04049089178442955,
0.07725528627634048,
-0.0526343435049057,
-0.11791500449180603,
-0.028934530913829803,
-0.02652744948863983,
-0.004536065738648176,
-0.042841702699661255,
0.07184191793203354,
-0.01661089062690735,
0.026381097733974457,
-0.003880489384755492,
0.020472737029194832,
-0.05457274615764618,
0.12265899777412415,
0.0020112248603254557,
0.04457791522145271,
-0.07438814640045166,
0.06437443941831589,
0.04908148944377899,
-0.08823727071285248,
0.03965243324637413,
0.06675351411104202,
-0.15513893961906433,
-0.052278898656368256,
-0.14371733367443085,
0.06736554950475693,
0.026969818398356438,
-0.05990206450223923,
0.044447239488363266,
-0.0631810650229454,
-0.02593858353793621,
0.12332316488027573,
0.029985105618834496,
0.027362430468201637,
-0.046581119298934937,
-0.01988162100315094,
-0.00578596256673336,
0.009463203139603138,
0.09895241260528564,
-0.06111981347203255,
0.002943317173048854,
0.034982357174158096,
0.07874752581119537,
0.12387818098068237,
-0.07209838181734085,
-0.08663162589073181,
-0.06531721353530884,
0.059171225875616074,
-0.04296344146132469,
0.03662322089076042,
-0.07437027990818024,
0.028205273672938347,
-0.02848457172513008,
-0.008220396935939789,
-0.016692230477929115,
0.017361830919981003,
-0.0473579540848732,
0.004216805566102266,
-0.00208160188049078,
0.04784306138753891,
-0.12150808423757553,
-0.06147971749305725,
0.0027756099589169025,
-0.04704604670405388,
0.07946322858333588,
0.1163192093372345,
-0.07223010063171387,
0.017784714698791504,
-0.2086353302001953,
-0.013047434389591217,
-0.010330486111342907,
0.025191688910126686,
-0.038479845970869064,
-0.07619812339544296,
0.03534418344497681,
-0.00889421533793211,
-0.015314474701881409,
-0.017948905006051064,
-0.050394900143146515,
-0.07990853488445282,
0.07234630733728409,
0.05260218307375908,
-0.013119596056640148,
-0.07765637338161469,
0.1024727076292038,
0.05074774846434593,
0.03790270909667015,
0.07000633329153061,
-0.010211839340627193,
0.021002905443310738,
-0.05210038274526596,
-0.04532420262694359,
0.026527583599090576,
0.04709729924798012,
0.04834107309579849,
-0.0716591402888298,
0.03752124682068825,
-0.0036236827727407217,
0.060523197054862976,
0.0448724664747715,
0.057976339012384415,
0.019947154447436333,
0.017704609781503677,
0.02375514805316925,
-0.0049153766594827175,
-0.04223615303635597,
0.016331927850842476,
0.011270121671259403,
0.03332970291376114,
-0.017303112894296646,
0.022566070780158043,
0.04754628613591194,
0.12508516013622284,
0.08605203032493591,
0.14800742268562317,
0.02856326289474964,
-0.05426566302776337,
-0.016802899539470673,
-0.08557373285293579,
-0.11778183281421661,
0.026313399896025658,
-0.010301193222403526,
-0.016251398250460625,
-0.06166749820113182,
0.15817277133464813,
-0.01775071769952774,
0.07198379188776016,
0.07340804487466812,
-0.0765206515789032,
-0.0768461599946022,
-0.2068662941455841,
0.042872779071331024,
0.0094430111348629,
0.027827151119709015,
-0.07508163154125214,
0.06233029067516327,
0.12970857322216034,
0.08861235529184341,
-0.01760477013885975,
0.18216058611869812,
-0.138011634349823,
-0.16304156184196472,
0.08920823037624359,
-0.05200249329209328,
0.04914729669690132,
0.07636032998561859,
0.07791747897863388,
0.05907710641622543,
-0.004549490753561258,
0.04753924533724785,
0.06431075930595398,
0.00918214675039053,
0.06610769033432007,
-0.1150284856557846,
-0.05010445415973663,
-0.034672074019908905,
0.07375212758779526,
0.06583657115697861,
0.2122693657875061,
0.0695326030254364,
-0.07602310180664062,
0.008248360827565193,
0.13058704137802124,
0.032936230301856995,
-0.12964311242103577,
-0.10263970494270325,
0.2267000526189804,
0.0460665300488472,
-0.005319895222783089,
-0.07984257489442825,
-0.0911920890212059,
-0.019626010209321976,
0.128068745136261,
0.10107646137475967,
-0.02201259881258011,
-0.004658978898078203,
-0.12316138297319412,
0.030036935582756996,
0.02730126678943634,
0.1067066565155983,
0.004476992879062891,
0.3983423113822937,
-0.06475106626749039,
0.13451211154460907,
-0.010897776111960411,
-0.006750970613211393,
-0.075007364153862,
0.05589663237333298,
0.0026840597856789827,
-0.008477882482111454,
-0.06340757757425308,
0.14148454368114471,
-0.10718382894992828,
-0.10914351046085358,
0.01717022992670536,
0.04421871900558472,
-0.01350054144859314,
0.011225798167288303,
-0.13987702131271362,
0.09929113835096359,
0.087879478931427,
0.012264079414308071,
-0.033328618854284286,
0.04678313061594963,
0.03895818442106247,
-0.06622286885976791,
-0.08517514169216156,
0.05790271610021591,
0.01804177649319172,
0.10063188523054123,
-0.01604144461452961,
0.1848384141921997,
0.06993555277585983,
0.007136055734008551,
-0.02899862453341484,
0.04607304185628891,
0.007566182874143124,
0.031111182644963264,
0.02468191087245941,
0.1477222889661789,
-0.015930522233247757,
-0.05463932827115059,
-0.0002006792346946895,
-0.006851539481431246,
0.049617279320955276,
-0.028716344386339188,
0.0254276841878891,
-0.07455498725175858,
0.12091092020273209,
-0.07538212090730667,
0.07765085250139236,
0.09795364737510681,
0.028468208387494087,
0.04110660031437874,
-0.03850729763507843,
0.0016881960909813643,
-0.03090822324156761,
-0.04184228554368019,
-0.03445978835225105,
-0.12049279361963272,
0.04340993985533714,
0.02518361248075962,
-0.007115887012332678,
-0.2268882691860199,
0.010734040290117264,
-0.011185431852936745,
0.005969024728983641,
0.10204705595970154,
0.040698662400245667,
-0.023868702352046967,
0.008180572651326656,
-0.03674587234854698,
-0.25185203552246094,
0.03191141411662102,
0.10387436300516129,
-0.08782622218132019,
-0.1091470718383789
] |
null | null |
transformers
|
<p>Chinese Bert Large Model</p>
<p>bert large中文预训练模型</p>
#### 训练语料
中文wiki, 2018-2020海量新闻语料
|
{}
|
fill-mask
|
algolet/bert-large-chinese
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
|
<p>Chinese Bert Large Model</p>
<p>bert large中文预训练模型</p>
#### 训练语料
中文wiki, 2018-2020海量新闻语料
|
[
"#### 训练语料\n中文wiki, 2018-2020海量新闻语料"
] |
[
"TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n",
"#### 训练语料\n中文wiki, 2018-2020海量新闻语料"
] |
[
36,
17
] |
[
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n#### 训练语料\n中文wiki, 2018-2020海量新闻语料"
] |
[
-0.04017168655991554,
0.044857509434223175,
-0.008145793341100216,
0.014904295094311237,
0.12497042119503021,
-0.0011396059999242425,
0.10833724588155746,
0.06993185728788376,
0.09543073177337646,
0.00257630436681211,
0.16087542474269867,
0.16666539013385773,
0.01803215779364109,
0.15023070573806763,
-0.04617779329419136,
-0.31796178221702576,
0.056823600083589554,
0.1098782941699028,
-0.029005661606788635,
0.13838662207126617,
0.0746070072054863,
-0.09630198776721954,
0.107204370200634,
-0.0013002996565774083,
-0.0941697284579277,
0.0351661816239357,
0.05736689269542694,
-0.12053576856851578,
0.149769127368927,
0.016954200342297554,
0.19626230001449585,
0.006332725286483765,
-0.05441659688949585,
-0.04932335764169693,
0.04425891116261482,
-0.019919291138648987,
-0.07514636218547821,
0.05037433281540871,
0.021528292447328568,
-0.062101565301418304,
0.043632227927446365,
0.04145721718668938,
-0.0034531073179095984,
0.07000315934419632,
-0.13459980487823486,
-0.08466138690710068,
-0.027787083759903908,
0.08459111303091049,
0.09583008289337158,
0.06429698318243027,
0.002287892857566476,
0.17042547464370728,
-0.12439616024494171,
0.08935472369194031,
0.12921099364757538,
-0.35626471042633057,
-0.020494289696216583,
0.001526597305200994,
0.03158296272158623,
-0.034034062176942825,
-0.03784490004181862,
0.043692078441381454,
0.03600826486945152,
0.015423809178173542,
0.00974454265087843,
-0.08558394759893417,
-0.02628406696021557,
0.0026436264161020517,
-0.07906075567007065,
0.0072568790055811405,
0.16652140021324158,
-0.03162278234958649,
0.02957230620086193,
0.008517798967659473,
-0.08539922535419464,
-0.07388981431722641,
-0.04068753495812416,
-0.05407487973570824,
-0.009935002774000168,
0.03502707555890083,
-0.0076501681469380856,
-0.033066488802433014,
-0.09935275465250015,
0.0225016288459301,
-0.22921545803546906,
0.23882608115673065,
0.033467184752225876,
0.03841210901737213,
-0.1699657291173935,
0.011736194603145123,
0.009242757223546505,
-0.11846078187227249,
0.03413081541657448,
-0.06030747666954994,
0.044694073498249054,
0.019987713545560837,
-0.021333910524845123,
-0.03116045705974102,
0.022067002952098846,
0.14360661804676056,
0.054092638194561005,
0.059999026358127594,
0.025412360206246376,
0.10719608515501022,
0.01031459029763937,
0.07742399722337723,
-0.03916358947753906,
-0.04481424391269684,
0.05033598467707634,
-0.10133818536996841,
0.05017313361167908,
-0.04220990836620331,
-0.12035616487264633,
-0.05815700814127922,
-0.00972029659897089,
0.04023733362555504,
0.0049241227097809315,
0.0685523971915245,
-0.07834238559007645,
0.00000653612005407922,
0.12032503634691238,
-0.06338907778263092,
-0.006633787881582975,
-0.031706780195236206,
-0.003959652502089739,
0.16888228058815002,
0.015037084929645061,
-0.006553751416504383,
-0.019864998757839203,
0.16768202185630798,
-0.09236004203557968,
0.003017859999090433,
-0.02140018343925476,
-0.021135114133358,
0.021565094590187073,
-0.09492164105176926,
0.046126388013362885,
-0.1651298552751541,
-0.11401274055242538,
0.05952507629990578,
0.03015105612576008,
0.0034390874207019806,
-0.03367678448557854,
0.04782725125551224,
-0.014090538024902344,
-0.00029157495009712875,
-0.03442610055208206,
-0.06016340106725693,
-0.02729906514286995,
0.07421956211328506,
0.02930530346930027,
0.11458050459623337,
-0.11173351854085922,
0.05486755445599556,
-0.10333632677793503,
0.046322956681251526,
-0.17977696657180786,
-0.05467759445309639,
-0.001812335685826838,
0.1269650161266327,
0.008794870227575302,
-0.02732076123356819,
-0.09797658771276474,
0.016848843544721603,
0.005883351434022188,
0.17023296654224396,
-0.1048014909029007,
-0.14460726082324982,
0.2230033278465271,
-0.10487876087427139,
-0.155255988240242,
0.11869968473911285,
0.02420716919004917,
-0.010217703878879547,
0.04918788745999336,
0.09425446391105652,
-0.04673229530453682,
-0.13705351948738098,
0.007399315480142832,
0.08239639550447464,
-0.13338376581668854,
-0.06512940675020218,
0.052195172756910324,
0.014606356620788574,
-0.10007213801145554,
0.0476573146879673,
0.08895669877529144,
0.054333411157131195,
-0.08600331842899323,
-0.060212939977645874,
0.01570354588329792,
-0.05939517170190811,
0.1548134684562683,
0.006947864778339863,
0.10756180435419083,
-0.08411779254674911,
-0.017443165183067322,
-0.06232656538486481,
0.01990574784576893,
0.08488646149635315,
0.0353485532104969,
-0.11439599841833115,
0.0906590074300766,
0.004201225005090237,
0.015134517103433609,
-0.12001997232437134,
-0.04022159054875374,
0.006605206988751888,
0.09636532515287399,
-0.001391126192174852,
0.025218838825821877,
0.09347297251224518,
-0.042247090488672256,
-0.03497086465358734,
-0.02898535318672657,
0.09238112717866898,
0.013470473699271679,
-0.023231538012623787,
-0.09709339588880539,
0.040431343019008636,
-0.045176707208156586,
0.015081255696713924,
-0.018673351034522057,
-0.007341763004660606,
-0.036632340401411057,
0.16235730051994324,
-0.028518203645944595,
0.03503832221031189,
-0.053055860102176666,
0.047960519790649414,
-0.05532380938529968,
0.03865674138069153,
0.0537412092089653,
0.0005764466477558017,
-0.09841509163379669,
0.22393189370632172,
-0.09482751041650772,
0.37886127829551697,
0.20316462218761444,
-0.26765117049217224,
-0.055604465305805206,
0.031464941799640656,
-0.013975849375128746,
-0.020610995590686798,
0.09416299313306808,
0.036976467818021774,
0.09899493306875229,
-0.0028464151546359062,
0.15116460621356964,
-0.015811242163181305,
0.0339156799018383,
0.04421146214008331,
-0.0862904042005539,
-0.03959150239825249,
0.06283164769411087,
0.10391401499509811,
-0.14818094670772552,
0.18534022569656372,
0.24450066685676575,
-0.014850794337689877,
0.13735802471637726,
0.04125560075044632,
-0.002830413868650794,
-0.04618450626730919,
-0.04346673935651779,
-0.028051994740962982,
0.05928642675280571,
-0.18092337250709534,
-0.04638000205159187,
0.0404597669839859,
-0.06316929310560226,
0.041778963059186935,
-0.11215993016958237,
-0.06924267113208771,
0.023726152256131172,
0.03686258941888809,
-0.04281790554523468,
0.10562898963689804,
-0.0011870453599840403,
0.10001951456069946,
0.018145225942134857,
-0.0510096400976181,
0.075416699051857,
0.0415862500667572,
-0.0659685730934143,
0.1301133632659912,
-0.12481078505516052,
-0.3317754566669464,
-0.0730346217751503,
-0.20523539185523987,
0.02307278849184513,
0.031810637563467026,
0.025083884596824646,
-0.11296764016151428,
-0.05629761144518852,
0.09800799936056137,
-0.02794463187456131,
-0.09365597367286682,
0.06619314849376678,
-0.0015610205009579659,
0.006067302078008652,
-0.04032579064369202,
-0.03258395940065384,
-0.0543585941195488,
-0.04648861289024353,
-0.06047552078962326,
0.11235623806715012,
-0.07200129330158234,
0.10079299658536911,
0.10522744059562683,
0.01759464479982853,
0.04628399759531021,
-0.007575205061584711,
0.11599907279014587,
-0.11487195640802383,
0.001942704082466662,
0.18476055562496185,
-0.061964526772499084,
0.09371193498373032,
0.14748510718345642,
0.015297245234251022,
-0.043488625437021255,
0.002273180056363344,
-0.03570668771862984,
-0.09749644994735718,
-0.17019011080265045,
-0.0848553255200386,
-0.10833070427179337,
0.05472789704799652,
0.0189517755061388,
0.04429788887500763,
0.17867863178253174,
0.09623882174491882,
0.019887331873178482,
0.012334677390754223,
-0.10512296855449677,
0.03500721603631973,
0.10924211889505386,
-0.03820459917187691,
0.12836439907550812,
-0.053661998361349106,
-0.10159136354923248,
0.04967859014868736,
0.0027774409390985966,
0.06776835024356842,
0.11505251377820969,
-0.013546094298362732,
0.04529888182878494,
0.2087302953004837,
0.17197412252426147,
0.0672539621591568,
0.01146090030670166,
-0.08810590207576752,
0.01289759948849678,
-0.001771510113030672,
-0.03852153196930885,
0.04693141207098961,
0.13377989828586578,
-0.07671979069709778,
-0.025754259899258614,
-0.07171931117773056,
0.05846129730343819,
0.11640109866857529,
0.05069046840071678,
-0.17325973510742188,
-0.03410404920578003,
0.014455252327024937,
-0.005851658992469311,
-0.04703653231263161,
0.06254694610834122,
-0.012735462747514248,
-0.1636652797460556,
0.11672906577587128,
-0.023716647177934647,
0.09301348030567169,
0.02441190369427204,
0.09148558974266052,
-0.05959717184305191,
-0.05418478325009346,
0.012097001075744629,
0.028424877673387527,
-0.30829721689224243,
0.3055300712585449,
-0.0016138532664626837,
-0.04245396703481674,
-0.05389285832643509,
-0.03237980231642723,
0.06847959756851196,
0.10235165804624557,
0.13602091372013092,
0.023480532690882683,
-0.03700082376599312,
-0.15338370203971863,
-0.028998708352446556,
0.029586387798190117,
0.10603039711713791,
-0.01948913186788559,
-0.03434285894036293,
-0.0022414817940443754,
-0.04922046139836311,
-0.01566530391573906,
0.10059624165296555,
-0.0545431487262249,
-0.11723029613494873,
0.05976516008377075,
0.05052844434976578,
0.02385575696825981,
0.009752010926604271,
-0.05230673402547836,
-0.09408887475728989,
0.18798129260540009,
-0.036801956593990326,
-0.02471800521016121,
-0.10420869290828705,
-0.08757618069648743,
0.06261511892080307,
-0.12537075579166412,
0.08911929279565811,
-0.08473841100931168,
-0.007460621185600758,
-0.08604589849710464,
-0.12718325853347778,
0.13679271936416626,
-0.10939137637615204,
-0.039051420986652374,
-0.07494870573282242,
0.14769093692302704,
-0.032342709600925446,
0.057585522532463074,
-0.007535567507147789,
0.005276630632579327,
-0.05265019088983536,
-0.0714862272143364,
0.0636005774140358,
-0.09889958053827286,
0.023589983582496643,
0.03180164471268654,
-0.05108015984296799,
-0.039624035358428955,
-0.04845363646745682,
-0.025737565010786057,
0.19385482370853424,
0.22119168937206268,
-0.04485894367098808,
0.12572303414344788,
0.1943056434392929,
0.019727706909179688,
-0.30211305618286133,
-0.13901285827159882,
-0.1306658685207367,
0.02095428667962551,
-0.014091907069087029,
-0.1882903128862381,
0.08093932271003723,
-0.003818405792117119,
-0.04927590861916542,
0.11569669097661972,
-0.13646769523620605,
-0.11340686678886414,
0.20880605280399323,
-0.022372353821992874,
0.34843385219573975,
-0.08601951599121094,
-0.06897954642772675,
0.006556190550327301,
-0.06096499413251877,
0.050097860395908356,
0.041073989123106,
0.05900530517101288,
-0.036391403526067734,
0.09593044966459274,
0.0016980735817924142,
-0.059538379311561584,
0.08852598816156387,
-0.07831773906946182,
0.0011197020066902041,
-0.09569819271564484,
-0.15684090554714203,
0.039952345192432404,
0.014948719181120396,
0.015603584237396717,
0.002926572458818555,
0.0047666714526712894,
-0.027208801358938217,
-0.01531197503209114,
-0.08446290343999863,
0.09209006279706955,
0.012849345803260803,
-0.06472189724445343,
0.00047574806376360357,
0.017887400463223457,
-0.04837256669998169,
-0.0010224510915577412,
0.19285570085048676,
0.022844653576612473,
0.15994864702224731,
0.047432996332645416,
0.03352978080511093,
-0.11869286000728607,
-0.017849909141659737,
-0.07500370591878891,
-0.08699755370616913,
0.09329638630151749,
-0.0612732395529747,
0.011008898727595806,
0.1002684235572815,
0.010057304985821247,
0.032769396901130676,
0.0855046957731247,
-0.019884034991264343,
0.01361567061394453,
0.11736930161714554,
-0.23191951215267181,
-0.030655425041913986,
-0.048989325761795044,
-0.008767145685851574,
0.08937067538499832,
0.05493829399347305,
0.05459452047944069,
-0.002452715765684843,
-0.04355509206652641,
-0.017179397866129875,
-0.009796736761927605,
-0.06055742874741554,
0.028329236432909966,
0.05452358350157738,
0.013381046243011951,
-0.12399464100599289,
0.006506405770778656,
0.018430519849061966,
-0.18219690024852753,
0.022456277161836624,
0.1456850916147232,
-0.09595558047294617,
-0.08345791697502136,
-0.08529458194971085,
0.10079118609428406,
-0.046113841235637665,
-0.030679024755954742,
-0.06410703808069229,
-0.10468926280736923,
0.05218806862831116,
0.2330760955810547,
0.09789400547742844,
0.05773076415061951,
-0.027805615216493607,
-0.04324720799922943,
-0.007898491807281971,
-0.02572401985526085,
0.029644662514328957,
0.024810440838336945,
-0.10016441345214844,
0.05733447149395943,
0.04462099447846413,
0.1914176046848297,
-0.10139647126197815,
-0.05873549357056618,
-0.1288069486618042,
0.050603292882442474,
-0.08806737512350082,
-0.09620476514101028,
-0.14529019594192505,
-0.10052407532930374,
0.002464035525918007,
-0.11187616735696793,
-0.0877641811966896,
-0.05328129231929779,
-0.10267645120620728,
0.028813382610678673,
0.0602945014834404,
0.0052317483350634575,
-0.070966437458992,
-0.02275574393570423,
0.1537906527519226,
-0.03088505007326603,
0.08065205812454224,
0.19445274770259857,
-0.0317886583507061,
0.10260144621133804,
-0.09347134083509445,
-0.09452440589666367,
0.09982940554618835,
0.011620820499956608,
0.07983193546533585,
0.1039007231593132,
-0.009857550263404846,
0.04910086467862129,
0.034540481865406036,
0.05713615566492081,
0.08854816108942032,
-0.11180512607097626,
0.03915966674685478,
0.006659417878836393,
-0.16653794050216675,
-0.03597475588321686,
-0.06285624206066132,
0.10683402419090271,
-0.0010158196091651917,
0.0772649273276329,
-0.056190263479948044,
0.1266295313835144,
-0.057403597980737686,
0.025472188368439674,
-0.054003067314624786,
-0.14313416182994843,
-0.020163264125585556,
-0.04790626838803291,
0.017101578414440155,
-0.012824570760130882,
0.22367411851882935,
-0.06818826496601105,
-0.007593183312565088,
0.047213807702064514,
0.07993188500404358,
-0.09288284927606583,
0.025171950459480286,
0.11630459874868393,
0.11709962785243988,
-0.07667703181505203,
-0.07469626516103745,
0.0756649523973465,
0.004865744151175022,
-0.03672504797577858,
0.07978726178407669,
0.02546606957912445,
0.07708597183227539,
0.09888637065887451,
-0.015290400013327599,
0.007145596668124199,
-0.10827146470546722,
-0.22312074899673462,
-0.15039680898189545,
-0.005287373438477516,
0.04922492802143097,
0.05266619846224785,
0.17544445395469666,
0.013988681137561798,
0.0534980334341526,
0.006478561088442802,
-0.018866127356886864,
-0.17153173685073853,
-0.10855121165513992,
-0.08415457606315613,
-0.04142681881785393,
0.016271673142910004,
-0.012597265653312206,
-0.0009374045766890049,
0.06785069406032562,
0.04946611076593399,
-0.04179694503545761,
0.1501074880361557,
0.07190924882888794,
-0.02444194070994854,
0.050721924751996994,
0.0064074876718223095,
0.006830989383161068,
-0.03427897393703461,
-0.03586419299244881,
-0.15593232214450836,
-0.018162734806537628,
-0.04232238605618477,
-0.00031966963433660567,
-0.13414965569972992,
0.038137394934892654,
-0.04722396656870842,
-0.13482880592346191,
-0.03621228411793709,
0.021836962550878525,
0.020689159631729126,
0.04469482600688934,
-0.023863758891820908,
0.04951545596122742,
-0.020422082394361496,
0.12871670722961426,
-0.04112530127167702,
-0.0070654163137078285,
-0.06621792912483215,
0.21761061251163483,
0.0034266223665326834,
0.04457586631178856,
-0.02560068666934967,
0.06574612110853195,
-0.09086807072162628,
0.33809587359428406,
0.29357463121414185,
-0.08939104527235031,
0.06102501600980759,
0.011802163906395435,
0.03545710816979408,
0.042023565620183945,
0.040405623614788055,
0.08763346076011658,
0.32665959000587463,
-0.098213791847229,
-0.03304707258939743,
-0.07731205970048904,
-0.034985028207302094,
-0.07698263972997665,
0.0356946662068367,
0.07426099479198456,
-0.017857477068901062,
-0.07726050913333893,
0.06484212726354599,
-0.17640629410743713,
0.11097605526447296,
0.03089793026447296,
-0.24333003163337708,
-0.04223044589161873,
0.013906535692512989,
0.09129699319601059,
0.08713703602552414,
0.09785228967666626,
-0.010426025837659836,
-0.05651713162660599,
0.04610559344291687,
0.04149358347058296,
-0.18617507815361023,
-0.04705341160297394,
0.1353025734424591,
-0.021316302940249443,
0.09297386556863785,
-0.015561169944703579,
-0.006643129047006369,
0.09038600325584412,
0.09276687353849411,
-0.015774762257933617,
0.0018179763574153185,
0.03255327790975571,
-0.05828360840678215,
-0.08188287168741226,
0.034412216395139694,
0.025487875565886497,
-0.11094202101230621,
0.04679381474852562,
-0.1329284906387329,
0.06086171790957451,
-0.12071920186281204,
-0.04064822196960449,
0.0013431812403723598,
0.10148531198501587,
-0.036390043795108795,
0.06426294893026352,
0.09921719878911972,
-0.012679429724812508,
-0.030163191258907318,
-0.024495607241988182,
-0.021849757060408592,
0.03522494062781334,
-0.11051122844219208,
-0.15029063820838928,
-0.08186420053243637,
-0.05822978913784027,
0.053385429084300995,
-0.008941479958593845,
-0.15611989796161652,
-0.04335474222898483,
-0.07275073230266571,
0.017960242927074432,
-0.141555055975914,
-0.024589568376541138,
0.036980483680963516,
0.049511898308992386,
0.016945315524935722,
-0.03282225504517555,
0.054719556123018265,
0.021595582365989685,
-0.11872145533561707,
-0.10466090589761734
] |
null | null |
transformers
|
<h3 align="center">
<p>MT5 Base Model for Chinese Question Generation</p>
</h3>
<h3 align="center">
<p>基于mt5的中文问题生成任务</p>
</h3>
#### 可以通过安装question-generation包开始用
```
pip install question-generation
```
使用方法请参考github项目:https://github.com/algolet/question_generation
#### 在线使用
可以直接在线使用我们的模型:https://www.algolet.com/applications/qg
#### 通过transformers调用
``` python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg")
model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg")
model.eval()
text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”"
text = "question generation: " + text
inputs = tokenizer(text,
return_tensors='pt',
truncation=True,
max_length=512)
with torch.no_grad():
outs = model.generate(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
no_repeat_ngram_size=4,
num_beams=4)
question = tokenizer.decode(outs[0], skip_special_tokens=True)
questions = [q.strip() for q in question.split("<sep>") if len(q.strip()) > 0]
print(questions)
['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?']
```
#### 指标
rouge-1: 0.4041
rouge-2: 0.2104
rouge-l: 0.3843
---
language:
- zh
tags:
- mt5
- question generation
metrics:
- rouge
---
|
{}
|
text2text-generation
|
algolet/mt5-base-chinese-qg
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<h3 align="center">
<p>MT5 Base Model for Chinese Question Generation</p>
</h3>
<h3 align="center">
<p>基于mt5的中文问题生成任务</p>
</h3>
#### 可以通过安装question-generation包开始用
使用方法请参考github项目:URL
#### 在线使用
可以直接在线使用我们的模型:URL
#### 通过transformers调用
#### 指标
rouge-1: 0.4041
rouge-2: 0.2104
rouge-l: 0.3843
---
language:
- zh
tags:
- mt5
- question generation
metrics:
- rouge
---
|
[
"#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL",
"#### 在线使用\n可以直接在线使用我们的模型:URL",
"#### 通过transformers调用",
"#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---"
] |
[
"TAGS\n#transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL",
"#### 在线使用\n可以直接在线使用我们的模型:URL",
"#### 通过transformers调用",
"#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---"
] |
[
49,
23,
14,
8,
44
] |
[
"passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL#### 在线使用\n可以直接在线使用我们的模型:URL#### 通过transformers调用#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---"
] |
[
-0.061163224279880524,
0.07440362125635147,
-0.004667361732572317,
0.04928801208734512,
0.1402231901884079,
-0.002748943166807294,
0.11351779103279114,
0.11831178516149521,
0.0665922462940216,
0.01130050327628851,
0.18062284588813782,
0.15451745688915253,
-0.007846332155168056,
0.08596724271774292,
-0.06554864346981049,
-0.1746891438961029,
-0.004168238490819931,
0.04856119677424431,
0.0057400427758693695,
0.143691286444664,
0.09045962244272232,
-0.046020135283470154,
0.12891434133052826,
-0.0019287769682705402,
-0.09333515912294388,
0.04993659630417824,
-0.006671271286904812,
-0.04937507584691048,
0.10410366952419281,
0.04542251303792,
0.039818111807107925,
0.10000676661729813,
0.03646962717175484,
-0.15837375819683075,
0.0308968685567379,
-0.008896850980818272,
-0.048830028623342514,
0.06516123563051224,
0.03600478917360306,
-0.12929357588291168,
0.09284184873104095,
0.013515884056687355,
-0.021426329389214516,
0.07995070517063141,
-0.09517663717269897,
-0.024999678134918213,
-0.06684000045061111,
-0.015589505434036255,
0.059594038873910904,
0.10224650055170059,
-0.00026594859082251787,
0.178634911775589,
-0.13398528099060059,
0.08153121173381805,
0.28662243485450745,
-0.24752455949783325,
-0.028564194217324257,
0.14812147617340088,
0.11917345225811005,
0.0948299765586853,
-0.02555103972554207,
0.10969994217157364,
0.10022556036710739,
0.02459310181438923,
0.004172155167907476,
-0.10733934491872787,
0.003933090250939131,
0.03244175389409065,
-0.1287451982498169,
-0.035100679844617844,
0.30446702241897583,
0.002866968745365739,
-0.0370611771941185,
0.03279358521103859,
-0.05319764092564583,
-0.019007505849003792,
-0.0441688671708107,
-0.04930266737937927,
-0.026111694052815437,
-0.009466135874390602,
-0.06566662341356277,
-0.0917031541466713,
-0.09891404211521149,
-0.09965517371892929,
-0.07428016513586044,
0.10892745852470398,
0.012618109583854675,
0.04435068741440773,
-0.17724962532520294,
0.08799529820680618,
-0.07690005749464035,
-0.08037428557872772,
-0.027106741443276405,
-0.1171698123216629,
0.02832883782684803,
0.00821506604552269,
-0.026468580588698387,
-0.03233395144343376,
0.12175120413303375,
0.20448645949363708,
0.033653635531663895,
0.036875657737255096,
-0.03577093407511711,
0.055181894451379776,
0.03586752712726593,
0.11046461760997772,
-0.06632087379693985,
-0.16496878862380981,
0.02876398339867592,
-0.0462423600256443,
0.0013066435931250453,
-0.042014990001916885,
-0.12570802867412567,
-0.1086263582110405,
0.02684708870947361,
0.09423097968101501,
0.0707985907793045,
0.04885169863700867,
-0.00445618387311697,
-0.0549992099404335,
0.01083214022219181,
-0.04672570154070854,
-0.0031326645985245705,
-0.0045313118025660515,
-0.05996432900428772,
0.10591308772563934,
0.04580316320061684,
0.013195166364312172,
-0.12264937907457352,
0.007720597088336945,
-0.05997198447585106,
0.038507070392370224,
-0.04679808020591736,
-0.06177712231874466,
0.007732959929853678,
-0.008316947147250175,
-0.015154432505369186,
-0.1489349901676178,
-0.07071062177419662,
-0.013979886658489704,
0.06073075160384178,
-0.019067084416747093,
-0.018757810816168785,
-0.029022667557001114,
-0.006471632514148951,
0.04120193049311638,
-0.044345010071992874,
0.024792714044451714,
-0.04711172729730606,
0.07326512783765793,
0.008092458359897137,
0.08783336728811264,
-0.1057761162519455,
0.05882770195603371,
-0.04594249278306961,
0.01282562781125307,
-0.025505878031253815,
0.03137888014316559,
-0.06398193538188934,
0.009766844101250172,
-0.13968680799007416,
-0.07284742593765259,
0.011180357076227665,
0.024473343044519424,
0.07720314711332321,
0.20904408395290375,
-0.01853577420115471,
-0.04588489979505539,
0.1705055683851242,
-0.040251679718494415,
-0.18221750855445862,
0.1680222600698471,
0.02074066735804081,
0.020965948700904846,
0.059269703924655914,
0.10428105294704437,
0.11869517713785172,
-0.18159203231334686,
0.08702846616506577,
0.09888768196105957,
-0.07673437893390656,
-0.10806943476200104,
0.07488318532705307,
-0.00648963637650013,
-0.21334414184093475,
0.03791050985455513,
-0.027111513540148735,
0.012149574235081673,
-0.08694496750831604,
-0.05520949885249138,
-0.03576591610908508,
-0.034147556871175766,
0.10468030720949173,
0.028429806232452393,
0.07508731633424759,
-0.027390122413635254,
-0.020638711750507355,
-0.11761348694562912,
0.05333720147609711,
-0.017415734007954597,
0.015655485913157463,
-0.08294367790222168,
0.10404244810342789,
-0.06254001706838608,
0.04070710018277168,
-0.1683342158794403,
-0.0031250796746462584,
-0.019500315189361572,
0.014816549606621265,
0.06223463639616966,
0.06820801645517349,
0.032956562936306,
-0.01867438107728958,
-0.041722141206264496,
0.0029256530106067657,
0.06810511648654938,
-0.05668681859970093,
-0.07341091334819794,
-0.07399214804172516,
0.010550142265856266,
-0.0514102540910244,
-0.00949263945221901,
-0.0464923158288002,
0.017334027215838432,
-0.04201608896255493,
0.035999614745378494,
-0.02693028748035431,
0.06188059598207474,
0.00450109364464879,
0.016852043569087982,
-0.04745190590620041,
0.025605512782931328,
0.07984289526939392,
-0.022727597504854202,
-0.06882961839437485,
0.08858763426542282,
-0.032246679067611694,
0.09731268882751465,
0.14566399157047272,
-0.14103862643241882,
-0.02613351121544838,
-0.07057292014360428,
-0.037366338074207306,
0.01844821870326996,
-0.015124804340302944,
-0.01749872788786888,
0.03853095695376396,
0.008647309616208076,
0.12412116676568985,
-0.045333921909332275,
-0.011946157552301884,
0.019473280757665634,
-0.10426310449838638,
0.002465842990204692,
0.12170447409152985,
0.17780856788158417,
-0.13458362221717834,
0.08415166288614273,
0.14342179894447327,
-0.07477773725986481,
0.11713317781686783,
0.02080882340669632,
-0.04978759214282036,
-0.009597711265087128,
0.025872210040688515,
-0.014069980010390282,
0.057379573583602905,
-0.1987600177526474,
-0.03955083340406418,
0.061460185796022415,
0.0044726659543812275,
0.07095925509929657,
-0.10513266175985336,
-0.03222614899277687,
-0.0395081453025341,
-0.0218595452606678,
-0.031099554151296616,
0.10362101346254349,
0.005177213344722986,
0.12004508078098297,
0.029432611539959908,
-0.02534410171210766,
0.04823952168226242,
-0.01503507886081934,
-0.1328832358121872,
0.20760612189769745,
-0.05983410403132439,
-0.19932623207569122,
-0.0998506024479866,
-0.17916317284107208,
-0.14374208450317383,
0.019085410982370377,
0.10209660232067108,
-0.12514853477478027,
-0.0073418449610471725,
-0.005839275661855936,
0.10917314141988754,
-0.0525597482919693,
-0.0021949768997728825,
-0.045046497136354446,
0.03837507218122482,
-0.05256994441151619,
-0.10558441281318665,
-0.037958357483148575,
-0.040121641010046005,
-0.06883370131254196,
0.12858273088932037,
-0.139540433883667,
0.12289571017026901,
0.1462378203868866,
-0.007136193104088306,
0.07320413738489151,
0.02208111435174942,
0.20878966152668,
-0.06982756406068802,
-0.019169015809893608,
0.22208619117736816,
0.07561036199331284,
0.0980035662651062,
0.13799865543842316,
0.03188544884324074,
-0.0750327929854393,
0.0705859512090683,
0.005643982440233231,
-0.08469849079847336,
-0.23617897927761078,
-0.12848663330078125,
-0.07694460451602936,
0.09588225185871124,
0.08346521854400635,
0.0261433906853199,
0.08732320368289948,
0.10689783841371536,
-0.02838071621954441,
0.01651388220489025,
0.01280298549681902,
0.09400468319654465,
0.08010101318359375,
-0.03176765888929367,
0.10519613325595856,
-0.061207737773656845,
-0.10181625187397003,
0.08588559925556183,
0.029328003525733948,
0.15786334872245789,
0.05904197692871094,
0.007251848466694355,
0.08026912063360214,
0.11390351504087448,
0.10689401626586914,
0.10030122846364975,
0.0744827538728714,
-0.02344490960240364,
-0.013343908824026585,
-0.03708670660853386,
-0.024025732651352882,
0.018215307965874672,
0.06334563344717026,
-0.11761031299829483,
-0.054152924567461014,
0.002828955417498946,
0.05196576192975044,
0.11219647526741028,
0.08759093284606934,
-0.20805829763412476,
-0.014930039644241333,
0.04193361848592758,
0.010889316909015179,
-0.08292181044816971,
0.07971265912055969,
0.012907082214951515,
-0.16435745358467102,
0.03032618761062622,
-0.041216108947992325,
0.15402741730213165,
0.02264496497809887,
0.04150593653321266,
-0.03357824310660362,
0.004512555431574583,
-0.005793473217636347,
0.09361256659030914,
-0.3275532126426697,
0.24973861873149872,
0.023187242448329926,
-0.028645051643252373,
-0.09720170497894287,
-0.021212074905633926,
0.052905838936567307,
0.15888971090316772,
0.15973085165023804,
0.020430168136954308,
0.03969646245241165,
-0.04500764235854149,
-0.024102438241243362,
0.0724121704697609,
0.11626141518354416,
-0.05826518312096596,
0.026224015280604362,
-0.027346251532435417,
-0.01283000223338604,
-0.05642872676253319,
0.018438057973980904,
-0.1834453046321869,
-0.10519678145647049,
0.060288578271865845,
-0.0069648572243750095,
-0.0036927780602127314,
-0.0020725077483803034,
-0.02707970328629017,
-0.00042926930473186076,
0.16916194558143616,
-0.013501135632395744,
-0.05959136784076691,
-0.11614364385604858,
-0.017977455630898476,
0.04634838551282883,
-0.11811577528715134,
-0.011221585795283318,
-0.04559096321463585,
0.048713307827711105,
-0.0388278104364872,
-0.1447570025920868,
0.04481888189911842,
-0.09465926140546799,
-0.008785762824118137,
-0.014389462769031525,
0.1331477165222168,
-0.0005547503242269158,
0.03021978586912155,
0.03459456190466881,
-0.05136657878756523,
-0.07869308441877365,
-0.15782880783081055,
0.010748129338026047,
-0.02597406506538391,
0.0241941399872303,
0.05754118412733078,
-0.06471622735261917,
-0.1062542051076889,
-0.05206805840134621,
-0.003521181410178542,
0.2396504282951355,
0.17049621045589447,
-0.05301670730113983,
0.05780874192714691,
0.2272934764623642,
-0.023504260927438736,
-0.3676747679710388,
-0.07074163854122162,
-0.024439334869384766,
-0.031149161979556084,
-0.04270331561565399,
-0.15474478900432587,
0.06451680511236191,
-0.004757210612297058,
-0.038262009620666504,
0.04414556175470352,
-0.2665235102176666,
-0.0973476991057396,
0.13681001961231232,
0.06629298627376556,
0.289301335811615,
-0.10189051181077957,
-0.07667621970176697,
-0.10891404002904892,
-0.26982584595680237,
0.15811491012573242,
-0.11678100377321243,
0.08953472226858139,
-0.06515932083129883,
0.12305986136198044,
0.0056763216853141785,
-0.040796808898448944,
0.14100319147109985,
0.033894702792167664,
0.01098407618701458,
-0.06311120837926865,
-0.08536308258771896,
0.07211630046367645,
-0.032510582357645035,
0.10315000265836716,
-0.04010935127735138,
0.04093557596206665,
-0.12779515981674194,
-0.010413513518869877,
-0.08438604325056076,
0.07952464371919632,
-0.027474692091345787,
-0.059343304485082626,
-0.04577462002635002,
-0.016797490417957306,
0.005885323043912649,
-0.005269284825772047,
0.1270020455121994,
-0.08203936368227005,
0.048248015344142914,
0.11634533852338791,
0.15275709331035614,
-0.07938027381896973,
0.0035287272185087204,
-0.006061789579689503,
-0.03484298288822174,
0.11064424365758896,
-0.18494735658168793,
0.0755034014582634,
0.11110140383243561,
0.030332118272781372,
0.09125154465436935,
0.05244886502623558,
-0.009001456201076508,
0.03066830150783062,
0.08638566732406616,
-0.16912420094013214,
-0.05279529094696045,
-0.06839842349290848,
-0.03717958554625511,
-0.017841672524809837,
0.09786974638700485,
0.13180288672447205,
0.01250543538480997,
-0.045556407421827316,
-0.01772082783281803,
0.01050668116658926,
-0.09417737275362015,
0.08906951546669006,
0.08374224603176117,
0.05856380984187126,
-0.1222219169139862,
0.0357387512922287,
-0.0005453283665701747,
-0.02199813723564148,
-0.050610046833753586,
0.14453867077827454,
-0.10858135670423508,
-0.142354816198349,
0.0029143637511879206,
0.14740276336669922,
-0.16368278861045837,
-0.016322152689099312,
-0.03748415410518646,
-0.023007946088910103,
0.02629481442272663,
0.09797897934913635,
0.06697238981723785,
-0.022746728733181953,
0.007644586265087128,
-0.07335994392633438,
-0.08401061594486237,
0.007280690595507622,
0.05966244265437126,
0.02015666291117668,
-0.030044786632061005,
-0.08127803355455399,
-0.010044869035482407,
0.1778540313243866,
-0.08939753472805023,
-0.07205414026975632,
-0.14171916246414185,
0.05242075398564339,
-0.2437947541475296,
-0.03011796437203884,
-0.09012831747531891,
-0.025804271921515465,
-0.035722766071558,
-0.07334195077419281,
-0.09405630081892014,
0.009143001399934292,
-0.11653699725866318,
-0.011223099194467068,
-0.006098062731325626,
0.06587323546409607,
-0.07638724148273468,
0.006799674592912197,
0.09058410674333572,
-0.046990539878606796,
0.09289390593767166,
0.09162427484989166,
-0.0855226144194603,
0.04616754874587059,
-0.17815285921096802,
-0.07910487055778503,
-0.009490522556006908,
0.03632534295320511,
0.09175318479537964,
0.005685850977897644,
0.025189783424139023,
0.016543466597795486,
0.06818836182355881,
0.03610333800315857,
0.061196863651275635,
-0.09535708278417587,
0.046773191541433334,
-0.1006476879119873,
-0.11851580440998077,
-0.06457788497209549,
0.0345192477107048,
0.04922158271074295,
0.12012014538049698,
0.07453212887048721,
-0.053109124302864075,
0.10915368050336838,
-0.0710027888417244,
0.013520771637558937,
0.018977804109454155,
-0.08536062389612198,
-0.05483345314860344,
-0.08341467380523682,
0.044461123645305634,
-0.012159482575953007,
0.15829773247241974,
0.02107110060751438,
0.09640779346227646,
0.009043890051543713,
0.04011381044983864,
0.05076264590024948,
-0.03327145054936409,
0.07881728559732437,
0.023906633257865906,
0.023605501279234886,
-0.014769062399864197,
0.09375561773777008,
0.02199537865817547,
0.02740161120891571,
0.13795717060565948,
0.0630459263920784,
0.0705915242433548,
0.066426120698452,
-0.029714060947299004,
0.02435668744146824,
-0.09576878696680069,
-0.12339535355567932,
0.02787918411195278,
0.045040421187877655,
-0.04476457089185715,
0.015313939191401005,
0.15645816922187805,
-0.04746045544743538,
0.024748068302869797,
-0.013315046206116676,
-0.06670889258384705,
-0.18354833126068115,
-0.17070874571800232,
-0.10415495932102203,
-0.16315031051635742,
0.014123035594820976,
-0.10409851372241974,
0.008965476416051388,
0.0418575182557106,
0.0938141718506813,
-0.030188802629709244,
0.08217228204011917,
-0.020567934960126877,
-0.10376475006341934,
0.05088555067777634,
-0.050102394074201584,
0.04305853694677353,
0.02304302342236042,
0.06391099840402603,
-0.0025629003066569567,
-0.035223282873630524,
0.040230974555015564,
0.048871785402297974,
-0.0767286866903305,
0.029274282976984978,
-0.12506181001663208,
-0.08315417915582657,
-0.05630742385983467,
0.06241529807448387,
0.01989346370100975,
0.23040249943733215,
0.006230921018868685,
-0.024316295981407166,
0.013126598671078682,
0.2275223582983017,
-0.05183093622326851,
-0.06836336106061935,
-0.1294861137866974,
0.2792561948299408,
0.018681496381759644,
0.0685243159532547,
-0.048299361020326614,
-0.020101485773921013,
-0.048174940049648285,
0.3319846987724304,
0.1834018975496292,
-0.028291044756770134,
0.011977785266935825,
0.02333681471645832,
0.02285665273666382,
0.088924840092659,
0.06748205423355103,
0.07022222876548767,
0.20085746049880981,
-0.08313971012830734,
-0.01854943111538887,
-0.03267453983426094,
-0.04353636875748634,
-0.04882097244262695,
0.08965310454368591,
0.04940817877650261,
-0.07534988224506378,
-0.03727024048566818,
0.1539861410856247,
-0.1630896031856537,
0.06910590082406998,
-0.004765367601066828,
-0.0841364711523056,
-0.06972724944353104,
0.03491231054067612,
0.05387052148580551,
0.010792560875415802,
0.09969843924045563,
-0.03914601355791092,
-0.0390133261680603,
0.0042555853724479675,
0.002532040933147073,
-0.14567139744758606,
-0.06077144667506218,
0.0834619402885437,
-0.07546508312225342,
0.15296700596809387,
-0.004969928879290819,
0.08323027193546295,
0.1077609434723854,
-0.009376386180520058,
-0.08001671731472015,
0.06659182161092758,
0.0409373864531517,
-0.07195068895816803,
0.014362093061208725,
0.08161051571369171,
-0.02678992971777916,
-0.029255080968141556,
0.018759652972221375,
-0.06922974437475204,
-0.0022611343301832676,
-0.01324458047747612,
0.02579454332590103,
-0.0948980376124382,
0.05631281062960625,
-0.0996716320514679,
0.10978285223245621,
0.08356718719005585,
-0.03276868909597397,
0.0026746774092316628,
-0.07994098216295242,
0.053858570754528046,
-0.015719201415777206,
-0.10065185278654099,
-0.06696339696645737,
-0.14889883995056152,
-0.020360050722956657,
0.06559576094150543,
-0.0015228204429149628,
-0.1650048941373825,
0.021708382293581963,
-0.03299447149038315,
0.03371482342481613,
-0.07058939337730408,
0.07333405315876007,
0.07827455550432205,
0.009545689448714256,
-0.004318881779909134,
-0.21829552948474884,
-0.006325107533484697,
0.10028278082609177,
-0.14469538629055023,
-0.1250016838312149
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2899
- Precision: 0.3170
- Recall: 0.5261
- F1: 0.3956
- Accuracy: 0.8799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.2912 | 0.2752 | 0.4444 | 0.3400 | 0.8730 |
| No log | 2.0 | 60 | 0.2772 | 0.4005 | 0.4589 | 0.4277 | 0.8911 |
| No log | 3.0 | 90 | 0.2267 | 0.3642 | 0.5281 | 0.4311 | 0.9043 |
| No log | 4.0 | 120 | 0.2129 | 0.3617 | 0.5455 | 0.4350 | 0.9140 |
| No log | 5.0 | 150 | 0.2399 | 0.3797 | 0.5556 | 0.4511 | 0.9114 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27", "results": []}]}
|
token-classification
|
ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
bert-base-uncased\_token\_itr0\_0.0001\_all\_01\_03\_2022-04\_48\_27
====================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2899
* Precision: 0.3170
* Recall: 0.5261
* F1: 0.3956
* Accuracy: 0.8799
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2698
- Precision: 0.3321
- Recall: 0.5265
- F1: 0.4073
- Accuracy: 0.8942
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3314 | 0.1627 | 0.3746 | 0.2269 | 0.8419 |
| No log | 2.0 | 60 | 0.2957 | 0.2887 | 0.4841 | 0.3617 | 0.8592 |
| No log | 3.0 | 90 | 0.2905 | 0.2429 | 0.5141 | 0.3299 | 0.8651 |
| No log | 4.0 | 120 | 0.2759 | 0.3137 | 0.5565 | 0.4013 | 0.8787 |
| No log | 5.0 | 150 | 0.2977 | 0.3116 | 0.5565 | 0.3995 | 0.8796 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25", "results": []}]}
|
token-classification
|
ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
bert-base-uncased\_token\_itr0\_0.0001\_all\_01\_03\_2022-14\_21\_25
====================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2698
* Precision: 0.3321
* Recall: 0.5265
* F1: 0.4073
* Accuracy: 0.8942
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2741
- Precision: 0.1936
- Recall: 0.3243
- F1: 0.2424
- Accuracy: 0.8764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3235 | 0.1062 | 0.2076 | 0.1405 | 0.8556 |
| No log | 2.0 | 60 | 0.2713 | 0.1710 | 0.3080 | 0.2199 | 0.8872 |
| No log | 3.0 | 90 | 0.3246 | 0.2010 | 0.3391 | 0.2524 | 0.8334 |
| No log | 4.0 | 120 | 0.3008 | 0.2011 | 0.3685 | 0.2602 | 0.8459 |
| No log | 5.0 | 150 | 0.2714 | 0.1780 | 0.3772 | 0.2418 | 0.8661 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10", "results": []}]}
|
token-classification
|
ali2066/bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
bert-base-uncased\_token\_itr0\_2e-05\_all\_01\_03\_2022-04\_40\_10
===================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2741
* Precision: 0.1936
* Recall: 0.3243
* F1: 0.2424
* Accuracy: 0.8764
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10753864049911499,
0.08037436753511429,
-0.0019933083094656467,
0.12204345315694809,
0.18140123784542084,
0.020826464518904686,
0.10045167058706284,
0.11764311045408249,
-0.11086838692426682,
0.014508368447422981,
0.12287639081478119,
0.18932697176933289,
0.0021036523394286633,
0.111867256462574,
-0.05016259104013443,
-0.24527451395988464,
-0.008892051875591278,
0.05368825048208237,
-0.08800558745861053,
0.13491669297218323,
0.09048761427402496,
-0.14258861541748047,
0.07888129353523254,
0.010903511196374893,
-0.23364801704883575,
0.017083460465073586,
0.02746341936290264,
-0.06664733588695526,
0.14827939867973328,
0.01496864389628172,
0.13202108442783356,
-0.004609104711562395,
0.08435963094234467,
-0.16094544529914856,
0.008185305632650852,
0.057644058018922806,
0.013476102612912655,
0.09104271978139877,
0.05923585221171379,
0.003937891684472561,
0.09522878378629684,
-0.08320257067680359,
0.04912765696644783,
0.01845603808760643,
-0.11615590006113052,
-0.24931874871253967,
-0.08442077785730362,
0.02281157672405243,
0.06695187091827393,
0.09656354784965515,
0.007532346062362194,
0.15218573808670044,
-0.09406672418117523,
0.08835279196500778,
0.23400132358074188,
-0.2968176305294037,
-0.061535052955150604,
0.03368733823299408,
-0.001287309336476028,
0.060525767505168915,
-0.10787413269281387,
-0.026788797229528427,
0.05534350126981735,
0.0461646243929863,
0.14292700588703156,
-0.0414690226316452,
-0.1185973659157753,
0.02386360429227352,
-0.1451696753501892,
-0.02569561079144478,
0.11380389332771301,
0.02605256251990795,
-0.03320121392607689,
-0.026486175134778023,
-0.06368161737918854,
-0.16752712428569794,
-0.041406597942113876,
-0.016071734949946404,
0.051477428525686264,
-0.038051147013902664,
-0.0669454038143158,
0.016309630125761032,
-0.10167881846427917,
-0.06597086042165756,
-0.07968751341104507,
0.15499185025691986,
0.04383775591850281,
0.021856173872947693,
-0.03475571051239967,
0.10545775294303894,
0.007033583242446184,
-0.12796221673488617,
0.030722592025995255,
0.0335623137652874,
-0.006838527042418718,
-0.049513813108205795,
-0.06912039965391159,
-0.04963924363255501,
0.010616211220622063,
0.11124978959560394,
-0.04757634177803993,
0.045095112174749374,
0.03680498152971268,
0.04035058990120888,
-0.1031075119972229,
0.1972542405128479,
-0.04417083039879799,
-0.009277076460421085,
0.015756821259856224,
0.029770389199256897,
0.00449313223361969,
-0.00009347574814455584,
-0.1131773516535759,
0.0005200852756388485,
0.11858409643173218,
0.018152786418795586,
-0.07793314754962921,
0.06817751377820969,
-0.04956464469432831,
-0.02420787326991558,
0.0170604158192873,
-0.09928306192159653,
0.038301315158605576,
-0.009381359443068504,
-0.08756978809833527,
-0.014857079833745956,
0.016755394637584686,
0.011835689656436443,
-0.02161882072687149,
0.12543118000030518,
-0.09167774021625519,
0.04116104915738106,
-0.10431070625782013,
-0.10492155700922012,
0.013673395849764347,
-0.0774671733379364,
0.03136439621448517,
-0.09931746125221252,
-0.14383172988891602,
-0.005293686408549547,
0.05853328853845596,
-0.021369216963648796,
-0.05622860789299011,
-0.028633151203393936,
-0.06818969547748566,
0.004103114828467369,
-0.02228950895369053,
0.15664881467819214,
-0.05509620159864426,
0.10445694625377655,
0.04295739904046059,
0.06440753489732742,
-0.04832245409488678,
0.05941133573651314,
-0.10614841431379318,
0.005741914734244347,
-0.1939363181591034,
0.02675219625234604,
-0.052257660776376724,
0.0762862041592598,
-0.09789430350065231,
-0.11046694964170456,
0.030374813824892044,
-0.01386824157088995,
0.0737597718834877,
0.08058151602745056,
-0.15171603858470917,
-0.07394618541002274,
0.14997456967830658,
-0.06346351653337479,
-0.10854742676019669,
0.10561156272888184,
-0.0593809112906456,
0.034293193370103836,
0.07409972697496414,
0.14655916392803192,
0.06793807446956635,
-0.06718068569898605,
0.026534799486398697,
-0.0027119643054902554,
0.0457339845597744,
-0.09681043028831482,
0.06298034638166428,
0.009297063574194908,
-0.017046473920345306,
0.0362410768866539,
-0.034106072038412094,
0.06603852659463882,
-0.09525996446609497,
-0.09335606545209885,
-0.04472557082772255,
-0.10235516726970673,
0.04699767008423805,
0.07667631655931473,
0.09107839316129684,
-0.09030316770076752,
-0.07246976345777512,
0.09054850786924362,
0.07468730211257935,
-0.050058022141456604,
0.031226258724927902,
-0.06111585348844528,
0.06181240454316139,
-0.06198642775416374,
-0.026785459369421005,
-0.19482621550559998,
-0.011955865658819675,
0.010227876715362072,
-0.013750032521784306,
0.016295509412884712,
0.019756264984607697,
0.07051248848438263,
0.054567791521549225,
-0.0521056205034256,
-0.010145357809960842,
-0.009181767702102661,
-0.004457435104995966,
-0.14391255378723145,
-0.18775945901870728,
-0.03520965203642845,
-0.016607599332928658,
0.09630810469388962,
-0.1849069446325302,
0.02846841886639595,
-0.022618142887949944,
0.07418879121541977,
0.003044632263481617,
-0.003964087925851345,
-0.049519337713718414,
0.09193973243236542,
-0.03017306886613369,
-0.050148140639066696,
0.07775265723466873,
-0.002071844646707177,
-0.07592527568340302,
-0.04547816142439842,
-0.08185992389917374,
0.19706101715564728,
0.14105339348316193,
-0.12278510630130768,
-0.07666841894388199,
0.003618597751483321,
-0.05674458667635918,
-0.032268740236759186,
-0.04052291810512543,
0.054045580327510834,
0.17736908793449402,
-0.013018450699746609,
0.15440091490745544,
-0.06687207520008087,
-0.05445961654186249,
0.026615971699357033,
-0.02846870943903923,
0.03771592304110527,
0.11115396022796631,
0.12946955859661102,
-0.08221589028835297,
0.14414049685001373,
0.15941637754440308,
-0.10364626348018646,
0.10166779905557632,
-0.04563472792506218,
-0.07263178378343582,
-0.014021266251802444,
-0.026219956576824188,
0.0025779285933822393,
0.09791702777147293,
-0.1310688853263855,
-0.007642888929694891,
0.023214714601635933,
0.022315550595521927,
0.019226515665650368,
-0.22928369045257568,
-0.03698035329580307,
0.02637023665010929,
-0.031279221177101135,
-0.0026766443625092506,
-0.019856292754411697,
0.009198269806802273,
0.10475639253854752,
0.001885349047370255,
-0.09315640479326248,
0.04630212113261223,
0.012295830994844437,
-0.0735328197479248,
0.2174319326877594,
-0.08511605113744736,
-0.14261208474636078,
-0.11613202095031738,
-0.09025216847658157,
-0.04341009259223938,
0.006515137385576963,
0.05904548242688179,
-0.0973411276936531,
-0.031103558838367462,
-0.04163571819663048,
0.012397818267345428,
-0.007478727027773857,
0.05218856409192085,
0.0002963090664707124,
-0.004610819276422262,
0.08140648901462555,
-0.10786794871091843,
-0.007089327555149794,
-0.05495279282331467,
-0.06614825129508972,
0.046436965465545654,
0.051832061260938644,
0.10887669026851654,
0.16436579823493958,
-0.031898390501737595,
0.006409264635294676,
-0.026925547048449516,
0.2259872704744339,
-0.05826576054096222,
-0.03527597710490227,
0.13173644244670868,
-0.002649009460583329,
0.05540434643626213,
0.10141117125749588,
0.07844148576259613,
-0.0884462371468544,
0.004566065967082977,
0.03144414350390434,
-0.03820732608437538,
-0.22060705721378326,
-0.04329230636358261,
-0.05523783713579178,
-0.04085381701588631,
0.09684115648269653,
0.03399847447872162,
0.04724472388625145,
0.07422271370887756,
0.054906558245420456,
0.09340383857488632,
-0.06365135312080383,
0.054505035281181335,
0.11523215472698212,
0.05479764565825462,
0.12785732746124268,
-0.046421345323324203,
-0.07191701978445053,
0.031932953745126724,
-0.006944115273654461,
0.2245846539735794,
0.007925943471491337,
0.11965426802635193,
0.051492784172296524,
0.20405922830104828,
0.006951733957976103,
0.0926145389676094,
-0.006878443993628025,
-0.047128695994615555,
-0.010112510994076729,
-0.03813498467206955,
-0.038324132561683655,
0.011691519059240818,
-0.06575985252857208,
0.05554516240954399,
-0.10904411971569061,
-0.02390877902507782,
0.04760483652353287,
0.2629401981830597,
0.024267949163913727,
-0.3258773684501648,
-0.0798947811126709,
-0.006178584415465593,
-0.03639255836606026,
-0.019840970635414124,
0.020334526896476746,
0.07648318260908127,
-0.091636523604393,
0.023236924782395363,
-0.07607085257768631,
0.09576946496963501,
-0.03439470753073692,
0.04049858823418617,
0.08365064859390259,
0.09398169070482254,
0.0162636861205101,
0.07820095866918564,
-0.3123907148838043,
0.2648642659187317,
0.005912692751735449,
0.06656038016080856,
-0.07914287596940994,
0.0030644533690065145,
0.03354955092072487,
0.06663612276315689,
0.05357126146554947,
-0.013568581081926823,
-0.03836224973201752,
-0.2072814553976059,
-0.053287871181964874,
0.03314616531133652,
0.07789620012044907,
-0.019178614020347595,
0.08417423069477081,
-0.03004324808716774,
0.0018129772506654263,
0.07537468522787094,
-0.022779598832130432,
-0.04347347840666771,
-0.08282828330993652,
-0.015305913053452969,
0.028031140565872192,
-0.04772805795073509,
-0.06004625931382179,
-0.11577954143285751,
-0.13220806419849396,
0.16061493754386902,
-0.00707741966471076,
-0.033303190022706985,
-0.11828965693712234,
0.08242087066173553,
0.079961396753788,
-0.086241215467453,
0.05336865782737732,
0.0018641811329871416,
0.05632437765598297,
0.039550501853227615,
-0.08388454467058182,
0.11599814891815186,
-0.06052682176232338,
-0.15014980733394623,
-0.057693783193826675,
0.09299443662166595,
0.03030409850180149,
0.061903417110443115,
-0.014487668871879578,
0.016835719347000122,
-0.03504838049411774,
-0.09078077971935272,
0.018278174102306366,
-0.026550356298685074,
0.07910948991775513,
0.007042316719889641,
-0.054217997938394547,
0.011213849298655987,
-0.059065334498882294,
-0.026841359212994576,
0.18180303275585175,
0.2150801420211792,
-0.10343334823846817,
0.016353826969861984,
0.0362330786883831,
-0.06490830332040787,
-0.19665801525115967,
0.04914064332842827,
0.05798149108886719,
-0.0016992799937725067,
0.03509996086359024,
-0.17492349445819855,
0.1596728265285492,
0.10934930294752121,
-0.015080975368618965,
0.11350391060113907,
-0.3208785653114319,
-0.12585441768169403,
0.12880995869636536,
0.15671394765377045,
0.14404036104679108,
-0.14113456010818481,
-0.017466461285948753,
-0.01817150227725506,
-0.12481310218572617,
0.09836994111537933,
-0.07840299606323242,
0.11399005353450775,
-0.03502390533685684,
0.08777137100696564,
-0.0004881212371401489,
-0.06383460015058517,
0.11034728586673737,
0.0269167460501194,
0.10376793146133423,
-0.056379273533821106,
-0.0360894538462162,
0.042888376861810684,
-0.03185877203941345,
0.008377378806471825,
-0.06903617829084396,
0.029714662581682205,
-0.08897075802087784,
-0.017654642462730408,
-0.08111444860696793,
0.047264665365219116,
-0.026198575273156166,
-0.05878997594118118,
-0.037994369864463806,
0.02232714742422104,
0.04224638268351555,
-0.021275881677865982,
0.13999256491661072,
0.035279761999845505,
0.1469488888978958,
0.11556249856948853,
0.05588364228606224,
-0.0748925507068634,
-0.08083369582891464,
-0.015378417447209358,
-0.01757459156215191,
0.06885217130184174,
-0.1397414207458496,
0.03261387348175049,
0.14400209486484528,
0.02054639719426632,
0.11308672279119492,
0.08377280831336975,
-0.014295586384832859,
0.005263150669634342,
0.06513314694166183,
-0.15986189246177673,
-0.06557798385620117,
0.007000046316534281,
-0.058527737855911255,
-0.09425844252109528,
0.06713097542524338,
0.07913223654031754,
-0.0720510184764862,
-0.0167522132396698,
-0.006070380564779043,
-0.005262172315269709,
-0.0665988028049469,
0.21412810683250427,
0.06282304972410202,
0.04692050814628601,
-0.11391153931617737,
0.06632539629936218,
0.06216466426849365,
-0.07601682841777802,
-0.010105784982442856,
0.0672469288110733,
-0.08561617881059647,
-0.039947230368852615,
0.1169852539896965,
0.1715960055589676,
-0.07325229048728943,
-0.043167468160390854,
-0.1346459835767746,
-0.11587618291378021,
0.08163129538297653,
0.1643989235162735,
0.12257587909698486,
0.01283210888504982,
-0.05652898550033569,
0.00810227356851101,
-0.12299137562513351,
0.07165659964084625,
0.03401597589254379,
0.0781589150428772,
-0.14662866294384003,
0.16504673659801483,
0.011874731630086899,
0.05244697257876396,
-0.02542581968009472,
0.029018884524703026,
-0.09794651716947556,
0.018622737377882004,
-0.12689374387264252,
-0.029093334451317787,
-0.02097257971763611,
0.006429497618228197,
-0.003213833784684539,
-0.064119853079319,
-0.05840088799595833,
0.023435285314917564,
-0.12485816329717636,
-0.017842015251517296,
0.0367179736495018,
0.04388445243239403,
-0.11633863300085068,
-0.03921764716506004,
0.021766910329461098,
-0.052169132977724075,
0.058279767632484436,
0.04799520596861839,
0.01629680208861828,
0.06674908101558685,
-0.12527118623256683,
-0.007515295408666134,
0.07923166453838348,
0.01002194918692112,
0.08082612603902817,
-0.08464280515909195,
-0.0020150812342762947,
0.010877085849642754,
0.07067061960697174,
0.01652146689593792,
0.08005230873823166,
-0.15024434030056,
-0.014967186376452446,
-0.033825717866420746,
-0.08130638301372528,
-0.06439065933227539,
0.015844017267227173,
0.09723738580942154,
0.010148972272872925,
0.19683313369750977,
-0.07170050591230392,
0.03627381473779678,
-0.20496055483818054,
-0.0033947962801903486,
-0.025748806074261665,
-0.11741337180137634,
-0.13097810745239258,
-0.05460900440812111,
0.06082415580749512,
-0.04696857929229736,
0.14308609068393707,
0.032481271773576736,
0.05203012749552727,
0.029615076258778572,
-0.023646658286452293,
0.01226873230189085,
0.026203006505966187,
0.21800853312015533,
0.039628367871046066,
-0.03064773976802826,
0.07520021498203278,
0.06508754193782806,
0.09332408756017685,
0.11520575731992722,
0.1926977038383484,
0.15242703258991241,
-0.008022362366318703,
0.09140145778656006,
0.015657689422369003,
-0.05187614634633064,
-0.16879579424858093,
0.03005940280854702,
-0.058011382818222046,
0.09786411374807358,
-0.021070465445518494,
0.2202903926372528,
0.058930378407239914,
-0.16244280338287354,
0.04948170855641365,
-0.05443214997649193,
-0.08440247923135757,
-0.10792803764343262,
-0.0368177555501461,
-0.08049845695495605,
-0.14411458373069763,
-0.0005514116492122412,
-0.09656105935573578,
0.013731029815971851,
0.1252662092447281,
0.00529753603041172,
-0.02532942406833172,
0.16113333404064178,
0.03202156722545624,
0.029685474932193756,
0.04448854923248291,
0.006667810957878828,
-0.030761849135160446,
-0.09482349455356598,
-0.060203518718481064,
-0.02643401362001896,
-0.017361706122756004,
0.03724341094493866,
-0.06504220515489578,
-0.0673125833272934,
0.04285462573170662,
-0.023339558392763138,
-0.09247882664203644,
0.016687165945768356,
0.020591406151652336,
0.0632379800081253,
0.043902020901441574,
0.00580450939014554,
0.0223170667886734,
-0.021549222990870476,
0.2078149914741516,
-0.08250159025192261,
-0.07351438701152802,
-0.09007713943719864,
0.28699570894241333,
0.0469077043235302,
-0.007942277006804943,
0.03186770901083946,
-0.05720748007297516,
-0.0014970172196626663,
0.25488388538360596,
0.1900767832994461,
-0.08333189785480499,
-0.011035752482712269,
0.001889277365989983,
-0.016498373821377754,
-0.025869786739349365,
0.12910574674606323,
0.14236053824424744,
0.047086767852306366,
-0.10561665147542953,
-0.048242535442113876,
-0.06000329926609993,
-0.010661478154361248,
-0.05599406361579895,
0.059653639793395996,
0.036445919424295425,
0.0014646261697635055,
-0.0424475222826004,
0.048869241029024124,
-0.05296991765499115,
-0.10256139934062958,
0.07833194732666016,
-0.186362162232399,
-0.1656768023967743,
-0.010439040139317513,
0.11027620732784271,
-0.000827491981908679,
0.05772924795746803,
-0.022656504064798355,
0.006614584010094404,
0.06393419206142426,
-0.017784567549824715,
-0.0942571759223938,
-0.09402424097061157,
0.10509172827005386,
-0.11317084729671478,
0.19784416258335114,
-0.03770403936505318,
0.07026701420545578,
0.12265949696302414,
0.07233794033527374,
-0.08111102133989334,
0.053501129150390625,
0.034864917397499084,
-0.09224028140306473,
0.032158151268959045,
0.08140061050653458,
-0.0257705245167017,
0.05061124637722969,
0.024828284978866577,
-0.11307968944311142,
0.01920534111559391,
-0.08886896073818207,
-0.03525250405073166,
-0.04275282472372055,
-0.05358562618494034,
-0.054182399064302444,
0.12233369052410126,
0.2122705578804016,
-0.021225200966000557,
0.011468418873846531,
-0.08618035167455673,
0.010227033868432045,
0.05037512630224228,
0.008617517538368702,
-0.08707303553819656,
-0.22173883020877838,
0.01653476059436798,
0.059445008635520935,
-0.026636086404323578,
-0.2057279497385025,
-0.08923748880624771,
0.004321022890508175,
-0.07989397644996643,
-0.09532781690359116,
0.07696764171123505,
0.0679180771112442,
0.055242620408535004,
-0.05581109970808029,
-0.08693154901266098,
-0.08190497010946274,
0.1452728807926178,
-0.15275844931602478,
-0.08782590180635452
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7632
- Accuracy: 0.8263
- F1: 0.8871
- Precision: 0.8551
- Recall: 0.9215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.3986 | 0.8305 | 0.8903 | 0.8868 | 0.8938 |
| 0.4561 | 2.0 | 780 | 0.4018 | 0.8439 | 0.9009 | 0.8805 | 0.9223 |
| 0.3111 | 3.0 | 1170 | 0.4306 | 0.8354 | 0.8924 | 0.8974 | 0.8875 |
| 0.1739 | 4.0 | 1560 | 0.5499 | 0.8378 | 0.9002 | 0.8547 | 0.9509 |
| 0.1739 | 5.0 | 1950 | 0.6223 | 0.85 | 0.9052 | 0.8814 | 0.9303 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15", "results": []}]}
|
text-classification
|
ali2066/bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
bert\_base\_uncased\_itr0\_0.0001\_all\_01\_03\_2022-14\_08\_15
===============================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7632
* Accuracy: 0.8263
* F1: 0.8871
* Precision: 0.8551
* Recall: 0.9215
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
55,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10006141662597656,
0.06015331298112869,
-0.0016768743516877294,
0.12048038095235825,
0.18813450634479523,
0.027831846848130226,
0.11483760923147202,
0.11931838095188141,
-0.11153833568096161,
0.010031266137957573,
0.1279982477426529,
0.1856568306684494,
0.0050761220045387745,
0.07259073853492737,
-0.054911717772483826,
-0.25359582901000977,
-0.014131300151348114,
0.04270533472299576,
-0.08394505083560944,
0.1346752941608429,
0.08754555135965347,
-0.13515473902225494,
0.08574844151735306,
-0.000990945496596396,
-0.2197129875421524,
0.02363911084830761,
0.02439187653362751,
-0.0603552870452404,
0.15599344670772552,
0.025342943146824837,
0.13166826963424683,
0.0022472774144262075,
0.07987470924854279,
-0.18114744126796722,
0.012374937534332275,
0.0532408207654953,
0.0017018445068970323,
0.08550804853439331,
0.06169192120432854,
-0.015034649521112442,
0.13765975832939148,
-0.09875067323446274,
0.0523068904876709,
0.024386649951338768,
-0.12004146724939346,
-0.21732816100120544,
-0.07804691046476364,
0.004393455106765032,
0.06111807003617287,
0.11076129972934723,
0.0026708177756518126,
0.13564570248126984,
-0.09218057990074158,
0.09872908890247345,
0.2317434847354889,
-0.29830968379974365,
-0.06568057090044022,
0.039951786398887634,
0.005633033812046051,
0.08888082206249237,
-0.10801246762275696,
-0.010586285032331944,
0.05370327830314636,
0.04429428651928902,
0.13429810106754303,
-0.0424748957157135,
-0.1124688908457756,
0.03398085758090019,
-0.140920951962471,
-0.025198644027113914,
0.12629856169223785,
0.025706660002470016,
-0.031746793538331985,
-0.027673771604895592,
-0.058222055435180664,
-0.14890696108341217,
-0.03566214069724083,
-0.002505397191271186,
0.04904545843601227,
-0.03205007687211037,
-0.07057391107082367,
-0.009772083722054958,
-0.10881678760051727,
-0.06983215361833572,
-0.07974416017532349,
0.14933933317661285,
0.0375913605093956,
0.017320554703474045,
-0.035818930715322495,
0.10355334728956223,
0.023281197994947433,
-0.1317593902349472,
0.029428385198116302,
0.03612488880753517,
-0.00018146437651012093,
-0.043622441589832306,
-0.07586294412612915,
-0.07670602202415466,
0.013533372431993484,
0.08579538762569427,
-0.035462912172079086,
0.05565501004457474,
0.027064654976129532,
0.04210663214325905,
-0.11536812037229538,
0.20389248430728912,
-0.02878849022090435,
-0.01829879730939865,
0.00953107699751854,
0.032341040670871735,
0.013389605097472668,
-0.014506836421787739,
-0.12694832682609558,
-0.002065831795334816,
0.09350422024726868,
0.018338613212108612,
-0.07509297877550125,
0.07119841128587723,
-0.044250212609767914,
-0.024629859253764153,
-0.00234817061573267,
-0.10120034217834473,
0.03811005502939224,
-0.0011338290059939027,
-0.08055821061134338,
-0.01986866630613804,
0.025802049785852432,
0.013120973482728004,
-0.030656618997454643,
0.12275576591491699,
-0.08005847036838531,
0.04569253697991371,
-0.1052219495177269,
-0.11397331207990646,
0.010560590773820877,
-0.07794159650802612,
0.025057770311832428,
-0.09897022694349289,
-0.15975843369960785,
-0.013983331620693207,
0.06007615476846695,
-0.02096989005804062,
-0.04770084097981453,
-0.0524592287838459,
-0.07032684981822968,
0.01418185606598854,
-0.014565843157470226,
0.16521769762039185,
-0.05903013423085213,
0.10643330216407776,
0.03629470616579056,
0.05671690031886101,
-0.0642765536904335,
0.0593264140188694,
-0.09109367430210114,
-0.004492554813623428,
-0.17288333177566528,
0.046074897050857544,
-0.04496738314628601,
0.08002328127622604,
-0.08689932525157928,
-0.10486432909965515,
0.021300574764609337,
-0.003124968381598592,
0.07168979197740555,
0.08810999244451523,
-0.1657872498035431,
-0.07988841086626053,
0.14703214168548584,
-0.05570128932595253,
-0.11463029682636261,
0.11264891177415848,
-0.06932114064693451,
0.039756376296281815,
0.0810406506061554,
0.1574609875679016,
0.07493672519922256,
-0.0634264200925827,
0.038453638553619385,
0.005069531034678221,
0.05267220363020897,
-0.09046094119548798,
0.06230023875832558,
0.0006019541178829968,
-0.029304279014468193,
0.03433442860841751,
-0.03307440131902695,
0.06533347070217133,
-0.08880681544542313,
-0.09807883948087692,
-0.04806707426905632,
-0.09900359064340591,
0.04960796982049942,
0.07881511002779007,
0.09153115004301071,
-0.09849457442760468,
-0.06959755718708038,
0.07454036921262741,
0.07130679488182068,
-0.05931316688656807,
0.03555765375494957,
-0.04719019681215286,
0.052200887352228165,
-0.042119529098272324,
-0.020056718960404396,
-0.19323308765888214,
-0.003290268126875162,
0.0032464463729411364,
0.01248013786971569,
0.0278842281550169,
0.025714263319969177,
0.07523047178983688,
0.05460340529680252,
-0.06189041957259178,
-0.005331122782081366,
-0.011559929698705673,
-0.007028908468782902,
-0.14449618756771088,
-0.20099058747291565,
-0.018295226618647575,
-0.01593059115111828,
0.11029121279716492,
-0.20480187237262726,
0.035325199365615845,
-0.024148056283593178,
0.05156213790178299,
-0.0016326733166351914,
-0.002300581429153681,
-0.050607044249773026,
0.09267674386501312,
-0.03786030039191246,
-0.044811684638261795,
0.08234836161136627,
0.0010719457641243935,
-0.09931915998458862,
-0.04112963750958443,
-0.09169553965330124,
0.18052032589912415,
0.14402055740356445,
-0.14828921854496002,
-0.06724970787763596,
0.003217491786926985,
-0.04589806869626045,
-0.025639263913035393,
-0.04560340195894241,
0.050743840634822845,
0.20245815813541412,
-0.01328759454190731,
0.16114620864391327,
-0.06828700751066208,
-0.04519668221473694,
0.019244113937020302,
-0.027754997834563255,
0.038239024579524994,
0.1298702210187912,
0.11455709487199783,
-0.07707764953374863,
0.13375122845172882,
0.15905900299549103,
-0.11014798283576965,
0.1209876537322998,
-0.0423019677400589,
-0.06718441098928452,
-0.008636499755084515,
-0.020030267536640167,
0.004597839433699846,
0.08710279315710068,
-0.15757273137569427,
-0.017170092090964317,
0.015047929249703884,
0.0207737535238266,
0.021711207926273346,
-0.22991862893104553,
-0.04093644395470619,
0.03707672283053398,
-0.041075244545936584,
-0.007891734130680561,
-0.028607793152332306,
0.0037603452801704407,
0.10785137116909027,
-0.00003896306225215085,
-0.08739656209945679,
0.04233181104063988,
0.0005591851659119129,
-0.08234918117523193,
0.22345711290836334,
-0.08423270285129547,
-0.1449236422777176,
-0.1294223666191101,
-0.08766380697488785,
-0.05655621737241745,
0.011558052152395248,
0.059727687388658524,
-0.1063886433839798,
-0.02674838714301586,
-0.05561402812600136,
0.010098754428327084,
-0.017866315320134163,
0.044800229370594025,
-0.007909315638244152,
0.00006909410149091855,
0.06899678707122803,
-0.11105155944824219,
-0.009596994146704674,
-0.05651170760393143,
-0.07966498285531998,
0.043584708124399185,
0.038087066262960434,
0.11293985694646835,
0.1623384952545166,
-0.028285132721066475,
0.0086588803678751,
-0.029808031395077705,
0.20953477919101715,
-0.05953431501984596,
-0.038639336824417114,
0.1284269392490387,
-0.0028604669496417046,
0.05242474749684334,
0.09879272431135178,
0.07921367883682251,
-0.08582282811403275,
0.012411432340741158,
0.030471406877040863,
-0.042179908603429794,
-0.23831389844417572,
-0.040219344198703766,
-0.06411553174257278,
-0.03653726354241371,
0.0905321016907692,
0.03545914590358734,
0.05003185570240021,
0.07161948084831238,
0.05220838263630867,
0.0923975482583046,
-0.04516058415174484,
0.054838817566633224,
0.11492501944303513,
0.05289347097277641,
0.12757384777069092,
-0.055978111922740936,
-0.06603807210922241,
0.03698310628533363,
-0.028481515124440193,
0.22650636732578278,
0.012847472913563251,
0.13587923347949982,
0.05141940712928772,
0.18921098113059998,
-0.0007580057135783136,
0.08690957725048065,
-0.005247138906270266,
-0.04653005674481392,
-0.010569591075181961,
-0.04362907633185387,
-0.04302727431058884,
0.015755679458379745,
-0.07540842890739441,
0.06099684536457062,
-0.11897607892751694,
-0.021580414846539497,
0.04953344911336899,
0.2507859468460083,
0.022840626537799835,
-0.31658244132995605,
-0.07263977080583572,
0.007831012830138206,
-0.029752155765891075,
-0.018043825402855873,
0.020819226279854774,
0.09270194917917252,
-0.09288663417100906,
0.03385059908032417,
-0.07032540440559387,
0.10154750943183899,
-0.03806903213262558,
0.04815422371029854,
0.05995237082242966,
0.08339167386293411,
0.005423906724900007,
0.08609550446271896,
-0.3385409712791443,
0.2744321823120117,
0.007785283029079437,
0.07205014675855637,
-0.08374333381652832,
-0.0035155138466507196,
0.04518731310963631,
0.06963993608951569,
0.04836650192737579,
-0.012951849959790707,
-0.01922472193837166,
-0.18728403747081757,
-0.04350295662879944,
0.038796566426754,
0.09108131378889084,
-0.022728970274329185,
0.08269669860601425,
-0.03227301314473152,
0.003326738951727748,
0.07989058643579483,
-0.004412584472447634,
-0.04580359905958176,
-0.09948841482400894,
-0.021942012012004852,
0.03100747801363468,
-0.056344013661146164,
-0.05661953613162041,
-0.1080283522605896,
-0.1318480372428894,
0.16453681886196136,
-0.023686250671744347,
-0.028873957693576813,
-0.11478012055158615,
0.07862833142280579,
0.06185503304004669,
-0.08917338401079178,
0.04362077638506889,
0.003879025112837553,
0.047664690762758255,
0.03450844809412956,
-0.08713919669389725,
0.10883025079965591,
-0.05490633472800255,
-0.14573787152767181,
-0.057156533002853394,
0.09366991370916367,
0.028533557429909706,
0.06554961204528809,
-0.013277932070195675,
0.014457709155976772,
-0.04507482796907425,
-0.096861831843853,
0.015814704820513725,
-0.01969759538769722,
0.07654628902673721,
0.023194322362542152,
-0.06168559566140175,
0.004162478726357222,
-0.06338052451610565,
-0.03742219880223274,
0.19860096275806427,
0.20925650000572205,
-0.09912769496440887,
0.018944449722766876,
0.02806190215051174,
-0.07476769387722015,
-0.20182503759860992,
0.05384587123990059,
0.05346105620265007,
0.0035038848873227835,
0.03612758591771126,
-0.18157510459423065,
0.14262469112873077,
0.09657159447669983,
-0.00836770236492157,
0.10512838512659073,
-0.3256816864013672,
-0.13431929051876068,
0.12612242996692657,
0.1610277146100998,
0.15913152694702148,
-0.15181119740009308,
-0.025042271241545677,
-0.03794991597533226,
-0.10941475629806519,
0.09707347303628922,
-0.10649557411670685,
0.12287645041942596,
-0.030856579542160034,
0.08797969669103622,
0.002141635399311781,
-0.05871308222413063,
0.12181399017572403,
0.01980936899781227,
0.10677474737167358,
-0.06531982123851776,
-0.03562798723578453,
0.0375652052462101,
-0.03486555814743042,
0.004627187270671129,
-0.10539451241493225,
0.0255361907184124,
-0.10230391472578049,
-0.019627690315246582,
-0.07679464668035507,
0.04045896977186203,
-0.031247373670339584,
-0.056319039314985275,
-0.034012190997600555,
0.008984451182186604,
0.04843927174806595,
-0.014039216563105583,
0.1502251923084259,
0.012306674383580685,
0.15314194560050964,
0.10736531764268875,
0.07989727705717087,
-0.06587006151676178,
-0.05523127689957619,
-0.01443327683955431,
-0.013951173983514309,
0.06057605892419815,
-0.15827694535255432,
0.030381731688976288,
0.13996033370494843,
0.020059218630194664,
0.12902522087097168,
0.0863414853811264,
-0.008433082140982151,
0.00823960080742836,
0.06494399905204773,
-0.1553323119878769,
-0.08187410235404968,
-0.007295326795428991,
-0.05942597612738609,
-0.1016998365521431,
0.058323416858911514,
0.08264970779418945,
-0.06642048805952072,
-0.0103176673874259,
-0.011236054822802544,
-0.007785755675286055,
-0.06910638511180878,
0.20142999291419983,
0.06409057229757309,
0.04411182925105095,
-0.11184035986661911,
0.07457242906093597,
0.06051487848162651,
-0.07574029266834259,
-0.0010546196717768908,
0.08025059103965759,
-0.08124522119760513,
-0.0451413132250309,
0.12492485344409943,
0.19960199296474457,
-0.06696248799562454,
-0.04302188381552696,
-0.13543884456157684,
-0.1270507425069809,
0.07787337154150009,
0.16663172841072083,
0.12039130926132202,
0.009896461851894855,
-0.06637337058782578,
0.0047132596373558044,
-0.11837185174226761,
0.07330591231584549,
0.03187279403209686,
0.0704832673072815,
-0.13134795427322388,
0.1691066324710846,
0.013261515647172928,
0.04384642094373703,
-0.022453123703598976,
0.023258673027157784,
-0.09949291497468948,
0.020406533032655716,
-0.14484064280986786,
-0.0199443269520998,
-0.010865253396332264,
0.0066932509653270245,
-0.00411243736743927,
-0.0620834119617939,
-0.05633116513490677,
0.01749107800424099,
-0.12350933998823166,
-0.023005131632089615,
0.030788302421569824,
0.05299484357237816,
-0.1166481152176857,
-0.04405612125992775,
0.021427789703011513,
-0.05627301707863808,
0.05326990410685539,
0.05377235263586044,
0.01065203920006752,
0.07372553646564484,
-0.15395613014698029,
0.005130668170750141,
0.06997429579496384,
0.014695764519274235,
0.0657363012433052,
-0.06995224952697754,
-0.0018955005798488855,
0.00935444701462984,
0.07684896141290665,
0.025752238929271698,
0.08518589287996292,
-0.1426972597837448,
0.002662152284756303,
-0.035037748515605927,
-0.09170481562614441,
-0.06318221241235733,
0.03591931611299515,
0.08426028490066528,
0.013259539380669594,
0.19739435613155365,
-0.08450090885162354,
0.03467831015586853,
-0.20854327082633972,
0.002758065005764365,
-0.019988130778074265,
-0.12122182548046112,
-0.140303373336792,
-0.07679522037506104,
0.06474476307630539,
-0.05095434561371803,
0.12943999469280243,
0.037372320890426636,
0.05038565397262573,
0.026881590485572815,
-0.0037436787970364094,
0.026537185534834862,
0.020970571786165237,
0.22345547378063202,
0.0430276021361351,
-0.03536878898739815,
0.07568242400884628,
0.0601445809006691,
0.10251452028751373,
0.13624955713748932,
0.20131367444992065,
0.1551072746515274,
-0.016341255977749825,
0.10036369413137436,
0.017243627458810806,
-0.047285184264183044,
-0.14032454788684845,
0.028526095673441887,
-0.047828976064920425,
0.10183319449424744,
-0.02899356372654438,
0.22005537152290344,
0.06188665330410004,
-0.17282423377037048,
0.05122339352965355,
-0.05371418967843056,
-0.09130393713712692,
-0.11603093147277832,
-0.04030726104974747,
-0.08429896086454391,
-0.1378311961889267,
-0.0033585024066269398,
-0.09926429390907288,
0.023426856845617294,
0.1157456636428833,
0.005843997001647949,
-0.025429878383874893,
0.15354567766189575,
0.031890951097011566,
0.021449049934744835,
0.06292764842510223,
-0.001214775606058538,
-0.0220213383436203,
-0.09893862903118134,
-0.06180074065923691,
-0.02385915070772171,
-0.026696445420384407,
0.03156976029276848,
-0.05508493632078171,
-0.06240297853946686,
0.0417303703725338,
-0.02901696413755417,
-0.09995713829994202,
0.020217863842844963,
0.01931910403072834,
0.0724298432469368,
0.06451375037431717,
0.010652254335582256,
0.013076536357402802,
-0.011628768406808376,
0.22663116455078125,
-0.08528221398591995,
-0.07805610448122025,
-0.0757698267698288,
0.26915237307548523,
0.05062493681907654,
-0.008946285583078861,
0.022836413234472275,
-0.061135292053222656,
0.007753522135317326,
0.26575079560279846,
0.20582440495491028,
-0.09379559755325317,
-0.009064777754247189,
-0.0006323031848296523,
-0.0096636563539505,
-0.005485833156853914,
0.12910917401313782,
0.13038358092308044,
0.04272576421499252,
-0.10680833458900452,
-0.04256496950984001,
-0.04703086242079735,
-0.007220455911010504,
-0.05203815922141075,
0.07124624401330948,
0.03928510472178459,
-0.005564000923186541,
-0.035460811108350754,
0.054655756801366806,
-0.05958011746406555,
-0.09099182486534119,
0.07426897436380386,
-0.19809310138225555,
-0.15892259776592255,
-0.0168721005320549,
0.11410259455442429,
0.0013288267655298114,
0.06253921240568161,
-0.02080615982413292,
0.0064621577039361,
0.05524129420518875,
-0.02111298032104969,
-0.10500281304121017,
-0.08479908853769302,
0.10218837857246399,
-0.12281803041696548,
0.18999488651752472,
-0.03916127234697342,
0.05792104825377464,
0.12440019100904465,
0.0782407820224762,
-0.0648457258939743,
0.06484875828027725,
0.032107189297676086,
-0.08690907061100006,
0.04224373400211334,
0.07438702881336212,
-0.03404149040579796,
0.04000069200992584,
0.03360868990421295,
-0.09439118206501007,
0.03477233275771141,
-0.07494807243347168,
-0.053970832377672195,
-0.03770852088928223,
-0.05344172567129135,
-0.05951549485325813,
0.11913502961397171,
0.21791762113571167,
-0.017888620495796204,
0.01725778914988041,
-0.08188466727733612,
-0.004096721298992634,
0.05029039457440376,
0.019798099994659424,
-0.08719556033611298,
-0.21647894382476807,
0.009022431448101997,
0.06952320039272308,
-0.02269682288169861,
-0.250521183013916,
-0.09046579152345657,
0.003208242589607835,
-0.0698595717549324,
-0.09546135365962982,
0.07781384140253067,
0.08181166648864746,
0.050495393574237823,
-0.05283985286951065,
-0.09546337276697159,
-0.07520323246717453,
0.1585012674331665,
-0.14844080805778503,
-0.09068839251995087
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2711
- Precision: 0.3373
- Recall: 0.5670
- F1: 0.4230
- Accuracy: 0.8943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3783 | 0.1833 | 0.3975 | 0.2509 | 0.8413 |
| No log | 2.0 | 60 | 0.3021 | 0.3280 | 0.4820 | 0.3904 | 0.8876 |
| No log | 3.0 | 90 | 0.3196 | 0.3504 | 0.5036 | 0.4133 | 0.8918 |
| No log | 4.0 | 120 | 0.3645 | 0.3434 | 0.5306 | 0.4170 | 0.8759 |
| No log | 5.0 | 150 | 0.4027 | 0.3217 | 0.5486 | 0.4056 | 0.8797 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19", "results": []}]}
|
token-classification
|
ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_BERT\_token\_itr0\_0.0001\_all\_01\_03\_2022-15\_52\_19
================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2711
* Precision: 0.3373
* Recall: 0.5670
* F1: 0.4230
* Accuracy: 0.8943
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1059
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1103 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 2.0 | 30 | 0.0842 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 3.0 | 45 | 0.0767 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 4.0 | 60 | 0.0754 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 5.0 | 75 | 0.0735 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21", "results": []}]}
|
token-classification
|
ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_BERT\_token\_itr0\_0.0001\_editorials\_01\_03\_2022-15\_50\_21
=======================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1059
* Precision: 0.0637
* Recall: 0.0080
* F1: 0.0141
* Accuracy: 0.9707
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1801
- Precision: 0.6153
- Recall: 0.7301
- F1: 0.6678
- Accuracy: 0.9346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.2746 | 0.4586 | 0.5922 | 0.5169 | 0.9031 |
| No log | 2.0 | 22 | 0.2223 | 0.5233 | 0.6181 | 0.5668 | 0.9148 |
| No log | 3.0 | 33 | 0.2162 | 0.5335 | 0.6699 | 0.5940 | 0.9274 |
| No log | 4.0 | 44 | 0.2053 | 0.5989 | 0.7055 | 0.6478 | 0.9237 |
| No log | 5.0 | 55 | 0.2123 | 0.5671 | 0.7249 | 0.6364 | 0.9267 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47", "results": []}]}
|
token-classification
|
ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_BERT\_token\_itr0\_0.0001\_essays\_01\_03\_2022-15\_48\_47
===================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1801
* Precision: 0.6153
* Recall: 0.7301
* F1: 0.6678
* Accuracy: 0.9346
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- Precision: 0.0092
- Recall: 0.0403
- F1: 0.0150
- Accuracy: 0.7291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.5856 | 0.0012 | 0.0125 | 0.0022 | 0.6950 |
| No log | 2.0 | 20 | 0.5933 | 0.0 | 0.0 | 0.0 | 0.7282 |
| No log | 3.0 | 30 | 0.5729 | 0.0051 | 0.025 | 0.0085 | 0.7155 |
| No log | 4.0 | 40 | 0.6178 | 0.0029 | 0.0125 | 0.0047 | 0.7143 |
| No log | 5.0 | 50 | 0.6707 | 0.0110 | 0.0375 | 0.0170 | 0.7178 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14", "results": []}]}
|
token-classification
|
ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_BERT\_token\_itr0\_0.0001\_webDiscourse\_01\_03\_2022-15\_47\_14
=========================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6542
* Precision: 0.0092
* Recall: 0.0403
* F1: 0.0150
* Accuracy: 0.7291
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3343
- Precision: 0.1651
- Recall: 0.3039
- F1: 0.2140
- Accuracy: 0.8493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4801 | 0.0352 | 0.0591 | 0.0441 | 0.7521 |
| No log | 2.0 | 60 | 0.3795 | 0.0355 | 0.0795 | 0.0491 | 0.8020 |
| No log | 3.0 | 90 | 0.3359 | 0.0591 | 0.1294 | 0.0812 | 0.8334 |
| No log | 4.0 | 120 | 0.3205 | 0.0785 | 0.1534 | 0.1039 | 0.8486 |
| No log | 5.0 | 150 | 0.3144 | 0.0853 | 0.1571 | 0.1105 | 0.8516 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47", "results": []}]}
|
token-classification
|
ali2066/correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_distilBERT\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_43\_47
=====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3343
* Precision: 0.1651
* Recall: 0.3039
* F1: 0.2140
* Accuracy: 0.8493
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1206
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1222 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 2.0 | 30 | 0.1159 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 3.0 | 45 | 0.1082 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 4.0 | 60 | 0.1042 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 5.0 | 75 | 0.1029 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32", "results": []}]}
|
token-classification
|
ali2066/correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_distilBERT\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_42\_32
============================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1206
* Precision: 0.0637
* Recall: 0.0080
* F1: 0.0141
* Accuracy: 0.9707
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3097
- Precision: 0.2769
- Recall: 0.4391
- F1: 0.3396
- Accuracy: 0.8878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4573 | 0.0094 | 0.0027 | 0.0042 | 0.7702 |
| No log | 2.0 | 22 | 0.3660 | 0.1706 | 0.3253 | 0.2239 | 0.8516 |
| No log | 3.0 | 33 | 0.3096 | 0.2339 | 0.408 | 0.2974 | 0.8827 |
| No log | 4.0 | 44 | 0.2868 | 0.2963 | 0.4693 | 0.3633 | 0.8928 |
| No log | 5.0 | 55 | 0.2798 | 0.3141 | 0.48 | 0.3797 | 0.8960 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29", "results": []}]}
|
token-classification
|
ali2066/correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_distilBERT\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_41\_29
========================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3097
* Precision: 0.2769
* Recall: 0.4391
* F1: 0.3396
* Accuracy: 0.8878
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5794
- Precision: 0.0094
- Recall: 0.0147
- F1: 0.0115
- Accuracy: 0.7156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6319 | 0.08 | 0.0312 | 0.0449 | 0.6753 |
| No log | 2.0 | 20 | 0.6265 | 0.0364 | 0.0312 | 0.0336 | 0.6764 |
| No log | 3.0 | 30 | 0.6216 | 0.0351 | 0.0312 | 0.0331 | 0.6762 |
| No log | 4.0 | 40 | 0.6193 | 0.0274 | 0.0312 | 0.0292 | 0.6759 |
| No log | 5.0 | 50 | 0.6183 | 0.0222 | 0.0312 | 0.0260 | 0.6773 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24", "results": []}]}
|
token-classification
|
ali2066/correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
correct\_distilBERT\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_40\_24
==============================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5794
* Precision: 0.0094
* Recall: 0.0147
* F1: 0.0115
* Accuracy: 0.7156
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2876
- Precision: 0.2345
- Recall: 0.4281
- F1: 0.3030
- Accuracy: 0.8728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3907 | 0.0433 | 0.0824 | 0.0568 | 0.7626 |
| No log | 2.0 | 60 | 0.3046 | 0.2302 | 0.4095 | 0.2947 | 0.8598 |
| No log | 3.0 | 90 | 0.2945 | 0.2084 | 0.4095 | 0.2762 | 0.8668 |
| No log | 4.0 | 120 | 0.2687 | 0.2847 | 0.4607 | 0.3519 | 0.8761 |
| No log | 5.0 | 150 | 0.2643 | 0.2779 | 0.4444 | 0.3420 | 0.8788 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04", "results": []}]}
|
token-classification
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_36\_04
===========================================================================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2876
* Precision: 0.2345
* Recall: 0.4281
* F1: 0.3030
* Accuracy: 0.8728
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
49,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0952380895614624,
0.044036440551280975,
-0.0016082123620435596,
0.11698907613754272,
0.21350468695163727,
0.02943940833210945,
0.1025138795375824,
0.1014835312962532,
-0.12182898074388504,
0.025961419567465782,
0.12113579362630844,
0.1832786351442337,
-0.0030703383963555098,
0.09688547998666763,
-0.05556701496243477,
-0.2743716835975647,
-0.03052719309926033,
0.045981843024492264,
-0.10305297374725342,
0.12545245885849,
0.08387984335422516,
-0.1577286273241043,
0.07511057704687119,
-0.0016509053530171514,
-0.2676181495189667,
0.019590724259614944,
0.03423237428069115,
-0.06043952703475952,
0.14759710431098938,
0.00943830143660307,
0.17363232374191284,
-0.011987031437456608,
0.1051621213555336,
-0.14447440207004547,
0.012298219837248325,
0.06186310946941376,
0.022960467264056206,
0.09010162949562073,
0.06334146112203598,
-0.007549169939011335,
0.09506987780332565,
-0.09507019817829132,
0.06539499014616013,
0.003103486727923155,
-0.12513257563114166,
-0.2132052630186081,
-0.07136457413434982,
-0.002085052663460374,
0.053780630230903625,
0.09798532724380493,
-0.0042197792790830135,
0.17374707758426666,
-0.1088271513581276,
0.09750399738550186,
0.21120037138462067,
-0.2665243446826935,
-0.08335934579372406,
0.055233679711818695,
-0.00906183198094368,
0.07525855302810669,
-0.12323935329914093,
-0.02350618503987789,
0.05778595060110092,
0.05312470719218254,
0.12958413362503052,
-0.034174755215644836,
-0.12042219936847687,
0.025349890813231468,
-0.1521894931793213,
-0.0006019846769049764,
0.06528319418430328,
0.01627492345869541,
-0.02065153233706951,
-0.015569574199616909,
-0.06616263836622238,
-0.16424210369586945,
-0.04118039831519127,
-0.027683239430189133,
0.04010685533285141,
-0.05730584263801575,
-0.10778205841779709,
0.012057210318744183,
-0.10123518854379654,
-0.06198875606060028,
-0.07641874253749847,
0.1809101104736328,
0.04406607523560524,
0.017658140510320663,
-0.03639274835586548,
0.10814428329467773,
-0.003348919562995434,
-0.12874765694141388,
0.05691590532660484,
0.024434933438897133,
-0.03782016038894653,
-0.07123736292123795,
-0.06982749700546265,
-0.0997990146279335,
0.00012833482469432056,
0.08903595060110092,
-0.04379228875041008,
0.04876143857836723,
0.041273217648267746,
0.03605876490473747,
-0.08996519446372986,
0.2002016007900238,
-0.050116948783397675,
-0.017183683812618256,
0.004287381656467915,
0.04395374283194542,
-0.017564810812473297,
-0.0018934865947812796,
-0.10746562480926514,
0.003688776632770896,
0.11974334716796875,
0.0032049454748630524,
-0.07574886828660965,
0.06962595134973526,
-0.03547770529985428,
-0.021802717819809914,
-0.03207997605204582,
-0.09391369670629501,
0.04661700129508972,
-0.01810879074037075,
-0.09548810124397278,
0.004290449433028698,
0.007495227735489607,
0.012048051692545414,
-0.009441312402486801,
0.166090726852417,
-0.10330095887184143,
0.0498272143304348,
-0.1193264052271843,
-0.11999256908893585,
-0.0013982293894514441,
-0.0776621550321579,
0.02640019915997982,
-0.10089195519685745,
-0.12647922337055206,
-0.020957479253411293,
0.05697371065616608,
-0.035620737820863724,
-0.037681736052036285,
-0.040833212435245514,
-0.07425465434789658,
0.005951599683612585,
-0.010949499905109406,
0.17182503640651703,
-0.04630051925778389,
0.11560122668743134,
0.05046966299414635,
0.07271167635917664,
-0.04180130735039711,
0.04987984523177147,
-0.09455662220716476,
-0.001616872032172978,
-0.21063469350337982,
0.04008080065250397,
-0.056833136826753616,
0.08438174426555634,
-0.07221242040395737,
-0.11565542966127396,
0.01061136182397604,
-0.0053452011197805405,
0.09168983995914459,
0.07677346467971802,
-0.15574459731578827,
-0.08274779468774796,
0.15119478106498718,
-0.05555276572704315,
-0.07717754691839218,
0.11664170771837234,
-0.07357529550790787,
0.033337969332933426,
0.07508940994739532,
0.15109290182590485,
0.06376980990171432,
-0.07922615855932236,
0.023416668176651,
-0.030187727883458138,
0.03787150979042053,
-0.06860329955816269,
0.033845916390419006,
0.025766002014279366,
-0.007918855175375938,
0.0320846252143383,
-0.015116957016289234,
0.07470791041851044,
-0.11922331899404526,
-0.08577512204647064,
-0.04021341726183891,
-0.10978709161281586,
0.05595320463180542,
0.08884918689727783,
0.10502464324235916,
-0.09601657092571259,
-0.07053463160991669,
0.09864025563001633,
0.06200094521045685,
-0.04692395031452179,
0.015603672713041306,
-0.05271952599287033,
0.059061866253614426,
-0.0767902135848999,
-0.03351907804608345,
-0.20745894312858582,
-0.04168904945254326,
0.0019729824271053076,
0.03754783049225807,
0.035803817212581635,
0.036847181618213654,
0.08709568530321121,
0.06258723884820938,
-0.06264924257993698,
-0.003439870895817876,
-0.01522428821772337,
-0.007044075056910515,
-0.15164627134799957,
-0.19300268590450287,
-0.025256607681512833,
-0.0200581606477499,
0.08781859278678894,
-0.20405974984169006,
0.01960292086005211,
-0.043502431362867355,
0.09305994212627411,
0.017027119174599648,
-0.009177275002002716,
-0.05504470318555832,
0.10782260447740555,
-0.023087309673428535,
-0.04909471794962883,
0.0668131560087204,
-0.015085511840879917,
-0.06336434930562973,
-0.08089190721511841,
-0.10096660256385803,
0.18621042370796204,
0.13892404735088348,
-0.151669442653656,
-0.10937488079071045,
0.015644345432519913,
-0.06139355152845383,
-0.022212862968444824,
-0.057233456522226334,
0.0564904622733593,
0.18072649836540222,
-0.01574549451470375,
0.15169773995876312,
-0.052853431552648544,
-0.04706889018416405,
0.021385572850704193,
-0.03310905396938324,
0.04335913807153702,
0.10842389613389969,
0.13569805026054382,
-0.08457112312316895,
0.1361512988805771,
0.1218692883849144,
-0.13111263513565063,
0.13677334785461426,
-0.025905638933181763,
-0.07789324969053268,
-0.018446670845150948,
-0.030742309987545013,
0.007610428147017956,
0.10661071538925171,
-0.10808677226305008,
-0.01922493800520897,
0.0071347723715007305,
0.020305147394537926,
0.026112085208296776,
-0.23135057091712952,
-0.046915993094444275,
0.02424618974328041,
-0.003096528584137559,
0.018515875563025475,
-0.01951778493821621,
0.02580680325627327,
0.11866136640310287,
0.0020909635350108147,
-0.07759678363800049,
0.024093760177493095,
0.00893546175211668,
-0.06352781504392624,
0.2146356850862503,
-0.06943210959434509,
-0.11312001943588257,
-0.1019912138581276,
-0.07687869668006897,
-0.04238303750753403,
0.013024810701608658,
0.03158364072442055,
-0.12026584893465042,
-0.021418938413262367,
-0.02185477688908577,
0.03273407369852066,
0.0030455556698143482,
0.06268017739057541,
-0.005181455984711647,
0.002387002110481262,
0.07124806940555573,
-0.09937068074941635,
-0.0005596545524895191,
-0.07595739513635635,
-0.07265695929527283,
0.05849755182862282,
0.06279446929693222,
0.12046454101800919,
0.16986700892448425,
-0.04765129089355469,
0.005394987761974335,
-0.024400215595960617,
0.23848678171634674,
-0.0751553475856781,
-0.03985968604683876,
0.09683617949485779,
-0.018827078863978386,
0.04960450902581215,
0.10460381954908371,
0.08367177098989487,
-0.09397482126951218,
0.015742994844913483,
0.0470423549413681,
-0.04357099160552025,
-0.20160119235515594,
-0.038630712777376175,
-0.05170169100165367,
-0.04798796772956848,
0.09219147264957428,
0.02131497673690319,
0.04089008644223213,
0.07909292727708817,
0.06711464375257492,
0.09728001803159714,
-0.07520143687725067,
0.05096640810370445,
0.08856416493654251,
0.053435731679201126,
0.13284629583358765,
-0.04117075353860855,
-0.10521731525659561,
0.02107597514986992,
-0.024051981046795845,
0.23177176713943481,
-0.0038389968685805798,
0.07269735634326935,
0.03901175409555435,
0.19265300035476685,
0.010800961405038834,
0.08711627125740051,
0.00300702010281384,
-0.06744545698165894,
0.000320995255606249,
-0.02838362194597721,
-0.03612513840198517,
0.010060080327093601,
-0.026500064879655838,
0.054114680737257004,
-0.11174614727497101,
-0.011367600411176682,
0.05662032961845398,
0.23012308776378632,
0.02408546395599842,
-0.3223344087600708,
-0.07357577234506607,
-0.011025436222553253,
-0.03599712625145912,
-0.013542305678129196,
0.007855766452848911,
0.10567118972539902,
-0.09833948314189911,
0.011641263961791992,
-0.08281056582927704,
0.08809417486190796,
-0.04271498695015907,
0.036696553230285645,
0.06772663444280624,
0.12630119919776917,
-0.005529686342924833,
0.06417804211378098,
-0.305855393409729,
0.27393829822540283,
0.009537872858345509,
0.08100421726703644,
-0.07624920457601547,
-0.007353424560278654,
0.036383580416440964,
0.03732066601514816,
0.032587770372629166,
-0.020104434341192245,
-0.04177025705575943,
-0.22623340785503387,
-0.030331812798976898,
0.0285630002617836,
0.12068957835435867,
-0.0075541152618825436,
0.10377029329538345,
-0.024200307205319405,
0.00005155575854587369,
0.08048006147146225,
-0.04490114375948906,
-0.04457297548651695,
-0.0742047131061554,
-0.02755388617515564,
0.010738343931734562,
-0.07488889992237091,
-0.048193786293268204,
-0.12068187445402145,
-0.1354958713054657,
0.1486193686723709,
0.013996468856930733,
-0.016360098496079445,
-0.1275208294391632,
0.12574636936187744,
0.0811011865735054,
-0.08053231984376907,
0.04449211433529854,
0.011230092495679855,
0.05299266427755356,
0.03201989457011223,
-0.06810819357633591,
0.11526092886924744,
-0.05820934846997261,
-0.152246356010437,
-0.06424514949321747,
0.07927361130714417,
0.04208575561642647,
0.06544974446296692,
-0.02301499992609024,
0.0229955967515707,
-0.025375407189130783,
-0.0903472900390625,
0.03937704116106033,
-0.04006959870457649,
0.0644475445151329,
0.02948816865682602,
-0.051256582140922546,
-0.005753687117248774,
-0.05698229372501373,
-0.011369648389518261,
0.18660961091518402,
0.2201036661863327,
-0.09734193980693817,
-0.01712528057396412,
0.026125185191631317,
-0.05946418642997742,
-0.19808503985404968,
0.09593727439641953,
0.08573706448078156,
0.007431112229824066,
0.04530135169625282,
-0.16281530261039734,
0.15490049123764038,
0.1000962182879448,
-0.0013520345091819763,
0.10888125747442245,
-0.30510765314102173,
-0.1282355934381485,
0.10589848458766937,
0.1721881926059723,
0.13675452768802643,
-0.13790705800056458,
-0.0070046489126980305,
-0.008709002286195755,
-0.09763187915086746,
0.10359155386686325,
-0.06426163762807846,
0.12145929038524628,
-0.019056083634495735,
0.10903739184141159,
0.013593306764960289,
-0.07166292518377304,
0.09361252933740616,
0.007082231342792511,
0.11645247042179108,
-0.06414512544870377,
-0.06102367490530014,
0.04334691911935806,
-0.02508259378373623,
-0.012173532508313656,
-0.02399563230574131,
0.018605703487992287,
-0.0673445612192154,
-0.020576614886522293,
-0.09741745889186859,
0.04260580241680145,
-0.02326616272330284,
-0.07246298342943192,
-0.03844840079545975,
0.03469730541110039,
0.034943729639053345,
-0.025639070197939873,
0.11715426295995712,
0.020161490887403488,
0.17447295784950256,
0.08593776077032089,
0.06346122175455093,
-0.050561998039484024,
-0.04841836541891098,
0.0034034322015941143,
-0.010078824125230312,
0.06329295784235,
-0.13016362488269806,
0.020914848893880844,
0.1553254872560501,
0.022595396265387535,
0.1142435371875763,
0.0921553373336792,
-0.018760520964860916,
0.016071034595370293,
0.07624492049217224,
-0.16313201189041138,
-0.0652882531285286,
0.004153259098529816,
-0.0857715979218483,
-0.09250564128160477,
0.05332089588046074,
0.0799720510840416,
-0.07481376081705093,
-0.011270832270383835,
-0.008530267514288425,
-0.02374846674501896,
-0.06649409234523773,
0.22630544006824493,
0.08077908307313919,
0.04372468218207359,
-0.10051923245191574,
0.05768468976020813,
0.06488308310508728,
-0.08738836646080017,
-0.005134388338774443,
0.08041257411241531,
-0.07681380212306976,
-0.020639704540371895,
0.11760535091161728,
0.203256756067276,
-0.07639540731906891,
-0.0118074556812644,
-0.14928030967712402,
-0.10582452267408371,
0.0648043230175972,
0.18278199434280396,
0.11151919513940811,
-0.0056063588708639145,
-0.05881034582853317,
0.035694669932127,
-0.15800076723098755,
0.07858650386333466,
0.049578793346881866,
0.08591622859239578,
-0.15005116164684296,
0.20051398873329163,
-0.00004556030035018921,
0.0442449189722538,
-0.0340452641248703,
0.032208554446697235,
-0.11947087198495865,
0.02182786725461483,
-0.1101863905787468,
-0.0576208233833313,
-0.007169285323470831,
-0.006640194449573755,
-0.0015152629930526018,
-0.07371584326028824,
-0.059259410947561264,
0.005731922574341297,
-0.1292037069797516,
-0.015692725777626038,
0.04629449546337128,
0.01673985831439495,
-0.10646671801805496,
-0.041379284113645554,
0.020045820623636246,
-0.046777401119470596,
0.04783070459961891,
0.049333520233631134,
0.022893687710165977,
0.07237260788679123,
-0.1446196287870407,
-0.013995609246194363,
0.07226084172725677,
-0.00627199187874794,
0.09819990396499634,
-0.05520399659872055,
-0.0003193517040926963,
-0.011192445643246174,
0.11059475690126419,
0.02390620857477188,
0.07886900007724762,
-0.1395350992679596,
0.009412514045834541,
-0.033310696482658386,
-0.09444313496351242,
-0.06931016594171524,
0.02054710127413273,
0.0772700086236,
0.012624329887330532,
0.18304604291915894,
-0.08549670875072479,
0.05452527478337288,
-0.21084682643413544,
-0.012454807758331299,
-0.02010815404355526,
-0.11260063946247101,
-0.09965618699789047,
-0.05579297989606857,
0.07505887001752853,
-0.052359987050294876,
0.11857812106609344,
0.050597503781318665,
0.06416036933660507,
0.031432848423719406,
-0.02391139417886734,
0.004131124820560217,
0.03485950827598572,
0.19422318041324615,
0.04474707692861557,
-0.04302285239100456,
0.05776410922408104,
0.08239096403121948,
0.1057816743850708,
0.11372319608926773,
0.21143266558647156,
0.14386913180351257,
-0.02503117360174656,
0.08243376016616821,
0.028620216995477676,
-0.05494459718465805,
-0.16101951897144318,
0.024334531277418137,
-0.07625152915716171,
0.08133033663034439,
-0.032996710389852524,
0.19418784976005554,
0.06248319521546364,
-0.1546187847852707,
0.046457160264253616,
-0.06446539610624313,
-0.10111140459775925,
-0.09942598640918732,
-0.017352033406496048,
-0.08178842067718506,
-0.13899432122707367,
0.01581418141722679,
-0.10090053081512451,
0.012794038280844688,
0.12450805306434631,
0.014235005713999271,
-0.024680081754922867,
0.1996651142835617,
0.04029490426182747,
0.04260535538196564,
0.056289855390787125,
0.012903129681944847,
-0.01808467134833336,
-0.09216059744358063,
-0.059201039373874664,
-0.047952424734830856,
-0.015188978053629398,
0.03316569700837135,
-0.07716135680675507,
-0.09488082677125931,
0.03645538538694382,
-0.009820656850934029,
-0.10201095789670944,
0.02345420978963375,
0.02394774928689003,
0.06862156838178635,
0.02556866779923439,
-0.007034864742308855,
0.017973750829696655,
-0.03871352970600128,
0.22256594896316528,
-0.08884022384881973,
-0.0757046565413475,
-0.10304200649261475,
0.2782719135284424,
0.035255976021289825,
0.004773607477545738,
0.018357792869210243,
-0.06902781128883362,
0.010662268847227097,
0.24940909445285797,
0.1952691525220871,
-0.10988516360521317,
-0.005476735532283783,
0.0039602466858923435,
-0.017206134274601936,
-0.03663536161184311,
0.1355164498090744,
0.1272675096988678,
0.05333362892270088,
-0.11245917528867722,
-0.04331709444522858,
-0.05917974188923836,
-0.013946933671832085,
-0.036999817937612534,
0.049192529171705246,
0.06006799265742302,
0.02137143537402153,
-0.06052057817578316,
0.05811971798539162,
-0.07162695378065109,
-0.1113964319229126,
0.08550800383090973,
-0.21034763753414154,
-0.1716027557849884,
-0.012736867181956768,
0.10872951149940491,
-0.012623433023691177,
0.07159504294395447,
-0.03009413741528988,
-0.0026729621458798647,
0.03733649477362633,
-0.024703802540898323,
-0.07117537409067154,
-0.09776511043310165,
0.09812222421169281,
-0.10478959232568741,
0.17811942100524902,
-0.04954991489648819,
0.06620125472545624,
0.12617163360118866,
0.06129801645874977,
-0.06210533529520035,
0.04843083769083023,
0.045162759721279144,
-0.11185432970523834,
0.022697674110531807,
0.12876395881175995,
-0.03000810369849205,
0.05747333541512489,
0.03167731687426567,
-0.14002926647663116,
0.033696822822093964,
-0.10581860691308975,
-0.03089076094329357,
-0.04381171613931656,
-0.04869960620999336,
-0.05309348553419113,
0.12499596923589706,
0.23458817601203918,
-0.006743243895471096,
0.032576922327280045,
-0.08791431784629822,
0.00844732765108347,
0.0540543757379055,
0.053739435970783234,
-0.1062634140253067,
-0.2568429112434387,
0.009084660559892654,
0.07708041369915009,
-0.04020215943455696,
-0.2182934731245041,
-0.09181743115186691,
0.009176265448331833,
-0.07882224023342133,
-0.08911658078432083,
0.08827919512987137,
0.07726947963237762,
0.062497880309820175,
-0.050949808210134506,
-0.10240047425031662,
-0.08314218372106552,
0.15404361486434937,
-0.1532345861196518,
-0.08300840854644775
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1138
- Precision: 0.5788
- Recall: 0.4712
- F1: 0.5195
- Accuracy: 0.9688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1316 | 0.04 | 0.0021 | 0.0040 | 0.9624 |
| No log | 2.0 | 30 | 0.1016 | 0.6466 | 0.4688 | 0.5435 | 0.9767 |
| No log | 3.0 | 45 | 0.0899 | 0.5873 | 0.4625 | 0.5175 | 0.9757 |
| No log | 4.0 | 60 | 0.0849 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
| No log | 5.0 | 75 | 0.0835 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51", "results": []}]}
|
token-classification
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_33\_51
==================================================================================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1138
* Precision: 0.5788
* Recall: 0.4712
* F1: 0.5195
* Accuracy: 0.9688
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
49,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0952380895614624,
0.044036440551280975,
-0.0016082123620435596,
0.11698907613754272,
0.21350468695163727,
0.02943940833210945,
0.1025138795375824,
0.1014835312962532,
-0.12182898074388504,
0.025961419567465782,
0.12113579362630844,
0.1832786351442337,
-0.0030703383963555098,
0.09688547998666763,
-0.05556701496243477,
-0.2743716835975647,
-0.03052719309926033,
0.045981843024492264,
-0.10305297374725342,
0.12545245885849,
0.08387984335422516,
-0.1577286273241043,
0.07511057704687119,
-0.0016509053530171514,
-0.2676181495189667,
0.019590724259614944,
0.03423237428069115,
-0.06043952703475952,
0.14759710431098938,
0.00943830143660307,
0.17363232374191284,
-0.011987031437456608,
0.1051621213555336,
-0.14447440207004547,
0.012298219837248325,
0.06186310946941376,
0.022960467264056206,
0.09010162949562073,
0.06334146112203598,
-0.007549169939011335,
0.09506987780332565,
-0.09507019817829132,
0.06539499014616013,
0.003103486727923155,
-0.12513257563114166,
-0.2132052630186081,
-0.07136457413434982,
-0.002085052663460374,
0.053780630230903625,
0.09798532724380493,
-0.0042197792790830135,
0.17374707758426666,
-0.1088271513581276,
0.09750399738550186,
0.21120037138462067,
-0.2665243446826935,
-0.08335934579372406,
0.055233679711818695,
-0.00906183198094368,
0.07525855302810669,
-0.12323935329914093,
-0.02350618503987789,
0.05778595060110092,
0.05312470719218254,
0.12958413362503052,
-0.034174755215644836,
-0.12042219936847687,
0.025349890813231468,
-0.1521894931793213,
-0.0006019846769049764,
0.06528319418430328,
0.01627492345869541,
-0.02065153233706951,
-0.015569574199616909,
-0.06616263836622238,
-0.16424210369586945,
-0.04118039831519127,
-0.027683239430189133,
0.04010685533285141,
-0.05730584263801575,
-0.10778205841779709,
0.012057210318744183,
-0.10123518854379654,
-0.06198875606060028,
-0.07641874253749847,
0.1809101104736328,
0.04406607523560524,
0.017658140510320663,
-0.03639274835586548,
0.10814428329467773,
-0.003348919562995434,
-0.12874765694141388,
0.05691590532660484,
0.024434933438897133,
-0.03782016038894653,
-0.07123736292123795,
-0.06982749700546265,
-0.0997990146279335,
0.00012833482469432056,
0.08903595060110092,
-0.04379228875041008,
0.04876143857836723,
0.041273217648267746,
0.03605876490473747,
-0.08996519446372986,
0.2002016007900238,
-0.050116948783397675,
-0.017183683812618256,
0.004287381656467915,
0.04395374283194542,
-0.017564810812473297,
-0.0018934865947812796,
-0.10746562480926514,
0.003688776632770896,
0.11974334716796875,
0.0032049454748630524,
-0.07574886828660965,
0.06962595134973526,
-0.03547770529985428,
-0.021802717819809914,
-0.03207997605204582,
-0.09391369670629501,
0.04661700129508972,
-0.01810879074037075,
-0.09548810124397278,
0.004290449433028698,
0.007495227735489607,
0.012048051692545414,
-0.009441312402486801,
0.166090726852417,
-0.10330095887184143,
0.0498272143304348,
-0.1193264052271843,
-0.11999256908893585,
-0.0013982293894514441,
-0.0776621550321579,
0.02640019915997982,
-0.10089195519685745,
-0.12647922337055206,
-0.020957479253411293,
0.05697371065616608,
-0.035620737820863724,
-0.037681736052036285,
-0.040833212435245514,
-0.07425465434789658,
0.005951599683612585,
-0.010949499905109406,
0.17182503640651703,
-0.04630051925778389,
0.11560122668743134,
0.05046966299414635,
0.07271167635917664,
-0.04180130735039711,
0.04987984523177147,
-0.09455662220716476,
-0.001616872032172978,
-0.21063469350337982,
0.04008080065250397,
-0.056833136826753616,
0.08438174426555634,
-0.07221242040395737,
-0.11565542966127396,
0.01061136182397604,
-0.0053452011197805405,
0.09168983995914459,
0.07677346467971802,
-0.15574459731578827,
-0.08274779468774796,
0.15119478106498718,
-0.05555276572704315,
-0.07717754691839218,
0.11664170771837234,
-0.07357529550790787,
0.033337969332933426,
0.07508940994739532,
0.15109290182590485,
0.06376980990171432,
-0.07922615855932236,
0.023416668176651,
-0.030187727883458138,
0.03787150979042053,
-0.06860329955816269,
0.033845916390419006,
0.025766002014279366,
-0.007918855175375938,
0.0320846252143383,
-0.015116957016289234,
0.07470791041851044,
-0.11922331899404526,
-0.08577512204647064,
-0.04021341726183891,
-0.10978709161281586,
0.05595320463180542,
0.08884918689727783,
0.10502464324235916,
-0.09601657092571259,
-0.07053463160991669,
0.09864025563001633,
0.06200094521045685,
-0.04692395031452179,
0.015603672713041306,
-0.05271952599287033,
0.059061866253614426,
-0.0767902135848999,
-0.03351907804608345,
-0.20745894312858582,
-0.04168904945254326,
0.0019729824271053076,
0.03754783049225807,
0.035803817212581635,
0.036847181618213654,
0.08709568530321121,
0.06258723884820938,
-0.06264924257993698,
-0.003439870895817876,
-0.01522428821772337,
-0.007044075056910515,
-0.15164627134799957,
-0.19300268590450287,
-0.025256607681512833,
-0.0200581606477499,
0.08781859278678894,
-0.20405974984169006,
0.01960292086005211,
-0.043502431362867355,
0.09305994212627411,
0.017027119174599648,
-0.009177275002002716,
-0.05504470318555832,
0.10782260447740555,
-0.023087309673428535,
-0.04909471794962883,
0.0668131560087204,
-0.015085511840879917,
-0.06336434930562973,
-0.08089190721511841,
-0.10096660256385803,
0.18621042370796204,
0.13892404735088348,
-0.151669442653656,
-0.10937488079071045,
0.015644345432519913,
-0.06139355152845383,
-0.022212862968444824,
-0.057233456522226334,
0.0564904622733593,
0.18072649836540222,
-0.01574549451470375,
0.15169773995876312,
-0.052853431552648544,
-0.04706889018416405,
0.021385572850704193,
-0.03310905396938324,
0.04335913807153702,
0.10842389613389969,
0.13569805026054382,
-0.08457112312316895,
0.1361512988805771,
0.1218692883849144,
-0.13111263513565063,
0.13677334785461426,
-0.025905638933181763,
-0.07789324969053268,
-0.018446670845150948,
-0.030742309987545013,
0.007610428147017956,
0.10661071538925171,
-0.10808677226305008,
-0.01922493800520897,
0.0071347723715007305,
0.020305147394537926,
0.026112085208296776,
-0.23135057091712952,
-0.046915993094444275,
0.02424618974328041,
-0.003096528584137559,
0.018515875563025475,
-0.01951778493821621,
0.02580680325627327,
0.11866136640310287,
0.0020909635350108147,
-0.07759678363800049,
0.024093760177493095,
0.00893546175211668,
-0.06352781504392624,
0.2146356850862503,
-0.06943210959434509,
-0.11312001943588257,
-0.1019912138581276,
-0.07687869668006897,
-0.04238303750753403,
0.013024810701608658,
0.03158364072442055,
-0.12026584893465042,
-0.021418938413262367,
-0.02185477688908577,
0.03273407369852066,
0.0030455556698143482,
0.06268017739057541,
-0.005181455984711647,
0.002387002110481262,
0.07124806940555573,
-0.09937068074941635,
-0.0005596545524895191,
-0.07595739513635635,
-0.07265695929527283,
0.05849755182862282,
0.06279446929693222,
0.12046454101800919,
0.16986700892448425,
-0.04765129089355469,
0.005394987761974335,
-0.024400215595960617,
0.23848678171634674,
-0.0751553475856781,
-0.03985968604683876,
0.09683617949485779,
-0.018827078863978386,
0.04960450902581215,
0.10460381954908371,
0.08367177098989487,
-0.09397482126951218,
0.015742994844913483,
0.0470423549413681,
-0.04357099160552025,
-0.20160119235515594,
-0.038630712777376175,
-0.05170169100165367,
-0.04798796772956848,
0.09219147264957428,
0.02131497673690319,
0.04089008644223213,
0.07909292727708817,
0.06711464375257492,
0.09728001803159714,
-0.07520143687725067,
0.05096640810370445,
0.08856416493654251,
0.053435731679201126,
0.13284629583358765,
-0.04117075353860855,
-0.10521731525659561,
0.02107597514986992,
-0.024051981046795845,
0.23177176713943481,
-0.0038389968685805798,
0.07269735634326935,
0.03901175409555435,
0.19265300035476685,
0.010800961405038834,
0.08711627125740051,
0.00300702010281384,
-0.06744545698165894,
0.000320995255606249,
-0.02838362194597721,
-0.03612513840198517,
0.010060080327093601,
-0.026500064879655838,
0.054114680737257004,
-0.11174614727497101,
-0.011367600411176682,
0.05662032961845398,
0.23012308776378632,
0.02408546395599842,
-0.3223344087600708,
-0.07357577234506607,
-0.011025436222553253,
-0.03599712625145912,
-0.013542305678129196,
0.007855766452848911,
0.10567118972539902,
-0.09833948314189911,
0.011641263961791992,
-0.08281056582927704,
0.08809417486190796,
-0.04271498695015907,
0.036696553230285645,
0.06772663444280624,
0.12630119919776917,
-0.005529686342924833,
0.06417804211378098,
-0.305855393409729,
0.27393829822540283,
0.009537872858345509,
0.08100421726703644,
-0.07624920457601547,
-0.007353424560278654,
0.036383580416440964,
0.03732066601514816,
0.032587770372629166,
-0.020104434341192245,
-0.04177025705575943,
-0.22623340785503387,
-0.030331812798976898,
0.0285630002617836,
0.12068957835435867,
-0.0075541152618825436,
0.10377029329538345,
-0.024200307205319405,
0.00005155575854587369,
0.08048006147146225,
-0.04490114375948906,
-0.04457297548651695,
-0.0742047131061554,
-0.02755388617515564,
0.010738343931734562,
-0.07488889992237091,
-0.048193786293268204,
-0.12068187445402145,
-0.1354958713054657,
0.1486193686723709,
0.013996468856930733,
-0.016360098496079445,
-0.1275208294391632,
0.12574636936187744,
0.0811011865735054,
-0.08053231984376907,
0.04449211433529854,
0.011230092495679855,
0.05299266427755356,
0.03201989457011223,
-0.06810819357633591,
0.11526092886924744,
-0.05820934846997261,
-0.152246356010437,
-0.06424514949321747,
0.07927361130714417,
0.04208575561642647,
0.06544974446296692,
-0.02301499992609024,
0.0229955967515707,
-0.025375407189130783,
-0.0903472900390625,
0.03937704116106033,
-0.04006959870457649,
0.0644475445151329,
0.02948816865682602,
-0.051256582140922546,
-0.005753687117248774,
-0.05698229372501373,
-0.011369648389518261,
0.18660961091518402,
0.2201036661863327,
-0.09734193980693817,
-0.01712528057396412,
0.026125185191631317,
-0.05946418642997742,
-0.19808503985404968,
0.09593727439641953,
0.08573706448078156,
0.007431112229824066,
0.04530135169625282,
-0.16281530261039734,
0.15490049123764038,
0.1000962182879448,
-0.0013520345091819763,
0.10888125747442245,
-0.30510765314102173,
-0.1282355934381485,
0.10589848458766937,
0.1721881926059723,
0.13675452768802643,
-0.13790705800056458,
-0.0070046489126980305,
-0.008709002286195755,
-0.09763187915086746,
0.10359155386686325,
-0.06426163762807846,
0.12145929038524628,
-0.019056083634495735,
0.10903739184141159,
0.013593306764960289,
-0.07166292518377304,
0.09361252933740616,
0.007082231342792511,
0.11645247042179108,
-0.06414512544870377,
-0.06102367490530014,
0.04334691911935806,
-0.02508259378373623,
-0.012173532508313656,
-0.02399563230574131,
0.018605703487992287,
-0.0673445612192154,
-0.020576614886522293,
-0.09741745889186859,
0.04260580241680145,
-0.02326616272330284,
-0.07246298342943192,
-0.03844840079545975,
0.03469730541110039,
0.034943729639053345,
-0.025639070197939873,
0.11715426295995712,
0.020161490887403488,
0.17447295784950256,
0.08593776077032089,
0.06346122175455093,
-0.050561998039484024,
-0.04841836541891098,
0.0034034322015941143,
-0.010078824125230312,
0.06329295784235,
-0.13016362488269806,
0.020914848893880844,
0.1553254872560501,
0.022595396265387535,
0.1142435371875763,
0.0921553373336792,
-0.018760520964860916,
0.016071034595370293,
0.07624492049217224,
-0.16313201189041138,
-0.0652882531285286,
0.004153259098529816,
-0.0857715979218483,
-0.09250564128160477,
0.05332089588046074,
0.0799720510840416,
-0.07481376081705093,
-0.011270832270383835,
-0.008530267514288425,
-0.02374846674501896,
-0.06649409234523773,
0.22630544006824493,
0.08077908307313919,
0.04372468218207359,
-0.10051923245191574,
0.05768468976020813,
0.06488308310508728,
-0.08738836646080017,
-0.005134388338774443,
0.08041257411241531,
-0.07681380212306976,
-0.020639704540371895,
0.11760535091161728,
0.203256756067276,
-0.07639540731906891,
-0.0118074556812644,
-0.14928030967712402,
-0.10582452267408371,
0.0648043230175972,
0.18278199434280396,
0.11151919513940811,
-0.0056063588708639145,
-0.05881034582853317,
0.035694669932127,
-0.15800076723098755,
0.07858650386333466,
0.049578793346881866,
0.08591622859239578,
-0.15005116164684296,
0.20051398873329163,
-0.00004556030035018921,
0.0442449189722538,
-0.0340452641248703,
0.032208554446697235,
-0.11947087198495865,
0.02182786725461483,
-0.1101863905787468,
-0.0576208233833313,
-0.007169285323470831,
-0.006640194449573755,
-0.0015152629930526018,
-0.07371584326028824,
-0.059259410947561264,
0.005731922574341297,
-0.1292037069797516,
-0.015692725777626038,
0.04629449546337128,
0.01673985831439495,
-0.10646671801805496,
-0.041379284113645554,
0.020045820623636246,
-0.046777401119470596,
0.04783070459961891,
0.049333520233631134,
0.022893687710165977,
0.07237260788679123,
-0.1446196287870407,
-0.013995609246194363,
0.07226084172725677,
-0.00627199187874794,
0.09819990396499634,
-0.05520399659872055,
-0.0003193517040926963,
-0.011192445643246174,
0.11059475690126419,
0.02390620857477188,
0.07886900007724762,
-0.1395350992679596,
0.009412514045834541,
-0.033310696482658386,
-0.09444313496351242,
-0.06931016594171524,
0.02054710127413273,
0.0772700086236,
0.012624329887330532,
0.18304604291915894,
-0.08549670875072479,
0.05452527478337288,
-0.21084682643413544,
-0.012454807758331299,
-0.02010815404355526,
-0.11260063946247101,
-0.09965618699789047,
-0.05579297989606857,
0.07505887001752853,
-0.052359987050294876,
0.11857812106609344,
0.050597503781318665,
0.06416036933660507,
0.031432848423719406,
-0.02391139417886734,
0.004131124820560217,
0.03485950827598572,
0.19422318041324615,
0.04474707692861557,
-0.04302285239100456,
0.05776410922408104,
0.08239096403121948,
0.1057816743850708,
0.11372319608926773,
0.21143266558647156,
0.14386913180351257,
-0.02503117360174656,
0.08243376016616821,
0.028620216995477676,
-0.05494459718465805,
-0.16101951897144318,
0.024334531277418137,
-0.07625152915716171,
0.08133033663034439,
-0.032996710389852524,
0.19418784976005554,
0.06248319521546364,
-0.1546187847852707,
0.046457160264253616,
-0.06446539610624313,
-0.10111140459775925,
-0.09942598640918732,
-0.017352033406496048,
-0.08178842067718506,
-0.13899432122707367,
0.01581418141722679,
-0.10090053081512451,
0.012794038280844688,
0.12450805306434631,
0.014235005713999271,
-0.024680081754922867,
0.1996651142835617,
0.04029490426182747,
0.04260535538196564,
0.056289855390787125,
0.012903129681944847,
-0.01808467134833336,
-0.09216059744358063,
-0.059201039373874664,
-0.047952424734830856,
-0.015188978053629398,
0.03316569700837135,
-0.07716135680675507,
-0.09488082677125931,
0.03645538538694382,
-0.009820656850934029,
-0.10201095789670944,
0.02345420978963375,
0.02394774928689003,
0.06862156838178635,
0.02556866779923439,
-0.007034864742308855,
0.017973750829696655,
-0.03871352970600128,
0.22256594896316528,
-0.08884022384881973,
-0.0757046565413475,
-0.10304200649261475,
0.2782719135284424,
0.035255976021289825,
0.004773607477545738,
0.018357792869210243,
-0.06902781128883362,
0.010662268847227097,
0.24940909445285797,
0.1952691525220871,
-0.10988516360521317,
-0.005476735532283783,
0.0039602466858923435,
-0.017206134274601936,
-0.03663536161184311,
0.1355164498090744,
0.1272675096988678,
0.05333362892270088,
-0.11245917528867722,
-0.04331709444522858,
-0.05917974188923836,
-0.013946933671832085,
-0.036999817937612534,
0.049192529171705246,
0.06006799265742302,
0.02137143537402153,
-0.06052057817578316,
0.05811971798539162,
-0.07162695378065109,
-0.1113964319229126,
0.08550800383090973,
-0.21034763753414154,
-0.1716027557849884,
-0.012736867181956768,
0.10872951149940491,
-0.012623433023691177,
0.07159504294395447,
-0.03009413741528988,
-0.0026729621458798647,
0.03733649477362633,
-0.024703802540898323,
-0.07117537409067154,
-0.09776511043310165,
0.09812222421169281,
-0.10478959232568741,
0.17811942100524902,
-0.04954991489648819,
0.06620125472545624,
0.12617163360118866,
0.06129801645874977,
-0.06210533529520035,
0.04843083769083023,
0.045162759721279144,
-0.11185432970523834,
0.022697674110531807,
0.12876395881175995,
-0.03000810369849205,
0.05747333541512489,
0.03167731687426567,
-0.14002926647663116,
0.033696822822093964,
-0.10581860691308975,
-0.03089076094329357,
-0.04381171613931656,
-0.04869960620999336,
-0.05309348553419113,
0.12499596923589706,
0.23458817601203918,
-0.006743243895471096,
0.032576922327280045,
-0.08791431784629822,
0.00844732765108347,
0.0540543757379055,
0.053739435970783234,
-0.1062634140253067,
-0.2568429112434387,
0.009084660559892654,
0.07708041369915009,
-0.04020215943455696,
-0.2182934731245041,
-0.09181743115186691,
0.009176265448331833,
-0.07882224023342133,
-0.08911658078432083,
0.08827919512987137,
0.07726947963237762,
0.062497880309820175,
-0.050949808210134506,
-0.10240047425031662,
-0.08314218372106552,
0.15404361486434937,
-0.1532345861196518,
-0.08300840854644775
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2663
- Precision: 0.3644
- Recall: 0.4985
- F1: 0.4210
- Accuracy: 0.8997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.5174 | 0.0120 | 0.0061 | 0.0081 | 0.6997 |
| No log | 2.0 | 22 | 0.4029 | 0.1145 | 0.3098 | 0.1672 | 0.8265 |
| No log | 3.0 | 33 | 0.3604 | 0.2539 | 0.4448 | 0.3233 | 0.8632 |
| No log | 4.0 | 44 | 0.3449 | 0.2992 | 0.4755 | 0.3673 | 0.8704 |
| No log | 5.0 | 55 | 0.3403 | 0.3340 | 0.4816 | 0.3945 | 0.8760 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16", "results": []}]}
|
token-classification
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_32\_16
==============================================================================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2663
* Precision: 0.3644
* Recall: 0.4985
* F1: 0.4210
* Accuracy: 0.8997
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
49,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0952380895614624,
0.044036440551280975,
-0.0016082123620435596,
0.11698907613754272,
0.21350468695163727,
0.02943940833210945,
0.1025138795375824,
0.1014835312962532,
-0.12182898074388504,
0.025961419567465782,
0.12113579362630844,
0.1832786351442337,
-0.0030703383963555098,
0.09688547998666763,
-0.05556701496243477,
-0.2743716835975647,
-0.03052719309926033,
0.045981843024492264,
-0.10305297374725342,
0.12545245885849,
0.08387984335422516,
-0.1577286273241043,
0.07511057704687119,
-0.0016509053530171514,
-0.2676181495189667,
0.019590724259614944,
0.03423237428069115,
-0.06043952703475952,
0.14759710431098938,
0.00943830143660307,
0.17363232374191284,
-0.011987031437456608,
0.1051621213555336,
-0.14447440207004547,
0.012298219837248325,
0.06186310946941376,
0.022960467264056206,
0.09010162949562073,
0.06334146112203598,
-0.007549169939011335,
0.09506987780332565,
-0.09507019817829132,
0.06539499014616013,
0.003103486727923155,
-0.12513257563114166,
-0.2132052630186081,
-0.07136457413434982,
-0.002085052663460374,
0.053780630230903625,
0.09798532724380493,
-0.0042197792790830135,
0.17374707758426666,
-0.1088271513581276,
0.09750399738550186,
0.21120037138462067,
-0.2665243446826935,
-0.08335934579372406,
0.055233679711818695,
-0.00906183198094368,
0.07525855302810669,
-0.12323935329914093,
-0.02350618503987789,
0.05778595060110092,
0.05312470719218254,
0.12958413362503052,
-0.034174755215644836,
-0.12042219936847687,
0.025349890813231468,
-0.1521894931793213,
-0.0006019846769049764,
0.06528319418430328,
0.01627492345869541,
-0.02065153233706951,
-0.015569574199616909,
-0.06616263836622238,
-0.16424210369586945,
-0.04118039831519127,
-0.027683239430189133,
0.04010685533285141,
-0.05730584263801575,
-0.10778205841779709,
0.012057210318744183,
-0.10123518854379654,
-0.06198875606060028,
-0.07641874253749847,
0.1809101104736328,
0.04406607523560524,
0.017658140510320663,
-0.03639274835586548,
0.10814428329467773,
-0.003348919562995434,
-0.12874765694141388,
0.05691590532660484,
0.024434933438897133,
-0.03782016038894653,
-0.07123736292123795,
-0.06982749700546265,
-0.0997990146279335,
0.00012833482469432056,
0.08903595060110092,
-0.04379228875041008,
0.04876143857836723,
0.041273217648267746,
0.03605876490473747,
-0.08996519446372986,
0.2002016007900238,
-0.050116948783397675,
-0.017183683812618256,
0.004287381656467915,
0.04395374283194542,
-0.017564810812473297,
-0.0018934865947812796,
-0.10746562480926514,
0.003688776632770896,
0.11974334716796875,
0.0032049454748630524,
-0.07574886828660965,
0.06962595134973526,
-0.03547770529985428,
-0.021802717819809914,
-0.03207997605204582,
-0.09391369670629501,
0.04661700129508972,
-0.01810879074037075,
-0.09548810124397278,
0.004290449433028698,
0.007495227735489607,
0.012048051692545414,
-0.009441312402486801,
0.166090726852417,
-0.10330095887184143,
0.0498272143304348,
-0.1193264052271843,
-0.11999256908893585,
-0.0013982293894514441,
-0.0776621550321579,
0.02640019915997982,
-0.10089195519685745,
-0.12647922337055206,
-0.020957479253411293,
0.05697371065616608,
-0.035620737820863724,
-0.037681736052036285,
-0.040833212435245514,
-0.07425465434789658,
0.005951599683612585,
-0.010949499905109406,
0.17182503640651703,
-0.04630051925778389,
0.11560122668743134,
0.05046966299414635,
0.07271167635917664,
-0.04180130735039711,
0.04987984523177147,
-0.09455662220716476,
-0.001616872032172978,
-0.21063469350337982,
0.04008080065250397,
-0.056833136826753616,
0.08438174426555634,
-0.07221242040395737,
-0.11565542966127396,
0.01061136182397604,
-0.0053452011197805405,
0.09168983995914459,
0.07677346467971802,
-0.15574459731578827,
-0.08274779468774796,
0.15119478106498718,
-0.05555276572704315,
-0.07717754691839218,
0.11664170771837234,
-0.07357529550790787,
0.033337969332933426,
0.07508940994739532,
0.15109290182590485,
0.06376980990171432,
-0.07922615855932236,
0.023416668176651,
-0.030187727883458138,
0.03787150979042053,
-0.06860329955816269,
0.033845916390419006,
0.025766002014279366,
-0.007918855175375938,
0.0320846252143383,
-0.015116957016289234,
0.07470791041851044,
-0.11922331899404526,
-0.08577512204647064,
-0.04021341726183891,
-0.10978709161281586,
0.05595320463180542,
0.08884918689727783,
0.10502464324235916,
-0.09601657092571259,
-0.07053463160991669,
0.09864025563001633,
0.06200094521045685,
-0.04692395031452179,
0.015603672713041306,
-0.05271952599287033,
0.059061866253614426,
-0.0767902135848999,
-0.03351907804608345,
-0.20745894312858582,
-0.04168904945254326,
0.0019729824271053076,
0.03754783049225807,
0.035803817212581635,
0.036847181618213654,
0.08709568530321121,
0.06258723884820938,
-0.06264924257993698,
-0.003439870895817876,
-0.01522428821772337,
-0.007044075056910515,
-0.15164627134799957,
-0.19300268590450287,
-0.025256607681512833,
-0.0200581606477499,
0.08781859278678894,
-0.20405974984169006,
0.01960292086005211,
-0.043502431362867355,
0.09305994212627411,
0.017027119174599648,
-0.009177275002002716,
-0.05504470318555832,
0.10782260447740555,
-0.023087309673428535,
-0.04909471794962883,
0.0668131560087204,
-0.015085511840879917,
-0.06336434930562973,
-0.08089190721511841,
-0.10096660256385803,
0.18621042370796204,
0.13892404735088348,
-0.151669442653656,
-0.10937488079071045,
0.015644345432519913,
-0.06139355152845383,
-0.022212862968444824,
-0.057233456522226334,
0.0564904622733593,
0.18072649836540222,
-0.01574549451470375,
0.15169773995876312,
-0.052853431552648544,
-0.04706889018416405,
0.021385572850704193,
-0.03310905396938324,
0.04335913807153702,
0.10842389613389969,
0.13569805026054382,
-0.08457112312316895,
0.1361512988805771,
0.1218692883849144,
-0.13111263513565063,
0.13677334785461426,
-0.025905638933181763,
-0.07789324969053268,
-0.018446670845150948,
-0.030742309987545013,
0.007610428147017956,
0.10661071538925171,
-0.10808677226305008,
-0.01922493800520897,
0.0071347723715007305,
0.020305147394537926,
0.026112085208296776,
-0.23135057091712952,
-0.046915993094444275,
0.02424618974328041,
-0.003096528584137559,
0.018515875563025475,
-0.01951778493821621,
0.02580680325627327,
0.11866136640310287,
0.0020909635350108147,
-0.07759678363800049,
0.024093760177493095,
0.00893546175211668,
-0.06352781504392624,
0.2146356850862503,
-0.06943210959434509,
-0.11312001943588257,
-0.1019912138581276,
-0.07687869668006897,
-0.04238303750753403,
0.013024810701608658,
0.03158364072442055,
-0.12026584893465042,
-0.021418938413262367,
-0.02185477688908577,
0.03273407369852066,
0.0030455556698143482,
0.06268017739057541,
-0.005181455984711647,
0.002387002110481262,
0.07124806940555573,
-0.09937068074941635,
-0.0005596545524895191,
-0.07595739513635635,
-0.07265695929527283,
0.05849755182862282,
0.06279446929693222,
0.12046454101800919,
0.16986700892448425,
-0.04765129089355469,
0.005394987761974335,
-0.024400215595960617,
0.23848678171634674,
-0.0751553475856781,
-0.03985968604683876,
0.09683617949485779,
-0.018827078863978386,
0.04960450902581215,
0.10460381954908371,
0.08367177098989487,
-0.09397482126951218,
0.015742994844913483,
0.0470423549413681,
-0.04357099160552025,
-0.20160119235515594,
-0.038630712777376175,
-0.05170169100165367,
-0.04798796772956848,
0.09219147264957428,
0.02131497673690319,
0.04089008644223213,
0.07909292727708817,
0.06711464375257492,
0.09728001803159714,
-0.07520143687725067,
0.05096640810370445,
0.08856416493654251,
0.053435731679201126,
0.13284629583358765,
-0.04117075353860855,
-0.10521731525659561,
0.02107597514986992,
-0.024051981046795845,
0.23177176713943481,
-0.0038389968685805798,
0.07269735634326935,
0.03901175409555435,
0.19265300035476685,
0.010800961405038834,
0.08711627125740051,
0.00300702010281384,
-0.06744545698165894,
0.000320995255606249,
-0.02838362194597721,
-0.03612513840198517,
0.010060080327093601,
-0.026500064879655838,
0.054114680737257004,
-0.11174614727497101,
-0.011367600411176682,
0.05662032961845398,
0.23012308776378632,
0.02408546395599842,
-0.3223344087600708,
-0.07357577234506607,
-0.011025436222553253,
-0.03599712625145912,
-0.013542305678129196,
0.007855766452848911,
0.10567118972539902,
-0.09833948314189911,
0.011641263961791992,
-0.08281056582927704,
0.08809417486190796,
-0.04271498695015907,
0.036696553230285645,
0.06772663444280624,
0.12630119919776917,
-0.005529686342924833,
0.06417804211378098,
-0.305855393409729,
0.27393829822540283,
0.009537872858345509,
0.08100421726703644,
-0.07624920457601547,
-0.007353424560278654,
0.036383580416440964,
0.03732066601514816,
0.032587770372629166,
-0.020104434341192245,
-0.04177025705575943,
-0.22623340785503387,
-0.030331812798976898,
0.0285630002617836,
0.12068957835435867,
-0.0075541152618825436,
0.10377029329538345,
-0.024200307205319405,
0.00005155575854587369,
0.08048006147146225,
-0.04490114375948906,
-0.04457297548651695,
-0.0742047131061554,
-0.02755388617515564,
0.010738343931734562,
-0.07488889992237091,
-0.048193786293268204,
-0.12068187445402145,
-0.1354958713054657,
0.1486193686723709,
0.013996468856930733,
-0.016360098496079445,
-0.1275208294391632,
0.12574636936187744,
0.0811011865735054,
-0.08053231984376907,
0.04449211433529854,
0.011230092495679855,
0.05299266427755356,
0.03201989457011223,
-0.06810819357633591,
0.11526092886924744,
-0.05820934846997261,
-0.152246356010437,
-0.06424514949321747,
0.07927361130714417,
0.04208575561642647,
0.06544974446296692,
-0.02301499992609024,
0.0229955967515707,
-0.025375407189130783,
-0.0903472900390625,
0.03937704116106033,
-0.04006959870457649,
0.0644475445151329,
0.02948816865682602,
-0.051256582140922546,
-0.005753687117248774,
-0.05698229372501373,
-0.011369648389518261,
0.18660961091518402,
0.2201036661863327,
-0.09734193980693817,
-0.01712528057396412,
0.026125185191631317,
-0.05946418642997742,
-0.19808503985404968,
0.09593727439641953,
0.08573706448078156,
0.007431112229824066,
0.04530135169625282,
-0.16281530261039734,
0.15490049123764038,
0.1000962182879448,
-0.0013520345091819763,
0.10888125747442245,
-0.30510765314102173,
-0.1282355934381485,
0.10589848458766937,
0.1721881926059723,
0.13675452768802643,
-0.13790705800056458,
-0.0070046489126980305,
-0.008709002286195755,
-0.09763187915086746,
0.10359155386686325,
-0.06426163762807846,
0.12145929038524628,
-0.019056083634495735,
0.10903739184141159,
0.013593306764960289,
-0.07166292518377304,
0.09361252933740616,
0.007082231342792511,
0.11645247042179108,
-0.06414512544870377,
-0.06102367490530014,
0.04334691911935806,
-0.02508259378373623,
-0.012173532508313656,
-0.02399563230574131,
0.018605703487992287,
-0.0673445612192154,
-0.020576614886522293,
-0.09741745889186859,
0.04260580241680145,
-0.02326616272330284,
-0.07246298342943192,
-0.03844840079545975,
0.03469730541110039,
0.034943729639053345,
-0.025639070197939873,
0.11715426295995712,
0.020161490887403488,
0.17447295784950256,
0.08593776077032089,
0.06346122175455093,
-0.050561998039484024,
-0.04841836541891098,
0.0034034322015941143,
-0.010078824125230312,
0.06329295784235,
-0.13016362488269806,
0.020914848893880844,
0.1553254872560501,
0.022595396265387535,
0.1142435371875763,
0.0921553373336792,
-0.018760520964860916,
0.016071034595370293,
0.07624492049217224,
-0.16313201189041138,
-0.0652882531285286,
0.004153259098529816,
-0.0857715979218483,
-0.09250564128160477,
0.05332089588046074,
0.0799720510840416,
-0.07481376081705093,
-0.011270832270383835,
-0.008530267514288425,
-0.02374846674501896,
-0.06649409234523773,
0.22630544006824493,
0.08077908307313919,
0.04372468218207359,
-0.10051923245191574,
0.05768468976020813,
0.06488308310508728,
-0.08738836646080017,
-0.005134388338774443,
0.08041257411241531,
-0.07681380212306976,
-0.020639704540371895,
0.11760535091161728,
0.203256756067276,
-0.07639540731906891,
-0.0118074556812644,
-0.14928030967712402,
-0.10582452267408371,
0.0648043230175972,
0.18278199434280396,
0.11151919513940811,
-0.0056063588708639145,
-0.05881034582853317,
0.035694669932127,
-0.15800076723098755,
0.07858650386333466,
0.049578793346881866,
0.08591622859239578,
-0.15005116164684296,
0.20051398873329163,
-0.00004556030035018921,
0.0442449189722538,
-0.0340452641248703,
0.032208554446697235,
-0.11947087198495865,
0.02182786725461483,
-0.1101863905787468,
-0.0576208233833313,
-0.007169285323470831,
-0.006640194449573755,
-0.0015152629930526018,
-0.07371584326028824,
-0.059259410947561264,
0.005731922574341297,
-0.1292037069797516,
-0.015692725777626038,
0.04629449546337128,
0.01673985831439495,
-0.10646671801805496,
-0.041379284113645554,
0.020045820623636246,
-0.046777401119470596,
0.04783070459961891,
0.049333520233631134,
0.022893687710165977,
0.07237260788679123,
-0.1446196287870407,
-0.013995609246194363,
0.07226084172725677,
-0.00627199187874794,
0.09819990396499634,
-0.05520399659872055,
-0.0003193517040926963,
-0.011192445643246174,
0.11059475690126419,
0.02390620857477188,
0.07886900007724762,
-0.1395350992679596,
0.009412514045834541,
-0.033310696482658386,
-0.09444313496351242,
-0.06931016594171524,
0.02054710127413273,
0.0772700086236,
0.012624329887330532,
0.18304604291915894,
-0.08549670875072479,
0.05452527478337288,
-0.21084682643413544,
-0.012454807758331299,
-0.02010815404355526,
-0.11260063946247101,
-0.09965618699789047,
-0.05579297989606857,
0.07505887001752853,
-0.052359987050294876,
0.11857812106609344,
0.050597503781318665,
0.06416036933660507,
0.031432848423719406,
-0.02391139417886734,
0.004131124820560217,
0.03485950827598572,
0.19422318041324615,
0.04474707692861557,
-0.04302285239100456,
0.05776410922408104,
0.08239096403121948,
0.1057816743850708,
0.11372319608926773,
0.21143266558647156,
0.14386913180351257,
-0.02503117360174656,
0.08243376016616821,
0.028620216995477676,
-0.05494459718465805,
-0.16101951897144318,
0.024334531277418137,
-0.07625152915716171,
0.08133033663034439,
-0.032996710389852524,
0.19418784976005554,
0.06248319521546364,
-0.1546187847852707,
0.046457160264253616,
-0.06446539610624313,
-0.10111140459775925,
-0.09942598640918732,
-0.017352033406496048,
-0.08178842067718506,
-0.13899432122707367,
0.01581418141722679,
-0.10090053081512451,
0.012794038280844688,
0.12450805306434631,
0.014235005713999271,
-0.024680081754922867,
0.1996651142835617,
0.04029490426182747,
0.04260535538196564,
0.056289855390787125,
0.012903129681944847,
-0.01808467134833336,
-0.09216059744358063,
-0.059201039373874664,
-0.047952424734830856,
-0.015188978053629398,
0.03316569700837135,
-0.07716135680675507,
-0.09488082677125931,
0.03645538538694382,
-0.009820656850934029,
-0.10201095789670944,
0.02345420978963375,
0.02394774928689003,
0.06862156838178635,
0.02556866779923439,
-0.007034864742308855,
0.017973750829696655,
-0.03871352970600128,
0.22256594896316528,
-0.08884022384881973,
-0.0757046565413475,
-0.10304200649261475,
0.2782719135284424,
0.035255976021289825,
0.004773607477545738,
0.018357792869210243,
-0.06902781128883362,
0.010662268847227097,
0.24940909445285797,
0.1952691525220871,
-0.10988516360521317,
-0.005476735532283783,
0.0039602466858923435,
-0.017206134274601936,
-0.03663536161184311,
0.1355164498090744,
0.1272675096988678,
0.05333362892270088,
-0.11245917528867722,
-0.04331709444522858,
-0.05917974188923836,
-0.013946933671832085,
-0.036999817937612534,
0.049192529171705246,
0.06006799265742302,
0.02137143537402153,
-0.06052057817578316,
0.05811971798539162,
-0.07162695378065109,
-0.1113964319229126,
0.08550800383090973,
-0.21034763753414154,
-0.1716027557849884,
-0.012736867181956768,
0.10872951149940491,
-0.012623433023691177,
0.07159504294395447,
-0.03009413741528988,
-0.0026729621458798647,
0.03733649477362633,
-0.024703802540898323,
-0.07117537409067154,
-0.09776511043310165,
0.09812222421169281,
-0.10478959232568741,
0.17811942100524902,
-0.04954991489648819,
0.06620125472545624,
0.12617163360118866,
0.06129801645874977,
-0.06210533529520035,
0.04843083769083023,
0.045162759721279144,
-0.11185432970523834,
0.022697674110531807,
0.12876395881175995,
-0.03000810369849205,
0.05747333541512489,
0.03167731687426567,
-0.14002926647663116,
0.033696822822093964,
-0.10581860691308975,
-0.03089076094329357,
-0.04381171613931656,
-0.04869960620999336,
-0.05309348553419113,
0.12499596923589706,
0.23458817601203918,
-0.006743243895471096,
0.032576922327280045,
-0.08791431784629822,
0.00844732765108347,
0.0540543757379055,
0.053739435970783234,
-0.1062634140253067,
-0.2568429112434387,
0.009084660559892654,
0.07708041369915009,
-0.04020215943455696,
-0.2182934731245041,
-0.09181743115186691,
0.009176265448331833,
-0.07882224023342133,
-0.08911658078432083,
0.08827919512987137,
0.07726947963237762,
0.062497880309820175,
-0.050949808210134506,
-0.10240047425031662,
-0.08314218372106552,
0.15404361486434937,
-0.1532345861196518,
-0.08300840854644775
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6169
- Precision: 0.0031
- Recall: 0.0357
- F1: 0.0057
- Accuracy: 0.6464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6339 | 0.0116 | 0.0120 | 0.0118 | 0.6662 |
| No log | 2.0 | 20 | 0.6182 | 0.0064 | 0.0120 | 0.0084 | 0.6688 |
| No log | 3.0 | 30 | 0.6139 | 0.0029 | 0.0241 | 0.0052 | 0.6659 |
| No log | 4.0 | 40 | 0.6172 | 0.0020 | 0.0241 | 0.0037 | 0.6622 |
| No log | 5.0 | 50 | 0.6165 | 0.0019 | 0.0241 | 0.0036 | 0.6599 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39", "results": []}]}
|
token-classification
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
|
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_30\_39
====================================================================================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6169
* Precision: 0.0031
* Recall: 0.0357
* F1: 0.0057
* Accuracy: 0.6464
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
49,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.0952380895614624,
0.044036440551280975,
-0.0016082123620435596,
0.11698907613754272,
0.21350468695163727,
0.02943940833210945,
0.1025138795375824,
0.1014835312962532,
-0.12182898074388504,
0.025961419567465782,
0.12113579362630844,
0.1832786351442337,
-0.0030703383963555098,
0.09688547998666763,
-0.05556701496243477,
-0.2743716835975647,
-0.03052719309926033,
0.045981843024492264,
-0.10305297374725342,
0.12545245885849,
0.08387984335422516,
-0.1577286273241043,
0.07511057704687119,
-0.0016509053530171514,
-0.2676181495189667,
0.019590724259614944,
0.03423237428069115,
-0.06043952703475952,
0.14759710431098938,
0.00943830143660307,
0.17363232374191284,
-0.011987031437456608,
0.1051621213555336,
-0.14447440207004547,
0.012298219837248325,
0.06186310946941376,
0.022960467264056206,
0.09010162949562073,
0.06334146112203598,
-0.007549169939011335,
0.09506987780332565,
-0.09507019817829132,
0.06539499014616013,
0.003103486727923155,
-0.12513257563114166,
-0.2132052630186081,
-0.07136457413434982,
-0.002085052663460374,
0.053780630230903625,
0.09798532724380493,
-0.0042197792790830135,
0.17374707758426666,
-0.1088271513581276,
0.09750399738550186,
0.21120037138462067,
-0.2665243446826935,
-0.08335934579372406,
0.055233679711818695,
-0.00906183198094368,
0.07525855302810669,
-0.12323935329914093,
-0.02350618503987789,
0.05778595060110092,
0.05312470719218254,
0.12958413362503052,
-0.034174755215644836,
-0.12042219936847687,
0.025349890813231468,
-0.1521894931793213,
-0.0006019846769049764,
0.06528319418430328,
0.01627492345869541,
-0.02065153233706951,
-0.015569574199616909,
-0.06616263836622238,
-0.16424210369586945,
-0.04118039831519127,
-0.027683239430189133,
0.04010685533285141,
-0.05730584263801575,
-0.10778205841779709,
0.012057210318744183,
-0.10123518854379654,
-0.06198875606060028,
-0.07641874253749847,
0.1809101104736328,
0.04406607523560524,
0.017658140510320663,
-0.03639274835586548,
0.10814428329467773,
-0.003348919562995434,
-0.12874765694141388,
0.05691590532660484,
0.024434933438897133,
-0.03782016038894653,
-0.07123736292123795,
-0.06982749700546265,
-0.0997990146279335,
0.00012833482469432056,
0.08903595060110092,
-0.04379228875041008,
0.04876143857836723,
0.041273217648267746,
0.03605876490473747,
-0.08996519446372986,
0.2002016007900238,
-0.050116948783397675,
-0.017183683812618256,
0.004287381656467915,
0.04395374283194542,
-0.017564810812473297,
-0.0018934865947812796,
-0.10746562480926514,
0.003688776632770896,
0.11974334716796875,
0.0032049454748630524,
-0.07574886828660965,
0.06962595134973526,
-0.03547770529985428,
-0.021802717819809914,
-0.03207997605204582,
-0.09391369670629501,
0.04661700129508972,
-0.01810879074037075,
-0.09548810124397278,
0.004290449433028698,
0.007495227735489607,
0.012048051692545414,
-0.009441312402486801,
0.166090726852417,
-0.10330095887184143,
0.0498272143304348,
-0.1193264052271843,
-0.11999256908893585,
-0.0013982293894514441,
-0.0776621550321579,
0.02640019915997982,
-0.10089195519685745,
-0.12647922337055206,
-0.020957479253411293,
0.05697371065616608,
-0.035620737820863724,
-0.037681736052036285,
-0.040833212435245514,
-0.07425465434789658,
0.005951599683612585,
-0.010949499905109406,
0.17182503640651703,
-0.04630051925778389,
0.11560122668743134,
0.05046966299414635,
0.07271167635917664,
-0.04180130735039711,
0.04987984523177147,
-0.09455662220716476,
-0.001616872032172978,
-0.21063469350337982,
0.04008080065250397,
-0.056833136826753616,
0.08438174426555634,
-0.07221242040395737,
-0.11565542966127396,
0.01061136182397604,
-0.0053452011197805405,
0.09168983995914459,
0.07677346467971802,
-0.15574459731578827,
-0.08274779468774796,
0.15119478106498718,
-0.05555276572704315,
-0.07717754691839218,
0.11664170771837234,
-0.07357529550790787,
0.033337969332933426,
0.07508940994739532,
0.15109290182590485,
0.06376980990171432,
-0.07922615855932236,
0.023416668176651,
-0.030187727883458138,
0.03787150979042053,
-0.06860329955816269,
0.033845916390419006,
0.025766002014279366,
-0.007918855175375938,
0.0320846252143383,
-0.015116957016289234,
0.07470791041851044,
-0.11922331899404526,
-0.08577512204647064,
-0.04021341726183891,
-0.10978709161281586,
0.05595320463180542,
0.08884918689727783,
0.10502464324235916,
-0.09601657092571259,
-0.07053463160991669,
0.09864025563001633,
0.06200094521045685,
-0.04692395031452179,
0.015603672713041306,
-0.05271952599287033,
0.059061866253614426,
-0.0767902135848999,
-0.03351907804608345,
-0.20745894312858582,
-0.04168904945254326,
0.0019729824271053076,
0.03754783049225807,
0.035803817212581635,
0.036847181618213654,
0.08709568530321121,
0.06258723884820938,
-0.06264924257993698,
-0.003439870895817876,
-0.01522428821772337,
-0.007044075056910515,
-0.15164627134799957,
-0.19300268590450287,
-0.025256607681512833,
-0.0200581606477499,
0.08781859278678894,
-0.20405974984169006,
0.01960292086005211,
-0.043502431362867355,
0.09305994212627411,
0.017027119174599648,
-0.009177275002002716,
-0.05504470318555832,
0.10782260447740555,
-0.023087309673428535,
-0.04909471794962883,
0.0668131560087204,
-0.015085511840879917,
-0.06336434930562973,
-0.08089190721511841,
-0.10096660256385803,
0.18621042370796204,
0.13892404735088348,
-0.151669442653656,
-0.10937488079071045,
0.015644345432519913,
-0.06139355152845383,
-0.022212862968444824,
-0.057233456522226334,
0.0564904622733593,
0.18072649836540222,
-0.01574549451470375,
0.15169773995876312,
-0.052853431552648544,
-0.04706889018416405,
0.021385572850704193,
-0.03310905396938324,
0.04335913807153702,
0.10842389613389969,
0.13569805026054382,
-0.08457112312316895,
0.1361512988805771,
0.1218692883849144,
-0.13111263513565063,
0.13677334785461426,
-0.025905638933181763,
-0.07789324969053268,
-0.018446670845150948,
-0.030742309987545013,
0.007610428147017956,
0.10661071538925171,
-0.10808677226305008,
-0.01922493800520897,
0.0071347723715007305,
0.020305147394537926,
0.026112085208296776,
-0.23135057091712952,
-0.046915993094444275,
0.02424618974328041,
-0.003096528584137559,
0.018515875563025475,
-0.01951778493821621,
0.02580680325627327,
0.11866136640310287,
0.0020909635350108147,
-0.07759678363800049,
0.024093760177493095,
0.00893546175211668,
-0.06352781504392624,
0.2146356850862503,
-0.06943210959434509,
-0.11312001943588257,
-0.1019912138581276,
-0.07687869668006897,
-0.04238303750753403,
0.013024810701608658,
0.03158364072442055,
-0.12026584893465042,
-0.021418938413262367,
-0.02185477688908577,
0.03273407369852066,
0.0030455556698143482,
0.06268017739057541,
-0.005181455984711647,
0.002387002110481262,
0.07124806940555573,
-0.09937068074941635,
-0.0005596545524895191,
-0.07595739513635635,
-0.07265695929527283,
0.05849755182862282,
0.06279446929693222,
0.12046454101800919,
0.16986700892448425,
-0.04765129089355469,
0.005394987761974335,
-0.024400215595960617,
0.23848678171634674,
-0.0751553475856781,
-0.03985968604683876,
0.09683617949485779,
-0.018827078863978386,
0.04960450902581215,
0.10460381954908371,
0.08367177098989487,
-0.09397482126951218,
0.015742994844913483,
0.0470423549413681,
-0.04357099160552025,
-0.20160119235515594,
-0.038630712777376175,
-0.05170169100165367,
-0.04798796772956848,
0.09219147264957428,
0.02131497673690319,
0.04089008644223213,
0.07909292727708817,
0.06711464375257492,
0.09728001803159714,
-0.07520143687725067,
0.05096640810370445,
0.08856416493654251,
0.053435731679201126,
0.13284629583358765,
-0.04117075353860855,
-0.10521731525659561,
0.02107597514986992,
-0.024051981046795845,
0.23177176713943481,
-0.0038389968685805798,
0.07269735634326935,
0.03901175409555435,
0.19265300035476685,
0.010800961405038834,
0.08711627125740051,
0.00300702010281384,
-0.06744545698165894,
0.000320995255606249,
-0.02838362194597721,
-0.03612513840198517,
0.010060080327093601,
-0.026500064879655838,
0.054114680737257004,
-0.11174614727497101,
-0.011367600411176682,
0.05662032961845398,
0.23012308776378632,
0.02408546395599842,
-0.3223344087600708,
-0.07357577234506607,
-0.011025436222553253,
-0.03599712625145912,
-0.013542305678129196,
0.007855766452848911,
0.10567118972539902,
-0.09833948314189911,
0.011641263961791992,
-0.08281056582927704,
0.08809417486190796,
-0.04271498695015907,
0.036696553230285645,
0.06772663444280624,
0.12630119919776917,
-0.005529686342924833,
0.06417804211378098,
-0.305855393409729,
0.27393829822540283,
0.009537872858345509,
0.08100421726703644,
-0.07624920457601547,
-0.007353424560278654,
0.036383580416440964,
0.03732066601514816,
0.032587770372629166,
-0.020104434341192245,
-0.04177025705575943,
-0.22623340785503387,
-0.030331812798976898,
0.0285630002617836,
0.12068957835435867,
-0.0075541152618825436,
0.10377029329538345,
-0.024200307205319405,
0.00005155575854587369,
0.08048006147146225,
-0.04490114375948906,
-0.04457297548651695,
-0.0742047131061554,
-0.02755388617515564,
0.010738343931734562,
-0.07488889992237091,
-0.048193786293268204,
-0.12068187445402145,
-0.1354958713054657,
0.1486193686723709,
0.013996468856930733,
-0.016360098496079445,
-0.1275208294391632,
0.12574636936187744,
0.0811011865735054,
-0.08053231984376907,
0.04449211433529854,
0.011230092495679855,
0.05299266427755356,
0.03201989457011223,
-0.06810819357633591,
0.11526092886924744,
-0.05820934846997261,
-0.152246356010437,
-0.06424514949321747,
0.07927361130714417,
0.04208575561642647,
0.06544974446296692,
-0.02301499992609024,
0.0229955967515707,
-0.025375407189130783,
-0.0903472900390625,
0.03937704116106033,
-0.04006959870457649,
0.0644475445151329,
0.02948816865682602,
-0.051256582140922546,
-0.005753687117248774,
-0.05698229372501373,
-0.011369648389518261,
0.18660961091518402,
0.2201036661863327,
-0.09734193980693817,
-0.01712528057396412,
0.026125185191631317,
-0.05946418642997742,
-0.19808503985404968,
0.09593727439641953,
0.08573706448078156,
0.007431112229824066,
0.04530135169625282,
-0.16281530261039734,
0.15490049123764038,
0.1000962182879448,
-0.0013520345091819763,
0.10888125747442245,
-0.30510765314102173,
-0.1282355934381485,
0.10589848458766937,
0.1721881926059723,
0.13675452768802643,
-0.13790705800056458,
-0.0070046489126980305,
-0.008709002286195755,
-0.09763187915086746,
0.10359155386686325,
-0.06426163762807846,
0.12145929038524628,
-0.019056083634495735,
0.10903739184141159,
0.013593306764960289,
-0.07166292518377304,
0.09361252933740616,
0.007082231342792511,
0.11645247042179108,
-0.06414512544870377,
-0.06102367490530014,
0.04334691911935806,
-0.02508259378373623,
-0.012173532508313656,
-0.02399563230574131,
0.018605703487992287,
-0.0673445612192154,
-0.020576614886522293,
-0.09741745889186859,
0.04260580241680145,
-0.02326616272330284,
-0.07246298342943192,
-0.03844840079545975,
0.03469730541110039,
0.034943729639053345,
-0.025639070197939873,
0.11715426295995712,
0.020161490887403488,
0.17447295784950256,
0.08593776077032089,
0.06346122175455093,
-0.050561998039484024,
-0.04841836541891098,
0.0034034322015941143,
-0.010078824125230312,
0.06329295784235,
-0.13016362488269806,
0.020914848893880844,
0.1553254872560501,
0.022595396265387535,
0.1142435371875763,
0.0921553373336792,
-0.018760520964860916,
0.016071034595370293,
0.07624492049217224,
-0.16313201189041138,
-0.0652882531285286,
0.004153259098529816,
-0.0857715979218483,
-0.09250564128160477,
0.05332089588046074,
0.0799720510840416,
-0.07481376081705093,
-0.011270832270383835,
-0.008530267514288425,
-0.02374846674501896,
-0.06649409234523773,
0.22630544006824493,
0.08077908307313919,
0.04372468218207359,
-0.10051923245191574,
0.05768468976020813,
0.06488308310508728,
-0.08738836646080017,
-0.005134388338774443,
0.08041257411241531,
-0.07681380212306976,
-0.020639704540371895,
0.11760535091161728,
0.203256756067276,
-0.07639540731906891,
-0.0118074556812644,
-0.14928030967712402,
-0.10582452267408371,
0.0648043230175972,
0.18278199434280396,
0.11151919513940811,
-0.0056063588708639145,
-0.05881034582853317,
0.035694669932127,
-0.15800076723098755,
0.07858650386333466,
0.049578793346881866,
0.08591622859239578,
-0.15005116164684296,
0.20051398873329163,
-0.00004556030035018921,
0.0442449189722538,
-0.0340452641248703,
0.032208554446697235,
-0.11947087198495865,
0.02182786725461483,
-0.1101863905787468,
-0.0576208233833313,
-0.007169285323470831,
-0.006640194449573755,
-0.0015152629930526018,
-0.07371584326028824,
-0.059259410947561264,
0.005731922574341297,
-0.1292037069797516,
-0.015692725777626038,
0.04629449546337128,
0.01673985831439495,
-0.10646671801805496,
-0.041379284113645554,
0.020045820623636246,
-0.046777401119470596,
0.04783070459961891,
0.049333520233631134,
0.022893687710165977,
0.07237260788679123,
-0.1446196287870407,
-0.013995609246194363,
0.07226084172725677,
-0.00627199187874794,
0.09819990396499634,
-0.05520399659872055,
-0.0003193517040926963,
-0.011192445643246174,
0.11059475690126419,
0.02390620857477188,
0.07886900007724762,
-0.1395350992679596,
0.009412514045834541,
-0.033310696482658386,
-0.09444313496351242,
-0.06931016594171524,
0.02054710127413273,
0.0772700086236,
0.012624329887330532,
0.18304604291915894,
-0.08549670875072479,
0.05452527478337288,
-0.21084682643413544,
-0.012454807758331299,
-0.02010815404355526,
-0.11260063946247101,
-0.09965618699789047,
-0.05579297989606857,
0.07505887001752853,
-0.052359987050294876,
0.11857812106609344,
0.050597503781318665,
0.06416036933660507,
0.031432848423719406,
-0.02391139417886734,
0.004131124820560217,
0.03485950827598572,
0.19422318041324615,
0.04474707692861557,
-0.04302285239100456,
0.05776410922408104,
0.08239096403121948,
0.1057816743850708,
0.11372319608926773,
0.21143266558647156,
0.14386913180351257,
-0.02503117360174656,
0.08243376016616821,
0.028620216995477676,
-0.05494459718465805,
-0.16101951897144318,
0.024334531277418137,
-0.07625152915716171,
0.08133033663034439,
-0.032996710389852524,
0.19418784976005554,
0.06248319521546364,
-0.1546187847852707,
0.046457160264253616,
-0.06446539610624313,
-0.10111140459775925,
-0.09942598640918732,
-0.017352033406496048,
-0.08178842067718506,
-0.13899432122707367,
0.01581418141722679,
-0.10090053081512451,
0.012794038280844688,
0.12450805306434631,
0.014235005713999271,
-0.024680081754922867,
0.1996651142835617,
0.04029490426182747,
0.04260535538196564,
0.056289855390787125,
0.012903129681944847,
-0.01808467134833336,
-0.09216059744358063,
-0.059201039373874664,
-0.047952424734830856,
-0.015188978053629398,
0.03316569700837135,
-0.07716135680675507,
-0.09488082677125931,
0.03645538538694382,
-0.009820656850934029,
-0.10201095789670944,
0.02345420978963375,
0.02394774928689003,
0.06862156838178635,
0.02556866779923439,
-0.007034864742308855,
0.017973750829696655,
-0.03871352970600128,
0.22256594896316528,
-0.08884022384881973,
-0.0757046565413475,
-0.10304200649261475,
0.2782719135284424,
0.035255976021289825,
0.004773607477545738,
0.018357792869210243,
-0.06902781128883362,
0.010662268847227097,
0.24940909445285797,
0.1952691525220871,
-0.10988516360521317,
-0.005476735532283783,
0.0039602466858923435,
-0.017206134274601936,
-0.03663536161184311,
0.1355164498090744,
0.1272675096988678,
0.05333362892270088,
-0.11245917528867722,
-0.04331709444522858,
-0.05917974188923836,
-0.013946933671832085,
-0.036999817937612534,
0.049192529171705246,
0.06006799265742302,
0.02137143537402153,
-0.06052057817578316,
0.05811971798539162,
-0.07162695378065109,
-0.1113964319229126,
0.08550800383090973,
-0.21034763753414154,
-0.1716027557849884,
-0.012736867181956768,
0.10872951149940491,
-0.012623433023691177,
0.07159504294395447,
-0.03009413741528988,
-0.0026729621458798647,
0.03733649477362633,
-0.024703802540898323,
-0.07117537409067154,
-0.09776511043310165,
0.09812222421169281,
-0.10478959232568741,
0.17811942100524902,
-0.04954991489648819,
0.06620125472545624,
0.12617163360118866,
0.06129801645874977,
-0.06210533529520035,
0.04843083769083023,
0.045162759721279144,
-0.11185432970523834,
0.022697674110531807,
0.12876395881175995,
-0.03000810369849205,
0.05747333541512489,
0.03167731687426567,
-0.14002926647663116,
0.033696822822093964,
-0.10581860691308975,
-0.03089076094329357,
-0.04381171613931656,
-0.04869960620999336,
-0.05309348553419113,
0.12499596923589706,
0.23458817601203918,
-0.006743243895471096,
0.032576922327280045,
-0.08791431784629822,
0.00844732765108347,
0.0540543757379055,
0.053739435970783234,
-0.1062634140253067,
-0.2568429112434387,
0.009084660559892654,
0.07708041369915009,
-0.04020215943455696,
-0.2182934731245041,
-0.09181743115186691,
0.009176265448331833,
-0.07882224023342133,
-0.08911658078432083,
0.08827919512987137,
0.07726947963237762,
0.062497880309820175,
-0.050949808210134506,
-0.10240047425031662,
-0.08314218372106552,
0.15404361486434937,
-0.1532345861196518,
-0.08300840854644775
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2811
- Precision: 0.3231
- Recall: 0.5151
- F1: 0.3971
- Accuracy: 0.8913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.2881 | 0.2089 | 0.3621 | 0.2650 | 0.8715 |
| No log | 2.0 | 60 | 0.2500 | 0.2619 | 0.3842 | 0.3115 | 0.8845 |
| No log | 3.0 | 90 | 0.2571 | 0.2327 | 0.4338 | 0.3030 | 0.8809 |
| No log | 4.0 | 120 | 0.2479 | 0.3051 | 0.4761 | 0.3719 | 0.8949 |
| No log | 5.0 | 150 | 0.2783 | 0.3287 | 0.4761 | 0.3889 | 0.8936 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_0.0001\_all\_01\_03\_2022-15\_22\_12
=============================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2811
* Precision: 0.3231
* Recall: 0.5151
* F1: 0.3971
* Accuracy: 0.8913
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1290
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0733 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 2.0 | 30 | 0.0732 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 3.0 | 45 | 0.0731 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 4.0 | 60 | 0.0716 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 5.0 | 75 | 0.0635 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_0.0001\_editorials\_01\_03\_2022-15\_20\_12
====================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1290
* Precision: 0.0637
* Recall: 0.0080
* F1: 0.0141
* Accuracy: 0.9707
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1832
- Precision: 0.6138
- Recall: 0.7169
- F1: 0.6613
- Accuracy: 0.9332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.2740 | 0.4554 | 0.5460 | 0.4966 | 0.8943 |
| No log | 2.0 | 22 | 0.2189 | 0.5470 | 0.6558 | 0.5965 | 0.9193 |
| No log | 3.0 | 33 | 0.2039 | 0.5256 | 0.6706 | 0.5893 | 0.9198 |
| No log | 4.0 | 44 | 0.2097 | 0.5401 | 0.6795 | 0.6018 | 0.9237 |
| No log | 5.0 | 55 | 0.2255 | 0.6117 | 0.6825 | 0.6452 | 0.9223 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_0.0001\_essays\_01\_03\_2022-15\_18\_35
================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1832
* Precision: 0.6138
* Recall: 0.7169
* F1: 0.6613
* Accuracy: 0.9332
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5923
- Precision: 0.0039
- Recall: 0.0212
- F1: 0.0066
- Accuracy: 0.7084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6673 | 0.0476 | 0.0128 | 0.0202 | 0.6652 |
| No log | 2.0 | 20 | 0.6211 | 0.0 | 0.0 | 0.0 | 0.6707 |
| No log | 3.0 | 30 | 0.6880 | 0.0038 | 0.0128 | 0.0058 | 0.6703 |
| No log | 4.0 | 40 | 0.6566 | 0.0030 | 0.0128 | 0.0049 | 0.6690 |
| No log | 5.0 | 50 | 0.6036 | 0.0 | 0.0 | 0.0 | 0.6868 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_0.0001\_webDiscourse\_01\_03\_2022-15\_16\_57
======================================================================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5923
* Precision: 0.0039
* Recall: 0.0212
* F1: 0.0066
* Accuracy: 0.7084
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
56,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10964034497737885,
0.07606498152017593,
-0.001878639799542725,
0.12491469830274582,
0.1838001310825348,
0.022915702313184738,
0.09991279244422913,
0.11431945860385895,
-0.11300458759069443,
0.01477926503866911,
0.12751245498657227,
0.19224399328231812,
0.0018176479497924447,
0.09426400065422058,
-0.05159754678606987,
-0.24083247780799866,
-0.010373629629611969,
0.049076177179813385,
-0.08675725013017654,
0.13230374455451965,
0.091362863779068,
-0.13960357010364532,
0.0794844925403595,
0.00774338748306036,
-0.23039504885673523,
0.020446186885237694,
0.03026951290667057,
-0.057696323841810226,
0.15054218471050262,
0.013044103980064392,
0.13363248109817505,
-0.005405668169260025,
0.08610401302576065,
-0.16383391618728638,
0.008501171134412289,
0.061782170087099075,
0.012638877145946026,
0.09063084423542023,
0.06278078258037567,
0.002136655617505312,
0.10135601460933685,
-0.08476407825946808,
0.04676337167620659,
0.02037147432565689,
-0.11634119600057602,
-0.23744219541549683,
-0.08905845135450363,
0.01338288001716137,
0.0628284215927124,
0.09587687999010086,
0.008947658352553844,
0.15100207924842834,
-0.09624762088060379,
0.09140552580356598,
0.23483122885227203,
-0.30391326546669006,
-0.06139950454235077,
0.049148887395858765,
-0.002125876024365425,
0.0717664286494255,
-0.10474174469709396,
-0.02307085692882538,
0.054938919842243195,
0.046099644154310226,
0.1437416672706604,
-0.04084683209657669,
-0.12571576237678528,
0.028963593766093254,
-0.14632965624332428,
-0.023577937856316566,
0.11169904470443726,
0.02681557834148407,
-0.03575315698981285,
-0.018373822793364525,
-0.06306368857622147,
-0.17236939072608948,
-0.03783845156431198,
-0.016965148970484734,
0.05376345291733742,
-0.032419271767139435,
-0.062102749943733215,
0.00657692039385438,
-0.099279023706913,
-0.07196379452943802,
-0.08335904031991959,
0.153439000248909,
0.0447232648730278,
0.022602535784244537,
-0.027150576934218407,
0.1065872460603714,
0.000803870614618063,
-0.12287062406539917,
0.03180980682373047,
0.03784937784075737,
-0.007941054180264473,
-0.05117914825677872,
-0.07359818369150162,
-0.05571908503770828,
0.014072025194764137,
0.10081835836172104,
-0.048984747380018234,
0.04638468846678734,
0.03779585659503937,
0.04278922453522682,
-0.1122492253780365,
0.19376491010189056,
-0.045438073575496674,
-0.007199902553111315,
0.016113633289933205,
0.030136683955788612,
0.00248191156424582,
-0.0016730729257687926,
-0.11592374742031097,
-0.0013114905450493097,
0.11425430327653885,
0.01842781901359558,
-0.08246145397424698,
0.06927740573883057,
-0.05113575980067253,
-0.022085823118686676,
0.007310990244150162,
-0.09915294498205185,
0.036756113171577454,
-0.009535125456750393,
-0.08834166079759598,
-0.023360351100564003,
0.017954697832465172,
0.014770585112273693,
-0.0249547827988863,
0.12021780759096146,
-0.08912092447280884,
0.043812770396471024,
-0.10722162574529648,
-0.10748092085123062,
0.007039964199066162,
-0.08610574156045914,
0.02624335326254368,
-0.09577907621860504,
-0.1511995494365692,
-0.009859908372163773,
0.06007126718759537,
-0.020399555563926697,
-0.05592997372150421,
-0.035057708621025085,
-0.06850173324346542,
0.0004974919138476253,
-0.019090548157691956,
0.16396266222000122,
-0.05605791136622429,
0.10156446695327759,
0.03485339134931564,
0.06179186701774597,
-0.056743841618299484,
0.05947870388627052,
-0.09962322562932968,
0.006385026033967733,
-0.18195396661758423,
0.030203387141227722,
-0.05215204507112503,
0.07571335881948471,
-0.09667667746543884,
-0.10471774637699127,
0.026594044640660286,
-0.013516728766262531,
0.07812145352363586,
0.07777440547943115,
-0.1651950478553772,
-0.06694241613149643,
0.14689978957176208,
-0.054874345660209656,
-0.1055862084031105,
0.10751690715551376,
-0.0624934583902359,
0.03296474739909172,
0.07589017599821091,
0.15014831721782684,
0.07208478450775146,
-0.06400610506534576,
0.035549066960811615,
0.004353930242359638,
0.04204032942652702,
-0.09941023588180542,
0.06046935170888901,
0.0037036961875855923,
-0.025267183780670166,
0.03692453354597092,
-0.032562654465436935,
0.061795808374881744,
-0.0959438607096672,
-0.09563764929771423,
-0.048312898725271225,
-0.10690896213054657,
0.04267297685146332,
0.0751025527715683,
0.09127319604158401,
-0.09331212937831879,
-0.06710139662027359,
0.07948484271764755,
0.07482821494340897,
-0.04867005720734596,
0.03350071981549263,
-0.05528591200709343,
0.06239987537264824,
-0.05832221731543541,
-0.027208387851715088,
-0.19749081134796143,
-0.007693419232964516,
0.00975258368998766,
-0.005358629394322634,
0.02323644421994686,
0.028250619769096375,
0.070320263504982,
0.0556466206908226,
-0.0531761460006237,
-0.004655718803405762,
-0.006836998742073774,
-0.003895225003361702,
-0.1490902602672577,
-0.19302619993686676,
-0.03087233193218708,
-0.01618938148021698,
0.09411861002445221,
-0.19183145463466644,
0.028233341872692108,
-0.027029074728488922,
0.0672493651509285,
-0.0004488869453780353,
-0.0037864046171307564,
-0.05255354568362236,
0.0946822240948677,
-0.031721487641334534,
-0.05111032351851463,
0.08141130208969116,
-0.0012043735478073359,
-0.07952206581830978,
-0.04911435395479202,
-0.07785926759243011,
0.19052906334400177,
0.1368006318807602,
-0.1324472278356552,
-0.07601471245288849,
0.0019302694126963615,
-0.05219796299934387,
-0.030471768230199814,
-0.041989050805568695,
0.06080838665366173,
0.18492883443832397,
-0.014021366834640503,
0.15758980810642242,
-0.06869066506624222,
-0.04839298874139786,
0.021955523639917374,
-0.030456610023975372,
0.04180069640278816,
0.11380131542682648,
0.12581633031368256,
-0.08413219451904297,
0.1405041217803955,
0.15689362585544586,
-0.11182006448507309,
0.10032828152179718,
-0.046036966145038605,
-0.07026369869709015,
-0.014879119582474232,
-0.019682275131344795,
0.0027514370158314705,
0.0921504944562912,
-0.12968645989894867,
-0.007658309768885374,
0.020340267568826675,
0.025925153866410255,
0.02053057961165905,
-0.23252439498901367,
-0.03754568099975586,
0.029104050248861313,
-0.036621738225221634,
0.0025877421721816063,
-0.022754406556487083,
0.006639436818659306,
0.10685593634843826,
0.0004489817365538329,
-0.09645900875329971,
0.04559887945652008,
0.008847529999911785,
-0.0731661468744278,
0.2164229154586792,
-0.08605153858661652,
-0.1295628547668457,
-0.11715226620435715,
-0.08502800017595291,
-0.052758555859327316,
0.008610758930444717,
0.05334655940532684,
-0.09680519998073578,
-0.028625980019569397,
-0.047179535031318665,
0.000051022114348597825,
-0.010080611333251,
0.05020389333367348,
-0.006901491433382034,
-0.004284197930246592,
0.08344364166259766,
-0.10942962765693665,
-0.007279019802808762,
-0.05736461654305458,
-0.074509397149086,
0.0418497659265995,
0.05161488428711891,
0.1059826910495758,
0.16149768233299255,
-0.033221933990716934,
0.0069833057932555676,
-0.024006683379411697,
0.22504165768623352,
-0.05198837071657181,
-0.03889738768339157,
0.12661617994308472,
-0.0026588106993585825,
0.057132869958877563,
0.09912868589162827,
0.07944373786449432,
-0.08991066366434097,
0.004108097404241562,
0.03503100946545601,
-0.038798753172159195,
-0.22434338927268982,
-0.04119211807847023,
-0.05715041235089302,
-0.04707757756114006,
0.09487087279558182,
0.034905508160591125,
0.05025700479745865,
0.0745578482747078,
0.058392398059368134,
0.09757376462221146,
-0.06665274500846863,
0.05092468857765198,
0.10517618805170059,
0.05528341978788376,
0.12665022909641266,
-0.04935145005583763,
-0.06626217812299728,
0.03459310904145241,
-0.007999766618013382,
0.23437462747097015,
0.009349341504275799,
0.12429975718259811,
0.05533597990870476,
0.2149461954832077,
0.003430610056966543,
0.09137443453073502,
-0.01115878950804472,
-0.046944327652454376,
-0.011347158811986446,
-0.038742296397686005,
-0.03868058696389198,
0.011035377159714699,
-0.06572724133729935,
0.05708451569080353,
-0.10504776984453201,
-0.0221075639128685,
0.04582681506872177,
0.2675783336162567,
0.021586962044239044,
-0.322464257478714,
-0.07056321203708649,
-0.0054330043494701385,
-0.03226521238684654,
-0.019715316593647003,
0.021637070924043655,
0.08161602169275284,
-0.08914581686258316,
0.019838988780975342,
-0.0713391974568367,
0.09847349673509598,
-0.03290972486138344,
0.04058456793427467,
0.07935617864131927,
0.09907324612140656,
0.014474226161837578,
0.08021567016839981,
-0.3213280737400055,
0.2677963972091675,
0.007357749156653881,
0.06814897805452347,
-0.07943430542945862,
0.001202318468131125,
0.038497358560562134,
0.07007444649934769,
0.05071735382080078,
-0.011277851648628712,
-0.035348694771528244,
-0.2033219039440155,
-0.04504551738500595,
0.030937720090150833,
0.08214200288057327,
-0.017569100484251976,
0.07924304902553558,
-0.03185476362705231,
0.004904418718069792,
0.07730679959058762,
-0.01860608533024788,
-0.04848702996969223,
-0.08104487508535385,
-0.02058979868888855,
0.035005953162908554,
-0.05590042099356651,
-0.058513298630714417,
-0.10972082614898682,
-0.1426781415939331,
0.1641920506954193,
-0.009285780601203442,
-0.027491426095366478,
-0.11647728085517883,
0.08197678625583649,
0.07501312345266342,
-0.0851130560040474,
0.05258528143167496,
0.0001052433653967455,
0.04727236181497574,
0.04182419925928116,
-0.08201786130666733,
0.11376745998859406,
-0.05688842758536339,
-0.14603036642074585,
-0.058846622705459595,
0.0879676565527916,
0.02930500917136669,
0.060051627457141876,
-0.014387242496013641,
0.017060987651348114,
-0.03745716065168381,
-0.0936550423502922,
0.018067454919219017,
-0.03081226535141468,
0.08240203559398651,
0.016270434483885765,
-0.05770501494407654,
0.011202959343791008,
-0.058074336498975754,
-0.03217243775725365,
0.18650397658348083,
0.21763646602630615,
-0.10574809461832047,
0.01309552974998951,
0.03445129469037056,
-0.06839320808649063,
-0.1975032389163971,
0.05190473794937134,
0.0578417032957077,
-0.0010670741321519017,
0.040040627121925354,
-0.1737011820077896,
0.1555875837802887,
0.10879670828580856,
-0.014571801759302616,
0.1143094003200531,
-0.3183187246322632,
-0.12961576879024506,
0.13061556220054626,
0.16401612758636475,
0.1464780867099762,
-0.14022140204906464,
-0.0200918260961771,
-0.022786671295762062,
-0.11105762422084808,
0.09561139345169067,
-0.09048769623041153,
0.1172502338886261,
-0.03281891345977783,
0.08654911816120148,
0.00010054832819150761,
-0.06206769123673439,
0.11573117971420288,
0.025737952440977097,
0.11114225536584854,
-0.05959264561533928,
-0.03276320919394493,
0.03984067589044571,
-0.032419353723526,
0.008279616944491863,
-0.07985791563987732,
0.03393111005425453,
-0.08431295305490494,
-0.01571386307477951,
-0.07684417814016342,
0.04589080810546875,
-0.025848397985100746,
-0.0585157610476017,
-0.04175638407468796,
0.01966436207294464,
0.04249317944049835,
-0.021339988335967064,
0.13423074781894684,
0.030704328790307045,
0.1480465829372406,
0.11741326749324799,
0.057649001479148865,
-0.07496209442615509,
-0.0735631138086319,
-0.012816733680665493,
-0.015317773446440697,
0.06823498755693436,
-0.1402030736207962,
0.03167329728603363,
0.14104269444942474,
0.01745929755270481,
0.11564337462186813,
0.08291707932949066,
-0.01298463623970747,
0.0031724891159683466,
0.06191178038716316,
-0.15621338784694672,
-0.06627131253480911,
0.00707713607698679,
-0.05922534689307213,
-0.09033802151679993,
0.06713873893022537,
0.07689964771270752,
-0.07090102136135101,
-0.013293197378516197,
-0.008668934926390648,
-0.009092504158616066,
-0.07302260398864746,
0.21128611266613007,
0.06663397699594498,
0.04601337015628815,
-0.11288701742887497,
0.07150701433420181,
0.0636611208319664,
-0.0715131089091301,
-0.011218159459531307,
0.0633399561047554,
-0.08699776232242584,
-0.04163670912384987,
0.12725409865379333,
0.18585722148418427,
-0.06331450492143631,
-0.044545236974954605,
-0.1328592747449875,
-0.11665835976600647,
0.08199562132358551,
0.15987662971019745,
0.1249585822224617,
0.014479461126029491,
-0.05999109894037247,
0.002116110874339938,
-0.1188233494758606,
0.06961488723754883,
0.034133415669202805,
0.07737486809492111,
-0.14649415016174316,
0.16813071072101593,
0.012217105366289616,
0.05197807028889656,
-0.023522285744547844,
0.029479950666427612,
-0.09644538909196854,
0.019373221322894096,
-0.13160505890846252,
-0.028361104428768158,
-0.01599203795194626,
0.00910174660384655,
-0.0006331196636892855,
-0.06496421992778778,
-0.05872900411486626,
0.025119297206401825,
-0.12592554092407227,
-0.019748583436012268,
0.0374700203537941,
0.04743490368127823,
-0.11167412996292114,
-0.042741790413856506,
0.019605381414294243,
-0.04816853627562523,
0.05299053341150284,
0.04549496993422508,
0.014359482564032078,
0.06779380887746811,
-0.13430239260196686,
-0.0016660705441609025,
0.0728541761636734,
0.013686677441000938,
0.07782188057899475,
-0.0781584084033966,
-0.0009878571145236492,
0.010838785208761692,
0.07748936861753464,
0.01692194864153862,
0.08081521838903427,
-0.14695048332214355,
-0.01811063289642334,
-0.03661949932575226,
-0.0816163644194603,
-0.06506536155939102,
0.018692070618271828,
0.098653145134449,
0.014636794105172157,
0.1985885202884674,
-0.07317240536212921,
0.03189253434538841,
-0.20495249330997467,
-0.002505144104361534,
-0.023796401917934418,
-0.11909989267587662,
-0.13650132715702057,
-0.06395233422517776,
0.06185305118560791,
-0.048165034502744675,
0.14175982773303986,
0.03717422112822533,
0.04486459866166115,
0.02487674169242382,
-0.016180746257305145,
0.01694507896900177,
0.025251228362321854,
0.21890997886657715,
0.04202018678188324,
-0.03035779297351837,
0.07127353549003601,
0.06417510658502579,
0.09287707507610321,
0.12048450857400894,
0.1910092979669571,
0.1537216454744339,
-0.011111478321254253,
0.09270065277814865,
0.014505770988762379,
-0.05747464299201965,
-0.15379726886749268,
0.036745958030223846,
-0.05692475289106369,
0.09398286044597626,
-0.024586031213402748,
0.22368861734867096,
0.05687728524208069,
-0.1668374240398407,
0.05322674289345741,
-0.05276479944586754,
-0.0876125767827034,
-0.11273661255836487,
-0.04245922341942787,
-0.08300014585256577,
-0.14015258848667145,
-0.002078176708891988,
-0.0924752727150917,
0.020236650481820107,
0.13358111679553986,
0.0042239027097821236,
-0.023383893072605133,
0.1591811627149582,
0.023464959114789963,
0.02909465879201889,
0.04611917957663536,
0.001964585157111287,
-0.028778769075870514,
-0.09767024219036102,
-0.06633742153644562,
-0.024350309744477272,
-0.023748883977532387,
0.03696025162935257,
-0.06513164192438126,
-0.06357760727405548,
0.04198996722698212,
-0.02333589643239975,
-0.09201109409332275,
0.01861635036766529,
0.01672007143497467,
0.06325117498636246,
0.05010344833135605,
0.007529384922236204,
0.02143975906074047,
-0.01994219794869423,
0.20689433813095093,
-0.08310674875974655,
-0.0764525905251503,
-0.084999680519104,
0.28106027841567993,
0.047463029623031616,
-0.007926959544420242,
0.03001990355551243,
-0.05533874034881592,
0.0071560535579919815,
0.25637879967689514,
0.19505389034748077,
-0.09422516822814941,
-0.012320807203650475,
0.0007128173019737005,
-0.01759415864944458,
-0.026464125141501427,
0.13346661627292633,
0.13837991654872894,
0.03533561900258064,
-0.10623160004615784,
-0.04318304732441902,
-0.05771656706929207,
-0.007359859999269247,
-0.06002606078982353,
0.06144845485687256,
0.036784734576940536,
0.003625416662544012,
-0.04181943088769913,
0.04637347534298897,
-0.05213543772697449,
-0.096314437687397,
0.08360225707292557,
-0.17805162072181702,
-0.16558900475502014,
-0.013376928865909576,
0.11099448800086975,
-0.0024702444206923246,
0.053881850093603134,
-0.02724277786910534,
0.011630105786025524,
0.05639385059475899,
-0.023593442514538765,
-0.09340913593769073,
-0.09601408243179321,
0.10594841837882996,
-0.11090733855962753,
0.19842180609703064,
-0.037603020668029785,
0.0707264393568039,
0.12371719628572464,
0.07215171307325363,
-0.0779343992471695,
0.060163713991642,
0.03247923031449318,
-0.09300083667039871,
0.03461647033691406,
0.074667789041996,
-0.027855651453137398,
0.043720610439777374,
0.023368317633867264,
-0.10472297668457031,
0.024040404707193375,
-0.08269765973091125,
-0.04181027039885521,
-0.041947055608034134,
-0.05475080758333206,
-0.056970078498125076,
0.12334494292736053,
0.2102765589952469,
-0.018167326226830482,
0.01639775186777115,
-0.08883199095726013,
0.0058788578025996685,
0.05144723877310753,
0.008251111954450607,
-0.08786468952894211,
-0.2186792641878128,
0.019344164058566093,
0.06791325658559799,
-0.029700595885515213,
-0.21023087203502655,
-0.0908651128411293,
0.004484436009079218,
-0.08123216032981873,
-0.093927301466465,
0.07650282979011536,
0.07197324931621552,
0.05624338984489441,
-0.053839363157749176,
-0.09921190142631531,
-0.08337677270174026,
0.14507488906383514,
-0.1499222218990326,
-0.08997805416584015
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3121
- Precision: 0.1204
- Recall: 0.2430
- F1: 0.1611
- Accuracy: 0.8538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4480 | 0.0209 | 0.0223 | 0.0216 | 0.7794 |
| No log | 2.0 | 60 | 0.3521 | 0.0559 | 0.1218 | 0.0767 | 0.8267 |
| No log | 3.0 | 90 | 0.3177 | 0.1208 | 0.2504 | 0.1629 | 0.8487 |
| No log | 4.0 | 120 | 0.3009 | 0.1296 | 0.2607 | 0.1731 | 0.8602 |
| No log | 5.0 | 150 | 0.2988 | 0.1393 | 0.2693 | 0.1836 | 0.8599 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_14\_04
============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3121
* Precision: 0.1204
* Recall: 0.2430
* F1: 0.1611
* Accuracy: 0.8538
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1194
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0877 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 2.0 | 30 | 0.0806 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 3.0 | 45 | 0.0758 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 4.0 | 60 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 5.0 | 75 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_12\_47
===================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1194
* Precision: 0.0637
* Recall: 0.0080
* F1: 0.0141
* Accuracy: 0.9707
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3082
- Precision: 0.2796
- Recall: 0.4373
- F1: 0.3411
- Accuracy: 0.8887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.5018 | 0.0192 | 0.0060 | 0.0091 | 0.7370 |
| No log | 2.0 | 22 | 0.4066 | 0.1541 | 0.2814 | 0.1992 | 0.8340 |
| No log | 3.0 | 33 | 0.3525 | 0.1768 | 0.3234 | 0.2286 | 0.8612 |
| No log | 4.0 | 44 | 0.3250 | 0.2171 | 0.3503 | 0.2680 | 0.8766 |
| No log | 5.0 | 55 | 0.3160 | 0.2353 | 0.3713 | 0.2880 | 0.8801 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_11\_44
===============================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3082
* Precision: 0.2796
* Recall: 0.4373
* F1: 0.3411
* Accuracy: 0.8887
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5867
- Precision: 0.0119
- Recall: 0.0116
- F1: 0.0118
- Accuracy: 0.6976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.5730 | 0.0952 | 0.0270 | 0.0421 | 0.7381 |
| No log | 2.0 | 20 | 0.5755 | 0.0213 | 0.0135 | 0.0165 | 0.7388 |
| No log | 3.0 | 30 | 0.5635 | 0.0196 | 0.0135 | 0.016 | 0.7416 |
| No log | 4.0 | 40 | 0.5549 | 0.0392 | 0.0270 | 0.032 | 0.7429 |
| No log | 5.0 | 50 | 0.5530 | 0.0357 | 0.0270 | 0.0308 | 0.7438 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39", "results": []}]}
|
token-classification
|
ali2066/distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilBERT\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_10\_39
=====================================================================
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5867
* Precision: 0.0119
* Recall: 0.0116
* F1: 0.0118
* Accuracy: 0.6976
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
58,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.10778860002756119,
0.08068027347326279,
-0.0019912277348339558,
0.12253311276435852,
0.18217027187347412,
0.01565619744360447,
0.10381145030260086,
0.11539831012487411,
-0.1166924312710762,
0.019979365170001984,
0.12624366581439972,
0.19117572903633118,
-0.0012333329068496823,
0.12800829112529755,
-0.055343396961688995,
-0.25173091888427734,
-0.00676547409966588,
0.05903971195220947,
-0.07647360861301422,
0.13451839983463287,
0.09958050400018692,
-0.14168573915958405,
0.0816231444478035,
0.012527969665825367,
-0.24007979035377502,
0.008762762881815434,
0.019333064556121826,
-0.06813951581716537,
0.14439740777015686,
0.013294154778122902,
0.13575655221939087,
-0.005636407062411308,
0.08635827898979187,
-0.1564597338438034,
0.005067731253802776,
0.05133612081408501,
0.01859608292579651,
0.08985215425491333,
0.051328063011169434,
0.00235803727991879,
0.10127215832471848,
-0.08314195275306702,
0.05177589878439903,
0.01590537838637829,
-0.1168014407157898,
-0.2395005226135254,
-0.08772502094507217,
0.03395910933613777,
0.0706666111946106,
0.10034015774726868,
0.007109332364052534,
0.1476338803768158,
-0.09143336862325668,
0.09342385083436966,
0.22674152255058289,
-0.2851739823818207,
-0.061990153044462204,
0.03877175226807594,
-0.0023002990055829287,
0.04751979559659958,
-0.10734959691762924,
-0.03942511975765228,
0.06041524559259415,
0.04880852252244949,
0.14520759880542755,
-0.037069082260131836,
-0.11867764592170715,
0.012997930869460106,
-0.1473141461610794,
-0.032308775931596756,
0.12438832223415375,
0.028344258666038513,
-0.035553812980651855,
-0.034989532083272934,
-0.05802929401397705,
-0.17015181481838226,
-0.041250307112932205,
-0.011203555390238762,
0.04424423724412918,
-0.04127587005496025,
-0.06626494973897934,
0.022792845964431763,
-0.10185027867555618,
-0.06347301602363586,
-0.08299972116947174,
0.15031522512435913,
0.04584682360291481,
0.013152176514267921,
-0.028591064736247063,
0.10844839364290237,
0.01314002089202404,
-0.1265183389186859,
0.02615172415971756,
0.028901154175400734,
0.0006782609270885587,
-0.060023125261068344,
-0.06964389979839325,
-0.03640108183026314,
0.0035645621828734875,
0.12354211509227753,
-0.06511713564395905,
0.041892632842063904,
0.043377090245485306,
0.03987406566739082,
-0.0988021194934845,
0.19699305295944214,
-0.040478792041540146,
0.007059925701469183,
0.012530462816357613,
0.033851660788059235,
-0.0006086048670113087,
0.005439952481538057,
-0.11062806099653244,
-0.0027242498472332954,
0.12489325553178787,
0.015043351799249649,
-0.08146945387125015,
0.07351504266262054,
-0.050107985734939575,
-0.024015208706259727,
0.022560928016901016,
-0.0983174741268158,
0.03587545454502106,
-0.012931307777762413,
-0.08847746253013611,
-0.007891363464295864,
0.02188824862241745,
0.009507367387413979,
-0.02293667383491993,
0.12532569468021393,
-0.09073949605226517,
0.041648782789707184,
-0.10197501629590988,
-0.10105559229850769,
0.014163543470203876,
-0.08512941002845764,
0.034675851464271545,
-0.10592201352119446,
-0.153751939535141,
-0.013454675674438477,
0.054634589701890945,
-0.016510896384716034,
-0.05786874517798424,
-0.03710774704813957,
-0.07363471388816833,
-0.00016577761562075466,
-0.019633933901786804,
0.14001797139644623,
-0.05430953577160835,
0.10916466265916824,
0.03979006037116051,
0.06599710136651993,
-0.047269903123378754,
0.05923401936888695,
-0.10615438222885132,
0.008308201096951962,
-0.19921383261680603,
0.03412729501724243,
-0.050596315413713455,
0.08316604793071747,
-0.09510570764541626,
-0.12113242596387863,
0.03270784765481949,
-0.014170041307806969,
0.0749235451221466,
0.07927799969911575,
-0.15157417953014374,
-0.07148759812116623,
0.14905676245689392,
-0.06591138988733292,
-0.10850075632333755,
0.10814139991998672,
-0.06177520379424095,
0.044050607830286026,
0.0741284191608429,
0.14824946224689484,
0.07481394708156586,
-0.0727955624461174,
0.015785813331604004,
-0.005692317616194487,
0.03935689851641655,
-0.08937748521566391,
0.05333205312490463,
0.014340400695800781,
-0.011640478856861591,
0.03743923082947731,
-0.03007642924785614,
0.07098198682069778,
-0.10144605487585068,
-0.0894973948597908,
-0.04549995809793472,
-0.10307253152132034,
0.04669182747602463,
0.07724519073963165,
0.09424751996994019,
-0.08835993707180023,
-0.062401436269283295,
0.09388649463653564,
0.08212777227163315,
-0.05402301996946335,
0.028054270893335342,
-0.06253018975257874,
0.06602650135755539,
-0.04813767597079277,
-0.02929706685245037,
-0.19818554818630219,
-0.0027279574424028397,
0.009923946112394333,
-0.009098287671804428,
0.016067756339907646,
0.009231087751686573,
0.06743951141834259,
0.05596340820193291,
-0.049541402608156204,
-0.015716485679149628,
-0.010662772692739964,
-0.0015913869719952345,
-0.13972966372966766,
-0.1815250962972641,
-0.032741792500019073,
-0.01744925044476986,
0.10237553715705872,
-0.18533678352832794,
0.031178176403045654,
-0.025111215189099312,
0.08340159803628922,
0.0032002944499254227,
-0.005594281479716301,
-0.047736987471580505,
0.09413835406303406,
-0.03148844093084335,
-0.053037531673908234,
0.07191286981105804,
0.006543915718793869,
-0.07302507758140564,
-0.05387777090072632,
-0.08084066957235336,
0.18388235569000244,
0.1397487372159958,
-0.12494473159313202,
-0.08842577785253525,
-0.0047775437124073505,
-0.06182694807648659,
-0.03256929665803909,
-0.04050677269697189,
0.05626282840967178,
0.1704808920621872,
-0.01815677434206009,
0.1547713428735733,
-0.06752704828977585,
-0.05457916483283043,
0.027917182072997093,
-0.034346356987953186,
0.0343589186668396,
0.11054909229278564,
0.12100817263126373,
-0.08942346274852753,
0.14480799436569214,
0.1526193767786026,
-0.10610613971948624,
0.1044721007347107,
-0.052814316004514694,
-0.06900573521852493,
-0.013559920713305473,
-0.0192964356392622,
-0.0005816941848024726,
0.09070780873298645,
-0.11998406797647476,
-0.0036244273651391268,
0.022631892934441566,
0.02618779055774212,
0.018328344449400902,
-0.22607354819774628,
-0.03406372293829918,
0.026426436379551888,
-0.028537128120660782,
-0.004115203861147165,
-0.013606647960841656,
0.014285454526543617,
0.10200429707765579,
0.0017789009725674987,
-0.09579735994338989,
0.0470007061958313,
0.015623368322849274,
-0.07472475618124008,
0.2172153741121292,
-0.09002439677715302,
-0.1417253613471985,
-0.1159181147813797,
-0.08487287908792496,
-0.03850405290722847,
0.009662597440183163,
0.05983056500554085,
-0.09044534713029861,
-0.028931695967912674,
-0.04295407235622406,
0.008778911083936691,
-0.0005995242390781641,
0.04999883472919464,
0.01484903134405613,
0.0021564180497080088,
0.0796574205160141,
-0.10424068570137024,
-0.008146846666932106,
-0.054779041558504105,
-0.05765604227781296,
0.05144650489091873,
0.039376240223646164,
0.105418361723423,
0.15852470695972443,
-0.034461610019207,
0.008509882725775242,
-0.03193711116909981,
0.23830987513065338,
-0.0570007860660553,
-0.035862889140844345,
0.13747434318065643,
-0.0006083119660615921,
0.05596925690770149,
0.10410916805267334,
0.07235107570886612,
-0.08978364616632462,
0.008592176251113415,
0.02630692906677723,
-0.0347512811422348,
-0.21330563724040985,
-0.05164693295955658,
-0.05310467258095741,
-0.03440861403942108,
0.10406991839408875,
0.027457943186163902,
0.05155198648571968,
0.07665199786424637,
0.050400350242853165,
0.09895331412553787,
-0.057783447206020355,
0.05941593274474144,
0.12201196700334549,
0.052055127918720245,
0.12275896221399307,
-0.045286938548088074,
-0.07479453086853027,
0.029394270852208138,
-0.01064267847687006,
0.23474833369255066,
0.000267635885393247,
0.10828784108161926,
0.05352022498846054,
0.1977105736732483,
0.004691984038800001,
0.09326126426458359,
-0.0049678790383040905,
-0.044221315532922745,
-0.008631108328700066,
-0.03319001942873001,
-0.041508886963129044,
0.010931642726063728,
-0.06597860902547836,
0.05317488685250282,
-0.11938078701496124,
-0.011321067810058594,
0.04771680384874344,
0.26432979106903076,
0.023131202906370163,
-0.335601806640625,
-0.09137655049562454,
-0.011348218657076359,
-0.03624609112739563,
-0.028121262788772583,
0.022053774446249008,
0.0718589499592781,
-0.09560035914182663,
0.024831682443618774,
-0.0730324387550354,
0.09328873455524445,
-0.04081428423523903,
0.042701102793216705,
0.07868198305368423,
0.08870295435190201,
0.01824023202061653,
0.07787904888391495,
-0.31981849670410156,
0.2677275538444519,
-0.0008013053447939456,
0.07302354276180267,
-0.07791102677583694,
0.0021527200005948544,
0.030023625120520592,
0.06814513355493546,
0.05664649233222008,
-0.011938609182834625,
-0.049857720732688904,
-0.21360041201114655,
-0.04641563445329666,
0.0259179025888443,
0.07885637134313583,
-0.010766174644231796,
0.08595389872789383,
-0.029753485694527626,
0.005887418985366821,
0.07452994585037231,
-0.04611753672361374,
-0.04486816003918648,
-0.08232437074184418,
-0.014162871986627579,
0.0282480176538229,
-0.035167254507541656,
-0.06006906181573868,
-0.11270229518413544,
-0.1331779807806015,
0.14826740324497223,
-0.012040582485496998,
-0.03853262588381767,
-0.11696383357048035,
0.08334825187921524,
0.08901045471429825,
-0.08679377287626266,
0.06136387959122658,
0.003835330717265606,
0.058014027774333954,
0.03918171301484108,
-0.07603564858436584,
0.10757704824209213,
-0.06282689422369003,
-0.15543310344219208,
-0.05269487202167511,
0.09024756401777267,
0.034196075052022934,
0.05856827646493912,
-0.009693451225757599,
0.013556289486587048,
-0.039585407823324203,
-0.0938815176486969,
0.013919304125010967,
-0.01975153386592865,
0.08797334134578705,
0.01747271418571472,
-0.0571659654378891,
0.009917334653437138,
-0.060356758534908295,
-0.026728369295597076,
0.17992958426475525,
0.21882113814353943,
-0.10356417298316956,
0.009584853425621986,
0.033836714923381805,
-0.06339707970619202,
-0.19243067502975464,
0.04216541349887848,
0.06622365117073059,
0.0011702016927301884,
0.025208374485373497,
-0.17150376737117767,
0.14472255110740662,
0.10532265156507492,
-0.013714680448174477,
0.10331794619560242,
-0.31880873441696167,
-0.1250954121351242,
0.13238675892353058,
0.14762581884860992,
0.13311024010181427,
-0.13088081777095795,
-0.013592306524515152,
-0.014398462139070034,
-0.12866242229938507,
0.09570468217134476,
-0.05568557232618332,
0.11657947301864624,
-0.03557422757148743,
0.09214015305042267,
0.001615077955648303,
-0.0635623037815094,
0.10738716274499893,
0.037040889263153076,
0.10471386462450027,
-0.056938961148262024,
-0.038231901824474335,
0.02904665842652321,
-0.03696632757782936,
0.017075102776288986,
-0.0551484115421772,
0.03799660876393318,
-0.09058448672294617,
-0.016240477561950684,
-0.0816069021821022,
0.04832606762647629,
-0.025774680078029633,
-0.057457417249679565,
-0.042464204132556915,
0.027175432071089745,
0.046880900859832764,
-0.01869133673608303,
0.1300540566444397,
0.03951914981007576,
0.144923135638237,
0.10925117880105972,
0.05350537970662117,
-0.07484740763902664,
-0.07211120426654816,
-0.014755398035049438,
-0.017319664359092712,
0.06585656851530075,
-0.13452404737472534,
0.033757079392671585,
0.15067574381828308,
0.02202780917286873,
0.11813154071569443,
0.08521270006895065,
-0.009686121717095375,
0.004177741706371307,
0.06181138753890991,
-0.16134954988956451,
-0.05650242790579796,
0.0038418283220380545,
-0.05388123542070389,
-0.09307511150836945,
0.06766953319311142,
0.08106774836778641,
-0.07494506984949112,
-0.01577398180961609,
-0.009086205624043941,
-0.004285311792045832,
-0.06316661089658737,
0.2117079347372055,
0.06207556277513504,
0.047572534531354904,
-0.11244770884513855,
0.06464031338691711,
0.0607474185526371,
-0.07543385028839111,
-0.006139606237411499,
0.06169920787215233,
-0.09176664799451828,
-0.03987856209278107,
0.1086156815290451,
0.16184072196483612,
-0.0835287794470787,
-0.043604690581560135,
-0.13595698773860931,
-0.12141162902116776,
0.08731050789356232,
0.16496510803699493,
0.125546395778656,
0.021473029628396034,
-0.05700363591313362,
0.006485836114734411,
-0.1338813304901123,
0.07252254337072372,
0.04786335676908493,
0.08067125827074051,
-0.15495456755161285,
0.1721206158399582,
0.00552594056352973,
0.05465091019868851,
-0.023992661386728287,
0.030398765578866005,
-0.09938911348581314,
0.019129302352666855,
-0.11637122929096222,
-0.028302805498242378,
-0.03036094270646572,
0.008309651166200638,
0.00019970528956037015,
-0.05884110927581787,
-0.04852689430117607,
0.024456067010760307,
-0.12126519531011581,
-0.014865751378238201,
0.03672740235924721,
0.05118432641029358,
-0.11102790385484695,
-0.04154796898365021,
0.020814603194594383,
-0.05577285960316658,
0.06195281445980072,
0.05118526890873909,
0.014619878493249416,
0.05727674067020416,
-0.119622603058815,
-0.008841174654662609,
0.08482947200536728,
0.008723716251552105,
0.07732458412647247,
-0.09476703405380249,
0.00019296655955258757,
0.013173368759453297,
0.06612077355384827,
0.01732512004673481,
0.06767257302999496,
-0.1491333693265915,
-0.012408136390149593,
-0.031163588166236877,
-0.07226859033107758,
-0.07067370414733887,
0.016219986602663994,
0.09797032177448273,
0.009897217154502869,
0.19455376267433167,
-0.07253468036651611,
0.034209683537483215,
-0.1996827870607376,
-0.004818717949092388,
-0.024882815778255463,
-0.11880327761173248,
-0.13020196557044983,
-0.057267606258392334,
0.0613701269030571,
-0.043564364314079285,
0.1354210525751114,
0.026901384815573692,
0.04400284215807915,
0.027250299230217934,
-0.026612497866153717,
0.004319637548178434,
0.02788645029067993,
0.21657633781433105,
0.031818825751543045,
-0.03482942283153534,
0.07407794892787933,
0.059649981558322906,
0.09364176541566849,
0.11203131079673767,
0.18488933145999908,
0.15397246181964874,
-0.0192700382322073,
0.08765044063329697,
0.017095597460865974,
-0.04790453612804413,
-0.1715254932641983,
0.03388212248682976,
-0.05448004603385925,
0.09344136714935303,
-0.02163499779999256,
0.20881368219852448,
0.05305306985974312,
-0.16486774384975433,
0.04705330729484558,
-0.05089118704199791,
-0.08752259612083435,
-0.09806171804666519,
-0.03226463869214058,
-0.08060217648744583,
-0.14277291297912598,
0.0021965145133435726,
-0.10096009820699692,
0.011366079561412334,
0.11392513662576675,
0.006470144726336002,
-0.026870805770158768,
0.1585216373205185,
0.026487061753869057,
0.03024059534072876,
0.051489729434251785,
0.0019947418477386236,
-0.03041200339794159,
-0.10034609586000443,
-0.06356950104236603,
-0.023890795186161995,
-0.014431176707148552,
0.039193131029605865,
-0.06409415602684021,
-0.0638824924826622,
0.038420792669057846,
-0.020715011283755302,
-0.08686067909002304,
0.017032379284501076,
0.02387135848402977,
0.06181953474879265,
0.04360667243599892,
0.003254934214055538,
0.020023111253976822,
-0.020364416763186455,
0.20235857367515564,
-0.0808679535984993,
-0.0848400890827179,
-0.1001770868897438,
0.28765323758125305,
0.05301970615983009,
-0.010221130214631557,
0.03573925793170929,
-0.05545473471283913,
-0.0015314308693632483,
0.25319427251815796,
0.1761181652545929,
-0.07551936060190201,
-0.011659866198897362,
0.001563563826493919,
-0.016905652359128,
-0.027057737112045288,
0.1240062490105629,
0.14848525822162628,
0.04730034992098808,
-0.10135693848133087,
-0.048316918313503265,
-0.06416845321655273,
-0.00964710209518671,
-0.055837374180555344,
0.04700614884495735,
0.03196971118450165,
0.001721260487101972,
-0.040335074067115784,
0.050729285925626755,
-0.0678473711013794,
-0.09296028316020966,
0.07394842803478241,
-0.18671411275863647,
-0.16015352308750153,
-0.006629839073866606,
0.10512832552194595,
0.0008593018865212798,
0.05458828806877136,
-0.028277769684791565,
0.005723492242395878,
0.07415735721588135,
-0.02394001930952072,
-0.08197080343961716,
-0.08234018087387085,
0.09655734896659851,
-0.09558568149805069,
0.19083115458488464,
-0.03867029771208763,
0.0784619078040123,
0.12392305582761765,
0.07174833863973618,
-0.08345665782690048,
0.054093655198812485,
0.03291735425591469,
-0.07840564846992493,
0.035385861992836,
0.08661612123250961,
-0.025195499882102013,
0.0535137839615345,
0.023149022832512856,
-0.12660685181617737,
0.018206622451543808,
-0.0792446881532669,
-0.03481019660830498,
-0.04668750241398811,
-0.05165095627307892,
-0.04931771382689476,
0.1246492862701416,
0.2133176624774933,
-0.02536364458501339,
0.011307014152407646,
-0.07926616817712784,
0.015059257857501507,
0.05234965309500694,
0.0033908123150467873,
-0.08399108797311783,
-0.22708538174629211,
0.013785862363874912,
0.057186055928468704,
-0.027453020215034485,
-0.19137486815452576,
-0.09207133948802948,
0.0020399903878569603,
-0.08449861407279968,
-0.09619127959012985,
0.08188775181770325,
0.061824310570955276,
0.055024467408657074,
-0.05468939244747162,
-0.06727954000234604,
-0.0894060730934143,
0.1471198946237564,
-0.15012776851654053,
-0.0906490683555603
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.