sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
This **cased model** was pretrained from scratch using a custom vocabulary on the following corpora - Pubmed - Clinical trials corpus - and a small subset of Bookcorpus The pretrained model was used to do NER **as is, with no fine-tuning**. The approach is described [in this post](https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html). [Towards Data Science review](https://twitter.com/TDataScience/status/1486300137366466560?s=20) [App in Spaces](https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-biomedical) demonstrates this approach. [Github link](https://github.com/ajitrajasekharan/unsupervised_NER) to perform NER using this model in an ensemble with bert-base cased. The ensemble detects 69 entity subtypes (17 broad entity groups) <img src="https://ajitrajasekharan.github.io/images/1.png" width="600"> ### Ensemble model performance <img src="https://ajitrajasekharan.github.io/images/6.png" width="600"> ### Additional notes - The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER. - Some of the top model predictions like "a", "the", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results. - [Use this link](https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation) to examine both fill-mask prediction and [CLS] predictions ### License MIT license <a href="https://huggingface.co/exbert/?model=ajitrajasekharan/biomedical&modelKind=bidirectional&sentence=Gefitinib%20is%20an%20EGFR%20tyrosine%20kinase%20inhibitor,%20which%20is%20often%20used%20for%20breast%20cancer%20and%20NSCLC%20treatment.&layer=3&heads=..0,1,2,3,4,5,6,7,8,9,10,11&threshold=0.7&tokenInd=17&tokenSide=right&maskInds=..&hideClsSep=true"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": [{}], "license": "mit", "tags": [{}, "exbert"], "widget": [{"text": "Lou Gehrig who works for XCorp and lives in New York suffers from [MASK]", "example_title": "Test for entity type: Disease"}, {"text": "Overexpression of [MASK] occurs across a wide range of cancers", "example_title": "Test for entity type: Gene"}, {"text": "Patients treated with [MASK] are vulnerable to infectious diseases", "example_title": "Test for entity type: Drug"}, {"text": "A eGFR level below [MASK] indicates chronic kidney disease", "example_title": "Test for entity type: Measure "}, {"text": "In the [MASK], increased daily imatinib dose induced MMR", "example_title": "Test for entity type: STUDY/TRIAL"}, {"text": "Paul Erdos died at [MASK]", "example_title": "Test for entity type: TIME"}], "inference": {"parameters": {"top_k": 10}}}
fill-mask
ajitrajasekharan/biomedical
[ "transformers", "pytorch", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
This cased model was pretrained from scratch using a custom vocabulary on the following corpora - Pubmed - Clinical trials corpus - and a small subset of Bookcorpus The pretrained model was used to do NER as is, with no fine-tuning. The approach is described in this post. Towards Data Science review App in Spaces demonstrates this approach. Github link to perform NER using this model in an ensemble with bert-base cased. The ensemble detects 69 entity subtypes (17 broad entity groups) <img src="URL width="600"> ### Ensemble model performance <img src="URL width="600"> ### Additional notes - The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER. - Some of the top model predictions like "a", "the", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results. - Use this link to examine both fill-mask prediction and [CLS] predictions ### License MIT license <a href="URL <img width="300px" src="URL </a>
[ "### Ensemble model performance\n\n <img src=\"URL width=\"600\">", "### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions", "### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Ensemble model performance\n\n <img src=\"URL width=\"600\">", "### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions", "### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>" ]
[ 45, 17, 165, 28 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Ensemble model performance\n\n <img src=\"URL width=\"600\">### Additional notes\n\n- The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER.\n- Some of the top model predictions like \"a\", \"the\", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results.\n- Use this link to examine both fill-mask prediction and [CLS] predictions### License\n\nMIT license\n\n<a href=\"URL \n\t<img width=\"300px\" src=\"URL\n</a>" ]
[ -0.03627771511673927, 0.03145008161664009, -0.0004051690630149096, 0.05778981372714043, 0.031422700732946396, -0.01777363009750843, 0.09058648347854614, -0.021983077749609947, 0.1387765258550644, 0.1412389725446701, 0.047298677265644073, -0.10669359564781189, 0.02668350376188755, 0.07108215987682343, -0.04105992987751961, -0.21511179208755493, 0.06246507540345192, -0.08466512709856033, 0.030664552003145218, 0.09978371113538742, 0.08671165257692337, -0.06520932167768478, 0.057172901928424835, 0.11289363354444504, -0.024939510971307755, -0.00047608252498321235, 0.029144449159502983, -0.020599981769919395, 0.0654507726430893, 0.025638649240136147, 0.11226195842027664, 0.029475221410393715, 0.07273469865322113, -0.09889043867588043, 0.036737505346536636, 0.039153892546892166, 0.027243150398135185, 0.08462740480899811, 0.0548710860311985, -0.05125313997268677, 0.053449057042598724, -0.00543965632095933, 0.06236498802900314, 0.014542242512106895, -0.08673222362995148, -0.030627785250544548, -0.12449180334806442, 0.06106347590684891, 0.014372543431818485, 0.025603890419006348, 0.010484552942216396, 0.19922146201133728, -0.15019027888774872, 0.019291847944259644, 0.10925506055355072, -0.2768441438674927, 0.025764327496290207, 0.07533317059278488, 0.04194483533501625, -0.03376913070678711, -0.011652517132461071, 0.007087232545018196, 0.01354703027755022, -0.037312962114810944, 0.06497988104820251, 0.06425689905881882, 0.011706343851983547, -0.019699139520525932, -0.16274376213550568, -0.10757794231176376, 0.14635589718818665, 0.03801845386624336, -0.023538069799542427, -0.11494500935077667, -0.08374641835689545, 0.06765035539865494, -0.013697057031095028, -0.01010988187044859, 0.0028539709746837616, 0.007161329500377178, 0.037430454045534134, 0.03776577115058899, -0.046753812581300735, -0.05954870954155922, -0.16505737602710724, 0.1962612420320511, 0.04273112863302231, 0.038403574377298355, -0.0599508136510849, 0.08044397830963135, -0.11292533576488495, -0.13904783129692078, -0.04246240854263306, -0.07673800736665726, -0.1313028484582901, -0.010417908430099487, -0.0820838138461113, 0.019127732142806053, -0.026189900934696198, 0.24290239810943604, 0.019545016810297966, 0.017777493223547935, 0.03955816105008125, 0.06011884659528732, 0.03183966130018234, 0.03617671877145767, -0.11094952374696732, 0.04933157190680504, 0.05908011272549629, -0.06991950422525406, 0.12111212313175201, -0.049319807440042496, -0.03146466612815857, 0.023408858105540276, -0.09522873908281326, -0.016965501010417938, -0.02436511032283306, 0.02066940627992153, -0.1016683280467987, 0.001702914945781231, 0.14855147898197174, -0.10438641905784607, -0.004531494807451963, 0.05871955677866936, -0.09554678946733475, 0.01318657211959362, 0.06212562322616577, 0.047579314559698105, -0.04375426843762398, 0.04422949254512787, -0.11754098534584045, -0.04371423274278641, -0.10584733635187149, -0.09165994822978973, 0.0475216880440712, 0.07191199064254761, -0.041327059268951416, -0.07791082561016083, -0.1458788812160492, -0.01903330720961094, 0.034722451120615005, -0.05521836876869202, -0.019595852121710777, 0.05103323981165886, 0.004064017906785011, 0.025693388655781746, -0.014914587140083313, -0.11200131475925446, -0.04526965320110321, 0.0043884627521038055, -0.018112897872924805, 0.08339682966470718, 0.013140139169991016, 0.01323200948536396, -0.1683596968650818, 0.048791538923978806, -0.15671716630458832, 0.09030736237764359, -0.053305160254240036, 0.00209570094011724, -0.10428891330957413, -0.0632447823882103, -0.11640843003988266, 0.0039154584519565105, 0.04417979717254639, 0.10588762164115906, -0.1852147877216339, -0.018146438524127007, 0.15475012362003326, -0.12180637568235397, -0.09171175211668015, 0.13074301183223724, -0.07477008551359177, -0.04463324695825577, 0.029626619070768356, 0.16667233407497406, 0.10221567749977112, -0.06572845578193665, -0.002520295325666666, 0.017286907881498337, 0.014055199921131134, 0.027622081339359283, 0.06577625870704651, 0.0380762554705143, -0.08824758976697922, 0.01922539249062538, -0.15106453001499176, -0.02004069834947586, 0.002987130545079708, -0.05940315127372742, -0.0466165654361248, 0.030297040939331055, 0.015291648916900158, -0.017164506018161774, 0.02336619235575199, -0.03289606422185898, -0.1031387597322464, -0.0012728107394650578, 0.07887329906225204, -0.04092709347605705, 0.031135806813836098, -0.0640997663140297, 0.10119562596082687, -0.043638307601213455, -0.03336462005972862, -0.2078935205936432, -0.13229838013648987, 0.06002577021718025, -0.16030870378017426, 0.11147430539131165, 0.015139913186430931, -0.0016070706769824028, 0.025928638875484467, 0.03723311796784401, 0.05394953116774559, 0.09939461201429367, -0.0010300438152626157, -0.016894759610295296, -0.16641663014888763, -0.0428302064538002, -0.02875259891152382, 0.04522516205906868, -0.14728328585624695, -0.021755686029791832, -0.0010625066934153438, 0.1960233449935913, -0.04254453256726265, -0.030783740803599358, -0.0031522992067039013, -0.035067420452833176, -0.05409184843301773, -0.012837431393563747, 0.008331693708896637, 0.0017214856343343854, -0.12501974403858185, 0.14970940351486206, -0.20018422603607178, -0.012729265727102757, 0.08729014545679092, 0.031395573168992996, -0.03808514401316643, -0.005106267519295216, -0.022870497778058052, 0.006936989724636078, -0.05457909405231476, 0.037244051694869995, 0.17389841377735138, 0.026390818879008293, 0.06312296539545059, -0.09733722358942032, -0.056654781103134155, -0.00046441835002042353, -0.02986607514321804, -0.03336302191019058, 0.05440153181552887, 0.185895174741745, -0.12655334174633026, 0.05421791970729828, -0.005846878979355097, -0.02469470724463463, 0.016609150916337967, 0.0010594356572255492, -0.07855327427387238, -0.006431323476135731, -0.004677776247262955, -0.01050957478582859, 0.051770035177469254, 0.11263469606637955, 0.04837508127093315, 0.06088339909911156, 0.022537650540471077, 0.01885823905467987, -0.15385150909423828, 0.02185322903096676, 0.03761875629425049, -0.018029766157269478, -0.1679994761943817, 0.021585652604699135, -0.032882172614336014, 0.09781395643949509, 0.016931386664509773, -0.07395147532224655, 0.0000782370989327319, -0.062319476157426834, -0.13174107670783997, 0.16463740170001984, -0.04131454974412918, -0.16664262115955353, -0.15745675563812256, 0.05036710947751999, -0.0671384185552597, 0.004307914059609175, -0.011463369242846966, 0.028826655820012093, -0.13630446791648865, -0.12645825743675232, -0.09555822610855103, 0.03957356885075569, -0.04647701233625412, 0.008897875435650349, -0.09239664673805237, 0.03724689781665802, -0.14359329640865326, 0.01884911023080349, -0.04291160777211189, 0.02369649149477482, -0.014033242128789425, 0.022113647311925888, 0.09995099157094955, 0.18576204776763916, -0.008040565997362137, -0.030347704887390137, -0.009808246046304703, 0.15202948451042175, -0.05918920785188675, -0.00898269284516573, 0.11376449465751648, -0.07377937436103821, 0.08216355741024017, 0.19537371397018433, 0.050949856638908386, -0.052919648587703705, 0.043027956038713455, -0.03146898373961449, -0.10728474706411362, -0.1776074320077896, -0.14446312189102173, -0.09925661236047745, -0.1753796637058258, 0.03520612791180611, 0.03343867510557175, 0.0037585818208754063, 0.025280354544520378, -0.0947762280702591, -0.016339514404535294, 0.026858827099204063, 0.06906870007514954, 0.12032449245452881, 0.04405992105603218, 0.10791297256946564, -0.057006530463695526, -0.04577683284878731, 0.06996383517980576, -0.0034794341772794724, 0.1581818014383316, -0.01955510303378105, 0.191716268658638, 0.08905148506164551, 0.09278866648674011, 0.09772016108036041, 0.0353565514087677, -0.06464583426713943, 0.06820770353078842, -0.02241814136505127, -0.0949108824133873, 0.02168557606637478, 0.07547195255756378, -0.003922696225345135, 0.010833402164280415, -0.0238502137362957, -0.039154842495918274, 0.03317425400018692, 0.047045353800058365, 0.10830069333314896, -0.31770628690719604, -0.05069449543952942, 0.07380086928606033, -0.02936156466603279, 0.014364106580615044, 0.064004085958004, 0.037231482565402985, -0.045378148555755615, 0.11321085691452026, 0.041517116129398346, 0.09377862513065338, 0.02062126249074936, -0.014777385629713535, -0.010808747261762619, 0.12999960780143738, -0.0045698219910264015, 0.07011300325393677, -0.06251873075962067, 0.15113702416419983, -0.02414252795279026, 0.014013858512043953, -0.06255728751420975, -0.0007914755260571837, 0.04844122380018234, 0.03537071868777275, 0.12376762926578522, 0.003767839167267084, -0.09683719277381897, 0.010394464246928692, -0.09607967734336853, 0.03169780969619751, 0.03051522560417652, -0.10185662657022476, 0.07741478830575943, -0.01691042259335518, -0.015048420056700706, 0.05053683742880821, -0.035665251314640045, -0.11537211388349533, -0.12029191851615906, 0.05647341161966324, -0.0004802208859473467, -0.0702788308262825, -0.05335621163249016, -0.07410749047994614, -0.130546435713768, 0.09693554788827896, -0.12750813364982605, -0.019060781225562096, -0.12452399730682373, -0.015036772936582565, 0.1566399484872818, -0.08268525451421738, 0.012120074592530727, -0.00941404141485691, 0.18783605098724365, -0.003035301109775901, -0.16197256743907928, 0.08830297738313675, -0.07773275673389435, -0.12864023447036743, -0.05961129441857338, 0.14618904888629913, 0.06823403388261795, 0.07479660212993622, 0.03755407780408859, 0.10654521733522415, -0.01642240770161152, -0.14285553991794586, -0.09316681325435638, 0.1135135218501091, 0.06232934072613716, 0.12765814363956451, -0.015348563902080059, 0.006481285206973553, 0.012318922206759453, 0.09159215539693832, 0.08423469960689545, 0.1269538402557373, -0.0975537896156311, 0.14958439767360687, 0.14401540160179138, -0.041154369711875916, -0.24546769261360168, -0.007697770372033119, 0.009459137916564941, 0.06724119931459427, 0.09670888632535934, -0.020680228248238564, 0.08655750006437302, -0.0036401008255779743, -0.05427319556474686, -0.036406755447387695, -0.1909969002008438, -0.131219282746315, 0.10612622648477554, -0.006390737369656563, 0.15380679070949554, -0.02413976937532425, -0.06776493787765503, -0.04298644885420799, -0.0365648977458477, 0.180833101272583, -0.025937246158719063, 0.047773588448762894, 0.0428805910050869, 0.03892088308930397, 0.018235085532069206, -0.06760073453187943, 0.1445329338312149, 0.05038411542773247, 0.05027597397565842, -0.06948841363191605, 0.08075007051229477, -0.05263237655162811, -0.04753568023443222, 0.14949768781661987, 0.051834288984537125, 0.0784454271197319, -0.0073071676306426525, -0.04287448897957802, -0.001159883220680058, 0.06781242787837982, -0.009441015310585499, 0.01681678183376789, -0.13166606426239014, 0.030396031215786934, 0.09375780075788498, -0.022300060838460922, 0.13089990615844727, 0.007379845250397921, 0.006616713013499975, 0.051076773554086685, 0.15980930626392365, 0.05755620449781418, -0.0948634222149849, 0.043078549206256866, -0.018145810812711716, 0.11117864400148392, -0.1763623058795929, 0.08176080137491226, 0.12019943445920944, 0.04520842060446739, 0.060304634273052216, 0.03694569319486618, -0.10473350435495377, -0.03751232102513313, 0.059944018721580505, -0.09838312119245529, -0.1072988212108612, -0.008238643407821655, -0.01811373606324196, -0.061770178377628326, -0.029211293905973434, 0.08787243068218231, -0.11966509371995926, 0.015115550719201565, 0.05345604196190834, 0.07546589523553848, 0.02578805573284626, 0.08645515143871307, 0.058817293494939804, 0.02148047275841236, -0.12356923520565033, 0.04598231986165047, 0.11013156175613403, -0.05763453245162964, -0.001874364446848631, 0.006682370789349079, -0.14399376511573792, -0.027739135548472404, -0.11096670478582382, 0.016714733093976974, -0.03450364992022514, -0.06087290123105049, -0.08901739865541458, -0.1507878601551056, 0.046980779618024826, 0.22522199153900146, 0.0980663076043129, 0.03167383745312691, -0.079874187707901, -0.04971021041274071, -0.05195116251707077, 0.07778004556894302, 0.10387694835662842, 0.03551507368683815, -0.08131758868694305, 0.02140849642455578, 0.04831425100564957, -0.02090202085673809, -0.05648854374885559, -0.03929181024432182, -0.10939354449510574, -0.00044633285142481327, -0.12241230905056, 0.015881584957242012, -0.0754980519413948, 0.0274210162460804, 0.006991947535425425, -0.05033693462610245, -0.06089980527758598, 0.046567268669605255, -0.06536325067281723, -0.0016744255553930998, -0.06324560195207596, 0.08287805318832397, -0.13912318646907806, 0.012296218425035477, 0.11228621751070023, -0.05593179166316986, 0.0403401218354702, 0.03608566150069237, -0.03307539224624634, 0.01851479895412922, -0.20725421607494354, -0.08379559218883514, 0.031433600932359695, 0.11268779635429382, 0.007290467619895935, -0.12732462584972382, 0.032961975783109665, 0.04415546730160713, 0.00491387490183115, -0.04104015603661537, -0.03273668512701988, -0.07582278549671173, -0.05296484753489494, -0.010940570384263992, -0.020004257559776306, -0.05520136281847954, -0.02177944965660572, 0.037269990891218185, 0.13938555121421814, 0.15015758574008942, 0.00519581651315093, 0.004231865983456373, -0.11219892650842667, -0.010600467212498188, -0.0002453037886880338, -0.013161063194274902, -0.1214384064078331, -0.015485372394323349, 0.05306650698184967, 0.008032713085412979, 0.2814006209373474, 0.03715505078434944, -0.04429175704717636, 0.035510364919900894, 0.15158389508724213, 0.07734798640012741, 0.033229630440473557, 0.048327043652534485, 0.08727683871984482, 0.022057848051190376, 0.01619599387049675, -0.03640277311205864, 0.003011336550116539, -0.2004653960466385, 0.1546708047389984, 0.09134292602539062, 0.019831696525216103, 0.04766228049993515, 0.07821831107139587, -0.06611111015081406, 0.04328373447060585, -0.028725823387503624, -0.03672358766198158, 0.01816536672413349, 0.02116316743195057, 0.00013799878070130944, 0.1386781483888626, -0.09463207423686981, 0.05708957090973854, -0.0010371417738497257, -0.059843845665454865, -0.15251895785331726, -0.20829816162586212, -0.04116089269518852, -0.07914890348911285, -0.014020364731550217, -0.08057565987110138, -0.017465665936470032, 0.1615181416273117, 0.014257872477173805, -0.0027017274405807257, 0.061611589044332504, -0.17980489134788513, -0.026753956452012062, -0.06917115300893784, 0.00800339039415121, 0.019094141200184822, 0.08950246125459671, -0.03428719565272331, 0.04107767716050148, 0.04263672977685928, 0.0354328416287899, 0.034383438527584076, 0.13780227303504944, 0.05026381462812424, -0.01990448124706745, -0.05911451205611229, -0.036695897579193115, -0.005979262292385101, 0.011490575037896633, 0.07189546525478363, 0.07446426153182983, -0.0007747228373773396, -0.01864570938050747, 0.10235673189163208, -0.064934641122818, -0.016124172136187553, -0.12042500078678131, 0.21233266592025757, 0.019475802779197693, 0.015174280852079391, 0.03676021471619606, -0.108990378677845, -0.06891045719385147, 0.14463436603546143, 0.1784437596797943, -0.06012820452451706, -0.01506768073886633, -0.037207216024398804, -0.00145018904004246, 0.03807947412133217, 0.08032269030809402, 0.03249822184443474, 0.3633202910423279, -0.0205533504486084, -0.018944326788187027, -0.025716617703437805, 0.0021133311092853546, -0.026408039033412933, 0.07374308258295059, -0.028533436357975006, -0.0784291923046112, -0.08947677910327911, 0.0881984755396843, -0.0990549772977829, -0.1301727145910263, 0.0008558073895983398, -0.01824735850095749, -0.08162356913089752, 0.018926648423075676, 0.012123789638280869, -0.017208930104970932, 0.005036538001149893, -0.0344868041574955, -0.012371464632451534, 0.08768073469400406, 0.04139573872089386, -0.133456289768219, 0.027260685339570045, 0.06581838428974152, 0.11789470165967941, 0.19473356008529663, 0.03803228214383125, 0.2101130336523056, 0.029764382168650627, 0.0346914678812027, -0.06603041291236877, 0.009930547326803207, 0.05849425867199898, -0.09383965283632278, 0.029276933521032333, 0.056909456849098206, -0.011524572037160397, 0.008336074650287628, 0.0895935595035553, -0.16056598722934723, 0.055855587124824524, -0.11621595174074173, -0.05262909457087517, -0.11083512008190155, 0.006334073841571808, -0.0806456208229065, 0.1244392842054367, 0.09059850126504898, -0.03025791607797146, 0.008633951656520367, -0.0051930928602814674, -0.002909658709540963, -0.032236333936452866, 0.0051465341821312904, 0.07553482800722122, -0.13985314965248108, 0.01686440408229828, -0.09662080556154251, 0.017679372802376747, -0.2352275550365448, -0.08587097376585007, 0.004032825585454702, -0.013274035416543484, 0.036543626338243484, 0.07242324948310852, 0.09739924222230911, 0.029550006613135338, -0.06730764359235764, -0.11253993213176727, 0.0328572578728199, 0.028201207518577576, -0.10791096836328506, -0.05252089723944664 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8385 - Matthews Correlation: 0.5865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4887 | 1.0 | 535 | 0.5016 | 0.5107 | | 0.286 | 2.0 | 1070 | 0.5473 | 0.5399 | | 0.1864 | 3.0 | 1605 | 0.7114 | 0.5706 | | 0.1163 | 4.0 | 2140 | 0.8385 | 0.5865 | | 0.0834 | 5.0 | 2675 | 0.9610 | 0.5786 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5864941797290588, "name": "Matthews Correlation"}]}]}]}
text-classification
ajrae/bert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-cola ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8385 * Matthews Correlation: 0.5865 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 65, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11058378964662552, 0.08168771862983704, -0.0018928216304630041, 0.12054884433746338, 0.16402749717235565, 0.03651754930615425, 0.11452049016952515, 0.12926580011844635, -0.08146972209215164, 0.026920324191451073, 0.1253388673067093, 0.15753161907196045, 0.020413868129253387, 0.11850695312023163, -0.04691627621650696, -0.26174473762512207, -0.009937528520822525, 0.04934175685048103, -0.052011638879776, 0.13128681480884552, 0.08871930837631226, -0.12730920314788818, 0.0955171287059784, 0.01379626989364624, -0.19598133862018585, 0.0037745756562799215, 0.007866744883358479, -0.055304158478975296, 0.1457548588514328, 0.028573520481586456, 0.12012506276369095, -0.0012681136140599847, 0.08600315451622009, -0.19181281328201294, 0.011322222650051117, 0.048287421464920044, 0.00024589619715698063, 0.0936809778213501, 0.05205908790230751, 0.0029348116368055344, 0.12715323269367218, -0.08503279089927673, 0.05376281961798668, 0.028530191630125046, -0.11875519901514053, -0.22161872684955597, -0.07665970921516418, 0.04215710237622261, 0.07633838802576065, 0.10951228439807892, -0.005718022119253874, 0.12911391258239746, -0.08710674941539764, 0.08877304196357727, 0.23591582477092743, -0.30551132559776306, -0.064704030752182, 0.033326052129268646, 0.012882307171821594, 0.03819486126303673, -0.11001497507095337, -0.033636145293712616, 0.053923528641462326, 0.05009079352021217, 0.12470096349716187, -0.03137143328785896, -0.11200437694787979, 0.011789802461862564, -0.13569097220897675, -0.0266043022274971, 0.1517753154039383, 0.03980390727519989, -0.030814344063401222, -0.0515427440404892, -0.052898701280355453, -0.14895284175872803, -0.036878012120723724, -0.005174336489289999, 0.047176703810691833, -0.02803935296833515, -0.05512383580207825, 0.003653373569250107, -0.11400924623012543, -0.06777030974626541, -0.07787948846817017, 0.12161674350500107, 0.03376021981239319, 0.016329757869243622, -0.03601174056529999, 0.1104925200343132, -0.008701197803020477, -0.13123579323291779, 0.014582755975425243, 0.025314364582300186, 0.007587775122374296, -0.044702157378196716, -0.051504962146282196, -0.0515524260699749, 0.012162799946963787, 0.13041265308856964, -0.05370127409696579, 0.04579243063926697, 0.05259358137845993, 0.043655142188072205, -0.09150955080986023, 0.1945887953042984, -0.03788289055228233, -0.020141582936048508, 0.004516669549047947, 0.040276020765304565, 0.016940902918577194, -0.009942113421857357, -0.11964383721351624, 0.0038554698694497347, 0.08521955460309982, 0.008472660556435585, -0.06519338488578796, 0.07421670854091644, -0.05379481986165047, -0.01859540119767189, 0.0014602354494854808, -0.08893220871686935, 0.02967456541955471, 0.003279817523434758, -0.07391027361154556, -0.02444443479180336, 0.029594661667943, 0.0161152184009552, -0.019491560757160187, 0.12372300773859024, -0.09227437525987625, 0.030188148841261864, -0.09228117018938065, -0.10868990421295166, 0.02401377446949482, -0.0974893569946289, 0.028760140761733055, -0.0948692113161087, -0.1688021719455719, -0.014633400365710258, 0.05789358541369438, -0.02905845083296299, -0.06038733944296837, -0.043867677450180054, -0.06780573725700378, 0.01589832827448845, -0.011880235746502876, 0.1308443397283554, -0.06661584228277206, 0.08975161612033844, 0.03229938820004463, 0.06476900726556778, -0.042724721133708954, 0.05435463413596153, -0.10375642031431198, 0.011623548343777657, -0.1614483892917633, 0.02499266155064106, -0.048950474709272385, 0.08037903904914856, -0.08492887765169144, -0.09921029955148697, 0.010824191384017467, -0.00129547412507236, 0.06584707647562027, 0.09731071442365646, -0.17066963016986847, -0.08113454282283783, 0.15901218354701996, -0.07336559146642685, -0.13515576720237732, 0.11572962999343872, -0.05371662229299545, 0.050667572766542435, 0.06125761196017265, 0.16775716841220856, 0.06693456321954727, -0.08980806916952133, -0.008450786583125591, 0.027345219627022743, 0.05465889349579811, -0.08189534395933151, 0.07530831545591354, 0.00464598648250103, 0.014153066091239452, 0.03463350608944893, -0.023197989910840988, 0.060983192175626755, -0.09093188494443893, -0.09607794880867004, -0.041179362684488297, -0.08570978790521622, 0.0326363742351532, 0.07786992192268372, 0.0702214241027832, -0.09798429161310196, -0.08745589107275009, 0.045694779604673386, 0.07946042716503143, -0.04736329987645149, 0.025907618924975395, -0.0557166263461113, 0.07307851314544678, -0.03692679852247238, -0.02461162768304348, -0.1790464073419571, -0.0346548892557621, 0.0030609029345214367, -0.0006751380860805511, 0.013818521052598953, 0.021601824089884758, 0.06722559779882431, 0.05653833970427513, -0.052694857120513916, -0.016924476251006126, -0.022091317921876907, -0.0012229891726747155, -0.13773764669895172, -0.20516261458396912, -0.03532310202717781, -0.023791655898094177, 0.14030927419662476, -0.20550177991390228, 0.041250940412282944, -0.006856988649815321, 0.07490403950214386, 0.009610324166715145, -0.003095535561442375, -0.04507903382182121, 0.07002750784158707, -0.038284946233034134, -0.04863224923610687, 0.07632183283567429, 0.017586855217814445, -0.09179315716028214, -0.04073137417435646, -0.09298796951770782, 0.1729336977005005, 0.13664397597312927, -0.11015596240758896, -0.07624398916959763, -0.013422394171357155, -0.0684303268790245, -0.033660564571619034, -0.051689714193344116, 0.0307850930839777, 0.18682290613651276, -0.00425696512684226, 0.14921899139881134, -0.06628645956516266, -0.05081954598426819, 0.025120487436652184, -0.03326857462525368, 0.02106763981282711, 0.12643007934093475, 0.1385318487882614, -0.06552370637655258, 0.15155351161956787, 0.14958477020263672, -0.08799504488706589, 0.13583262264728546, -0.04134104773402214, -0.07326430082321167, -0.015689736232161522, -0.03602070361375809, -0.006391804199665785, 0.110472172498703, -0.15450039505958557, -0.005259311757981777, 0.030913392081856728, 0.016670232638716698, 0.02515546977519989, -0.22222745418548584, -0.03972334414720535, 0.033838093280792236, -0.035080812871456146, -0.02135361172258854, -0.013597116805613041, 0.004502273164689541, 0.106736920773983, 0.009417111054062843, -0.0804939866065979, 0.03605075925588608, 0.0056302412413060665, -0.08565610647201538, 0.2214750051498413, -0.07271081954240799, -0.15560635924339294, -0.12723501026630402, -0.0769243985414505, -0.039728324860334396, -0.0013606203719973564, 0.06990939378738403, -0.09926848113536835, -0.03523896262049675, -0.06556397676467896, 0.027748197317123413, 0.002258316846564412, 0.037044718861579895, 0.0033989958465099335, 0.00392652302980423, 0.06612523645162582, -0.107279472053051, -0.017862817272543907, -0.06011310592293739, -0.04721766710281372, 0.03915006294846535, 0.03427216038107872, 0.11324126273393631, 0.14951582252979279, -0.012422872707247734, 0.013470430858433247, -0.031665198504924774, 0.23710668087005615, -0.06092748045921326, -0.026288842782378197, 0.13475467264652252, -0.009928427636623383, 0.04838360473513603, 0.12141069769859314, 0.07586533576250076, -0.07889805734157562, 0.003541958751156926, 0.03977319598197937, -0.03476330637931824, -0.23325279355049133, -0.04961429908871651, -0.055875636637210846, 0.0061027780175209045, 0.09228111058473587, 0.02949327416718006, 0.029167581349611282, 0.07120584696531296, 0.03814525157213211, 0.07626376301050186, -0.04908978193998337, 0.05802080035209656, 0.11470900475978851, 0.0372953899204731, 0.1273476779460907, -0.051862407475709915, -0.06206965073943138, 0.044129591435194016, -0.01639460027217865, 0.22040428221225739, 0.003773508593440056, 0.13132837414741516, 0.05665905028581619, 0.16321776807308197, -0.0038043949753046036, 0.08464139699935913, -0.010380703024566174, -0.049569278955459595, -0.01084445882588625, -0.03918720409274101, -0.0308225154876709, 0.027231786400079727, -0.07271897792816162, 0.06833891570568085, -0.12923358380794525, 0.00922108069062233, 0.05949745327234268, 0.24973973631858826, 0.046340588480234146, -0.31998947262763977, -0.09839750826358795, 0.0034540712367743254, -0.031127991154789925, -0.02500051073729992, 0.025755688548088074, 0.08669907599687576, -0.09383657574653625, 0.03107856772840023, -0.06761176139116287, 0.10054797679185867, -0.042966872453689575, 0.050965700298547745, 0.09033869951963425, 0.08781831711530685, 0.005526093766093254, 0.09172326326370239, -0.28879427909851074, 0.28034815192222595, 0.006638152990490198, 0.06722255796194077, -0.08404923230409622, 0.007924233563244343, 0.03875875845551491, 0.06277710944414139, 0.08420775085687637, -0.01462724432349205, -0.04123333841562271, -0.19558237493038177, -0.06475776433944702, 0.03285158425569534, 0.06724734604358673, -0.03411435708403587, 0.08829754590988159, -0.030725756660103798, 0.007470272947102785, 0.07318444550037384, 0.009356030263006687, -0.047994669526815414, -0.10161826014518738, -0.008715590462088585, 0.024675441905856133, -0.06548207998275757, -0.06280668824911118, -0.12138459086418152, -0.12046746909618378, 0.1649874448776245, -0.03168739378452301, -0.03515627235174179, -0.11399421840906143, 0.08960965275764465, 0.06263815611600876, -0.09449632465839386, 0.0373297780752182, 0.0003635968023445457, 0.07905662804841995, 0.025132769718766212, -0.07757634669542313, 0.11242019385099411, -0.07639475166797638, -0.1530066281557083, -0.06572554260492325, 0.10554061830043793, 0.028522729873657227, 0.06853212416172028, -0.013590860180556774, 0.012335213832557201, -0.04956187307834625, -0.0910470187664032, 0.02016177587211132, -0.010396964848041534, 0.07790178805589676, 0.003928485792130232, -0.0676986575126648, 0.01545811165124178, -0.05481227859854698, -0.03449428454041481, 0.19974027574062347, 0.22100830078125, -0.10380957275629044, 0.01994667761027813, 0.026058848947286606, -0.07153739035129547, -0.20492346584796906, 0.03470631688833237, 0.05062735453248024, 0.011621180921792984, 0.03473846614360809, -0.17268769443035126, 0.15721261501312256, 0.10559370368719101, -0.015673598274588585, 0.10027038305997849, -0.300263375043869, -0.12570743262767792, 0.1395372748374939, 0.13012734055519104, 0.12314410507678986, -0.1386626958847046, -0.020994868129491806, -0.023730505257844925, -0.1448492854833603, 0.10670189559459686, -0.10653143376111984, 0.11540523916482925, -0.03711257874965668, 0.07463301718235016, 0.00280234357342124, -0.06191738322377205, 0.11914043873548508, 0.027134427800774574, 0.08920768648386002, -0.06106947362422943, -0.04200434312224388, 0.03443964943289757, -0.04473399743437767, 0.035300370305776596, -0.10083185136318207, 0.026121102273464203, -0.10762327909469604, -0.027173805981874466, -0.07051941752433777, 0.045056067407131195, -0.04485047236084938, -0.06339830160140991, -0.032650649547576904, 0.024941876530647278, 0.04080088436603546, -0.013684689067304134, 0.13862080872058868, 0.02094348520040512, 0.1539815068244934, 0.09709318727254868, 0.0802595317363739, -0.0815831795334816, -0.07777950167655945, -0.01725257933139801, -0.016648761928081512, 0.05415203049778938, -0.1465574949979782, 0.023812048137187958, 0.1517864614725113, 0.022475996986031532, 0.13774754106998444, 0.08713784068822861, -0.02335292659699917, -0.0015759967500343919, 0.06598124653100967, -0.16277571022510529, -0.08179201930761337, -0.013726288452744484, -0.060553207993507385, -0.13148586452007294, 0.04796719178557396, 0.0872536301612854, -0.06639043986797333, -0.008931182324886322, -0.006341056432574987, 0.008399281650781631, -0.05830422416329384, 0.18955260515213013, 0.0617111399769783, 0.04747847095131874, -0.10296866297721863, 0.06426992267370224, 0.04524865001440048, -0.07698716223239899, 0.0028912597335875034, 0.08207450807094574, -0.0821482464671135, -0.05383390560746193, 0.08642295002937317, 0.1952705979347229, -0.051188793033361435, -0.04984303563833237, -0.1425095498561859, -0.13165368139743805, 0.08418554067611694, 0.15306837856769562, 0.11950413137674332, 0.013004201464354992, -0.057744964957237244, 0.005279176402837038, -0.11278563737869263, 0.09532744437456131, 0.043698571622371674, 0.0636632889509201, -0.14441201090812683, 0.14511741697788239, 0.014016132801771164, 0.05248979851603508, -0.02003890462219715, 0.030556267127394676, -0.1127009317278862, 0.00692911259829998, -0.10996110737323761, -0.01533103734254837, -0.03712952136993408, 0.007852286100387573, -0.0033225324004888535, -0.053022295236587524, -0.061812546104192734, 0.012278469279408455, -0.10819218307733536, -0.021553313359618187, 0.02989807538688183, 0.06776696443557739, -0.11449199914932251, -0.033886898308992386, 0.026842448860406876, -0.060971200466156006, 0.07095744460821152, 0.04675784707069397, 0.024762218818068504, 0.059278685599565506, -0.13875989615917206, 0.016549136489629745, 0.06998954713344574, 0.020270591601729393, 0.07164876908063889, -0.0909297913312912, -0.007718430832028389, -0.004338276106864214, 0.04557505622506142, 0.021511854603886604, 0.07169406116008759, -0.14047205448150635, -0.0006190943531692028, -0.017452260479331017, -0.08903514593839645, -0.06354621052742004, 0.02594398520886898, 0.09783730655908585, 0.010193470865488052, 0.19664381444454193, -0.07592520862817764, 0.04566219449043274, -0.2206079661846161, 0.01103274617344141, -0.014023556374013424, -0.10392298549413681, -0.10630355775356293, -0.0691029503941536, 0.06090487539768219, -0.056510262191295624, 0.15104418992996216, 0.04220644757151604, 0.037679657340049744, 0.03347740322351456, -0.005754407029598951, 0.019229896366596222, 0.01714223437011242, 0.19873397052288055, 0.03061717376112938, -0.0362832210958004, 0.0595984123647213, 0.04723411053419113, 0.09983482211828232, 0.12198832631111145, 0.20943738520145416, 0.13953885436058044, 0.009533321484923363, 0.09754917770624161, 0.043244969099760056, -0.06116219237446785, -0.1580333560705185, 0.036047521978616714, -0.0469762347638607, 0.10224858671426773, -0.021451519802212715, 0.21149180829524994, 0.07083642482757568, -0.16944290697574615, 0.04301752150058746, -0.06398287415504456, -0.08558889478445053, -0.12045430392026901, -0.04505256563425064, -0.08055998384952545, -0.13044409453868866, 0.0010549919679760933, -0.1134718656539917, -0.0019775964319705963, 0.12246271222829819, 0.005069165024906397, -0.02239612489938736, 0.16231834888458252, 0.013805028051137924, 0.030523577705025673, 0.0549866259098053, 0.011925294995307922, -0.03276361897587776, -0.11823397874832153, -0.04881583899259567, -0.01855955831706524, -0.01867452636361122, 0.02688281051814556, -0.06558216363191605, -0.05248652771115303, 0.03940831497311592, -0.016065074130892754, -0.0974554568529129, 0.00763896806165576, 0.01138660591095686, 0.06124475598335266, 0.04790728539228439, 0.005254521034657955, 0.024792371317744255, -0.009634161368012428, 0.2050269991159439, -0.0799989253282547, -0.06369679421186447, -0.10818185657262802, 0.24709045886993408, 0.034862469881772995, -0.02101771906018257, 0.029712922871112823, -0.06804424524307251, 0.0012251039734110236, 0.25348836183547974, 0.2133166491985321, -0.07595253735780716, -0.004891899414360523, 0.015467436984181404, -0.00707058934494853, -0.02095029316842556, 0.09985392540693283, 0.1425386220216751, 0.06584673374891281, -0.10076409578323364, -0.04401390627026558, -0.05312157794833183, -0.019044911488890648, -0.034217242151498795, 0.07384040206670761, 0.05149252712726593, 0.008103452622890472, -0.0370606854557991, 0.05173087120056152, -0.06404176354408264, -0.08492442965507507, 0.06350332498550415, -0.21481896936893463, -0.1650671809911728, -0.013375148177146912, 0.10437117516994476, 0.009120860137045383, 0.06753730028867722, -0.02455856278538704, -0.005081635899841785, 0.08442289382219315, -0.01905807852745056, -0.10784491151571274, -0.07978401333093643, 0.0923481434583664, -0.10956605523824692, 0.2229233980178833, -0.04588206112384796, 0.0573381669819355, 0.13003548979759216, 0.0695522278547287, -0.07895473390817642, 0.05749363824725151, 0.03891405835747719, -0.065252386033535, 0.025600671768188477, 0.07076281309127808, -0.0391865074634552, 0.05756274238228798, 0.04292585328221321, -0.14607840776443481, 0.021775243803858757, -0.05968533828854561, -0.06319128721952438, -0.045387476682662964, -0.023305995389819145, -0.05946716293692589, 0.13277143239974976, 0.21941795945167542, -0.02792864292860031, -0.01243514847010374, -0.07005082070827484, 0.012377013452351093, 0.05411580577492714, 0.022347576916217804, -0.06250055134296417, -0.21139036118984222, 0.022813409566879272, 0.044575318694114685, -0.019488442689180374, -0.25224336981773376, -0.0973757952451706, 0.0024055137764662504, -0.07106439769268036, -0.0996735543012619, 0.06923971325159073, 0.09146987646818161, 0.05202433094382286, -0.05857878550887108, -0.05892380699515343, -0.06935331970453262, 0.14755848050117493, -0.14392498135566711, -0.09981387108564377 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - Accuracy: 0.8578 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.4169 | 0.8039 | 0.8639 | | No log | 2.0 | 460 | 0.4299 | 0.8137 | 0.875 | | 0.4242 | 3.0 | 690 | 0.4520 | 0.8578 | 0.9003 | | 0.4242 | 4.0 | 920 | 0.6323 | 0.8431 | 0.8926 | | 0.1103 | 5.0 | 1150 | 0.6163 | 0.8578 | 0.8997 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-uncased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8578431372549019, "name": "Accuracy"}, {"type": "f1", "value": 0.9003436426116839, "name": "F1"}]}]}]}
text-classification
ajrae/bert-base-uncased-finetuned-mrpc
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-mrpc ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.4520 * Accuracy: 0.8578 * F1: 0.9003 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 65, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11058378964662552, 0.08168771862983704, -0.0018928216304630041, 0.12054884433746338, 0.16402749717235565, 0.03651754930615425, 0.11452049016952515, 0.12926580011844635, -0.08146972209215164, 0.026920324191451073, 0.1253388673067093, 0.15753161907196045, 0.020413868129253387, 0.11850695312023163, -0.04691627621650696, -0.26174473762512207, -0.009937528520822525, 0.04934175685048103, -0.052011638879776, 0.13128681480884552, 0.08871930837631226, -0.12730920314788818, 0.0955171287059784, 0.01379626989364624, -0.19598133862018585, 0.0037745756562799215, 0.007866744883358479, -0.055304158478975296, 0.1457548588514328, 0.028573520481586456, 0.12012506276369095, -0.0012681136140599847, 0.08600315451622009, -0.19181281328201294, 0.011322222650051117, 0.048287421464920044, 0.00024589619715698063, 0.0936809778213501, 0.05205908790230751, 0.0029348116368055344, 0.12715323269367218, -0.08503279089927673, 0.05376281961798668, 0.028530191630125046, -0.11875519901514053, -0.22161872684955597, -0.07665970921516418, 0.04215710237622261, 0.07633838802576065, 0.10951228439807892, -0.005718022119253874, 0.12911391258239746, -0.08710674941539764, 0.08877304196357727, 0.23591582477092743, -0.30551132559776306, -0.064704030752182, 0.033326052129268646, 0.012882307171821594, 0.03819486126303673, -0.11001497507095337, -0.033636145293712616, 0.053923528641462326, 0.05009079352021217, 0.12470096349716187, -0.03137143328785896, -0.11200437694787979, 0.011789802461862564, -0.13569097220897675, -0.0266043022274971, 0.1517753154039383, 0.03980390727519989, -0.030814344063401222, -0.0515427440404892, -0.052898701280355453, -0.14895284175872803, -0.036878012120723724, -0.005174336489289999, 0.047176703810691833, -0.02803935296833515, -0.05512383580207825, 0.003653373569250107, -0.11400924623012543, -0.06777030974626541, -0.07787948846817017, 0.12161674350500107, 0.03376021981239319, 0.016329757869243622, -0.03601174056529999, 0.1104925200343132, -0.008701197803020477, -0.13123579323291779, 0.014582755975425243, 0.025314364582300186, 0.007587775122374296, -0.044702157378196716, -0.051504962146282196, -0.0515524260699749, 0.012162799946963787, 0.13041265308856964, -0.05370127409696579, 0.04579243063926697, 0.05259358137845993, 0.043655142188072205, -0.09150955080986023, 0.1945887953042984, -0.03788289055228233, -0.020141582936048508, 0.004516669549047947, 0.040276020765304565, 0.016940902918577194, -0.009942113421857357, -0.11964383721351624, 0.0038554698694497347, 0.08521955460309982, 0.008472660556435585, -0.06519338488578796, 0.07421670854091644, -0.05379481986165047, -0.01859540119767189, 0.0014602354494854808, -0.08893220871686935, 0.02967456541955471, 0.003279817523434758, -0.07391027361154556, -0.02444443479180336, 0.029594661667943, 0.0161152184009552, -0.019491560757160187, 0.12372300773859024, -0.09227437525987625, 0.030188148841261864, -0.09228117018938065, -0.10868990421295166, 0.02401377446949482, -0.0974893569946289, 0.028760140761733055, -0.0948692113161087, -0.1688021719455719, -0.014633400365710258, 0.05789358541369438, -0.02905845083296299, -0.06038733944296837, -0.043867677450180054, -0.06780573725700378, 0.01589832827448845, -0.011880235746502876, 0.1308443397283554, -0.06661584228277206, 0.08975161612033844, 0.03229938820004463, 0.06476900726556778, -0.042724721133708954, 0.05435463413596153, -0.10375642031431198, 0.011623548343777657, -0.1614483892917633, 0.02499266155064106, -0.048950474709272385, 0.08037903904914856, -0.08492887765169144, -0.09921029955148697, 0.010824191384017467, -0.00129547412507236, 0.06584707647562027, 0.09731071442365646, -0.17066963016986847, -0.08113454282283783, 0.15901218354701996, -0.07336559146642685, -0.13515576720237732, 0.11572962999343872, -0.05371662229299545, 0.050667572766542435, 0.06125761196017265, 0.16775716841220856, 0.06693456321954727, -0.08980806916952133, -0.008450786583125591, 0.027345219627022743, 0.05465889349579811, -0.08189534395933151, 0.07530831545591354, 0.00464598648250103, 0.014153066091239452, 0.03463350608944893, -0.023197989910840988, 0.060983192175626755, -0.09093188494443893, -0.09607794880867004, -0.041179362684488297, -0.08570978790521622, 0.0326363742351532, 0.07786992192268372, 0.0702214241027832, -0.09798429161310196, -0.08745589107275009, 0.045694779604673386, 0.07946042716503143, -0.04736329987645149, 0.025907618924975395, -0.0557166263461113, 0.07307851314544678, -0.03692679852247238, -0.02461162768304348, -0.1790464073419571, -0.0346548892557621, 0.0030609029345214367, -0.0006751380860805511, 0.013818521052598953, 0.021601824089884758, 0.06722559779882431, 0.05653833970427513, -0.052694857120513916, -0.016924476251006126, -0.022091317921876907, -0.0012229891726747155, -0.13773764669895172, -0.20516261458396912, -0.03532310202717781, -0.023791655898094177, 0.14030927419662476, -0.20550177991390228, 0.041250940412282944, -0.006856988649815321, 0.07490403950214386, 0.009610324166715145, -0.003095535561442375, -0.04507903382182121, 0.07002750784158707, -0.038284946233034134, -0.04863224923610687, 0.07632183283567429, 0.017586855217814445, -0.09179315716028214, -0.04073137417435646, -0.09298796951770782, 0.1729336977005005, 0.13664397597312927, -0.11015596240758896, -0.07624398916959763, -0.013422394171357155, -0.0684303268790245, -0.033660564571619034, -0.051689714193344116, 0.0307850930839777, 0.18682290613651276, -0.00425696512684226, 0.14921899139881134, -0.06628645956516266, -0.05081954598426819, 0.025120487436652184, -0.03326857462525368, 0.02106763981282711, 0.12643007934093475, 0.1385318487882614, -0.06552370637655258, 0.15155351161956787, 0.14958477020263672, -0.08799504488706589, 0.13583262264728546, -0.04134104773402214, -0.07326430082321167, -0.015689736232161522, -0.03602070361375809, -0.006391804199665785, 0.110472172498703, -0.15450039505958557, -0.005259311757981777, 0.030913392081856728, 0.016670232638716698, 0.02515546977519989, -0.22222745418548584, -0.03972334414720535, 0.033838093280792236, -0.035080812871456146, -0.02135361172258854, -0.013597116805613041, 0.004502273164689541, 0.106736920773983, 0.009417111054062843, -0.0804939866065979, 0.03605075925588608, 0.0056302412413060665, -0.08565610647201538, 0.2214750051498413, -0.07271081954240799, -0.15560635924339294, -0.12723501026630402, -0.0769243985414505, -0.039728324860334396, -0.0013606203719973564, 0.06990939378738403, -0.09926848113536835, -0.03523896262049675, -0.06556397676467896, 0.027748197317123413, 0.002258316846564412, 0.037044718861579895, 0.0033989958465099335, 0.00392652302980423, 0.06612523645162582, -0.107279472053051, -0.017862817272543907, -0.06011310592293739, -0.04721766710281372, 0.03915006294846535, 0.03427216038107872, 0.11324126273393631, 0.14951582252979279, -0.012422872707247734, 0.013470430858433247, -0.031665198504924774, 0.23710668087005615, -0.06092748045921326, -0.026288842782378197, 0.13475467264652252, -0.009928427636623383, 0.04838360473513603, 0.12141069769859314, 0.07586533576250076, -0.07889805734157562, 0.003541958751156926, 0.03977319598197937, -0.03476330637931824, -0.23325279355049133, -0.04961429908871651, -0.055875636637210846, 0.0061027780175209045, 0.09228111058473587, 0.02949327416718006, 0.029167581349611282, 0.07120584696531296, 0.03814525157213211, 0.07626376301050186, -0.04908978193998337, 0.05802080035209656, 0.11470900475978851, 0.0372953899204731, 0.1273476779460907, -0.051862407475709915, -0.06206965073943138, 0.044129591435194016, -0.01639460027217865, 0.22040428221225739, 0.003773508593440056, 0.13132837414741516, 0.05665905028581619, 0.16321776807308197, -0.0038043949753046036, 0.08464139699935913, -0.010380703024566174, -0.049569278955459595, -0.01084445882588625, -0.03918720409274101, -0.0308225154876709, 0.027231786400079727, -0.07271897792816162, 0.06833891570568085, -0.12923358380794525, 0.00922108069062233, 0.05949745327234268, 0.24973973631858826, 0.046340588480234146, -0.31998947262763977, -0.09839750826358795, 0.0034540712367743254, -0.031127991154789925, -0.02500051073729992, 0.025755688548088074, 0.08669907599687576, -0.09383657574653625, 0.03107856772840023, -0.06761176139116287, 0.10054797679185867, -0.042966872453689575, 0.050965700298547745, 0.09033869951963425, 0.08781831711530685, 0.005526093766093254, 0.09172326326370239, -0.28879427909851074, 0.28034815192222595, 0.006638152990490198, 0.06722255796194077, -0.08404923230409622, 0.007924233563244343, 0.03875875845551491, 0.06277710944414139, 0.08420775085687637, -0.01462724432349205, -0.04123333841562271, -0.19558237493038177, -0.06475776433944702, 0.03285158425569534, 0.06724734604358673, -0.03411435708403587, 0.08829754590988159, -0.030725756660103798, 0.007470272947102785, 0.07318444550037384, 0.009356030263006687, -0.047994669526815414, -0.10161826014518738, -0.008715590462088585, 0.024675441905856133, -0.06548207998275757, -0.06280668824911118, -0.12138459086418152, -0.12046746909618378, 0.1649874448776245, -0.03168739378452301, -0.03515627235174179, -0.11399421840906143, 0.08960965275764465, 0.06263815611600876, -0.09449632465839386, 0.0373297780752182, 0.0003635968023445457, 0.07905662804841995, 0.025132769718766212, -0.07757634669542313, 0.11242019385099411, -0.07639475166797638, -0.1530066281557083, -0.06572554260492325, 0.10554061830043793, 0.028522729873657227, 0.06853212416172028, -0.013590860180556774, 0.012335213832557201, -0.04956187307834625, -0.0910470187664032, 0.02016177587211132, -0.010396964848041534, 0.07790178805589676, 0.003928485792130232, -0.0676986575126648, 0.01545811165124178, -0.05481227859854698, -0.03449428454041481, 0.19974027574062347, 0.22100830078125, -0.10380957275629044, 0.01994667761027813, 0.026058848947286606, -0.07153739035129547, -0.20492346584796906, 0.03470631688833237, 0.05062735453248024, 0.011621180921792984, 0.03473846614360809, -0.17268769443035126, 0.15721261501312256, 0.10559370368719101, -0.015673598274588585, 0.10027038305997849, -0.300263375043869, -0.12570743262767792, 0.1395372748374939, 0.13012734055519104, 0.12314410507678986, -0.1386626958847046, -0.020994868129491806, -0.023730505257844925, -0.1448492854833603, 0.10670189559459686, -0.10653143376111984, 0.11540523916482925, -0.03711257874965668, 0.07463301718235016, 0.00280234357342124, -0.06191738322377205, 0.11914043873548508, 0.027134427800774574, 0.08920768648386002, -0.06106947362422943, -0.04200434312224388, 0.03443964943289757, -0.04473399743437767, 0.035300370305776596, -0.10083185136318207, 0.026121102273464203, -0.10762327909469604, -0.027173805981874466, -0.07051941752433777, 0.045056067407131195, -0.04485047236084938, -0.06339830160140991, -0.032650649547576904, 0.024941876530647278, 0.04080088436603546, -0.013684689067304134, 0.13862080872058868, 0.02094348520040512, 0.1539815068244934, 0.09709318727254868, 0.0802595317363739, -0.0815831795334816, -0.07777950167655945, -0.01725257933139801, -0.016648761928081512, 0.05415203049778938, -0.1465574949979782, 0.023812048137187958, 0.1517864614725113, 0.022475996986031532, 0.13774754106998444, 0.08713784068822861, -0.02335292659699917, -0.0015759967500343919, 0.06598124653100967, -0.16277571022510529, -0.08179201930761337, -0.013726288452744484, -0.060553207993507385, -0.13148586452007294, 0.04796719178557396, 0.0872536301612854, -0.06639043986797333, -0.008931182324886322, -0.006341056432574987, 0.008399281650781631, -0.05830422416329384, 0.18955260515213013, 0.0617111399769783, 0.04747847095131874, -0.10296866297721863, 0.06426992267370224, 0.04524865001440048, -0.07698716223239899, 0.0028912597335875034, 0.08207450807094574, -0.0821482464671135, -0.05383390560746193, 0.08642295002937317, 0.1952705979347229, -0.051188793033361435, -0.04984303563833237, -0.1425095498561859, -0.13165368139743805, 0.08418554067611694, 0.15306837856769562, 0.11950413137674332, 0.013004201464354992, -0.057744964957237244, 0.005279176402837038, -0.11278563737869263, 0.09532744437456131, 0.043698571622371674, 0.0636632889509201, -0.14441201090812683, 0.14511741697788239, 0.014016132801771164, 0.05248979851603508, -0.02003890462219715, 0.030556267127394676, -0.1127009317278862, 0.00692911259829998, -0.10996110737323761, -0.01533103734254837, -0.03712952136993408, 0.007852286100387573, -0.0033225324004888535, -0.053022295236587524, -0.061812546104192734, 0.012278469279408455, -0.10819218307733536, -0.021553313359618187, 0.02989807538688183, 0.06776696443557739, -0.11449199914932251, -0.033886898308992386, 0.026842448860406876, -0.060971200466156006, 0.07095744460821152, 0.04675784707069397, 0.024762218818068504, 0.059278685599565506, -0.13875989615917206, 0.016549136489629745, 0.06998954713344574, 0.020270591601729393, 0.07164876908063889, -0.0909297913312912, -0.007718430832028389, -0.004338276106864214, 0.04557505622506142, 0.021511854603886604, 0.07169406116008759, -0.14047205448150635, -0.0006190943531692028, -0.017452260479331017, -0.08903514593839645, -0.06354621052742004, 0.02594398520886898, 0.09783730655908585, 0.010193470865488052, 0.19664381444454193, -0.07592520862817764, 0.04566219449043274, -0.2206079661846161, 0.01103274617344141, -0.014023556374013424, -0.10392298549413681, -0.10630355775356293, -0.0691029503941536, 0.06090487539768219, -0.056510262191295624, 0.15104418992996216, 0.04220644757151604, 0.037679657340049744, 0.03347740322351456, -0.005754407029598951, 0.019229896366596222, 0.01714223437011242, 0.19873397052288055, 0.03061717376112938, -0.0362832210958004, 0.0595984123647213, 0.04723411053419113, 0.09983482211828232, 0.12198832631111145, 0.20943738520145416, 0.13953885436058044, 0.009533321484923363, 0.09754917770624161, 0.043244969099760056, -0.06116219237446785, -0.1580333560705185, 0.036047521978616714, -0.0469762347638607, 0.10224858671426773, -0.021451519802212715, 0.21149180829524994, 0.07083642482757568, -0.16944290697574615, 0.04301752150058746, -0.06398287415504456, -0.08558889478445053, -0.12045430392026901, -0.04505256563425064, -0.08055998384952545, -0.13044409453868866, 0.0010549919679760933, -0.1134718656539917, -0.0019775964319705963, 0.12246271222829819, 0.005069165024906397, -0.02239612489938736, 0.16231834888458252, 0.013805028051137924, 0.030523577705025673, 0.0549866259098053, 0.011925294995307922, -0.03276361897587776, -0.11823397874832153, -0.04881583899259567, -0.01855955831706524, -0.01867452636361122, 0.02688281051814556, -0.06558216363191605, -0.05248652771115303, 0.03940831497311592, -0.016065074130892754, -0.0974554568529129, 0.00763896806165576, 0.01138660591095686, 0.06124475598335266, 0.04790728539228439, 0.005254521034657955, 0.024792371317744255, -0.009634161368012428, 0.2050269991159439, -0.0799989253282547, -0.06369679421186447, -0.10818185657262802, 0.24709045886993408, 0.034862469881772995, -0.02101771906018257, 0.029712922871112823, -0.06804424524307251, 0.0012251039734110236, 0.25348836183547974, 0.2133166491985321, -0.07595253735780716, -0.004891899414360523, 0.015467436984181404, -0.00707058934494853, -0.02095029316842556, 0.09985392540693283, 0.1425386220216751, 0.06584673374891281, -0.10076409578323364, -0.04401390627026558, -0.05312157794833183, -0.019044911488890648, -0.034217242151498795, 0.07384040206670761, 0.05149252712726593, 0.008103452622890472, -0.0370606854557991, 0.05173087120056152, -0.06404176354408264, -0.08492442965507507, 0.06350332498550415, -0.21481896936893463, -0.1650671809911728, -0.013375148177146912, 0.10437117516994476, 0.009120860137045383, 0.06753730028867722, -0.02455856278538704, -0.005081635899841785, 0.08442289382219315, -0.01905807852745056, -0.10784491151571274, -0.07978401333093643, 0.0923481434583664, -0.10956605523824692, 0.2229233980178833, -0.04588206112384796, 0.0573381669819355, 0.13003548979759216, 0.0695522278547287, -0.07895473390817642, 0.05749363824725151, 0.03891405835747719, -0.065252386033535, 0.025600671768188477, 0.07076281309127808, -0.0391865074634552, 0.05756274238228798, 0.04292585328221321, -0.14607840776443481, 0.021775243803858757, -0.05968533828854561, -0.06319128721952438, -0.045387476682662964, -0.023305995389819145, -0.05946716293692589, 0.13277143239974976, 0.21941795945167542, -0.02792864292860031, -0.01243514847010374, -0.07005082070827484, 0.012377013452351093, 0.05411580577492714, 0.022347576916217804, -0.06250055134296417, -0.21139036118984222, 0.022813409566879272, 0.044575318694114685, -0.019488442689180374, -0.25224336981773376, -0.0973757952451706, 0.0024055137764662504, -0.07106439769268036, -0.0996735543012619, 0.06923971325159073, 0.09146987646818161, 0.05202433094382286, -0.05857878550887108, -0.05892380699515343, -0.06935331970453262, 0.14755848050117493, -0.14392498135566711, -0.09981387108564377 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Total This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2814 - Wer: 0.2260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9157 | 0.2 | 400 | 2.8204 | 0.9707 | | 0.9554 | 0.4 | 800 | 0.5295 | 0.5046 | | 0.7585 | 0.6 | 1200 | 0.4007 | 0.3850 | | 0.7288 | 0.8 | 1600 | 0.3632 | 0.3447 | | 0.6792 | 1.0 | 2000 | 0.3433 | 0.3216 | | 0.6085 | 1.2 | 2400 | 0.3254 | 0.2928 | | 0.6225 | 1.4 | 2800 | 0.3161 | 0.2832 | | 0.6183 | 1.6 | 3200 | 0.3111 | 0.2721 | | 0.5947 | 1.8 | 3600 | 0.2969 | 0.2615 | | 0.5953 | 2.0 | 4000 | 0.2912 | 0.2515 | | 0.5358 | 2.2 | 4400 | 0.2920 | 0.2501 | | 0.5535 | 2.4 | 4800 | 0.2939 | 0.2538 | | 0.5408 | 2.6 | 5200 | 0.2854 | 0.2452 | | 0.5272 | 2.8 | 5600 | 0.2816 | 0.2434 | | 0.5248 | 3.0 | 6000 | 0.2755 | 0.2354 | | 0.4923 | 3.2 | 6400 | 0.2795 | 0.2353 | | 0.489 | 3.4 | 6800 | 0.2767 | 0.2330 | | 0.4932 | 3.6 | 7200 | 0.2821 | 0.2335 | | 0.4841 | 3.8 | 7600 | 0.2756 | 0.2349 | | 0.4794 | 4.0 | 8000 | 0.2751 | 0.2265 | | 0.444 | 4.2 | 8400 | 0.2809 | 0.2283 | | 0.4533 | 4.4 | 8800 | 0.2804 | 0.2312 | | 0.4563 | 4.6 | 9200 | 0.2830 | 0.2256 | | 0.4498 | 4.8 | 9600 | 0.2819 | 0.2251 | | 0.4532 | 5.0 | 10000 | 0.2814 | 0.2260 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Total", "results": []}]}
automatic-speech-recognition
akadriu/wav2vec2-large-xlsr-53-Total
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xlsr-53-Total ============================ This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2814 * Wer: 0.2260 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 56, 158, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.13674652576446533, 0.08070877939462662, -0.0020980932749807835, 0.058059513568878174, 0.12391410768032074, 0.0035038397181779146, 0.11456210911273956, 0.13281060755252838, -0.10483435541391373, 0.07206302136182785, 0.11653752624988556, 0.1098618283867836, 0.044953566044569016, 0.10940150916576385, -0.03187897056341171, -0.3115772604942322, 0.014124851673841476, 0.030880969017744064, -0.15800932049751282, 0.12276221066713333, 0.10321488231420517, -0.11404432356357574, 0.04755412042140961, 0.05697832256555557, -0.14859606325626373, 0.002950704889371991, -0.015324993059039116, -0.08552468568086624, 0.11545715481042862, 0.038820531219244, 0.09594997018575668, 0.02817530930042267, 0.07893066108226776, -0.20984669029712677, 0.010233578272163868, 0.05690901726484299, 0.03464622050523758, 0.0839756652712822, 0.08404600620269775, -0.011458175256848335, 0.1593700796365738, -0.06317459791898727, 0.07956483960151672, 0.05771494284272194, -0.10734838992357254, -0.33165594935417175, -0.08562123030424118, 0.07140076160430908, 0.1055065467953682, 0.08566964417695999, -0.017620524391531944, 0.1037357896566391, -0.05401954427361488, 0.09061611443758011, 0.240467369556427, -0.28254255652427673, -0.08556798100471497, -0.031896453350782394, 0.05493902787566185, 0.0284896083176136, -0.1141970232129097, -0.010107454843819141, 0.037994641810655594, 0.03282399848103523, 0.11520470678806305, 0.012219606898725033, -0.00899500772356987, 0.018662085756659508, -0.14970353245735168, -0.06296957284212112, 0.14517110586166382, 0.07554210722446442, -0.051406096667051315, -0.0974389910697937, -0.03219497203826904, -0.2082793265581131, -0.04534154012799263, -0.010668010450899601, 0.029118800535798073, -0.05673465505242348, -0.1345083862543106, -0.008525422774255276, -0.08552496880292892, -0.10397306084632874, 0.006161554250866175, 0.21717487275600433, 0.04934827610850334, -0.0013095675967633724, -0.01470398623496294, 0.11329932510852814, 0.055193524807691574, -0.154753178358078, -0.03218365088105202, 0.038078054785728455, -0.07100611925125122, -0.02347864955663681, -0.05582362040877342, -0.018326513469219208, -0.004300891887396574, 0.1645500808954239, -0.036594316363334656, 0.06751058995723724, 0.0373791828751564, 0.02364935912191868, -0.11077814549207687, 0.21375028789043427, -0.05507697910070419, -0.00826102215796709, -0.032468121498823166, 0.09636089205741882, 0.007358728442341089, -0.01632450707256794, -0.07539679110050201, 0.028774989768862724, 0.1061728224158287, 0.039398446679115295, -0.030721314251422882, 0.0368494875729084, -0.0472266785800457, -0.03064638003706932, 0.019970359280705452, -0.09226154536008835, 0.022474180907011032, 0.01959894970059395, -0.0986814871430397, -0.00550828268751502, 0.015618925914168358, 0.02077459543943405, -0.001297670416533947, 0.10814844071865082, -0.08303048461675644, -0.0053221965208649635, -0.08278482407331467, -0.09748297184705734, 0.024732131510972977, -0.03749770298600197, 0.007577471900731325, -0.08713943511247635, -0.12559345364570618, -0.015980908647179604, 0.05031067878007889, -0.03474213182926178, -0.07135117799043655, -0.04585350304841995, -0.08519013971090317, 0.04854957014322281, -0.019961819052696228, 0.15098556876182556, -0.054136186838150024, 0.10771112889051437, 0.07973066717386246, 0.06113971024751663, 0.03634639456868172, 0.051311004906892776, -0.05910837650299072, 0.03679198771715164, -0.1598873883485794, 0.06963415443897247, -0.08704935759305954, 0.06928148120641708, -0.13236810266971588, -0.12775342166423798, 0.005013182293623686, -0.003992664162069559, 0.08970372378826141, 0.10141114145517349, -0.1401475965976715, -0.11198647320270538, 0.15347807109355927, -0.07801712304353714, -0.1379498690366745, 0.12426386773586273, -0.014599165879189968, -0.006150072906166315, 0.04817696660757065, 0.1399192363023758, 0.0948975533246994, -0.09948718547821045, -0.00556383328512311, -0.04221586883068085, 0.10729922354221344, -0.00645594485104084, 0.11234632879495621, -0.031186135485768318, 0.013532848097383976, 0.01347425114363432, -0.05966800078749657, 0.051682036370038986, -0.10716789215803146, -0.09867653995752335, -0.04026965796947479, -0.09605424106121063, 0.03258546441793442, 0.05854443088173866, 0.0686546191573143, -0.09760317951440811, -0.14093279838562012, 0.04209380969405174, 0.11699986457824707, -0.08984297513961792, 0.030600646510720253, -0.09934284538030624, 0.06253227591514587, -0.043574415147304535, -0.0074914894066751, -0.17318740487098694, -0.02416137419641018, 0.01788651943206787, -0.06461439281702042, 0.019465893507003784, -0.030260683968663216, 0.08996477723121643, 0.061795808374881744, -0.048907406628131866, -0.06598052382469177, -0.08811268210411072, -0.013823473826050758, -0.07854179292917252, -0.20820531249046326, -0.10224060714244843, -0.020709030330181122, 0.15238222479820251, -0.20397138595581055, 0.02602054923772812, 0.031691402196884155, 0.12354726344347, 0.03313921019434929, -0.044739555567502975, -0.0215467419475317, 0.06925955414772034, -0.029098955914378166, -0.06535059958696365, 0.03313390538096428, 0.006343378685414791, -0.1303095519542694, -0.010364682413637638, -0.10486939549446106, 0.14803294837474823, 0.11740259826183319, -0.02140994928777218, -0.06917641311883926, -0.017506655305624008, -0.07865623384714127, -0.04834287241101265, -0.011790171265602112, 0.0051116314716637135, 0.16635148227214813, 0.024722537025809288, 0.13508665561676025, -0.08064986020326614, -0.061079949140548706, 0.040378425270318985, 0.005128202494233847, -0.016334926709532738, 0.12111590802669525, 0.049004919826984406, -0.060287076979875565, 0.1036430150270462, 0.10099965333938599, -0.09539014846086502, 0.14480380713939667, -0.07472606748342514, -0.1015549972653389, -0.025761457160115242, 0.011103151366114616, 0.04300621151924133, 0.11810719221830368, -0.1445896476507187, -0.021111560985445976, 0.026908518746495247, 0.007836399599909782, 0.02012280561029911, -0.2121768742799759, -0.0073862457647919655, 0.05466489866375923, -0.06121573597192764, -0.04505503177642822, 0.0014101160923019052, -0.0134247075766325, 0.08094006776809692, 0.01623365841805935, -0.05838087201118469, 0.0024750176817178726, -0.0005148432683199644, -0.06680557876825333, 0.2008010447025299, -0.0743025690317154, -0.13310137391090393, -0.15536800026893616, -0.024848734959959984, -0.059600718319416046, -0.004190122243016958, 0.05071156844496727, -0.10556165128946304, -0.03387201949954033, -0.05086163058876991, 0.04954879358410835, -0.049706943333148956, 0.04638175666332245, 0.03286261856555939, 0.0047218166291713715, 0.09320874512195587, -0.11967451125383377, 0.02107231505215168, -0.03012463077902794, -0.05113867297768593, 0.012557788752019405, 0.04326143115758896, 0.11445296555757523, 0.15444378554821014, 0.022630376741290092, 0.03867942839860916, -0.029087131842970848, 0.1921146661043167, -0.10267852991819382, -0.05090838298201561, 0.13282331824302673, 0.011223641224205494, 0.03934168070554733, 0.0821511521935463, 0.06818389147520065, -0.08765008300542831, 0.014638809487223625, 0.040342286229133606, -0.024920476600527763, -0.22355268895626068, -0.02141602151095867, -0.05833320692181587, -0.014604467898607254, 0.11947382241487503, 0.03397859260439873, 0.050237640738487244, 0.04461901634931564, -0.014204932376742363, 0.018464935943484306, -0.014383730478584766, 0.08630450814962387, 0.09423083811998367, 0.06093122810125351, 0.13468357920646667, -0.03283342719078064, -0.04853907227516174, 0.020942997187376022, -0.012827578000724316, 0.2365066260099411, 0.005622428841888905, 0.18515807390213013, 0.052487317472696304, 0.16297876834869385, 0.01220391970127821, 0.08543939143419266, 0.016839653253555298, -0.03976818174123764, 0.022976644337177277, -0.05848905071616173, -0.028908900916576385, 0.04194033145904541, 0.05324557423591614, 0.065372534096241, -0.13901284337043762, -0.01906611956655979, 0.024765396490693092, 0.3574262857437134, 0.05388195440173149, -0.3409322202205658, -0.12292670458555222, -0.0008447450818493962, -0.07271254062652588, -0.032929472625255585, 0.020442912355065346, 0.08261708170175552, -0.08875884115695953, 0.06976631283760071, -0.08137603849172592, 0.09813914448022842, -0.037324871867895126, 0.006000734865665436, 0.08404389023780823, 0.08729756623506546, -0.0005157797713764012, 0.05833212286233902, -0.24960695207118988, 0.290278822183609, -0.00817420519888401, 0.10040193796157837, -0.04588852450251579, 0.029597170650959015, 0.03701235353946686, 0.001341571449302137, 0.054425276815891266, -0.028021497651934624, -0.07623939961194992, -0.1940009593963623, -0.07278390228748322, 0.02719632349908352, 0.12083747982978821, -0.07709997147321701, 0.12955069541931152, -0.028688542544841766, -0.018465586006641388, 0.06377748399972916, -0.053709451109170914, -0.09191811829805374, -0.09659367799758911, 0.02079726569354534, 0.019484149292111397, 0.06213536113500595, -0.10761486738920212, -0.12277235090732574, -0.05683662369847298, 0.15575578808784485, -0.08335503190755844, -0.025844771414995193, -0.13522516191005707, 0.07375442981719971, 0.15525642037391663, -0.06961095333099365, 0.06042470037937164, 0.010548585094511509, 0.13650859892368317, 0.027834678068757057, -0.036412134766578674, 0.09683291614055634, -0.08594916760921478, -0.21801145374774933, -0.028339190408587456, 0.14967992901802063, 0.02412586659193039, 0.055244527757167816, -0.024642838165163994, 0.035873446613550186, -0.035356033593416214, -0.08874625712633133, 0.05463343858718872, -0.014197636395692825, 0.02041248232126236, 0.017543844878673553, -0.00043035863200202584, 0.03673426806926727, -0.07137145102024078, -0.03840140625834465, 0.13328984379768372, 0.28971850872039795, -0.08376463502645493, -0.008133088238537312, 0.04393981024622917, -0.023904841393232346, -0.1312939077615738, 0.017316175624728203, 0.1204497218132019, 0.021530218422412872, -0.010720038786530495, -0.20913618803024292, 0.06251116096973419, 0.08062079548835754, -0.03318486362695694, 0.10407321155071259, -0.3069390654563904, -0.14724813401699066, 0.1262437403202057, 0.11121926456689835, 0.0059957862831652164, -0.1597631573677063, -0.06296725571155548, -0.015262293629348278, -0.1243380755186081, 0.08984913676977158, -0.04315787926316261, 0.11769136041402817, -0.018300063908100128, 0.0621931254863739, 0.013250014744699001, -0.051656074821949005, 0.15423886477947235, -0.010913546197116375, 0.06079218164086342, -0.0011900648241862655, 0.04089432954788208, 0.04662492126226425, -0.05978346988558769, 0.014930326491594315, -0.08831470459699631, 0.027773868292570114, -0.11679959297180176, -0.03767498582601547, -0.09387997537851334, 0.0457797572016716, -0.03377262130379677, -0.03707604482769966, -0.021102026104927063, 0.022051183506846428, 0.024353545159101486, -0.009005383588373661, 0.17329107224941254, -0.016709839925169945, 0.16980305314064026, 0.11269912868738174, 0.08776777237653732, -0.022413114085793495, -0.10429118573665619, -0.008123982697725296, -0.017944613471627235, 0.07650627195835114, -0.14209704101085663, 0.01616857200860977, 0.13278289139270782, 0.061684101819992065, 0.12808412313461304, 0.07557827234268188, -0.0652388334274292, 0.023424606770277023, 0.07441709190607071, -0.10091598331928253, -0.1297854781150818, -0.033795177936553955, 0.020283455029129982, -0.142140194773674, 0.06539657711982727, 0.0974554792046547, -0.06915295869112015, -0.009684200398623943, 0.007870426401495934, -0.003157875733450055, -0.05644015967845917, 0.22590842843055725, 0.049313630908727646, 0.08712635189294815, -0.10545002669095993, 0.07830369472503662, 0.03737279772758484, -0.1482158899307251, 0.012046578340232372, 0.06533043831586838, -0.04735928401350975, -0.013691993430256844, 0.011754900217056274, 0.08540607243776321, -0.04687594622373581, -0.06190815567970276, -0.14861802756786346, -0.14003951847553253, 0.09053649008274078, 0.12358865141868591, 0.05689210817217827, 0.029583722352981567, -0.054618556052446365, 0.06282521784305573, -0.11578525602817535, 0.09465678036212921, 0.08003169298171997, 0.08237984031438828, -0.15830349922180176, 0.15823806822299957, 0.013511890545487404, 0.028959928080439568, 0.00042347065755166113, -0.008731894195079803, -0.09233080595731735, 0.023132918402552605, -0.12894904613494873, -0.04477455094456673, -0.04921543970704079, 0.0025320423301309347, 0.007087230682373047, -0.06688472628593445, -0.08139850199222565, 0.03361520171165466, -0.12486787885427475, -0.04716702550649643, 0.01300264522433281, 0.04630684852600098, -0.12564611434936523, -0.009735455736517906, 0.04805954918265343, -0.12623652815818787, 0.08271297067403793, 0.06924911588430405, 0.026515359058976173, 0.05463488772511482, -0.05062117055058479, 0.013699651695787907, 0.04843483865261078, -0.008847702294588089, 0.03797720745205879, -0.13905459642410278, -0.004087537992745638, -0.020745648071169853, 0.05443813279271126, -0.004942635539919138, 0.044185105711221695, -0.1320052146911621, -0.04634549096226692, -0.016646308824419975, -0.050551384687423706, -0.06475567817687988, 0.04443029686808586, 0.0823061466217041, 0.039181943982839584, 0.18239425122737885, -0.07189296931028366, 0.018250256776809692, -0.22486275434494019, 0.010596467182040215, -0.02787628211081028, -0.10068386048078537, -0.0793226882815361, -0.026915380731225014, 0.07772635668516159, -0.07114669680595398, 0.087468221783638, -0.06492017209529877, 0.07241595536470413, 0.044199295341968536, -0.058345090597867966, 0.027805685997009277, 0.04808096960186958, 0.24521327018737793, 0.058456022292375565, -0.010558166541159153, 0.07982371747493744, 0.020223714411258698, 0.07067402452230453, 0.11804802715778351, 0.17006611824035645, 0.146487757563591, -0.011341748759150505, 0.11299560964107513, 0.06405387818813324, -0.08747188001871109, -0.16829362511634827, 0.06899899989366531, -0.03519812226295471, 0.13615761697292328, -0.003392687998712063, 0.2021912783384323, 0.12508928775787354, -0.17821365594863892, 0.04414188861846924, -0.027174340561032295, -0.07665053755044937, -0.10236632823944092, -0.03985695168375969, -0.06973256170749664, -0.19053827226161957, 0.022432230412960052, -0.10409922152757645, 0.04588491842150688, 0.0515860877931118, 0.028682930395007133, 0.01087364461272955, 0.1556362360715866, 0.048738379031419754, 0.011727727018296719, 0.09543946385383606, 0.0016017640009522438, -0.032884787768125534, -0.04804806783795357, -0.09659171104431152, 0.029005102813243866, -0.034977469593286514, 0.051115620881319046, -0.06198636814951897, -0.12795421481132507, 0.0661126971244812, 0.014492202550172806, -0.11393757909536362, 0.025155361741781235, 0.0027860295958817005, 0.0792250707745552, 0.040738433599472046, 0.015857933089137077, 0.001702626934275031, -0.018638066947460175, 0.24441145360469818, -0.11201895773410797, -0.05742322653532028, -0.13123808801174164, 0.25588300824165344, 0.020311908796429634, -0.021831991150975227, 0.03461466357111931, -0.07368037104606628, -0.027629682794213295, 0.17038705945014954, 0.13069380819797516, -0.007763391826301813, -0.024394480511546135, 0.0034299378748983145, -0.017789436504244804, -0.05401826649904251, 0.08054638653993607, 0.11758092045783997, 0.07465071231126785, -0.06648796796798706, -0.038383159786462784, -0.03645210340619087, -0.051132045686244965, -0.013340749777853489, 0.09908725321292877, 0.02080727368593216, -0.02231254242360592, -0.03196696937084198, 0.08954037725925446, -0.0600292906165123, -0.10214968025684357, 0.0583571195602417, -0.16853338479995728, -0.18174567818641663, -0.03704700618982315, 0.06888433545827866, 0.01423308253288269, 0.06893520057201385, 0.0030576838180422783, -0.03499741479754448, 0.0895458534359932, 0.0019209213787689805, -0.06317444145679474, -0.12956970930099487, 0.11604496091604233, -0.0767846331000328, 0.19320985674858093, -0.054563749581575394, 0.03669783100485802, 0.12822657823562622, 0.06516432762145996, -0.08514963835477829, 0.030578671023249626, 0.06701546162366867, -0.13923612236976624, 0.0422695092856884, 0.17806562781333923, -0.03066358156502247, 0.10821613669395447, 0.022515183314681053, -0.1386120766401291, 0.009138098917901516, -0.08654473721981049, -0.03467803820967674, -0.06120049208402634, -0.026361670345067978, -0.04146046191453934, 0.12246923893690109, 0.21490861475467682, -0.06355904042720795, -0.013951899483799934, -0.05941750481724739, 0.03594864159822464, 0.07126964628696442, 0.09801064431667328, -0.041888847947120667, -0.2882283926010132, 0.009145142510533333, 0.01962646096944809, -0.01287107728421688, -0.26902270317077637, -0.09746669977903366, 0.041881013661623, -0.06407735496759415, -0.036558784544467926, 0.0927574411034584, 0.09426575899124146, 0.04709116742014885, -0.052921220660209656, -0.06195458769798279, -0.06485895067453384, 0.17798766493797302, -0.18559527397155762, -0.06241728365421295 ]
null
null
transformers
## how to use ```python from transformers import pipeline, set_seed path = "akahana/gpt2-indonesia" generator = pipeline('text-generation', model=path) set_seed(42) kalimat = "dahulu kala ada sebuah" preds = generator(kalimat, max_length=64, num_return_sequences=3) for data in preds: print(data) {'generated_text': 'dahulu kala ada sebuah perkampungan yang bernama pomere. namun kini kawasan ini sudah tidak dikembangkan lagi sebagai kawasan industri seperti perusahaan pupuk. sumber-sumber lain sudah sulit ditemukan karena belum adanya kilang pupuk milik indonesia yang sering di kembangkan sehingga belum ada satupun yang masih tersisa yang tersisa. kawasan ini juga memproduksi gula aren milik pt graha bina sarana'} {'generated_text': 'dahulu kala ada sebuah desa kecil bernama desa. desa yang terkenal seperti halnya kota terdekat lainnya adalah desa tetangga yang bernama sama."\n"sebuah masjid merupakan suatu tempat suci yang digunakan umat islam untuk beribadah. beberapa masjid yang didaftarkan berikut memiliki suatu kehormatan tersendiri bagi masing-masing denominasi islam di dunia. sebuah masjid selain memiliki fungsi sebagai tempat'} {'generated_text': 'dahulu kala ada sebuah peradaban yang dibangun di sebelah barat sungai mississippi di sekitar desa kecil desa yang bernama sama. penduduk asli di desa ini berasal dari etnis teweh yang berpindah agama menjadi kristen, namun kemudian pindah agama menjadi kristen. desa arawak mempunyai beberapa desa lain seperti adibei, deti, riuhut dan sa'} ```
{"language": "id", "widget": [{"text": "dahulu kala ada sebuah"}]}
text-generation
akahana/gpt2-indonesia
[ "transformers", "pytorch", "tf", "safetensors", "gpt2", "text-generation", "id", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## how to use
[ "## how to use" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## how to use" ]
[ 57, 4 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #gpt2 #text-generation #id #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## how to use" ]
[ -0.03572583198547363, 0.004277295898646116, -0.005547534208744764, 0.023597057908773422, 0.16504517197608948, -0.0052865538746118546, 0.09676806628704071, 0.12004822492599487, -0.015530800446867943, -0.009471233002841473, 0.13420261442661285, 0.18794161081314087, -0.002632427727803588, 0.11056347191333771, -0.10573308914899826, -0.23776356875896454, 0.052909720689058304, 0.0355224683880806, 0.0016614400083199143, 0.12152574956417084, 0.08707878738641739, -0.05416171997785568, 0.07751312106847763, -0.05425082892179489, -0.14895235002040863, 0.0072553628124296665, 0.044989101588726044, -0.13198526203632355, 0.13449916243553162, 0.046645645052194595, 0.09349645674228668, 0.04900004342198372, -0.032963164150714874, -0.13351953029632568, 0.02839099057018757, 0.05358829349279404, -0.07356051355600357, 0.05062593147158623, 0.11814572662115097, -0.06511399149894714, 0.1058414876461029, 0.028158679604530334, -0.020071644335985184, 0.051179319620132446, -0.157414048910141, -0.06976176053285599, -0.01230838056653738, 0.024034680798649788, 0.09337768703699112, 0.10928767174482346, -0.004338770639151335, 0.15811896324157715, -0.07211098074913025, 0.13282033801078796, 0.13183598220348358, -0.31384363770484924, -0.006622126325964928, 0.08419139683246613, 0.04537152126431465, 0.059108659625053406, -0.03640218824148178, 0.04740726575255394, 0.03573843091726303, 0.03495340421795845, 0.057078488171100616, -0.06545454263687134, -0.1626170575618744, 0.024937821552157402, -0.11511223763227463, -0.08059348911046982, 0.23001280426979065, -0.06432744860649109, 0.021950360387563705, -0.03565586730837822, -0.12112437188625336, -0.011009592562913895, -0.014835238456726074, -0.023686934262514114, -0.06608931720256805, 0.06515632569789886, 0.015350325033068657, -0.07947485893964767, -0.1456819325685501, -0.04620581492781639, -0.1439165323972702, 0.17331384122371674, 0.02063899300992489, 0.040268175303936005, -0.16892239451408386, 0.1260850578546524, 0.005136008374392986, -0.0903051346540451, 0.04179064929485321, -0.090501569211483, 0.045710932463407516, -0.023606743663549423, -0.017863493412733078, -0.09801741689443588, 0.1091197282075882, 0.12616084516048431, -0.06889843940734863, 0.03205157071352005, -0.06938645988702774, 0.07313486933708191, -0.006069050170481205, 0.09358435124158859, -0.021358054131269455, 0.0037934365682303905, 0.10425867885351181, -0.1011461392045021, -0.00009798166865948588, -0.05288796126842499, -0.13607248663902283, -0.04949828237295151, 0.11533151566982269, 0.1385844647884369, 0.02324131317436695, 0.1044815257191658, -0.025254035368561745, -0.006917912513017654, 0.09851755946874619, -0.10421404242515564, -0.01702103763818741, 0.000932440918404609, 0.04441574960947037, 0.02600228786468506, 0.03273436799645424, -0.00711588142439723, -0.14485575258731842, 0.04798753559589386, -0.053016502410173416, -0.022400755435228348, -0.029746372252702713, -0.07929568737745285, 0.020403899252414703, -0.08444198966026306, 0.016611797735095024, -0.19852891564369202, -0.18626220524311066, 0.029627861455082893, -0.011517145670950413, -0.01737755537033081, -0.012529837898910046, -0.020228195935487747, -0.04937928915023804, 0.01899535208940506, -0.058071911334991455, -0.01231430470943451, -0.058692771941423416, 0.11364347487688065, -0.025354906916618347, 0.04774368181824684, -0.0983506590127945, 0.050124604254961014, -0.11521735042333603, 0.0025601168163120747, -0.10033221542835236, 0.06446154415607452, -0.0054888492450118065, 0.12560172379016876, -0.031291212886571884, -0.03242973983287811, -0.08113068342208862, 0.034344132989645004, -0.01250057015568018, 0.19960007071495056, -0.08882102370262146, -0.05632605031132698, 0.2795395851135254, -0.1321103274822235, -0.18807178735733032, 0.13146312534809113, 0.024626826867461205, 0.05020697042346001, 0.09264180809259415, 0.1649242788553238, 0.08665525168180466, -0.04562389478087425, 0.0896197110414505, 0.13159720599651337, -0.11680184304714203, -0.07138212770223618, -0.001628509140573442, -0.020511414855718613, -0.15104170143604279, 0.03656281903386116, 0.032892677932977676, 0.09342028200626373, -0.04437081515789032, -0.024620885029435158, -0.06481479853391647, -0.024555034935474396, 0.042685989290475845, 0.006092095747590065, 0.07978454232215881, -0.06632781773805618, -0.01712139882147312, -0.06376971304416656, -0.01194822695106268, -0.0403950996696949, 0.030209166929125786, -0.04578973725438118, 0.14454501867294312, -0.02611399069428444, 0.05726220831274986, -0.1702479124069214, -0.12520313262939453, 0.001175920246168971, 0.15829972922801971, -0.031312841922044754, 0.03785383701324463, 0.07438744604587555, 0.027083592489361763, -0.019136644899845123, -0.05136113613843918, 0.1905275583267212, 0.0026839198544621468, -0.054932381957769394, -0.05162212252616882, 0.07201727479696274, -0.06433849036693573, 0.0019221570109948516, -0.08123498409986496, 0.02637663669884205, 0.07071508467197418, 0.08657175302505493, 0.010110214352607727, 0.043564323335886, -0.005608405917882919, 0.006251580081880093, -0.0723993182182312, -0.03807735815644264, 0.08130758255720139, 0.02037574164569378, -0.08035246282815933, 0.15878582000732422, -0.20129090547561646, 0.27957016229629517, 0.17752201855182648, -0.23361459374427795, -0.028813041746616364, -0.05723578855395317, -0.03219114989042282, 0.023006539791822433, 0.01980343461036682, -0.048042286187410355, 0.06454551219940186, -0.012105376459658146, 0.17891782522201538, -0.07930178940296173, -0.06863906979560852, 0.013109661638736725, -0.062288928776979446, -0.002621397376060486, 0.059302181005477905, 0.03896430507302284, -0.1850566864013672, 0.17424726486206055, 0.17360864579677582, 0.03830194100737572, 0.16924163699150085, -0.019765714183449745, -0.0273258239030838, 0.09280388057231903, 0.098553366959095, 0.0017535861115902662, -0.06575167924165726, -0.15506266057491302, 0.009174625389277935, 0.06574558466672897, 0.04028921574354172, 0.0881599485874176, -0.1456688940525055, -0.038887206465005875, -0.0029085148125886917, -0.04433518648147583, 0.026199234649538994, 0.06480401754379272, 0.031013576313853264, 0.13113389909267426, -0.020819827914237976, -0.030201280489563942, 0.12170543521642685, 0.014711390249431133, -0.12538215517997742, 0.22330065071582794, -0.12502367794513702, -0.35529232025146484, -0.13086360692977905, -0.10750891268253326, -0.02680463343858719, 0.05688363313674927, 0.11070588231086731, -0.1037885993719101, -0.053683292120695114, -0.03380553796887398, 0.03434963524341583, -0.038259513676166534, 0.02053740806877613, -0.08676903694868088, 0.04825180023908615, -0.03678712993860245, -0.10207662731409073, -0.053968388587236404, 0.014393394812941551, -0.09785798192024231, 0.17545975744724274, -0.0937546044588089, 0.08136815577745438, 0.1707129180431366, -0.010945960879325867, 0.060594893991947174, -0.04536974057555199, 0.19281598925590515, -0.08068174868822098, 0.0342618003487587, 0.2098812609910965, -0.06153508275747299, 0.07655099779367447, 0.09246117621660233, -0.011573483236134052, -0.07964624464511871, 0.04607724770903587, -0.04814467951655388, -0.10083873569965363, -0.24313415586948395, -0.12298305332660675, -0.10649930685758591, 0.08223968744277954, 0.043383870273828506, 0.09222672134637833, 0.16185016930103302, 0.10072539746761322, -0.033934470266103745, 0.013369647786021233, 0.057882990688085556, 0.08767096698284149, 0.1246836856007576, -0.0030355288181453943, 0.11152882874011993, -0.06984002143144608, -0.13728247582912445, 0.09526368975639343, 0.03785642609000206, 0.11450774222612381, 0.0227663516998291, 0.012185283936560154, 0.015075341798365116, 0.10274799913167953, 0.10615727305412292, 0.20221926271915436, -0.0009796025697141886, -0.025875555351376534, -0.01123660895973444, -0.03949768841266632, -0.03748787194490433, 0.023682162165641785, -0.044974539428949356, -0.12766826152801514, -0.05285077542066574, -0.07291164249181747, 0.10432058572769165, 0.09438086301088333, 0.0514100007712841, -0.24638161063194275, -0.0014329422265291214, 0.06951356679201126, -0.006613964214920998, -0.13314862549304962, 0.08403541147708893, 0.05475929006934166, -0.127755805850029, 0.05380409210920334, -0.05620448291301727, 0.10371704399585724, -0.027804220095276833, 0.06650999933481216, -0.036558154970407486, -0.04582913964986801, -0.0123943742364645, 0.12854431569576263, -0.30774614214897156, 0.19492501020431519, 0.00834913644939661, -0.008211740292608738, -0.10784397274255753, 0.019304148852825165, 0.032440897077322006, 0.14607498049736023, 0.15003032982349396, -0.0023932696785777807, -0.022067241370677948, -0.12280067801475525, -0.02597287856042385, 0.031210819259285927, 0.120527483522892, -0.01002786960452795, 0.010915189981460571, -0.0429207868874073, -0.02066708728671074, -0.0006609581760130823, -0.07557659596204758, -0.025336185470223427, -0.15582069754600525, 0.050552066415548325, 0.016118168830871582, 0.10463862121105194, -0.01929488033056259, 0.005256065167486668, -0.11097879707813263, 0.20188957452774048, -0.0445442833006382, -0.11991947144269943, -0.12815923988819122, -0.0714963898062706, 0.050636786967515945, -0.0752280130982399, 0.06457379460334778, -0.07114645093679428, 0.042764097452163696, -0.05540589988231659, -0.19958782196044922, 0.10283437371253967, -0.12238357216119766, -0.0654960349202156, -0.007526902481913567, 0.19039517641067505, -0.06596735864877701, -0.030934924259781837, 0.0498516783118248, 0.006576482206583023, -0.07070232927799225, -0.12464649230241776, 0.024685699492692947, -0.046080052852630615, 0.07769542932510376, 0.05178375914692879, -0.09180810302495956, -0.05508526414632797, -0.02064337581396103, -0.006794096902012825, 0.29284143447875977, 0.16675405204296112, -0.03959749639034271, 0.12173768132925034, 0.1221875324845314, -0.05402714014053345, -0.3308597505092621, -0.09130126237869263, -0.12715429067611694, -0.05423456430435181, -0.021210793405771255, -0.12926824390888214, 0.0652189627289772, 0.007943532429635525, -0.015507758595049381, 0.15307208895683289, -0.1992790848016739, -0.07777700573205948, 0.18301860988140106, 0.05812433734536171, 0.2538192570209503, -0.16707761585712433, -0.09370685368776321, -0.035009097307920456, -0.09037022292613983, 0.14968310296535492, -0.12366428226232529, 0.06952222436666489, -0.007451365701854229, 0.04524894058704376, 0.051796477288007736, -0.06826401501893997, 0.07181905210018158, -0.029627250507473946, 0.024142080917954445, -0.1181839182972908, 0.010785192251205444, 0.06105141341686249, -0.014637338928878307, 0.0806562602519989, -0.03939215466380119, 0.057626236230134964, -0.057249490171670914, -0.04139196127653122, -0.07162515819072723, 0.07339692115783691, 0.03378601744771004, -0.08442701399326324, 0.010940701700747013, -0.05794374644756317, 0.01562868058681488, -0.013238772749900818, 0.12643998861312866, -0.04039300978183746, 0.17929060757160187, 0.13796699047088623, 0.1431378871202469, -0.10648392140865326, 0.04854096472263336, -0.041972436010837555, -0.065437451004982, 0.06259642541408539, -0.07143958657979965, 0.07850006967782974, 0.08353447914123535, -0.031332727521657944, 0.0843978002667427, 0.11092426627874374, -0.007137143984436989, -0.02419642172753811, 0.13167686760425568, -0.2759329080581665, -0.03502131998538971, -0.09568407386541367, -0.03651057928800583, 0.06752114742994308, 0.09175430983304977, 0.15358062088489532, 0.010922127403318882, -0.02211466059088707, -0.016137251630425453, 0.01441649254411459, -0.041413575410842896, 0.08625319600105286, 0.0428030751645565, 0.035650577396154404, -0.12490705400705338, 0.063365139067173, 0.002386466134339571, -0.11365397274494171, 0.012932456098496914, 0.15890398621559143, -0.16166548430919647, -0.126607283949852, 0.017248215153813362, 0.11241866648197174, -0.10029811412096024, -0.06829161196947098, -0.04710114747285843, -0.13719026744365692, 0.06280336529016495, 0.1798064410686493, 0.0477403849363327, 0.08797039836645126, -0.002709735184907913, -0.013186895288527012, -0.07863862812519073, 0.041375912725925446, 0.020359298214316368, 0.023571515455842018, -0.12735144793987274, 0.0962403193116188, -0.026323087513446808, 0.12614226341247559, -0.09255199879407883, -0.03193067014217377, -0.15643079578876495, 0.027690062299370766, -0.13557612895965576, -0.030186044052243233, -0.07159034162759781, -0.02325245924293995, -0.013975203968584538, 0.0020048466976732016, -0.011997305788099766, -0.02663353830575943, -0.09688255190849304, 0.019993629306554794, -0.032185450196266174, -0.015239257365465164, -0.08884421736001968, -0.03391357883810997, 0.05479465797543526, -0.05545324832201004, 0.1422167420387268, 0.11974745988845825, -0.10094374418258667, 0.10808855295181274, -0.2018313854932785, -0.07723582535982132, 0.1306040734052658, 0.0028699724934995174, 0.026171011850237846, 0.05295240879058838, 0.038333192467689514, 0.07001474499702454, -0.02930319868028164, 0.039493709802627563, 0.038126733154058456, -0.10763785988092422, 0.0696093887090683, -0.03643849864602089, -0.12152926623821259, -0.0567573718726635, -0.02847030945122242, 0.03299066424369812, -0.0030412175692617893, 0.09114079177379608, -0.09295386075973511, 0.08998575061559677, -0.08554292470216751, 0.005810434464365244, 0.010758355259895325, -0.1673976480960846, -0.08564551174640656, -0.04298404976725578, 0.04892298951745033, 0.0030588305089622736, 0.20077168941497803, 0.04029285907745361, 0.021681804209947586, 0.019101236015558243, 0.042345281690359116, 0.09721510857343674, -0.0035275144036859274, 0.22331947088241577, 0.049505945295095444, -0.06329472362995148, -0.12901006639003754, 0.05113751441240311, 0.016151852905750275, -0.06162099912762642, 0.13728176057338715, 0.022516533732414246, -0.095027394592762, 0.06836522370576859, -0.035252831876277924, -0.02642078325152397, -0.07724139094352722, -0.1826041340827942, -0.023219287395477295, 0.04467500001192093, -0.014716687612235546, 0.0471518449485302, 0.18277081847190857, -0.0292605422437191, 0.01890290342271328, -0.007110461592674255, -0.0611443966627121, -0.17630578577518463, -0.15032240748405457, -0.08106641471385956, -0.10308795422315598, 0.0021283847745507956, -0.1208156868815422, 0.023070471361279488, 0.033121608197689056, 0.06653080135583878, -0.04595862329006195, 0.17952574789524078, 0.0618339478969574, -0.08093981444835663, 0.07615543156862259, -0.014565512537956238, 0.07327080518007278, 0.03622997924685478, -0.032543569803237915, -0.0739743709564209, -0.022087112069129944, -0.015506766736507416, 0.04053458198904991, -0.019855791702866554, 0.05759067460894585, -0.13230036199092865, -0.08684422820806503, -0.043906521052122116, 0.08063273876905441, -0.04805868864059448, 0.132887601852417, 0.004423004109412432, -0.03772657364606857, 0.045554473996162415, 0.2061547487974167, -0.07248838245868683, -0.1302771270275116, -0.040044307708740234, 0.2630627751350403, 0.037351757287979126, 0.07786866277456284, 0.011588324792683125, -0.03175980970263481, -0.023623798042535782, 0.34234416484832764, 0.2683448791503906, -0.045875921845436096, 0.04723857343196869, -0.0120230782777071, 0.02546873316168785, 0.10419855266809464, 0.16107389330863953, 0.1007848009467125, 0.28091713786125183, -0.07816112786531448, -0.032072484493255615, -0.02305706776678562, 0.0037237713113427162, -0.11858530342578888, 0.10618789494037628, 0.04144597798585892, -0.03998006135225296, -0.031210150569677353, 0.11173152923583984, -0.1933535486459732, 0.10118851810693741, -0.0896284431219101, -0.10963450372219086, -0.051140882074832916, -0.0012905171606689692, 0.06939049065113068, -0.01913989521563053, 0.06940332800149918, -0.024294095113873482, -0.06349782645702362, 0.02917608805000782, 0.029838604852557182, -0.19044584035873413, 0.03305768594145775, 0.029764054343104362, -0.03238585218787193, 0.06913206726312637, -0.0035936543717980385, 0.04265672340989113, 0.0791037380695343, 0.019427195191383362, -0.06407445669174194, 0.11432980000972748, -0.002218198962509632, -0.03377869352698326, 0.047547098249197006, 0.034856539219617844, 0.009162476286292076, -0.12393836677074432, 0.027494683861732483, -0.1582656353712082, 0.03237863630056381, 0.030011676251888275, -0.039327338337898254, -0.03786676377058029, 0.01643008552491665, -0.06491760909557343, 0.07678326219320297, 0.0779443010687828, -0.014457416720688343, 0.03497009724378586, -0.09241797775030136, 0.021560661494731903, 0.0012569046812132, -0.07754778861999512, -0.0476408526301384, -0.12451756000518799, -0.08007735759019852, 0.12317077815532684, -0.010869817808270454, -0.22428657114505768, 0.016975266858935356, -0.09200610965490341, 0.03958183154463768, -0.21174050867557526, 0.08042005449533463, 0.09407763928174973, 0.023074528202414513, 0.012047382071614265, 0.013591370545327663, 0.015053298324346542, 0.09408106654882431, -0.08317477256059647, -0.06671744585037231 ]
null
null
transformers
## how to use ```python from transformers import pipeline, set_seed path = "akahana/indonesia-emotion-roberta" emotion = pipeline('text-classification', model=path,device=0) set_seed(42) kalimat = "dia orang yang baik ya bunds." preds = emotion(kalimat) preds [{'label': 'BAHAGIA', 'score': 0.8790940046310425}] ```
{"language": "id", "widget": [{"text": "dia orang yang baik ya bunds."}]}
text-classification
akahana/indonesia-emotion-roberta
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "id", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us
## how to use
[ "## how to use" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n", "## how to use" ]
[ 48, 4 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n## how to use" ]
[ -0.04535957798361778, 0.06647671014070511, -0.006033923476934433, 0.032867640256881714, 0.17866389453411102, -0.0065958453342318535, 0.12294835597276688, 0.11045104265213013, 0.04938861355185509, 0.00926008727401495, 0.09594202041625977, 0.2271670401096344, -0.017644742503762245, 0.06463609635829926, -0.1376263052225113, -0.2694115936756134, 0.02821090817451477, 0.05343596264719963, -0.01749913953244686, 0.1014280840754509, 0.07933428138494492, -0.11003617197275162, 0.03775956481695175, -0.03011271543800831, -0.1346483826637268, 0.024049481377005577, 0.03181697055697441, -0.1330733448266983, 0.11081574112176895, 0.030617719516158104, 0.18851998448371887, 0.05810169503092766, -0.014560781419277191, -0.1575229912996292, 0.04097030684351921, 0.0281511340290308, -0.07388822734355927, 0.06571827828884125, 0.1089860275387764, -0.10125254094600677, 0.02259404957294464, -0.02118563838303089, 0.04246699437499046, 0.030044525861740112, -0.11790038645267487, -0.05538090690970421, -0.006595526356250048, 0.015786629170179367, 0.11095037311315536, 0.06839089840650558, 0.0030332638416439295, 0.17225070297718048, -0.08750893175601959, 0.11978121846914291, 0.09628493338823318, -0.3095456659793854, -0.03022949956357479, 0.11511529982089996, 0.05774857848882675, 0.06235470995306969, -0.07261856645345688, 0.045052289962768555, 0.022250348702073097, 0.010816837660968304, 0.05506910756230354, -0.07427763193845749, -0.13320526480674744, 0.01568177156150341, -0.1075216755270958, -0.020319584757089615, 0.146718367934227, -0.06938482820987701, 0.05967528745532036, -0.06744503229856491, -0.10498262941837311, -0.023224951699376106, -0.04079199209809303, -0.015688763931393623, -0.04214232414960861, 0.04198046401143074, 0.0034927597735077143, -0.05745411664247513, -0.14565590023994446, 0.010452629998326302, -0.1584893763065338, 0.18573105335235596, 0.015244035981595516, 0.026209156960248947, -0.15589936077594757, 0.06510324776172638, 0.04037097468972206, -0.09959451109170914, 0.08225254714488983, -0.07280094921588898, 0.02390461601316929, -0.04618976265192032, -0.02618316188454628, -0.16661496460437775, 0.11281430721282959, 0.10266069322824478, -0.00416543846949935, 0.07355502992868423, -0.047154854983091354, 0.0958005040884018, 0.011357828974723816, 0.1389354020357132, 0.008940368890762329, -0.021856317296624184, 0.0937047153711319, -0.06475327163934708, 0.03730401024222374, -0.06120709329843521, -0.16001899540424347, -0.0198480486869812, 0.10983403772115707, 0.11597224324941635, 0.0263690035790205, 0.06880109012126923, -0.04032835736870766, -0.017891105264425278, 0.06898751109838486, -0.11301296204328537, 0.037961892783641815, 0.025005068629980087, 0.041297197341918945, 0.024517586454749107, 0.023222217336297035, -0.013699577189981937, -0.08319517225027084, 0.11168120056390762, -0.037319209426641464, 0.008013231679797173, -0.06008187681436539, -0.10325818508863449, 0.03702740743756294, -0.16424520313739777, 0.026631707325577736, -0.16885413229465485, -0.11387227475643158, -0.007972082123160362, 0.02650698833167553, -0.009663291275501251, 0.01273324154317379, -0.015611897222697735, -0.0068765669129788876, 0.0337781086564064, -0.04131937399506569, -0.05928609520196915, -0.047113437205553055, 0.082875095307827, -0.032814353704452515, 0.055505357682704926, -0.07133116573095322, 0.04739256575703621, -0.07996275275945663, 0.008259124122560024, -0.14800243079662323, 0.03369522839784622, -0.06261996179819107, 0.1572985202074051, -0.020521963015198708, -0.025685714557766914, -0.0741865485906601, 0.03887319937348366, -0.018244419246912003, 0.14292152225971222, -0.10334917157888412, -0.05604177340865135, 0.22690270841121674, -0.13155589997768402, -0.148427352309227, 0.12248528003692627, -0.02170548401772976, 0.021634837612509727, 0.076360322535038, 0.1961297243833542, 0.14647629857063293, -0.05097809061408043, 0.07103734463453293, 0.13135261833667755, -0.06821741163730621, -0.1391095370054245, -0.02595721371471882, -0.010010690428316593, -0.06133265420794487, 0.0325041189789772, 0.07557803392410278, 0.07718825340270996, -0.02956322208046913, -0.05664434656500816, -0.039414968341588974, -0.04273208603262901, 0.08381742238998413, 0.07540446519851685, 0.10247169435024261, -0.06833963096141815, -0.003780063707381487, 0.008474557660520077, -0.015286809764802456, -0.04155047610402107, 0.02155248261988163, -0.0801076889038086, 0.13997186720371246, -0.04860816150903702, 0.010686293244361877, -0.21852435171604156, -0.12004910409450531, -0.01685527339577675, 0.10464278608560562, -0.02824498526751995, 0.07973537594079971, 0.08606979995965958, -0.011537875048816204, -0.01975947432219982, -0.034038107842206955, 0.21936199069023132, 0.03126909211277962, -0.08395471423864365, -0.09263963252305984, 0.0710320994257927, -0.09525782614946365, 0.012992294505238533, -0.1183987706899643, 0.036611754447221756, 0.08274124562740326, 0.08985787630081177, 0.03221955895423889, 0.059010595083236694, 0.004069310147315264, 0.05319821462035179, -0.07157473266124725, -0.013275262899696827, 0.10306774079799652, 0.014356979168951511, -0.0949317216873169, 0.1082049086689949, -0.2055465430021286, 0.28355568647384644, 0.1839582920074463, -0.22214928269386292, -0.017527161166071892, -0.029393406584858894, -0.001010461593978107, 0.018404293805360794, -0.0074615213088691235, 0.025113919749855995, 0.0705094113945961, 0.004209196660667658, 0.17634759843349457, -0.04191083833575249, -0.05201117321848869, 0.011941210366785526, -0.07774146646261215, -0.03797990828752518, 0.07743912190198898, 0.04986630752682686, -0.19568713009357452, 0.17404600977897644, 0.1660059541463852, -0.05043446272611618, 0.17852230370044708, -0.01638546958565712, 0.020462339743971825, 0.07621551305055618, 0.05461297184228897, 0.023959627375006676, -0.01990092732012272, -0.1611747294664383, -0.024278994649648666, 0.052103910595178604, -0.008594687096774578, 0.06787269562482834, -0.1658533811569214, -0.020454328507184982, -0.0029417029581964016, 0.009761729277670383, 0.05042973905801773, 0.03708187863230705, 0.04141353443264961, 0.09825600683689117, -0.019980045035481453, -0.08213198184967041, 0.09302198886871338, -0.01173747144639492, -0.08808666467666626, 0.21491961181163788, -0.11347297579050064, -0.3193884491920471, -0.1375478208065033, -0.13040637969970703, -0.00881699938327074, 0.045514900237321854, 0.07915297895669937, -0.09852800518274307, -0.05653901770710945, -0.007781938649713993, -0.046011533588171005, -0.014681575819849968, 0.024523109197616577, -0.06980868428945541, 0.08271312713623047, -0.028385763987898827, -0.08572550117969513, -0.053220234811306, -0.029051143676042557, -0.035292018204927444, 0.15612153708934784, -0.06756488978862762, 0.09449149668216705, 0.18653126060962677, -0.02930375002324581, 0.05126655846834183, -0.037366945296525955, 0.10482332855463028, -0.08617063611745834, 0.029293660074472427, 0.1676512062549591, -0.09008681774139404, 0.08448479324579239, 0.14728114008903503, 0.04077095165848732, -0.04637491703033447, 0.01464572362601757, -0.026867952197790146, -0.11089793592691422, -0.26995396614074707, -0.13344043493270874, -0.10799111425876617, 0.038270123302936554, 0.05193347483873367, 0.09422993659973145, 0.12602201104164124, 0.12186262756586075, 0.03434957191348076, -0.009747055359184742, 0.040838174521923065, 0.06823015958070755, 0.16691860556602478, 0.025815898552536964, 0.14169757068157196, -0.08719147741794586, -0.15434889495372772, 0.05872675031423569, 0.04845859482884407, 0.13034728169441223, 0.07176171243190765, 0.040474873036146164, 0.015648474916815758, 0.10613962262868881, 0.1350957453250885, 0.16426031291484833, 0.007467589806765318, -0.037193506956100464, 0.011238656006753445, -0.015886079519987106, -0.03546031564474106, 0.013093081302940845, 0.03708743676543236, -0.10654542595148087, -0.020699096843600273, -0.07041433453559875, 0.10090776532888412, 0.09604444354772568, 0.0343485102057457, -0.23536387085914612, 0.011615036055445671, 0.08605797588825226, 0.007444263901561499, -0.08734072744846344, 0.07330777496099472, 0.02643091417849064, -0.09940633922815323, 0.07726013660430908, -0.09217164665460587, 0.10856010019779205, -0.10387768596410751, 0.0410897433757782, -0.055787790566682816, -0.06169384717941284, 0.0044065662659704685, 0.10649915784597397, -0.24129019677639008, 0.21231123805046082, 0.019481560215353966, 0.004068788606673479, -0.07924288511276245, 0.007731246296316385, 0.06253208965063095, 0.16797968745231628, 0.12537412345409393, -0.026898588985204697, -0.07569216191768646, -0.13266946375370026, -0.049958765506744385, 0.007089157123118639, 0.10704080015420914, 0.01876997947692871, 0.0043690940365195274, -0.033114753663539886, -0.03550925478339195, 0.007984082214534283, -0.12702469527721405, 0.002749492647126317, -0.19437384605407715, 0.03420316055417061, 0.030868055298924446, -0.03508039936423302, 0.008053761906921864, -0.04753986746072769, -0.1484289914369583, 0.22903461754322052, -0.08333741873502731, -0.08459903299808502, -0.11926595866680145, -0.08016403764486313, 0.029447466135025024, -0.09011592715978622, 0.05869785323739052, -0.0801033154129982, 0.05782609432935715, -0.08301540464162827, -0.18901780247688293, 0.11802013963460922, -0.11917977780103683, -0.025080958381295204, -0.05220949649810791, 0.14272961020469666, -0.05964067950844765, -0.014422968029975891, 0.052234452217817307, 0.02618611790239811, -0.06801102310419083, -0.10686223208904266, 0.0207564327865839, -0.0013666743179783225, 0.0738905817270279, 0.028534410521388054, -0.09717347472906113, -0.12010153383016586, -0.016516445204615593, 0.0225470382720232, 0.28881409764289856, 0.15623174607753754, -0.07609130442142487, 0.1030554249882698, 0.1412074714899063, -0.06414251774549484, -0.3618176281452179, -0.054694462567567825, -0.11361312121152878, -0.039670202881097794, 0.0038995742797851562, -0.1095672994852066, 0.11311287432909012, -0.010337884537875652, -0.0497906468808651, 0.09908543527126312, -0.171787291765213, -0.0980258658528328, 0.22693182528018951, 0.07950515300035477, 0.2548247277736664, -0.1737028807401657, -0.10030647367238998, -0.02634670026600361, -0.037183962762355804, 0.12727764248847961, -0.13567757606506348, 0.06566696614027023, 0.003109812503680587, 0.020801082253456116, 0.04559198394417763, -0.08967135846614838, 0.09194368124008179, -0.06260763853788376, 0.02032647468149662, -0.10713648796081543, -0.06948360055685043, 0.06861022859811783, -0.044982559978961945, 0.02714972384274006, -0.0320708230137825, 0.014727124013006687, -0.07068612426519394, -0.047543805092573166, -0.03924013301730156, 0.08356337994337082, 0.03179078921675682, -0.05585503578186035, -0.004434633534401655, -0.02909420058131218, 0.0044164531864225864, 0.001661587506532669, 0.2542833983898163, -0.030212683603167534, 0.18049588799476624, 0.1928384006023407, 0.16074278950691223, -0.0643971785902977, 0.025747103616595268, -0.03970850259065628, -0.06224387139081955, 0.057015709578990936, -0.06660929322242737, 0.06526883691549301, 0.10454408824443817, -0.03407369926571846, 0.07152801007032394, 0.10500849783420563, 0.003934265114367008, -0.005649908911436796, 0.15089765191078186, -0.22922804951667786, -0.08001930266618729, -0.030604729428887367, -0.04161680489778519, 0.03250087797641754, 0.09769614785909653, 0.12872137129306793, 0.026323245838284492, -0.019895857200026512, 0.004019148647785187, 0.007841414771974087, 0.005891422275453806, 0.08967097103595734, 0.09594812244176865, 0.050474029034376144, -0.1079903170466423, 0.058246910572052, 0.04934660717844963, -0.18307997286319733, -0.005013585556298494, 0.12844698131084442, -0.14188526570796967, -0.1368982493877411, 0.045567043125629425, 0.17645899951457977, -0.0690978392958641, -0.0887957215309143, -0.10028104484081268, -0.1278117597103119, 0.02312706783413887, 0.21875523030757904, 0.09545133262872696, 0.043033190071582794, -0.027176545932888985, -0.018589982762932777, -0.07736338675022125, 0.07302343845367432, 0.020888572558760643, 0.03124060295522213, -0.1483340561389923, 0.027259480208158493, -0.00954228825867176, 0.10604634135961533, -0.09390588104724884, -0.03167039155960083, -0.16854877769947052, 0.03314746543765068, -0.11261764913797379, 0.018935542553663254, -0.08523940294981003, -0.005350548308342695, -0.011949451640248299, -0.009167836979031563, -0.04117186740040779, -0.04585021734237671, -0.09955883026123047, 0.0374307744204998, -0.019535008817911148, -0.007891064509749413, -0.10313194245100021, -0.05514005944132805, 0.05581255629658699, -0.0405225045979023, 0.09443970769643784, 0.0776720866560936, -0.06911604851484299, 0.07457076013088226, -0.1969759166240692, -0.07068533450365067, 0.14601469039916992, 0.010474481619894505, 0.06767378747463226, 0.04254285246133804, 0.03787267953157425, 0.0664595365524292, -0.005466792732477188, 0.045169897377491, 0.08400635421276093, -0.1086631640791893, 0.11195456236600876, -0.06456442922353745, -0.1546304076910019, -0.05756569281220436, 0.0038816339801996946, 0.07319680601358414, -0.0030566491186618805, 0.13409611582756042, -0.10139663517475128, 0.08901290595531464, -0.0730426087975502, 0.01404943410307169, -0.011429169215261936, -0.1725044548511505, -0.04619845375418663, -0.04316597431898117, 0.03470643237233162, -0.021557608619332314, 0.20792388916015625, 0.0697784498333931, 0.0321061871945858, 0.037600141018629074, 0.026414470747113228, 0.042092036455869675, 0.02308434434235096, 0.17310957610607147, 0.03829153627157211, -0.05917329713702202, -0.0827135294675827, 0.050889935344457626, 0.030201274901628494, -0.022778550162911415, 0.1260100156068802, 0.07791759818792343, -0.0958913192152977, 0.0887836441397667, -0.01153111457824707, 0.02272750809788704, -0.10481906682252884, -0.10144073516130447, -0.05400701239705086, 0.0586831271648407, 0.012352745048701763, 0.03975102677941322, 0.16867861151695251, -0.03515953570604324, 0.03445815667510033, -0.044219326227903366, -0.07775527983903885, -0.19665385782718658, -0.1372065395116806, -0.1044323518872261, -0.060189224779605865, 0.002355489879846573, -0.0820685476064682, -0.03828303888440132, 0.04023294523358345, 0.059103578329086304, -0.038613852113485336, 0.15645523369312286, 0.043547600507736206, -0.0035778230521827936, 0.07799462229013443, 0.009630351327359676, 0.035519469529390335, 0.007243441883474588, -0.02236701361835003, -0.12215960770845413, -0.033741481602191925, -0.03700955584645271, 0.023765547201037407, -0.023282673209905624, 0.055007465183734894, -0.10975804179906845, -0.11522996425628662, -0.02767234668135643, 0.06998401880264282, -0.016072120517492294, 0.1216813325881958, 0.004734305199235678, -0.021342048421502113, 0.03226631134748459, 0.20090998709201813, -0.07247336953878403, -0.08190517127513885, -0.033937860280275345, 0.2062484472990036, 0.052528444677591324, 0.0799085944890976, 0.002737385919317603, -0.04689016565680504, -0.017391355708241463, 0.30111128091812134, 0.3020711839199066, -0.033716317266225815, 0.07655347883701324, -0.002863724250346422, 0.022280778735876083, 0.08497127145528793, 0.1290603131055832, 0.07519050687551498, 0.2671823799610138, -0.08594983071088791, -0.062064845114946365, -0.025950472801923752, -0.015085105784237385, -0.1463252753019333, 0.08952706307172775, 0.04676401615142822, -0.008851670660078526, -0.058193087577819824, 0.12318701297044754, -0.16973817348480225, 0.05200588330626488, 0.021755801513791084, -0.19960543513298035, -0.09195008128881454, -0.016232626512646675, 0.15988771617412567, -0.05556764826178551, 0.0650068148970604, -0.019361844286322594, -0.08618485182523727, -0.027206916362047195, 0.020676827058196068, -0.18184415996074677, 0.0574185885488987, 0.01257823221385479, -0.02078513242304325, 0.08503514528274536, -0.011279790662229061, 0.01201311219483614, 0.11271602660417557, 0.04228607192635536, -0.03849433735013008, 0.0949975773692131, 0.021035198122262955, -0.05749628692865372, 0.058564718812704086, 0.030616389587521553, -0.014287264086306095, -0.10152095556259155, 0.054035790264606476, -0.12900221347808838, 0.059333641082048416, -0.10246986895799637, -0.057641565799713135, -0.04158659651875496, 0.055860769003629684, -0.05921158939599991, 0.07161883264780045, 0.06849411129951477, 0.008681817911565304, 0.014123821631073952, -0.04587489739060402, -0.0025091974530369043, 0.017932284623384476, -0.06229269132018089, -0.0940735712647438, -0.10924091190099716, -0.05607933551073074, 0.09878126531839371, 0.014888518489897251, -0.23346230387687683, -0.010786877945065498, -0.08371343463659286, 0.015358468517661095, -0.20308320224285126, 0.05629860237240791, 0.10254371166229248, 0.026976734399795532, -0.012976269237697124, -0.021747106686234474, 0.011900574900209904, 0.0653197169303894, -0.11366554349660873, -0.06936556845903397 ]
null
null
transformers
## how to use ```python from transformers import pipeline, set_seed path = "akahana/indonesia-sentiment-roberta" emotion = pipeline('text-classification', model=path,device=0) set_seed(42) kalimat = "dia orang yang baik ya bunds." preds = emotion(kalimat) preds ```
{"language": "id", "widget": [{"text": "dia orang yang baik ya bunds."}]}
text-classification
akahana/indonesia-sentiment-roberta
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "id", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us
## how to use
[ "## how to use" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n", "## how to use" ]
[ 43, 4 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #id #autotrain_compatible #endpoints_compatible #region-us \n## how to use" ]
[ -0.03284751996397972, 0.07392416149377823, -0.0061490838415920734, 0.039486054331064224, 0.20389968156814575, 0.02399827539920807, 0.10531815141439438, 0.1286243051290512, 0.058293189853429794, -0.0036875426303595304, 0.09275975078344345, 0.24460792541503906, -0.01206942182034254, 0.044328320771455765, -0.11871017515659332, -0.3106755316257477, 0.004882248118519783, 0.07124484330415726, -0.04984074458479881, 0.09964645653963089, 0.07368037849664688, -0.09992173314094543, 0.05032755061984062, -0.017752187326550484, -0.1570565104484558, 0.031132113188505173, 0.023366697132587433, -0.12333223223686218, 0.11021938174962997, 0.046731576323509216, 0.17112843692302704, 0.042947787791490555, -0.0187120009213686, -0.14772044122219086, 0.03915177285671234, 0.010630873031914234, -0.08021227270364761, 0.07369477301836014, 0.09644567966461182, -0.10131257027387619, 0.04597749933600426, 0.001537109143100679, 0.036734264343976974, 0.03024243377149105, -0.12230019271373749, -0.03388850763440132, -0.004073058255016804, 0.010331615805625916, 0.08437148481607437, 0.0583236888051033, 0.00969934556633234, 0.1384509652853012, -0.08876035362482071, 0.1135413721203804, 0.0971815437078476, -0.30277198553085327, -0.03399471566081047, 0.141605943441391, 0.04593651741743088, 0.06533745676279068, -0.06578312069177628, 0.05111805722117424, 0.012131421826779842, 0.014464256353676319, 0.044105809181928635, -0.082642562687397, -0.11882170289754868, 0.036361850798130035, -0.1010490134358406, -0.026781409978866577, 0.1536123901605606, -0.06608237326145172, 0.07787257432937622, -0.042632099241018295, -0.09896688908338547, -0.04170285537838936, -0.04862065985798836, -0.007779804989695549, -0.04476271942257881, 0.05453142523765564, 0.0020579188130795956, -0.08205069601535797, -0.13413047790527344, 0.015836011618375778, -0.17497451603412628, 0.16906078159809113, 0.008169416338205338, 0.033133432269096375, -0.1520622968673706, 0.06302570551633835, 0.02573736570775509, -0.08395416289567947, 0.0873117446899414, -0.06969022005796432, 0.009600748308002949, -0.04031545668840408, -0.03615814447402954, -0.1608734279870987, 0.09602155536413193, 0.08857375383377075, 0.0395226776599884, 0.07629247009754181, -0.028667768463492393, 0.10370757430791855, 0.02128121815621853, 0.16683673858642578, 0.007461384870111942, -0.044355619698762894, 0.06601248681545258, -0.08968981355428696, 0.011736741289496422, -0.07851000130176544, -0.1927250176668167, -0.03449693322181702, 0.08561971783638, 0.08704633265733719, 0.03224598243832588, 0.06783280521631241, -0.04015437886118889, -0.055493082851171494, 0.04935048520565033, -0.10705224424600601, 0.04788859561085701, 0.016393210738897324, 0.021022861823439598, 0.06044556945562363, 0.02256973274052143, -0.0180120337754488, -0.0924266055226326, 0.10813631117343903, -0.04152951389551163, 0.017099661752581596, -0.06921357661485672, -0.10096830129623413, 0.02178439497947693, -0.18842437863349915, 0.020430153235793114, -0.14946898818016052, -0.09942145645618439, -0.005316511262208223, 0.04065389186143875, -0.026358166709542274, -0.010866038501262665, -0.025537703186273575, 0.004407151602208614, 0.04893386736512184, -0.034979015588760376, -0.03954234719276428, -0.04571295902132988, 0.07665213197469711, -0.0437803789973259, 0.06999069452285767, -0.09062524139881134, 0.0731683298945427, -0.05590834841132164, 0.0005782766384072602, -0.15423540771007538, 0.06401229649782181, -0.06242191419005394, 0.13833358883857727, -0.02909827046096325, -0.033059023320674896, -0.0664701834321022, 0.040516987442970276, -0.024168135598301888, 0.1293029934167862, -0.10316801071166992, -0.0911383181810379, 0.1948167234659195, -0.09231835603713989, -0.12883031368255615, 0.10596147179603577, -0.028096547350287437, 0.0330488346517086, 0.061531126499176025, 0.20106185972690582, 0.15481485426425934, -0.021068116649985313, 0.08965503424406052, 0.14335143566131592, -0.062293291091918945, -0.1419764757156372, -0.023951349779963493, -0.009671014733612537, -0.049180008471012115, 0.03723960742354393, 0.07595547288656235, 0.08509180694818497, -0.03187442198395729, -0.056186653673648834, -0.024057859554886818, -0.02977767586708069, 0.09588064253330231, 0.08181003481149673, 0.12657812237739563, -0.04727699235081673, 0.002309938194230199, 0.03763739392161369, -0.016194704920053482, -0.038895245641469955, 0.03539929538965225, -0.07269174605607986, 0.14187194406986237, -0.04236232116818428, 0.014516604132950306, -0.24142353236675262, -0.09486352652311325, -0.01627940498292446, 0.11843904852867126, 0.004914141725748777, 0.12433455884456635, 0.0734783411026001, -0.03863414749503136, -0.01736428216099739, -0.0037316037341952324, 0.19211724400520325, 0.022096432745456696, -0.08514122664928436, -0.09054175764322281, 0.051842398941516876, -0.08497092127799988, 0.005638415925204754, -0.1066255196928978, 0.030756894499063492, 0.0836823433637619, 0.0840243250131607, 0.02157047763466835, 0.059737950563430786, -0.004847624339163303, 0.058723341673612595, -0.0741063728928566, -0.0005954286316409707, 0.11369255185127258, 0.003969776909798384, -0.1050238236784935, 0.10863285511732101, -0.1638784259557724, 0.25029703974723816, 0.18776701390743256, -0.2679271697998047, -0.008743477053940296, -0.03882410377264023, -0.003576928749680519, 0.018378274515271187, 0.008669278584420681, 0.02844933234155178, 0.10862455517053604, 0.00835779681801796, 0.1932089775800705, -0.02335468679666519, -0.04040894657373428, 0.0011158451670780778, -0.06334191560745239, -0.0353534072637558, 0.07591721415519714, 0.0938769057393074, -0.187194362282753, 0.17349520325660706, 0.15197014808654785, -0.055925339460372925, 0.19402649998664856, -0.003570389002561569, 0.013668671250343323, 0.07531138509511948, 0.008183525875210762, 0.011319716461002827, -0.0455286018550396, -0.20087601244449615, -0.039816342294216156, 0.0626300573348999, -0.00531830033287406, 0.08135470002889633, -0.14992141723632812, -0.011167113669216633, -0.002167925238609314, 0.011399103328585625, 0.05417662486433983, 0.04012155160307884, 0.0517423190176487, 0.08645357191562653, 0.010228345170617104, -0.08244866132736206, 0.08961490541696548, -0.0029780776239931583, -0.08004659414291382, 0.19928963482379913, -0.12091904133558273, -0.31552326679229736, -0.15409637987613678, -0.17120292782783508, -0.02290085330605507, 0.03790728375315666, 0.0739513635635376, -0.09826265275478363, -0.04626402258872986, 0.029453137889504433, -0.01823941245675087, -0.0451824814081192, 0.02145383320748806, -0.06484919041395187, 0.08048847317695618, -0.055393096059560776, -0.08408453315496445, -0.05722019076347351, -0.03218710795044899, -0.01883668825030327, 0.14830096065998077, -0.0994667336344719, 0.09033668041229248, 0.21355512738227844, -0.0271216481924057, 0.07256253063678741, -0.027302106842398643, 0.12036964297294617, -0.10082060098648071, 0.023723546415567398, 0.15428632497787476, -0.0794023796916008, 0.084299236536026, 0.13121995329856873, 0.05502557381987572, -0.0435817651450634, -0.001135872327722609, -0.020599795505404472, -0.11535186320543289, -0.2663436830043793, -0.13627029955387115, -0.13354744017124176, 0.03482866659760475, 0.06600037217140198, 0.08515752851963043, 0.13260406255722046, 0.1144503802061081, 0.05381585285067558, 0.03075150027871132, 0.01694265380501747, 0.07162667065858841, 0.2124771922826767, 0.020980382338166237, 0.14118649065494537, -0.08297334611415863, -0.14833547174930573, 0.07249253243207932, 0.06516445428133011, 0.14406579732894897, 0.08412066847085953, 0.08620346337556839, 0.007059095427393913, 0.07907960563898087, 0.13346409797668457, 0.12999409437179565, 0.012321226298809052, -0.019425585865974426, -0.002143724123016, -0.007977255620062351, -0.03816443309187889, 0.022681545466184616, 0.09804894775152206, -0.13302648067474365, -0.011705090291798115, -0.08528647571802139, 0.08901437371969223, 0.10932350158691406, 0.033924221992492676, -0.22180314362049103, 0.013720162212848663, 0.0743546187877655, -0.01107966061681509, -0.08925916999578476, 0.058315351605415344, -0.006008262746036053, -0.1233048364520073, 0.07847709953784943, -0.08426252007484436, 0.1316247433423996, -0.12767358124256134, 0.04516718536615372, -0.04146093502640724, -0.07068457454442978, 0.017187222838401794, 0.1138831302523613, -0.23789097368717194, 0.21692541241645813, 0.02301969565451145, -0.03695102408528328, -0.0826166644692421, 0.0029724689666181803, 0.07014992088079453, 0.17397703230381012, 0.08778330683708191, -0.02514803409576416, -0.039023760706186295, -0.1340842843055725, -0.027434462681412697, -0.0040833111852407455, 0.10810201615095139, -0.006837587337940931, -0.007504854816943407, -0.03483989089727402, -0.037445396184921265, -0.008332586847245693, -0.09554650634527206, 0.04135102033615112, -0.21071352064609528, 0.05415941774845123, 0.014018059708178043, -0.048904821276664734, 0.04145805910229683, -0.053867168724536896, -0.1403573751449585, 0.25135162472724915, -0.08502928167581558, -0.08306924253702164, -0.12173498421907425, -0.054766666144132614, 0.0315251499414444, -0.09226170927286148, 0.05678433179855347, -0.08110236376523972, 0.044522907584905624, -0.08244544267654419, -0.20467668771743774, 0.12025034427642822, -0.09537535905838013, -0.002577614039182663, -0.0519079826772213, 0.13336844742298126, -0.061074454337358475, 0.009000573307275772, 0.04161722585558891, 0.021311651915311813, -0.08148953318595886, -0.10247141122817993, 0.02089124359190464, 0.006752548739314079, 0.06491520255804062, 0.029028762131929398, -0.08786846697330475, -0.06174907088279724, -0.021123968064785004, 0.029740765690803528, 0.31538712978363037, 0.11923183500766754, -0.08399783819913864, 0.12070930749177933, 0.11207170784473419, -0.07925739139318466, -0.3465035855770111, -0.04998959228396416, -0.0853046402335167, -0.029996411874890327, -0.010761326178908348, -0.16859179735183716, 0.09906598925590515, -0.01916709914803505, -0.0351141132414341, 0.09762436896562576, -0.18483667075634003, -0.09545222669839859, 0.2077348232269287, 0.0526481531560421, 0.2540505528450012, -0.1480235457420349, -0.10899951308965683, -0.027231300249695778, -0.06189817935228348, 0.1335969865322113, -0.06790602207183838, 0.0927698090672493, -0.009317154064774513, 0.05657730996608734, 0.04440070688724518, -0.06859312206506729, 0.09825588762760162, -0.031333424150943756, -0.0025902146007865667, -0.09805943816900253, -0.09814932197332382, 0.06291946023702621, -0.03717328980565071, 0.008746185339987278, -0.012247782200574875, -0.001228532986715436, -0.12312348932027817, -0.04523373022675514, -0.048114947974681854, 0.07521522045135498, 0.041923269629478455, -0.05919352173805237, -0.018769798800349236, -0.027887893840670586, -0.0009119726601056755, 0.010742150247097015, 0.2642112076282501, -0.038945943117141724, 0.15645650029182434, 0.18946535885334015, 0.14916940033435822, -0.07377025485038757, -0.00960309524089098, -0.057867515832185745, -0.04800371080636978, 0.05927451327443123, -0.09482026845216751, 0.055978260934352875, 0.11897988617420197, -0.036878038197755814, 0.07868305593729019, 0.10232289880514145, 0.0025186752900481224, -0.003808768931776285, 0.1423867791891098, -0.21049199998378754, -0.06099187582731247, -0.044990066438913345, -0.07125594466924667, 0.03893999382853508, 0.07193395495414734, 0.13281787931919098, 0.03235764428973198, -0.027462301775813103, 0.023686794564127922, -0.0020499026868492365, 0.00006916841812198982, 0.0856194868683815, 0.10011536628007889, 0.04827005788683891, -0.11666049063205719, 0.051862869411706924, 0.07113099843263626, -0.1806333065032959, -0.008310377597808838, 0.14675277471542358, -0.13167621195316315, -0.1317136585712433, 0.023202357813715935, 0.18461555242538452, -0.1115088015794754, -0.0589759461581707, -0.09811033308506012, -0.11034489423036575, 0.04246789216995239, 0.196163609623909, 0.10621602833271027, 0.0432385690510273, -0.062137242406606674, -0.02183111198246479, -0.053644876927137375, 0.04706927761435509, 0.01808561012148857, 0.024419698864221573, -0.12891899049282074, 0.016209954395890236, -0.009288552217185497, 0.13981126248836517, -0.09165561944246292, -0.062415506690740585, -0.1669330596923828, 0.03396331146359444, -0.11187712103128433, 0.005415432155132294, -0.08011336624622345, -0.005927897524088621, -0.00549319526180625, -0.017669949680566788, -0.05393350496888161, -0.058371227234601974, -0.11987466365098953, 0.027532026171684265, -0.030979184433817863, 0.008220687508583069, -0.08596820384263992, -0.04455830529332161, 0.06183392554521561, -0.03227453678846359, 0.09123889356851578, 0.078870989382267, -0.057687416672706604, 0.07694520801305771, -0.13994082808494568, -0.07912866771221161, 0.13842982053756714, 0.030048614367842674, 0.09018229693174362, 0.053705815225839615, 0.03805511072278023, 0.03916461765766144, 0.002949875546619296, 0.04745969548821449, 0.09057773649692535, -0.113650381565094, 0.09582149237394333, -0.09052541851997375, -0.16466134786605835, -0.06179463118314743, 0.03436003997921944, 0.07269194722175598, 0.02248287759721279, 0.11402086913585663, -0.0822046622633934, 0.10080631822347641, -0.06611001491546631, 0.010726060718297958, -0.01753164641559124, -0.17008890211582184, -0.016834646463394165, -0.07757370918989182, 0.027081407606601715, -0.02570929005742073, 0.2106572389602661, 0.08089487999677658, 0.040128860622644424, 0.03287886455655098, 0.049700334668159485, 0.018033871427178383, 0.014535197988152504, 0.15551865100860596, 0.06501960754394531, -0.05301722511649132, -0.06616377085447311, 0.07671219110488892, 0.028762726113200188, 0.038537196815013885, 0.1330021470785141, 0.05082124471664429, -0.08678027987480164, 0.09571411460638046, -0.006729346700012684, 0.027942420914769173, -0.12709234654903412, -0.07354006916284561, -0.036730919033288956, 0.08512289077043533, 0.004745099693536758, 0.042468294501304626, 0.13766513764858246, -0.05059453472495079, 0.059911247342824936, -0.03525003790855408, -0.08433043956756592, -0.18965931236743927, -0.14254069328308105, -0.09857527166604996, -0.0821649432182312, -0.0028576378244906664, -0.07720694690942764, -0.029190776869654655, 0.0548015721142292, 0.0558108314871788, -0.043078646063804626, 0.11809715628623962, 0.029472995549440384, -0.02223644219338894, 0.08679118752479553, -0.0005647345678880811, 0.0374484620988369, -0.02368186227977276, -0.008976317010819912, -0.12912483513355255, -0.019720783457159996, -0.034235067665576935, 0.02686305344104767, -0.022225147113204002, 0.037199467420578, -0.11066340655088425, -0.12384708225727081, -0.026994163170456886, 0.05661613494157791, -0.01548044104129076, 0.12393951416015625, -0.002482157200574875, -0.02085752598941326, 0.027367910370230675, 0.20134714245796204, -0.0838819220662117, -0.039697084575891495, -0.04147273302078247, 0.19881269335746765, 0.059431493282318115, 0.0763203427195549, 0.004585469141602516, -0.039916008710861206, -0.049521833658218384, 0.31066933274269104, 0.31162169575691223, -0.05093914270401001, 0.05984745919704437, 0.03231760859489441, 0.023962803184986115, 0.1147533655166626, 0.1327114999294281, 0.061949990689754486, 0.23706869781017303, -0.08813697099685669, -0.08219822496175766, -0.034512873739004135, -0.03050607070326805, -0.12781694531440735, 0.10275546461343765, 0.07402680069208145, -0.02541724219918251, -0.05254136398434639, 0.11876798421144485, -0.19549217820167542, 0.05300752446055412, 0.03928014263510704, -0.2252887338399887, -0.1085578128695488, -0.026915883645415306, 0.13175532221794128, -0.04654495418071747, 0.07616379112005234, -0.012595879845321178, -0.09543756395578384, -0.016597570851445198, 0.029535803943872452, -0.2167610228061676, 0.051539599895477295, 0.03980935737490654, -0.03810928016901016, 0.0364314466714859, -0.025184977799654007, 0.014669018797576427, 0.10886285454034805, 0.0698683112859726, -0.01129003707319498, 0.053514860570430756, 0.02210024558007717, -0.04306938126683235, 0.04703829437494278, 0.03508899733424187, -0.009090272709727287, -0.12094961106777191, 0.0620666965842247, -0.12866835296154022, 0.05410529300570488, -0.11188452690839767, -0.044560372829437256, -0.029831338673830032, 0.037374451756477356, -0.06779780983924866, 0.07218433916568756, 0.09573616832494736, 0.01959916017949581, -0.006932793650776148, -0.0549754798412323, -0.024292247369885445, 0.024260027334094048, -0.07069318741559982, -0.13903497159481049, -0.08875726908445358, -0.08780376613140106, 0.06418926268815994, 0.004392793867737055, -0.20431479811668396, -0.013794136233627796, -0.07624112069606781, 0.030434926971793175, -0.18561643362045288, 0.07896272838115692, 0.07567986845970154, 0.01752517744898796, -0.014554009772837162, -0.022128012031316757, 0.021055670455098152, 0.05617275834083557, -0.13994616270065308, -0.057962581515312195 ]
null
null
transformers
# Indonesian RoBERTa Base ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "akahana/roberta-base-indonesia" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Gajah <mask> sedang makan di kebun binatang.") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "akahana/roberta-base-indonesia" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "Gajah <mask> sedang makan di kebun binatang." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ```
{"language": "id", "license": "mit", "tags": ["roberta-base-indonesia"], "datasets": ["wikipedia"], "widget": [{"text": "Gajah <mask> sedang makan di kebun binatang."}]}
feature-extraction
akahana/roberta-base-indonesia
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "feature-extraction", "roberta-base-indonesia", "id", "dataset:wikipedia", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us
# Indonesian RoBERTa Base ## How to Use ### As Masked Language Model ### Feature Extraction in PyTorch
[ "# Indonesian RoBERTa Base", "## How to Use", "### As Masked Language Model", "### Feature Extraction in PyTorch" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n", "# Indonesian RoBERTa Base", "## How to Use", "### As Masked Language Model", "### Feature Extraction in PyTorch" ]
[ 59, 7, 4, 7, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #roberta-base-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n# Indonesian RoBERTa Base## How to Use### As Masked Language Model### Feature Extraction in PyTorch" ]
[ -0.0330832339823246, -0.016156518831849098, -0.0027613106649369, 0.06428340077400208, 0.10226626694202423, -0.023883624002337456, 0.056818243116140366, 0.11190911382436752, -0.03275112807750702, -0.04293511062860489, 0.09194369614124298, 0.14963428676128387, 0.06160392239689827, 0.0493992380797863, -0.02339276485145092, -0.3657926917076111, 0.08593808859586716, 0.004968530032783747, 0.12976716458797455, 0.16828888654708862, 0.11795037239789963, -0.04138844087719917, 0.10865994542837143, 0.0034548852127045393, -0.05881161615252495, -0.009598706848919392, -0.06054968386888504, -0.15859121084213257, 0.09482012689113617, -0.02299516834318638, 0.07306420803070068, 0.01956014335155487, -0.006203295197337866, -0.08788500726222992, 0.03192800283432007, -0.03260723501443863, -0.05257030948996544, 0.021191181614995003, 0.014091177843511105, -0.033337973058223724, 0.174185648560524, 0.07966939359903336, 0.0031741682905703783, -0.028456686064600945, -0.1268155574798584, -0.22438079118728638, -0.11042401939630508, 0.13650929927825928, 0.08051478862762451, 0.09922066330909729, -0.014021029695868492, 0.12514516711235046, -0.21352626383304596, 0.05091242864727974, 0.14937235414981842, -0.19591352343559265, -0.024295108392834663, -0.04431690648198128, 0.053950563073158264, 0.003378537017852068, -0.002560475841164589, -0.0003009136999025941, -0.01879098080098629, 0.03975684568285942, 0.03020988218486309, -0.13231270015239716, -0.21264168620109558, -0.06750791519880295, -0.021970044821500778, -0.03226189315319061, 0.1585889458656311, 0.009257459081709385, -0.021936709061264992, -0.04501719772815704, -0.04504834860563278, 0.06646712124347687, -0.04141706973314285, -0.007958617061376572, -0.045501966029405594, 0.020318901166319847, 0.08602490276098251, -0.0759890079498291, -0.07506657391786575, -0.013326045125722885, -0.10088126361370087, 0.16683271527290344, 0.05483375862240791, 0.057629503309726715, -0.13433274626731873, 0.0685238167643547, -0.06504899263381958, -0.19519296288490295, -0.009781564585864544, -0.04223908856511116, 0.13266725838184357, 0.13292306661605835, 0.07119759917259216, 0.032054610550403595, 0.1236373633146286, 0.16528646647930145, -0.06028555706143379, -0.016075802966952324, -0.007237729150801897, 0.09244906902313232, -0.03220674395561218, 0.0880625769495964, -0.18856258690357208, -0.049367766827344894, 0.11937803775072098, -0.08694949001073837, 0.0686270222067833, -0.0536719486117363, -0.09907032549381256, -0.0353672169148922, 0.102772057056427, 0.1299302577972412, 0.05974746495485306, 0.07843293994665146, 0.0026997134555131197, -0.042845215648412704, 0.18859289586544037, -0.10961779206991196, -0.07146944105625153, -0.040015339851379395, -0.006599745247513056, 0.031499143689870834, 0.041969578713178635, 0.0003003163146786392, -0.056477632373571396, 0.05579155310988426, 0.0037486348301172256, 0.011869524605572224, -0.02113458514213562, -0.055042874068021774, 0.015448939986526966, -0.10488848388195038, 0.04693969339132309, -0.18159231543540955, -0.21866543591022491, 0.01809339039027691, 0.01760411448776722, -0.05167330056428909, 0.021244332194328308, -0.010379801504313946, -0.04415120556950569, 0.0022913706488907337, -0.07450339198112488, 0.005469390191137791, -0.06294816732406616, 0.09198721498250961, 0.021135833114385605, 0.0810779482126236, -0.13192692399024963, 0.05875307694077492, -0.1839519441127777, 0.060398176312446594, -0.2058284431695938, 0.010919208638370037, -0.02891114540398121, 0.10785191506147385, -0.05369599536061287, -0.12385504692792892, -0.06294775754213333, -0.01667606830596924, -0.017548969015479088, 0.12468130886554718, -0.08123400807380676, -0.034071698784828186, 0.22293858230113983, -0.16941839456558228, -0.15891577303409576, 0.0933145061135292, -0.005972987040877342, 0.09238536655902863, -0.012190397828817368, 0.1845826506614685, 0.06046489626169205, 0.0473957434296608, 0.107140451669693, 0.057091642171144485, -0.0833960473537445, -0.04655785858631134, 0.08673006296157837, -0.01687033660709858, -0.008720450103282928, 0.0887715220451355, -0.10479284077882767, 0.10662347078323364, -0.012297388166189194, -0.0739942267537117, -0.004293912090361118, -0.0738907903432846, 0.07862871140241623, 0.04511765018105507, 0.08679769933223724, -0.05057641863822937, 0.004690276924520731, -0.03326618671417236, 0.07357590645551682, -0.03612573817372322, 0.007485528942197561, -0.07306233048439026, 0.21306012570858002, -0.05309109389781952, 0.0021443862933665514, -0.1934979110956192, 0.017133576795458794, -0.013743778690695763, 0.06036710366606712, 0.03192874416708946, -0.11263588070869446, 0.028706973418593407, -0.014019807800650597, -0.048333924263715744, -0.07411160320043564, 0.08680006116628647, 0.02833513729274273, 0.0901782289147377, -0.061290059238672256, 9.401125566910196e-8, 0.0016782357124611735, -0.023122206330299377, 0.043900419026613235, -0.023564405739307404, -0.07750756293535233, 0.04832791909575462, -0.04884137958288193, 0.07565390318632126, 0.05267927050590515, 0.07175177335739136, -0.016194161027669907, -0.037090640515089035, 0.045987289398908615, -0.01287668477743864, -0.05294405296444893, 0.21396949887275696, -0.041559088975191116, 0.22034497559070587, 0.18641389906406403, -0.16298837959766388, -0.02982134185731411, 0.12349054962396622, -0.004904363304376602, -0.006719605531543493, 0.005403259303420782, 0.07737075537443161, 0.068622887134552, -0.020479433238506317, 0.11684100329875946, -0.1000097468495369, -0.004364911932498217, 0.015164044685661793, -0.09688261896371841, -0.001055842381902039, 0.0711115375161171, 0.01963934861123562, -0.2564457356929779, 0.17282608151435852, 0.09424375742673874, 0.011301802471280098, 0.11068953573703766, -0.034441448748111725, -0.004950257483869791, -0.01635565422475338, 0.05101517215371132, -0.028394125401973724, 0.048776283860206604, -0.222147136926651, -0.03319636359810829, 0.09515456855297089, -0.013156496919691563, 0.044179487973451614, -0.08099368214607239, -0.08399344980716705, -0.012564534321427345, -0.017677638679742813, -0.07617121934890747, 0.07169586420059204, 0.01452095340937376, 0.09937312453985214, -0.01599927619099617, -0.07755621522665024, 0.02593177556991577, -0.00826676283031702, -0.05411425232887268, 0.2245609015226364, -0.06892472505569458, -0.3332681357860565, -0.0926460400223732, -0.0856698527932167, -0.04636261984705925, -0.02514537051320076, 0.09625021368265152, -0.0684908926486969, -0.027512643486261368, -0.010565024800598621, -0.12529945373535156, 0.012448723427951336, -0.012689164839684963, -0.15472787618637085, 0.030772551894187927, -0.05142217129468918, -0.10767672955989838, -0.04587394371628761, -0.012062152847647667, 0.025003507733345032, 0.16129110753536224, -0.06720905005931854, 0.12819108366966248, 0.09118370711803436, -0.02358858846127987, 0.04208279028534889, 0.02388325147330761, 0.156126007437706, -0.08825169503688812, 0.013025778345763683, 0.2696874737739563, -0.0466088131070137, 0.03167400881648064, 0.11263138800859451, 0.022599169984459877, -0.038080841302871704, 0.0015044778119772673, -0.0743059441447258, -0.09578963369131088, -0.19241014122962952, -0.058055438101291656, -0.0973626896739006, -0.05023534223437309, -0.036186132580041885, 0.02266973815858364, 0.1491427719593048, 0.09817774593830109, -0.005113361403346062, -0.013594020158052444, 0.03022598661482334, 0.0011651645181700587, 0.06364329159259796, 0.005572656635195017, 0.09699105471372604, -0.05410590395331383, -0.08664660900831223, 0.037468504160642624, -0.03448784723877907, 0.19999176263809204, 0.0142746577039361, -0.0030645921360701323, 0.12673310935497284, 0.32293352484703064, 0.08015157282352448, 0.1427163928747177, -0.11572527885437012, 0.02725595235824585, -0.021169019863009453, -0.07826400548219681, 0.017304133623838425, -0.03252727538347244, -0.05546755716204643, 0.02091587521135807, -0.02101929485797882, -0.09603165835142136, 0.08110116422176361, 0.12041081488132477, -0.026272866874933243, -0.13275094330310822, -0.04616694524884224, 0.019066551700234413, 0.043410006910562515, -0.03731383755803108, 0.03470325842499733, 0.02434886433184147, -0.18075472116470337, 0.04153267294168472, 0.028012141585350037, 0.09510670602321625, -0.03237665444612503, -0.00789621938019991, -0.08555766940116882, -0.04055112227797508, 0.026868171989917755, 0.13122686743736267, -0.19805629551410675, 0.32468563318252563, 0.0009403838193975389, 0.02849242091178894, -0.09377453476190567, -0.01695895381271839, 0.06673303991556168, 0.060672882944345474, 0.19998051226139069, 0.024572452530264854, -0.05354341119527817, -0.11596646159887314, -0.08451684564352036, 0.04998944327235222, 0.06005050987005234, 0.043170467019081116, -0.02971944399178028, -0.0034577480982989073, -0.01780647225677967, -0.0027972327079623938, 0.028725039213895798, -0.04304281622171402, -0.06213618442416191, 0.015591737814247608, -0.04350975155830383, -0.00033755769254639745, -0.04716874659061432, -0.02947109192609787, 0.040627371519804, 0.13344426453113556, 0.04456906020641327, -0.1411028951406479, -0.10045960545539856, -0.08074513077735901, 0.1667652279138565, -0.1554681658744812, 0.04885447397828102, -0.06313879787921906, -0.033670637756586075, -0.015420626848936081, -0.12925881147384644, 0.09848257899284363, -0.07361644506454468, -0.07811599969863892, 0.018859632313251495, 0.10840516537427902, 0.018692705780267715, -0.013404535129666328, 0.08680137991905212, -0.031166590750217438, -0.03772898390889168, -0.17059072852134705, -0.08067356795072556, -0.017434805631637573, 0.02394004352390766, 0.06323933601379395, -0.04815660044550896, -0.07184386998414993, -0.07085061073303223, -0.05943487957119942, 0.19142068922519684, 0.08729559928178787, -0.027691710740327835, 0.08636045455932617, 0.24557572603225708, 0.0014305432559922338, -0.22943216562271118, -0.1814878284931183, -0.11147110909223557, -0.03516750410199165, -0.006315823178738356, -0.037683919072151184, 0.08607321232557297, 0.08503665030002594, -0.030134327709674835, -0.027378126978874207, -0.197986900806427, -0.09932665526866913, 0.24432417750358582, 0.08186402916908264, 0.20469440519809723, -0.12284687906503677, -0.09412591904401779, -0.010219083167612553, -0.20863425731658936, 0.05218425393104553, -0.07730837911367416, 0.0427904836833477, -0.04260271415114403, 0.004680576268583536, -0.005464623682200909, -0.019028933718800545, 0.13641571998596191, -0.04915772005915642, 0.05072866007685661, -0.09854438155889511, -0.09563243389129639, 0.1273294985294342, 0.052827250212430954, 0.13865435123443604, 0.016366813331842422, 0.070242740213871, -0.09758160263299942, -0.03275317698717117, -0.16223695874214172, 0.083828866481781, 0.016955487430095673, -0.09702502191066742, -0.010701913386583328, 0.0744023248553276, 0.006938700098544359, 0.03183262422680855, 0.1216018870472908, -0.008081423118710518, 0.06789691746234894, -0.02009347267448902, 0.07786224037408829, -0.11414840072393417, 0.023710744455456734, -0.10764340311288834, -0.04266604036092758, 0.039960578083992004, -0.06342009454965591, -0.03459020331501961, 0.0330926775932312, 0.02525470033288002, 0.0690426379442215, 0.04954257607460022, -0.08409848809242249, 0.09189353883266449, 0.10237953811883926, -0.08937565982341766, -0.06378194689750671, -0.04102429375052452, -0.12875355780124664, 0.07892012596130371, -0.05076140910387039, 0.012404914945363998, -0.0778096616268158, -0.08164698630571365, -0.030847856774926186, 0.016851212829351425, -0.0996997132897377, 0.08393507450819016, 0.127780020236969, 0.04264369234442711, -0.14303775131702423, 0.10931509733200073, 0.0848950445652008, -0.007176339626312256, -0.010693992488086224, 0.13665224611759186, -0.11867814511060715, -0.10492740571498871, 0.017985863611102104, 0.10560573637485504, -0.08202281594276428, -0.1068456843495369, -0.06299389898777008, -0.10005760937929153, -0.03812308609485626, 0.08458933979272842, 0.05802524834871292, 0.007848546840250492, -0.002339904196560383, -0.06812625378370285, 0.013949963264167309, 0.03448263183236122, 0.07580050081014633, -0.022853180766105652, -0.04012228921055794, 0.005164254456758499, 0.09286846965551376, 0.18272008001804352, -0.06530676037073135, -0.043962158262729645, -0.09346179664134979, 0.04386139661073685, -0.08481957763433456, 0.02709963545203209, -0.1617884635925293, -0.016327321529388428, -0.049589987844228745, -0.09199799597263336, -0.008689289912581444, 0.00960418488830328, -0.07649637013673782, 0.003720760578289628, -0.019758768379688263, -0.008732171729207039, -0.13063810765743256, -0.057090844959020615, 0.10850102454423904, -0.005636369343847036, 0.07725534588098526, 0.17679570615291595, -0.06105594336986542, 0.12945671379566193, -0.25187578797340393, -0.09426341950893402, 0.0684734508395195, 0.02810208685696125, 0.07598063349723816, -0.042396023869514465, 0.04404152184724808, 0.0558902770280838, -0.025969121605157852, 0.019647536799311638, 0.023644937202334404, -0.14665360748767853, -0.0656360387802124, -0.0480848103761673, -0.07314720749855042, -0.0438498854637146, 0.044759515672922134, 0.1499672532081604, -0.016474653035402298, 0.06908448040485382, -0.06147909536957741, 0.10367840528488159, -0.11077185720205307, -0.014374127611517906, -0.07768599689006805, -0.1652471274137497, -0.011867311783134937, -0.04941222444176674, 0.010134855285286903, -0.014613746665418148, 0.1959395408630371, 0.05389822646975517, 0.05536981672048569, -0.028498198837041855, 0.04201965034008026, 0.0531427338719368, 0.013146590441465378, 0.26997846364974976, 0.04482197389006615, -0.0327371284365654, -0.05186671391129494, 0.02325955405831337, -0.055548861622810364, -0.013474916107952595, 0.046901822090148926, 0.18759135901927948, 0.14344404637813568, 0.036911431699991226, 0.11129266768693924, 0.055864639580249786, -0.06889459490776062, -0.2648426294326782, 0.05994240194559097, 0.019108127802610397, 0.03408459201455116, 0.05541151389479637, 0.19722139835357666, -0.10328678786754608, 0.08864212781190872, 0.0386781208217144, -0.07009296864271164, -0.11596539616584778, -0.2427067756652832, -0.06284510344266891, -0.04354485869407654, -0.006230023689568043, -0.11374211311340332, -0.04375845193862915, 0.06921282410621643, 0.021227745339274406, -0.09790585190057755, 0.14278919994831085, 0.06530030071735382, -0.058300700038671494, 0.09961529076099396, 0.007426095195114613, -0.006873483769595623, 0.05341643467545509, -0.007947552017867565, -0.054870422929525375, -0.018527735024690628, -0.0017849347786977887, -0.006520060822367668, -0.11796741187572479, 0.05820852890610695, -0.09984797239303589, -0.11672090739011765, -0.033208347856998444, 0.004591241478919983, 0.04112783446907997, 0.15148361027240753, 0.04710622876882553, 0.0007273350493051112, 0.028069084510207176, 0.2208264023065567, 0.024375755339860916, -0.16033849120140076, -0.05553490296006203, 0.16518118977546692, 0.041057415306568146, -0.03925357758998871, 0.0269771795719862, -0.04112442582845688, 0.03365743160247803, 0.31444111466407776, 0.2630883455276489, 0.015604761429131031, 0.0702761635184288, -0.0017932154005393386, 0.01536329835653305, 0.01836157776415348, 0.08740975707769394, 0.15961362421512604, 0.23169416189193726, -0.07326284795999527, 0.06589730083942413, -0.0870114415884018, -0.046913109719753265, -0.147213414311409, 0.027492620050907135, 0.06874196976423264, -0.07041218876838684, -0.026399539783596992, 0.14657831192016602, -0.21490566432476044, 0.003069045254960656, 0.05534461885690689, -0.11075016856193542, -0.13032232224941254, -0.08654341846704483, -0.017880212515592575, 0.1368827372789383, 0.014038742519915104, -0.022688105702400208, 0.04988829046487808, 0.04776284471154213, 0.10984949767589569, -0.163133904337883, -0.11691108345985413, 0.06768126785755157, 0.12564465403556824, 0.13325534760951996, 0.008792471140623093, -0.031057246029376984, 0.08182139694690704, 0.07638854533433914, -0.07710837572813034, 0.18850374221801758, 0.056119970977306366, 0.06071091070771217, 0.04876909404993057, 0.04196464642882347, 0.02686675265431404, -0.19513586163520813, 0.022024214267730713, -0.03226679190993309, 0.061996787786483765, 0.017862413078546524, -0.0033365380950272083, -0.07858727127313614, 0.03961653262376785, -0.06904780119657516, 0.07626587152481079, 0.12887339293956757, -0.06330687552690506, -0.026734432205557823, -0.10684533417224884, 0.07511333376169205, 0.028545191511511803, -0.10624564439058304, -0.12977251410484314, -0.030000675469636917, -0.048890456557273865, 0.020678086206316948, 0.025496885180473328, -0.14545629918575287, 0.036950573325157166, -0.09022027254104614, -0.04141845554113388, -0.06972850114107132, 0.03835569694638252, 0.01817365735769272, 0.04885892570018768, 0.038199350237846375, 0.004408130422234535, -0.014163708314299583, 0.057848915457725525, -0.14755330979824066, -0.03812173381447792 ]
null
null
transformers
# Indonesian tiny-RoBERTa ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "akahana/tiny-roberta-indonesia" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("ikiryo adalah <mask> hantu dalam mitologi jepang.") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "akahana/tiny-roberta-indonesia" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "ikiryo adalah <mask> hantu dalam mitologi jepang." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ```
{"language": "id", "license": "mit", "tags": ["tiny-roberta-indonesia"], "datasets": ["wikipedia"], "widget": [{"text": "ikiryo adalah <mask> hantu dalam mitologi jepang."}]}
feature-extraction
akahana/tiny-roberta-indonesia
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "feature-extraction", "tiny-roberta-indonesia", "id", "dataset:wikipedia", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us
# Indonesian tiny-RoBERTa ## How to Use ### As Masked Language Model ### Feature Extraction in PyTorch
[ "# Indonesian tiny-RoBERTa", "## How to Use", "### As Masked Language Model", "### Feature Extraction in PyTorch" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n", "# Indonesian tiny-RoBERTa", "## How to Use", "### As Masked Language Model", "### Feature Extraction in PyTorch" ]
[ 59, 9, 4, 7, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #roberta #feature-extraction #tiny-roberta-indonesia #id #dataset-wikipedia #license-mit #endpoints_compatible #region-us \n# Indonesian tiny-RoBERTa## How to Use### As Masked Language Model### Feature Extraction in PyTorch" ]
[ -0.007444711867719889, -0.04652741551399231, -0.0035860552452504635, 0.07009337842464447, 0.09566076844930649, -0.031017392873764038, 0.05881756916642189, 0.11429966986179352, -0.04486483335494995, -0.04823455214500427, 0.08906978368759155, 0.1542244255542755, 0.05990894138813019, 0.02451251819729805, -0.02299284189939499, -0.37218010425567627, 0.07252449542284012, 0.008717120625078678, 0.14025598764419556, 0.16500987112522125, 0.11683899909257889, -0.05382159352302551, 0.11355487257242203, 0.01220234390348196, -0.057054806500673294, -0.021352699026465416, -0.043780405074357986, -0.1683458685874939, 0.08184817433357239, -0.025209976360201836, 0.06581107527017593, 0.0038678806740790606, -0.014035833068192005, -0.07657390087842941, 0.02802490070462227, -0.02894866093993187, -0.026323897764086723, 0.006365097593516111, 0.03588727116584778, -0.0017699507297948003, 0.16957953572273254, 0.05204800143837929, -0.0034622210077941418, -0.02463771402835846, -0.1155586689710617, -0.22185759246349335, -0.09448252618312836, 0.12549661099910736, 0.06525618582963943, 0.09677232056856155, -0.012353738769888878, 0.16904515027999878, -0.23975159227848053, 0.051928866654634476, 0.1739923059940338, -0.15860339999198914, -0.03299785032868385, -0.053742315620183945, 0.060912419110536575, -0.004873089492321014, -0.004959382116794586, 0.013821515254676342, -0.025372635573148727, 0.052656445652246475, 0.00950388703495264, -0.15347139537334442, -0.23086847364902496, -0.07782722264528275, -0.020212264731526375, -0.03714926540851593, 0.15886276960372925, -0.008426308631896973, -0.030094699934124947, -0.07885893434286118, -0.039498597383499146, 0.05464192107319832, -0.05924620106816292, -0.009152105078101158, -0.029231028631329536, 0.016545971855521202, 0.07661294937133789, -0.06339773535728455, -0.09204038977622986, -0.0010078252526000142, -0.10414014756679535, 0.17150482535362244, 0.047368794679641724, 0.05400750786066055, -0.1708889901638031, 0.03877227008342743, -0.05442994460463524, -0.17241352796554565, -0.014988292939960957, -0.0408857986330986, 0.16742061078548431, 0.1369951218366623, 0.06719870120286942, 0.030813083052635193, 0.13257324695587158, 0.15033583343029022, -0.058921877294778824, -0.015207914635539055, 0.006719314027577639, 0.09240833669900894, -0.029199542477726936, 0.08176657557487488, -0.15226046741008759, -0.02081999182701111, 0.11919238418340683, -0.08581648021936417, 0.08834318816661835, -0.05753080174326897, -0.09323346614837646, -0.04426543414592743, 0.09289546310901642, 0.14750108122825623, 0.07667722553014755, 0.07180853188037872, 0.009786232374608517, -0.04385009780526161, 0.16984304785728455, -0.10955820232629776, -0.06382112205028534, -0.052746038883924484, 0.015957562252879143, 0.05315936356782913, 0.007755646947771311, -0.010782242752611637, -0.07618803530931473, 0.08982447534799576, 0.0064809275791049, 0.02185726724565029, -0.0024721736554056406, -0.0465286523103714, 0.01479901559650898, -0.0999196320772171, 0.05198622867465019, -0.19828523695468903, -0.1608651578426361, 0.03857764974236488, 0.00857873260974884, -0.033288732171058655, 0.006584838964045048, 0.01293729804456234, -0.06790873408317566, 0.0066714417189359665, -0.06772743165493011, -0.007398251444101334, -0.058826472610235214, 0.08740994334220886, 0.015108906663954258, 0.0775144100189209, -0.12468765676021576, 0.04723777249455452, -0.18939615786075592, 0.056729525327682495, -0.1870587170124054, 0.007261999882757664, 0.002578902291134, 0.09844104945659637, -0.04393214359879494, -0.1272757351398468, -0.05252138525247574, -0.005249716341495514, -0.03779477998614311, 0.1337115466594696, -0.09255123138427734, -0.05120186135172844, 0.2428252249956131, -0.16169369220733643, -0.14360541105270386, 0.10317666083574295, 0.014913326129317284, 0.07401783019304276, -0.004141025710850954, 0.2229553461074829, 0.06254009157419205, 0.061170127242803574, 0.09684925526380539, 0.08682959526777267, -0.09029451012611389, -0.0598435252904892, 0.091983363032341, -0.027281221002340317, 0.025583596900105476, 0.07706864923238754, -0.09222884476184845, 0.09769455343484879, -0.003072081133723259, -0.07069747895002365, -0.0034307143650949, -0.06351056694984436, 0.05676420405507088, 0.046473365277051926, 0.0828302726149559, -0.07020742446184158, 0.018395205959677696, -0.044349923729896545, 0.07615521550178528, -0.01880686916410923, 0.019996846094727516, -0.09378716349601746, 0.18809564411640167, -0.050060003995895386, 0.008241331204771996, -0.17759442329406738, 0.04146888852119446, 0.004362696316093206, 0.03735784813761711, 0.033155832439661026, -0.09436997026205063, 0.029754994437098503, -0.030450616031885147, -0.04013678804039955, -0.06559275835752487, 0.08784731477499008, 0.018338192254304886, 0.08920875191688538, -0.04458894208073616, 0.01443004235625267, 0.01163457427173853, -0.06882601231336594, 0.04847874119877815, -0.04229885712265968, -0.05616303160786629, 0.02481270581483841, -0.040713969618082047, 0.06928355246782303, 0.040131062269210815, 0.05484134703874588, -0.022116389125585556, -0.03971290588378906, 0.05589941516518593, -0.018711136654019356, -0.04001876339316368, 0.21755023300647736, -0.038450147956609726, 0.2160191535949707, 0.20740972459316254, -0.18250010907649994, -0.020124763250350952, 0.13253778219223022, -0.001931607024744153, 0.009229202754795551, 0.0022680931724607944, 0.07678666710853577, 0.05513494089245796, -0.008535086177289486, 0.11521975696086884, -0.1088077649474144, -0.02072826772928238, 0.027167508378624916, -0.10040192306041718, -0.00916344951838255, 0.0844164714217186, 0.020729893818497658, -0.2536405920982361, 0.1618013083934784, 0.1046019196510315, 0.04021848365664482, 0.10833049565553665, -0.03612484410405159, 0.006927968468517065, -0.004324313718825579, 0.050919778645038605, -0.003028148552402854, 0.02462998405098915, -0.21407198905944824, -0.031185505911707878, 0.10066140443086624, -0.0049700490199029446, 0.03063184954226017, -0.0882071852684021, -0.09774865955114365, -0.0008333883597515523, -0.017054131254553795, -0.05712135508656502, 0.08014725148677826, 0.01739341951906681, 0.09899374842643738, -0.013919658958911896, -0.05960682034492493, 0.026551781222224236, -0.006848716642707586, -0.04363733157515526, 0.21196003258228302, -0.05675016716122627, -0.3693520128726959, -0.0994783565402031, -0.08567576855421066, -0.03490510210394859, -0.01890692673623562, 0.1087673008441925, -0.09235421568155289, -0.027546139433979988, -0.012649216689169407, -0.12098083645105362, -0.029003748670220375, -0.0064506204798817635, -0.16586045920848846, 0.03874202445149422, -0.06529261916875839, -0.1136244460940361, -0.047425977885723114, -0.005860139150172472, 0.02165701426565647, 0.1659499853849411, -0.06081879884004593, 0.11533425748348236, 0.09342275559902191, -0.019711727276444435, 0.044278793036937714, 0.023658372461795807, 0.16285361349582672, -0.09515081346035004, 0.014368092641234398, 0.2980823814868927, -0.02433912828564644, 0.033897388726472855, 0.09931111335754395, 0.020137961953878403, -0.04655986651778221, -0.006176935508847237, -0.06801708787679672, -0.1023976281285286, -0.18706363439559937, -0.05897747352719307, -0.09909161180257797, -0.008653203956782818, -0.037996307015419006, 0.02291024848818779, 0.13070011138916016, 0.0933772400021553, -0.018177257850766182, 0.017606686800718307, 0.013589015230536461, 0.0034575695171952248, 0.0801306888461113, 0.0164484865963459, 0.09882354736328125, -0.059756163507699966, -0.10098576545715332, 0.04918617755174637, -0.0826292559504509, 0.16496674716472626, 0.027525993064045906, 0.018169144168496132, 0.12060610949993134, 0.2843591868877411, 0.09837702661752701, 0.1411835104227066, -0.10323742777109146, 0.019949305802583694, -0.02304530330002308, -0.08020226657390594, 0.009248406626284122, -0.048495449125766754, -0.03397148475050926, 0.02054433710873127, -0.030007213354110718, -0.0523199662566185, 0.0815797746181488, 0.13299404084682465, -0.02718355692923069, -0.10091041773557663, -0.04175802320241928, 0.018480129539966583, 0.03461615741252899, -0.033597156405448914, 0.046587634831666946, 0.05615248158574104, -0.18269042670726776, 0.029402785003185272, 0.02906019613146782, 0.0854799672961235, -0.04070112854242325, 0.018095554783940315, -0.0875052735209465, -0.04220841825008392, 0.04113883897662163, 0.12602603435516357, -0.20102520287036896, 0.28853845596313477, 0.007991797290742397, 0.036306872963905334, -0.10253152996301651, -0.011622869409620762, 0.06621488183736801, 0.04896838963031769, 0.21915960311889648, 0.03816618770360947, -0.019642015919089317, -0.1261013001203537, -0.07569974660873413, 0.051489923149347305, 0.09552744030952454, 0.057840704917907715, -0.03768519312143326, -0.037455592304468155, -0.009524486027657986, -0.0017492669867351651, 0.019408375024795532, -0.024118788540363312, -0.07773502916097641, 0.02790672704577446, -0.010322351939976215, -0.06838416308164597, -0.05491211637854576, -0.01613299362361431, 0.04479067772626877, 0.12787050008773804, 0.02672303095459938, -0.13211767375469208, -0.08362340182065964, -0.0958467498421669, 0.16227732598781586, -0.1615609973669052, 0.04904140159487724, -0.07903852313756943, -0.033222343772649765, -0.0260071512311697, -0.12376704812049866, 0.08313478529453278, -0.08562380075454712, -0.09333053976297379, 0.02983272820711136, 0.11672613024711609, -0.004992824513465166, -0.006181597709655762, 0.08829184621572495, -0.031704459339380264, -0.02648516558110714, -0.17369158565998077, -0.07923077791929245, -0.015835048630833626, -0.003635233035311103, 0.06577591598033905, -0.036393243819475174, -0.07201050966978073, -0.07088513672351837, -0.07869458943605423, 0.20231039822101593, 0.11128628998994827, -0.01838170364499092, 0.08855076879262924, 0.24177205562591553, 0.011768694967031479, -0.25638583302497864, -0.18650184571743011, -0.13422086834907532, -0.05896082893013954, -0.002905478933826089, -0.024046393111348152, 0.11426273733377457, 0.07042910903692245, -0.012519515119493008, -0.010649539530277252, -0.24550054967403412, -0.09365703165531158, 0.21992817521095276, 0.07671308517456055, 0.1989915668964386, -0.12348198145627975, -0.09926440566778183, -0.02252693474292755, -0.18449918925762177, 0.07278213649988174, -0.06772708892822266, 0.05294303596019745, -0.05106959491968155, -0.0067217000760138035, 0.005667119286954403, -0.011624932289123535, 0.13754115998744965, -0.06389469653367996, 0.052079249173402786, -0.0975545346736908, -0.15145182609558105, 0.13608665764331818, 0.06085736304521561, 0.09677255898714066, 0.00825699232518673, 0.050987884402275085, -0.06796932965517044, -0.0334884449839592, -0.17072828114032745, 0.09256014227867126, 0.011765260249376297, -0.10877812653779984, -0.03714175894856453, 0.06669457256793976, 0.010591935366392136, 0.03576546907424927, 0.1171569749712944, -0.003755083540454507, 0.02568073384463787, -0.04961679130792618, 0.09800022095441818, -0.13418716192245483, 0.01503475196659565, -0.11867290735244751, -0.036952316761016846, 0.03161731734871864, -0.034429874271154404, -0.03501497954130173, 0.018006427213549614, 0.029140068218111992, 0.04491906985640526, 0.05081505328416824, -0.07957836240530014, 0.08229687809944153, 0.08875679224729538, -0.07396568357944489, -0.08917537331581116, -0.04146610572934151, -0.09606072306632996, 0.08459185808897018, -0.0656331330537796, 0.004368816968053579, -0.06734833121299744, -0.08052447438240051, -0.03540375828742981, 0.021827517077326775, -0.09305967390537262, 0.0788859874010086, 0.10122133791446686, 0.04545137286186218, -0.14209650456905365, 0.10164126008749008, 0.08355146646499634, -0.04057946801185608, -0.014863441698253155, 0.15986907482147217, -0.10837756097316742, -0.10348178446292877, 0.06255214661359787, 0.07870854437351227, -0.06996707618236542, -0.09891572594642639, -0.04150065779685974, -0.10846452414989471, -0.034457553178071976, 0.042420174926519394, 0.058293525129556656, -0.0006047938368283212, -0.004506794270128012, -0.06874876469373703, 0.002684864215552807, 0.032426077872514725, 0.05135785788297653, -0.025661202147603035, -0.05705937370657921, 0.042011559009552, 0.0846974328160286, 0.1824827343225479, -0.05660972371697426, -0.036414243280887604, -0.09080629050731659, 0.04587366431951523, -0.043036941438913345, 0.06217262148857117, -0.16615550220012665, -0.01747012697160244, -0.04531409591436386, -0.05529232695698738, -0.016912667080760002, -0.005043243523687124, -0.07198000699281693, -0.004781042225658894, -0.03168003633618355, 0.008164106868207455, -0.10846785455942154, -0.048669762909412384, 0.1050599068403244, -0.006851586513221264, 0.0711088478565216, 0.15555411577224731, -0.06559385359287262, 0.12640470266342163, -0.2304750233888626, -0.11428043991327286, 0.0687638521194458, 0.03325912356376648, 0.07764889299869537, -0.01739061437547207, 0.041119497269392014, 0.060068465769290924, -0.011410094797611237, 0.02600039727985859, 0.039695870131254196, -0.15472714602947235, -0.06582999229431152, -0.041668687015771866, -0.09727449715137482, -0.056497834622859955, 0.03826282545924187, 0.14876089990139008, -0.029854215681552887, 0.08178535103797913, -0.053702499717473984, 0.11610079556703568, -0.10159887373447418, -0.0162944532930851, -0.0862840861082077, -0.1720934808254242, -0.008276077918708324, -0.035165563225746155, 0.014762917533516884, -0.017906229943037033, 0.18246425688266754, 0.08719617128372192, 0.043225813657045364, -0.015607901848852634, 0.012953661382198334, 0.027905240654945374, 0.01295675802975893, 0.28021055459976196, 0.05977552384138107, -0.04827236756682396, -0.04518333822488785, -0.0052944570779800415, -0.029448341578245163, 0.010328145697712898, 0.07122645527124405, 0.21482938528060913, 0.1352023035287857, 0.05521406978368759, 0.07376475632190704, 0.037983596324920654, -0.0925978273153305, -0.277384489774704, 0.07158675789833069, 0.030594920739531517, 0.038032710552215576, 0.05060740187764168, 0.18473036587238312, -0.09566361457109451, 0.08704526722431183, 0.007947302423417568, -0.06035618111491203, -0.12886211276054382, -0.25224828720092773, -0.06568679958581924, -0.0006279257358983159, -0.025095392018556595, -0.10434886068105698, -0.03110988810658455, 0.05520286783576012, 0.016601329669356346, -0.10653840750455856, 0.1492481231689453, 0.007164353970438242, -0.05461464449763298, 0.1049039363861084, -0.0015409077750518918, -0.011123482137918472, 0.06181646138429642, -0.014761188067495823, -0.07890933752059937, -0.020650267601013184, 0.0005070897750556469, -0.005656184628605843, -0.12608560919761658, 0.04947086051106453, -0.11495807021856308, -0.12313520908355713, -0.023197075352072716, -0.008323085494339466, 0.045374274253845215, 0.11576241999864578, 0.05011095851659775, -0.006764614954590797, 0.02382412552833557, 0.20280177891254425, 0.02187092788517475, -0.17310896515846252, -0.018730085343122482, 0.16072756052017212, 0.020293310284614563, -0.03367585316300392, 0.029460236430168152, -0.03839442878961563, 0.01048968080431223, 0.3537387549877167, 0.27604755759239197, 0.016459766775369644, 0.06924019008874893, 0.0045464360155165195, 0.01886465959250927, 0.00019035462173633277, 0.1092386245727539, 0.142559215426445, 0.2343519628047943, -0.06371185183525085, 0.08589243143796921, -0.08824095129966736, -0.0541914738714695, -0.15023034811019897, 0.03410768136382103, 0.09359176456928253, -0.05651768669486046, -0.015394631773233414, 0.1357729732990265, -0.2171928435564041, 0.042968373745679855, 0.08227699249982834, -0.1077263355255127, -0.10735763609409332, -0.07424324005842209, -0.013981935568153858, 0.13355153799057007, 0.03497040271759033, -0.031054768711328506, 0.0373184010386467, -0.011957847513258457, 0.10797899216413498, -0.19817955791950226, -0.07879292964935303, 0.07750600576400757, 0.10216575860977173, 0.1460392028093338, 0.019481493160128593, -0.039221979677677155, 0.07879260182380676, 0.08407820761203766, -0.08113043010234833, 0.17390210926532745, 0.0640668049454689, 0.07852683961391449, 0.05073320120573044, 0.06301582604646683, 0.02079940401017666, -0.20879150927066803, 0.015265993773937225, -0.04550822079181671, 0.059359896928071976, 0.05978748947381973, 0.020943984389305115, -0.08276260644197464, 0.024950183928012848, -0.08242694288492203, 0.0599205307662487, 0.12096720188856125, -0.05041281878948212, -0.045311976224184036, -0.1018541008234024, 0.07147985696792603, 0.03099738620221615, -0.11597158759832382, -0.14271536469459534, -0.011205492541193962, -0.06484127789735794, 0.010890288278460503, 0.04086453095078468, -0.14504827558994293, 0.051458410918712616, -0.08592604845762253, -0.042576927691698074, -0.08916234225034714, 0.030002174898982048, 0.017331024631857872, 0.044247180223464966, 0.04160608723759651, 0.036212265491485596, -0.013169605284929276, 0.056772928684949875, -0.13880348205566406, -0.03929091617465019 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-cats-vs-dogs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0369 - Accuracy: 0.9883 ## how to use ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('akahana/vit-base-cats-vs-dogs') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0949 | 1.0 | 2488 | 0.0369 | 0.9883 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "datasets": ["cats_vs_dogs"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "vit-base-cats-vs-dogs", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "cats_vs_dogs", "type": "cats_vs_dogs", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9883257403189066, "name": "Accuracy"}]}]}]}
image-classification
akahana/vit-base-cats-vs-dogs
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:cats_vs_dogs", "base_model:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
vit-base-cats-vs-dogs ===================== This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cats\_vs\_dogs dataset. It achieves the following results on the evaluation set: * Loss: 0.0369 * Accuracy: 0.9883 how to use ---------- Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 1337 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1.0 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 98, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-cats_vs_dogs #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.12957295775413513, 0.1866474598646164, -0.002085668733343482, 0.10631359368562698, 0.1439513862133026, 0.029494209215044975, 0.1324373334646225, 0.15105551481246948, -0.09980786591768265, 0.09979531913995743, 0.1303190290927887, 0.10306265205144882, 0.05283530056476593, 0.1674521565437317, -0.026521751657128334, -0.20807354152202606, 0.047651614993810654, 0.026890328153967857, -0.042597685009241104, 0.11924612522125244, 0.07469216734170914, -0.1419614553451538, 0.09756840765476227, 0.02298354171216488, -0.18382877111434937, -0.03231249377131462, -0.01945793256163597, -0.03965434804558754, 0.10210274159908295, -0.014351165853440762, 0.11666863411664963, 0.03252732381224632, 0.10748492926359177, -0.12952567636966705, -0.0019531049765646458, 0.08118358254432678, -0.009457416832447052, 0.10295751690864563, 0.09251430630683899, -0.020842960104346275, 0.027733372524380684, -0.1301252543926239, 0.038475774228572845, 0.019277816638350487, -0.09593590348958969, -0.2191493958234787, -0.0793398916721344, 0.05499618500471115, 0.07020898908376694, 0.09505652636289597, -0.022192182019352913, 0.13861124217510223, -0.0376586988568306, 0.08764239400625229, 0.24048614501953125, -0.2897796332836151, -0.08170440047979355, 0.05613957718014717, 0.007618543226271868, 0.058210983872413635, -0.09846828877925873, -0.014058209024369717, 0.04974333941936493, 0.016746465116739273, 0.11911062151193619, 0.02647285908460617, -0.025973161682486534, -0.01962938904762268, -0.15124782919883728, -0.06705182790756226, 0.15464016795158386, 0.07764553278684616, -0.04717430844902992, -0.04751238599419594, -0.08838298916816711, -0.18390166759490967, -0.04479940980672836, 0.020062174648046494, 0.04384424909949303, -0.04706282913684845, -0.09276732802391052, 0.021219918504357338, -0.08544567227363586, -0.07482602447271347, -0.023636415600776672, 0.0624675489962101, 0.057276222854852676, 0.018877610564231873, -0.0017337482422590256, 0.12246083468198776, -0.0017780937487259507, -0.1525428593158722, 0.009559317491948605, 0.024934440851211548, -0.034372419118881226, -0.02495388314127922, -0.009368451312184334, -0.038597527891397476, 0.05107761546969414, 0.09355754405260086, -0.04285436496138573, 0.039200663566589355, -0.014300900511443615, 0.032671667635440826, -0.10037808865308762, 0.17005163431167603, -0.09258408099412918, -0.013532659038901329, 0.02490304224193096, 0.13425320386886597, 0.031191181391477585, 0.0056357551366090775, -0.0938970074057579, -0.012306144461035728, 0.12385328859090805, 0.009085857309401035, 0.005071766674518585, 0.06586574763059616, -0.054679423570632935, -0.011325121857225895, 0.05585136637091637, -0.09099439531564713, 0.028181659057736397, 0.03307283669710159, -0.08191513270139694, -0.039221346378326416, 0.014354669488966465, -0.005221192259341478, -0.01749826967716217, 0.07716433703899384, -0.10129499435424805, -0.0016081901267170906, -0.08844122290611267, -0.1297418773174286, 0.015010747127234936, -0.11492469906806946, -0.011237318627536297, -0.10130472481250763, -0.15995946526527405, -0.012023694813251495, 0.04200545698404312, -0.051754992455244064, -0.052109938114881516, -0.06671780347824097, -0.11507201194763184, 0.034018952399492264, 0.011486540548503399, 0.07553507387638092, -0.07402065396308899, 0.09919057786464691, 0.010494144633412361, 0.08681123703718185, -0.022319519892334938, 0.042515937238931656, -0.09761473536491394, 0.041464921087026596, -0.1662667989730835, 0.05055294558405876, -0.060365229845047, 0.0766851156949997, -0.10224594175815582, -0.10116540640592575, -0.005823275074362755, -0.049943242222070694, 0.09375093877315521, 0.13235580921173096, -0.18752527236938477, -0.03082560934126377, 0.16540707647800446, -0.08738920837640762, -0.12201307713985443, 0.14676418900489807, -0.020201995968818665, -0.005536797922104597, 0.06411626189947128, 0.1762229949235916, 0.0885777398943901, -0.10052836686372757, -0.057891845703125, -0.022610042244195938, 0.059896744787693024, -0.025448966771364212, 0.08565863221883774, 0.006080918945372105, 0.0047487495467066765, 0.012111052870750427, -0.08473829925060272, 0.04778516665101051, -0.10018692165613174, -0.08648185431957245, -0.06146853789687157, -0.10921865701675415, 0.06713222712278366, 0.06825172901153564, 0.052395328879356384, -0.09113290160894394, -0.11346914619207382, -0.01763674058020115, 0.10515248030424118, -0.08028887957334518, 0.003410294186323881, -0.06152961775660515, 0.14520880579948425, -0.06797566264867783, -0.0064070699736475945, -0.15638582408428192, -0.045522384345531464, 0.03814718872308731, -0.02626938931643963, -0.007715651765465736, -0.01918579265475273, 0.057199399918317795, 0.06890298426151276, -0.03235786408185959, -0.07003681361675262, -0.043239183723926544, 0.003856396535411477, -0.1102290078997612, -0.2139735370874405, -0.025057286024093628, -0.01894826628267765, 0.1585417091846466, -0.20723213255405426, 0.05593116208910942, 0.04098566249012947, 0.12101534008979797, 0.012232654727995396, -0.03678802028298378, -0.003943831659853458, 0.0236325953155756, -0.05852854251861572, -0.09614527225494385, 0.053658269345760345, 0.01202388945966959, -0.057478491216897964, -0.03360053151845932, -0.10413902997970581, 0.14773528277873993, 0.1470937877893448, 0.0025485348887741566, -0.07715969532728195, 0.04318944737315178, -0.06525154411792755, -0.025056565180420876, -0.06668155640363693, -0.019826306030154228, 0.05718039348721504, -0.0006711615133099258, 0.13114553689956665, -0.10185422748327255, -0.029082465916872025, 0.046064041554927826, -0.006271056365221739, -0.002658918034285307, 0.11414112895727158, 0.06277019530534744, -0.10516980290412903, 0.1585170328617096, 0.12542535364627838, -0.067972332239151, 0.11556480824947357, -0.04042961448431015, -0.07739440351724625, -0.02269396185874939, 0.03285485506057739, 0.026721324771642685, 0.16280771791934967, -0.08987614512443542, 0.0030283115338534117, 0.025432895869016647, 0.014208024367690086, -0.002524177310988307, -0.22363942861557007, -0.014751051552593708, 0.016395993530750275, -0.06867368519306183, -0.03807958960533142, -0.035810135304927826, 0.01786886528134346, 0.11985502392053604, 0.00621823500841856, -0.0705334022641182, 0.029752451926469803, 0.00814820360392332, -0.09087016433477402, 0.1915704756975174, -0.11080014705657959, -0.17266453802585602, -0.09954546391963959, 0.017764190211892128, -0.049314968287944794, 0.00948216300457716, 0.04645448550581932, -0.09602944552898407, -0.03212490305304527, -0.09602256864309311, -0.03668450936675072, 0.003808380104601383, 0.052430059760808945, 0.04536119103431702, 0.00896687712520361, 0.11352323740720749, -0.09581957012414932, 0.005369269754737616, -0.014939767308533192, -0.05529502406716347, 0.03065258264541626, 0.029243169352412224, 0.1194668561220169, 0.11116574704647064, -0.04849393665790558, 0.01844082958996296, -0.026581300422549248, 0.25295692682266235, -0.0517503060400486, -0.01415433082729578, 0.083687923848629, -0.005550131667405367, 0.07975669205188751, 0.14829383790493011, 0.04494732618331909, -0.0841391310095787, -0.0028931302949786186, 0.013935467228293419, -0.032346632331609726, -0.20238809287548065, -0.027249149978160858, -0.038374803960323334, 0.029448730871081352, 0.13374577462673187, 0.041597358882427216, 0.0021796170622110367, 0.08627079427242279, -0.02392318658530712, 0.036550018936395645, -0.013089068233966827, 0.0845615416765213, 0.07280243933200836, 0.04872443526983261, 0.11684230715036392, -0.0463370755314827, -0.031201248988509178, 0.01702517457306385, 0.002205825410783291, 0.2404748499393463, -0.0340457558631897, 0.13653145730495453, 0.03607523813843727, 0.21742013096809387, 0.005620840471237898, 0.08402259647846222, -0.022155575454235077, -0.014891228638589382, -0.00014354845916386694, -0.06243927776813507, -0.007706530392169952, 0.020711708813905716, -0.037563275545835495, 0.09170674532651901, -0.1079147681593895, 0.05261962488293648, 0.06954529881477356, 0.24920102953910828, 0.07332926988601685, -0.3903958797454834, -0.08052487671375275, -0.015597102232277393, 0.0021115264389663935, -0.04394599795341492, -0.005853667389601469, 0.13703159987926483, -0.059532079845666885, 0.04987725242972374, -0.07540478557348251, 0.07525033503770828, -0.029947025701403618, 0.02031180076301098, 0.07915743440389633, 0.08993667364120483, -0.010433999821543694, 0.07286472618579865, -0.23522943258285522, 0.2666727304458618, 0.01800677366554737, 0.07427816838026047, -0.05906984955072403, 0.012062635272741318, 0.02850246988236904, 0.06703280657529831, 0.0913563147187233, -0.0052635143510997295, -0.04601278901100159, -0.18545657396316528, -0.12139512598514557, 0.017745429649949074, 0.06765489280223846, -0.04258224740624428, 0.1159113347530365, -0.015564349479973316, -0.025857247412204742, 0.04229975491762161, 0.003674321575090289, -0.08303453773260117, -0.09360560774803162, -0.008230175822973251, 0.030310746282339096, 0.010175181552767754, -0.08146216720342636, -0.10822474956512451, -0.12673324346542358, 0.10975348204374313, -0.07859460264444351, -0.05453790724277496, -0.10272049158811569, 0.11129742860794067, 0.10627783834934235, -0.06974390149116516, 0.06291738152503967, -0.01725442335009575, 0.11859163641929626, 0.035530731081962585, -0.07047753036022186, 0.0564492791891098, -0.0804876908659935, -0.21956005692481995, -0.07175163924694061, 0.10025861114263535, 0.02618156187236309, 0.07493054121732712, 0.004063838627189398, 0.039695288985967636, -0.023250222206115723, -0.05746904015541077, 0.03450920805335045, 0.01576479710638523, 0.07696133852005005, 0.01418178528547287, -0.034464068710803986, -0.0617426373064518, -0.07961730659008026, -0.01858498342335224, 0.12413658946752548, 0.24853204190731049, -0.11602941155433655, 0.007972060702741146, 0.013798738829791546, -0.05886445194482803, -0.1756594181060791, 0.05914008244872093, 0.08380793780088425, 0.022796357050538063, 0.026613924652338028, -0.16276206076145172, 0.08465758711099625, 0.09695862233638763, -0.02769768238067627, 0.10770877450704575, -0.28397005796432495, -0.11889930069446564, 0.07500416040420532, 0.14565390348434448, 0.04837546497583389, -0.15816645324230194, -0.02867284044623375, 0.013700392097234726, -0.09106102585792542, 0.13151583075523376, -0.06325384229421616, 0.09369681030511856, -0.010442246682941914, 0.03552689775824547, 0.021885167807340622, -0.06540074199438095, 0.14854809641838074, 0.0027968361973762512, 0.07243743538856506, -0.04289708286523819, -0.02273324877023697, 0.09185942262411118, -0.07368004322052002, 0.041107937693595886, -0.08624441921710968, 0.057810865342617035, -0.0909331738948822, 0.015312747098505497, -0.07091513276100159, 0.017611799761652946, -0.03701276332139969, -0.025048863142728806, -0.07630318403244019, 0.04175800830125809, 0.07571831345558167, -0.011438420042395592, 0.13956771790981293, 0.06689218431711197, 0.11933062225580215, 0.09913282096385956, 0.053284093737602234, -0.025972209870815277, -0.04972980171442032, -0.004877997562289238, -0.026176489889621735, 0.06113595515489578, -0.13791368901729584, 0.028530778363347054, 0.14777712523937225, 0.03229498863220215, 0.10701965540647507, 0.06699905544519424, -0.05407214164733887, 0.005656430032104254, 0.07368308305740356, -0.16159053146839142, -0.10689166188240051, 0.0022299655247479677, -0.022768061608076096, -0.14476533234119415, 0.026878025382757187, 0.08083923161029816, -0.08758992701768875, -0.005521316546946764, 0.002846873365342617, 0.03163592144846916, -0.0005819749203510582, 0.20845136046409607, 0.04810263216495514, 0.0692920908331871, -0.10121037065982819, 0.07747823745012283, 0.06579401344060898, -0.1010076254606247, 0.026350533589720726, 0.021233314648270607, -0.10431280732154846, -0.013039364479482174, 0.06756530702114105, 0.12883082032203674, 0.01320241391658783, -0.04421417787671089, -0.15642428398132324, -0.09657525271177292, 0.06382603198289871, 0.13472306728363037, 0.08363070338964462, 0.04060312733054161, 0.011056666262447834, 0.006871883757412434, -0.12851348519325256, 0.13932783901691437, 0.0611809641122818, 0.0844108909368515, -0.20142151415348053, 0.11334921419620514, 0.011507511138916016, 0.007546362932771444, -0.008750573731958866, 0.047222599387168884, -0.11817257106304169, -0.013168000616133213, -0.06530901044607162, 0.03861728683114052, -0.06024792790412903, -0.01803712733089924, -0.004892116412520409, -0.06766623258590698, -0.054296500980854034, 0.01726824976503849, -0.09259024262428284, -0.0469549335539341, 0.0255210492759943, 0.05299973860383034, -0.11206868290901184, -0.026648500934243202, -0.0006828302866779268, -0.08787303417921066, 0.07386358082294464, 0.04626379534602165, 0.017139671370387077, 0.011491668410599232, -0.11848331242799759, -0.011137018911540508, 0.054362084716558456, 0.005105688236653805, 0.04630791023373604, -0.10916825383901596, 0.008088056929409504, -0.012038914486765862, -0.0007229378679767251, 0.010670197196304798, 0.11186075210571289, -0.12388141453266144, -0.003929529804736376, -0.031839191913604736, 0.0011494390200823545, -0.04578879103064537, 0.0518258772790432, 0.11297942698001862, -0.0033897776156663895, 0.21013428270816803, -0.08738191425800323, 0.029285095632076263, -0.23681987822055817, -0.006551658734679222, -0.026377910748124123, -0.10858791321516037, -0.12045591324567795, -0.028743499889969826, 0.07439571619033813, -0.06254652142524719, 0.08493897318840027, 0.022015443071722984, 0.019572606310248375, 0.03493545949459076, 0.006928951013833284, -0.003989959601312876, 0.031417086720466614, 0.18839377164840698, -0.002486014273017645, -0.027193637564778328, 0.05498092621564865, 0.00852933432906866, 0.1039106622338295, 0.05831753462553024, 0.15189163386821747, 0.12981586158275604, 0.0013028981629759073, 0.09479587525129318, 0.08213769644498825, -0.06627455353736877, -0.1909036934375763, 0.09207188338041306, -0.07509679347276688, 0.13436439633369446, -0.014880441129207611, 0.19110827147960663, 0.10471151769161224, -0.15797805786132812, 0.018948720768094063, -0.05745091661810875, -0.07254717499017715, -0.08789196610450745, -0.09567311406135559, -0.08374009281396866, -0.1698603332042694, 0.002414549933746457, -0.11434978991746902, 0.01651027239859104, 0.10952483862638474, 0.007204551249742508, -0.005677597597241402, 0.16153484582901, 0.06554650515317917, 0.02546910010278225, 0.05607542395591736, 0.02841971442103386, -0.04301200807094574, -0.03653929755091667, -0.10398852080106735, 0.053132448345422745, 0.004993868991732597, 0.0553189180791378, -0.04130654036998749, 0.005277955438941717, 0.049555759876966476, 0.007061675190925598, -0.0951281413435936, 0.0227309949696064, 0.0030006098095327616, 0.04245252162218094, 0.04538405314087868, 0.025521107017993927, 0.001588649582117796, -0.02683267556130886, 0.17892231047153473, -0.06315602362155914, -0.03168913722038269, -0.12013735622167587, 0.1675172746181488, -0.010278585366904736, -0.03882082924246788, 0.0609818696975708, -0.10761481523513794, 0.012464158236980438, 0.18932978808879852, 0.17710912227630615, -0.029968328773975372, -0.01983921229839325, -0.018623782321810722, -0.023301687091588974, -0.03364787623286247, 0.07553288340568542, 0.11624997854232788, 0.04566652700304985, -0.07717511802911758, -0.032677438110113144, -0.07715622335672379, -0.011768589727580547, -0.05269412696361542, 0.008717214688658714, 0.01755116507411003, 0.021342836320400238, -0.05594314634799957, 0.057228852063417435, -0.02325545996427536, -0.09633133560419083, 0.06994081288576126, -0.2064959853887558, -0.1683977097272873, -0.023760873824357986, 0.09072831273078918, -0.008759967051446438, 0.034007687121629715, -0.04212307184934616, 0.02574153058230877, 0.06608689576387405, -0.04740810766816139, -0.06558776646852493, -0.08391598612070084, 0.04594678431749344, -0.12141989916563034, 0.24523888528347015, -0.042298998683691025, 0.03602179139852524, 0.12014477699995041, 0.029406892135739326, -0.1539008915424347, 0.010576099157333374, 0.04254378750920296, -0.048871301114559174, 0.02757950872182846, 0.11295310407876968, -0.03216563165187836, 0.10554376244544983, 0.05289179086685181, -0.07001624256372452, -0.012804217636585236, -0.042758967727422714, -0.021667419001460075, -0.059592582285404205, -0.014040076173841953, -0.05055980384349823, 0.13572658598423004, 0.1947062760591507, -0.05726966634392738, -0.0025752722285687923, -0.049881212413311005, 0.0066278306767344475, 0.05844847485423088, 0.030225198715925217, -0.016318539157509804, -0.26626861095428467, 0.012994257733225822, 0.0288897305727005, -0.0037749153561890125, -0.2051798552274704, -0.0980001762509346, 0.0026217978447675705, -0.06327522546052933, -0.10493485629558563, 0.09379494935274124, 0.0974702313542366, 0.05065132677555084, -0.06181824952363968, -0.02120400406420231, -0.08794804662466049, 0.1729421764612198, -0.12811170518398285, -0.09814911335706711 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7539 - Wer: 0.6135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.1466 | 1.0 | 118 | 4.3444 | 1.0 | | 3.4188 | 2.0 | 236 | 3.2496 | 1.0 | | 2.8617 | 3.0 | 354 | 1.6165 | 1.0003 | | 0.958 | 4.0 | 472 | 0.7984 | 0.8720 | | 0.5929 | 5.0 | 590 | 0.6733 | 0.7831 | | 0.4628 | 6.0 | 708 | 0.6536 | 0.7621 | | 0.3834 | 7.0 | 826 | 0.6037 | 0.7155 | | 0.3242 | 8.0 | 944 | 0.6376 | 0.7184 | | 0.2736 | 9.0 | 1062 | 0.6214 | 0.7070 | | 0.2433 | 10.0 | 1180 | 0.6158 | 0.6944 | | 0.2217 | 11.0 | 1298 | 0.6548 | 0.6830 | | 0.1992 | 12.0 | 1416 | 0.6331 | 0.6775 | | 0.1804 | 13.0 | 1534 | 0.6644 | 0.6874 | | 0.1639 | 14.0 | 1652 | 0.6629 | 0.6649 | | 0.143 | 15.0 | 1770 | 0.6927 | 0.6836 | | 0.1394 | 16.0 | 1888 | 0.6933 | 0.6888 | | 0.1296 | 17.0 | 2006 | 0.7039 | 0.6860 | | 0.1212 | 18.0 | 2124 | 0.7042 | 0.6628 | | 0.1121 | 19.0 | 2242 | 0.7132 | 0.6475 | | 0.1069 | 20.0 | 2360 | 0.7423 | 0.6438 | | 0.1063 | 21.0 | 2478 | 0.7171 | 0.6484 | | 0.1025 | 22.0 | 2596 | 0.7396 | 0.6451 | | 0.0946 | 23.0 | 2714 | 0.7400 | 0.6432 | | 0.0902 | 24.0 | 2832 | 0.7385 | 0.6286 | | 0.0828 | 25.0 | 2950 | 0.7368 | 0.6286 | | 0.079 | 26.0 | 3068 | 0.7471 | 0.6306 | | 0.0747 | 27.0 | 3186 | 0.7524 | 0.6201 | | 0.0661 | 28.0 | 3304 | 0.7576 | 0.6201 | | 0.0659 | 29.0 | 3422 | 0.7579 | 0.6130 | | 0.0661 | 30.0 | 3540 | 0.7539 | 0.6135 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-tamil-colab-final", "results": []}]}
automatic-speech-recognition
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-tamil-colab-final =========================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.7539 * Wer: 0.6135 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 65, 158, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.11751111596822739, 0.07993100583553314, -0.0028286364395171404, 0.055796701461076736, 0.12343578785657883, 0.008311945013701916, 0.11129909753799438, 0.15244056284427643, -0.09420009702444077, 0.0791916698217392, 0.0947682335972786, 0.09260205924510956, 0.06181260570883751, 0.09807788580656052, -0.017553221434354782, -0.3227207660675049, 0.004273364786058664, 0.02123274654150009, -0.1073567196726799, 0.11762262135744095, 0.10601196438074112, -0.1141255795955658, 0.027031216770410538, 0.026858996599912643, -0.12631836533546448, 0.014733375050127506, -0.020584963262081146, -0.06956163048744202, 0.1286342740058899, 0.029509223997592926, 0.10026474297046661, 0.016620028764009476, 0.09469127655029297, -0.26187190413475037, 0.015138126909732819, 0.05899550020694733, 0.047878772020339966, 0.0775405764579773, 0.10431074351072311, -0.028109235689044, 0.13380184769630432, -0.0692068412899971, 0.07631681859493256, 0.042022738605737686, -0.11316896975040436, -0.3228369653224945, -0.0783720538020134, 0.03650856018066406, 0.11214211583137512, 0.10455707460641861, -0.03328578919172287, 0.0772644579410553, -0.0758768618106842, 0.08718673139810562, 0.22803983092308044, -0.2490013688802719, -0.08304223418235779, -0.023040222004055977, 0.04738582298159599, 0.04030529037117958, -0.13171376287937164, -0.031360115855932236, 0.02518504299223423, 0.04439559951424599, 0.10690051317214966, 0.005791217088699341, -0.0384545624256134, 0.021378079429268837, -0.13414667546749115, -0.04777948930859566, 0.12752528488636017, 0.07527179270982742, -0.0282231904566288, -0.09266254305839539, -0.00828537717461586, -0.20419096946716309, -0.04817011579871178, 0.016512354835867882, 0.024596363306045532, -0.041554518043994904, -0.12221032381057739, 0.011663608253002167, -0.09490527212619781, -0.0897427424788475, 0.012900903820991516, 0.13418857753276825, 0.04353409633040428, -0.02783329039812088, -0.0020368341356515884, 0.10952208936214447, 0.042359720915555954, -0.13702596724033356, 0.010255960747599602, 0.04834248125553131, -0.0948905274271965, -0.021575715392827988, -0.04137740656733513, -0.049116287380456924, -0.0017877642530947924, 0.12014590203762054, -0.016700511798262596, 0.0798216313123703, 0.014216183684766293, 0.034927502274513245, -0.08039461821317673, 0.1791132092475891, -0.07204516977071762, -0.019814006984233856, -0.05630099028348923, 0.09497371315956116, -0.023070624098181725, -0.014900174923241138, -0.0665879100561142, 0.0311382208019495, 0.11237959563732147, 0.03772808238863945, -0.025581255555152893, 0.0238952673971653, -0.06492231786251068, -0.022776922211050987, -0.0491035096347332, -0.10365019738674164, 0.04415789991617203, 0.025948893278837204, -0.08558893203735352, 0.01158748660236597, 0.0032235269900411367, 0.027108287438750267, -0.023100432008504868, 0.1294458508491516, -0.0680549144744873, 0.015858745202422142, -0.09199077636003494, -0.10519104450941086, 0.031245814636349678, -0.03811834752559662, 0.010671580210328102, -0.06107167899608612, -0.10485575348138809, -0.048919204622507095, 0.06899217516183853, -0.05197467282414436, -0.0681816041469574, -0.07103281468153, -0.06951935589313507, 0.047847896814346313, -0.025976058095693588, 0.18071043491363525, -0.057577770203351974, 0.11898144334554672, 0.021483248099684715, 0.03958865627646446, 0.030544346198439598, 0.0770564004778862, -0.056049853563308716, 0.032444436103105545, -0.13171660900115967, 0.06911075860261917, -0.08554848283529282, 0.05915473774075508, -0.1444619596004486, -0.12692907452583313, -0.023743104189634323, 0.004898342303931713, 0.10027804225683212, 0.08361312001943588, -0.19276206195354462, -0.09318786859512329, 0.17238783836364746, -0.06951530277729034, -0.10108175873756409, 0.13354387879371643, -0.034197453409433365, 0.016805356368422508, 0.041145194321870804, 0.18827351927757263, 0.07016270607709885, -0.09188750386238098, 0.015322967432439327, -0.05242124944925308, 0.12315214425325394, 0.019863195717334747, 0.0975213572382927, -0.04320415109395981, 0.03641282394528389, -0.00593459140509367, -0.019637251272797585, 0.06385376304388046, -0.09503144025802612, -0.09223990142345428, -0.015049808658659458, -0.07566695660352707, 0.007389950565993786, 0.06957791745662689, 0.03897741064429283, -0.09804774820804596, -0.13044017553329468, 0.033244404941797256, 0.10004934668540955, -0.10864970088005066, 0.034154705703258514, -0.07988332211971283, 0.036142561584711075, -0.020147914066910744, -0.014127596281468868, -0.16676084697246552, -0.007884828373789787, 0.023902110755443573, -0.037739187479019165, 0.035678330808877945, -0.00457350630313158, 0.08711846172809601, 0.037414345890283585, -0.050228990614414215, -0.07292155921459198, -0.0704956129193306, -0.003511284478008747, -0.08278779685497284, -0.2348886877298355, -0.0770937129855156, -0.02632809244096279, 0.16196496784687042, -0.22453056275844574, 0.010337351821362972, 0.021228551864624023, 0.10351598262786865, 0.035135120153427124, -0.04881803318858147, -0.013496436178684235, 0.08058231323957443, -0.019664539024233818, -0.06306519359350204, 0.034400563687086105, 0.003678317880257964, -0.12447215616703033, 0.01767059974372387, -0.12286905199289322, 0.09520768374204636, 0.11031606793403625, -0.0506834052503109, -0.08551174402236938, -0.061409637331962585, -0.06887557357549667, -0.06412763148546219, -0.03498734161257744, -0.0010996228083968163, 0.20516692101955414, 0.03516167029738426, 0.11540854722261429, -0.07466687262058258, -0.04675634577870369, 0.027427829802036285, -0.006939449347555637, -0.010562621988356113, 0.13961000740528107, 0.06793146580457687, -0.03695082664489746, 0.10170997679233551, 0.0804038867354393, -0.0870945155620575, 0.14304561913013458, -0.06850659847259521, -0.12817195057868958, -0.02106383442878723, 0.01680314913392067, 0.03047383390367031, 0.12788839638233185, -0.15700191259384155, -0.004730622284114361, 0.02022462897002697, 0.023853223770856857, 0.030125174671411514, -0.222624734044075, -0.017062265425920486, 0.040918417274951935, -0.06304582953453064, -0.04954688251018524, -0.01890508458018303, 0.002725212136283517, 0.09065243601799011, 0.002847066381946206, -0.06169876828789711, -0.006761852186173201, -0.025375602766871452, -0.08224871754646301, 0.18916553258895874, -0.0921594575047493, -0.1382182389497757, -0.13530635833740234, -0.04251059144735336, 0.001363044953905046, -0.0167694054543972, 0.04708801954984665, -0.10710645467042923, -0.03394189104437828, -0.06325989216566086, 0.046998366713523865, -0.06864820420742035, 0.024171749129891396, -0.013332800939679146, 0.012031765654683113, 0.07995340973138809, -0.10119657218456268, 0.0198372732847929, -0.024239061400294304, -0.04110855981707573, 0.0343528687953949, 0.036993607878685, 0.0973338708281517, 0.167447030544281, 0.03023187816143036, 0.02361876517534256, -0.04118826612830162, 0.15342336893081665, -0.10501363128423691, -0.030155101791024208, 0.10645309835672379, -0.002280266722664237, 0.04160982742905617, 0.12241555750370026, 0.06607627868652344, -0.08191302418708801, 0.021289166063070297, 0.056792549788951874, -0.016731658950448036, -0.246926948428154, -0.025057541206479073, -0.05933796614408493, -0.022339841350913048, 0.12158855050802231, 0.03026094287633896, 0.0004514243919402361, 0.034189142286777496, 0.0004598632513079792, 0.0059538898058235645, 0.0021397715900093317, 0.06511794775724411, 0.06956153362989426, 0.03735699504613876, 0.11630076915025711, -0.01704764924943447, -0.053503312170505524, 0.02056731842458248, 0.013023070991039276, 0.2561072111129761, 0.0007118578068912029, 0.16626788675785065, 0.05789191648364067, 0.16205474734306335, 0.005357562564313412, 0.07461456209421158, 0.008461512625217438, -0.02835102006793022, 0.014116613194346428, -0.055005576461553574, -0.02583620510995388, 0.041719332337379456, 0.0898328498005867, 0.03950388729572296, -0.12575176358222961, -0.030060341581702232, 0.019221477210521698, 0.35242149233818054, 0.0644313171505928, -0.3002247214317322, -0.08661270886659622, 0.002604456851258874, -0.08245231956243515, -0.047586843371391296, 0.02854464016854763, 0.10525981336832047, -0.09864053875207901, 0.042439356446266174, -0.08005630224943161, 0.09834594279527664, -0.06609368324279785, 0.008241871371865273, 0.08418498188257217, 0.06872265040874481, -0.0051025268621742725, 0.07776658982038498, -0.2807559669017792, 0.31258559226989746, -0.014618952758610249, 0.07847751677036285, -0.04805951938033104, 0.02674245461821556, 0.025414787232875824, -0.056252241134643555, 0.07116944342851639, -0.01639210619032383, -0.0890306904911995, -0.19459335505962372, -0.07525146007537842, 0.024622026830911636, 0.13040614128112793, -0.05517873540520668, 0.12334034591913223, -0.02670474909245968, -0.002955016912892461, 0.06235484406352043, -0.07852888852357864, -0.0914587751030922, -0.11209341138601303, 0.01606128178536892, 0.024346789345145226, 0.07301682978868484, -0.10393943637609482, -0.11357896029949188, -0.07110057026147842, 0.15138746798038483, -0.06411533802747726, -0.007021286059170961, -0.1285875141620636, 0.1010068953037262, 0.16545651853084564, -0.06523338705301285, 0.04076032713055611, 0.02955041453242302, 0.11536197364330292, 0.0322086401283741, -0.005419072229415178, 0.11551377177238464, -0.07731673866510391, -0.17606790363788605, -0.056131523102521896, 0.16243793070316315, 0.04535512626171112, 0.07390221953392029, -0.023377524688839912, 0.02246520295739174, -0.033153340220451355, -0.07168612629175186, 0.062024954706430435, -0.006312267389148474, 0.008130325935781002, 0.05484110862016678, -0.041466087102890015, 0.0066685485653579235, -0.07988246530294418, -0.06291305273771286, 0.16489630937576294, 0.2713643014431, -0.0738893449306488, 0.019889874383807182, 0.03736702352762222, -0.05028442293405533, -0.14639706909656525, 0.036053553223609924, 0.12360399216413498, 0.033743105828762054, 0.019016264006495476, -0.23318204283714294, 0.06570304930210114, 0.08537557721138, -0.01990184746682644, 0.06997335702180862, -0.3308058977127075, -0.12668441236019135, 0.11919771879911423, 0.11184830218553543, -0.042435985058546066, -0.15506617724895477, -0.054984964430332184, -0.00829628948122263, -0.09280698746442795, 0.06880688667297363, -0.03184311091899872, 0.12956079840660095, -0.0005080255214124918, 0.08747498691082001, 0.025989465415477753, -0.058625828474760056, 0.14115747809410095, -0.006411454174667597, 0.06407642364501953, -0.006049228832125664, 0.046460915356874466, 0.015647441148757935, -0.041154853999614716, 0.011025666259229183, -0.07264641672372818, 0.00813282746821642, -0.1346544623374939, -0.03102990798652172, -0.08601231127977371, 0.026262179017066956, -0.041468728333711624, -0.0520378053188324, -0.008697997778654099, 0.04707785323262215, 0.0586530826985836, 0.00572617445141077, 0.12195461988449097, -0.05385424941778183, 0.15611495077610016, 0.06110475957393646, 0.10534937679767609, -0.004367182031273842, -0.10076305270195007, -0.014767343178391457, -0.008629932068288326, 0.0498012900352478, -0.11484631150960922, 0.029362840577960014, 0.15176445245742798, 0.04617828130722046, 0.15669257938861847, 0.06561297178268433, -0.08548310399055481, 0.017597073689103127, 0.07095858454704285, -0.0831989273428917, -0.11707931756973267, -0.014735857024788857, 0.06781820952892303, -0.1444181650876999, 0.005745808593928814, 0.09828700870275497, -0.0500553734600544, -0.012757471762597561, 0.013546615839004517, 0.017016621306538582, -0.06169046834111214, 0.2240232229232788, 0.027952199801802635, 0.07465658336877823, -0.09250008314847946, 0.07556327432394028, 0.05788454785943031, -0.17357149720191956, 0.027020685374736786, 0.07752856612205505, -0.026886841282248497, -0.019191060215234756, 0.025692887604236603, 0.09356972575187683, -0.002430213848128915, -0.056838180869817734, -0.1200818195939064, -0.14706718921661377, 0.07772985100746155, 0.0841960608959198, 0.033168114721775055, 0.025869220495224, -0.05159107968211174, 0.04228825867176056, -0.11832789331674576, 0.09071739763021469, 0.09730243682861328, 0.07158111780881882, -0.1301373839378357, 0.15724284946918488, 0.013234059326350689, 0.005080425180494785, 0.008132091723382473, -0.006458629854023457, -0.0975375771522522, 0.03905138000845909, -0.10076461732387543, -0.033537689596414566, -0.049044813960790634, -0.0037623459938913584, 0.013463919050991535, -0.05563763529062271, -0.053031500428915024, 0.013989526778459549, -0.12629570066928864, -0.0429818294942379, 0.0025024861097335815, 0.06720365583896637, -0.10986052453517914, -0.022349976003170013, 0.04861949384212494, -0.1043441891670227, 0.09183770418167114, 0.06121007353067398, 0.021383291110396385, 0.04517326503992081, -0.1271660178899765, 0.015140803530812263, 0.038589682430028915, -0.0008166406187228858, 0.029781360179185867, -0.15518833696842194, -0.013732279650866985, -0.01841842196881771, 0.04191918298602104, -0.0004431282286532223, 0.02298140898346901, -0.13902771472930908, -0.04059315845370293, -0.0315205417573452, -0.07596730440855026, -0.06008246913552284, 0.053838033229112625, 0.05564560741186142, 0.04550834372639656, 0.1715267449617386, -0.08713012933731079, 0.054747045040130615, -0.21897552907466888, 0.019287070259451866, -0.03543839976191521, -0.06399734318256378, -0.06646512448787689, -0.04155997931957245, 0.0825326144695282, -0.07543215155601501, 0.08933427184820175, -0.02920309640467167, 0.04299464449286461, 0.03173528611660004, -0.10693661868572235, 0.02565194107592106, 0.044104885309934616, 0.23969529569149017, 0.044452834874391556, -0.02836671844124794, 0.07282676547765732, 0.010079070925712585, 0.052836086601018906, 0.18123255670070648, 0.15236535668373108, 0.17922845482826233, 0.04891754686832428, 0.08624797314405441, 0.0744033083319664, -0.10730116069316864, -0.12291247397661209, 0.125810906291008, -0.018192267045378685, 0.12036343663930893, -0.013458318077027798, 0.2638738453388214, 0.09923392534255981, -0.1935877799987793, 0.05682285875082016, -0.04030165821313858, -0.09243113547563553, -0.09126735478639603, -0.06152336299419403, -0.06696611642837524, -0.17075374722480774, 0.012022443115711212, -0.11299721151590347, 0.0550098717212677, 0.0612480603158474, 0.03781469166278839, 0.01403807569295168, 0.13798823952674866, 0.04038044437766075, 0.0037069725804030895, 0.1087566539645195, 0.01663758046925068, -0.013624182902276516, -0.0650908425450325, -0.08850450068712234, 0.031775396317243576, -0.0257123913615942, 0.046926528215408325, -0.0530492328107357, -0.09978248924016953, 0.05705709382891655, 0.0012935241684317589, -0.1083962619304657, 0.017704378813505173, -0.021260961890220642, 0.07447630912065506, 0.08489741384983063, 0.03146937116980553, -0.006191028282046318, -0.025294026359915733, 0.2663479745388031, -0.10771125555038452, -0.06059073284268379, -0.13150440156459808, 0.24764859676361084, 0.012623465619981289, -0.02319655753672123, 0.01633535511791706, -0.07239192724227905, 0.006761291064321995, 0.16591541469097137, 0.1496773213148117, -0.03135610744357109, -0.020428920164704323, 0.015028745867311954, -0.011567343026399612, -0.058515515178442, 0.0806112214922905, 0.12978097796440125, 0.05138088017702103, -0.07902372628450394, -0.03128483518958092, -0.059512920677661896, -0.045862309634685516, -0.028070807456970215, 0.07536277174949646, 0.042597848922014236, -0.012720122002065182, -0.029520343989133835, 0.12271322309970856, -0.0746166780591011, -0.11081734299659729, 0.015328744426369667, -0.18246586620807648, -0.1872519850730896, -0.03597882762551308, 0.0721922218799591, 0.029790451750159264, 0.05395929887890816, -0.015074214898049831, -0.013553617522120476, 0.09470922499895096, 0.008332664147019386, -0.045879218727350235, -0.10852079838514328, 0.09600304067134857, -0.09790076315402985, 0.191756933927536, -0.04678092151880264, 0.027354737743735313, 0.12393396347761154, 0.07349805533885956, -0.06247517466545105, 0.05297829955816269, 0.06825777888298035, -0.12794238328933716, 0.04804496467113495, 0.19550277292728424, -0.03327605500817299, 0.13987070322036743, 0.041486356407403946, -0.11809878796339035, 0.028921447694301605, -0.10948417335748672, -0.04617263749241829, -0.05886603519320488, -0.01665010303258896, -0.04302987456321716, 0.1307925134897232, 0.2197725772857666, -0.06213530898094177, -0.017521796748042107, -0.06353048235177994, 0.0029342470224946737, 0.049161624163389206, 0.1137600690126419, -0.051515914499759674, -0.2727425992488861, 0.010669228620827198, 0.0004903279477730393, 0.006822726223617792, -0.26497942209243774, -0.09202728420495987, 0.04298253729939461, -0.06373646855354309, -0.06137651205062866, 0.1095472052693367, 0.0823647677898407, 0.053120050579309464, -0.0571015439927578, -0.0761890709400177, -0.03493843227624893, 0.1882573813199997, -0.1731024980545044, -0.055893562734127045 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8072 - Wer: 0.6531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0967 | 1.0 | 118 | 4.6437 | 1.0 | | 3.4973 | 2.0 | 236 | 3.2588 | 1.0 | | 3.1305 | 3.0 | 354 | 2.6566 | 1.0 | | 1.2931 | 4.0 | 472 | 0.9156 | 0.9944 | | 0.6851 | 5.0 | 590 | 0.7474 | 0.8598 | | 0.525 | 6.0 | 708 | 0.6649 | 0.7995 | | 0.4325 | 7.0 | 826 | 0.6740 | 0.7752 | | 0.3766 | 8.0 | 944 | 0.6220 | 0.7628 | | 0.3256 | 9.0 | 1062 | 0.6316 | 0.7322 | | 0.2802 | 10.0 | 1180 | 0.6442 | 0.7305 | | 0.2575 | 11.0 | 1298 | 0.6885 | 0.7280 | | 0.2248 | 12.0 | 1416 | 0.6702 | 0.7197 | | 0.2089 | 13.0 | 1534 | 0.6781 | 0.7173 | | 0.1893 | 14.0 | 1652 | 0.6981 | 0.7049 | | 0.1652 | 15.0 | 1770 | 0.7154 | 0.7436 | | 0.1643 | 16.0 | 1888 | 0.6798 | 0.7023 | | 0.1472 | 17.0 | 2006 | 0.7381 | 0.6947 | | 0.1372 | 18.0 | 2124 | 0.7240 | 0.7065 | | 0.1318 | 19.0 | 2242 | 0.7305 | 0.6714 | | 0.1211 | 20.0 | 2360 | 0.7288 | 0.6597 | | 0.1178 | 21.0 | 2478 | 0.7417 | 0.6699 | | 0.1118 | 22.0 | 2596 | 0.7476 | 0.6753 | | 0.1016 | 23.0 | 2714 | 0.7973 | 0.6647 | | 0.0998 | 24.0 | 2832 | 0.8027 | 0.6633 | | 0.0917 | 25.0 | 2950 | 0.8045 | 0.6680 | | 0.0907 | 26.0 | 3068 | 0.7884 | 0.6565 | | 0.0835 | 27.0 | 3186 | 0.8009 | 0.6622 | | 0.0749 | 28.0 | 3304 | 0.8123 | 0.6536 | | 0.0755 | 29.0 | 3422 | 0.8006 | 0.6555 | | 0.074 | 30.0 | 3540 | 0.8072 | 0.6531 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-tamil-colab", "results": []}]}
automatic-speech-recognition
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-tamil-colab ===================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.8072 * Wer: 0.6531 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 65, 158, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.11751111596822739, 0.07993100583553314, -0.0028286364395171404, 0.055796701461076736, 0.12343578785657883, 0.008311945013701916, 0.11129909753799438, 0.15244056284427643, -0.09420009702444077, 0.0791916698217392, 0.0947682335972786, 0.09260205924510956, 0.06181260570883751, 0.09807788580656052, -0.017553221434354782, -0.3227207660675049, 0.004273364786058664, 0.02123274654150009, -0.1073567196726799, 0.11762262135744095, 0.10601196438074112, -0.1141255795955658, 0.027031216770410538, 0.026858996599912643, -0.12631836533546448, 0.014733375050127506, -0.020584963262081146, -0.06956163048744202, 0.1286342740058899, 0.029509223997592926, 0.10026474297046661, 0.016620028764009476, 0.09469127655029297, -0.26187190413475037, 0.015138126909732819, 0.05899550020694733, 0.047878772020339966, 0.0775405764579773, 0.10431074351072311, -0.028109235689044, 0.13380184769630432, -0.0692068412899971, 0.07631681859493256, 0.042022738605737686, -0.11316896975040436, -0.3228369653224945, -0.0783720538020134, 0.03650856018066406, 0.11214211583137512, 0.10455707460641861, -0.03328578919172287, 0.0772644579410553, -0.0758768618106842, 0.08718673139810562, 0.22803983092308044, -0.2490013688802719, -0.08304223418235779, -0.023040222004055977, 0.04738582298159599, 0.04030529037117958, -0.13171376287937164, -0.031360115855932236, 0.02518504299223423, 0.04439559951424599, 0.10690051317214966, 0.005791217088699341, -0.0384545624256134, 0.021378079429268837, -0.13414667546749115, -0.04777948930859566, 0.12752528488636017, 0.07527179270982742, -0.0282231904566288, -0.09266254305839539, -0.00828537717461586, -0.20419096946716309, -0.04817011579871178, 0.016512354835867882, 0.024596363306045532, -0.041554518043994904, -0.12221032381057739, 0.011663608253002167, -0.09490527212619781, -0.0897427424788475, 0.012900903820991516, 0.13418857753276825, 0.04353409633040428, -0.02783329039812088, -0.0020368341356515884, 0.10952208936214447, 0.042359720915555954, -0.13702596724033356, 0.010255960747599602, 0.04834248125553131, -0.0948905274271965, -0.021575715392827988, -0.04137740656733513, -0.049116287380456924, -0.0017877642530947924, 0.12014590203762054, -0.016700511798262596, 0.0798216313123703, 0.014216183684766293, 0.034927502274513245, -0.08039461821317673, 0.1791132092475891, -0.07204516977071762, -0.019814006984233856, -0.05630099028348923, 0.09497371315956116, -0.023070624098181725, -0.014900174923241138, -0.0665879100561142, 0.0311382208019495, 0.11237959563732147, 0.03772808238863945, -0.025581255555152893, 0.0238952673971653, -0.06492231786251068, -0.022776922211050987, -0.0491035096347332, -0.10365019738674164, 0.04415789991617203, 0.025948893278837204, -0.08558893203735352, 0.01158748660236597, 0.0032235269900411367, 0.027108287438750267, -0.023100432008504868, 0.1294458508491516, -0.0680549144744873, 0.015858745202422142, -0.09199077636003494, -0.10519104450941086, 0.031245814636349678, -0.03811834752559662, 0.010671580210328102, -0.06107167899608612, -0.10485575348138809, -0.048919204622507095, 0.06899217516183853, -0.05197467282414436, -0.0681816041469574, -0.07103281468153, -0.06951935589313507, 0.047847896814346313, -0.025976058095693588, 0.18071043491363525, -0.057577770203351974, 0.11898144334554672, 0.021483248099684715, 0.03958865627646446, 0.030544346198439598, 0.0770564004778862, -0.056049853563308716, 0.032444436103105545, -0.13171660900115967, 0.06911075860261917, -0.08554848283529282, 0.05915473774075508, -0.1444619596004486, -0.12692907452583313, -0.023743104189634323, 0.004898342303931713, 0.10027804225683212, 0.08361312001943588, -0.19276206195354462, -0.09318786859512329, 0.17238783836364746, -0.06951530277729034, -0.10108175873756409, 0.13354387879371643, -0.034197453409433365, 0.016805356368422508, 0.041145194321870804, 0.18827351927757263, 0.07016270607709885, -0.09188750386238098, 0.015322967432439327, -0.05242124944925308, 0.12315214425325394, 0.019863195717334747, 0.0975213572382927, -0.04320415109395981, 0.03641282394528389, -0.00593459140509367, -0.019637251272797585, 0.06385376304388046, -0.09503144025802612, -0.09223990142345428, -0.015049808658659458, -0.07566695660352707, 0.007389950565993786, 0.06957791745662689, 0.03897741064429283, -0.09804774820804596, -0.13044017553329468, 0.033244404941797256, 0.10004934668540955, -0.10864970088005066, 0.034154705703258514, -0.07988332211971283, 0.036142561584711075, -0.020147914066910744, -0.014127596281468868, -0.16676084697246552, -0.007884828373789787, 0.023902110755443573, -0.037739187479019165, 0.035678330808877945, -0.00457350630313158, 0.08711846172809601, 0.037414345890283585, -0.050228990614414215, -0.07292155921459198, -0.0704956129193306, -0.003511284478008747, -0.08278779685497284, -0.2348886877298355, -0.0770937129855156, -0.02632809244096279, 0.16196496784687042, -0.22453056275844574, 0.010337351821362972, 0.021228551864624023, 0.10351598262786865, 0.035135120153427124, -0.04881803318858147, -0.013496436178684235, 0.08058231323957443, -0.019664539024233818, -0.06306519359350204, 0.034400563687086105, 0.003678317880257964, -0.12447215616703033, 0.01767059974372387, -0.12286905199289322, 0.09520768374204636, 0.11031606793403625, -0.0506834052503109, -0.08551174402236938, -0.061409637331962585, -0.06887557357549667, -0.06412763148546219, -0.03498734161257744, -0.0010996228083968163, 0.20516692101955414, 0.03516167029738426, 0.11540854722261429, -0.07466687262058258, -0.04675634577870369, 0.027427829802036285, -0.006939449347555637, -0.010562621988356113, 0.13961000740528107, 0.06793146580457687, -0.03695082664489746, 0.10170997679233551, 0.0804038867354393, -0.0870945155620575, 0.14304561913013458, -0.06850659847259521, -0.12817195057868958, -0.02106383442878723, 0.01680314913392067, 0.03047383390367031, 0.12788839638233185, -0.15700191259384155, -0.004730622284114361, 0.02022462897002697, 0.023853223770856857, 0.030125174671411514, -0.222624734044075, -0.017062265425920486, 0.040918417274951935, -0.06304582953453064, -0.04954688251018524, -0.01890508458018303, 0.002725212136283517, 0.09065243601799011, 0.002847066381946206, -0.06169876828789711, -0.006761852186173201, -0.025375602766871452, -0.08224871754646301, 0.18916553258895874, -0.0921594575047493, -0.1382182389497757, -0.13530635833740234, -0.04251059144735336, 0.001363044953905046, -0.0167694054543972, 0.04708801954984665, -0.10710645467042923, -0.03394189104437828, -0.06325989216566086, 0.046998366713523865, -0.06864820420742035, 0.024171749129891396, -0.013332800939679146, 0.012031765654683113, 0.07995340973138809, -0.10119657218456268, 0.0198372732847929, -0.024239061400294304, -0.04110855981707573, 0.0343528687953949, 0.036993607878685, 0.0973338708281517, 0.167447030544281, 0.03023187816143036, 0.02361876517534256, -0.04118826612830162, 0.15342336893081665, -0.10501363128423691, -0.030155101791024208, 0.10645309835672379, -0.002280266722664237, 0.04160982742905617, 0.12241555750370026, 0.06607627868652344, -0.08191302418708801, 0.021289166063070297, 0.056792549788951874, -0.016731658950448036, -0.246926948428154, -0.025057541206479073, -0.05933796614408493, -0.022339841350913048, 0.12158855050802231, 0.03026094287633896, 0.0004514243919402361, 0.034189142286777496, 0.0004598632513079792, 0.0059538898058235645, 0.0021397715900093317, 0.06511794775724411, 0.06956153362989426, 0.03735699504613876, 0.11630076915025711, -0.01704764924943447, -0.053503312170505524, 0.02056731842458248, 0.013023070991039276, 0.2561072111129761, 0.0007118578068912029, 0.16626788675785065, 0.05789191648364067, 0.16205474734306335, 0.005357562564313412, 0.07461456209421158, 0.008461512625217438, -0.02835102006793022, 0.014116613194346428, -0.055005576461553574, -0.02583620510995388, 0.041719332337379456, 0.0898328498005867, 0.03950388729572296, -0.12575176358222961, -0.030060341581702232, 0.019221477210521698, 0.35242149233818054, 0.0644313171505928, -0.3002247214317322, -0.08661270886659622, 0.002604456851258874, -0.08245231956243515, -0.047586843371391296, 0.02854464016854763, 0.10525981336832047, -0.09864053875207901, 0.042439356446266174, -0.08005630224943161, 0.09834594279527664, -0.06609368324279785, 0.008241871371865273, 0.08418498188257217, 0.06872265040874481, -0.0051025268621742725, 0.07776658982038498, -0.2807559669017792, 0.31258559226989746, -0.014618952758610249, 0.07847751677036285, -0.04805951938033104, 0.02674245461821556, 0.025414787232875824, -0.056252241134643555, 0.07116944342851639, -0.01639210619032383, -0.0890306904911995, -0.19459335505962372, -0.07525146007537842, 0.024622026830911636, 0.13040614128112793, -0.05517873540520668, 0.12334034591913223, -0.02670474909245968, -0.002955016912892461, 0.06235484406352043, -0.07852888852357864, -0.0914587751030922, -0.11209341138601303, 0.01606128178536892, 0.024346789345145226, 0.07301682978868484, -0.10393943637609482, -0.11357896029949188, -0.07110057026147842, 0.15138746798038483, -0.06411533802747726, -0.007021286059170961, -0.1285875141620636, 0.1010068953037262, 0.16545651853084564, -0.06523338705301285, 0.04076032713055611, 0.02955041453242302, 0.11536197364330292, 0.0322086401283741, -0.005419072229415178, 0.11551377177238464, -0.07731673866510391, -0.17606790363788605, -0.056131523102521896, 0.16243793070316315, 0.04535512626171112, 0.07390221953392029, -0.023377524688839912, 0.02246520295739174, -0.033153340220451355, -0.07168612629175186, 0.062024954706430435, -0.006312267389148474, 0.008130325935781002, 0.05484110862016678, -0.041466087102890015, 0.0066685485653579235, -0.07988246530294418, -0.06291305273771286, 0.16489630937576294, 0.2713643014431, -0.0738893449306488, 0.019889874383807182, 0.03736702352762222, -0.05028442293405533, -0.14639706909656525, 0.036053553223609924, 0.12360399216413498, 0.033743105828762054, 0.019016264006495476, -0.23318204283714294, 0.06570304930210114, 0.08537557721138, -0.01990184746682644, 0.06997335702180862, -0.3308058977127075, -0.12668441236019135, 0.11919771879911423, 0.11184830218553543, -0.042435985058546066, -0.15506617724895477, -0.054984964430332184, -0.00829628948122263, -0.09280698746442795, 0.06880688667297363, -0.03184311091899872, 0.12956079840660095, -0.0005080255214124918, 0.08747498691082001, 0.025989465415477753, -0.058625828474760056, 0.14115747809410095, -0.006411454174667597, 0.06407642364501953, -0.006049228832125664, 0.046460915356874466, 0.015647441148757935, -0.041154853999614716, 0.011025666259229183, -0.07264641672372818, 0.00813282746821642, -0.1346544623374939, -0.03102990798652172, -0.08601231127977371, 0.026262179017066956, -0.041468728333711624, -0.0520378053188324, -0.008697997778654099, 0.04707785323262215, 0.0586530826985836, 0.00572617445141077, 0.12195461988449097, -0.05385424941778183, 0.15611495077610016, 0.06110475957393646, 0.10534937679767609, -0.004367182031273842, -0.10076305270195007, -0.014767343178391457, -0.008629932068288326, 0.0498012900352478, -0.11484631150960922, 0.029362840577960014, 0.15176445245742798, 0.04617828130722046, 0.15669257938861847, 0.06561297178268433, -0.08548310399055481, 0.017597073689103127, 0.07095858454704285, -0.0831989273428917, -0.11707931756973267, -0.014735857024788857, 0.06781820952892303, -0.1444181650876999, 0.005745808593928814, 0.09828700870275497, -0.0500553734600544, -0.012757471762597561, 0.013546615839004517, 0.017016621306538582, -0.06169046834111214, 0.2240232229232788, 0.027952199801802635, 0.07465658336877823, -0.09250008314847946, 0.07556327432394028, 0.05788454785943031, -0.17357149720191956, 0.027020685374736786, 0.07752856612205505, -0.026886841282248497, -0.019191060215234756, 0.025692887604236603, 0.09356972575187683, -0.002430213848128915, -0.056838180869817734, -0.1200818195939064, -0.14706718921661377, 0.07772985100746155, 0.0841960608959198, 0.033168114721775055, 0.025869220495224, -0.05159107968211174, 0.04228825867176056, -0.11832789331674576, 0.09071739763021469, 0.09730243682861328, 0.07158111780881882, -0.1301373839378357, 0.15724284946918488, 0.013234059326350689, 0.005080425180494785, 0.008132091723382473, -0.006458629854023457, -0.0975375771522522, 0.03905138000845909, -0.10076461732387543, -0.033537689596414566, -0.049044813960790634, -0.0037623459938913584, 0.013463919050991535, -0.05563763529062271, -0.053031500428915024, 0.013989526778459549, -0.12629570066928864, -0.0429818294942379, 0.0025024861097335815, 0.06720365583896637, -0.10986052453517914, -0.022349976003170013, 0.04861949384212494, -0.1043441891670227, 0.09183770418167114, 0.06121007353067398, 0.021383291110396385, 0.04517326503992081, -0.1271660178899765, 0.015140803530812263, 0.038589682430028915, -0.0008166406187228858, 0.029781360179185867, -0.15518833696842194, -0.013732279650866985, -0.01841842196881771, 0.04191918298602104, -0.0004431282286532223, 0.02298140898346901, -0.13902771472930908, -0.04059315845370293, -0.0315205417573452, -0.07596730440855026, -0.06008246913552284, 0.053838033229112625, 0.05564560741186142, 0.04550834372639656, 0.1715267449617386, -0.08713012933731079, 0.054747045040130615, -0.21897552907466888, 0.019287070259451866, -0.03543839976191521, -0.06399734318256378, -0.06646512448787689, -0.04155997931957245, 0.0825326144695282, -0.07543215155601501, 0.08933427184820175, -0.02920309640467167, 0.04299464449286461, 0.03173528611660004, -0.10693661868572235, 0.02565194107592106, 0.044104885309934616, 0.23969529569149017, 0.044452834874391556, -0.02836671844124794, 0.07282676547765732, 0.010079070925712585, 0.052836086601018906, 0.18123255670070648, 0.15236535668373108, 0.17922845482826233, 0.04891754686832428, 0.08624797314405441, 0.0744033083319664, -0.10730116069316864, -0.12291247397661209, 0.125810906291008, -0.018192267045378685, 0.12036343663930893, -0.013458318077027798, 0.2638738453388214, 0.09923392534255981, -0.1935877799987793, 0.05682285875082016, -0.04030165821313858, -0.09243113547563553, -0.09126735478639603, -0.06152336299419403, -0.06696611642837524, -0.17075374722480774, 0.012022443115711212, -0.11299721151590347, 0.0550098717212677, 0.0612480603158474, 0.03781469166278839, 0.01403807569295168, 0.13798823952674866, 0.04038044437766075, 0.0037069725804030895, 0.1087566539645195, 0.01663758046925068, -0.013624182902276516, -0.0650908425450325, -0.08850450068712234, 0.031775396317243576, -0.0257123913615942, 0.046926528215408325, -0.0530492328107357, -0.09978248924016953, 0.05705709382891655, 0.0012935241684317589, -0.1083962619304657, 0.017704378813505173, -0.021260961890220642, 0.07447630912065506, 0.08489741384983063, 0.03146937116980553, -0.006191028282046318, -0.025294026359915733, 0.2663479745388031, -0.10771125555038452, -0.06059073284268379, -0.13150440156459808, 0.24764859676361084, 0.012623465619981289, -0.02319655753672123, 0.01633535511791706, -0.07239192724227905, 0.006761291064321995, 0.16591541469097137, 0.1496773213148117, -0.03135610744357109, -0.020428920164704323, 0.015028745867311954, -0.011567343026399612, -0.058515515178442, 0.0806112214922905, 0.12978097796440125, 0.05138088017702103, -0.07902372628450394, -0.03128483518958092, -0.059512920677661896, -0.045862309634685516, -0.028070807456970215, 0.07536277174949646, 0.042597848922014236, -0.012720122002065182, -0.029520343989133835, 0.12271322309970856, -0.0746166780591011, -0.11081734299659729, 0.015328744426369667, -0.18246586620807648, -0.1872519850730896, -0.03597882762551308, 0.0721922218799591, 0.029790451750159264, 0.05395929887890816, -0.015074214898049831, -0.013553617522120476, 0.09470922499895096, 0.008332664147019386, -0.045879218727350235, -0.10852079838514328, 0.09600304067134857, -0.09790076315402985, 0.191756933927536, -0.04678092151880264, 0.027354737743735313, 0.12393396347761154, 0.07349805533885956, -0.06247517466545105, 0.05297829955816269, 0.06825777888298035, -0.12794238328933716, 0.04804496467113495, 0.19550277292728424, -0.03327605500817299, 0.13987070322036743, 0.041486356407403946, -0.11809878796339035, 0.028921447694301605, -0.10948417335748672, -0.04617263749241829, -0.05886603519320488, -0.01665010303258896, -0.04302987456321716, 0.1307925134897232, 0.2197725772857666, -0.06213530898094177, -0.017521796748042107, -0.06353048235177994, 0.0029342470224946737, 0.049161624163389206, 0.1137600690126419, -0.051515914499759674, -0.2727425992488861, 0.010669228620827198, 0.0004903279477730393, 0.006822726223617792, -0.26497942209243774, -0.09202728420495987, 0.04298253729939461, -0.06373646855354309, -0.06137651205062866, 0.1095472052693367, 0.0823647677898407, 0.053120050579309464, -0.0571015439927578, -0.0761890709400177, -0.03493843227624893, 0.1882573813199997, -0.1731024980545044, -0.055893562734127045 ]
null
null
transformers
# Kaiser DialoGPT Model
{"tags": ["conversational"]}
text-generation
akaushik1/DialoGPT-small-kaiser
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Kaiser DialoGPT Model
[ "# Kaiser DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Kaiser DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Kaiser DialoGPT Model" ]
[ -0.04118131846189499, 0.025264251977205276, -0.005563425365835428, 0.0140759889036417, 0.1338503062725067, 0.004873829893767834, 0.16666583716869354, 0.12339522689580917, 0.011827551759779453, -0.032097723335027695, 0.11001086980104446, 0.14069043099880219, 0.002463788725435734, 0.0693831592798233, -0.07580121606588364, -0.30435335636138916, 0.04989663138985634, 0.04934028536081314, 0.021763049066066742, 0.10419248044490814, 0.10667181015014648, -0.05447576567530632, 0.07014172524213791, 0.010566665790975094, -0.1388940066099167, 0.021747570484876633, 0.022646192461252213, -0.1085267961025238, 0.1163996085524559, 0.05347733199596405, 0.020284784957766533, 0.035817865282297134, -0.04106585681438446, -0.1348899006843567, 0.03215857222676277, -0.02129913866519928, -0.03493686020374298, 0.04163135215640068, 0.014607548713684082, -0.094419464468956, 0.10141514241695404, 0.08627203851938248, -0.03290092572569847, 0.03628608211874962, -0.14729247987270355, -0.01232188567519188, 0.0022324146702885628, 0.07406894862651825, 0.07966374605894089, 0.09341027587652206, -0.042767006903886795, 0.05658887326717377, -0.0758730098605156, 0.0936259925365448, 0.11244472116231918, -0.3558235168457031, -0.023017117753624916, 0.11165294051170349, 0.014036137610673904, 0.05528147518634796, -0.052689533680677414, 0.1111573800444603, 0.032783716917037964, 0.002408975502476096, 0.01716545782983303, -0.08798429369926453, -0.11615683883428574, 0.015316841192543507, -0.10012943297624588, -0.004754608031362295, 0.28228771686553955, -0.03873424232006073, 0.06503605842590332, -0.09741710126399994, -0.07684994488954544, 0.014604552648961544, -0.03860742598772049, -0.04319003224372864, -0.08178368955850601, 0.06108377128839493, 0.043450918048620224, -0.12286698073148727, -0.11597588658332825, -0.035657238215208054, -0.15881845355033875, 0.16188114881515503, 0.040897294878959656, 0.03136530518531799, -0.19510379433631897, 0.11037398874759674, -0.020731383934617043, -0.11836321651935577, 0.013896278105676174, -0.09847754240036011, 0.009520739316940308, 0.012841851450502872, -0.04276035353541374, -0.035428546369075775, 0.049545977264642715, 0.0959036573767662, 0.02340967394411564, 0.016343435272574425, -0.014140758663415909, 0.06237782537937164, 0.05910751223564148, 0.10175154358148575, -0.011412062682211399, -0.09677433222532272, 0.02815091796219349, -0.0880800411105156, -0.002826645039021969, -0.047634489834308624, -0.19310864806175232, -0.035331398248672485, 0.056453216820955276, 0.05310296267271042, -0.008497526869177818, 0.11862530559301376, -0.008578537963330746, -0.037549905478954315, 0.03345499560236931, -0.028221914544701576, -0.027263930067420006, -0.00676287617534399, -0.018675563856959343, 0.19326597452163696, -0.005780935287475586, 0.029181934893131256, -0.1362089067697525, 0.023818127810955048, -0.048258211463689804, 0.004547770135104656, -0.036185380071401596, -0.054248832166194916, -0.01145049836486578, -0.05796537920832634, -0.0010011974954977632, -0.1451568305492401, -0.194461852312088, 0.006642373278737068, -0.00006515556742670015, -0.055950041860342026, -0.08643610775470734, -0.12037083506584167, -0.023043498396873474, 0.048442088067531586, -0.07420212775468826, -0.046472564339637756, -0.054483842104673386, 0.05690839886665344, -0.04635809361934662, 0.10556560754776001, -0.11224310100078583, 0.08539700508117676, -0.1015273854136467, -0.023383239284157753, -0.14347897469997406, 0.13035957515239716, -0.03033292293548584, 0.03748318552970886, -0.01692393235862255, -0.018412165343761444, -0.08029871433973312, 0.07345054298639297, -0.02581140212714672, 0.24592220783233643, -0.10302266478538513, -0.11824015527963638, 0.29061397910118103, -0.06391653418540955, -0.11195449531078339, 0.13155916333198547, -0.0015149039682000875, 0.07547686994075775, 0.12715689837932587, 0.2106974571943283, 0.03943968191742897, -0.018253860995173454, 0.061668578535318375, 0.1139119565486908, -0.08167560398578644, -0.006404031999409199, 0.012249317020177841, -0.012139401398599148, -0.08268561214208603, 0.05776907876133919, 0.07606033235788345, 0.0406707301735878, -0.05624818429350853, -0.01584593579173088, -0.003339929971843958, -0.003965531010180712, 0.11220338940620422, -0.039736829698085785, 0.14843548834323883, -0.0295517910271883, -0.050103895366191864, 0.05202189460396767, 0.007895641960203648, -0.05248233675956726, 0.03430810943245888, -0.04301638901233673, 0.0647018626332283, -0.007423511706292629, 0.07697992771863937, -0.1324790120124817, -0.08216314762830734, -0.022155502811074257, 0.11887652426958084, 0.06514763087034225, 0.13538672029972076, 0.06055494397878647, -0.040056757628917694, -0.041819971054792404, 0.03404764086008072, 0.15443867444992065, -0.020122313871979713, -0.07647452503442764, -0.10428804159164429, 0.0769767090678215, -0.05325320363044739, 0.10972852259874344, -0.018519381061196327, 0.010305583477020264, -0.01925676502287388, 0.10855621099472046, -0.018433524295687675, 0.04406674578785896, 0.00957320537418127, -0.002230137586593628, -0.05711647495627403, 0.02584112621843815, 0.09145496040582657, -0.014066804200410843, -0.055129993706941605, 0.2513747811317444, -0.12193240970373154, 0.13001663982868195, 0.17275767028331757, -0.23536792397499084, -0.003446876537054777, -0.14879508316516876, -0.030346358194947243, 0.00829909648746252, 0.03664400428533554, -0.06383660435676575, 0.23655419051647186, -0.0430038683116436, 0.1615481972694397, -0.041172824800014496, -0.05269967019557953, -0.029252251610159874, -0.058110907673835754, -0.003865207778289914, 0.09229089319705963, 0.1023273766040802, -0.12590454518795013, 0.1656395047903061, 0.10251886397600174, 0.013165764510631561, 0.22441096603870392, 0.04165888950228691, 0.0004097809724044055, 0.05669166147708893, -0.0166072528809309, -0.05908621847629547, -0.03490385040640831, -0.29992178082466125, -0.052434030920267105, 0.0764145776629448, 0.04397018626332283, 0.11618337035179138, -0.08498738706111908, -0.010528253391385078, -0.025635555386543274, -0.022524600848555565, 0.06033007428050041, 0.11065708100795746, 0.024374516680836678, 0.13210323452949524, -0.01705830916762352, -0.0480816513299942, 0.061048369854688644, 0.014652757905423641, -0.0818132609128952, 0.17551521956920624, -0.12049712985754013, -0.3303508162498474, -0.1256963610649109, -0.14591993391513824, -0.08763011544942856, 0.03808823600411415, 0.08693869411945343, -0.09129837155342102, -0.02395266853272915, -0.004993145819753408, 0.0789579525589943, -0.05815279856324196, 0.007532837800681591, -0.018646707758307457, -0.009511539712548256, -0.11952762305736542, -0.09140680730342865, -0.06845381110906601, -0.054455894976854324, -0.03943974897265434, 0.09820553660392761, -0.1129312515258789, 0.029433246701955795, 0.2325354963541031, 0.05319008603692055, 0.0654514953494072, -0.0492035411298275, 0.1768333613872528, -0.10606545954942703, 0.03830388933420181, 0.1695391684770584, -0.038326047360897064, 0.055672936141490936, 0.1333744376897812, -0.0035354120191186666, -0.0661173015832901, 0.023848656564950943, -0.020979952067136765, -0.07291299849748611, -0.20373257994651794, -0.1454468071460724, -0.13974110782146454, 0.08118101209402084, 0.006622703745961189, 0.02102648839354515, 0.14883020520210266, 0.05989302322268486, -0.03971092030405998, 0.021091558039188385, 0.03673761710524559, 0.06970661133527756, 0.2701943814754486, -0.06144455820322037, 0.14635464549064636, -0.01034434325993061, -0.159176304936409, 0.07732462882995605, 0.03743446245789528, 0.09683410823345184, 0.035822682082653046, 0.018675871193408966, 0.021588845178484917, 0.043689992278814316, 0.11284131556749344, 0.04962794482707977, 0.01562904752790928, -0.04430780187249184, -0.03386878967285156, -0.05560910701751709, -0.0017649887595325708, 0.05354182794690132, 0.05175282061100006, -0.1375836879014969, -0.035269249230623245, -0.04986393451690674, 0.08281470090150833, 0.06698887050151825, 0.12911687791347504, -0.14787538349628448, -0.023472396656870842, 0.07670095562934875, -0.02492174319922924, -0.11098387837409973, 0.08994901925325394, 0.027869779616594315, -0.13514278829097748, 0.06175735220313072, -0.0017191325314342976, 0.10966411978006363, -0.08029859513044357, 0.07568535208702087, -0.11146574467420578, -0.025235552340745926, -0.006220719777047634, 0.10767362266778946, -0.31496134400367737, 0.20669426023960114, -0.007489604409784079, -0.03769093379378319, -0.12616950273513794, -0.008520436473190784, 0.032343387603759766, 0.0690399780869484, 0.11818553507328033, -0.00909879244863987, 0.02033700793981552, 0.038192637264728546, -0.05483042821288109, 0.019478047266602516, 0.11954974383115768, -0.04416314885020256, -0.013698514550924301, -0.02724975347518921, -0.024913286790251732, -0.018396615982055664, -0.0335531122982502, -0.025944141671061516, -0.16904452443122864, 0.07473114132881165, 0.0970446914434433, 0.06272925436496735, 0.0425807423889637, -0.03836619108915329, -0.1256907433271408, 0.24438531696796417, 0.028960861265659332, -0.10115614533424377, -0.0955047681927681, -0.04671401157975197, 0.05216361582279205, -0.06848961114883423, 0.032168373465538025, -0.05186497047543526, 0.049580562859773636, -0.06642695516347885, -0.19345104694366455, 0.1141647920012474, -0.10838614404201508, -0.03228526562452316, -0.023288333788514137, 0.24176539480686188, -0.011996692977845669, 0.017249073833227158, 0.046033214777708054, -0.0068070534616708755, -0.07151730358600616, -0.11213165521621704, 0.04580855369567871, 0.014768832363188267, -0.027335816994309425, 0.07326100766658783, -0.05147504806518555, -0.12598565220832825, -0.04587244242429733, -0.008002710528671741, 0.2957378923892975, 0.1531638354063034, -0.04484192654490471, 0.16596314311027527, 0.15268723666667938, -0.06043959781527519, -0.3227575421333313, -0.07005876302719116, -0.059574149549007416, -0.031024115160107613, -0.08473880589008331, -0.1721123456954956, 0.10166068375110626, -0.028089726343750954, -0.027935169637203217, 0.10564061999320984, -0.29065635800361633, -0.11763955652713776, 0.1808898150920868, -0.04024913161993027, 0.4167211353778839, -0.06892246752977371, -0.09238175302743912, -0.04268255457282066, -0.1690768450498581, 0.14232203364372253, -0.008839497342705727, 0.11479814350605011, -0.013170219026505947, 0.1270124614238739, 0.0480523556470871, -0.011029619723558426, 0.06989645957946777, 0.047271352261304855, -0.04786626994609833, -0.08745264261960983, -0.05226140841841698, 0.04170868173241615, 0.015603043138980865, 0.06352563947439194, -0.05867782607674599, 0.029314344748854637, -0.10668537020683289, -0.05679367482662201, -0.10095269978046417, 0.06539212167263031, 0.03445489704608917, -0.10124409943819046, -0.005499368999153376, -0.04082558676600456, -0.026339920237660408, 0.02274162694811821, 0.14160054922103882, -0.09683703631162643, 0.13080692291259766, 0.106263667345047, 0.13371731340885162, -0.1295161247253418, 0.0012720981612801552, -0.06219131872057915, -0.06049958989024162, 0.07407137751579285, -0.06934042274951935, 0.02162359096109867, 0.11749167740345001, -0.018878236413002014, 0.0896037369966507, 0.08839870244264603, 0.007504857145249844, 0.024773266166448593, 0.08029346913099289, -0.26818692684173584, -0.061180830001831055, -0.10852569341659546, -0.0338122583925724, 0.08940471708774567, 0.13420045375823975, 0.21630997955799103, -0.03598415106534958, -0.013518046587705612, 0.007990168407559395, 0.003787296824157238, -0.04029322415590286, 0.08018516004085541, -0.000508946250192821, 0.02515164576470852, -0.13765951991081238, 0.07077347487211227, -0.018420500680804253, -0.08496025204658508, 0.048162803053855896, 0.14061841368675232, -0.10929609090089798, -0.11489462852478027, -0.10162467509508133, 0.11517056077718735, -0.11037980020046234, -0.0077178096398711205, -0.04106535762548447, -0.16049718856811523, 0.06278588622808456, 0.08520733565092087, 0.05425373092293739, 0.04081454500555992, -0.10209427773952484, -0.0076272315345704556, -0.020363327115774155, 0.018767395988106728, 0.04947693645954132, -0.002988791326060891, -0.03640718013048172, 0.07254356145858765, -0.04252339527010918, 0.13760656118392944, -0.1114005297422409, -0.10688530653715134, -0.15828381478786469, 0.033336084336042404, -0.16246050596237183, -0.11790237575769424, -0.10104595124721527, -0.0649569034576416, -0.020825063809752464, -0.04306519776582718, -0.05025416985154152, -0.03088676743209362, -0.11038300395011902, 0.04688655585050583, -0.030004819855093956, 0.027897965162992477, -0.07516420632600784, 0.022290091961622238, 0.05780225247144699, -0.026743842288851738, 0.1709144562482834, 0.15966147184371948, -0.10236211121082306, 0.1032436192035675, -0.11738325655460358, -0.08111906051635742, 0.10974021255970001, 0.028418464586138725, 0.07380690425634384, 0.08417048305273056, 0.01144604105502367, 0.06374160200357437, 0.05313665792346001, 0.05679897964000702, -0.03220495581626892, -0.07226608693599701, 0.07121007889509201, -0.045613013207912445, -0.12348216027021408, -0.030851352959871292, -0.008235114626586437, 0.03980283439159393, 0.018635785207152367, 0.072941854596138, -0.06587177515029907, 0.083694227039814, -0.0649707168340683, 0.03452589362859726, 0.024264737963676453, -0.18441537022590637, -0.005729655735194683, -0.089154452085495, 0.05098961293697357, 0.00796155072748661, 0.229502335190773, 0.0374300554394722, -0.023272085934877396, 0.028566714376211166, 0.0774722695350647, 0.02050192281603813, 0.013866699300706387, 0.1636364907026291, 0.10755771398544312, -0.05664369836449623, -0.11632802337408066, 0.0876888632774353, 0.03717784956097603, 0.05434402450919151, 0.17374294996261597, -0.04523284360766411, -0.03584078326821327, 0.10232816636562347, 0.0143194068223238, 0.014596402645111084, -0.15144482254981995, -0.11641759425401688, -0.03662298619747162, 0.09834785014390945, -0.051688626408576965, 0.11126614362001419, 0.12433035671710968, -0.0342227965593338, 0.03974934294819832, 0.0024899200070649385, -0.06247307360172272, -0.17555955052375793, -0.19682297110557556, -0.06638413667678833, -0.14661267399787903, -0.004540255293250084, -0.1336408108472824, 0.04502074792981148, 0.03753242641687393, 0.10199382901191711, -0.06388071179389954, 0.12482224404811859, 0.027795596048235893, -0.1051158756017685, 0.1387285590171814, -0.037102147936820984, 0.0802546814084053, -0.05448062717914581, -0.008574857376515865, -0.091514952480793, 0.04718200862407684, -0.008922583423554897, 0.0323367640376091, -0.05911075696349144, -0.03267665207386017, -0.09179820120334625, -0.0739295482635498, -0.05795213207602501, 0.054395802319049835, 0.003801866667345166, 0.09832591563463211, 0.027362607419490814, -0.030468711629509926, 0.018728816881775856, 0.2474699467420578, -0.09045649319887161, -0.10107647627592087, -0.05529732629656792, 0.1978464126586914, 0.02141634188592434, 0.11949671804904938, -0.019414344802498817, 0.005890171509236097, -0.08513259142637253, 0.35620445013046265, 0.3022752106189728, -0.10292269289493561, 0.00636884942650795, 0.001382026937790215, 0.04125003516674042, 0.12652896344661713, 0.1151181235909462, 0.08366964757442474, 0.3423177897930145, -0.05730171874165535, -0.006094425916671753, -0.009267522022128105, -0.041563037782907486, -0.0612361803650856, 0.08700557053089142, 0.06091795489192009, -0.09265537559986115, -0.0268951915204525, 0.10158263146877289, -0.2745334506034851, 0.0902961939573288, -0.18471133708953857, -0.17581266164779663, -0.09986286610364914, -0.010787880048155785, 0.10737351328134537, 0.04892639070749283, 0.09387741982936859, -0.01644982025027275, -0.06549759954214096, 0.10521206259727478, 0.01623331755399704, -0.16119278967380524, -0.027124037966132164, 0.06993415951728821, -0.08429176360368729, -0.040583863854408264, -0.030664611607789993, 0.06608780473470688, 0.0752967968583107, 0.04785860329866409, 0.0014618356944993138, 0.01845545321702957, -0.000055303495173575357, -0.10526709258556366, 0.024415424093604088, 0.058405958116054535, 0.010009804740548134, -0.07448548823595047, 0.08150067180395126, -0.13974061608314514, 0.04297064244747162, 0.0395313985645771, -0.056159939616918564, -0.02334957756102085, 0.0458657443523407, -0.06295110285282135, 0.07624561339616776, 0.09408912062644958, -0.009545210748910904, -0.02198001928627491, -0.02069074474275112, -0.007583251688629389, -0.018118243664503098, -0.03954609856009483, -0.08621097356081009, -0.1648692935705185, -0.10385748744010925, 0.08351173996925354, -0.009747713804244995, -0.17559532821178436, 0.010520252399146557, -0.12108032405376434, 0.06843535602092743, -0.13095159828662872, 0.08366431295871735, 0.09891761094331741, 0.025992389768362045, 0.014390937983989716, -0.0292864590883255, 0.030031312257051468, 0.0764058455824852, -0.13499727845191956, -0.07187821716070175 ]
null
null
transformers
# Hungarian Named Entity Recognition (NER) Model This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "SZTAKI-HLT/hubert-base-cc" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9774538310923768 * f1: 0.9462099085573904 * precision: 0.9425718667406271 * recall: 0.9498761426661113
{"language": "hu", "widget": [{"text": "Karik\u00f3 Katalin megkapja Szeged d\u00edszpolg\u00e1rs\u00e1g\u00e1t."}]}
token-classification
akdeniz27/bert-base-hungarian-cased-ner
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "hu", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hu" ]
TAGS #transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us
# Hungarian Named Entity Recognition (NER) Model This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" paper. # Fine-tuning parameters: # How to use: Pls refer "URL for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9774538310923768 * f1: 0.9462099085573904 * precision: 0.9425718667406271 * recall: 0.9498761426661113
[ "# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us \n", "# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113" ]
[ 44, 71, 8, 24, 52 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #hu #autotrain_compatible #endpoints_compatible #region-us \n# Hungarian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"SZTAKI-HLT/hubert-base-cc\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9774538310923768\n* f1: 0.9462099085573904\n* precision: 0.9425718667406271\n* recall: 0.9498761426661113" ]
[ -0.13138820230960846, 0.01697736419737339, -0.0008914695354178548, 0.07091008126735687, 0.09393076598644257, -0.00909535400569439, 0.12058362364768982, 0.0237326230853796, 0.13954870402812958, 0.06739713996648788, 0.04749505594372749, -0.010520920157432556, 0.04636658355593681, 0.030219674110412598, -0.08888640999794006, -0.16326452791690826, 0.12211377173662186, 0.006957367528229952, 0.11847038567066193, 0.09832167625427246, 0.07724905014038086, -0.07571892440319061, 0.08902657777070999, 0.03677576035261154, -0.10798396170139313, 0.06365499645471573, 0.01881476305425167, -0.0824972540140152, 0.1579466313123703, -0.0066521489061415195, 0.10918530076742172, 0.03372148796916008, 0.044188857078552246, -0.09759088605642319, 0.013209386728703976, -0.06834492087364197, 0.010152104310691357, -0.00248320703394711, 0.06724979728460312, -0.09957683086395264, 0.0896187424659729, -0.0009896722622215748, -0.03458356484770775, -0.021301504224538803, -0.0205091442912817, -0.06372731178998947, -0.037087008357048035, 0.1834164261817932, 0.009145340882241726, 0.055747538805007935, -0.020032459869980812, 0.18830692768096924, -0.10432380437850952, 0.09003235399723053, 0.15405447781085968, -0.2822352945804596, -0.02212141826748848, 0.08309520035982132, -0.05754382163286209, -0.0732521116733551, 0.006729931104928255, 0.07221931219100952, 0.027266060933470726, 0.03632821515202522, 0.04657437279820442, -0.04562819004058838, -0.29344746470451355, -0.018663475289940834, -0.1361919343471527, -0.018130909651517868, 0.2427605539560318, 0.06993677467107773, -0.006014985963702202, -0.024595951661467552, -0.0928281843662262, 0.07708685845136642, -0.008540594950318336, -0.03851412609219551, -0.025326978415250778, -0.09386563301086426, 0.0941043272614479, 0.06087425723671913, -0.023327253758907318, -0.06814128905534744, -0.15504422783851624, 0.29479408264160156, 0.07288709282875061, 0.11342434585094452, 0.010294218547642231, 0.031970687210559845, -0.026402417570352554, -0.09288963675498962, -0.009474977850914001, 0.00003497177749522962, -0.06971147656440735, -0.004126544110476971, -0.017262613400816917, 0.10555822402238846, 0.11902114003896713, 0.0756501704454422, -0.09892403334379196, 0.02848304994404316, 0.026031803339719772, 0.07411566376686096, -0.024916723370552063, 0.17777827382087708, -0.15389396250247955, -0.010917303152382374, 0.042915526777505875, -0.02211829088628292, 0.022280659526586533, -0.0056780665181577206, -0.1208948940038681, -0.09168931841850281, 0.19938501715660095, 0.04173360392451286, -0.08798228204250336, 0.14134131371974945, 0.0011771953431889415, -0.027710404247045517, 0.004157292190939188, -0.10544094443321228, -0.004890242125838995, 0.04902627691626549, -0.14380012452602386, 0.047439590096473694, -0.07348867505788803, 0.0013775263214483857, -0.1158333420753479, 0.06392202526330948, -0.030818859115242958, 0.020225446671247482, 0.005495861638337374, -0.15441396832466125, 0.07096867263317108, -0.030793631449341774, 0.005120507441461086, -0.20315642654895782, -0.15026620030403137, -0.009723786264657974, -0.006949807051569223, -0.02313845418393612, 0.059669315814971924, -0.09445569664239883, -0.025197461247444153, -0.0053073749877512455, -0.07279050350189209, -0.18313880264759064, -0.096218541264534, -0.001446629874408245, -0.06542591005563736, 0.0651848316192627, -0.14989718794822693, 0.023077715188264847, -0.16051334142684937, 0.037280354648828506, -0.14411018788814545, -0.002526388270780444, -0.07908687740564346, 0.058151282370090485, -0.07899629324674606, -0.03632071986794472, 0.0838060975074768, 0.003609905717894435, 0.02566780522465706, 0.11906696110963821, -0.02627304382622242, -0.03814341127872467, 0.07155955582857132, -0.14539974927902222, -0.13180309534072876, 0.17894980311393738, -0.009821177460253239, -0.0057672359980642796, 0.10148246586322784, 0.30877572298049927, 0.061664093285799026, -0.026782430708408356, -0.08019295334815979, -0.006562778726220131, -0.10983049124479294, -0.09533771872520447, 0.026328740641474724, 0.07337046414613724, -0.1261843740940094, 0.06788468360900879, -0.08592062443494797, 0.03736039251089096, -0.04469474032521248, -0.022918647155165672, -0.007514857221394777, -0.06890854239463806, 0.1308191865682602, -0.019385535269975662, 0.08122364431619644, -0.06776038557291031, 0.018446942791342735, 0.0654783621430397, 0.09347330033779144, -0.056892894208431244, 0.028240134939551353, -0.11348765343427658, 0.24009299278259277, -0.05855925381183624, 0.010752364061772823, -0.11720336973667145, -0.08225838094949722, 0.04992589354515076, 0.028696687892079353, 0.02318461239337921, -0.08023028820753098, 0.018024051561951637, -0.009262842126190662, -0.02251644991338253, -0.012216516770422459, 0.11023446172475815, 0.025515954941511154, 0.009572897106409073, -0.09479201585054398, -0.05380164831876755, 0.042355895042419434, 0.12384992837905884, -0.09403478354215622, 0.009191736578941345, 0.032205767929553986, 0.10893302410840988, -0.1148092970252037, 0.09028702229261398, -0.020397571846842766, 0.061248064041137695, -0.02241378277540207, 0.0005066356388852, 0.10821782052516937, -0.004088250920176506, -0.07071056962013245, 0.12262734025716782, -0.03744015097618103, 0.1741059571504593, 0.09735187143087387, -0.06340780109167099, 0.0028131899889558554, -0.033364102244377136, 0.0074385725893080235, -0.020644711330533028, -0.00010763013415271416, 0.03341144323348999, 0.11087263375520706, 0.004190543666481972, 0.10424527525901794, -0.13419754803180695, 0.007247063331305981, 0.00036211012047715485, -0.0297880657017231, -0.0014504571445286274, 0.15093639492988586, -0.016635969281196594, -0.1859406679868698, 0.10006149858236313, 0.007350483909249306, -0.10683638602495193, 0.13049282133579254, -0.009552991017699242, -0.024469761177897453, 0.031950145959854126, 0.027700114995241165, -0.05200129374861717, 0.10752634704113007, -0.022252200171351433, -0.024290679022669792, 0.04518477991223335, 0.06589944660663605, 0.003268483327701688, -0.08740758895874023, 0.037724271416664124, -0.02837938442826271, -0.05625411495566368, -0.05868208035826683, 0.029778705909848213, 0.04242943227291107, 0.1284567415714264, 0.018350081518292427, -0.24334239959716797, -0.011559818871319294, -0.011714668944478035, -0.10346077382564545, 0.1867077797651291, -0.03682408854365349, -0.2476481944322586, -0.17717893421649933, -0.007179835345596075, -0.24885600805282593, -0.043378327041864395, 0.0045533920638263226, 0.00046508159721270204, 0.005039707291871309, -0.048312582075595856, 0.06453996896743774, -0.008513424545526505, -0.0671406015753746, -0.07750190049409866, -0.03201762214303017, -0.016376016661524773, -0.07572673261165619, -0.06131580099463463, -0.12078137695789337, -0.03801678493618965, 0.08688577264547348, -0.10963762551546097, 0.10952916741371155, 0.12486451119184494, -0.1010918915271759, 0.04749413952231407, -0.04115224629640579, 0.08710620552301407, -0.04614006355404854, 0.047894056886434555, 0.11387524008750916, -0.10411794483661652, 0.027301346883177757, 0.15252003073692322, 0.01989223062992096, -0.021827859804034233, -0.010847042314708233, -0.02893304079771042, -0.04751471430063248, -0.1404283195734024, -0.19458462297916412, -0.01210107747465372, 0.02669346146285534, 0.07343939691781998, 0.01890377886593342, 0.03206741809844971, 0.08344881981611252, -0.03239111974835396, -0.05232448875904083, -0.021837173029780388, 0.05576450005173683, 0.22105096280574799, 0.06741996109485626, 0.09190883487462997, -0.014468543231487274, -0.054759666323661804, -0.005568218883126974, 0.036287762224674225, 0.17858140170574188, 0.006866631098091602, -0.030807213857769966, 0.05230291187763214, 0.16705407202243805, 0.09294687211513519, 0.16984903812408447, -0.05396517366170883, 0.004511444363743067, 0.03153210133314133, -0.07185018807649612, 0.010933168232440948, 0.0007604510174132884, -0.045390740036964417, 0.09404591470956802, -0.10747942328453064, -0.10332794487476349, 0.08973661065101624, 0.2363562434911728, 0.09982232004404068, -0.3146936595439911, -0.08843105286359787, -0.030645444989204407, -0.03288119658827782, -0.048347100615501404, 0.05061285197734833, 0.039718370884656906, -0.10754411667585373, 0.11603832989931107, 0.04033837467432022, 0.10698922723531723, -0.11742790043354034, 0.02011563628911972, -0.10874158889055252, -0.01240469329059124, -0.013227875344455242, 0.10775000602006912, -0.0576324462890625, 0.29189980030059814, 0.008239847607910633, -0.00629801582545042, -0.06631733477115631, -0.08319123834371567, 0.0720333680510521, 0.17603035271167755, 0.0885225459933281, 0.052975766360759735, -0.029498331248760223, -0.1673397719860077, -0.07909174263477325, 0.08385735005140305, -0.007095947861671448, 0.0018844431033357978, 0.07594204694032669, 0.0012407057220116258, -0.004455797374248505, -0.03155188262462616, 0.005909298080950975, -0.07408619672060013, 0.02060766890645027, -0.047781724482774734, 0.21270030736923218, 0.08872311562299728, -0.0133942486718297, -0.08385790884494781, -0.19114577770233154, 0.10163293033838272, -0.0803445428609848, -0.10188118368387222, -0.07900312542915344, -0.02360665425658226, 0.09372830390930176, -0.08952661603689194, -0.0005482528358697891, -0.021419066935777664, 0.05862593650817871, -0.030838577076792717, -0.15001974999904633, 0.046188171952962875, -0.027269747108221054, -0.04323028400540352, 0.0636836513876915, 0.12069928646087646, 0.05601078271865845, 0.011032383888959885, 0.07806957513093948, 0.026488909497857094, 0.026380665600299835, -0.10757774114608765, -0.034860625863075256, 0.07809754461050034, 0.013024536892771721, 0.14650221168994904, -0.08678360283374786, -0.14027808606624603, -0.11119186878204346, 0.051954444497823715, 0.17877572774887085, 0.1515880823135376, -0.07911819964647293, 0.005628641229122877, 0.2310253530740738, -0.009960552677512169, -0.2796116769313812, 0.00038448182749561965, -0.03475858271121979, 0.06033427268266678, -0.105292409658432, 0.027088766917586327, 0.167689248919487, 0.09485463798046112, -0.026344936341047287, 0.026572581380605698, -0.10244308412075043, -0.11385560780763626, 0.22873714566230774, 0.03225239738821983, 0.31393298506736755, -0.00011668651859508827, -0.038668930530548096, -0.06380007416009903, -0.1888521909713745, 0.02320549637079239, -0.07722286880016327, 0.030809808522462845, -0.06899867951869965, 0.12193872779607773, 0.03132686764001846, 0.013150726445019245, 0.10271187871694565, 0.10513363778591156, 0.056082893162965775, -0.03872772306203842, -0.06549815088510513, 0.11573886126279831, -0.09572188556194305, 0.17812508344650269, 0.001357181346975267, 0.01738651469349861, -0.04992116615176201, -0.029048902913928032, -0.09389194846153259, 0.14836932718753815, 0.03785423934459686, 0.002173112239688635, -0.06602439284324646, 0.035958368331193924, -0.0068498034961521626, 0.010160301811993122, 0.0708700492978096, -0.05940188840031624, 0.060728248208761215, 0.08818741142749786, 0.06758676469326019, -0.17208217084407806, 0.08718886226415634, 0.03856409341096878, -0.042953018099069595, 0.1340857446193695, 0.009019477292895317, 0.06931640952825546, 0.19122613966464996, 0.0013179376255720854, 0.04040878266096115, 0.06409120559692383, -0.044771064072847366, -0.04708893224596977, 0.035476211458444595, -0.1321287602186203, -0.020897889509797096, -0.031389832496643066, -0.1199553832411766, 0.0019120954675599933, 0.16219715774059296, 0.1377909928560257, -0.11323510855436325, -0.003037236863747239, 0.003112013917416334, -0.0680592805147171, -0.03799852728843689, 0.08224806934595108, 0.017262011766433716, 0.07665108889341354, -0.14131997525691986, 0.0940246656537056, 0.025444811210036278, -0.011079013347625732, 0.003921542316675186, -0.017972931265830994, -0.1847699135541916, -0.059880055487155914, -0.062497589737176895, 0.13108676671981812, -0.1235378310084343, -0.1947813779115677, -0.10356540232896805, -0.18147359788417816, -0.006331356707960367, 0.23812957108020782, 0.11617062985897064, 0.039369769394397736, -0.01977400854229927, -0.08243022114038467, -0.07331132888793945, 0.04415542259812355, 0.09001605212688446, 0.06035785377025604, -0.18729129433631897, 0.008225161582231522, -0.00840573851019144, 0.10440928488969803, -0.072895348072052, -0.08299599587917328, -0.14443005621433258, 0.07302595674991608, -0.23641225695610046, 0.01709352433681488, -0.09150705486536026, 0.032489798963069916, 0.0035912904422730207, -0.0746878981590271, -0.08148510754108429, 0.07127204537391663, -0.08597801625728607, 0.0479436069726944, 0.024214446544647217, 0.03839203715324402, -0.08280070871114731, -0.054403021931648254, 0.038603849709033966, -0.03950217738747597, 0.10952280461788177, 0.11447294801473618, -0.07318056374788284, 0.13779261708259583, -0.10855747014284134, -0.10168428719043732, 0.03196306526660919, 0.04514037445187569, 0.10592906922101974, -0.009621471166610718, 0.021598318591713905, 0.07687465846538544, 0.009516640566289425, 0.047739166766405106, 0.04666772857308388, -0.016103750094771385, -0.060008786618709564, -0.10054738819599152, -0.04721526801586151, -0.03923821821808815, 0.01657867431640625, 0.11149172484874725, 0.0963209867477417, 0.0942329466342926, -0.06361595541238785, -0.029314205050468445, -0.03058355301618576, 0.015766844153404236, -0.004657279700040817, -0.1873037964105606, -0.06259150058031082, -0.08673639595508575, 0.034582480788230896, -0.0034587315749377012, 0.20407423377037048, 0.003178003942593932, 0.02703014574944973, -0.0007073443266563118, 0.09483017772436142, -0.109150230884552, 0.005161778535693884, 0.10334642231464386, 0.01672886684536934, -0.024486439302563667, 0.00696842884644866, 0.02682446874678135, 0.0404057577252388, 0.008835469372570515, 0.0847441777586937, 0.11876704543828964, 0.010122758336365223, 0.0927678719162941, 0.13917317986488342, 0.019437294453382492, -0.03045516461133957, -0.16620242595672607, -0.0849103257060051, 0.05581226199865341, 0.045883502811193466, 0.0723661333322525, 0.156706303358078, -0.013383196666836739, 0.04923749715089798, -0.017128465697169304, -0.06320096552371979, -0.1126987412571907, -0.15140372514724731, -0.11558350175619125, -0.15375769138336182, -0.0021401362027972937, -0.05127198249101639, -0.13621915876865387, 0.2080632448196411, 0.07086888700723648, -0.024279361590743065, 0.09565557539463043, -0.054661720991134644, -0.06295266002416611, 0.12854987382888794, -0.06902337819337845, -0.03706369549036026, 0.03716307505965233, -0.04959963262081146, 0.015488503500819206, 0.006248651072382927, 0.013497057370841503, 0.003045398509129882, 0.03772132098674774, -0.01841067522764206, -0.06545918434858322, -0.051356587558984756, -0.03066159226000309, 0.007408631965517998, 0.003702003974467516, -0.0448550246655941, 0.07304158061742783, -0.039631739258766174, -0.005007152445614338, 0.15863297879695892, -0.011778353713452816, -0.11499912291765213, -0.04247395694255829, 0.30940330028533936, -0.0013676639646291733, 0.030635688453912735, -0.0020771361887454987, -0.025739258155226707, -0.022898059338331223, 0.2118840515613556, 0.2159857302904129, -0.0013852164847776294, -0.003871541703119874, -0.09210091084241867, 0.0022475754376500845, 0.0007032132707536221, 0.1021992415189743, 0.02255363017320633, 0.1523742824792862, -0.028122158721089363, -0.017081130295991898, -0.07967080920934677, -0.017889710143208504, -0.08120599389076233, 0.01909494213759899, 0.016843657940626144, -0.05955672264099121, -0.1371668130159378, 0.0697137787938118, -0.16174834966659546, -0.012077138759195805, 0.04372377321124077, -0.035372909158468246, -0.1445995271205902, -0.031994711607694626, -0.06894416362047195, 0.019583523273468018, 0.062452420592308044, -0.09820888936519623, 0.01658468320965767, -0.08045488595962524, 0.019965335726737976, -0.10174523293972015, -0.11459055542945862, 0.07539112865924835, 0.0412183478474617, 0.1367097645998001, 0.0006658755009993911, 0.1277889609336853, 0.08950655907392502, 0.06424914300441742, -0.04512743651866913, 0.052704472094774246, -0.002118648961186409, -0.06153995171189308, 0.04867503046989441, -0.005401675123721361, 0.026349784806370735, 0.06658637523651123, 0.042628850787878036, -0.1562332957983017, -0.006566083524376154, 0.05632616579532623, 0.020981861278414726, -0.11441268026828766, 0.041347429156303406, -0.010821583680808544, 0.07370489090681076, 0.1337563693523407, -0.0475362166762352, -0.004283080343157053, -0.08303412050008774, 0.0024318243376910686, 0.016263557597994804, -0.0786466971039772, 0.012308440171182156, -0.15870213508605957, 0.02026178129017353, -0.08725101500749588, -0.014054235070943832, -0.20717114210128784, 0.0008602121961303055, -0.06164911016821861, -0.017916573211550713, -0.011101655662059784, 0.03027019090950489, 0.09775515645742416, 0.05080993473529816, 0.0014186480548232794, -0.16912660002708435, 0.017942382022738457, 0.09722699970006943, -0.09931743144989014, -0.11174281686544418 ]
null
null
transformers
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/bert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("your text here") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9933935699477056 * f1: 0.9592969472710453 * precision: 0.9543530277931161 * recall: 0.9642923563325274 Evaluation results with the test sets proposed in ["Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye."](https://ieeexplore.ieee.org/document/7495744) paper. * Test Set Acc. Prec. Rec. F1-Score * 20010000 0.9946 0.9871 0.9463 0.9662 * 20020000 0.9928 0.9134 0.9206 0.9170 * 20030000 0.9942 0.9814 0.9186 0.9489 * 20040000 0.9943 0.9660 0.9522 0.9590 * 20050000 0.9971 0.9539 0.9932 0.9732 * 20060000 0.9993 0.9942 0.9942 0.9942 * 20070000 0.9970 0.9806 0.9439 0.9619 * 20080000 0.9988 0.9821 0.9649 0.9735 * 20090000 0.9977 0.9891 0.9479 0.9681 * 20100000 0.9961 0.9684 0.9293 0.9485 * Overall 0.9961 0.9720 0.9516 0.9617
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
token-classification
akdeniz27/bert-base-turkish-cased-ner
[ "transformers", "pytorch", "onnx", "safetensors", "bert", "token-classification", "tr", "doi:10.57967/hf/0949", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (URL # Fine-tuning parameters: # How to use: Pls refer "URL for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9933935699477056 * f1: 0.9592969472710453 * precision: 0.9543530277931161 * recall: 0.9642923563325274 Evaluation results with the test sets proposed in "Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye." paper. * Test Set Acc. Prec. Rec. F1-Score * 20010000 0.9946 0.9871 0.9463 0.9662 * 20020000 0.9928 0.9134 0.9206 0.9170 * 20030000 0.9942 0.9814 0.9186 0.9489 * 20040000 0.9943 0.9660 0.9522 0.9590 * 20050000 0.9971 0.9539 0.9932 0.9732 * 20060000 0.9993 0.9942 0.9942 0.9942 * 20070000 0.9970 0.9806 0.9439 0.9619 * 20080000 0.9988 0.9821 0.9649 0.9735 * 20090000 0.9977 0.9891 0.9479 0.9681 * 20100000 0.9961 0.9684 0.9293 0.9485 * Overall 0.9961 0.9720 0.9516 0.9617
[ "# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617" ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617" ]
[ 64, 55, 8, 24, 338 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #safetensors #bert #token-classification #tr #doi-10.57967/hf/0949 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\n\nThis model is the fine-tuned model of \"dbmdz/bert-base-turkish-cased\" \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9933935699477056\n* f1: 0.9592969472710453\n* precision: 0.9543530277931161\n* recall: 0.9642923563325274\n\nEvaluation results with the test sets proposed in \"Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi (\"A Named Entity Recognition Dataset for Turkish\"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye.\" paper.\n\n* Test Set\tAcc.\tPrec.\tRec.\tF1-Score\n* 20010000\t0.9946 0.9871 0.9463\t0.9662\n* 20020000\t0.9928\t0.9134\t0.9206\t0.9170\n* 20030000\t0.9942\t0.9814\t0.9186\t0.9489\n* 20040000\t0.9943\t0.9660\t0.9522\t0.9590\n* 20050000\t0.9971\t0.9539\t0.9932\t0.9732\n* 20060000\t0.9993\t0.9942\t0.9942\t0.9942\n* 20070000\t0.9970\t0.9806\t0.9439\t0.9619\n* 20080000\t0.9988\t0.9821\t0.9649\t0.9735\n* 20090000\t0.9977\t0.9891\t0.9479\t0.9681\n* 20100000\t0.9961\t0.9684\t0.9293\t0.9485\n* Overall \t0.9961\t0.9720\t0.9516\t0.9617" ]
[ -0.109690822660923, 0.07992327213287354, -0.005827552173286676, -0.004756292328238487, 0.05423218011856079, 0.06344766914844513, 0.16191546618938446, 0.05483628064393997, 0.023039711639285088, 0.09866088628768921, 0.10155723989009857, 0.04372620955109596, 0.14482425153255463, 0.06884942203760147, 0.005633566994220018, -0.14515838027000427, 0.05695521458983421, -0.08649951219558716, 0.11719495803117752, 0.1070360466837883, 0.06980160623788834, -0.05857336148619652, 0.039266299456357956, 0.003539950819686055, -0.00934052374213934, -0.022862998768687248, -0.04121638089418411, -0.08943026512861252, 0.045194827020168304, -0.017688175663352013, 0.05945847928524017, -0.006256113760173321, -0.009808642789721489, -0.18705032765865326, 0.01055395882576704, -0.025195278227329254, -0.053196318447589874, -0.012035105377435684, 0.16046786308288574, -0.02322993241250515, 0.22890013456344604, -0.10999240726232529, -0.016674451529979706, -0.027675475925207138, -0.08297110348939896, -0.091898113489151, -0.20167125761508942, 0.21294145286083221, 0.13640932738780975, 0.09964402765035629, -0.05144663155078888, 0.07449474185705185, 0.008866166695952415, 0.10473652184009552, 0.12672610580921173, -0.29034411907196045, -0.10382598638534546, -0.0018040994182229042, -0.021129349246621132, -0.048941776156425476, 0.007261894643306732, 0.02490764856338501, -0.03559791296720505, -0.015216030180454254, -0.14384327828884125, -0.08522451668977737, -0.009970898739993572, -0.08673650771379471, -0.06709425896406174, -0.049932245165109634, 0.18931792676448822, 0.07319451123476028, -0.03716650977730751, -0.031411733478307724, 0.008342926390469074, -0.06483513861894608, -0.021538114175200462, -0.018054116517305374, -0.03742498904466629, -0.1223880872130394, 0.059064481407403946, 0.06543642282485962, -0.05973116308450699, -0.020508956164121628, -0.12182377278804779, 0.2102966159582138, 0.06323469430208206, -0.0007533479947596788, 0.06544308364391327, 0.05020274594426155, -0.011225992813706398, -0.15562796592712402, -0.06313375383615494, 0.04807184636592865, -0.10450825095176697, -0.011685097590088844, 0.02637024037539959, -0.10999806225299835, 0.09890332818031311, 0.13877785205841064, -0.012325170449912548, 0.1330091655254364, 0.022751647979021072, 0.015618322417140007, -0.10994674265384674, 0.14846527576446533, -0.10590331256389618, -0.12407594919204712, -0.0318642221391201, 0.06029924377799034, 0.07068333029747009, -0.01110114436596632, -0.05088937655091286, -0.08429452776908875, 0.15217366814613342, 0.107084259390831, 0.05687955021858215, 0.08147832751274109, 0.011085065081715584, 0.0037474255077540874, 0.0338713675737381, -0.11107036471366882, -0.0005317150498740375, 0.01730664074420929, -0.11734486371278763, -0.11526007950305939, 0.004001707769930363, -0.023344561457633972, -0.08254417777061462, 0.1473321169614792, 0.003147735493257642, 0.054653916507959366, -0.00003655517866718583, -0.03953811153769493, 0.034891530871391296, -0.07278304547071457, -0.014599665999412537, -0.16516518592834473, -0.11621282249689102, -0.13258346915245056, 0.01774088852107525, -0.06151474639773369, 0.09368395060300827, -0.06857604533433914, -0.09082232415676117, 0.011448962613940239, -0.014186777174472809, 0.03155604377388954, -0.050707217305898666, 0.06204817444086075, -0.017583554610610008, 0.04551846906542778, 0.05809466913342476, 0.003405933966860175, -0.056574489921331406, 0.04241921380162239, -0.07760000973939896, -0.0004605982103385031, -0.07053972780704498, 0.019724320620298386, -0.1637796014547348, -0.05065629258751869, -0.016544338315725327, -0.028694048523902893, 0.12812642753124237, 0.1200549453496933, -0.1900210678577423, 0.05748555436730385, 0.12837150692939758, -0.04891276732087135, -0.17407189309597015, 0.07550541311502457, 0.04921771213412285, 0.01620163582265377, 0.05884616822004318, 0.21248659491539001, 0.09382589161396027, -0.01519807893782854, -0.15949051082134247, -0.08039109408855438, -0.01844216324388981, 0.10498687624931335, 0.043285757303237915, -0.07256627827882767, 0.04591400921344757, 0.06238279491662979, -0.09217130392789841, 0.03290819376707077, -0.01542839128524065, -0.043865516781806946, 0.038163695484399796, -0.06403498351573944, 0.04792452231049538, 0.0010602539405226707, 0.03316240757703781, -0.07228513807058334, -0.09661383926868439, -0.14199437201023102, 0.10633853077888489, 0.051573384553194046, -0.010879721492528915, -0.13819965720176697, 0.20597751438617706, -0.03050367906689644, 0.018603535369038582, -0.13444213569164276, -0.03114376962184906, -0.014104483649134636, -0.02889310196042061, 0.03747638687491417, -0.14451806247234344, 0.05427025258541107, -0.01073225773870945, -0.015963897109031677, -0.06251955777406693, 0.05110067129135132, 0.02147987112402916, -0.050463996827602386, -0.1037277802824974, 0.04376569017767906, 0.047104522585868835, 0.17197565734386444, -0.050078898668289185, -0.00016807687643449754, 0.03534989804029465, 0.14462076127529144, -0.08515208214521408, -0.04159882664680481, -0.017132695764303207, 0.03658919781446457, 0.02642115205526352, -0.05297176167368889, 0.004866974428296089, -0.013054820708930492, -0.07769093662500381, 0.03176439180970192, -0.26346680521965027, -0.008328313939273357, 0.05981586128473282, 0.05757850408554077, -0.16679462790489197, 0.0962737500667572, 0.015676729381084442, -0.03303976729512215, 0.0942188948392868, 0.01805690862238407, 0.15265531837940216, 0.05636605992913246, 0.06276416033506393, -0.04283805191516876, -0.03243650868535042, 0.014527150429785252, -0.027104368433356285, -0.02841813676059246, 0.16597436368465424, -0.014029462821781635, -0.20006108283996582, 0.06437553465366364, 0.048009272664785385, -0.028141571208834648, 0.12134372442960739, -0.008863535709679127, -0.053539954125881195, -0.13134299218654633, 0.08331026136875153, 0.038171447813510895, 0.1403162181377411, -0.04788542911410332, 0.003256922122091055, 0.035596054047346115, 0.027424903586506844, 0.00044269071076996624, -0.05265104025602341, 0.01269868016242981, -0.005586683750152588, -0.052074190229177475, -0.004595338832587004, 0.09567930549383163, 0.01755499839782715, 0.12374472618103027, -0.006754041183739901, -0.038725223392248154, -0.011744250543415546, -0.04751992225646973, -0.12817399203777313, 0.19213145971298218, -0.07902096211910248, -0.1873377561569214, -0.043369781225919724, 0.012888732366263866, -0.10749716311693192, -0.08703453838825226, 0.01814856380224228, -0.07189204543828964, -0.005182542838156223, -0.08352584391832352, -0.015874534845352173, 0.020927075296640396, -0.019490446895360947, -0.10852089524269104, -0.01416266243904829, 0.019579507410526276, -0.09065121412277222, -0.03177296742796898, -0.03676231577992439, -0.07537505775690079, 0.06826845556497574, 0.017412999644875526, 0.08283502608537674, 0.07662039250135422, -0.05404007062315941, 0.024880867451429367, 0.01763380505144596, 0.11415207386016846, -0.15286685526371002, 0.05225776880979538, 0.014706091023981571, -0.03244218975305557, 0.05349135771393776, 0.1601753830909729, 0.006328996736556292, -0.038367606699466705, -0.015188428573310375, 0.010506687685847282, 0.0062157753854990005, -0.21961161494255066, -0.08296558260917664, -0.01295414473861456, 0.00589992618188262, -0.01638874225318432, 0.029089316725730896, 0.03408065810799599, 0.06909945607185364, -0.06264778971672058, -0.042020343244075775, -0.014919199049472809, 0.05955016240477562, 0.15474173426628113, 0.05670643597841263, 0.0481431670486927, -0.0849996954202652, 0.04629775881767273, 0.018963828682899475, -0.09507345408201218, 0.25457555055618286, 0.011257936246693134, -0.022821281105279922, 0.0920238196849823, 0.14862129092216492, -0.02972245402634144, 0.025570416823029518, -0.026806987822055817, 0.005994664505124092, 0.06068623811006546, -0.09766852855682373, -0.03172784671187401, 0.015312273055315018, -0.021684367209672928, -0.023915622383356094, -0.03725944831967354, 0.011261704377830029, 0.12628746032714844, 0.021824583411216736, 0.04988476634025574, -0.23101015388965607, -0.047007009387016296, -0.05412377417087555, -0.04988069459795952, -0.046122655272483826, -0.06979408115148544, -0.028753623366355896, -0.12314995378255844, 0.156757652759552, -0.03153238072991371, 0.057446423918008804, -0.06961239874362946, -0.0044944449327886105, -0.022093024104833603, -0.04289119318127632, -0.0011998862028121948, 0.06638558208942413, -0.0723782554268837, 0.282020628452301, 0.01709994114935398, 0.09262643754482269, -0.0651499554514885, -0.04325689747929573, 0.08858318626880646, -0.02453228272497654, 0.10580727458000183, 0.04621174558997154, -0.19424566626548767, -0.1547783762216568, -0.07959899306297302, 0.025364845991134644, 0.10555477440357208, -0.015086641535162926, 0.10580094903707504, 0.017455942928791046, -0.009851683862507343, -0.07749465852975845, -0.08941458910703659, -0.1647016555070877, -0.06862086802721024, 0.08891728520393372, -0.03647388890385628, 0.0431949608027935, -0.05782303586602211, -0.021115591749548912, -0.063444122672081, 0.1208118200302124, -0.16638080775737762, -0.06386026740074158, -0.0307427030056715, -0.041713982820510864, 0.17986413836479187, -0.16621823608875275, -0.0010374272242188454, -0.04305834323167801, -0.092367984354496, 0.015350595116615295, 0.010691127739846706, 0.001944774528965354, -0.03220319747924805, -0.12241312861442566, -0.02469480223953724, 0.13098277151584625, 0.0440136194229126, 0.059737831354141235, 0.05093755945563316, 0.04151705279946327, 0.026726679876446724, -0.13891570270061493, -0.0138541329652071, 0.014080167748034, 0.04208524525165558, 0.055039551109075546, 0.05297745391726494, -0.08315714448690414, -0.16045346856117249, -0.02715551108121872, 0.03525208309292793, 0.3040306866168976, -0.04231756925582886, 0.0287619698792696, 0.021791312843561172, -0.05835490673780441, -0.15632978081703186, -0.06017554551362991, 0.05016703903675079, 0.00949573889374733, -0.015801718458533287, -0.04852424934506416, 0.03473882004618645, 0.10443270206451416, 0.006915131583809853, 0.1547662764787674, -0.25755661725997925, -0.1413993537425995, 0.19227464497089386, 0.06626337021589279, 0.022412920370697975, -0.16443891823291779, -0.08408135920763016, -0.0196344256401062, -0.03146903216838837, -0.07169985771179199, 0.0011926906881853938, 0.04134272411465645, -0.048075854778289795, 0.06112280115485191, 0.05986003950238228, -0.02904576063156128, 0.2243729680776596, 0.009842891246080399, 0.038740139454603195, -0.18556049466133118, -0.09813521802425385, 0.011547361500561237, -0.07372291386127472, 0.12554995715618134, -0.0483514666557312, 0.06096984073519707, -0.11876297742128372, 0.010721546597778797, -0.05069028213620186, 0.08513451367616653, -0.07274825870990753, 0.05978643521666527, -0.07595786452293396, 0.06000788137316704, 0.02879246510565281, 0.0029611692298203707, -0.0294940322637558, -0.027369868010282516, -0.03334562107920647, 0.03496219590306282, 0.09392061829566956, 0.05475960671901703, 0.003940173424780369, 0.05779655650258064, 0.010950344614684582, -0.006009380333125591, 0.010217941366136074, -0.05244915559887886, 0.1528501957654953, -0.00392930768430233, 0.0633511170744896, -0.04372968524694443, -0.149826779961586, 0.015460421331226826, 0.11751396954059601, -0.09750788658857346, -0.11752517521381378, 0.014462641440331936, -0.01359917689114809, -0.09001508355140686, -0.06573494523763657, 0.08978354930877686, -0.02238355576992035, 0.033160049468278885, -0.004910307936370373, 0.043951429426670074, -0.01068553514778614, 0.18966782093048096, 0.030749602243304253, 0.010018711909651756, -0.02899801731109619, 0.0566699281334877, 0.05115080997347832, -0.03387802466750145, 0.08208882808685303, 0.05951779708266258, -0.10655036568641663, -0.05702062323689461, -0.07769390940666199, 0.15287171304225922, -0.0065182410180568695, -0.13015542924404144, -0.06209586560726166, -0.08824682235717773, -0.00808352418243885, 0.11556321382522583, 0.05173390358686447, 0.030465664342045784, 0.08333095163106918, -0.04560522735118866, -0.026553086936473846, 0.1205272525548935, 0.17879441380500793, 0.03732242062687874, -0.04100551828742027, 0.06713191419839859, 0.010822401382029057, 0.014504010789096355, 0.023411160334944725, 0.008181678131222725, -0.06887008249759674, 0.01358784269541502, -0.19334346055984497, 0.03712954744696617, -0.16203995048999786, -0.009925800375640392, 0.037879277020692825, -0.061073921620845795, -0.06968775391578674, -0.02417275682091713, -0.06552302092313766, -0.05142884701490402, -0.028048403561115265, 0.04385315999388695, -0.12211316078901291, -0.042737286537885666, 0.03586530312895775, -0.07168683409690857, 0.07635272294282913, 0.11540675908327103, 0.025574149563908577, 0.0965024009346962, -0.11818304657936096, 0.028201792389154434, -0.0761362835764885, 0.029726501554250717, 0.0075441887602210045, -0.19331897795200348, 0.00845795776695013, 0.02429792284965515, 0.013507217168807983, 0.07298221439123154, 0.025102965533733368, -0.0966983512043953, 0.03708305209875107, -0.08303593099117279, 0.004421203397214413, -0.06793864071369171, 0.10782264173030853, 0.06919064372777939, 0.025666911154985428, 0.13189148902893066, -0.08528921753168106, 0.07084953039884567, -0.11220888048410416, 0.025211580097675323, -0.03594628721475601, -0.08540378510951996, 0.058652494102716446, -0.04541556164622307, 0.10239682346582413, -0.05015925318002701, 0.002078091260045767, -0.0038485247641801834, 0.00021808710880577564, 0.024750618264079094, 0.020412111654877663, -0.012806513346731663, 0.0019038430182263255, 0.05764079466462135, -0.0028422330506145954, -0.037687815725803375, -0.09885955601930618, -0.01328787300735712, -0.04329635575413704, -0.21472281217575073, 0.14037761092185974, 0.14685265719890594, 0.06834880262613297, 0.09063204377889633, 0.04840352013707161, -0.13935314118862152, 0.003960351459681988, 0.013693113811314106, -0.15666761994361877, 0.053381141275167465, 0.030551152303814888, 0.0766998827457428, 0.15237866342067719, -0.1374814510345459, 0.01764293573796749, -0.0481751449406147, -0.08641856908798218, -0.0075944559648633, -0.17440158128738403, -0.09581195563077927, -0.008770889602601528, 0.05549793317914009, -0.029246585443615913, 0.050115592777729034, 0.12609343230724335, 0.019591623917222023, -0.016309866681694984, 0.22061949968338013, -0.09324505180120468, -0.03587460517883301, 0.11815747618675232, -0.024173438549041748, -0.03612590208649635, 0.03117993101477623, -0.03664856404066086, -0.03894728422164917, -0.01842205785214901, 0.06935414671897888, 0.09759427607059479, -0.04033327475190163, -0.010317694395780563, -0.020650750026106834, -0.07944998890161514, 0.012990359216928482, 0.00773500045761466, 0.10505743324756622, 0.1186695322394371, 0.08506205677986145, 0.03144301846623421, -0.02660343609750271, 0.11142723262310028, 0.02362917549908161, -0.11894375830888748, -0.004615831188857555, 0.02351202629506588, 0.06392781436443329, -0.05761129781603813, 0.04038430377840996, -0.09473807364702225, 0.06355911493301392, 0.12157920747995377, 0.1878177523612976, 0.07894615083932877, 0.009953690692782402, -0.028063945472240448, 0.018911728635430336, -0.025452909991145134, 0.017728621140122414, 0.010464697144925594, 0.14857248961925507, -0.011046450585126877, 0.04638729989528656, -0.05241958424448967, 0.009721549227833748, -0.007657594978809357, 0.04256219044327736, 0.01692151464521885, -0.03379269316792488, -0.05064764991402626, 0.1430705189704895, -0.12516115605831146, -0.2253207266330719, 0.10180378705263138, -0.050416089594364166, -0.17952705919742584, 0.05212574452161789, 0.10611707717180252, 0.055427681654691696, 0.08446524292230606, -0.011981885880231857, -0.040448181331157684, 0.009626110084354877, 0.035522446036338806, -0.06242981180548668, -0.11547902226448059, 0.041709769517183304, 0.019866401329636574, 0.2909352481365204, 0.030389796942472458, 0.13720817863941193, 0.1354299634695053, 0.02694953791797161, -0.10242604464292526, 0.09475558996200562, 0.10317528992891312, 0.0099527882412076, 0.15891803801059723, 0.08323118835687637, 0.023162031546235085, -0.0054817539639770985, 0.12999390065670013, -0.009883986786007881, 0.05073583126068115, -0.005885693710297346, 0.05743629112839699, -0.11255180090665817, 0.12067708373069763, -0.04878845438361168, 0.15217995643615723, 0.230152890086174, -0.04451142996549606, 0.014487531036138535, -0.038642216473817825, -0.03363417834043503, -0.021709835156798363, 0.07017095386981964, 0.02211170457303524, -0.13006660342216492, 0.044536177068948746, 0.007693239022046328, 0.06772208213806152, -0.13744625449180603, -0.05094556510448456, 0.07104846835136414, -0.05886783450841904, 0.05078419670462608, 0.11440318077802658, 0.042808905243873596, -0.012296993285417557, -0.050365012139081955, -0.03256043791770935, -0.005079467780888081, 0.12512123584747314, -0.09133650362491608, -0.08389497548341751 ]
null
null
transformers
# Turkish Text Classification for Complaints Data Set This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data with 9 categories as follows: id_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}
{"language": "tr"}
text-classification
akdeniz27/bert-turkish-text-classification
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us
# Turkish Text Classification for Complaints Data Set This model is a fine-tune model of URL by using text classification data with 9 categories as follows: id_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}
[ "# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n", "# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}" ]
[ 46, 156 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n# Turkish Text Classification for Complaints Data Set\n\nThis model is a fine-tune model of URL by using text classification data with 9 categories as follows:\n\nid_to_category = {0: 'KONFORSUZLUK', 1: 'TARİFE İHLALİ', 2: 'DURAKTA DURMAMA', 3: 'ŞOFÖR-PERSONEL ŞİKAYETİ', \n 4: 'YENİ GÜZERGAH/HAT/DURAK İSTEĞİ', 5: 'TRAFİK GÜVENLİĞİ', 6: 'DİĞER ŞİKAYETLER', 7: 'TEŞEKKÜR', 8: 'DİĞER TALEPLER'}" ]
[ 0.0033640305045992136, -0.04026137664914131, -0.007805153727531433, 0.03187653422355652, 0.15128664672374725, 0.054374825209379196, 0.29418545961380005, 0.0284388717263937, 0.08215697109699249, -0.04533613473176956, 0.08073315769433975, 0.09087714552879333, -0.004731995519250631, 0.01957882195711136, -0.05047040805220604, -0.22150495648384094, 0.04815828800201416, -0.047599464654922485, 0.029079008847475052, 0.12822218239307404, 0.16336672008037567, -0.021989308297634125, 0.03176102042198181, -0.051601700484752655, -0.04644714668393135, 0.025803813710808754, 0.0393914170563221, -0.09171710908412933, 0.07289109379053116, -0.023784998804330826, 0.1492537558078766, 0.043894845992326736, -0.017400825396180153, -0.09689799696207047, 0.03829289227724075, -0.026590364053845406, -0.0587458610534668, -0.01328686811029911, 0.09397188574075699, -0.13617512583732605, 0.09594837576150894, -0.13029871881008148, -0.042269155383110046, -0.019231799989938736, -0.06960882991552353, -0.039936404675245285, -0.07868422567844391, 0.17296694219112396, 0.16803239285945892, 0.0719231367111206, -0.04374511539936066, 0.07099553942680359, -0.15257509052753448, 0.1453239619731903, 0.05275429040193558, -0.27307596802711487, -0.06740513443946838, 0.026327058672904968, -0.040429141372442245, 0.025994518771767616, -0.04177150875329971, 0.065825454890728, -0.027854397892951965, -0.03369397670030594, -0.1097990870475769, -0.09712201356887817, -0.04331232234835625, -0.08660180121660233, -0.05459645017981529, -0.0007852169219404459, 0.23955459892749786, 0.032744139432907104, -0.005298464559018612, -0.041474729776382446, -0.02817595563828945, 0.05749724805355072, -0.05768408253788948, 0.012683926150202751, -0.09114970266819, -0.014757676050066948, 0.06018975004553795, 0.08255866169929504, -0.10641028732061386, -0.006806014105677605, -0.14566193521022797, 0.16484372317790985, 0.04928691312670708, -0.03294452279806137, -0.04907345399260521, 0.0382804349064827, 0.12024803459644318, -0.12385601550340652, 0.08423321694135666, -0.057277530431747437, -0.028923604637384415, -0.004154447931796312, -0.02520599588751793, -0.09145704656839371, 0.14819815754890442, 0.056126244366168976, 0.08166435360908508, 0.08463951200246811, -0.007629778701812029, 0.059119611978530884, -0.02670832723379135, 0.04404285177588463, -0.08016957342624664, -0.0769873782992363, -0.0257708840072155, -0.006793137174099684, 0.09534956514835358, -0.0001539169461466372, -0.047964002937078476, 0.0028050076216459274, 0.10362454503774643, 0.08087726682424545, 0.06540453433990479, 0.17664101719856262, -0.008748484775424004, -0.01689891144633293, 0.02785060927271843, -0.09082546085119247, 0.018290424719452858, 0.05523403733968735, -0.04545847326517105, 0.02706797607243061, -0.08628841489553452, 0.05425308272242546, -0.08601147681474686, 0.1266891062259674, 0.015635015442967415, 0.066250741481781, 0.06760919094085693, -0.09509864449501038, 0.0640028789639473, -0.09693970531225204, -0.008420344442129135, -0.18630388379096985, -0.09034955501556396, -0.03243456780910492, 0.033941786736249924, -0.028606340289115906, 0.0458853542804718, -0.056364960968494415, -0.04589126259088516, 0.04088442400097847, -0.01095872838050127, -0.12125527113676071, -0.09411787986755371, 0.08928370475769043, -0.10681168735027313, 0.04054195433855057, -0.05022214725613594, 0.029315786436200142, -0.09137560427188873, -0.025218620896339417, -0.06642207503318787, 0.05072874575853348, -0.09152475744485855, 0.12940028309822083, -0.0846533328294754, 0.01815410517156124, -0.002371683018282056, 0.02555433288216591, -0.0021952365059405565, 0.23139986395835876, -0.10680661350488663, -0.04589645192027092, 0.07647712528705597, -0.08603598177433014, -0.06835993379354477, 0.14454932510852814, 0.008070701733231544, 0.01776145026087761, 0.16308289766311646, 0.23198668658733368, 0.14129233360290527, 0.04738326370716095, -0.07707083970308304, 0.013601334765553474, -0.053158361464738846, 0.06628306955099106, 0.05321729555726051, -0.002957280958071351, -0.04165363311767578, 0.025910036638379097, -0.01983175426721573, 0.022600647062063217, -0.006726005580276251, -0.04028915613889694, 0.03022722341120243, -0.00934460386633873, 0.1715981364250183, 0.004822235554456711, 0.06413380801677704, -0.11369895935058594, -0.04673300310969353, -0.12877634167671204, 0.0346563495695591, 0.00013157425564713776, -0.004981270059943199, -0.08944202214479446, 0.11514975875616074, 0.02486126683652401, 0.050249725580215454, -0.12790901958942413, -0.07922255992889404, -0.03391369432210922, 0.14692729711532593, 0.011501074768602848, 0.023504646494984627, 0.03945537284016609, -0.07383017241954803, -0.03783753514289856, -0.02880968153476715, 0.10072411596775055, 0.015615582466125488, -0.0369039811193943, -0.1622484028339386, 0.10880137234926224, -0.025248361751437187, 0.14397744834423065, -0.09721297770738602, 0.005832670256495476, 0.11701207607984543, 0.1525198370218277, -0.023935547098517418, 0.06452268362045288, 0.0018287579296156764, 0.04002169892191887, -0.007742924150079489, 0.009232737123966217, 0.0714925080537796, -0.03721483424305916, -0.08283805102109909, 0.11454634368419647, -0.08732983469963074, 0.1670728325843811, 0.16379274427890778, -0.08357739448547363, -0.057553406804800034, 0.08754593878984451, -0.01053912565112114, 0.013672523200511932, 0.06483769416809082, -0.02318902313709259, 0.02080644480884075, 0.040768664330244064, 0.10622462630271912, -0.00386960175819695, -0.006797228008508682, 0.018357904627919197, -0.09161723405122757, -0.059186212718486786, 0.1591285765171051, -0.027547720819711685, -0.22658737003803253, 0.1325307935476303, 0.2176326960325241, 0.011294275522232056, 0.1515846848487854, -0.01179608516395092, 0.037554506212472916, -0.010716171003878117, 0.04819928854703903, -0.031990762799978256, 0.03320649638772011, -0.08251550048589706, -0.039340607821941376, 0.023014571517705917, 0.016752703115344048, -0.006503948476165533, -0.07715081423521042, -0.0437646247446537, -0.0553402379155159, -0.023158928379416466, -0.1377425193786621, 0.09802410006523132, -0.004320810083299875, 0.1421099305152893, -0.04180898889899254, -0.15188564360141754, 0.06652479618787766, -0.035719722509384155, -0.09677807241678238, 0.13140536844730377, -0.11411553621292114, -0.3202381432056427, -0.014000619761645794, -0.052698034793138504, -0.13424193859100342, -0.002105903811752796, 0.06575177609920502, -0.15831953287124634, -0.00834594015032053, -0.0442187674343586, -0.00452457694336772, 0.02735999971628189, 0.04053120315074921, -0.017171211540699005, 0.018045878037810326, -0.010827932506799698, -0.05335494875907898, -0.042386725544929504, -0.08724983036518097, -0.03095286525785923, 0.09613263607025146, -0.1059383898973465, 0.08824803680181503, 0.09560412913560867, 0.0024001076817512512, -0.006586611736565828, -0.0505400113761425, 0.12040545791387558, -0.13814760744571686, 0.07058628648519516, 0.048990797251462936, -0.045978352427482605, 0.06907501071691513, 0.27848243713378906, 0.033270884305238724, -0.015385203994810581, 0.03543641045689583, 0.0473499521613121, 0.024785684421658516, -0.21132759749889374, -0.11719489097595215, -0.06103604659438133, 0.04454067721962929, -0.004114484880119562, 0.06065799668431282, 0.041871488094329834, 0.0857672169804573, -0.052327461540699005, -0.001965803327038884, 0.11824455857276917, 0.06155270338058472, 0.2417663335800171, 0.013111223466694355, 0.1011279746890068, -0.10130566358566284, -0.12312201410531998, 0.026786400005221367, -0.037442296743392944, 0.14744789898395538, 0.06522659212350845, -0.04793252795934677, 0.08133913576602936, 0.048489395529031754, 0.017157074064016342, 0.0018935538828372955, 0.022777818143367767, -0.014880099333822727, -0.00004147486833971925, -0.04933605343103409, -0.0036886606831103563, -0.048282600939273834, 0.0016740482533350587, -0.0854901373386383, -0.03076694719493389, 0.012391366064548492, 0.2189800888299942, 0.027028974145650864, 0.07040640711784363, -0.10804694145917892, -0.012243218719959259, 0.042261429131031036, -0.04108758643269539, 0.029219167307019234, -0.006452769972383976, -0.021962283179163933, -0.09263459593057632, 0.14195258915424347, -0.018199078738689423, 0.08427281677722931, -0.05239606276154518, 0.07364536821842194, -0.06208638474345207, -0.12536461651325226, -0.009032572619616985, 0.061773426830768585, -0.25190469622612, 0.2795906960964203, 0.024654904380440712, 0.03021201491355896, -0.07857861369848251, -0.05450757220387459, 0.07998759299516678, 0.18419207632541656, 0.09638119488954544, 0.020106544718146324, 0.011166720651090145, -0.09892121702432632, -0.09387443214654922, 0.04799417778849602, 0.13544590771198273, -0.08951817452907562, 0.039232008159160614, -0.026436112821102142, -0.009804765693843365, -0.016629016026854515, -0.10299261659383774, -0.17329435050487518, -0.09663163125514984, 0.07904919236898422, 0.07104025781154633, -0.010043630376458168, 0.004525987431406975, -0.08120831102132797, -0.12654055655002594, 0.10772114992141724, -0.18146122992038727, -0.10440807789564133, -0.05122906342148781, -0.023543722927570343, -0.01857980526983738, -0.09186917543411255, -0.07388797402381897, -0.02314412221312523, -0.05902025103569031, -0.013651021756231785, -0.09811457246541977, 0.04989910498261452, -0.08212435990571976, -0.08920647203922272, -0.06373240053653717, 0.16244196891784668, -0.010531404986977577, 0.0211043581366539, 0.05115576460957527, 0.014233313500881195, 0.0209906455129385, -0.10924366116523743, -0.04569512605667114, -0.04786977544426918, -0.025584693998098373, 0.09855595976114273, -0.02105305902659893, -0.19430188834667206, -0.151961088180542, 0.01860133744776249, 0.09825073927640915, 0.13261090219020844, -0.026120508089661598, 0.07984377443790436, 0.12829038500785828, -0.006572147365659475, -0.27162081003189087, -0.10964012145996094, 0.009517193771898746, -0.03788940981030464, -0.049981214106082916, -0.06756940484046936, 0.08195548504590988, 0.03462794050574303, -0.019061844795942307, 0.03970373794436455, -0.2255924493074417, -0.08432001620531082, 0.1389891505241394, 0.003391184378415346, 0.27791932225227356, -0.14909560978412628, -0.06246737018227577, -0.052339471876621246, -0.032503727823495865, 0.08066603541374207, -0.11171601712703705, 0.04601600021123886, 0.04422113671898842, 0.020217321813106537, 0.019082095474004745, 0.005809660069644451, 0.12667161226272583, 0.07796481996774673, 0.05317750945687294, -0.15577955543994904, -0.1376219391822815, 0.11151769012212753, 0.012875824235379696, 0.03998815640807152, -0.09367930144071579, -0.01840139925479889, -0.15959012508392334, -0.018693553283810616, -0.07141121476888657, 0.05391528457403183, -0.036903101950883865, -0.0019623253028839827, -0.004875159822404385, 0.013022340834140778, 0.008324993774294853, -0.005429417360574007, 0.15589697659015656, -0.017470471560955048, 0.04039890691637993, -0.05241391435265541, 0.0662555992603302, -0.044195495545864105, 0.00006535764987347648, -0.044014498591423035, -0.04964001104235649, 0.04820939525961876, -0.08457150310277939, -0.004072798416018486, 0.08089137077331543, -0.04449573531746864, 0.07591371983289719, 0.03965793177485466, 0.03145467862486839, 0.03614090383052826, 0.1623208075761795, -0.1395111232995987, -0.08314267545938492, 0.006268964149057865, -0.12904448807239532, 0.009851350449025631, 0.09989798814058304, 0.1672140210866928, -0.013320631347596645, 0.03253524750471115, 0.02040431648492813, 0.021840959787368774, 0.01890942081809044, 0.08578377217054367, 0.04177803546190262, -0.004193637985736132, -0.09677120298147202, 0.07902773469686508, 0.08583569526672363, -0.04006034880876541, 0.02481762506067753, 0.03601299971342087, -0.17766600847244263, -0.0989309698343277, -0.1313985288143158, 0.1043609008193016, 0.07243919372558594, -0.06756164133548737, -0.12330035865306854, -0.12989424169063568, -0.01651114597916603, 0.03425941988825798, 0.07935534417629242, 0.1061304360628128, -0.03640155494213104, -0.06367778033018112, -0.00713367061689496, 0.0910346508026123, 0.13562056422233582, -0.032511383295059204, -0.17899566888809204, 0.007563700433820486, 0.007645308040082455, 0.07903990894556046, -0.0422646701335907, -0.01684965379536152, -0.1085580438375473, 0.00459644990041852, -0.06621786206960678, -0.005605084355920553, -0.1343330591917038, 0.02034004218876362, 0.012356911785900593, -0.07338797301054001, -0.05562723055481911, -0.044991347938776016, -0.04219818487763405, -0.014187468215823174, 0.03125777468085289, 0.08370216190814972, -0.14352546632289886, -0.05888592079281807, 0.03460831940174103, -0.029957707971334457, 0.10484578460454941, 0.1209205612540245, -0.07263750582933426, 0.07728835940361023, -0.22020575404167175, -0.013782775960862637, 0.03726522997021675, 0.002409212524071336, -0.0012441144790500402, 0.007021377328783274, 0.012874990701675415, 0.05617284029722214, 0.08807898312807083, 0.12900999188423157, 0.09499934315681458, -0.0751868262887001, 0.09025958925485611, -0.11925116181373596, -0.08854245394468307, -0.02164285071194172, 0.04882166162133217, 0.07531774044036865, 0.020788295194506645, 0.20869924128055573, -0.10869069397449493, 0.044203076511621475, -0.03315158933401108, 0.046056944876909256, -0.011966606602072716, -0.16175734996795654, -0.15218818187713623, -0.07903362065553665, 0.04947315901517868, -0.04992765188217163, 0.059207022190093994, 0.05863281339406967, 0.014517451636493206, 0.04994313791394234, 0.07335563004016876, -0.04875267669558525, 0.04944822937250137, 0.07032477110624313, 0.03176230192184448, -0.059054866433143616, -0.14578157663345337, -0.05536274611949921, 0.06278485059738159, -0.13935483992099762, 0.05769079551100731, 0.16472752392292023, 0.0369805209338665, 0.023171396926045418, 0.0397561676800251, -0.0363997146487236, -0.014548677019774914, -0.06745404005050659, -0.11683337390422821, 0.07215623557567596, -0.0061015780083835125, 0.012947026640176773, 0.12091492861509323, -0.00938094686716795, -0.05571801960468292, -0.06777546554803848, -0.06009150296449661, -0.028047438710927963, -0.1171535849571228, -0.08117890357971191, -0.08276208490133286, 0.008519526571035385, -0.039158713072538376, -0.045936740934848785, 0.06902357935905457, 0.054501425474882126, -0.049341004341840744, 0.10498547554016113, -0.03382059559226036, -0.04224109649658203, 0.15353956818580627, -0.05240371823310852, -0.01279204897582531, 0.025781983509659767, -0.04454103484749794, -0.09785330295562744, 0.03238510340452194, -0.006778347305953503, 0.08295333385467529, -0.000026222427550237626, -0.009519376792013645, -0.1422274261713028, -0.09871546179056168, 0.020956553518772125, 0.07079296559095383, 0.054174456745386124, 0.11475219577550888, 0.07516895979642868, -0.018253348767757416, 0.01528236921876669, 0.1875956803560257, 0.024444712325930595, -0.1166919693350792, -0.08539623767137527, 0.07216931879520416, 0.028845319524407387, 0.04334709793329239, -0.0024862352292984724, -0.1032099649310112, -0.015651308000087738, 0.15662354230880737, 0.3163068890571594, -0.023922491818666458, 0.0752730518579483, -0.06264849007129669, 0.03773183375597, 0.05454448238015175, 0.07217398285865784, 0.02692081592977047, 0.16089889407157898, -0.00299134966917336, 0.017901534214615822, -0.029609929770231247, -0.003615916008129716, -0.07482077926397324, 0.057660363614559174, 0.05825141817331314, -0.056723322719335556, -0.08925564587116241, 0.20675058662891388, -0.12232813984155655, -0.042156752198934555, 0.010937494225800037, -0.1140146255493164, -0.09824875742197037, 0.008844295516610146, 0.11478114873170853, 0.10435723513364792, 0.07752715051174164, -0.002908447990193963, -0.0389477014541626, -0.024936014786362648, 0.025060361251235008, -0.07268479466438293, -0.02800726890563965, 0.053978174924850464, 0.055054109543561935, 0.07445109635591507, -0.010672898963093758, 0.1218230202794075, 0.1040799617767334, -0.0014931283658370376, -0.0419340543448925, 0.06699106842279434, 0.06544911861419678, 0.07662011682987213, 0.07771395891904831, -0.06960716843605042, 0.03862809017300606, -0.10154407471418381, 0.14344975352287292, -0.01776340790092945, 0.047024063766002655, -0.006272787693887949, -0.001934099942445755, -0.11003872752189636, 0.16738592088222504, -0.0735139325261116, 0.04826654866337776, 0.16251452267169952, -0.026484200730919838, 0.019372405484318733, 0.0077526685781776905, -0.059467315673828125, -0.010233531706035137, -0.11474510282278061, -0.02196652442216873, -0.15317471325397491, -0.00770287262275815, 0.022174669429659843, 0.08700527995824814, -0.10696335881948471, 0.000379207544028759, -0.06206051632761955, 0.0355210155248642, -0.04711802676320076, 0.06285546720027924, 0.02848055586218834, -0.02535196952521801, -0.03058970533311367, -0.12439195066690445, 0.02188403718173504, 0.08850452303886414, -0.041828978806734085, -0.0712919682264328 ]
null
null
transformers
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/convbert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") # Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. ``` # Reference test results: * accuracy: 0.9937648915431506 * f1: 0.9610945644080416 * precision: 0.9619899385131359 * recall: 0.9602008554956295
{"language": "tr", "widget": [{"text": "Almanya, koronavir\u00fcs a\u015f\u0131s\u0131n\u0131 geli\u015ftiren Dr. \u00d6zlem T\u00fcreci ve e\u015fi Prof. Dr. U\u011fur \u015eahin'e liyakat ni\u015fan\u0131 verdi"}]}
token-classification
akdeniz27/convbert-base-turkish-cased-ner
[ "transformers", "pytorch", "onnx", "safetensors", "convbert", "token-classification", "tr", "arxiv:2008.02496", "doi:10.57967/hf/0015", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2008.02496" ]
[ "tr" ]
TAGS #transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk) using a reviewed version of well known Turkish NER dataset (URL The ConvBERT architecture is presented in the "ConvBERT: Improving BERT with Span-based Dynamic Convolution" paper. # Fine-tuning parameters: # How to use: # Reference test results: * accuracy: 0.9937648915431506 * f1: 0.9610945644080416 * precision: 0.9619899385131359 * recall: 0.9602008554956295
[ "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.", "# Fine-tuning parameters:", "# How to use:", "# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295" ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.", "# Fine-tuning parameters:", "# How to use:", "# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295" ]
[ 75, 96, 8, 5, 54 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #safetensors #convbert #token-classification #tr #arxiv-2008.02496 #doi-10.57967/hf/0015 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)\nusing a reviewed version of well known Turkish NER dataset\n \n(URL\n\nThe ConvBERT architecture is presented in the \"ConvBERT: Improving BERT with Span-based Dynamic Convolution\" paper.# Fine-tuning parameters:# How to use:# Reference test results:\n* accuracy: 0.9937648915431506\n* f1: 0.9610945644080416\n* precision: 0.9619899385131359\n* recall: 0.9602008554956295" ]
[ -0.1315641552209854, 0.08083780109882355, -0.000862588407471776, 0.06683135032653809, 0.02350427769124508, 0.02208109013736248, 0.11810117214918137, 0.03673370182514191, -0.10992593318223953, 0.12447037547826767, 0.15466280281543732, -0.003573685185983777, 0.0735606923699379, 0.07878965139389038, -0.0872347354888916, -0.1276891976594925, 0.06263234466314316, 0.01149478554725647, 0.12427123636007309, 0.09428486227989197, 0.04651157930493355, -0.11635151505470276, 0.06552586704492569, -0.00015999360766727477, -0.179239422082901, 0.02566494233906269, 0.0025013501290231943, -0.08706287294626236, 0.08969403803348541, 0.02399865910410881, 0.14988568425178528, -0.0049547054804861546, 0.06358145922422409, -0.11577767878770828, 0.013202797621488571, -0.018480412662029266, -0.03630932793021202, 0.05793849751353264, 0.12759935855865479, 0.0106849055737257, 0.12112116068601608, -0.03796994686126709, -0.0716458335518837, -0.015545809641480446, -0.0479450598359108, -0.029008638113737106, -0.12866918742656708, 0.20562610030174255, 0.01828782819211483, 0.06269071251153946, -0.005020370241254568, 0.10256080329418182, 0.03736911714076996, 0.12789346277713776, 0.08428797870874405, -0.3554883301258087, -0.09052269160747528, 0.03495043143630028, -0.07134126126766205, -0.040590450167655945, 0.01482192799448967, 0.03632024675607681, 0.01541702076792717, -0.005936131346970797, -0.013839646242558956, -0.056019723415374756, -0.3099474012851715, -0.034031692892313004, -0.08052666485309601, -0.0723177045583725, 0.20838694274425507, 0.054775867611169815, -0.008591610938310623, 0.00930473767220974, -0.13481464982032776, -0.07253699004650116, -0.04807121679186821, -0.07342463731765747, -0.04510048031806946, -0.07276429235935211, -0.047045134007930756, -0.010773727670311928, -0.06662125885486603, -0.10444740951061249, -0.18630817532539368, 0.21108433604240417, 0.05246046930551529, 0.0720318928360939, -0.03775812312960625, 0.06928698718547821, -0.06826777756214142, -0.09990689158439636, -0.011953453533351421, 0.006573228631168604, -0.10331937670707703, -0.009558278135955334, -0.011143122799694538, -0.04914543032646179, 0.0752851814031601, 0.07106400281190872, 0.021155325695872307, 0.03406137228012085, 0.004160857759416103, 0.013583727180957794, -0.12132219970226288, 0.2579898238182068, -0.1219920814037323, -0.009079042822122574, -0.0013970108702778816, -0.03892580419778824, 0.0031810614746063948, 0.011582345701754093, -0.07755560427904129, -0.11204678565263748, 0.21123334765434265, 0.025773679837584496, -0.06645441800355911, 0.12014095485210419, 0.017878374084830284, 0.03015289455652237, 0.027502255514264107, -0.08483367413282394, 0.00856256578117609, 0.02290605567395687, -0.1088373064994812, -0.009817991405725479, 0.018994122743606567, -0.07467532902956009, -0.054903846234083176, -0.04359772428870201, -0.047236837446689606, -0.008420448750257492, -0.01586269959807396, -0.1522628217935562, 0.027982112020254135, -0.028707513585686684, -0.018552197143435478, -0.22768457233905792, -0.13103967905044556, 0.006537884008139372, 0.00517316535115242, -0.06252335011959076, 0.15699315071105957, -0.06302737444639206, -0.11793158203363419, -0.010064170695841312, -0.00838710181415081, -0.013243227265775204, -0.04621857777237892, 0.053991954773664474, 0.052433717995882034, 0.08126350492238998, -0.07013305276632309, 0.030214902013540268, -0.07099005579948425, 0.005054018925875425, -0.08746600151062012, 0.015128747560083866, -0.05740584433078766, -0.0025995676405727863, -0.12758107483386993, -0.01693548634648323, 0.006771409418433905, -0.05958397686481476, 0.10164320468902588, 0.14774386584758759, -0.14791439473628998, 0.006833452731370926, 0.13337057828903198, -0.06964729726314545, -0.10802154242992401, 0.10155345499515533, 0.003345228498801589, 0.037483323365449905, 0.05511832609772682, 0.17787577211856842, 0.09118061512708664, -0.07047674059867859, -0.15757204592227936, 0.018933581188321114, -0.04369906708598137, -0.06159185245633125, 0.008905758149921894, 0.03945033624768257, 0.008935831487178802, 0.06714509427547455, -0.05254495516419411, 0.01924360729753971, -0.04367139935493469, -0.04225260391831398, -0.03957141935825348, -0.059547584503889084, 0.04100178927183151, -0.034644559025764465, 0.09568286687135696, -0.02463017962872982, -0.04620875045657158, -0.02036318928003311, 0.07144936919212341, -0.056206755340099335, 0.014347798191010952, -0.13458053767681122, 0.18357381224632263, -0.17891333997249603, 0.03506714478135109, -0.16538375616073608, -0.11198975145816803, 0.04133787378668785, 0.03980740159749985, -0.010721740312874317, 0.014075220562517643, 0.09402354061603546, 0.03648227080702782, 0.016292160376906395, -0.031948354095220566, 0.040697500109672546, 0.05704280734062195, -0.08926735073328018, -0.09019554406404495, -0.033975180238485336, -0.02029632404446602, 0.13235381245613098, -0.08224106580018997, -0.014564757235348225, 0.07967237383127213, 0.09716235101222992, -0.051504820585250854, 0.012918537482619286, -0.03504156693816185, 0.03600585088133812, -0.008146543987095356, -0.04895246773958206, 0.04364974424242973, -0.006718144752085209, -0.053356051445007324, 0.048198916018009186, -0.18935543298721313, 0.12899106740951538, 0.07311507314443588, 0.04397221654653549, -0.058411210775375366, -0.022571677342057228, -0.028743138536810875, -0.036395084112882614, 0.09214597195386887, 0.017440056428313255, 0.19201022386550903, -0.004978126380592585, 0.12793442606925964, -0.06389974802732468, -0.040819160640239716, 0.03759784996509552, -0.01363579835742712, -0.08277982473373413, 0.19478583335876465, -0.05320058763027191, -0.12898828089237213, 0.09287764877080917, 0.11599472165107727, -0.09752262383699417, 0.04731180518865585, 0.0105420658364892, -0.08805900067090988, -0.059227354824543, 0.035048432648181915, 0.03027958981692791, 0.15273819863796234, -0.03017614781856537, -0.04601648449897766, 0.05370724946260452, 0.00906172301620245, 0.02490098960697651, -0.09498979151248932, 0.07326479256153107, 0.02117595262825489, -0.06407159566879272, 0.05172080919146538, 0.009920218028128147, -0.003773340256884694, 0.12796947360038757, -0.04202326014637947, -0.17929768562316895, -0.0032540648244321346, 0.00570685276761651, -0.0414259135723114, 0.1801711767911911, -0.09235658496618271, -0.08331844210624695, -0.14381486177444458, -0.12198581546545029, -0.14973707497119904, -0.033247895538806915, -0.018519099801778793, -0.07305324822664261, -0.012592026963829994, -0.08417437225580215, -0.045684754848480225, -0.06550795584917068, 0.012180349789559841, -0.02309652976691723, -0.05820634588599205, 0.0043223220854997635, -0.09290801733732224, -0.03826267644762993, -0.08424022048711777, -0.1324916034936905, 0.10140776634216309, -0.036553408950567245, 0.1407763510942459, 0.1239699274301529, -0.1330087035894394, 0.06207937374711037, -0.03089248575270176, 0.05314512923359871, -0.03434821963310242, 0.06637564301490784, 0.08422154933214188, -0.046074770390987396, 0.0019029354443773627, 0.15190386772155762, 0.00009616757597541437, -0.026972441002726555, -0.02017880603671074, -0.07400331646203995, -0.015727262943983078, -0.20216649770736694, -0.1202021986246109, -0.03338554874062538, 0.02205268293619156, 0.04720704257488251, 0.04905535280704498, 0.09937901794910431, 0.07416818290948868, 0.0074837650172412395, 0.0572187639772892, 0.019926825538277626, 0.03301900997757912, 0.23070424795150757, 0.047768667340278625, 0.08095992356538773, -0.06617777794599533, -0.023729566484689713, 0.034519001841545105, 0.022137582302093506, 0.1709812879562378, -0.010032813996076584, 0.05528102442622185, 0.03737620264291763, 0.13579881191253662, -0.007581415586173534, 0.11227378994226456, -0.013939786702394485, 0.008336514234542847, 0.0185492355376482, -0.12308429181575775, -0.019534047693014145, 0.026843644678592682, -0.049806855618953705, 0.013425786979496479, -0.06417468190193176, -0.009221739135682583, 0.09000669419765472, 0.038352467119693756, 0.12367703020572662, -0.38401684165000916, -0.1344093680381775, -0.02451581321656704, -0.003303664270788431, -0.0528690405189991, -0.020839739590883255, 0.10453547537326813, -0.02690211497247219, -0.015597893856465816, -0.034985702484846115, 0.09009800106287003, -0.10291632264852524, 0.01746339164674282, -0.03996841236948967, 0.05271761491894722, 0.02000400237739086, 0.06824252009391785, -0.14965422451496124, 0.32146328687667847, 0.07325476408004761, 0.07175708562135696, -0.05331858620047569, 0.02138570323586464, 0.05079177767038345, 0.02887311577796936, 0.12666189670562744, -0.009292050264775753, -0.05096922069787979, -0.18839366734027863, -0.1188805028796196, 0.08531893044710159, 0.04819095879793167, 0.07729954272508621, 0.08113278448581696, -0.02352345548570156, -0.018594134598970413, -0.001037512207403779, 0.07209353148937225, -0.12750397622585297, -0.07047145068645477, 0.0034891257528215647, 0.1482478380203247, 0.02392411231994629, -0.026139002293348312, -0.045508988201618195, -0.14429810643196106, 0.16640320420265198, -0.11134105175733566, -0.0011034088674932718, -0.09328306466341019, 0.05564535781741142, 0.12157799303531647, -0.11100475490093231, -0.005832807160913944, -0.07830002158880234, 0.0140309426933527, -0.008631107397377491, -0.1390158236026764, 0.01887735165655613, -0.07072506099939346, -0.041035547852516174, -0.005824517458677292, 0.02225988544523716, 0.036405522376298904, 0.021602658554911613, 0.06561620533466339, 0.047596290707588196, -0.04770073667168617, -0.08103154599666595, -0.0170418843626976, 0.08874964714050293, 0.11264321953058243, 0.010067104361951351, -0.06512848287820816, -0.20588357746601105, -0.07302810251712799, 0.1427832543849945, 0.07549671828746796, 0.1672247350215912, -0.0646599605679512, -0.06242121383547783, 0.1877536177635193, -0.0291824359446764, -0.23249317705631256, -0.026859888806939125, -0.03440641984343529, 0.06188536062836647, -0.10313254594802856, 0.01992456056177616, 0.1208738386631012, 0.11905758082866669, -0.01613517850637436, 0.005276526790112257, -0.20860248804092407, -0.09661903977394104, 0.2564181387424469, 0.08351290971040726, 0.18230484426021576, -0.07170449942350388, -0.07489516586065292, -0.02518473193049431, -0.1330534666776657, -0.13012242317199707, -0.036191727966070175, 0.05288347229361534, -0.05282623693346977, 0.04203760623931885, 0.018079545348882675, -0.05230281129479408, 0.11844214051961899, 0.050962239503860474, 0.04298565164208412, -0.0744105726480484, -0.0531487837433815, 0.12385956943035126, -0.09802313894033432, 0.10679648816585541, 0.052883073687553406, 0.11929310858249664, -0.10600224137306213, 0.003895052010193467, -0.0355469286441803, 0.1358008086681366, 0.011939553543925285, 0.013310974463820457, -0.04031806439161301, -0.00263429363258183, -0.03564925119280815, -0.021018417552113533, -0.020862452685832977, 0.014871957711875439, 0.015278932638466358, 0.0987587496638298, -0.013520944863557816, 0.013342801481485367, 0.0696374773979187, 0.04710253328084946, -0.022206204012036324, 0.06373196840286255, 0.0324753113090992, -0.008654267527163029, 0.17701444029808044, 0.00012471027730498463, 0.06591595709323883, 0.03907028213143349, -0.057269200682640076, -0.0018149217357859015, 0.022690268233418465, -0.16161969304084778, -0.014060787856578827, 0.01889473758637905, -0.046706076711416245, -0.00078656489495188, 0.1352424919605255, 0.15169990062713623, -0.1204485073685646, 0.05625056102871895, -0.013213534839451313, -0.036435987800359726, -0.012293186038732529, 0.16284801065921783, 0.006362406071275473, 0.008692524395883083, -0.07900097221136093, 0.08375482261180878, 0.08419647812843323, -0.06525766104459763, 0.03526746854186058, -0.11501457542181015, -0.14511361718177795, -0.03632042557001114, 0.017801716923713684, 0.08981675654649734, 0.03720075264573097, -0.1273171305656433, -0.08241984993219376, -0.0426909402012825, 0.015057092532515526, 0.24735146760940552, 0.05996694788336754, 0.04501119628548622, -0.06247572600841522, -0.02315969578921795, -0.09601310640573502, 0.12514545023441315, 0.05671445280313492, 0.05576150491833687, -0.11439839005470276, 0.12415236234664917, -0.03909952938556671, 0.04221564158797264, -0.035110294818878174, 0.004387861117720604, -0.08790063112974167, -0.016065005213022232, -0.15899451076984406, 0.0012544073397293687, -0.10352728515863419, 0.008300927467644215, 0.012807237915694714, -0.03342878818511963, -0.07291443645954132, 0.02589946612715721, -0.03167836740612984, 0.021436383947730064, 0.009948174469172955, 0.08007536828517914, -0.19516338407993317, -0.040217045694589615, -0.002683313563466072, -0.044276319444179535, 0.1078185960650444, 0.1510898768901825, 0.009644892066717148, 0.07997545599937439, -0.1398632973432541, -0.04084622114896774, 0.029348088428378105, 0.05253943055868149, 0.0964689776301384, -0.013656256720423698, 0.0479837991297245, 0.05571313202381134, 0.0011508174939081073, 0.02788187377154827, 0.11332431435585022, -0.009864375926554203, -0.02009703777730465, -0.16886167228221893, 0.010235964320600033, -0.09367574751377106, 0.10583498328924179, 0.13339249789714813, 0.05020871013402939, 0.03531196340918541, -0.09092458337545395, -0.023314403370022774, -0.09669069945812225, 0.016149695962667465, 0.00977370236068964, -0.17854195833206177, -0.08180952817201614, -0.08387023955583572, 0.093597412109375, -0.02786017395555973, 0.09711526334285736, -0.028241939842700958, 0.003926100675016642, 0.0037948547396808863, 0.01754676178097725, -0.0620030015707016, -0.007536677643656731, 0.16296140849590302, 0.057273633778095245, -0.012128811329603195, -0.026907246559858322, 0.06842350959777832, 0.06515775620937347, -0.0165550597012043, 0.1401306390762329, 0.14554624259471893, -0.08366161584854126, 0.16186994314193726, 0.09961885958909988, -0.08990971744060516, 0.004295810591429472, -0.07031573355197906, -0.16379885375499725, 0.08144170790910721, -0.01196699682623148, 0.10423550754785538, 0.1531451791524887, -0.036363206803798676, -0.013516295701265335, 0.0029881999362260103, -0.09286760538816452, -0.036128778010606766, -0.10410621762275696, -0.11041674017906189, -0.04948212578892708, -0.005116678774356842, -0.06887727230787277, -0.030886400490999222, 0.12271834909915924, 0.025189626961946487, -0.027914049103856087, 0.22256718575954437, -0.04755624011158943, 0.0032325538340955973, 0.0890636220574379, -0.03821453079581261, -0.016307294368743896, -0.028811339288949966, -0.06600888073444366, 0.004035769030451775, 0.05433366075158119, 0.07388511300086975, 0.06333427876234055, 0.08564287424087524, -0.007350323721766472, -0.015175574459135532, -0.07876725494861603, -0.06762323528528214, 0.021124517545104027, 0.017795240506529808, 0.027449224144220352, 0.07203064113855362, -0.033520378172397614, -0.028957240283489227, 0.13860660791397095, -0.05173387750983238, -0.017050350084900856, -0.02456498332321644, 0.16195374727249146, 0.015537542290985584, 0.028413305059075356, 0.05044615641236305, -0.06269266456365585, 0.0003709627198986709, 0.17611736059188843, 0.15884080529212952, -0.005373988766223192, -0.015365689992904663, 0.029261766001582146, 0.010809927247464657, -0.04222803935408592, 0.05635171756148338, -0.003414562437683344, 0.15697838366031647, -0.0029224460013210773, -0.06478732824325562, -0.02157660946249962, -0.02232343889772892, -0.03220931440591812, 0.01616653986275196, 0.023076068609952927, -0.07853898406028748, -0.05270378664135933, 0.10221441835165024, -0.0611116960644722, -0.15561997890472412, 0.07840583473443985, -0.02089766226708889, -0.14415954053401947, 0.047775719314813614, 0.10354270040988922, 0.00008406514825765043, 0.07339894771575928, -0.1010475680232048, 0.054402731359004974, 0.04178805276751518, 0.0050835153087973595, -0.10232992470264435, -0.05080794543027878, 0.033328521996736526, 0.04435668885707855, 0.23613376915454865, 0.007791691459715366, 0.1330697238445282, 0.11155786365270615, -0.008619875647127628, -0.10139573365449905, 0.11997649073600769, 0.04160148277878761, -0.1311517357826233, 0.06551116704940796, -0.0072815450839698315, -0.017213741317391396, 0.010657574981451035, 0.09403804689645767, -0.11307105422019958, 0.025667056441307068, 0.0013303249143064022, 0.006399243604391813, -0.0915706604719162, 0.03843504562973976, -0.006323057692497969, 0.0948871523141861, 0.1820131093263626, -0.020705781877040863, 0.023152116686105728, -0.06324155628681183, 0.004431501496583223, 0.0314655676484108, 0.09054011851549149, 0.017659956589341164, -0.12365133315324783, 0.0035717275459319353, -0.1691296100616455, 0.031058019027113914, -0.2097865641117096, -0.03401549533009529, -0.018841400742530823, -0.03201301768422127, -0.01471695490181446, 0.07666808366775513, 0.11455223709344864, 0.01422762218862772, -0.015864359214901924, 0.028052199631929398, 0.0011325692757964134, 0.056474994868040085, -0.12679935991764069, -0.06571312993764877 ]
null
null
transformers
# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset This model is the fine-tuned version of "DeBERTa v2 XLarge" using CUAD dataset https://huggingface.co/datasets/cuad Link for model checkpoint: https://github.com/TheAtticusProject/cuad For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
{"language": "en", "datasets": ["cuad"]}
question-answering
akdeniz27/deberta-v2-xlarge-cuad
[ "transformers", "pytorch", "safetensors", "deberta-v2", "question-answering", "en", "dataset:cuad", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us
# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset This model is the fine-tuned version of "DeBERTa v2 XLarge" using CUAD dataset URL Link for model checkpoint: URL For the use of the model with CUAD: URL and URL
[ "# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ "TAGS\n#transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n", "# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ 51, 65 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #deberta-v2 #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n# DeBERTa v2 XLarge Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"DeBERTa v2 XLarge\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ -0.12631116807460785, 0.14909949898719788, -0.0033352484460920095, 0.065231554210186, 0.08277268707752228, 0.03093934804201126, 0.12701700627803802, -0.006080261431634426, 0.066553495824337, 0.08464418351650238, 0.13219723105430603, -0.012182740494608879, -0.007889253087341785, 0.10173012316226959, -0.02779850736260414, -0.14290492236614227, 0.08669446408748627, 0.0295743215829134, 0.008162770420312881, 0.057012297213077545, 0.07520739734172821, -0.11369205266237259, 0.08685071766376495, -0.004389483947306871, -0.05017229542136192, -0.0013015978038311005, -0.021373840048909187, -0.004283061716705561, 0.12346897274255753, 0.02967926301062107, 0.20888900756835938, 0.1036263257265091, 0.11089470237493515, -0.09944016486406326, 0.028116244822740555, -0.021129455417394638, -0.06049066409468651, 0.05025414004921913, -0.053401533514261246, 0.019825348630547523, -0.015697622671723366, -0.07023639231920242, 0.03934471309185028, -0.055184051394462585, -0.09635438770055771, -0.020937062799930573, -0.07765636593103409, 0.10548590868711472, 0.08311526477336884, 0.05317731574177742, -0.0008374651079066098, 0.07811810076236725, -0.10942774266004562, 0.01241887453943491, 0.008005630224943161, -0.27914905548095703, -0.03566234931349754, 0.10540086776018143, 0.1278800368309021, 0.1050710678100586, 0.03608309105038643, 0.06002000719308853, 0.06552852690219879, 0.021376049146056175, 0.04401390254497528, -0.0482046864926815, -0.07258918136358261, 0.04140984266996384, -0.1442909985780716, -0.016938962042331696, 0.08587190508842468, -0.0005213628173805773, -0.022959059104323387, -0.00588125130161643, -0.10977639257907867, -0.017439454793930054, -0.04099264368414879, -0.09233318269252777, 0.025446178391575813, 0.013385612517595291, 0.06554409116506577, -0.02038189396262169, -0.11132536828517914, -0.08268411457538605, -0.15737956762313843, 0.06575976312160492, -0.016181129962205887, 0.03374222293496132, -0.17452162504196167, 0.07464541494846344, -0.0966472178697586, -0.10932310670614243, -0.012930875644087791, -0.08181200921535492, -0.026142749935388565, -0.03552931174635887, -0.06284207850694656, 0.06973931193351746, 0.10746239125728607, 0.14952367544174194, 0.08311904966831207, -0.04728642478585243, 0.009593138471245766, 0.004559272434562445, 0.05897742882370949, 0.2084011435508728, -0.17999477684497833, -0.11176571249961853, 0.09071783721446991, 0.0611136332154274, 0.08731742203235626, -0.017075875774025917, -0.1225411668419838, -0.1603342741727829, 0.06667063385248184, 0.09646334499120712, 0.06116271764039993, 0.00240035611204803, -0.03143758326768875, 0.01218983344733715, 0.19817104935646057, -0.005872927140444517, 0.0028136081527918577, 0.018443988636136055, 0.04671560972929001, 0.058532413095235825, 0.04616441950201988, 0.04547395929694176, 0.08015881478786469, 0.01233689859509468, -0.13522395491600037, -0.07459208369255066, -0.004155059345066547, -0.1354784220457077, 0.03792398422956467, -0.14402739703655243, 0.06448329985141754, -0.19328612089157104, -0.10726810246706009, 0.003941578324884176, -0.04778294265270233, -0.024657659232616425, -0.01587577536702156, -0.03550707548856735, -0.010106482543051243, 0.0005811557057313621, -0.0402989387512207, -0.04090123996138573, -0.03650902211666107, 0.03137332201004028, 0.022537382319569588, 0.09044705331325531, -0.15810377895832062, 0.009543121792376041, -0.034365393221378326, 0.05980561673641205, -0.08264027535915375, 0.012659030966460705, -0.037075225263834, 0.06759753078222275, -0.04373832046985626, -0.012252920307219028, 0.008954309858381748, 0.019855260848999023, 0.11340764909982681, 0.1667940467596054, -0.24442635476589203, 0.037060726433992386, 0.11910318583250046, -0.10648124665021896, -0.1534542441368103, 0.0846504420042038, -0.010950489901006222, -0.012022716924548149, 0.0678594782948494, 0.09568970650434494, 0.11375484615564346, -0.18052488565444946, -0.020759467035531998, 0.036737848073244095, -0.024952512234449387, -0.10500966757535934, 0.04743671417236328, 0.0292984489351511, -0.05402391031384468, -0.014446317218244076, -0.1543165147304535, 0.045294083654880524, -0.06486768275499344, -0.041049178689718246, -0.01599779538810253, -0.07985413074493408, 0.027356380596756935, -0.04059077799320221, -0.021615276113152504, 0.007360783405601978, -0.0073665655218064785, -0.02195342816412449, 0.08444990962743759, -0.010422689840197563, -0.008529875427484512, -0.10204311460256577, 0.1892510950565338, -0.2003103643655777, -0.019722407683730125, -0.09103865921497345, -0.1957768052816391, -0.03449629247188568, 0.13400331139564514, -0.08345478028059006, 0.10521205514669418, 0.04084038734436035, -0.013602322898805141, 0.04073158651590347, 0.0013218800304457545, -0.026991166174411774, 0.0654928982257843, -0.07100047171115875, -0.08902132511138916, -0.010693147778511047, -0.06804221123456955, 0.10419822484254837, -0.10361423343420029, -0.025419438257813454, 0.007099790498614311, 0.08109647780656815, -0.0003985327493865043, 0.08748331665992737, 0.0015168796526268125, 0.053148526698350906, -0.017275171354413033, -0.03138553351163864, 0.012112614698708057, 0.0008834485779516399, -0.05724863335490227, 0.09016120433807373, -0.04435763508081436, 0.193855419754982, 0.12919774651527405, 0.0736008808016777, -0.015918120741844177, -0.005877395160496235, -0.0026038663927465677, 0.04215895012021065, 0.0022580872755497694, -0.0494319386780262, 0.08921728283166885, 0.000749350932892412, 0.061798177659511566, -0.0495975986123085, 0.041479017585515976, 0.025341207161545753, -0.006186703685671091, -0.04297647252678871, 0.020914915949106216, 0.15349121391773224, -0.054013852030038834, 0.07071089744567871, 0.1579209417104721, 0.010365639813244343, -0.0005676085711456835, -0.00032449912396259606, -0.06039884313941002, -0.05076706036925316, -0.06504831463098526, -0.03597969934344292, 0.17251990735530853, -0.08576033264398575, -0.021880654618144035, 0.03293749317526817, 0.018699148669838905, 0.05428970605134964, -0.10644148290157318, -0.04976398125290871, 0.03355654701590538, -0.008491392247378826, -0.1802559792995453, 0.10193349421024323, -0.016315139830112457, 0.08313897252082825, 0.038013871759176254, -0.10375740379095078, 0.008822563104331493, 0.017823295667767525, -0.0583808459341526, 0.15012821555137634, -0.066984623670578, -0.15954020619392395, -0.050749603658914566, 0.0015744928969070315, 0.058206915855407715, 0.03649004176259041, 0.023608218878507614, -0.04686526581645012, -0.06617926061153412, -0.016235312446951866, 0.07237468659877777, 0.03497304767370224, 0.05045010894536972, 0.03157394751906395, -0.03940846398472786, -0.01442329678684473, -0.11182976514101028, -0.020330483093857765, -0.06733814626932144, 0.01702948845922947, 0.056426215916872025, -0.03518028184771538, 0.17170515656471252, 0.09742788225412369, 0.016801659017801285, -0.04540792852640152, 0.016702741384506226, 0.30781206488609314, -0.039550863206386566, 0.052763357758522034, 0.15434736013412476, -0.006168333813548088, 0.02805430255830288, 0.22933702170848846, -0.00274898880161345, -0.09186107665300369, 0.009040625765919685, -0.051705505698919296, -0.03700823709368706, -0.13315372169017792, -0.11026081442832947, -0.052676327526569366, -0.10244984924793243, -0.042351312935352325, -0.005650210194289684, -0.06872919946908951, 0.10704358667135239, 0.05084510147571564, 0.047130074352025986, -0.11583686619997025, 0.015686849132180214, 0.2185508906841278, -0.03797009214758873, 0.08649523556232452, -0.034988392144441605, -0.11137572675943375, 0.06260397285223007, 0.09769603610038757, 0.10910964012145996, 0.033425137400627136, 0.007147279102355242, 0.06984279304742813, 0.08474055677652359, 0.09476712346076965, 0.11223161965608597, -0.011032682843506336, -0.05713677406311035, -0.05045687407255173, -0.025528213009238243, -0.047619231045246124, 0.020067248493433, 0.02382155880331993, -0.08911755681037903, -0.07481501996517181, 0.056567344814538956, 0.028048200532794, 0.033321913331747055, 0.1259898692369461, -0.3003104627132416, -0.006107423920184374, 0.07360661774873734, 0.06896798312664032, -0.0752411037683487, 0.0017505019204691052, 0.10148301720619202, 0.006496627349406481, -0.04267594963312149, 0.060561370104551315, 0.07115573436021805, -0.03619075194001198, 0.03868848830461502, -0.05851804092526436, -0.04255601391196251, 0.003044197801500559, 0.017063116654753685, -0.14623330533504486, 0.16877618432044983, 0.014979424886405468, -0.00452782865613699, 0.0037219757214188576, -0.028640354052186012, -0.009278674609959126, 0.23970046639442444, 0.1284540593624115, 0.0021017566323280334, 0.0885106772184372, -0.05686542019248009, -0.1440737545490265, 0.11133206635713577, -0.042841535061597824, -0.02546517364680767, 0.09142507612705231, -0.003407026408240199, -0.02298053540289402, 0.021637145429849625, 0.14079727232456207, -0.11229953169822693, -0.06046489626169205, 0.008270084857940674, 0.08834569901227951, 0.04317168518900871, -0.02339319698512554, -0.06336665898561478, -0.08770634979009628, 0.008358693681657314, -0.08326482027769089, -0.06903436034917831, -0.07965844124555588, -0.058659378439188004, 0.1392471045255661, -0.08545172959566116, 0.051292262971401215, -0.0023778267204761505, 0.09757546335458755, -0.03787100315093994, -0.07486405968666077, 0.06297295540571213, -0.09606650471687317, -0.019922101870179176, -0.09877500683069229, 0.059417903423309326, -0.0154562471434474, -0.020715860649943352, 0.06778112053871155, 0.01666131056845188, -0.0561261847615242, -0.08921077847480774, -0.07464183121919632, 0.13177594542503357, -0.007499938365072012, -0.05176786333322525, -0.0240253284573555, -0.07502473890781403, 0.05214887484908104, 0.09405628591775894, 0.11397329717874527, 0.12025415152311325, -0.10833374410867691, 0.024883270263671875, 0.1541559398174286, -0.010509024374186993, -0.26052650809288025, -0.03223206475377083, -0.06298240274190903, 0.08625198155641556, -0.05221880227327347, -0.04448346793651581, 0.08490990102291107, 0.006212967913597822, -0.052263133227825165, 0.11097169667482376, -0.2065345197916031, -0.08032606542110443, 0.1252950131893158, 0.036128297448158264, 0.3482084274291992, -0.07345574349164963, -0.039576951414346695, -0.009284915402531624, -0.24541251361370087, 0.10374097526073456, -0.050856418907642365, 0.008294143714010715, -0.030888361856341362, 0.12966221570968628, 0.030565958470106125, -0.044460512697696686, 0.16346651315689087, 0.03028896637260914, 0.03714287281036377, -0.02673168107867241, -0.1102856919169426, 0.027597341686487198, -0.049299754202365875, 0.06169793754816055, 0.04470457136631012, 0.0856846421957016, -0.07728517055511475, -0.058298636227846146, -0.034916460514068604, -0.0073555512353777885, -0.054739102721214294, -0.056239061057567596, 0.0038133447524160147, 0.007981590926647186, -0.023921137675642967, -0.024673203006386757, -0.018793750554323196, -0.04049079865217209, -0.09538572281599045, -0.10411639511585236, 0.07111401110887527, -0.07510213553905487, 0.06933820247650146, 0.04325643554329872, -0.07277277857065201, 0.11461416631937027, -0.09116064012050629, 0.05788402259349823, 0.11279447376728058, -0.015082133002579212, 0.007677631452679634, 0.05757734924554825, 0.005461782217025757, 0.011047662235796452, 0.10333617776632309, -0.13727350533008575, -0.08794180303812027, 0.032886553555727005, -0.10072777420282364, -0.04700586572289467, 0.08252653479576111, 0.16319677233695984, -0.017259931191802025, -0.03696608170866966, -0.04515260085463524, 0.005445909686386585, -0.030963122844696045, 0.010227078571915627, 0.09609726071357727, 0.015819786116480827, -0.08304940909147263, -0.032200176268815994, 0.034025415778160095, -0.0668601542711258, -0.018717404454946518, -0.0654812678694725, -0.1000991240143776, -0.09714838117361069, -0.11066269129514694, 0.19774560630321503, -0.16673678159713745, -0.05180822312831879, -0.06413649022579193, -0.093169666826725, 0.008120710961520672, 0.17905879020690918, 0.06293118745088577, 0.08609673380851746, 0.010561788454651833, -0.07590936869382858, -0.07798470556735992, 0.022985482588410378, -0.022572806105017662, 0.05534309521317482, -0.1544475555419922, -0.041249290108680725, -0.08205019682645798, 0.05047740042209625, -0.05500911921262741, 0.050786104053258896, -0.10877955704927444, -0.03119506500661373, -0.3047414720058441, 0.03443998470902443, -0.07309213280677795, 0.0032278187572956085, -0.021596409380435944, -0.08325107395648956, -0.0800628513097763, 0.0036403366830199957, -0.017203396186232567, 0.04037689417600632, -0.0068892487324774265, 0.03698582947254181, -0.14129026234149933, -0.05135619640350342, 0.014463989995419979, -0.04930571839213371, 0.1466660499572754, 0.00010108053538715467, 0.00811669323593378, 0.014288627542555332, -0.0763503685593605, -0.028587620705366135, 0.03327100723981857, 0.0373329296708107, 0.12793076038360596, -0.05965961888432503, 0.03772546350955963, 0.022833483293652534, -0.007351191248744726, -0.005886695347726345, 0.04716242477297783, -0.042293574661016464, -0.0029719541780650616, 0.013647705316543579, -0.023202335461974144, -0.0034111961722373962, -0.057720329612493515, 0.1459290087223053, 0.06542335450649261, 0.060970913618803024, -0.022016657516360283, 0.04771606996655464, -0.05551721155643463, 0.0098705580458045, -0.061898861080408096, 0.023487558588385582, -0.08670520782470703, -0.05002647638320923, 0.034671831876039505, -0.0501440167427063, 0.18661800026893616, -0.02048698626458645, 0.1084507629275322, -0.0056452336721122265, 0.046496592462062836, 0.051930446177721024, 0.035797398537397385, 0.1764654517173767, 0.04188059642910957, -0.02418089285492897, -0.11985830217599869, 0.042445551604032516, 0.045430492609739304, 0.02298952452838421, 0.07800563424825668, 0.08131066709756851, 0.08837281912565231, 0.09310844540596008, 0.08418635278940201, -0.037586748600006104, -0.06895486265420914, -0.1250673234462738, -0.11107999831438065, -0.04099112004041672, -0.00987127237021923, 0.015025733970105648, 0.07335731387138367, -0.03438715636730194, -0.07537765800952911, -0.02768564596772194, -0.03183399513363838, -0.08461906015872955, 0.018431710079312325, -0.10367563366889954, -0.049653299152851105, -0.021230213344097137, -0.1273200958967209, -0.12345555424690247, 0.015326998196542263, -0.027230778709053993, -0.04479553550481796, 0.060745105147361755, 0.10179876536130905, 0.0078010051511228085, 0.02952207438647747, 0.07676876336336136, 0.06615953892469406, 0.061648234724998474, 0.02756553143262863, -0.010582594200968742, 0.04113428667187691, -0.04308752715587616, 0.0028617929201573133, -0.008780061267316341, 0.03076796606183052, -0.011506017297506332, -0.0260350052267313, -0.0979171097278595, 0.03219734877347946, -0.02302296832203865, 0.11066535860300064, 0.04799382761120796, 0.00969638954848051, 0.029999516904354095, 0.10690265148878098, 0.0016611464088782668, -0.07459685206413269, -0.12619172036647797, 0.15181060135364532, -0.03521309420466423, 0.12003539502620697, 0.012403714470565319, -0.05338061600923538, -0.04744439572095871, 0.20620323717594147, 0.14258690178394318, -0.17108330130577087, 0.031014053151011467, 0.01549492496997118, 0.02342413179576397, -0.040977977216243744, 0.06851660460233688, 0.07321010529994965, 0.2608744204044342, -0.04044725000858307, -0.11074396967887878, -0.11217859387397766, 0.021523525938391685, 0.04521786421537399, 0.0013303657760843635, -0.028981288895010948, -0.022354431450366974, -0.07624205946922302, 0.08668458461761475, -0.08214820921421051, -0.006213179789483547, 0.05761784315109253, -0.14324398338794708, -0.10950995981693268, -0.01038152351975441, 0.04227718338370323, -0.027156883850693703, 0.082551009953022, -0.09017901867628098, -0.027463862672448158, 0.20697593688964844, -0.03977019339799881, -0.05461566895246506, 0.04609225317835808, 0.06463631987571716, 0.19430088996887207, 0.15315380692481995, -0.0029588008765131235, 0.06163600832223892, 0.12076254189014435, 0.08841648697853088, -0.1493460088968277, 0.08195798099040985, 0.05757686868309975, -0.02575887180864811, 0.0037897794973105192, -0.11384410411119461, -0.0335472971200943, -0.07855095714330673, 0.08896414190530777, -0.0946129560470581, 0.03317907825112343, 0.04322473704814911, -0.02650599740445614, -0.12224602699279785, 0.05351300910115242, -0.06430844962596893, 0.11988954246044159, -0.003674790496006608, -0.05548578500747681, 0.010902700014412403, 0.02604173868894577, 0.06252608448266983, 0.04774747043848038, 0.109093576669693, -0.03293515741825104, -0.052170395851135254, 0.000055535325373057276, 0.04344235733151436, 0.01586371846497059, -0.1990429013967514, 0.0005050068139098585, -0.07803984731435776, 0.028774835169315338, -0.015121418051421642, 0.05180561542510986, 0.05860433354973793, 0.04702204838395119, -0.007821699604392052, 0.07955057919025421, -0.03294287994503975, 0.0593952015042305, -0.08730180561542511, -0.13943098485469818 ]
null
null
transformers
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base" (a multilingual version of DeBERTa V3) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "microsoft/mdeberta-v3-base" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 2 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * f1: 0.95 * precision: 0.94 * recall: 0.96
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
token-classification
akdeniz27/mDeBERTa-v3-base-turkish-ner
[ "transformers", "pytorch", "safetensors", "deberta-v2", "token-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base" (a multilingual version of DeBERTa V3) using a reviewed version of well known Turkish NER dataset (URL # Fine-tuning parameters: # How to use: Pls refer "URL for entity grouping with aggregation_strategy parameter. # Reference test results: * f1: 0.95 * precision: 0.94 * recall: 0.96
[ "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96" ]
[ "TAGS\n#transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n", "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96" ]
[ 49, 64, 8, 24, 24 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #deberta-v2 #token-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"microsoft/mDeBERTa-v3-base\"\n(a multilingual version of DeBERTa V3) \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* f1: 0.95\n* precision: 0.94\n* recall: 0.96" ]
[ -0.06947502493858337, -0.07918969541788101, -0.0031754239462316036, 0.02244173176586628, 0.10183373838663101, -0.01412914413958788, 0.10511715710163116, -0.03218595311045647, -0.06384379416704178, 0.047775302082300186, 0.07144945859909058, 0.01429302990436554, 0.000024580886019975878, 0.09285775572061539, -0.05187835171818733, -0.1392192840576172, 0.0825653001666069, -0.018893547356128693, 0.11508893221616745, 0.13259972631931305, 0.10457070916891098, -0.04255276545882225, 0.04585148021578789, 0.05660167708992958, -0.08314783126115799, 0.08793468773365021, -0.023106124252080917, -0.10408701002597809, 0.11166471987962723, -0.03159555420279503, 0.13412800431251526, -0.01981046050786972, -0.010322147980332375, -0.14287717640399933, 0.023731771856546402, -0.04862945154309273, -0.03446102514863014, -0.03524818643927574, 0.0991922914981842, -0.14275136590003967, 0.1606757938861847, -0.041532810777425766, -0.02585711143910885, -0.05155011638998985, -0.060915328562259674, -0.07168649882078171, -0.06613518297672272, 0.1541624665260315, 0.08758818358182907, 0.09486439824104309, -0.017480311915278435, 0.12948928773403168, -0.13354122638702393, 0.09450966864824295, 0.07477039098739624, -0.28966671228408813, -0.09026730060577393, 0.0032279074657708406, -0.07994478940963745, -0.02829243242740631, 0.09740659594535828, 0.06848961859941483, 0.01210467703640461, 0.04150921106338501, -0.006692621856927872, -0.015356157906353474, -0.17613407969474792, -0.0314774252474308, -0.1069217398762703, -0.03842537850141525, 0.18973857164382935, 0.05722283571958542, 0.03281518816947937, 0.0111400056630373, -0.061882343143224716, -0.015019243583083153, -0.021910399198532104, -0.09378150850534439, -0.03684002906084061, -0.08982891589403152, 0.05024993047118187, 0.04103030636906624, -0.04906666651368141, -0.09987515956163406, -0.24515141546726227, 0.2213279902935028, 0.06739829480648041, 0.04817216098308563, -0.06022248417139053, 0.059626396745443344, -0.07269788533449173, -0.05685272067785263, -0.03844691440463066, -0.0009682733216322958, -0.09912890195846558, -0.018565624952316284, -0.06168384850025177, -0.005275774747133255, 0.12697269022464752, 0.1424061357975006, 0.06682112067937851, 0.0302553940564394, 0.04127189889550209, 0.05031899735331535, -0.09656103700399399, 0.12417034804821014, -0.07200727611780167, -0.072419174015522, 0.05387650057673454, -0.062050048261880875, 0.05962328985333443, 0.05146384984254837, -0.08378621935844421, -0.07559458911418915, 0.22197727859020233, 0.07817152887582779, -0.04074612632393837, 0.12376978993415833, -0.006707895081490278, 0.022475292906165123, -0.014327283948659897, -0.08083124458789825, -0.0154018709436059, 0.021119067445397377, -0.09759920835494995, -0.03229581192135811, -0.04030531272292137, -0.019369278103113174, -0.07253258675336838, 0.05125671625137329, 0.02687305025756359, -0.01259663887321949, 0.016567697748541832, -0.09460345655679703, 0.044258832931518555, -0.10605550557374954, -0.00288359634578228, -0.2949349284172058, -0.2386864870786667, 0.0157376267015934, 0.008079279214143753, -0.0720452070236206, 0.08093804121017456, -0.08438656479120255, -0.004152081441134214, -0.03416960686445236, -0.08005426824092865, -0.11268815398216248, -0.09113293886184692, 0.000422674638684839, 0.08260129392147064, 0.07798251509666443, -0.049008142203092575, 0.043632686138153076, -0.10856035351753235, 0.004162981174886227, -0.058379802852869034, 0.09314026683568954, -0.054516274482011795, 0.050971902906894684, -0.1398501992225647, -0.02726602740585804, -0.05684740096330643, -0.04444387927651405, 0.06424452364444733, 0.08326424658298492, -0.07573781907558441, -0.041932906955480576, 0.009607041254639626, -0.11744570732116699, -0.11514927446842194, 0.13604269921779633, 0.007807794958353043, 0.015590609982609749, 0.11890066415071487, 0.24958735704421997, 0.08386394381523132, -0.008088686503469944, -0.012975084595382214, 0.004920716397464275, -0.1568068563938141, -0.08301065862178802, -0.0008290943806059659, 0.07166986167430878, -0.08585617691278458, 0.08024188876152039, -0.09502042829990387, 0.1188705787062645, -0.02973279170691967, -0.04534105584025383, 0.01976010948419571, -0.06559503078460693, 0.09335460513830185, -0.060887183994054794, 0.11180013418197632, -0.062207359820604324, 0.016469862312078476, 0.04611583799123764, 0.032456137239933014, -0.01708044670522213, 0.010248996317386627, -0.10145162045955658, 0.23099105060100555, -0.12913106381893158, 0.041733600199222565, -0.16686055064201355, -0.12145168334245682, -0.025966541841626167, -0.029685216024518013, 0.03691808506846428, -0.02377179265022278, 0.022563772276043892, -0.05659475550055504, -0.005499159451574087, -0.01070842519402504, 0.06462401151657104, 0.0681328997015953, 0.01401493139564991, -0.0716569572687149, 0.05338529497385025, 0.0315120667219162, 0.09510482102632523, -0.018968313932418823, 0.017449287697672844, 0.006034075282514095, 0.120818130671978, -0.08479981869459152, 0.10697518289089203, -0.034970641136169434, 0.06081587076187134, -0.015590242110192776, -0.007904727011919022, 0.07884302735328674, -0.0006669163121841848, -0.0871329978108406, 0.05816936120390892, -0.050919052213430405, 0.21324104070663452, 0.0936717689037323, -0.015623758547008038, -0.06273247301578522, 0.04655973240733147, -0.01639036275446415, -0.052158962935209274, 0.06710293889045715, 0.0565793514251709, 0.14642319083213806, 0.02057938650250435, 0.10557657480239868, -0.09023614972829819, -0.027307428419589996, 0.014821660704910755, -0.05940060690045357, -0.05487600713968277, 0.11537062376737595, -0.05097637698054314, -0.24607372283935547, 0.10752280801534653, 0.0729975700378418, -0.15435673296451569, 0.07951898127794266, 0.03214011341333389, -0.017606696113944054, 0.009888255968689919, 0.047938428819179535, 0.009962796233594418, 0.04916961118578911, -0.07982106506824493, -0.017253020778298378, 0.03706342726945877, 0.07806651294231415, 0.05306880548596382, -0.04989410191774368, 0.02899075113236904, 0.01489626057446003, -0.057523246854543686, -0.008901407942175865, 0.06914004683494568, 0.002140326425433159, 0.11678421497344971, 0.006961354520171881, -0.1954175978899002, 0.07225973159074783, 0.0018143532797694206, -0.09790075570344925, 0.16548658907413483, -0.058062463998794556, -0.29722410440444946, -0.0953206866979599, 0.0028563279192894697, -0.2175162136554718, -0.046886131167411804, 0.041169922798871994, -0.03354574367403984, 0.022303219884634018, -0.024230262264609337, 0.02834351174533367, -0.02429354190826416, -0.0017198992427438498, -0.08343105018138885, -0.004369817208498716, 0.05027414858341217, -0.06862470507621765, -0.03021642379462719, -0.12074217945337296, -0.039356231689453125, 0.10281550884246826, -0.10945902019739151, 0.14691342413425446, 0.06567000597715378, -0.11922542750835419, 0.04666343331336975, -0.03057098388671875, 0.11661745607852936, -0.08203145861625671, -0.01434363517910242, 0.10601218044757843, -0.04465966299176216, -0.0022487835958600044, 0.1390058696269989, -0.0306516382843256, -0.03204963728785515, 0.00814009364694357, -0.012950227595865726, -0.04101782292127609, -0.1530228853225708, -0.13816311955451965, -0.0652039498090744, -0.05628655105829239, -0.003859595861285925, 0.053643304854631424, 0.04330025240778923, 0.026376765221357346, 0.025500481948256493, -0.033329322934150696, 0.014336258172988892, 0.05115857347846031, 0.3872326612472534, 0.06583476066589355, 0.08265364915132523, -0.07105035334825516, -0.0977037250995636, 0.026905857026576996, 0.042059533298015594, 0.20053625106811523, 0.059006620198488235, -0.02105765976011753, 0.07364288717508316, 0.08296113461256027, 0.08395180106163025, 0.10187043994665146, -0.025703566148877144, 0.002542582806199789, 0.02631641924381256, -0.04537495598196983, -0.010264881886541843, -0.017230866476893425, -0.05421724542975426, -0.0009869309142231941, -0.026148581877350807, -0.05323079973459244, 0.16565535962581635, 0.0738493949174881, 0.04792754724621773, -0.3650968074798584, -0.0902678444981575, -0.0783185288310051, -0.03888854756951332, 0.012063310481607914, -0.014782432466745377, -0.06848620623350143, -0.05354170873761177, 0.1513650268316269, -0.005827406421303749, 0.07860288769006729, -0.07838396728038788, 0.04205720126628876, -0.03908918797969818, 0.0008876799256540835, 0.03401903063058853, 0.12679432332515717, -0.18355347216129303, 0.2571304142475128, -0.005522729363292456, 0.047870248556137085, -0.009765888564288616, -0.08069577813148499, 0.03502100333571434, 0.1337321549654007, 0.07260879874229431, 0.011579858139157295, -0.04253993555903435, -0.04867207631468773, -0.08572741597890854, 0.10891392081975937, -0.005937695037573576, 0.03731703385710716, 0.045553479343652725, 0.003905781777575612, 0.004308213945478201, -0.007475394755601883, -0.012139108031988144, -0.16387110948562622, -0.07120577991008759, -0.031774770468473434, 0.10443432629108429, 0.04632096365094185, -0.013578128069639206, -0.06447817385196686, -0.11750876158475876, 0.17466004192829132, -0.14158158004283905, -0.06871361285448074, -0.07250351458787918, 0.04087167978286743, 0.027395645156502724, -0.09739544242620468, 0.010593540966510773, -0.053751390427351, -0.005663661751896143, -0.006700371857732534, -0.1590670496225357, 0.016996635124087334, -0.07171835750341415, -0.020520269870758057, 0.024278616532683372, 0.03180424124002457, 0.043540339916944504, -0.020693093538284302, 0.07610838860273361, -0.017071790993213654, -0.005334842950105667, -0.0723533108830452, -0.04210738092660904, 0.11699044704437256, -0.013383475132286549, 0.06754156947135925, 0.01926402561366558, -0.15292273461818695, -0.06258030235767365, 0.0680743083357811, 0.14839398860931396, 0.04964020475745201, -0.05285446718335152, 0.032237470149993896, 0.171177476644516, -0.002090970054268837, -0.22314104437828064, -0.05212712287902832, 0.026416324079036713, 0.04832400754094124, -0.05973204970359802, 0.03107600472867489, 0.12161003798246384, 0.13924486935138702, -0.03539411351084709, 0.023310022428631783, -0.1364014893770218, -0.09865738451480865, 0.2251451313495636, 0.025096766650676727, 0.3072665333747864, -0.02316337078809738, -0.03822460025548935, -0.05266697704792023, -0.04879021644592285, -0.05044395104050636, -0.06255552917718887, 0.058203309774398804, -0.06503523141145706, 0.1113305538892746, -0.010247201658785343, 0.00029436874319799244, 0.11366705596446991, 0.06395302712917328, 0.06299834698438644, -0.0721639096736908, 0.02854085899889469, 0.08468740433454514, -0.08409635722637177, 0.13159261643886566, -0.019173678010702133, 0.05364237725734711, 0.024675531312823296, -0.07893959432840347, -0.048279911279678345, 0.1883377730846405, 0.057126857340335846, 0.0369708389043808, -0.036490775644779205, 0.006640769075602293, -0.0251302532851696, -0.016203565523028374, 0.046171654015779495, -0.034805625677108765, -0.0070204054936766624, 0.015507658012211323, 0.06633606553077698, -0.056736283004283905, 0.017410824075341225, 0.003021571086719632, -0.01932612434029579, 0.08209607005119324, 0.02567862905561924, 0.0030313096940517426, 0.18173685669898987, -0.05140756443142891, 0.04122840613126755, 0.04774867743253708, -0.07264292240142822, 0.0034009297378361225, 0.12392901629209518, -0.0745033547282219, -0.08011040836572647, 0.0039452118799090385, -0.2193187028169632, 0.026795772835612297, 0.1596195548772812, 0.11927805095911026, -0.11400157958269119, 0.03444257378578186, -0.000023645558030693792, -0.05745931342244148, -0.05315302312374115, 0.12217964977025986, 0.013363548554480076, 0.015973811969161034, -0.07551250606775284, 0.09814568608999252, 0.04523172974586487, -0.04643901810050011, 0.006427273619920015, -0.07236101478338242, -0.17729444801807404, -0.07168468087911606, -0.019607428461313248, 0.19624194502830505, -0.05396277830004692, -0.17745067179203033, -0.11617777496576309, -0.1288556158542633, 0.040039099752902985, 0.13781657814979553, 0.1103346049785614, 0.04066823422908783, -0.05444759130477905, -0.033046621829271317, -0.03243980556726456, 0.09869407117366791, 0.10695663839578629, 0.0483204610645771, -0.1996372491121292, -0.06323351711034775, 0.02689981460571289, 0.09066703915596008, -0.0638619065284729, -0.047903161495923996, -0.08124839514493942, 0.06470641493797302, -0.2579413950443268, 0.004877504892647266, -0.1211278960108757, 0.04829155281186104, 0.042198918759822845, -0.014501143246889114, -0.09320936352014542, 0.05334173142910004, -0.028318077325820923, 0.03334824740886688, -0.010997732169926167, 0.03872755542397499, -0.12016833573579788, -0.028803160414099693, -0.018232354894280434, -0.02099752239882946, 0.13477905094623566, 0.15514469146728516, -0.03829320892691612, 0.1052863597869873, -0.16179795563220978, -0.05645614117383957, 0.07861337810754776, 0.057574961334466934, 0.07194952666759491, -0.04197530075907707, 0.047563888132572174, 0.1311919391155243, -0.017487559467554092, 0.045403022319078445, 0.019535856321454048, -0.06782563030719757, -0.016771335154771805, -0.1323913335800171, -0.02648807317018509, -0.04724925011396408, -0.014035578817129135, 0.07057160884141922, 0.1349547952413559, 0.1298527717590332, -0.10949429124593735, -0.020134247839450836, -0.000923396903090179, 0.012171357870101929, -0.0039093042723834515, -0.15850146114826202, -0.09857814759016037, -0.08533552289009094, 0.04728149250149727, -0.018412591889500618, 0.21547161042690277, 0.08584170788526535, 0.022102857008576393, -0.014122417196631432, -0.023949380964040756, -0.019738811999559402, -0.010652145370841026, 0.0589614175260067, 0.019156120717525482, -0.007386802230030298, -0.05856644734740257, -0.001968064345419407, 0.04960141330957413, -0.062172140926122665, 0.12310632318258286, 0.16788671910762787, -0.09342531114816666, 0.1074337586760521, 0.13195249438285828, -0.03500891849398613, -0.06966187059879303, -0.14352473616600037, -0.12698709964752197, 0.07163163274526596, 0.08890362828969955, -0.03750185668468475, 0.23311637341976166, -0.008290106430649757, -0.03588758036494255, -0.009851144626736641, -0.056851912289857864, -0.05918574333190918, -0.21655935049057007, -0.12007726728916168, -0.15415222942829132, -0.004284604452550411, -0.03359551727771759, -0.14844290912151337, 0.08905521780252457, 0.05510949343442917, -0.07441797107458115, 0.14532245695590973, 0.015147841535508633, -0.045794516801834106, 0.10617534816265106, -0.07886271178722382, -0.05675525963306427, 0.06441566348075867, -0.03880440816283226, -0.018673477694392204, 0.01971943862736225, 0.0232659000903368, 0.036028165370225906, 0.015801314264535904, 0.010707790032029152, -0.0756160095334053, -0.039460767060518265, -0.03957922011613846, 0.05846576392650604, -0.03792619705200195, 0.010047500021755695, 0.08698950707912445, -0.074391208589077, 0.005733874626457691, 0.10052686184644699, 0.04408353567123413, -0.1798943281173706, -0.0244637168943882, 0.28863468766212463, 0.04063645005226135, 0.050156936049461365, -0.0018713038880378008, -0.03794927895069122, -0.008379554376006126, 0.18689672648906708, 0.26181939244270325, 0.04133868217468262, 0.017422813922166824, -0.061563216149806976, 0.008732403628528118, 0.025112731382250786, 0.05041668564081192, 0.052341870963573456, 0.2181742638349533, 0.013267881236970425, -0.025481294840574265, -0.0818309485912323, 0.0004588221199810505, -0.07631479948759079, 0.001534932991489768, 0.05940831080079079, -0.06235095486044884, -0.1011802926659584, 0.1490655541419983, -0.15475715696811676, -0.02552623115479946, 0.08796067535877228, 0.06466222554445267, -0.1587497442960739, 0.00328821805305779, 0.050175584852695465, -0.020986268296837807, 0.039476580917835236, -0.1014079824090004, -0.011852534487843513, -0.05867798626422882, 0.013882861472666264, -0.10776766389608383, -0.06861501187086105, 0.06251206248998642, 0.19719548523426056, 0.06854252517223358, -0.0037628053687512875, 0.11483320593833923, 0.07648169994354248, 0.07948324829339981, -0.0903966948390007, 0.1606031358242035, 0.010652195662260056, 0.05229315906763077, 0.13038185238838196, -0.07288423180580139, 0.02328699827194214, -0.0562848262488842, 0.1108466386795044, -0.07752928137779236, 0.013641949743032455, 0.011587330140173435, 0.011160561814904213, -0.1192886233329773, 0.07871339470148087, 0.004016002640128136, 0.06736993044614792, 0.14805510640144348, -0.037854909896850586, 0.04447689652442932, -0.057923294603824615, -0.0029614949598908424, 0.044969912618398666, 0.0245484858751297, 0.04856802523136139, -0.1514045149087906, -0.014405161142349243, 0.004819950088858604, 0.0006436910480260849, -0.10783328115940094, -0.035745445638895035, -0.05338125675916672, -0.01896023005247116, 0.04194321483373642, 0.07319433242082596, 0.09452376514673233, 0.03290741890668869, -0.018936196342110634, -0.11678548157215118, -0.0031275576911866665, 0.08107705414295197, -0.09488831460475922, -0.09210460633039474 ]
null
null
transformers
# Albanian Named Entity Recognition (NER) Model This model is the fine-tuned model of "bert-base-multilingual-cased" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "bert-base-multilingual-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9719268816143276 * f1: 0.9192366826444787 * precision: 0.9171629669734704 * recall: 0.9213197969543148
{"language": "sq", "widget": [{"text": "Varianti AY.4.2 \u00ebsht\u00eb m\u00eb i leht\u00eb p\u00ebr t'u transmetuar, thot\u00eb Francois Balu, drejtor i Institutit t\u00eb Gjenetik\u00ebs n\u00eb Lond\u00ebr."}]}
token-classification
akdeniz27/mbert-base-albanian-cased-ner
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "sq", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sq" ]
TAGS #transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us
# Albanian Named Entity Recognition (NER) Model This model is the fine-tuned model of "bert-base-multilingual-cased" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" paper. # Fine-tuning parameters: # How to use: Pls refer "URL for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9719268816143276 * f1: 0.9192366826444787 * precision: 0.9171629669734704 * recall: 0.9213197969543148
[ "# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us \n", "# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148" ]
[ 45, 69, 8, 24, 53 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sq #autotrain_compatible #endpoints_compatible #region-us \n# Albanian Named Entity Recognition (NER) Model\nThis model is the fine-tuned model of \"bert-base-multilingual-cased\" \nusing the famous WikiANN dataset presented\nin the \"Cross-lingual Name Tagging and Linking for 282 Languages\" paper.# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9719268816143276\n* f1: 0.9192366826444787\n* precision: 0.9171629669734704\n* recall: 0.9213197969543148" ]
[ -0.1251903772354126, 0.03358101099729538, -0.0019165704725310206, 0.11291969567537308, 0.07145077735185623, -0.012200049124658108, 0.14103613793849945, 0.033276528120040894, 0.10266110301017761, 0.0428292378783226, 0.06561777740716934, 0.003106377087533474, 0.03734198585152626, 0.015186470001935959, -0.09468945860862732, -0.17145459353923798, 0.12648753821849823, -0.020883729681372643, 0.11128001660108566, 0.11376626789569855, 0.08250469714403152, -0.07743167132139206, 0.06496572494506836, 0.05075427144765854, -0.11613849550485611, 0.08130771666765213, -0.013167132623493671, -0.10143397748470306, 0.12346958369016647, 0.021181071177124977, 0.08636199682950974, 0.007944120094180107, 0.022677849978208542, -0.13744033873081207, 0.023236200213432312, -0.05731768161058426, -0.012881854549050331, -0.029681112617254257, 0.08163196593523026, -0.11519251763820648, -0.03515400364995003, 0.027103206142783165, -0.03271544352173805, -0.05715734884142876, -0.018409298732876778, -0.10116009414196014, -0.01285658311098814, 0.18924589455127716, 0.01895349659025669, 0.04406554624438286, -0.01474695559591055, 0.13712981343269348, -0.10927131026983261, 0.1106560230255127, 0.06878267228603363, -0.27454274892807007, -0.05946411192417145, 0.01311678159981966, -0.07912687212228775, -0.06343308836221695, 0.005963827949017286, 0.07093383371829987, 0.0004844764480367303, 0.03977459296584129, -0.060776159167289734, -0.03370912745594978, -0.24998624622821808, -0.012803109362721443, -0.09119671583175659, -0.015582614578306675, 0.26079875230789185, 0.08984983712434769, 0.001208578352816403, -0.00255134841427207, -0.0733911320567131, 0.13242720067501068, -0.02372926101088524, -0.08320821821689606, -0.019423944875597954, -0.04785303771495819, 0.06934523582458496, 0.0258902907371521, -0.018506361171603203, -0.05715803802013397, -0.17756608128547668, 0.3557316064834595, 0.08760442584753036, 0.10394758731126785, -0.021700933575630188, 0.03918100520968437, -0.0887819305062294, -0.07520551234483719, -0.026151353493332863, -0.004662599414587021, -0.032196030020713806, 0.03876934200525284, -0.018659351393580437, 0.0502714104950428, 0.1314103603363037, 0.11051594465970993, 0.01665729656815529, 0.00945616140961647, 0.01543250773102045, 0.0885343849658966, -0.05680342763662338, 0.14039044082164764, -0.11365983635187149, -0.035068072378635406, 0.02809915877878666, -0.01767701655626297, 0.016942020505666733, 0.01926352269947529, -0.11243811994791031, -0.07365827262401581, 0.1504983901977539, 0.05379448086023331, -0.04818432778120041, 0.13261781632900238, 0.007952645421028137, -0.02476937510073185, 0.03283575922250748, -0.12690982222557068, 0.017786255106329918, 0.010190109722316265, -0.12205161154270172, 0.05592314898967743, -0.05816411226987839, 0.020159009844064713, -0.1397256851196289, 0.023475797846913338, 0.01713392697274685, 0.04509987309575081, 0.03665297478437424, -0.12061993032693863, 0.07575345784425735, -0.0011515102814882994, -0.01885160245001316, -0.20930150151252747, -0.16786162555217743, 0.0006869221106171608, 0.013602005317807198, -0.05277613177895546, 0.06031542643904686, -0.10804412513971329, 0.00742846867069602, 0.011565296910703182, -0.04943213611841202, -0.19510923326015472, -0.07545791566371918, -0.016754426062107086, -0.035459164530038834, 0.0649200975894928, -0.1235489770770073, 0.06211412325501442, -0.14499877393245697, 0.00592195475474, -0.12474027276039124, 0.030252160504460335, -0.05135974660515785, -0.01548930536955595, -0.11294634640216827, -0.01517700869590044, 0.012918648310005665, 0.004152071196585894, 0.047986000776290894, 0.12994368374347687, -0.0407237634062767, -0.01769206114113331, 0.11396145075559616, -0.13678745925426483, -0.11667513102293015, 0.20162354409694672, -0.0070486413314938545, 0.004147392697632313, 0.09238974750041962, 0.2863366901874542, 0.029862485826015472, 0.033745408058166504, -0.020023338496685028, 0.013898327946662903, -0.09872982650995255, -0.0771210640668869, 0.02953743375837803, 0.015357007272541523, -0.04355083778500557, 0.0889502689242363, -0.03376823663711548, 0.049171242862939835, -0.03607426583766937, -0.04035346210002899, -0.036274805665016174, -0.055331431329250336, 0.11197417974472046, -0.024790355935692787, 0.06488140672445297, -0.06822466105222702, -0.006717505864799023, 0.03644124045968056, 0.07743974775075912, -0.06464084982872009, 0.04852072149515152, -0.11443497240543365, 0.23232261836528778, -0.13266588747501373, 0.021434523165225983, -0.12856154143810272, -0.09779760241508484, 0.02799154445528984, 0.0909145325422287, -0.007293103262782097, -0.11804462969303131, 0.0491989403963089, -0.04741869866847992, -0.02473054639995098, -0.013035012409090996, 0.13531970977783203, 0.024694034829735756, -0.022344820201396942, -0.09417329728603363, -0.02522631362080574, 0.02620135433971882, 0.030312430113554, -0.1242147758603096, -0.006701998878270388, 0.00717986049130559, 0.1035860925912857, -0.09305985271930695, 0.09187190234661102, -0.041531164199113846, 0.030626872554421425, -0.03400659188628197, 0.0008272333652712405, 0.10363777726888657, -0.029231304302811623, -0.02401387318968773, 0.1629655957221985, 0.01394455973058939, 0.23870041966438293, 0.0874503031373024, -0.08471459150314331, 0.012694119475781918, -0.020184075459837914, 0.01963028870522976, -0.054714396595954895, 0.03686043620109558, 0.06021362543106079, 0.09713719040155411, 0.027549896389245987, 0.10443062335252762, -0.12319779396057129, 0.03872554004192352, 0.019537469372153282, -0.033210597932338715, -0.03744109719991684, 0.16656635701656342, -0.016889093443751335, -0.19816258549690247, 0.11533720046281815, 0.07778224349021912, -0.08090559393167496, 0.08627993613481522, -0.004875486716628075, -0.021255584433674812, 0.02472255565226078, 0.07622870802879333, -0.05054343864321709, 0.041876357048749924, -0.06818857043981552, -0.027923323214054108, 0.05247217416763306, 0.08428718894720078, -0.02378399670124054, -0.09482713788747787, 0.01192986685782671, -0.008593798615038395, -0.07224138081073761, -0.0019177477806806564, 0.02293897047638893, 0.03760397434234619, 0.13268764317035675, 0.0038267336785793304, -0.22620263695716858, 0.03717012703418732, -0.021962735801935196, -0.06268168240785599, 0.21357998251914978, -0.03325570374727249, -0.24713365733623505, -0.14948569238185883, -0.055461689829826355, -0.2808501422405243, -0.0761258602142334, 0.030931057408452034, -0.05114474147558212, -0.0009848637273535132, -0.07274479418992996, 0.02955419011414051, -0.04650167003273964, -0.0790567621588707, -0.11626369506120682, -0.05198885127902031, -0.029944611713290215, -0.10810539871454239, -0.059869177639484406, -0.10639064759016037, -0.034051306545734406, 0.08008196204900742, -0.09724432229995728, 0.09200730919837952, 0.09116283804178238, -0.10936782509088516, 0.06339887529611588, -0.005249043460935354, 0.06992073357105255, -0.06351593136787415, 0.06741153448820114, 0.09943817555904388, -0.09315213561058044, 0.056747276335954666, 0.14395885169506073, 0.028840409591794014, -0.022783972322940826, -0.02816828526556492, 0.013947222381830215, -0.024550920352339745, -0.16706782579421997, -0.16983413696289062, -0.026663849130272865, -0.037626732140779495, 0.05138276889920235, 0.07650379836559296, 0.008082949556410313, 0.07331978529691696, -0.01783629320561886, -0.03733903169631958, -0.008510537445545197, 0.03552927449345589, 0.2977565824985504, 0.07262162119150162, 0.10742684453725815, -0.03773221746087074, -0.0694953054189682, 0.014098730869591236, 0.07554755359888077, 0.2201562076807022, 0.04549604281783104, -0.01622338779270649, 0.07018349319696426, 0.1596011072397232, 0.08386925607919693, 0.16370642185211182, -0.04352204129099846, 0.0033782285172492266, 0.04681551828980446, -0.07415640354156494, 0.0762331560254097, -0.005567202810198069, -0.041941672563552856, 0.0752783790230751, -0.046809934079647064, -0.08705786615610123, 0.08881335705518723, 0.2597607374191284, 0.05744878575205803, -0.3088647127151489, -0.05496790260076523, -0.046926818788051605, -0.08697786927223206, -0.0704643577337265, 0.04689110815525055, 0.02199593186378479, -0.08681866526603699, 0.09405884891748428, 0.01336638256907463, 0.11874374747276306, -0.11993926018476486, -0.0134637001901865, -0.051689330488443375, -0.026412857696413994, 0.005141235888004303, 0.11132951825857162, -0.010206848382949829, 0.2971769869327545, 0.013640222139656544, 0.0020808062981814146, -0.05400065332651138, -0.06058944761753082, 0.07602705806493759, 0.171530082821846, 0.11385802179574966, 0.030951038002967834, 0.08085475116968155, -0.13433778285980225, -0.09948087483644485, 0.10571081191301346, 0.03619488701224327, 0.031146248802542686, 0.04444041848182678, -0.0024151091929525137, -0.00014969574112910777, -0.0018625218654051423, 0.022003022953867912, -0.12994499504566193, -0.04622938483953476, -0.052790846675634384, 0.2130305916070938, 0.05956095829606056, 0.010806582868099213, -0.12121463567018509, -0.17841492593288422, 0.20385827124118805, -0.019995758309960365, -0.09462136775255203, -0.09367291629314423, -0.02855033054947853, 0.08689063042402267, -0.08643912523984909, -0.005864642560482025, -0.07875999063253403, 0.014109473675489426, -0.016487956047058105, -0.1289720982313156, 0.05964123085141182, -0.013754011131823063, -0.027782298624515533, 0.038715869188308716, 0.08125225454568863, 0.02575625292956829, -0.046163804829120636, 0.07587574422359467, 0.019836897030472755, 0.002943176543340087, -0.09345415234565735, -0.03258983790874481, 0.07484975457191467, -0.011300011537969112, 0.09763723611831665, -0.06856022775173187, -0.1035098060965538, -0.08221106976270676, 0.04682459682226181, 0.2092227041721344, 0.12412186712026596, -0.06375952064990997, -0.0010124826803803444, 0.2078234702348709, -0.042372409254312515, -0.25564345717430115, -0.03609306737780571, -0.058292098343372345, 0.041373759508132935, -0.11582673341035843, 0.014370748773217201, 0.22332383692264557, 0.12600944936275482, -0.031509727239608765, 0.08689584583044052, -0.08215159922838211, -0.1070086881518364, 0.22880828380584717, 0.03191366046667099, 0.34254512190818787, -0.023846184834837914, -0.045399222522974014, -0.022622117772698402, -0.161399245262146, -0.022056715562939644, -0.03608277812600136, 0.03241286799311638, -0.06341620534658432, 0.10403265058994293, -0.004308741539716721, 0.03527810052037239, 0.10532861202955246, 0.10845126211643219, 0.07261160016059875, -0.06188727915287018, -0.07281189411878586, 0.07370822876691818, -0.0701870545744896, 0.1781425029039383, -0.0025424733757972717, 0.007233004085719585, -0.10088793933391571, -0.07880886644124985, -0.08065787702798843, 0.10281234234571457, 0.047638457268476486, 0.015200566500425339, -0.008915567770600319, -0.004176782444119453, -0.011219433508813381, 0.023067764937877655, 0.09426580369472504, -0.02517194300889969, 0.017134467139840126, 0.09716933220624924, 0.06467344611883163, -0.1323680281639099, -0.003171818098053336, 0.0005503378924913704, -0.039758287370204926, 0.11456803977489471, -0.03570491075515747, 0.07326813042163849, 0.1622483730316162, -0.017858099192380905, 0.04549461603164673, 0.05231374502182007, -0.03392782807350159, -0.028081687167286873, 0.04415181651711464, -0.09477972239255905, -0.10396590083837509, -0.006032885052263737, -0.19222621619701385, 0.010555624030530453, 0.15826991200447083, 0.11271734535694122, -0.1001029834151268, 0.012997990474104881, -0.008347995579242706, -0.03892061486840248, -0.04008995369076729, 0.07264301925897598, 0.05815158784389496, 0.04106799140572548, -0.1148415058851242, 0.15491007268428802, 0.024311579763889313, -0.06116083636879921, 0.024807831272482872, -0.017343906685709953, -0.150880828499794, -0.08014886826276779, -0.034964483231306076, 0.11674924939870834, -0.041608575731515884, -0.22265201807022095, -0.07542725652456284, -0.14375239610671997, 0.015418857336044312, 0.17203211784362793, 0.09737357497215271, 0.022099636495113373, -0.038228392601013184, -0.10148965567350388, -0.03116454742848873, 0.09163837134838104, 0.12613190710544586, 0.012907639145851135, -0.12608247995376587, -0.0925685241818428, 0.013026485219597816, 0.10926774889230728, -0.05640752986073494, -0.11841819435358047, -0.08455578237771988, 0.07690706849098206, -0.25911346077919006, 0.032246511429548264, -0.07928405702114105, 0.05821163207292557, 0.021646400913596153, -0.08152230083942413, -0.07076743245124817, 0.05276937782764435, -0.0929379016160965, 0.026475030928850174, 0.0416579507291317, 0.049574755132198334, -0.13654263317584991, -0.05949172005057335, 0.0027729629073292017, -0.0035479043144732714, 0.10259124636650085, 0.1089940294623375, -0.10681314021348953, 0.08162171393632889, -0.16616347432136536, -0.05890556052327156, 0.02954520657658577, 0.046396978199481964, 0.09917892515659332, 0.01914026215672493, 0.03718951344490051, 0.10639571398496628, 0.022779470309615135, 0.039304133504629135, 0.09033975750207901, -0.05863403156399727, -0.03332255408167839, -0.1435062736272812, -0.08130710572004318, -0.0402735099196434, 0.03136906400322914, 0.0853826105594635, 0.08339808881282806, 0.08562617748975754, -0.06842751055955887, -0.029068827629089355, -0.04272693395614624, 0.024736963212490082, 0.01820250228047371, -0.1807161271572113, -0.029358945786952972, -0.07280724495649338, 0.0170335303992033, 0.00027763505931943655, 0.19411663711071014, 0.009255443699657917, -0.007022956386208534, -0.007415425032377243, 0.005263218190521002, -0.11020706593990326, -0.006567862816154957, 0.025305001065135002, 0.029108401387929916, -0.01865428127348423, -0.04832717403769493, -0.0035087070427834988, 0.05177662894129753, 0.025280235335230827, -0.0027784707490354776, 0.19246608018875122, 0.03715701773762703, 0.12994331121444702, 0.11806534975767136, 0.008393077179789543, -0.007078580558300018, -0.18454085290431976, -0.10391835123300552, 0.0927879735827446, 0.041902054101228714, 0.054862603545188904, 0.14475315809249878, 0.032332856208086014, 0.0037894262932240963, -0.0013117317575961351, -0.062158919870853424, -0.1102273091673851, -0.2401694357395172, -0.13399949669837952, -0.14889882504940033, 0.005344569217413664, -0.058882202953100204, -0.07712730020284653, 0.21085500717163086, 0.10640571266412735, -0.03986021876335144, 0.07053982466459274, -0.016799578443169594, -0.04630087688565254, 0.1680692881345749, -0.09201018512248993, -0.00903509184718132, 0.048979900777339935, -0.058717530220746994, 0.0007043550140224397, -0.02847244404256344, 0.0022755616810172796, 0.0411120168864727, 0.061851922422647476, 0.010978851467370987, -0.10311148315668106, -0.0645570158958435, -0.04631740227341652, 0.03591539338231087, 0.004351401701569557, -0.02629624865949154, 0.09433437138795853, -0.029207274317741394, 0.008820682764053345, 0.08565358072519302, 0.025472883135080338, -0.10077177733182907, -0.03119911067187786, 0.22315195202827454, -0.011135182343423367, 0.04402676597237587, -0.02416209690272808, -0.03176497295498848, -0.032481834292411804, 0.21213433146476746, 0.24338848888874054, 0.037588026374578476, -0.004790603648871183, -0.02588561736047268, -0.0022321222350001335, 0.03194163367152214, 0.07720640301704407, 0.018642831593751907, 0.1142379567027092, -0.03804229572415352, -0.030072348192334175, -0.07668792456388474, -0.02851705066859722, -0.08174007385969162, 0.03786195069551468, 0.02507762797176838, -0.05513432249426842, -0.14374768733978271, 0.09333069622516632, -0.13268952071666718, 0.05010939761996269, 0.10310924798250198, -0.021579384803771973, -0.17203187942504883, -0.04106708616018295, -0.06611732393503189, 0.02482825145125389, 0.04039527475833893, -0.08370832353830338, 0.00015061558224260807, -0.05229240655899048, 0.030651265755295753, -0.1155780628323555, -0.11459660530090332, 0.04857764393091202, 0.04183795675635338, 0.10664467513561249, 0.03223578631877899, 0.1332210898399353, 0.08076102286577225, 0.08172638714313507, -0.031079649925231934, 0.0646100789308548, 0.01187857985496521, 0.0267547108232975, 0.05579032376408577, -0.06558139622211456, 0.03558027371764183, 0.050749365240335464, 0.059458374977111816, -0.04867937043309212, 0.014327365905046463, 0.03570402041077614, -0.01977531611919403, -0.14263683557510376, 0.03954438120126724, -0.023415368050336838, 0.05778426676988602, 0.15875619649887085, -0.033741701394319534, -0.01649482175707817, -0.06609368324279785, 0.012559826485812664, 0.006549797486513853, -0.11721465736627579, -0.003502983832731843, -0.11705919355154037, 0.053434859961271286, -0.06688354909420013, 0.04190671443939209, -0.18785881996154785, -0.03587974235415459, -0.036242492496967316, -0.02906610071659088, 0.0033507992047816515, 0.02641439624130726, 0.13697558641433716, 0.05747775360941887, -0.015876170247793198, -0.21292099356651306, 0.04448601230978966, 0.08494613319635391, -0.06641534715890884, -0.08820755779743195 ]
null
null
transformers
# RoBERTa Base Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Base" using CUAD dataset https://huggingface.co/datasets/cuad Link for model checkpoint: https://github.com/TheAtticusProject/cuad For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
{"language": "en", "datasets": ["cuad"]}
question-answering
akdeniz27/roberta-base-cuad
[ "transformers", "pytorch", "safetensors", "roberta", "question-answering", "en", "dataset:cuad", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us
# RoBERTa Base Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Base" using CUAD dataset URL Link for model checkpoint: URL For the use of the model with CUAD: URL and URL
[ "# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n", "# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ 47, 57 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #endpoints_compatible #has_space #region-us \n# RoBERTa Base Model fine-tuned with CUAD dataset\nThis model is the fine-tuned version of \"RoBERTa Base\" \nusing CUAD dataset URL\n\nLink for model checkpoint: URL\n\nFor the use of the model with CUAD: URL\nand URL" ]
[ -0.12394272536039352, 0.1451941728591919, -0.0004955157055519521, 0.027302704751491547, 0.07400605082511902, 0.017374631017446518, 0.14419375360012054, 0.013854974880814552, 0.10216426849365234, 0.10508648306131363, 0.1335950642824173, -0.021366262808442116, -0.021494243294000626, 0.06251900643110275, -0.0013357698917388916, -0.1321841925382614, 0.08708983659744263, -0.0037034021224826574, 0.04411281645298004, 0.0859152302145958, 0.0526716448366642, -0.10429476201534271, 0.07529909163713455, -0.010630937293171883, -0.030456511303782463, -0.01060886774212122, -0.018586428835988045, -0.01416883897036314, 0.11070508509874344, -0.0037433269899338484, 0.1835392266511917, 0.09800764918327332, 0.09271864593029022, -0.13004331290721893, 0.045517448335886, -0.026560043916106224, -0.06887850910425186, 0.07507141679525375, -0.07779727131128311, -0.08613003045320511, 0.007188683375716209, -0.024437876418232918, 0.05263931304216385, -0.032135915011167526, -0.12426546216011047, 0.07119479775428772, -0.08344374597072601, 0.11476866155862808, 0.08243560045957565, 0.052659790962934494, -0.01047447882592678, 0.07732710987329483, -0.15842849016189575, 0.021044280380010605, 0.06656648218631744, -0.2355792373418808, -0.043634846806526184, 0.11029030382633209, 0.11952126771211624, 0.11255012452602386, 0.009301502257585526, 0.04010060429573059, 0.050757523626089096, -0.017455844208598137, -0.00889984518289566, -0.035782478749752045, -0.11013682931661606, 0.05841236189007759, -0.14026784896850586, -0.04160225763916969, 0.06854013353586197, 0.020057912915945053, -0.008882958441972733, 0.051843639463186264, -0.1089603453874588, -0.04842314496636391, -0.05922212824225426, 0.023179451003670692, -0.01889115758240223, 0.029456915333867073, -0.05910421162843704, -0.03217514231801033, -0.06267797946929932, -0.08147665113210678, -0.11146283149719238, 0.1341840773820877, -0.01943480782210827, 0.020903542637825012, -0.14576886594295502, 0.10089720785617828, -0.03397289663553238, -0.12387057393789291, -0.005098361521959305, -0.08555230498313904, -0.026498030871152878, -0.022627130150794983, -0.07059239596128464, 0.12922659516334534, 0.1378743052482605, 0.3032604455947876, 0.1554250717163086, -0.06239398941397667, 0.00817960686981678, 0.02975362353026867, 0.05708596482872963, 0.19832156598567963, -0.23657512664794922, -0.15130586922168732, 0.1150999590754509, 0.059984322637319565, 0.060198113322257996, -0.023029470816254616, -0.11325134336948395, -0.10778166353702545, 0.04806455969810486, 0.0793609693646431, 0.11889055371284485, 0.017518246546387672, -0.0068576037883758545, 0.033333685249090195, 0.12025679647922516, -0.005891706794500351, -0.04926256835460663, 0.004415648523718119, 0.0475093312561512, 0.024517951533198357, 0.06417523324489594, 0.05633458495140076, 0.11225228756666183, 0.022499429062008858, -0.1471443921327591, -0.10088230669498444, 0.0057249972596764565, -0.1075488030910492, 0.03294774889945984, -0.16550090909004211, 0.07939957082271576, -0.15941545367240906, -0.12125436216592789, -0.04480031132698059, -0.023926319554448128, -0.030969908460974693, -0.01463022269308567, -0.03959786146879196, 0.005854934453964233, 0.0005872928304597735, -0.03711423650383949, -0.014803223311901093, -0.054189231246709824, 0.05200011655688286, -0.007718181237578392, 0.1029626727104187, -0.11095109581947327, -0.007368234917521477, -0.0765707939863205, 0.050038762390613556, -0.11021522432565689, 0.02972443401813507, -0.08771791309118271, 0.14466434717178345, -0.04616455361247063, 0.026258910074830055, -0.03942647576332092, 0.026921268552541733, 0.11393679678440094, 0.17917439341545105, -0.1190638467669487, 0.02991906739771366, 0.13630260527133942, -0.07493852078914642, -0.1400674283504486, 0.0630144253373146, -0.04158545285463333, 0.03816941753029823, 0.043546535074710846, 0.10076197981834412, 0.0962028056383133, -0.0928126648068428, -0.013417281210422516, 0.031679924577474594, 0.008305396884679794, -0.1451295167207718, 0.053523626178503036, 0.006706595420837402, -0.12385864555835724, -0.01031820010393858, -0.11931388825178146, 0.07623128592967987, -0.10316161066293716, -0.04586775228381157, -0.014987438917160034, -0.11351769417524338, 0.031246503815054893, -0.05113833025097847, -0.01787990890443325, 0.015539352782070637, -0.034420013427734375, -0.06537473201751709, 0.09081621468067169, 0.0005176877020858228, -0.00008694399730302393, -0.09491106122732162, 0.26207593083381653, -0.24119281768798828, -0.0503549762070179, -0.16369391977787018, -0.1781155914068222, -0.07809487730264664, 0.28454047441482544, -0.021704664453864098, -0.017081035301089287, 0.026073768734931946, -0.04849984124302864, 0.04607317969202995, 0.013173388317227364, 0.046118173748254776, 0.061603840440511703, -0.05617649853229523, -0.10955425351858139, -0.03931524232029915, -0.08840545266866684, 0.10982179641723633, -0.04027973860502243, -0.03695812448859215, 0.03193121775984764, 0.07986432313919067, 0.0068299113772809505, 0.06834572553634644, 0.05274898186326027, 0.06570258736610413, -0.016111716628074646, -0.02841024100780487, 0.02098242938518524, 0.018176911398768425, -0.035261258482933044, 0.07870212942361832, -0.002672242233529687, 0.10445307940244675, 0.13126011192798615, 0.04898044094443321, -0.025953451171517372, -0.0029858106281608343, -0.015898147597908974, 0.05229084566235542, 0.0067570749670267105, -0.01505524106323719, 0.06843136996030807, 0.023551475256681442, 0.045792270451784134, -0.033803150057792664, 0.04760017618536949, 0.01069761160761118, -0.04398601874709129, 0.0230726208537817, 0.03767610341310501, 0.1694059520959854, -0.022356761619448662, 0.07171973586082458, 0.03639313206076622, -0.00680908327922225, 0.012838945724070072, -0.023144705221056938, -0.06111876294016838, -0.029854169115424156, -0.07746032625436783, -0.031479183584451675, 0.15212389826774597, -0.07859797775745392, -0.05670108273625374, 0.03571733832359314, -0.03641657158732414, 0.07460927963256836, -0.09230642020702362, -0.04397716745734215, 0.017573025077581406, 0.023325931280851364, -0.15730020403862, 0.10195222496986389, -0.011099588125944138, 0.062366459518671036, 0.058662086725234985, -0.09356362372636795, -0.020011795684695244, -0.007029651664197445, -0.03912033513188362, 0.15981051325798035, -0.0029354540165513754, 0.01451530959457159, -0.1126968190073967, -0.14135710895061493, 0.05917657911777496, 0.023037496954202652, 0.025662008672952652, -0.057459089905023575, -0.039268288761377335, -0.019590454176068306, 0.016928235068917274, 0.12529264390468597, 0.026034092530608177, -0.0349489226937294, -0.02710910327732563, -0.054694436490535736, -0.09098091721534729, -0.013533391989767551, -0.07350663840770721, -0.000465772784082219, 0.05131033435463905, -0.06367909908294678, 0.19678227603435516, 0.10980519652366638, 0.044505681842565536, -0.03161958232522011, 0.00018670078134164214, 0.31530115008354187, -0.034964583814144135, 0.025183426216244698, 0.11480671167373657, -0.027989111840724945, 0.022714264690876007, 0.2281797081232071, 0.00768911000341177, -0.08197454363107681, 0.011675633490085602, -0.04242844879627228, -0.07313503324985504, -0.14806440472602844, -0.12238558381795883, -0.060564979910850525, -0.13435545563697815, 0.029071055352687836, -0.013416486792266369, -0.07566586881875992, 0.15240488946437836, 0.04320313408970833, 0.0063587636686861515, -0.16528183221817017, 0.039280861616134644, 0.09132308512926102, -0.029611773788928986, 0.08524517714977264, -0.03763266280293465, -0.08923907577991486, 0.058368489146232605, 0.09781143069267273, 0.15699686110019684, 0.008829734288156033, 0.018334558233618736, 0.09500783681869507, 0.17303189635276794, 0.12262015044689178, 0.11535310745239258, -0.03022942878305912, -0.031159576028585434, -0.033595506101846695, -0.01896531693637371, -0.08242229372262955, 0.005267045460641384, -0.013334769755601883, -0.07805245369672775, -0.05519551783800125, -0.01605016179382801, 0.012574709951877594, 0.1587468385696411, 0.10004214942455292, -0.2802465856075287, -0.01927797868847847, 0.05799546837806702, 0.055736392736434937, -0.037688080221414566, 0.043740179389715195, 0.03720252588391304, -0.01779700256884098, -0.09723687916994095, 0.04854065552353859, 0.09444615244865417, -0.048063259571790695, 0.0016062676440924406, -0.10834072530269623, -0.03571480140089989, -0.039815597236156464, 0.008659586310386658, 0.016183482483029366, 0.27285072207450867, -0.001156447222456336, -0.03895129635930061, 0.005234214942902327, -0.06716403365135193, 0.04945966973900795, 0.18706874549388885, 0.12588270008563995, 0.0008038925589062274, -0.017081597819924355, -0.08710777014493942, -0.1860019713640213, 0.11141505092382431, -0.047991301864385605, -0.09437278658151627, 0.14351055026054382, -0.01850329153239727, -0.04015639051795006, -0.0076586659997701645, 0.07437033951282501, -0.05027492344379425, -0.0772072821855545, -0.059874728322029114, 0.04023593291640282, 0.09349818527698517, -0.038400620222091675, -0.05219655483961105, -0.01936516724526882, 0.01306981686502695, 0.008519922383129597, -0.03261886164546013, -0.1000828891992569, -0.06016970053315163, 0.17958177626132965, -0.09974969178438187, 0.05820515751838684, -0.0062685864977538586, 0.0581299290060997, -0.02608821541070938, -0.07799393683671951, 0.061748310923576355, -0.08204405754804611, 0.012944846414029598, -0.08579032868146896, 0.06738609075546265, -0.0015094889095053077, -0.014958161860704422, 0.04633457958698273, 0.04397909715771675, -0.08715517073869705, -0.09064650535583496, -0.09036722779273987, 0.07965268194675446, -0.024402568116784096, 0.032317154109478, -0.04070529714226723, -0.027837570756673813, 0.009411264210939407, 0.09192255884408951, 0.16269128024578094, 0.10138115286827087, -0.10682153701782227, 0.000908863206859678, 0.2251933068037033, -0.00011919141979888082, -0.2577812671661377, -0.055305395275354385, -0.09516376256942749, 0.06037769839167595, -0.06637519598007202, -0.03615381568670273, 0.09346817433834076, -0.028143486008048058, -0.05994917452335358, 0.0016645806608721614, -0.15189886093139648, -0.07243332266807556, 0.18330471217632294, 0.06043926998972893, 0.41281649470329285, -0.09489332139492035, -0.07207135111093521, 0.010970286093652248, -0.25139686465263367, 0.06935059279203415, -0.11477085202932358, 0.0397353395819664, -0.015661947429180145, 0.1160561665892601, 0.01709199696779251, -0.05830531194806099, 0.11455988138914108, 0.011788458563387394, 0.01416501309722662, -0.02940938249230385, -0.15631608664989471, 0.05560841038823128, -0.058354608714580536, 0.009552986361086369, 0.09740637987852097, 0.11345008760690689, -0.09735260903835297, -0.05429789423942566, -0.052774738520383835, -0.033401504158973694, -0.01814413256943226, -0.05292033404111862, -0.014628838747739792, 0.030831901356577873, -0.019317451864480972, -0.00030346421408466995, 0.0049666850827634335, -0.10128539800643921, 0.019933320581912994, -0.07298688590526581, 0.06417903304100037, -0.09651360660791397, 0.08393143117427826, 0.04886482283473015, -0.1004413515329361, 0.09152275323867798, -0.130576029419899, 0.017638901248574257, 0.07129506766796112, 0.03156878799200058, -0.004935541655868292, 0.047486405819654465, -0.0021362032275646925, 0.044466178864240646, 0.12799334526062012, -0.1336829662322998, -0.05327969416975975, 0.013608366250991821, -0.15212315320968628, -0.10325495153665543, 0.015424604527652264, 0.1537090539932251, -0.0061117312870919704, -0.05177468806505203, -0.04835374653339386, -0.026704905554652214, -0.03523022681474686, -0.020490137860178947, 0.17594516277313232, 0.026563765481114388, -0.08806829154491425, -0.052067093551158905, 0.04516085982322693, 0.017028920352458954, -0.03182767704129219, -0.04799087718129158, -0.10069790482521057, -0.10009067505598068, -0.13976997137069702, 0.18191854655742645, -0.22299864888191223, -0.007164547685533762, -0.09439478069543839, -0.05956454575061798, 0.0000384234735975042, 0.28576597571372986, 0.0677112340927124, 0.06154872477054596, -0.004108855966478586, -0.0703883245587349, -0.05378520488739014, -0.01533469744026661, 0.01666133664548397, 0.048170916736125946, -0.08043418079614639, -0.07243490219116211, -0.0874410942196846, 0.05299451947212219, -0.05601818487048149, 0.0036162734031677246, -0.14963321387767792, 0.002829340286552906, -0.3217485845088959, 0.03182819113135338, -0.06851826608181, 0.02010197378695011, -0.035427916795015335, -0.09998742491006851, -0.11444216221570969, -0.02097242698073387, -0.04856548830866814, 0.05699365213513374, -0.00992286391556263, 0.025683848187327385, -0.12387534976005554, 0.015555680729448795, 0.07880082726478577, -0.04103226959705353, 0.10961885750293732, -0.006371640600264072, -0.012119773775339127, 0.018502332270145416, -0.16648119688034058, -0.07019654661417007, -0.018695339560508728, -0.006071422714740038, 0.12537738680839539, -0.02955203503370285, 0.05677681416273117, -0.005067191552370787, 0.028173673897981644, -0.0043019820004701614, 0.014490348286926746, -0.05189868435263634, 0.02375531569123268, 0.04491119831800461, -0.004869964439421892, -0.0030467465985566378, -0.06331751495599747, 0.18580523133277893, 0.04541725665330887, 0.03663814812898636, -0.020507896319031715, 0.047063782811164856, -0.08485119789838791, 0.016251372173428535, -0.0806971862912178, -0.00023224700998980552, -0.09235832095146179, -0.09628042578697205, 0.017954034730792046, -0.008014059625566006, 0.2359120100736618, -0.07827747613191605, 0.08263259381055832, -0.010273100808262825, 0.13174594938755035, 0.0916660726070404, 0.034685395658016205, 0.1980898529291153, 0.08542636036872864, -0.02540198341012001, -0.0937536433339119, 0.04596846178174019, 0.011251665651798248, -0.02342991903424263, 0.08135958760976791, 0.056448545306921005, 0.21614763140678406, 0.06299444288015366, 0.09763261675834656, 0.04885613173246384, 0.09791532903909683, -0.13514401018619537, -0.06751761585474014, -0.08246421813964844, -0.005071703810244799, 0.005194892641156912, 0.13274550437927246, -0.020207682624459267, -0.037917282432317734, 0.01637658290565014, 0.001306447316892445, -0.093398317694664, -0.0007428093813359737, -0.09180375933647156, -0.08202953636646271, 0.012220370583236217, -0.11638063937425613, -0.14137758314609528, 0.10658282041549683, -0.02400919608771801, 0.0022867450024932623, 0.06022689491510391, 0.06568890064954758, 0.01604526676237583, 0.03657180443406105, 0.04090387374162674, 0.046448975801467896, 0.008910118602216244, -0.017052270472049713, 0.010092721320688725, 0.010437111370265484, -0.04567990079522133, 0.022616401314735413, -0.02903676964342594, 0.070157989859581, -0.039814312011003494, -0.04746183753013611, -0.08231211453676224, 0.03603013604879379, 0.032448429614305496, 0.13343095779418945, 0.02746761031448841, 0.02196556329727173, 0.04375104233622551, 0.21859599649906158, -0.01153483521193266, -0.10450245440006256, -0.16269390285015106, 0.10959076136350632, -0.05480824410915375, 0.0611160546541214, -0.041701074689626694, -0.06510122865438461, 0.016287727281451225, 0.27289390563964844, 0.15666905045509338, -0.14416469633579254, 0.037297558039426804, 0.01612897776067257, 0.019699443131685257, -0.024286257103085518, 0.05914763733744621, 0.0670454129576683, 0.20419900119304657, -0.0635981410741806, -0.14307916164398193, -0.07627471536397934, -0.006259200628846884, 0.042731039226055145, -0.015931161120533943, 0.0012511933455243707, -0.05057217553257942, -0.10600747168064117, 0.1209750846028328, -0.17075277864933014, -0.016510434448719025, 0.0538005493581295, -0.1641746312379837, -0.14030282199382782, -0.04391318932175636, 0.0006135859293863177, 0.04132941737771034, 0.07468711584806442, -0.07363756746053696, -0.029957445338368416, 0.10251862555742264, -0.021525036543607712, -0.06146128103137016, -0.029926279559731483, 0.06411247700452805, 0.21955762803554535, 0.15490314364433289, -0.022627463564276695, -0.04940987378358841, 0.15766002237796783, 0.052859481424093246, -0.17107771337032318, 0.06090397387742996, 0.047642018646001816, -0.08495741337537766, 0.016541756689548492, -0.11092256009578705, -0.024348881095647812, -0.05913190171122551, 0.06379520148038864, -0.05948514863848686, 0.09169117361307144, -0.005297372583299875, 0.0292508564889431, -0.1297779381275177, 0.012775015085935593, -0.06164056435227394, 0.14358647167682648, 0.010262751020491123, -0.09319667518138885, 0.010104818269610405, 0.04441436007618904, 0.05888674780726433, 0.036714665591716766, 0.056977447122335434, -0.05533421412110329, -0.05735430866479874, -0.020350845530629158, 0.06908567994832993, -0.023938987404108047, -0.2856858968734741, 0.010654167272150517, -0.060917798429727554, 0.04479248821735382, -0.01866544596850872, 0.09038472920656204, 0.10574512928724289, 0.0656956285238266, 0.01842745579779148, 0.021601425483822823, -0.014790219254791737, 0.061566852033138275, -0.14341825246810913, -0.12773898243904114 ]
null
null
transformers
# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset # Model Details ## Model Description The [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad), pronounced "kwad", a dataset for legal contract review curated by the Atticus Project. Contract review is a task about "finding needles in a haystack." We find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. - **Developed by:** TheAtticusProject - **Shared by [Optional]:** HuggingFace - **Model type:** Language model - **Language(s) (NLP):** en - **License:** More information needed - **Related Models:** RoBERTA - **Parent Model:**RoBERTA Large - **Resources for more information:** - [GitHub Repo](https://github.com/TheAtticusProject/cuad) - [Associated Paper](https://arxiv.org/abs/2103.06268) # Uses ## Direct Use Legal contract review ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data See [cuad dataset card](https://huggingface.co/datasets/cuad) for further details ## Training Procedure More information needed ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data #### Extra Data Researchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available [here](https://drive.google.com/file/d/1of37X0hAhECQ3BN_004D8gm6V88tgZaB/view?usp=sharing). ### Factors More information needed ### Metrics More information needed ## Results We [provide checkpoints](https://zenodo.org/record/4599830) for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters). # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software The HuggingFace [Transformers](https://huggingface.co/transformers) library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. # Citation **BibTeX:** @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={NeurIPS}, year={2021} } # Glossary [optional] More information needed # More Information [optional] For more details about CUAD and legal contract review, see the [Atticus Project website](https://www.atticusprojectai.org/cuad). # Model Card Authors [optional] TheAtticusProject # Model Card Contact [TheAtticusProject](https://www.atticusprojectai.org/), in collaboration with the Ezi Ozoani and the HuggingFace Team # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("akdeniz27/roberta-large-cuad") model = AutoModelForQuestionAnswering.from_pretrained("akdeniz27/roberta-large-cuad") ``` </details>
{"language": "en", "datasets": ["cuad"]}
question-answering
akdeniz27/roberta-large-cuad
[ "transformers", "pytorch", "safetensors", "roberta", "question-answering", "en", "dataset:cuad", "arxiv:2103.06268", "arxiv:1910.09700", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2103.06268", "1910.09700" ]
[ "en" ]
TAGS #transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us
# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset # Model Details ## Model Description The Contract Understanding Atticus Dataset (CUAD), pronounced "kwad", a dataset for legal contract review curated by the Atticus Project. Contract review is a task about "finding needles in a haystack." We find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. - Developed by: TheAtticusProject - Shared by [Optional]: HuggingFace - Model type: Language model - Language(s) (NLP): en - License: More information needed - Related Models: RoBERTA - Parent Model:RoBERTA Large - Resources for more information: - GitHub Repo - Associated Paper # Uses ## Direct Use Legal contract review ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data See cuad dataset card for further details ## Training Procedure More information needed ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data #### Extra Data Researchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here. ### Factors More information needed ### Metrics More information needed ## Results We provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters). # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: More information needed - Hours used: More information needed - Cloud Provider: More information needed - Compute Region: More information needed - Carbon Emitted: More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software The HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. BibTeX: @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={NeurIPS}, year={2021} } # Glossary [optional] More information needed # More Information [optional] For more details about CUAD and legal contract review, see the Atticus Project website. # Model Card Authors [optional] TheAtticusProject # Model Card Contact TheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> </details>
[ "# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset", "# Model Details", "## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper", "# Uses", "## Direct Use\n \nLegal contract review", "## Downstream Use [Optional]\n \nMore information needed", "## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.", "# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.", "## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.", "# Training Details", "## Training Data\nSee cuad dataset card for further details", "## Training Procedure\n \nMore information needed", "### Preprocessing\n \nMore information needed", "### Speeds, Sizes, Times\n \nMore information needed", "# Evaluation", "## Testing Data, Factors & Metrics", "### Testing Data", "#### Extra Data\nResearchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here.", "### Factors\n \nMore information needed", "### Metrics\n \nMore information needed", "## Results \n \n \n\n\nWe provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).", "# Model Examination\n \nMore information needed", "# Environmental Impact\n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed", "# Technical Specifications [optional]", "## Model Architecture and Objective\n \nMore information needed", "## Compute Infrastructure\n \nMore information needed", "### Hardware\n \nMore information needed", "### Software\n \nThe HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. \n \nBibTeX:\n \n @article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, \n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={NeurIPS},\n year={2021}\n}", "# Glossary [optional]\n \nMore information needed", "# More Information [optional]\n \nFor more details about CUAD and legal contract review, see the Atticus Project website.", "# Model Card Authors [optional]\n \nTheAtticusProject", "# Model Card Contact\n \nTheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team", "# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n\n \n</details>" ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us \n", "# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset", "# Model Details", "## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper", "# Uses", "## Direct Use\n \nLegal contract review", "## Downstream Use [Optional]\n \nMore information needed", "## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.", "# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.", "## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.", "# Training Details", "## Training Data\nSee cuad dataset card for further details", "## Training Procedure\n \nMore information needed", "### Preprocessing\n \nMore information needed", "### Speeds, Sizes, Times\n \nMore information needed", "# Evaluation", "## Testing Data, Factors & Metrics", "### Testing Data", "#### Extra Data\nResearchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available here.", "### Factors\n \nMore information needed", "### Metrics\n \nMore information needed", "## Results \n \n \n\n\nWe provide checkpoints for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).", "# Model Examination\n \nMore information needed", "# Environmental Impact\n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed", "# Technical Specifications [optional]", "## Model Architecture and Objective\n \nMore information needed", "## Compute Infrastructure\n \nMore information needed", "### Hardware\n \nMore information needed", "### Software\n \nThe HuggingFace Transformers library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. \n \nBibTeX:\n \n @article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, \n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={NeurIPS},\n year={2021}\n}", "# Glossary [optional]\n \nMore information needed", "# More Information [optional]\n \nFor more details about CUAD and legal contract review, see the Atticus Project website.", "# Model Card Authors [optional]\n \nTheAtticusProject", "# Model Card Contact\n \nTheAtticusProject, in collaboration with the Ezi Ozoani and the HuggingFace Team", "# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n\n \n</details>" ]
[ 65, 39, 3, 214, 3, 6, 11, 28, 87, 42, 3, 12, 7, 8, 12, 3, 11, 5, 28, 7, 8, 61, 8, 68, 9, 10, 8, 6, 108, 11, 25, 14, 26, 41 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #roberta #question-answering #en #dataset-cuad #arxiv-2103.06268 #arxiv-1910.09700 #endpoints_compatible #has_space #region-us \n# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset\n \nThis model is the fine-tuned version of \"RoBERTa Large\" using CUAD dataset# Model Details## Model Description\n \nThe Contract Understanding Atticus Dataset (CUAD), pronounced \"kwad\", a dataset for legal contract review curated by the Atticus Project. \n \nContract review is a task about \"finding needles in a haystack.\"\nWe find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. \n \n- Developed by: TheAtticusProject\n- Shared by [Optional]: HuggingFace\n- Model type: Language model\n- Language(s) (NLP): en\n- License: More information needed\n- Related Models: RoBERTA\n - Parent Model:RoBERTA Large\n- Resources for more information:\n- GitHub Repo \n- Associated Paper# Uses## Direct Use\n \nLegal contract review## Downstream Use [Optional]\n \nMore information needed## Out-of-Scope Use\n \n \nThe model should not be used to intentionally create hostile or alienating environments for people.# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.# Training Details" ]
[ -0.027583790943026543, 0.13285358250141144, -0.00512436730787158, 0.01697411574423313, 0.04534491151571274, -0.008816969580948353, 0.04893781617283821, 0.07553896307945251, 0.06218286231160164, 0.05079863220453262, -0.020098073408007622, -0.011416872963309288, 0.0774250254034996, 0.04840844124555588, 0.044090140610933304, -0.1583707332611084, 0.042993396520614624, -0.04539301246404648, 0.13583961129188538, 0.09389316290616989, 0.11374970525503159, -0.040463026612997055, 0.0656144842505455, 0.011377738788723946, -0.07367176562547684, -0.010294076055288315, -0.012001873925328255, 0.0008697283919900656, 0.09937424212694168, 0.0837765485048294, 0.11589933186769485, 0.0018420172855257988, 0.041271306574344635, -0.24451972544193268, 0.01619037054479122, 0.0790177434682846, -0.002647235058248043, 0.03752459958195686, 0.04644850268959999, 0.008653766475617886, 0.12100034207105637, -0.15768378973007202, 0.08289175480604172, 0.05779896304011345, -0.08569680154323578, -0.07565439492464066, -0.09536378085613251, 0.07872781157493591, 0.07265197485685349, 0.06286843121051788, -0.013024565763771534, 0.19754277169704437, -0.061201613396406174, 0.03690009191632271, 0.0985388532280922, -0.17750632762908936, -0.03984769061207771, 0.029203051701188087, 0.06792528182268143, 0.03393450006842613, -0.07310999184846878, 0.021181855350732803, 0.01218346320092678, 0.029715636745095253, 0.06022344157099724, -0.05065244063735008, -0.02359200268983841, -0.02751842886209488, -0.14791905879974365, -0.013098347000777721, 0.06013704836368561, 0.038728151470422745, -0.09615428000688553, -0.20335952937602997, -0.021494420245289803, 0.1049138531088829, -0.0026503230910748243, -0.11220479756593704, 0.03629734739661217, -0.02061004564166069, 0.09861887991428375, -0.09264805167913437, -0.0762290507555008, -0.010085036978125572, -0.05582006648182869, 0.08025333285331726, 0.030285026878118515, -0.0051896232180297375, 0.014824838377535343, 0.05000176653265953, -0.02915537916123867, -0.05195455998182297, -0.05871596187353134, -0.07293056696653366, -0.115685373544693, -0.05136146396398544, 0.00457032211124897, -0.05237843468785286, 0.017002690583467484, 0.1589243859052658, -0.045253854244947433, -0.007356311194598675, -0.051395732909440994, 0.021282749250531197, 0.06932327896356583, 0.13112658262252808, -0.060186807066202164, -0.08109055459499359, 0.051776736974716187, 0.016536641865968704, 0.017599504441022873, -0.008122432976961136, -0.03282466158270836, -0.04387192055583, 0.024666083976626396, 0.10533884167671204, 0.10154987871646881, 0.01932455599308014, -0.056421663612127304, -0.023261189460754395, 0.12606947124004364, -0.10842017829418182, 0.007575866300612688, -0.044650230556726456, -0.0044056023471057415, 0.001448073424398899, 0.006225127261132002, 0.02632475271821022, -0.05960070341825485, 0.0070602004416286945, -0.059082310646772385, -0.026051824912428856, -0.07865548133850098, -0.07021480798721313, 0.08175721019506454, -0.0011699942406266928, -0.0025779246352612972, -0.1263771504163742, -0.140835240483284, -0.08021261543035507, -0.018259691074490547, -0.041950665414333344, -0.042183827608823776, 0.010052859783172607, -0.012126311659812927, -0.05870490148663521, -0.023524245247244835, -0.0365975983440876, -0.0031013789121061563, 0.0041891587898135185, -0.061365801841020584, -0.004622277803719044, -0.008640698157250881, -0.019775645807385445, -0.1069473922252655, 0.03924651816487312, -0.12687674164772034, 0.07094117254018784, -0.06524360179901123, -0.00920222420245409, -0.10464081913232803, -0.01420283131301403, -0.00018900047871284187, 0.04325654357671738, -0.013363969512283802, 0.11798477172851562, -0.17289458215236664, 0.011040921323001385, 0.12155727297067642, -0.12567399442195892, -0.05034682899713516, 0.14267541468143463, -0.04472125321626663, 0.1178724393248558, 0.13063471019268036, 0.11239601671695709, 0.07650314271450043, -0.09935744106769562, -0.09234033524990082, -0.012115820311009884, -0.055144745856523514, 0.1413680464029312, 0.03888934850692749, -0.0005688309902325273, 0.03866027295589447, 0.006545576266944408, -0.02030027285218239, -0.022356949746608734, -0.003626086749136448, -0.06553862988948822, 0.010553248226642609, -0.0187673456966877, 0.00413102563470602, -0.01171658281236887, -0.07834531366825104, 0.005503436550498009, -0.1559491753578186, -0.024486156180500984, 0.07954023033380508, 0.022685611620545387, 0.020696165040135384, -0.10308007895946503, 0.015783481299877167, 0.018473366275429726, -0.009572227485477924, -0.12971100211143494, -0.14439018070697784, 0.0408841036260128, -0.16005270183086395, 0.10972121357917786, 0.05076070874929428, -0.008156804367899895, -0.005800831597298384, -0.04132118076086044, 0.03667721524834633, -0.06615860760211945, 0.005356169771403074, -0.024901801720261574, -0.13196961581707, -0.026829073205590248, -0.04480432718992233, 0.057457853108644485, -0.20476330816745758, 0.011247965507209301, 0.050524789839982986, 0.07620420306921005, 0.03847096115350723, -0.040975138545036316, 0.027109039947390556, 0.05010547116398811, 0.02129567787051201, -0.03389091417193413, 0.017280228435993195, -0.017754491418600082, -0.0719388946890831, 0.0794714093208313, -0.13661980628967285, -0.03169089928269386, 0.028311273083090782, 0.05663418397307396, -0.1043047308921814, -0.018566355109214783, -0.007491137832403183, -0.04499699920415878, -0.05081779509782791, -0.03931235522031784, 0.19816625118255615, 0.04632565379142761, -0.013630998320877552, -0.07176077365875244, -0.05530044063925743, -0.03474435955286026, -0.02491062320768833, -0.004233809653669596, 0.022051917389035225, 0.03275127708911896, -0.1612550914287567, 0.040208276361227036, 0.03243968263268471, 0.007709013298153877, 0.11810745298862457, 0.03446948528289795, -0.06450235843658447, -0.04034615308046341, -0.0010549189755693078, -0.009557303041219711, 0.11097484081983566, 0.028571782633662224, 0.04160149395465851, 0.04444585740566254, 0.005735869985073805, 0.05059090256690979, -0.054465021938085556, 0.023970961570739746, -0.00932321511209011, -0.0012963266344740987, -0.07049916684627533, -0.021686995401978493, 0.037541743367910385, 0.07505317777395248, 0.010975739918649197, 0.06177888438105583, -0.00561181828379631, -0.03332271799445152, -0.0958583876490593, 0.12987934052944183, -0.04883059114217758, -0.3209380507469177, -0.12681731581687927, 0.09035320580005646, -0.02362970821559429, -0.046524256467819214, 0.010888226330280304, -0.02491946518421173, -0.07163912057876587, -0.07569952309131622, 0.1110198050737381, -0.0030084445606917143, -0.13328799605369568, -0.08790748566389084, 0.043276336044073105, 0.017644671723246574, -0.12076675891876221, 0.007966781035065651, -0.002253068145364523, -0.12251178175210953, -0.010445069521665573, 0.0494174063205719, 0.1362951248884201, 0.05956519395112991, 0.01029213797301054, -0.09422852843999863, -0.04517197608947754, 0.14445121586322784, -0.11040148138999939, 0.08414095640182495, 0.15367025136947632, -0.06055530533194542, 0.052247535437345505, 0.16235485672950745, 0.015004782937467098, -0.05736349895596504, -0.018095139414072037, 0.059326935559511185, -0.026977427303791046, -0.24415098130702972, -0.10789745301008224, -0.018593570217490196, -0.06769934296607971, -0.010295657441020012, 0.033485569059848785, -0.01769520714879036, 0.013771360740065575, -0.08780326694250107, -0.009954923763871193, 0.008770113810896873, 0.0955217108130455, 0.15047436952590942, -0.023109735921025276, 0.06152345985174179, -0.027010690420866013, -0.0004781440075021237, 0.08077792078256607, 0.039315998554229736, 0.20832012593746185, 0.014102145098149776, 0.17687658965587616, 0.0789860412478447, 0.04518871754407883, 0.04861528053879738, -0.026109347119927406, 0.01748274825513363, 0.032656554132699966, -0.041161712259054184, -0.04034877195954323, -0.04881545528769493, 0.07941963523626328, 0.03213519603013992, -0.03613648563623428, 0.0015044133178889751, -0.01267750933766365, 0.057533252984285355, 0.14287671446800232, -0.03549450263381004, -0.12013865262269974, -0.048130135983228683, 0.040996670722961426, -0.06562647223472595, -0.09912458062171936, 0.013805187307298183, 0.06810165196657181, -0.16599875688552856, 0.027060357853770256, -0.01635162904858589, 0.09568198770284653, -0.13592474162578583, 0.020647307857871056, -0.07508417963981628, 0.06417153775691986, 0.019063681364059448, 0.08631014078855515, -0.15652243793010712, 0.1194322481751442, 0.025842487812042236, 0.06875526905059814, -0.05473481863737106, 0.025587672367691994, -0.02220606617629528, 0.03684553876519203, 0.16829968988895416, 0.02518007904291153, -0.07143735885620117, -0.08099301904439926, -0.07325547188520432, 0.0719495341181755, 0.0589817650616169, -0.0458085723221302, 0.08804512768983841, -0.0030098091810941696, 0.029029740020632744, -0.002828323980793357, -0.057698044925928116, -0.15277431905269623, -0.1674921214580536, 0.05762210115790367, -0.06876114010810852, 0.008477508090436459, -0.08554191142320633, -0.013151448220014572, 0.02846710756421089, 0.20582681894302368, -0.11817678809165955, -0.0698092132806778, -0.0853920727968216, -0.026466306298971176, 0.11103346198797226, -0.0735134482383728, -0.0033970277290791273, 0.011325365863740444, 0.10809372365474701, -0.03639606386423111, -0.020505432039499283, 0.02877167984843254, -0.07432771474123001, -0.10869397968053818, -0.04904285445809364, 0.09957227855920792, 0.10076214373111725, 0.06608108431100845, 0.041295889765024185, 0.002562503330409527, 0.024481048807501793, -0.10831065475940704, -0.03612979128956795, 0.19298066198825836, 0.005610095337033272, 0.07458919286727905, -0.080105260014534, -0.046599943190813065, -0.10915999114513397, -0.02536129765212536, 0.11058425903320312, 0.16057954728603363, -0.061843886971473694, 0.15573784708976746, 0.1605481207370758, -0.13643042743206024, -0.18419843912124634, 0.007361427880823612, 0.011587752029299736, -0.0030694054439663887, 0.07005323469638824, -0.17170436680316925, 0.07283265143632889, 0.048061568289995193, -0.002696005627512932, 0.05952085554599762, -0.11833340674638748, -0.09227924793958664, 0.06925123929977417, -0.019127044826745987, 0.04193801060318947, -0.07825691252946854, -0.021819572895765305, -0.019284488633275032, -0.12575916945934296, 0.09214457869529724, -0.06125548854470253, 0.017615700140595436, 0.0162467323243618, 0.08782197535037994, 0.04674932360649109, -0.02079261839389801, 0.10976552218198776, 0.012658798135817051, 0.061208222061395645, -0.05572044476866722, -0.010539058595895767, 0.017398914322257042, -0.038768745958805084, 0.10307470709085464, 0.03975222632288933, 0.017241807654500008, -0.0708782821893692, -0.07771347463130951, -0.054575227200984955, 0.1097460612654686, -0.06343201547861099, -0.07511994987726212, -0.06675087660551071, 0.12426306307315826, 0.0559922456741333, -0.017176860943436623, -0.007636664900928736, -0.09114562720060349, 0.03279701620340347, 0.07047546654939651, 0.18085312843322754, -0.03476922959089279, -0.08147084712982178, 0.01105919573456049, -0.03904862329363823, 0.09359990805387497, -0.03298715129494667, 0.02958965301513672, 0.0783626064658165, 0.00540520716458559, 0.07051560282707214, -0.03770241513848305, -0.16143223643302917, 0.005220689345151186, 0.01570039428770542, -0.05939903110265732, -0.1826936900615692, 0.0026288211811333895, 0.034085217863321304, -0.10797622054815292, -0.06061715632677078, 0.16030646860599518, -0.04309588670730591, -0.045541755855083466, 0.006272357888519764, 0.07112930715084076, 0.04085851088166237, 0.008037755265831947, 0.024660572409629822, 0.044943396002054214, -0.04638432338833809, 0.06474678963422775, 0.10515514761209488, -0.08502238988876343, 0.051852740347385406, 0.014354299753904343, -0.04767303913831711, -0.06504413485527039, -0.039640240371227264, 0.06617698073387146, -0.01896614022552967, -0.06902715563774109, 0.005175784695893526, -0.06150362268090248, -0.009320156648755074, 0.12029517441987991, 0.009674771688878536, 0.009586584754288197, 0.019749607890844345, 0.0052267867140471935, -0.07504812628030777, 0.055485647171735764, 0.008239887654781342, 0.022464299574494362, -0.06964512169361115, 0.030430449172854424, 0.03807941451668739, 0.016528772190213203, -0.012836042791604996, 0.011260938830673695, -0.11672887206077576, -0.029926281422376633, -0.16088837385177612, 0.028683457523584366, -0.07996157556772232, 0.058787986636161804, -0.01826396957039833, -0.013923374004662037, -0.04121756553649902, 0.02810019440948963, -0.025557834655046463, -0.035895299166440964, -0.0014157402329146862, 0.11794691532850266, -0.11581780761480331, 0.012408813461661339, 0.08981075137853622, -0.05316571891307831, 0.08016648888587952, -0.05737220495939255, -0.01475723646581173, 0.05619175359606743, -0.10495961457490921, 0.05217929929494858, -0.04561414197087288, 0.037914395332336426, -0.008933802135288715, -0.15239374339580536, -0.001985708950087428, 0.0035956327337771654, 0.011725056916475296, 0.016245469450950623, 0.02311520278453827, -0.07833657413721085, 0.01736365258693695, 0.03984948247671127, -0.04842432215809822, -0.03280164301395416, -0.003886502468958497, 0.03381141275167465, 0.043486516922712326, 0.11201994866132736, -0.01392138097435236, 0.06596861779689789, -0.15126660466194153, -0.027991628274321556, -0.01131452340632677, 0.08090606331825256, 0.08088061958551407, -0.04234572872519493, 0.04748871549963951, -0.020185019820928574, 0.2569701671600342, 0.004468244034796953, 0.04567737877368927, 0.054191917181015015, -0.01692947745323181, -0.07881391793489456, -0.0028892173431813717, -0.04215799272060394, 0.008747072890400887, -0.007454096805304289, -0.006182453129440546, -0.08262714743614197, -0.057708222419023514, -0.057227931916713715, 0.1188112422823906, 0.19479288160800934, 0.10433454066514969, 0.00921331625431776, 0.07694656401872635, -0.03859127312898636, -0.04442865028977394, 0.04122080281376839, 0.015806417912244797, -0.03186655789613724, -0.053159430623054504, 0.09087624400854111, 0.1422840654850006, -0.10392605513334274, 0.10700605809688568, -0.010063440538942814, -0.05076335370540619, -0.07903475314378738, -0.15866196155548096, -0.06434544175863266, 0.013435098342597485, 0.013160067610442638, -0.09793742746114731, 0.023832740262150764, 0.11223524808883667, -0.03980191424489021, -0.02498709037899971, 0.08395513147115707, -0.07566184550523758, -0.0874146893620491, 0.05418098345398903, 0.01692734844982624, 0.026721253991127014, 0.0004219725960865617, 0.051516588777303696, 0.02559533901512623, 0.11045823991298676, 0.048375971615314484, 0.05188930034637451, 0.056672945618629456, -0.012989494949579239, -0.09180907905101776, -0.06487087160348892, -0.012182331643998623, 0.036650899797677994, 0.021054180338978767, 0.15481238067150116, 0.05178917571902275, -0.032269809395074844, -0.004085124004632235, 0.2050834745168686, 0.006155218929052353, -0.09179249405860901, -0.1401645690202713, 0.1642574816942215, -0.06049603596329689, -0.017682522535324097, 0.002904814202338457, -0.07267545908689499, 0.08689053356647491, 0.11707861721515656, 0.16410768032073975, -0.032607100903987885, -0.004510603379458189, -0.03114636428654194, 0.010736907832324505, -0.05521416664123535, 0.11639402061700821, 0.026279419660568237, 0.22409024834632874, -0.06576789170503616, 0.030729155987501144, -0.02557402290403843, -0.008419700898230076, -0.04345608130097389, 0.09888270497322083, -0.02238554321229458, 0.02151438035070896, -0.090337835252285, 0.11499042809009552, -0.038210123777389526, -0.22270023822784424, -0.04271334409713745, -0.0734441801905632, -0.09819810092449188, 0.009680833667516708, 0.02468859776854515, -0.064273402094841, 0.03665976598858833, 0.015490416437387466, -0.04460738226771355, 0.15465107560157776, 0.0044609736651182175, -0.053372591733932495, -0.01512998715043068, 0.11355578154325485, 0.07080613821744919, 0.2440510243177414, 0.024619586765766144, 0.13631115853786469, 0.09183358401060104, -0.009772139601409435, -0.11677383631467819, 0.04338420182466507, 0.014910220168530941, -0.03218097984790802, 0.032677099108695984, 0.16698887944221497, 0.012412370182573795, 0.1364116221666336, 0.12545767426490784, -0.04079413041472435, 0.05339236557483673, -0.09461414813995361, -0.05229649320244789, -0.07616587728261948, 0.10411418229341507, -0.10382016003131866, 0.1520475447177887, 0.1327890306711197, -0.017235688865184784, 0.007438541855663061, -0.055674124509096146, 0.03569665178656578, 0.02944081276655197, 0.13204459846019745, -0.0035052387975156307, -0.09089810401201248, 0.009578151628375053, 0.043913908302783966, 0.06375773251056671, -0.19781604409217834, -0.07483731955289841, 0.05680372193455696, 0.0017036477802321315, 0.0016968344571068883, 0.10370239615440369, 0.022207321599125862, 0.007021212950348854, -0.021994056180119514, -0.20248009264469147, 0.022545119747519493, 0.0765724629163742, -0.09027419984340668, -0.024363188073039055 ]
null
null
transformers
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned version of "xlm-roberta-base" (a multilingual version of RoBERTa) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "xlm-roberta-base" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 2 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9919343118732742 * f1: 0.9492100796448622 * precision: 0.9407349896480332 * recall: 0.9578392621870883
{"language": "tr", "widget": [{"text": "Mustafa Kemal Atat\u00fcrk 19 May\u0131s 1919'da Samsun'a \u00e7\u0131kt\u0131."}]}
token-classification
akdeniz27/xlm-roberta-base-turkish-ner
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "tr", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us
# Turkish Named Entity Recognition (NER) Model This model is the fine-tuned version of "xlm-roberta-base" (a multilingual version of RoBERTa) using a reviewed version of well known Turkish NER dataset (URL # Fine-tuning parameters: # How to use: Pls refer "URL for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9919343118732742 * f1: 0.9492100796448622 * precision: 0.9407349896480332 * recall: 0.9578392621870883
[ "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883" ]
[ "TAGS\n#transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL", "# Fine-tuning parameters:", "# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.", "# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883" ]
[ 52, 60, 8, 24, 52 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #xlm-roberta #token-classification #tr #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Turkish Named Entity Recognition (NER) Model\nThis model is the fine-tuned version of \"xlm-roberta-base\"\n(a multilingual version of RoBERTa) \nusing a reviewed version of well known Turkish NER dataset \n(URL# Fine-tuning parameters:# How to use: \n\nPls refer \"URL for entity grouping with aggregation_strategy parameter.# Reference test results:\n* accuracy: 0.9919343118732742\n* f1: 0.9492100796448622\n* precision: 0.9407349896480332\n* recall: 0.9578392621870883" ]
[ -0.10435346513986588, -0.0381808839738369, -0.0019086733227595687, 0.03176600858569145, 0.10578595101833344, -0.018771762028336525, 0.1054520308971405, 0.010318341664969921, -0.03344451263546944, 0.08734717965126038, 0.0628533661365509, 0.005745796486735344, 0.03050547093153, 0.09022340178489685, -0.065375417470932, -0.13850842416286469, 0.05766195431351662, -0.015663761645555496, 0.10577994585037231, 0.15141451358795166, 0.06966826319694519, -0.08312228322029114, 0.07208023965358734, 0.05544206127524376, -0.12501180171966553, 0.07592148333787918, 0.02027669921517372, -0.12683939933776855, 0.11898842453956604, -0.02927509695291519, 0.150120347738266, -0.010538960807025433, 0.019433630630373955, -0.0982765406370163, 0.018793057650327682, -0.04368596151471138, -0.03714580461382866, 0.026027841493487358, 0.10077766329050064, -0.1572135090827942, 0.15126414597034454, -0.0452544242143631, -0.034240808337926865, -0.03519288823008537, -0.07394817471504211, -0.0763152614235878, -0.10959778726100922, 0.15527650713920593, 0.06878990679979324, 0.07646147906780243, -0.028634777292609215, 0.1664862185716629, -0.11711502820253372, 0.10784134268760681, 0.17834962904453278, -0.31378334760665894, -0.09418551623821259, 0.004239014349877834, -0.07087074220180511, -0.025224439799785614, 0.04329686984419823, 0.06002374738454819, 0.0369546078145504, 0.027983283624053, 0.016381563618779182, -0.031811993569135666, -0.21064096689224243, -0.00007879048644099385, -0.11597190052270889, -0.05001756548881531, 0.20123454928398132, 0.05424419045448303, -0.01798039861023426, -0.010447024367749691, -0.06892389059066772, -0.06576762348413467, -0.02255694568157196, -0.046938084065914154, -0.0342673622071743, -0.1399928778409958, -0.019777385517954826, 0.0622517354786396, -0.04685701057314873, -0.10640642046928406, -0.24388587474822998, 0.2943159341812134, 0.05465962365269661, 0.0652555450797081, -0.02398042194545269, 0.07963049411773682, -0.11029379814863205, -0.05923104286193848, -0.034279029816389084, 0.028181929141283035, -0.12084851413965225, 0.015005738474428654, -0.029862551018595695, 0.052015647292137146, 0.08818138390779495, 0.14008785784244537, -0.014073112979531288, 0.017706215381622314, 0.06108131259679794, 0.05255400761961937, -0.0919826477766037, 0.17379161715507507, -0.08957161754369736, -0.03752066567540169, 0.010682499036192894, -0.044136229902505875, 0.0546347051858902, 0.034962818026542664, -0.05790514126420021, -0.09985917806625366, 0.20923423767089844, 0.05156988650560379, -0.03751682862639427, 0.10126378387212753, 0.01517531555145979, 0.03920125961303711, -0.034978315234184265, -0.09894527494907379, -0.019242698326706886, 0.007156162057071924, -0.13593922555446625, -0.05471275746822357, -0.024520840495824814, -0.03287718817591667, -0.056524261832237244, 0.018367372453212738, -0.00012288347352296114, 0.02048458158969879, -0.0010703217703849077, -0.13638025522232056, 0.029516704380512238, -0.08796520531177521, -0.012412798590958118, -0.26703059673309326, -0.18093056976795197, -0.006460817065089941, -0.02579403482377529, -0.07697800546884537, 0.05972606688737869, -0.06625600904226303, -0.020048828795552254, -0.0066510336473584175, -0.06398093700408936, -0.027483711019158363, -0.06540456414222717, 0.03876367211341858, 0.06508960574865341, 0.09406839311122894, -0.014133286662399769, 0.03662724792957306, -0.12185678631067276, 0.0037423043977469206, -0.0753655880689621, 0.040928471833467484, -0.049307193607091904, 0.003872432978823781, -0.12392833828926086, -0.07305584102869034, -0.01685384474694729, -0.024500831961631775, 0.06290450692176819, 0.10134328901767731, -0.010684755630791187, -0.04560141637921333, 0.052829742431640625, -0.10430615395307541, -0.08580520749092102, 0.1376906931400299, 0.00753756333142519, -0.013221483677625656, 0.08951320499181747, 0.2534049451351166, 0.05641970783472061, -0.0026351427659392357, -0.0617544986307621, 0.002789083169773221, -0.1268443763256073, -0.10025109350681305, 0.039464615285396576, 0.075796939432621, -0.08612153679132462, 0.08214940875768661, -0.10163729637861252, 0.11071760207414627, -0.056040987372398376, -0.04499140754342079, 0.007845718413591385, -0.060560937970876694, 0.1088041290640831, -0.03885890170931816, 0.12225877493619919, -0.08753929287195206, -0.03343068063259125, -0.02077292464673519, 0.07962466031312943, -0.01732943020761013, -0.005300747696310282, -0.10462304204702377, 0.2688118815422058, -0.1719871163368225, -0.014224797487258911, -0.18754242360591888, -0.08706292510032654, -0.03337031602859497, 0.020982155576348305, 0.04530687630176544, -0.0484437569975853, 0.05572658032178879, -0.030782515183091164, -0.012268520891666412, -0.0316239558160305, 0.08801215887069702, 0.0353487953543663, -0.014664354734122753, -0.04981999471783638, 0.005172156263142824, 0.015164165757596493, 0.13242875039577484, -0.057334303855895996, 0.01904314197599888, -0.010189112275838852, 0.06829233467578888, -0.0747012123465538, 0.08496797829866409, -0.010971399955451488, 0.06466039270162582, -0.02112855762243271, -0.008173211477696896, 0.07600255310535431, -0.012952923774719238, -0.06123006343841553, 0.09483963251113892, -0.11066620796918869, 0.2342328131198883, 0.09692788124084473, 0.01158501859754324, -0.08251796662807465, 0.015617012977600098, -0.027364986017346382, -0.025810783728957176, 0.023931503295898438, 0.07001273334026337, 0.11768200248479843, 0.004234146326780319, 0.12734957039356232, -0.0987902358174324, -0.009889645501971245, 0.03533743694424629, -0.07897506654262543, -0.034696776419878006, 0.2093578279018402, -0.0516924187541008, -0.1720227599143982, 0.12517940998077393, 0.044261425733566284, -0.12537382543087006, 0.07062707841396332, 0.025158055126667023, -0.03129756450653076, -0.02435511350631714, 0.0365833044052124, -0.0022446459624916315, 0.08648638427257538, 0.002292812569066882, -0.0400683768093586, 0.07090054452419281, 0.035799622535705566, 0.02869889698922634, -0.08680543303489685, 0.013829059898853302, 0.020651083439588547, -0.05021587759256363, -0.030577437952160835, 0.06786315143108368, 0.03310670703649521, 0.16120663285255432, -0.013978409580886364, -0.19663329422473907, 0.019743798300623894, 0.008516554720699787, -0.08394187688827515, 0.17880527675151825, -0.03406858816742897, -0.22939179837703705, -0.13522163033485413, -0.053068045526742935, -0.17880010604858398, -0.06650590151548386, 0.014655672013759613, -0.07298656553030014, 0.0356995090842247, -0.04555448144674301, 0.010471505112946033, -0.007948917336761951, -0.02132168598473072, -0.11366172879934311, -0.01808461733162403, 0.03534074127674103, -0.05637276545166969, -0.050891075283288956, -0.14183829724788666, -0.0948856845498085, 0.14202624559402466, -0.07361140102148056, 0.14300093054771423, 0.08905541151762009, -0.1255807727575302, 0.05153302848339081, -0.03614592179656029, 0.06088937819004059, -0.07101093232631683, -0.015766523778438568, 0.13270629942417145, 0.030438270419836044, 0.011791616678237915, 0.10687031596899033, -0.015783891081809998, 0.005959864240139723, -0.019752569496631622, -0.029049761593341827, -0.059712644666433334, -0.15874190628528595, -0.143606036901474, -0.03483419120311737, -0.040658239275217056, 0.05153707414865494, 0.035474374890327454, 0.01799238845705986, 0.07861461490392685, 0.01572965271770954, -0.06929481774568558, -0.05265718325972557, 0.04504937306046486, 0.27287739515304565, 0.057599201798439026, 0.11461875587701797, -0.07820234447717667, -0.08648175001144409, 0.02652718499302864, 0.0007049339474178851, 0.2504740357398987, -0.007639480754733086, -0.04416793957352638, 0.04618271440267563, 0.16697187721729279, 0.08490218222141266, 0.12716853618621826, -0.025936251506209373, -0.008790861815214157, 0.025743627920746803, -0.06856105476617813, -0.024321651086211205, -0.021570343524217606, -0.04078175872564316, 0.05952160432934761, -0.08105534315109253, -0.07147076725959778, 0.11719897389411926, 0.09088928252458572, 0.06448179483413696, -0.39138057827949524, -0.1113056018948555, -0.06741461902856827, -0.029399225488305092, -0.014425155706703663, -0.003380510490387678, 0.012540256604552269, -0.09366542845964432, 0.07683970779180527, -0.037690669298172, 0.07595361024141312, -0.013953769579529762, 0.011264392174780369, -0.08020979911088943, 0.019411111250519753, -0.003996327053755522, 0.13218042254447937, -0.08170612156391144, 0.3557415306568146, 0.001178426668047905, 0.024462075904011726, -0.02506723813712597, -0.07201316207647324, 0.05800700560212135, 0.06068756431341171, 0.12960784137248993, 0.02409306913614273, -0.07809825241565704, -0.18508557975292206, -0.0925414115190506, 0.09384174644947052, -0.009632997214794159, 0.02379651553928852, 0.09839600324630737, 0.0023488360457122326, 0.0011702872579917312, -0.018902231007814407, -0.0669088289141655, -0.06484682857990265, -0.05034312233328819, -0.04580938443541527, 0.11215417832136154, -0.030754003673791885, -0.04184072092175484, -0.0953039824962616, -0.13548041880130768, 0.12159734964370728, -0.08836527913808823, -0.06755443662405014, -0.07075898349285126, 0.05925214663147926, 0.07121556997299194, -0.14268375933170319, -0.008982163853943348, -0.038503699004650116, -0.002302461303770542, -0.0048250555992126465, -0.128931924700737, 0.004077079705893993, -0.05508361756801605, -0.03422296792268753, 0.05481240153312683, 0.077757328748703, 0.04936544597148895, 0.02477630414068699, 0.06139327213168144, 0.027673639357089996, -0.03799770027399063, -0.07660432159900665, -0.016455532982945442, 0.045012880116701126, 0.05808023363351822, 0.14338473975658417, 0.015104990452528, -0.17441484332084656, -0.10525335371494293, 0.07621165364980698, 0.1606113463640213, 0.0968828797340393, -0.08378185331821442, 0.026823000982403755, 0.12533289194107056, 0.0009837630204856396, -0.19901353120803833, -0.05914103984832764, 0.0060209427028894424, 0.08806881308555603, -0.01407478004693985, 0.05619420111179352, 0.1136721596121788, 0.1266014724969864, -0.028620095923542976, -0.019915468990802765, -0.1671641767024994, -0.07913128286600113, 0.24501562118530273, 0.049837321043014526, 0.25275954604148865, -0.03803902864456177, -0.03094867244362831, 0.007547158747911453, -0.049985192716121674, -0.05191664397716522, -0.07516685128211975, 0.08023331314325333, -0.0931781455874443, 0.16999201476573944, 0.027444930747151375, -0.016999591141939163, 0.13837897777557373, 0.01849503256380558, 0.07035603374242783, -0.07151679694652557, -0.09580789506435394, 0.08407622575759888, -0.08922050148248672, 0.11482634395360947, -0.03525904566049576, 0.05407766252756119, -0.05874527990818024, -0.037548936903476715, -0.07728055864572525, 0.1662748157978058, 0.03861411660909653, 0.05198235437273979, -0.06822102516889572, 0.030029719695448875, -0.05188389867544174, -0.031936947256326675, 0.04877157136797905, -0.04645618423819542, 0.07133439928293228, 0.07833228260278702, 0.04606448486447334, -0.0171354990452528, -0.0014027947327122092, 0.007573173847049475, -0.017305584624409676, 0.06860417127609253, -0.024478154256939888, -0.005543796811252832, 0.17009702324867249, 0.002457194961607456, 0.05905034393072128, 0.038846205919981, -0.0741758719086647, 0.04462327063083649, 0.1017824113368988, -0.09465465694665909, -0.06993418186903, -0.0031404392793774605, -0.16267989575862885, -0.028447233140468597, 0.11237525194883347, 0.11121423542499542, -0.1173308789730072, 0.021081767976284027, -0.018796300515532494, -0.027558188885450363, -0.04082898795604706, 0.1627189666032791, 0.03691500052809715, 0.038635868579149246, -0.09691652655601501, 0.05618295818567276, 0.050477638840675354, -0.017718680202960968, 0.010621950961649418, -0.060525014996528625, -0.13320325314998627, -0.0526079386472702, -0.044490665197372437, 0.14610642194747925, -0.09304524213075638, -0.15192702412605286, -0.13616101443767548, -0.12601983547210693, 0.02701985277235508, 0.16009213030338287, 0.1270262598991394, -0.005981205031275749, -0.04135338217020035, -0.06297611445188522, -0.04434080049395561, 0.08896970003843307, 0.1551402360200882, 0.046812012791633606, -0.17573091387748718, 0.053613629192113876, 0.01568133756518364, 0.12161193042993546, -0.05576307699084282, -0.0755293071269989, -0.09352394938468933, 0.05697895586490631, -0.19100120663642883, 0.017315857112407684, -0.1040751188993454, 0.033169735223054886, 0.015569969080388546, -0.025794344022870064, -0.11965624988079071, 0.04389369860291481, -0.06653475016355515, 0.05381961911916733, 0.004172395449131727, 0.040310945361852646, -0.1186228096485138, -0.03634845092892647, 0.010497079230844975, -0.015573943965137005, 0.08680751174688339, 0.17259733378887177, -0.009929890744388103, 0.10153070092201233, -0.17160655558109283, -0.07151498645544052, 0.0437438003718853, 0.04376939311623573, 0.08616948872804642, -0.07974781841039658, 0.06940098106861115, 0.09405426681041718, 0.010157296434044838, 0.05558301880955696, 0.014084934256970882, -0.061888113617897034, 0.013958072289824486, -0.1314413696527481, -0.010306769981980324, -0.10657201707363129, 0.05097399652004242, 0.0639050304889679, 0.12360883504152298, 0.101081982254982, -0.10988033562898636, -0.0058321161195635796, -0.08290737122297287, 0.01984129473567009, -0.050717033445835114, -0.17668430507183075, -0.05827028676867485, -0.08112818747758865, 0.05724705755710602, 0.012962060049176216, 0.17589393258094788, 0.08058099448680878, -0.014170411042869091, -0.01905527524650097, 0.0020674874540418386, -0.007496967911720276, -0.03600440174341202, 0.06616619229316711, 0.01956889219582081, -0.025869818404316902, -0.0031916736625134945, 0.031499382108449936, 0.060117676854133606, -0.04259043186903, 0.11269275844097137, 0.18319319188594818, -0.04796576499938965, 0.09522983431816101, 0.10377247631549835, -0.07536079734563828, 0.01913595013320446, -0.1280367523431778, -0.1479027420282364, 0.036943498998880386, 0.06938636302947998, 0.04776551201939583, 0.23178750276565552, -0.03177589550614357, 0.0019042108906432986, -0.026142306625843048, -0.0499453991651535, -0.07371149212121964, -0.18761786818504333, -0.11452285945415497, -0.12961091101169586, -0.010739053599536419, -0.046453751623630524, -0.10525844246149063, 0.17133955657482147, 0.03595203906297684, -0.01721400022506714, 0.13007064163684845, -0.06463731080293655, -0.03593526780605316, 0.10145210474729538, -0.06936878710985184, -0.025964532047510147, 0.03674270957708359, -0.02826005034148693, 0.030284089967608452, -0.008745674043893814, 0.05976344272494316, 0.036778971552848816, 0.04178900644183159, 0.03007931262254715, -0.06865331530570984, -0.0656428262591362, -0.04207230731844902, 0.046126823872327805, 0.038206104189157486, -0.011379075236618519, 0.07667337357997894, -0.03354237973690033, -0.03529326245188713, 0.19757743179798126, -0.0001566153805470094, -0.08826301246881485, -0.008450916968286037, 0.27902448177337646, 0.018308835104107857, 0.003372418927028775, 0.0005086243618279696, -0.04054859280586243, 0.020656801760196686, 0.1779778152704239, 0.2653530538082123, 0.05743715912103653, 0.008468735963106155, -0.08132079988718033, 0.008220870047807693, 0.0037903785705566406, 0.040022555738687515, 0.0491425022482872, 0.18895556032657623, -0.03278551995754242, 0.0008161216974258423, -0.07791269570589066, 0.015156476758420467, -0.06112263724207878, 0.006452583707869053, 0.03526054695248604, -0.04110441356897354, -0.1134185716509819, 0.11554618179798126, -0.0631224662065506, -0.061422549188137054, 0.1103033646941185, -0.01218862272799015, -0.17480434477329254, 0.030161945149302483, 0.027451591566205025, 0.015660447999835014, 0.07017083466053009, -0.11789380759000778, 0.009076239541172981, -0.08937534689903259, 0.03025767020881176, -0.12618929147720337, -0.09460015594959259, 0.09245149791240692, 0.13201868534088135, 0.1304941624403, -0.004208569880574942, 0.10838095843791962, 0.10632150620222092, 0.023627545684576035, -0.09200940281152725, 0.13506938517093658, 0.007940810173749924, -0.015897922217845917, 0.13462592661380768, -0.0041976748034358025, 0.03332699462771416, -0.037879399955272675, 0.08066818863153458, -0.08403957635164261, 0.020711472257971764, -0.035219136625528336, 0.031450096517801285, -0.1078605055809021, 0.046868447214365005, 0.002626395784318447, 0.09574291855096817, 0.1775764673948288, -0.03971634805202484, 0.028530821204185486, -0.06517452001571655, -0.005664157681167126, 0.053642626851797104, 0.013120479881763458, 0.058905716985464096, -0.12520486116409302, -0.011133941821753979, -0.039433643221855164, -0.009153803810477257, -0.2433544546365738, -0.034448739141225815, -0.0447087436914444, -0.05645010620355606, 0.050822664052248, 0.07243695110082626, 0.10711776465177536, 0.051433783024549484, -0.009025493636727333, -0.09736988693475723, 0.00453846575692296, 0.11941535770893097, -0.08530398458242416, -0.07899340242147446 ]
null
null
null
<div align="left"> ## You Only Look Once for Panoptic ​ Driving Perception > [**You Only Look at Once for Panoptic driving Perception**](https://arxiv.org/abs/2108.11250) > > by Dong Wu, Manwen Liao, Weitian Zhang, [Xinggang Wang](https://xinggangw.info/) [*School of EIC, HUST*](http://eic.hust.edu.cn/English/Home.htm) > > *arXiv technical report ([arXiv 2108.11250](https://arxiv.org/abs/2108.11250))* --- ### The Illustration of YOLOP ![yolop](pictures/yolop.png) ### Contributions * We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the `BDD100K `dataset. * We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization. ### Results #### Traffic Object Detection Result | Model | Recall(%) | mAP50(%) | Speed(fps) | | -------------- | --------- | -------- | ---------- | | `Multinet` | 81.3 | 60.2 | 8.6 | | `DLT-Net` | 89.4 | 68.4 | 9.3 | | `Faster R-CNN` | 77.2 | 55.6 | 5.3 | | `YOLOv5s` | 86.8 | 77.2 | 82 | | `YOLOP(ours)` | 89.2 | 76.5 | 41 | #### Drivable Area Segmentation Result | Model | mIOU(%) | Speed(fps) | | ------------- | ------- | ---------- | | `Multinet` | 71.6 | 8.6 | | `DLT-Net` | 71.3 | 9.3 | | `PSPNet` | 89.6 | 11.1 | | `YOLOP(ours)` | 91.5 | 41 | #### Lane Detection Result: | Model | mIOU(%) | IOU(%) | | ------------- | ------- | ------ | | `ENet` | 34.12 | 14.64 | | `SCNN` | 35.79 | 15.84 | | `ENet-SAD` | 36.56 | 16.02 | | `YOLOP(ours)` | 70.50 | 26.20 | #### Ablation Studies 1: End-to-end v.s. Step-by-step: | Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | | --------------- | --------- | ----- | ------- | ----------- | ------ | | `ES-W` | 87.0 | 75.3 | 90.4 | 66.8 | 26.2 | | `ED-W` | 87.3 | 76.0 | 91.6 | 71.2 | 26.1 | | `ES-D-W` | 87.0 | 75.1 | 91.7 | 68.6 | 27.0 | | `ED-S-W` | 87.5 | 76.1 | 91.6 | 68.0 | 26.8 | | `End-to-end` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 | #### Ablation Studies 2: Multi-task v.s. Single task: | Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | Speed(ms/frame) | | --------------- | --------- | ----- | ------- | ----------- | ------ | --------------- | | `Det(only)` | 88.2 | 76.9 | - | - | - | 15.7 | | `Da-Seg(only)` | - | - | 92.0 | - | - | 14.8 | | `Ll-Seg(only)` | - | - | - | 79.6 | 27.9 | 14.8 | | `Multitask` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 | 24.4 | **Notes**: - The works we has use for reference including `Multinet` ([paper](https://arxiv.org/pdf/1612.07695.pdf?utm_campaign=affiliate-ir-Optimise%20media%28%20South%20East%20Asia%29%20Pte.%20ltd._156_-99_national_R_all_ACQ_cpa_en&utm_content=&utm_source=%20388939),[code](https://github.com/MarvinTeichmann/MultiNet)),`DLT-Net` ([paper](https://ieeexplore.ieee.org/abstract/document/8937825)),`Faster R-CNN` ([paper](https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf),[code](https://github.com/ShaoqingRen/faster_rcnn)),`YOLOv5s`([code](https://github.com/ultralytics/yolov5)) ,`PSPNet`([paper](https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf),[code](https://github.com/hszhao/PSPNet)) ,`ENet`([paper](https://arxiv.org/pdf/1606.02147.pdf),[code](https://github.com/osmr/imgclsmob)) `SCNN`([paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16802/16322),[code](https://github.com/XingangPan/SCNN)) `SAD-ENet`([paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf),[code](https://github.com/cardwing/Codes-for-Lane-Detection)). Thanks for their wonderful works. - In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others. --- ### Visualization #### Traffic Object Detection Result ![detect result](pictures/detect.png) #### Drivable Area Segmentation Result ![](pictures/da.png) #### Lane Detection Result ![](pictures/ll.png) **Notes**: - The visualization of lane detection result has been post processed by quadratic fitting. --- ### Project Structure ```python ├─inference │ ├─images # inference images │ ├─output # inference result ├─lib │ ├─config/default # configuration of training and validation │ ├─core │ │ ├─activations.py # activation function │ │ ├─evaluate.py # calculation of metric │ │ ├─function.py # training and validation of model │ │ ├─general.py #calculation of metric、nms、conversion of data-format、visualization │ │ ├─loss.py # loss function │ │ ├─postprocess.py # postprocess(refine da-seg and ll-seg, unrelated to paper) │ ├─dataset │ │ ├─AutoDriveDataset.py # Superclass dataset,general function │ │ ├─bdd.py # Subclass dataset,specific function │ │ ├─hust.py # Subclass dataset(Campus scene, unrelated to paper) │ │ ├─convect.py │ │ ├─DemoDataset.py # demo dataset(image, video and stream) │ ├─models │ │ ├─YOLOP.py # Setup and Configuration of model │ │ ├─light.py # Model lightweight(unrelated to paper, zwt) │ │ ├─commom.py # calculation module │ ├─utils │ │ ├─augmentations.py # data augumentation │ │ ├─autoanchor.py # auto anchor(k-means) │ │ ├─split_dataset.py # (Campus scene, unrelated to paper) │ │ ├─utils.py # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training │ ├─run │ │ ├─dataset/training time # Visualization, logging and model_save ├─tools │ │ ├─demo.py # demo(folder、camera) │ │ ├─test.py │ │ ├─train.py ├─toolkits │ │ ├─depoly # Deployment of model ├─weights # Pretraining model ``` --- ### Requirement This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+: ``` conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch ``` See `requirements.txt` for additional dependencies and version requirements. ```setup pip install -r requirements.txt ``` ### Data preparation #### Download - Download the images from [images](https://bdd-data.berkeley.edu/). - Download the annotations of detection from [det_annotations](https://drive.google.com/file/d/1Ge-R8NTxG1eqd4zbryFo-1Uonuh0Nxyl/view?usp=sharing). - Download the annotations of drivable area segmentation from [da_seg_annotations](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing). - Download the annotations of lane line segmentation from [ll_seg_annotations](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing). We recommend the dataset directory structure to be the following: ``` # The id represent the correspondence relation ├─dataset root │ ├─images │ │ ├─train │ │ ├─val │ ├─det_annotations │ │ ├─train │ │ ├─val │ ├─da_seg_annotations │ │ ├─train │ │ ├─val │ ├─ll_seg_annotations │ │ ├─train │ │ ├─val ``` Update the your dataset path in the `./lib/config/default.py`. ### Training You can set the training configuration in the `./lib/config/default.py`. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size). If you want try alternating optimization or train model for single task, please modify the corresponding configuration in `./lib/config/default.py` to `True`. (As following, all configurations is `False`, which means training multiple tasks end to end). ```python # Alternating optimization _C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs _C.TRAIN.DET_ONLY = False # Only train detection branch _C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs _C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch # Single task _C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task _C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task _C.TRAIN.DET_ONLY = False # Only train detection task ``` Start training: ```shell python tools/train.py ``` ### Evaluation You can set the evaluation configuration in the `./lib/config/default.py`. (Including: batch_size and threshold value for nms). Start evaluating: ```shell python tools/test.py --weights weights/End-to-end.pth ``` ### Demo Test We provide two testing method. #### Folder You can store the image or video in `--source`, and then save the reasoning result to `--save-dir` ```shell python tools/demo --source inference/images ``` #### Camera If there are any camera connected to your computer, you can set the `source` as the camera number(The default is 0). ```shell python tools/demo --source 0 ``` ### Deployment Our model can reason in real-time on `Jetson Tx2`, with `Zed Camera` to capture image. We use `TensorRT` tool for speeding up. We provide code for deployment and reasoning of model in `./toolkits/deploy`. ## Citation If you find our paper and code useful for your research, please consider giving a star and citation: ```BibTeX @misc{2108.11250, Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang}, Title = {YOLOP: You Only Look Once for Panoptic Driving Perception}, Year = {2021}, Eprint = {arXiv:2108.11250}, } ```
{"tags": ["object-detection"]}
object-detection
akhaliq/YOLOP
[ "object-detection", "arxiv:2108.11250", "arxiv:1612.07695", "arxiv:1606.02147", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2108.11250", "1612.07695", "1606.02147" ]
[]
TAGS #object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us
You Only Look Once for Panoptic ​ Driving Perception ---------------------------------------------------- > > You Only Look at Once for Panoptic driving Perception > > > by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang *School of EIC, HUST* > > > *arXiv technical report (arXiv 2108.11250)* > > > --- ### The Illustration of YOLOP !yolop ### Contributions * We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset. * We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization. ### Results #### Traffic Object Detection Result #### Drivable Area Segmentation Result Model: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6 Model: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3 Model: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1 Model: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41 #### Lane Detection Result: Model: 'ENet', mIOU(%): 34.12, IOU(%): 14.64 Model: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84 Model: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02 Model: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20 #### Ablation Studies 1: End-to-end v.s. Step-by-step: #### Ablation Studies 2: Multi-task v.s. Single task: Notes: * The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works. * In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others. --- ### Visualization #### Traffic Object Detection Result !detect result #### Drivable Area Segmentation Result ![](pictures/URL) #### Lane Detection Result ![](pictures/URL) Notes: * The visualization of lane detection result has been post processed by quadratic fitting. --- ### Project Structure --- ### Requirement This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+: See 'URL' for additional dependencies and version requirements. ### Data preparation #### Download * Download the images from images. * Download the annotations of detection from det\_annotations. * Download the annotations of drivable area segmentation from da\_seg\_annotations. * Download the annotations of lane line segmentation from ll\_seg\_annotations. We recommend the dataset directory structure to be the following: Update the your dataset path in the './lib/config/URL'. ### Training You can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\_size). If you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end). Start training: ### Evaluation You can set the evaluation configuration in the './lib/config/URL'. (Including: batch\_size and threshold value for nms). Start evaluating: ### Demo Test We provide two testing method. #### Folder You can store the image or video in '--source', and then save the reasoning result to '--save-dir' #### Camera If there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0). ### Deployment Our model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'. If you find our paper and code useful for your research, please consider giving a star and citation:
[ "### The Illustration of YOLOP\n\n\n!yolop", "### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.", "### Results", "#### Traffic Object Detection Result", "#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41", "#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20", "#### Ablation Studies 1: End-to-end v.s. Step-by-step:", "#### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---", "### Visualization", "#### Traffic Object Detection Result\n\n\n!detect result", "#### Drivable Area Segmentation Result\n\n\n![](pictures/URL)", "#### Lane Detection Result\n\n\n![](pictures/URL)\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---", "### Project Structure\n\n\n\n\n---", "### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.", "### Data preparation", "#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.", "### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:", "### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:", "### Demo Test\n\n\nWe provide two testing method.", "#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'", "#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0).", "### Deployment\n\n\nOur model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'.\n\n\nIf you find our paper and code useful for your research, please consider giving a star and citation:" ]
[ "TAGS\n#object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us \n", "### The Illustration of YOLOP\n\n\n!yolop", "### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.", "### Results", "#### Traffic Object Detection Result", "#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41", "#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20", "#### Ablation Studies 1: End-to-end v.s. Step-by-step:", "#### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---", "### Visualization", "#### Traffic Object Detection Result\n\n\n!detect result", "#### Drivable Area Segmentation Result\n\n\n![](pictures/URL)", "#### Lane Detection Result\n\n\n![](pictures/URL)\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---", "### Project Structure\n\n\n\n\n---", "### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.", "### Data preparation", "#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.", "### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:", "### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:", "### Demo Test\n\n\nWe provide two testing method.", "#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'", "#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0).", "### Deployment\n\n\nOur model can reason in real-time on 'Jetson Tx2', with 'Zed Camera' to capture image. We use 'TensorRT' tool for speeding up. We provide code for deployment and reasoning of model in './toolkits/deploy'.\n\n\nIf you find our paper and code useful for your research, please consider giving a star and citation:" ]
[ 36, 12, 147, 3, 7, 106, 110, 21, 228, 4, 11, 19, 41, 7, 44, 4, 105, 135, 45, 10, 33, 30, 93 ]
[ "passage: TAGS\n#object-detection #arxiv-2108.11250 #arxiv-1612.07695 #arxiv-1606.02147 #region-us \n### The Illustration of YOLOP\n\n\n!yolop### Contributions\n\n\n* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the 'BDD100K 'dataset.\n* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.### Results#### Traffic Object Detection Result#### Drivable Area Segmentation Result\n\n\nModel: 'Multinet', mIOU(%): 71.6, Speed(fps): 8.6\nModel: 'DLT-Net', mIOU(%): 71.3, Speed(fps): 9.3\nModel: 'PSPNet', mIOU(%): 89.6, Speed(fps): 11.1\nModel: 'YOLOP(ours)', mIOU(%): 91.5, Speed(fps): 41#### Lane Detection Result:\n\n\nModel: 'ENet', mIOU(%): 34.12, IOU(%): 14.64\nModel: 'SCNN', mIOU(%): 35.79, IOU(%): 15.84\nModel: 'ENet-SAD', mIOU(%): 36.56, IOU(%): 16.02\nModel: 'YOLOP(ours)', mIOU(%): 70.50, IOU(%): 26.20#### Ablation Studies 1: End-to-end v.s. Step-by-step:", "passage: #### Ablation Studies 2: Multi-task v.s. Single task:\n\n\n\nNotes:\n\n\n* The works we has use for reference including 'Multinet' (paper,code),'DLT-Net' (paper),'Faster R-CNN' (paper,code),'YOLOv5s'(code) ,'PSPNet'(paper,code) ,'ENet'(paper,code) 'SCNN'(paper,code) 'SAD-ENet'(paper,code). Thanks for their wonderful works.\n* In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.\n\n\n\n\n---### Visualization#### Traffic Object Detection Result\n\n\n!detect result#### Drivable Area Segmentation Result\n\n\n![](pictures/URL)#### Lane Detection Result\n\n\n![](pictures/URL)\n\n\nNotes:\n\n\n* The visualization of lane detection result has been post processed by quadratic fitting.\n\n\n\n\n---### Project Structure\n\n\n\n\n---### Requirement\n\n\nThis codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:\n\n\nSee 'URL' for additional dependencies and version requirements.### Data preparation#### Download\n\n\n* Download the images from images.\n* Download the annotations of detection from det\\_annotations.\n* Download the annotations of drivable area segmentation from da\\_seg\\_annotations.\n* Download the annotations of lane line segmentation from ll\\_seg\\_annotations.\n\n\nWe recommend the dataset directory structure to be the following:\n\n\nUpdate the your dataset path in the './lib/config/URL'.### Training\n\n\nYou can set the training configuration in the './lib/config/URL'. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch\\_size).\n\n\nIf you want try alternating optimization or train model for single task, please modify the corresponding configuration in './lib/config/URL' to 'True'. (As following, all configurations is 'False', which means training multiple tasks end to end).\n\n\nStart training:### Evaluation\n\n\nYou can set the evaluation configuration in the './lib/config/URL'. (Including: batch\\_size and threshold value for nms).\n\n\nStart evaluating:### Demo Test\n\n\nWe provide two testing method.#### Folder\n\n\nYou can store the image or video in '--source', and then save the reasoning result to '--save-dir'#### Camera\n\n\nIf there are any camera connected to your computer, you can set the 'source' as the camera number(The default is 0)." ]
[ -0.06576700508594513, 0.11310334503650665, -0.007154106628149748, 0.0320669487118721, 0.0772407129406929, -0.014837589114904404, 0.06914056837558746, 0.10542227327823639, -0.011408170685172081, 0.12244175374507904, 0.006673121824860573, 0.0659874975681305, 0.0810675173997879, 0.10282570123672485, 0.028528613969683647, -0.12968075275421143, 0.0419757142663002, -0.10389138758182526, -0.08342084288597107, 0.08503374457359314, 0.0896720439195633, -0.09079769253730774, 0.08555404841899872, -0.0005014287307858467, -0.033206626772880554, 0.004723379388451576, -0.0653834193944931, -0.045153822749853134, 0.0656936839222908, 0.06365345418453217, 0.0755983293056488, 0.03557559847831726, 0.043292850255966187, -0.2348896563053131, -0.0047066956758499146, 0.10118592530488968, 0.022924600169062614, 0.024071509018540382, 0.1407681405544281, -0.01672821305692196, 0.07919912040233612, -0.03191341087222099, 0.058856893330812454, 0.025222688913345337, -0.07984256744384766, -0.1602606475353241, -0.10747131705284119, 0.07162923365831375, 0.1144668236374855, 0.048821769654750824, -0.021477004513144493, 0.10012144595384598, -0.05170048400759697, 0.06463664770126343, 0.09199142456054688, -0.19184738397598267, -0.04703830927610397, 0.05963515490293503, 0.028175821527838707, 0.028077030554413795, -0.0843236893415451, -0.001005577389150858, 0.01177111268043518, 0.03077453002333641, -0.010313984006643295, 0.007641686126589775, 0.10123023390769958, 0.019666798412799835, -0.13397380709648132, -0.07333707809448242, 0.1685468852519989, 0.022574756294488907, -0.06369654834270477, -0.09022299945354462, -0.04018346220254898, -0.019071213901042938, -0.036634065210819244, -0.026122907176613808, 0.0014892085455358028, 0.009275391697883606, 0.022831296548247337, 0.00007555261254310608, -0.1191948652267456, -0.02104998379945755, 0.006673024967312813, 0.09057244658470154, 0.07225064933300018, 0.021543404087424278, 0.0036752165760844946, 0.13778837025165558, 0.03528466820716858, -0.07728255540132523, -0.046288102865219116, -0.08424381166696548, -0.09598582237958908, -0.010519688948988914, 0.001483139581978321, -0.10717341303825378, 0.08930552005767822, 0.15175700187683105, 0.04090123623609543, 0.0741618424654007, -0.04452568292617798, 0.03180565685033798, 0.030491914600133896, 0.15634626150131226, -0.057592421770095825, -0.05217012017965317, -0.04694398492574692, 0.09214094281196594, -0.024059249088168144, -0.0032751448452472687, 0.016463542357087135, 0.06766827404499054, 0.06010040268301964, 0.05479852855205536, 0.07736985385417938, 0.06680011004209518, -0.043575212359428406, -0.02330225519835949, 0.07151562720537186, -0.1630481779575348, 0.01883942075073719, 0.043809324502944946, -0.024567987769842148, 0.025703532621264458, 0.06150003895163536, -0.02866029553115368, -0.0756341964006424, 0.04507648944854736, -0.04517567902803421, -0.011980386450886726, -0.10167916119098663, -0.08096185326576233, 0.019134581089019775, 0.006188143044710159, -0.0687875747680664, -0.10943837463855743, -0.09314355254173279, -0.09028232842683792, 0.06824962049722672, -0.058576930314302444, 0.044497545808553696, -0.019140349701046944, -0.07134248316287994, 0.0058936672285199165, 0.030344931408762932, 0.04804560914635658, -0.04998987913131714, 0.0590893030166626, -0.02983769215643406, 0.034856610000133514, 0.11490805447101593, 0.028396151959896088, -0.05860443413257599, 0.07704450190067291, -0.1048729345202446, 0.12512460350990295, -0.13904476165771484, 0.05289827287197113, -0.11497055739164352, -0.0037783728912472725, -0.053850144147872925, 0.03236484155058861, 0.02386181429028511, 0.10256204009056091, -0.14791083335876465, -0.03514296934008598, 0.13153676688671112, -0.11629973351955414, -0.06067654862999916, 0.12231088429689407, 0.0043080588802695274, -0.005186873488128185, 0.04224751889705658, 0.10262434184551239, 0.10917109251022339, -0.1245349794626236, -0.049004532396793365, -0.0021204627119004726, -0.02063574828207493, 0.12245500832796097, 0.07747868448495865, -0.032913848757743835, 0.02565198764204979, 0.03715767711400986, -0.03916463628411293, -0.019665991887450218, -0.038363080471754074, -0.07505406439304352, -0.006473922170698643, -0.028810948133468628, -0.05121534317731857, -0.0035075806081295013, -0.02713841013610363, -0.038582220673561096, -0.10627634823322296, -0.08393771201372147, 0.11224045604467392, -0.03478711098432541, 0.012641525827348232, -0.1042168065905571, 0.07426439225673676, -0.034388285130262375, 0.022545907646417618, -0.14268866181373596, -0.08611880242824554, 0.036432672291994095, -0.11435133218765259, -0.016187775880098343, 0.02000012807548046, 0.02454022876918316, 0.06865760684013367, -0.002954579424113035, -0.03523802012205124, -0.026696674525737762, 0.00003451621159911156, -0.038916610181331635, -0.1723909080028534, -0.04944683238863945, -0.04092865437269211, 0.10049257427453995, -0.1382271647453308, 0.019067445769906044, 0.0917300283908844, 0.1357961893081665, 0.02895398996770382, -0.03672907501459122, 0.006847328506410122, 0.0014443508116528392, -0.04817618429660797, -0.042249660938978195, -0.016801197081804276, -0.0077442508190870285, 0.0014062889385968447, 0.04968056082725525, -0.08777613192796707, -0.012422922998666763, 0.08060846477746964, -0.003223557723686099, -0.07208600640296936, 0.02306399494409561, -0.06962352991104126, -0.057854361832141876, -0.06506885588169098, -0.0678180456161499, 0.022879406809806824, 0.054154105484485626, 0.06772305816411972, -0.03796900063753128, -0.03649231046438217, 0.0006647128611803055, -0.025236966088414192, -0.057238537818193436, 0.09238968044519424, 0.07976949214935303, -0.09010942280292511, 0.08968853950500488, 0.03244244307279587, 0.007246565073728561, 0.0952407568693161, -0.03265243396162987, -0.10413046181201935, -0.007496503181755543, 0.07673029601573944, 0.010704951360821724, 0.05693906173110008, -0.03403087705373764, 0.015090521425008774, 0.04761696606874466, -0.0015575096476823092, 0.04222385585308075, -0.11858285218477249, 0.06142184138298035, 0.030107807368040085, 0.0024630706757307053, 0.05750641971826553, -0.023112542927265167, -0.0005517099052667618, 0.06998501718044281, -0.007771689910441637, -0.044266194105148315, -0.016932271420955658, -0.06759603321552277, -0.08044108003377914, 0.14703598618507385, -0.06098901107907295, -0.2482599914073944, -0.15725566446781158, -0.023330338299274445, -0.05945878475904465, -0.008299172855913639, 0.03958549350500107, -0.04430081695318222, -0.09635791182518005, -0.0937243327498436, 0.010855183005332947, 0.0373699776828289, -0.036250051110982895, 0.021571576595306396, 0.0721789300441742, 0.03913135826587677, -0.11756503582000732, -0.014588365331292152, -0.000043837353587150574, -0.02790084294974804, 0.0404890775680542, 0.03052026778459549, 0.09292459487915039, 0.10429777204990387, 0.05650739744305611, 0.0052164760418236256, 0.02741755172610283, 0.15599393844604492, -0.08754542469978333, 0.06329357624053955, 0.07337792217731476, -0.021715858951210976, 0.07710768282413483, 0.1236414685845375, 0.026651009917259216, -0.06170414015650749, 0.025063415989279747, 0.06786292046308517, -0.00001579616218805313, -0.23677018284797668, -0.06363123655319214, -0.03720889240503311, 0.01302849967032671, 0.061401039361953735, 0.07362931966781616, -0.005831517744809389, 0.009157462976872921, -0.044676803052425385, 0.021037960425019264, 0.05910216644406319, 0.07239757478237152, 0.11054791510105133, -0.002499248366802931, 0.07606032490730286, -0.060058824717998505, -0.04097701236605644, 0.0694054439663887, 0.040066175162792206, 0.19519494473934174, -0.01989717222750187, 0.025384359061717987, 0.1010575145483017, 0.051280297338962555, 0.010476955212652683, 0.01466620247811079, -0.009787624701857567, 0.05005739629268646, -0.020188461989164352, -0.08345664292573929, -0.013264002278447151, 0.08707103133201599, 0.07748857885599136, -0.078959159553051, 0.009806313551962376, 0.06283987313508987, 0.1049279272556305, 0.1898479461669922, 0.08259676396846771, -0.19754843413829803, 0.008019734174013138, 0.022817939519882202, -0.06061752885580063, -0.06678047776222229, 0.019740890711545944, 0.07594648003578186, -0.10067181289196014, 0.027455128729343414, -0.03472176194190979, 0.05981788784265518, -0.08301421254873276, -0.005614348687231541, 0.055678971111774445, 0.05846264585852623, -0.0041953264735639095, 0.058859847486019135, -0.1603449583053589, 0.1382165104150772, -0.008332539349794388, 0.06547202169895172, -0.013245857320725918, 0.0776558518409729, 0.04458014294505119, 0.06888139992952347, 0.11023770272731781, -0.0031560389325022697, -0.08272729068994522, -0.0637010931968689, -0.15827229619026184, 0.020678924396634102, 0.08207452297210693, -0.05821049585938454, 0.11273187398910522, -0.01327885128557682, -0.04280497878789902, -0.044572070240974426, -0.032473817467689514, -0.09725724160671234, -0.1510126143693924, 0.08483027666807175, -0.10721733421087265, 0.009956994093954563, -0.0809689462184906, -0.05150105431675911, -0.08409328758716583, 0.16374923288822174, -0.11988995224237442, -0.08352763950824738, -0.11015897244215012, 0.012735212221741676, 0.10612896084785461, -0.03753121197223663, 0.01164345070719719, -0.00891299918293953, 0.08282902091741562, 0.0013998495414853096, -0.0714353621006012, 0.050383877009153366, -0.08642896264791489, -0.15627524256706238, -0.06481490284204483, 0.11777853965759277, -0.01578555814921856, 0.027712509036064148, -0.024815646931529045, 0.01485281903296709, 0.01023656316101551, -0.08028359711170197, 0.045010462403297424, 0.15789392590522766, 0.0016547497361898422, 0.060901373624801636, -0.06286080181598663, -0.10856969654560089, -0.08967216312885284, -0.04721345752477646, 0.03205680102109909, 0.20091350376605988, -0.04675906151533127, 0.0879259929060936, 0.1247292011976242, -0.09965769201517105, -0.23917725682258606, -0.08017531037330627, 0.03447314351797104, -0.00568936113268137, 0.018005233258008957, -0.14775237441062927, 0.060248710215091705, 0.06902705878019333, -0.028646990656852722, 0.07846876978874207, -0.30499395728111267, -0.10476075112819672, 0.06609170138835907, 0.014246547594666481, -0.050436582416296005, -0.13350416719913483, -0.05227728560566902, -0.006085726898163557, -0.16123345494270325, -0.010192879475653172, 0.06773984432220459, 0.07407283037900925, 0.002640475519001484, -0.05933182314038277, 0.048979464918375015, -0.07396680116653442, 0.14881497621536255, -0.0007595206843689084, 0.06238877400755882, -0.04850988835096359, 0.01798017881810665, 0.005929555743932724, -0.053050439804792404, 0.12772442400455475, 0.027711985632777214, 0.039188411086797714, -0.04819990694522858, -0.038076452910900116, -0.04353812709450722, 0.03201228007674217, -0.03306925296783447, -0.031909070909023285, -0.06435497105121613, 0.07132423669099808, 0.07583794742822647, 0.000945711974054575, 0.04472489282488823, 0.004798445850610733, -0.029903609305620193, 0.16096436977386475, 0.04848513752222061, 0.026782678440213203, -0.15151569247245789, -0.03824488818645477, -0.004242990165948868, 0.05958167091012001, -0.12997733056545258, 0.06854507327079773, 0.11600662767887115, -0.017878782004117966, 0.1288643628358841, 0.02738386020064354, -0.16087189316749573, -0.023736823350191116, 0.10841012001037598, -0.11323946714401245, -0.1674710512161255, -0.040273960679769516, 0.019964437931776047, -0.038868505507707596, -0.01274867169559002, 0.10638496279716492, -0.049458131194114685, 0.0014385422691702843, -0.0018132636323571205, 0.11270630359649658, 0.00390278035774827, 0.15180276334285736, 0.03412289172410965, 0.040328267961740494, -0.046102263033390045, 0.13568808138370514, 0.09229611605405807, -0.10896328091621399, 0.021359166130423546, 0.07675705850124359, -0.07985465228557587, -0.058699049055576324, -0.021495576947927475, 0.09266673028469086, 0.061742622405290604, -0.07559850811958313, -0.0605107918381691, -0.0689709484577179, 0.058890607208013535, 0.03052438795566559, 0.042731668800115585, 0.11095449328422546, 0.017330829054117203, -0.011453264392912388, -0.05557393282651901, 0.1382429003715515, 0.07236850261688232, 0.05333206057548523, -0.12604740262031555, 0.039614856243133545, 0.01889549195766449, 0.025275714695453644, -0.010394943878054619, -0.04686460644006729, -0.09336117655038834, 0.011028699576854706, -0.13488911092281342, 0.011999361217021942, -0.041414521634578705, -0.022018786519765854, 0.04901823401451111, -0.006076308898627758, -0.01556006446480751, 0.04972701519727707, -0.08182469010353088, -0.055655792355537415, -0.034627340734004974, 0.0924900472164154, -0.13467326760292053, -0.024796713143587112, 0.058502197265625, -0.12698593735694885, 0.04685647413134575, 0.01687045581638813, -0.010495456866919994, 0.017294693738222122, -0.056548647582530975, -0.00906579103320837, 0.01442199107259512, 0.04927339404821396, 0.005811164155602455, -0.11534875631332397, 0.023618316277861595, -0.014658625237643719, -0.05762416869401932, -0.013864079490303993, 0.055001504719257355, -0.11629313230514526, 0.05142543464899063, -0.014976844191551208, -0.08622269332408905, -0.04555835574865341, 0.022745300084352493, 0.032542429864406586, 0.07430559396743774, 0.1469898372888565, -0.07334473729133606, 0.007647900842130184, -0.1330103725194931, -0.02227022871375084, 0.018099870532751083, 0.0052740019746124744, 0.05488124489784241, -0.03206806257367134, 0.054345086216926575, -0.06769278645515442, 0.11447367817163467, 0.04554535076022148, -0.057501938194036484, 0.024910978972911835, -0.09091313183307648, -0.06102066487073898, 0.06946549564599991, -0.026871690526604652, 0.010800197720527649, 0.010279764421284199, -0.015764381736516953, -0.08214861899614334, 0.028571367263793945, 0.013560367748141289, 0.06286298483610153, 0.1485646814107895, 0.10118827223777771, 0.07510437816381454, 0.0784468874335289, -0.08518248051404953, -0.15331125259399414, 0.060194894671440125, -0.10742539167404175, 0.10330383479595184, -0.07351426780223846, 0.04595349356532097, 0.1083720326423645, -0.11871002614498138, 0.0778469368815422, -0.07515860348939896, -0.0459417887032032, -0.06377368420362473, -0.1283295899629593, -0.06264397501945496, -0.07076497375965118, 0.01188137661665678, -0.055703915655612946, 0.049264777451753616, 0.09103605151176453, 0.04371486231684685, -0.01542142778635025, 0.1145959347486496, -0.05771617591381073, -0.03504398837685585, 0.03650011122226715, -0.006104856729507446, -0.010830639861524105, 0.03305090591311455, 0.017910830676555634, -0.004856438376009464, 0.048148609697818756, 0.03852842003107071, 0.06279440224170685, 0.012800287455320358, 0.05722011253237724, -0.017086582258343697, -0.06496186554431915, 0.009002961218357086, -0.0679553896188736, -0.029082532972097397, 0.03894700109958649, 0.08175491541624069, -0.030174873769283295, 0.013298693113029003, 0.1657622754573822, -0.05189857631921768, -0.10324317216873169, -0.18438535928726196, 0.16388779878616333, 0.02990100346505642, 0.04579688236117363, 0.025588292628526688, -0.12019722163677216, -0.019916126504540443, 0.14641477167606354, 0.13882791996002197, 0.0014742035418748856, -0.015328355133533478, 0.04805412143468857, 0.001903024036437273, -0.035542529076337814, 0.07565250247716904, 0.03526393324136734, 0.19631564617156982, -0.0380987748503685, 0.031724125146865845, -0.04978892579674721, -0.03588620945811272, -0.05382564663887024, 0.10958905518054962, -0.009583957493305206, 0.015611518174409866, -0.0903686136007309, 0.08151353895664215, -0.015265099704265594, -0.17654502391815186, 0.0726746916770935, -0.047793999314308167, -0.1214141994714737, 0.018496669828891754, 0.08453523367643356, -0.003224531188607216, 0.04806628078222275, -0.014451776631176472, -0.04686376824975014, 0.17018640041351318, 0.0053614117205142975, -0.0308659840375185, -0.04292387515306473, 0.07712308317422867, -0.015326876193284988, 0.23051130771636963, 0.02605338580906391, 0.04815676808357239, 0.09101397544145584, -0.004071047995239496, -0.10463269054889679, 0.034785762429237366, 0.06384792178869247, -0.06695745885372162, 0.018929215148091316, 0.09729432314634323, 0.00933582428842783, 0.1298171430826187, 0.04815470427274704, 0.023545194417238235, 0.006989859975874424, 0.014415784738957882, -0.0013774093240499496, -0.07750353962182999, 0.027042310684919357, -0.08169209957122803, 0.09406665712594986, 0.1669347882270813, -0.012570862658321857, 0.027576591819524765, -0.06066080182790756, 0.05353124439716339, -0.020660288631916046, 0.05622861534357071, -0.009776370599865913, -0.18118324875831604, 0.05853059142827988, -0.05965699627995491, 0.08389148116111755, -0.12674248218536377, -0.09547887742519379, 0.061784692108631134, -0.011765080504119396, -0.051816485822200775, 0.12398327887058258, 0.11454547196626663, 0.02543955110013485, -0.05365350842475891, -0.10707126557826996, 0.004117097705602646, 0.08319003880023956, -0.0876636952161789, -0.05522208660840988 ]
null
null
transformers
# GPT2-Small-Arabic-Poetry ## Model description Fine-tuned model of Arabic poetry dataset based on gpt2-small-arabic. ## Intended uses & limitations #### How to use An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing). #### Limitations and bias Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. Use them as demonstrations or proof of concepts but not as production code. ## Training data This pretrained model used the [Arabic Poetry dataset](https://www.kaggle.com/ahmedabelal/arabic-poetry) from 9 different eras with a total of around 40k poems. The dataset was trained (fine-tuned) based on the [gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) transformer model. ## Training procedure Training was done using [Simple Transformers](https://github.com/ThilinaRajapakse/simpletransformers) library on Kaggle, using free GPU. ## Eval results Final perplexity reached ws 76.3, loss: 4.33 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2020} } ```
{"language": "ar", "tags": ["text-generation"], "datasets": ["Arabic poetry from several eras"]}
text-generation
akhooli/gpt2-small-arabic-poetry
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# GPT2-Small-Arabic-Poetry ## Model description Fine-tuned model of Arabic poetry dataset based on gpt2-small-arabic. ## Intended uses & limitations #### How to use An example is provided in this colab notebook. #### Limitations and bias Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. Use them as demonstrations or proof of concepts but not as production code. ## Training data This pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. The dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model. ## Training procedure Training was done using Simple Transformers library on Kaggle, using free GPU. ## Eval results Final perplexity reached ws 76.3, loss: 4.33 ### BibTeX entry and citation info
[ "# GPT2-Small-Arabic-Poetry", "## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.", "## Intended uses & limitations", "#### How to use\n\nAn example is provided in this colab notebook.", "#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.", "## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.", "## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.", "## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT2-Small-Arabic-Poetry", "## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.", "## Intended uses & limitations", "#### How to use\n\nAn example is provided in this colab notebook.", "#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.", "## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.", "## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.", "## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33", "### BibTeX entry and citation info" ]
[ 61, 13, 25, 9, 15, 56, 56, 21, 18, 11 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT2-Small-Arabic-Poetry## Model description\n\nFine-tuned model of Arabic poetry dataset based on gpt2-small-arabic.## Intended uses & limitations#### How to use\n\nAn example is provided in this colab notebook.#### Limitations and bias\n\nBoth the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. \nUse them as demonstrations or proof of concepts but not as production code.## Training data\n\nThis pretrained model used the Arabic Poetry dataset from 9 different eras with a total of around 40k poems. \nThe dataset was trained (fine-tuned) based on the gpt2-small-arabic transformer model.## Training procedure\n\nTraining was done using Simple Transformers library on Kaggle, using free GPU.## Eval results \nFinal perplexity reached ws 76.3, loss: 4.33### BibTeX entry and citation info" ]
[ -0.07463090121746063, 0.10979470610618591, -0.0013916163006797433, 0.10388413816690445, 0.04974858835339546, 0.01151244342327118, 0.15120939910411835, 0.09804383665323257, -0.07386878877878189, 0.050657518208026886, 0.11811884492635727, -0.007337682414799929, 0.09631151705980301, 0.06197107210755348, 0.05749346315860748, -0.19352802634239197, -0.004091580398380756, -0.04256410896778107, 0.03304995596408844, 0.10029171407222748, 0.12892399728298187, -0.01937282085418701, 0.04338793829083443, -0.000526965653989464, -0.06704111397266388, -0.008462759666144848, -0.031894128769636154, -0.09637438505887985, 0.08473465591669083, 0.09153370559215546, 0.07355666905641556, 0.04371098428964615, 0.0792793333530426, -0.21799775958061218, 0.02768944576382637, 0.03885466232895851, -0.022680044174194336, 0.01101549994200468, 0.041543055325746536, -0.020585346966981888, 0.09892673045396805, -0.11878097802400589, 0.0198028776794672, 0.0018136890139430761, -0.09310704469680786, -0.17673435807228088, -0.060481127351522446, 0.0938895121216774, 0.06125336140394211, 0.09618259966373444, -0.02582588605582714, 0.03662087395787239, 0.0068788169883191586, 0.06165681406855583, 0.10158813744783401, -0.28928735852241516, -0.03912726044654846, 0.05950328707695007, 0.02680262364447117, 0.0526546873152256, -0.11032599210739136, 0.05868416279554367, 0.0529913455247879, 0.02008962072432041, 0.023854240775108337, -0.02260875143110752, 0.03474565967917442, -0.0009524635970592499, -0.08378906548023224, -0.10691629350185394, 0.18047291040420532, -0.013886251486837864, -0.10839466005563736, -0.1096724271774292, -0.034287743270397186, 0.024673910811543465, 0.02919950895011425, 0.02460634894669056, -0.016570134088397026, 0.013674705289304256, 0.018300527706742287, -0.08860362321138382, -0.1264478862285614, -0.09443255513906479, -0.0351523794233799, 0.05519016832113266, 0.05341183766722679, 0.048910435289144516, -0.003136181505396962, 0.14596955478191376, -0.09727413952350616, -0.10555238276720047, -0.019543875008821487, -0.05450404807925224, -0.001614697277545929, 0.0025237612426280975, -0.017271393910050392, -0.0247983206063509, -0.03865716606378555, 0.10940787196159363, 0.003761856583878398, 0.020161623135209084, 0.046300746500492096, 0.019876930862665176, 0.029451819136738777, 0.09057718515396118, -0.01900877244770527, -0.011902282014489174, 0.06369131803512573, 0.08874507993459702, 0.03321731090545654, 0.001871778047643602, -0.03481245040893555, -0.031500235199928284, 0.03087020292878151, 0.05950794368982315, 0.007225410081446171, 0.037165939807891846, -0.0015295175835490227, 0.0043017868883907795, 0.12215103209018707, -0.1462254375219345, -0.05269765481352806, -0.00947408564388752, -0.0793658196926117, -0.07310794293880463, 0.09786367416381836, -0.035445716232061386, -0.1059734895825386, -0.006584382150322199, -0.028742533177137375, -0.016298724338412285, 0.001415856066159904, -0.07897663861513138, 0.022114183753728867, -0.06309076398611069, -0.004319638945162296, -0.1357392519712448, -0.2858867645263672, 0.0008367152768187225, 0.055282287299633026, -0.0673607662320137, -0.027505403384566307, -0.045439377427101135, 0.011710885912179947, 0.05468728020787239, -0.044671885669231415, 0.006595365237444639, -0.049949489533901215, 0.09069471806287766, 0.01930639147758484, 0.07761847227811813, 0.0052602533251047134, 0.013251600787043571, -0.06045521795749664, 0.017215175554156303, 0.01539402361959219, 0.1808931976556778, -0.010980057530105114, -0.051798827946186066, -0.11183490604162216, -0.006837699096649885, -0.0015213127480819821, 0.003672734135761857, 0.05631924048066139, 0.1849992573261261, -0.19362059235572815, -0.0411752350628376, 0.19556693732738495, -0.04795599728822708, -0.06889249384403229, 0.15446418523788452, -0.07056429237127304, 0.09196508675813675, 0.1143789067864418, 0.14393512904644012, -0.03960263356566429, -0.07077334821224213, -0.0981799066066742, 0.057584989815950394, 0.1209685429930687, 0.12905831634998322, 0.0853334367275238, -0.05182475224137306, 0.04236011207103729, 0.0236164852976799, 0.024898875504732132, 0.03387517109513283, -0.01069630403071642, -0.08775429427623749, -0.009399873204529285, -0.055019352585077286, 0.030512142926454544, 0.0016722225118428469, 0.08597245812416077, -0.04427780210971832, -0.13996215164661407, -0.035511314868927, 0.05765375867486, -0.02647062949836254, 0.05182868242263794, -0.02982066012918949, 0.02737332321703434, -0.14615772664546967, 0.0300934799015522, -0.13394950330257416, 0.017181504517793655, 0.013974083587527275, 0.010107917711138725, 0.06999941170215607, -0.07005017250776291, 0.0482085719704628, 0.06773832440376282, -0.059475649148225784, 0.01047713402658701, -0.04434777423739433, -0.004915466997772455, -0.12670068442821503, -0.1143498346209526, 0.01634969748556614, -0.052298735827207565, 0.046925246715545654, -0.1768207997083664, 0.023146171122789383, 0.03765784204006195, 0.07372540980577469, -0.026679497212171555, -0.043256618082523346, 0.03897974267601967, -0.0031679566018283367, -0.03859001025557518, -0.08424003422260284, 0.0029800725169479847, 0.021938443183898926, -0.09803815931081772, 0.10479764640331268, -0.16190671920776367, -0.07381782680749893, 0.1317053586244583, 0.08162723481655121, -0.06767372786998749, 0.036723535507917404, -0.015658769756555557, -0.01679833233356476, 0.0007576710777357221, 0.011448604054749012, 0.20931321382522583, -0.03652973100543022, 0.1748606562614441, -0.13586872816085815, -0.02068336121737957, 0.0010519989300519228, -0.05883626267313957, -0.0419851690530777, 0.10181299597024918, -0.06990443915128708, -0.1496882289648056, 0.11584164202213287, 0.09537389874458313, 0.017888905480504036, 0.21895664930343628, 0.048074159771203995, -0.0608004629611969, -0.0006817828980274498, 0.015249100513756275, 0.006555434316396713, 0.13858333230018616, -0.026756733655929565, 0.006014788057655096, 0.0257941335439682, 0.04845844581723213, 0.018121618777513504, -0.17192603647708893, 0.0244413111358881, 0.06678450107574463, -0.07170568406581879, -0.0014782173093408346, 0.0095794927328825, -0.07939606159925461, 0.09699874371290207, 0.04248862713575363, 0.08358152210712433, 0.008433402515947819, -0.03019098937511444, -0.11071032285690308, 0.1839122772216797, -0.10419956594705582, -0.1961154341697693, -0.05927661806344986, 0.01214908342808485, -0.0354427769780159, 0.0564115084707737, 0.05986189469695091, -0.11890752613544464, -0.019233450293540955, -0.1178440973162651, 0.06669556349515915, -0.10653921216726303, -0.026229098439216614, -0.005887327715754509, -0.015840861946344376, -0.034580767154693604, -0.11961587518453598, 0.010975996032357216, -0.016209235414862633, -0.13852755725383759, 0.0055268569849431515, -0.08425015211105347, -0.0046481778845191, 0.046996019780635834, 0.030252769589424133, -0.02037607878446579, -0.04313686862587929, 0.2835935652256012, -0.08544190227985382, 0.06437031179666519, 0.11204100400209427, 0.04789718985557556, 0.043386831879615784, 0.1532098948955536, -0.004452613648027182, -0.09238709509372711, 0.02113647572696209, 0.03072621487081051, -0.06932096928358078, -0.2329125851392746, -0.02052755281329155, -0.05671687424182892, -0.04096518084406853, 0.06345070153474808, 0.09925907105207443, -0.005663751158863306, 0.07404717803001404, -0.10389246046543121, 0.16229556500911713, 0.05109461024403572, 0.08733385056257248, 0.08296241611242294, 0.014420289546251297, 0.037627846002578735, -0.09663426131010056, 0.03646521270275116, 0.1155376136302948, 0.10543046146631241, 0.19672150909900665, -0.062246017158031464, 0.17836308479309082, 0.060881149023771286, 0.08134151250123978, 0.06091056019067764, 0.016327902674674988, 0.018772106617689133, 0.030053595080971718, -0.026518290862441063, -0.0687863752245903, -0.09298976510763168, 0.07579583674669266, -0.043217647820711136, 0.01854238659143448, -0.02584541216492653, -0.0720289945602417, 0.07921924442052841, 0.10185123980045319, 0.027361944317817688, -0.2125692367553711, -0.10454972088336945, 0.07834726572036743, -0.07173564285039902, -0.11424293369054794, -0.024270588532090187, 0.011558870784938335, -0.18944019079208374, 0.053144421428442, -0.010021809488534927, 0.09458868205547333, -0.11633262038230896, -0.0643049106001854, -0.05412048473954201, -0.07984612137079239, -0.04357233643531799, 0.09353403747081757, -0.2984730005264282, 0.19741414487361908, 0.0701245442032814, 0.1563122272491455, -0.03910557180643082, 0.028471559286117554, 0.04739468917250633, 0.02453898824751377, 0.18068450689315796, 0.0011220877058804035, 0.060721881687641144, -0.03780273348093033, -0.06031344458460808, 0.05475476384162903, 0.05547352135181427, -0.03524889796972275, 0.03972594439983368, 0.047744832932949066, 0.051317885518074036, -0.04153427109122276, 0.01440639328211546, -0.1957126408815384, -0.21316683292388916, 0.00959307886660099, -0.024004295468330383, -0.04041177034378052, -0.07764679938554764, -0.07159343361854553, -0.04723173752427101, 0.18277622759342194, -0.14396752417087555, -0.14679741859436035, -0.09500673413276672, 0.008307969197630882, 0.07218373566865921, -0.05661263316869736, 0.03244047984480858, -0.07409655302762985, 0.02008673921227455, -0.06755068153142929, -0.0695972740650177, -0.010569494217634201, -0.07110282778739929, -0.13105061650276184, -0.047012973576784134, 0.10745197534561157, 0.03925530984997749, 0.028873421251773834, 0.01183080393821001, 0.008002339862287045, -0.08551476895809174, -0.09658654034137726, -0.011022822931408882, 0.07321431487798691, 0.02999027445912361, 0.017206404358148575, 0.004107871558517218, -0.07832170277833939, -0.06452437490224838, -0.08137449622154236, 0.05398494377732277, 0.2583424150943756, -0.02069804258644581, 0.1819463074207306, 0.1766553372144699, -0.13419918715953827, -0.21048006415367126, -0.06988435238599777, 0.038146961480379105, 0.044245265424251556, -0.08503925055265427, -0.16890886425971985, -0.0803966149687767, -0.03425386920571327, -0.01858370564877987, 0.02776428498327732, -0.24355392158031464, -0.14022254943847656, 0.06625015288591385, 0.026586009189486504, 0.07578682899475098, -0.14813417196273804, -0.06175392121076584, -0.09165597707033157, -0.10785835981369019, 0.08998596668243408, -0.020604202523827553, 0.16161485016345978, -0.010172839276492596, -0.0011689034290611744, -0.020702818408608437, -0.013154307380318642, 0.1967327743768692, 0.0021990418899804354, 0.035716574639081955, -0.10470490902662277, 0.10302659124135971, 0.11009208858013153, -0.029263952746987343, 0.0593414306640625, -0.0598779171705246, 0.037656866014003754, -0.254954993724823, -0.10860797017812729, -0.0713694617152214, -0.013001902960240841, -0.047661490738391876, -0.08660529553890228, -0.088682159781456, 0.03205692023038864, 0.07125820964574814, -0.015192985534667969, -0.0950624942779541, -0.027746126055717468, 0.03606307879090309, 0.07162582129240036, 0.11025404930114746, 0.061303023248910904, -0.0703091248869896, 0.036236826330423355, -0.008212934248149395, 0.07515685260295868, -0.27615612745285034, -0.049526602029800415, 0.09211931377649307, 0.007225546985864639, 0.11985557526350021, 0.009743005968630314, -0.1269993782043457, 0.052756112068891525, 0.036045677959918976, -0.11979786306619644, -0.11197111755609512, -0.012532126158475876, -0.05886296555399895, 0.014272295869886875, -0.055833980441093445, 0.09873763471841812, -0.07219885289669037, -0.025166170671582222, -0.030579406768083572, 0.008229690603911877, -0.005741069559007883, 0.1576763391494751, 0.05045801028609276, 0.034587711095809937, -0.04083366319537163, 0.188081294298172, 0.11430779099464417, -0.08543157577514648, 0.0886889398097992, 0.08226518332958221, -0.11649361252784729, -0.020567648112773895, -0.02645845338702202, 0.009829585440456867, -0.0454462505877018, -0.036381952464580536, -0.051795173436403275, -0.03381405025720596, -0.017444048076868057, 0.06850630044937134, 0.0507623553276062, 0.055972155183553696, -0.027554268017411232, -0.007709766738116741, -0.05278042331337929, 0.09603594243526459, 0.04294087737798691, -0.015103986486792564, -0.022818950936198235, 0.0433688648045063, 0.018675552681088448, 0.10776913166046143, -0.027044979855418205, 0.000603211228735745, -0.050199758261442184, 0.03857271000742912, -0.09506997466087341, 0.07005994021892548, -0.08358670771121979, -0.0055230762809515, -0.05637941509485245, 0.015538233332335949, -0.015007508918642998, 0.027801979333162308, -0.02105417288839817, -0.036138709634542465, -0.05738519877195358, 0.03584655374288559, -0.09826847910881042, -0.036211807280778885, 0.013406099751591682, -0.06601749360561371, 0.11074122041463852, 0.025010617449879646, -0.03273887559771538, 0.05502443015575409, -0.21010270714759827, 0.07182629406452179, -0.06036582589149475, -0.004558616317808628, -0.030822785571217537, -0.031897254288196564, 0.03514086455106735, -0.00559723237529397, 0.006337457336485386, -0.0033869410399347544, 0.05966939777135849, -0.08934570103883743, -0.09487883746623993, -0.00023344819783233106, 0.05378042533993721, -0.0381510965526104, 0.11029256135225296, 0.05282091349363327, 0.04692177474498749, 0.01339561864733696, -0.06261055916547775, 0.009806257672607899, -0.12214962393045425, -0.025306381285190582, -0.009567839093506336, -0.035371340811252594, -0.06774945557117462, -0.0028695575892925262, 0.05997738987207413, -0.020200232043862343, 0.21540772914886475, -0.0019180206581950188, -0.07313231378793716, 0.045108597725629807, -0.04107221961021423, 0.07371466606855392, -0.020536325871944427, 0.15420781075954437, 0.023955250158905983, -0.016082419082522392, -0.06523457169532776, -0.029946645721793175, -0.006750162690877914, 0.10815959423780441, 0.023606522008776665, 0.1131182312965393, 0.11457392573356628, 0.11070913076400757, -0.06889871507883072, -0.07428907603025436, -0.004001034889370203, -0.01787448674440384, 0.0033223917707800865, 0.05044123902916908, -0.07952895015478134, -0.04784015193581581, 0.21579617261886597, -0.12450015544891357, 0.05227633938193321, -0.02890918217599392, -0.12536028027534485, -0.12215559184551239, -0.1489785611629486, -0.04434332251548767, 0.03108011558651924, 0.045533958822488785, -0.08933492004871368, 0.08227676898241043, 0.13644878566265106, 0.03441496565937996, -0.006710035726428032, 0.14198949933052063, 0.034303028136491776, -0.10859953612089157, 0.09903626143932343, -0.01755516603589058, 0.039333686232566833, -0.0012586826924234629, 0.017189791426062584, 0.028758300468325615, -0.05473746359348297, 0.04839291051030159, 0.07475273311138153, 0.037643659859895706, 0.06747785210609436, 0.017508085817098618, -0.02592238411307335, -0.018957611173391342, 0.053849026560783386, 0.11596687138080597, 0.20608755946159363, 0.036342088133096695, -0.057768937200307846, 0.016619835048913956, 0.2037423551082611, 0.02759210206568241, -0.06476304680109024, -0.10521173477172852, 0.07480382919311523, -0.010336006060242653, -0.02570045180618763, 0.04917943477630615, -0.07215987145900726, 0.051598161458969116, 0.1543971449136734, 0.1933182179927826, -0.01921534724533558, 0.000032869163987925276, -0.03933027759194374, 0.0009199287160299718, 0.04966887831687927, 0.06897719949483871, 0.020400507375597954, 0.235246941447258, -0.151366725564003, -0.014011477120220661, -0.018116861581802368, -0.043933235108852386, -0.05191431939601898, 0.20042970776557922, -0.022388696670532227, 0.03918972611427307, -0.07944841682910919, 0.03860337287187576, -0.04326259717345238, -0.1888454556465149, 0.08654045313596725, -0.021851256489753723, -0.08324868232011795, 0.0336652547121048, -0.01474215928465128, 0.021039312705397606, 0.0018301649251952767, 0.009192914701998234, 0.02869589440524578, 0.019695142284035683, 0.01950083114206791, -0.10158726572990417, -0.008046870119869709, 0.10961227864027023, 0.08576411753892899, 0.18359775841236115, 0.0005547627224586904, 0.1446148306131363, 0.07160643488168716, 0.012876618653535843, -0.08334458619356155, 0.11278191208839417, 0.044252630323171616, 0.06508218497037888, 0.037988681346178055, 0.1522456556558609, 0.025721877813339233, 0.014179225079715252, 0.058593060821294785, 0.10450536012649536, 0.1044524759054184, 0.08252915740013123, -0.04947968199849129, -0.14015726745128632, 0.05822368711233139, -0.14154522120952606, 0.12526187300682068, 0.08830273896455765, -0.06711556017398834, 0.01797354221343994, -0.06466203182935715, 0.016061851754784584, -0.004329614341259003, 0.025946054607629776, 0.034658778458833694, -0.12900125980377197, 0.05120377987623215, -0.03088272176682949, 0.047231368720531464, -0.290698379278183, -0.06765303760766983, -0.02265181951224804, -0.027917174622416496, -0.04400893673300743, 0.11577592045068741, 0.041773486882448196, 0.014831595122814178, -0.06275184452533722, -0.07457727193832397, -0.05086323246359825, 0.018957754597067833, -0.11094339936971664, -0.11877934634685516 ]
null
null
transformers
# GPT2-Small-Arabic ## Model description GPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2). ## Intended uses & limitations #### How to use An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing). Both text and poetry (fine-tuned model) generation are included. #### Limitations and bias GPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. Use as demonstration or proof of concepts but not as production code. ## Training data This pretrained model used the Arabic Wikipedia dump (around 900 MB). ## Training procedure Training was done using [Fastai2](https://github.com/fastai/fastai2/) library on Kaggle, using free GPU. ## Eval results Final perplexity reached was 72.19, loss: 4.28, accuracy: 0.307 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2020} } ```
{"language": "ar", "datasets": ["Arabic Wikipedia"], "metrics": ["none"]}
text-generation
akhooli/gpt2-small-arabic
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# GPT2-Small-Arabic ## Model description GPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2). ## Intended uses & limitations #### How to use An example is provided in this colab notebook. Both text and poetry (fine-tuned model) generation are included. #### Limitations and bias GPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. Use as demonstration or proof of concepts but not as production code. ## Training data This pretrained model used the Arabic Wikipedia dump (around 900 MB). ## Training procedure Training was done using Fastai2 library on Kaggle, using free GPU. ## Eval results Final perplexity reached was 72.19, loss: 4.28, accuracy: 0.307 ### BibTeX entry and citation info
[ "# GPT2-Small-Arabic", "## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).", "## Intended uses & limitations", "#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.", "#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.", "## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).", "## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.", "## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT2-Small-Arabic", "## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).", "## Intended uses & limitations", "#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.", "#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.", "## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).", "## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.", "## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307", "### BibTeX entry and citation info" ]
[ 61, 9, 26, 9, 31, 64, 20, 20, 25, 11 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #ar #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT2-Small-Arabic## Model description\n\nGPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2).## Intended uses & limitations#### How to use\n\nAn example is provided in this colab notebook. \nBoth text and poetry (fine-tuned model) generation are included.#### Limitations and bias\n\nGPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. \nUse as demonstration or proof of concepts but not as production code.## Training data\n\nThis pretrained model used the Arabic Wikipedia dump (around 900 MB).## Training procedure\n\nTraining was done using Fastai2 library on Kaggle, using free GPU.## Eval results \nFinal perplexity reached was 72.19, loss: 4.28, accuracy: 0.307### BibTeX entry and citation info" ]
[ -0.06650682538747787, 0.06655579060316086, -0.0016152627067640424, 0.0811597928404808, 0.06911451369524002, 0.03532656654715538, 0.17713642120361328, 0.1277308166027069, -0.05654136836528778, 0.02253015525639057, 0.09186454862356186, 0.02295636758208275, 0.1428671032190323, 0.16960379481315613, 0.03335254639387131, -0.1738935261964798, 0.04253491014242172, -0.044524647295475006, 0.04646981880068779, 0.09786105901002884, 0.11300227791070938, -0.04449291154742241, 0.05361460894346237, -0.001490740105509758, -0.12127760797739029, -0.04290098324418068, 0.005995025858283043, -0.10912919044494629, 0.09138395637273788, 0.07226819545030594, 0.09518654644489288, 0.03671896457672119, 0.04517329856753349, -0.18504083156585693, 0.026481065899133682, 0.05891744792461395, 0.03684958070516586, 0.04529464244842529, 0.013910161331295967, 0.061349209398031235, 0.026088854297995567, -0.10168047249317169, 0.03192395716905594, -0.012391408905386925, -0.0888519212603569, -0.13724440336227417, -0.07985663414001465, 0.07759219408035278, 0.07304001599550247, 0.043647512793540955, 0.006203352473676205, 0.10845103859901428, -0.06922391802072525, 0.04707414284348488, 0.1333782821893692, -0.21468374133110046, -0.05333515629172325, 0.041172683238983154, 0.0035672648809850216, 0.07516537606716156, -0.06963406503200531, 0.03733276575803757, 0.03973344340920448, -0.006266586948186159, 0.07290952652692795, -0.023053336888551712, 0.003200239734724164, -0.05796658992767334, -0.049463775008916855, -0.09163879603147507, 0.1491168886423111, 0.0019690217450261116, -0.10573072731494904, -0.12450297176837921, -0.027265798300504684, -0.010904889553785324, -0.0031847944483160973, 0.01695362851023674, -0.009807399474084377, 0.002073214389383793, 0.048415254801511765, -0.09904168546199799, -0.08911865949630737, -0.08143407851457596, -0.0576840378344059, 0.11177325248718262, 0.08635398745536804, 0.06020548567175865, 0.03254899010062218, 0.13796395063400269, -0.10049217194318771, -0.0929112657904625, -0.029585029929876328, -0.07615438848733902, -0.0017057160148397088, -0.031247925013303757, 0.03903758153319359, 0.02990833856165409, 0.007337426766753197, 0.038722120225429535, -0.052841924130916595, 0.05630319565534592, 0.026454458013176918, 0.04011590778827667, -0.005771364085376263, 0.0681784451007843, -0.05232110619544983, -0.03461900353431702, 0.11517847329378128, 0.1141873225569725, 0.020521830767393112, 0.016894038766622543, -0.02256304770708084, -0.04104779660701752, 0.0661502480506897, 0.06411772221326828, -0.016734762117266655, 0.04512336105108261, -0.05399927496910095, -0.0058808173052966595, 0.1212884709239006, -0.1338639110326767, -0.026267772540450096, 0.00538237951695919, -0.09467422962188721, -0.030252903699874878, 0.10983593016862869, -0.021636102348566055, -0.11781582236289978, -0.022429436445236206, -0.02403082326054573, 0.030848050490021706, -0.0583767406642437, -0.08157490193843842, 0.009888221509754658, -0.0847916528582573, -0.01275815349072218, -0.13405375182628632, -0.26541149616241455, 0.023219434544444084, 0.06700634956359863, -0.06431363523006439, -0.03361617773771286, -0.0081699313595891, 0.007129203993827105, 0.04776303842663765, -0.03726551681756973, 0.019673418253660202, -0.06683577597141266, 0.11388885974884033, -0.02082948200404644, 0.098874032497406, -0.024450816214084625, 0.018493467941880226, -0.063815638422966, 0.036259669810533524, -0.09538310766220093, 0.16518525779247284, -0.023631399497389793, -0.0513714998960495, -0.12078876048326492, -0.021879497915506363, -0.05361704155802727, -0.00014523902791552246, 0.08697596937417984, 0.20107626914978027, -0.17473089694976807, -0.024480435997247696, 0.19762806594371796, -0.04891514033079147, -0.08069157600402832, 0.17679153382778168, -0.0696038156747818, 0.13552449643611908, 0.1015050932765007, 0.1070157065987587, -0.004800749476999044, -0.10804520547389984, -0.06089196354150772, 0.05560866370797157, 0.04962455853819847, 0.05459298938512802, 0.060408156365156174, -0.014755276031792164, 0.05338310822844505, 0.029509518295526505, 0.05947956070303917, 0.0940830186009407, -0.02256690338253975, -0.0674777552485466, -0.015129053965210915, -0.09100855141878128, 0.012303988449275494, 0.02036815881729126, 0.08527984470129013, -0.03846894949674606, -0.1215514987707138, 0.04574885591864586, 0.08017858862876892, -0.022210394963622093, 0.005676082335412502, -0.04464297741651535, 0.031030714511871338, -0.1575058400630951, 0.005967946723103523, -0.09494185447692871, -0.023966532200574875, 0.016741449013352394, -0.02820941060781479, 0.0483449287712574, -0.0758669376373291, 0.05993262305855751, 0.055216386914253235, -0.05563823878765106, 0.0010842559859156609, -0.020903024822473526, 0.009861982427537441, -0.11310575902462006, -0.09907935559749603, 0.060370318591594696, -0.00892728939652443, 0.04905620962381363, -0.11862403899431229, 0.031930726021528244, -0.015123031102120876, 0.11541573703289032, -0.007765556685626507, -0.046659186482429504, 0.05461280420422554, -0.015189909376204014, -0.0310564786195755, -0.10478691011667252, 0.011765796691179276, 0.012782551348209381, -0.03733564168214798, 0.08555068075656891, -0.1110239326953888, -0.019699381664395332, 0.15305522084236145, 0.09085692465305328, -0.09303005039691925, 0.028387349098920822, 0.007133510895073414, -0.05974692478775978, -0.020120883360505104, 0.015875782817602158, 0.15359054505825043, -0.01985863782465458, 0.17758412659168243, -0.12645314633846283, -0.0012127580121159554, 0.013314221985638142, -0.0542859323322773, -0.025330789387226105, 0.05185020714998245, 0.05613430589437485, -0.10719742625951767, 0.13673846423625946, 0.06729607284069061, -0.00915332417935133, 0.2190047949552536, 0.03951363265514374, -0.06187612935900688, 0.017320293933153152, 0.05490238592028618, 0.011382696218788624, 0.13619738817214966, -0.04067566245794296, 0.008771372959017754, 0.03543856367468834, 0.04856560006737709, 0.018518617376685143, -0.14892767369747162, 0.02875959314405918, 0.01715639792382717, -0.08661585301160812, 0.02365908771753311, -0.005780898965895176, -0.0027513252571225166, 0.11872803419828415, 0.055136799812316895, 0.06860075891017914, 0.03852897882461548, 0.000302804954117164, -0.0719006285071373, 0.17148852348327637, -0.08839742839336395, -0.21307340264320374, -0.056969594210386276, 0.01108518149703741, -0.018495311960577965, 0.008992988616228104, 0.008239436894655228, -0.06959524750709534, -0.009365622885525227, -0.0833369642496109, 0.029376110062003136, -0.043205663561820984, -0.015489191748201847, -0.021690567955374718, 0.006673559546470642, -0.00936268363147974, -0.11491422355175018, -0.013461612164974213, 0.017507510259747505, -0.09138840436935425, 0.050698813050985336, -0.07678953558206558, -0.03637603670358658, 0.029570776969194412, -0.031273189932107925, -0.02634112909436226, -0.01905287429690361, 0.22340120375156403, -0.09677679091691971, 0.09224895387887955, 0.12792131304740906, 0.01967029832303524, 0.054384276270866394, 0.15149882435798645, 0.013681448996067047, -0.08290208876132965, 0.008999951183795929, 0.02195640280842781, -0.07676512002944946, -0.18946069478988647, -0.004074447322636843, -0.07933035492897034, -0.060651931911706924, 0.03227197751402855, 0.049154240638017654, -0.030977893620729446, 0.1023007482290268, -0.1026347205042839, 0.15483029186725616, 0.0571705661714077, 0.07609193027019501, 0.0272145364433527, 0.035899486392736435, 0.058782391250133514, -0.09286965429782867, 0.029616355895996094, 0.12907730042934418, 0.07692649960517883, 0.254873126745224, -0.1058773323893547, 0.10021264106035233, 0.04650886729359627, 0.09833678603172302, 0.08231834322214127, 0.05788539722561836, 0.018753841519355774, 0.013374825939536095, -0.025499625131487846, -0.037924353033304214, -0.12925469875335693, 0.06039651110768318, -0.024593763053417206, 0.016939686611294746, 0.015234529040753841, -0.0033372724428772926, 0.06912578642368317, 0.1747707724571228, 0.04815174266695976, -0.261178582906723, -0.08953455835580826, 0.049791231751441956, -0.07685453444719315, -0.1630098819732666, -0.0421314463019371, 0.02489735186100006, -0.17442332208156586, 0.025178879499435425, -0.012213651090860367, 0.08961006999015808, -0.1523672491312027, -0.06987904757261276, -0.06071062386035919, 0.0009501528111286461, -0.06331717222929001, 0.06839938461780548, -0.28241166472435, 0.13848502933979034, 0.046399183571338654, 0.17084966599941254, -0.08309964835643768, 0.033995021134614944, 0.08351945132017136, -0.004796885885298252, 0.11781983822584152, 0.008574365638196468, 0.07145759463310242, -0.10937067121267319, -0.1433730125427246, 0.03204524517059326, 0.022908683866262436, 0.06082175299525261, 0.014877651818096638, 0.004296416882425547, 0.07807237654924393, -0.01934603601694107, -0.04662999138236046, -0.1684805303812027, -0.1514924168586731, 0.02796817198395729, -0.03098183684051037, -0.047482188791036606, -0.08220556378364563, -0.05811646953225136, -0.004818051587790251, 0.24896468222141266, -0.1249227523803711, -0.180302694439888, -0.09227757900953293, -0.0019212315091863275, 0.08317409455776215, -0.048694733530282974, 0.07165155559778214, -0.0795719251036644, 0.01845075748860836, -0.036374107003211975, -0.05107738822698593, 0.018586644902825356, -0.08318309485912323, -0.11217070370912552, -0.051767878234386444, 0.06806451082229614, 0.016216609627008438, 0.027698667719960213, 0.017935361713171005, -0.009811987169086933, -0.04991621524095535, -0.09763357043266296, -0.031055910512804985, 0.06680034846067429, 0.03320371359586716, 0.07032962143421173, -0.019168084487318993, -0.10540152341127396, -0.031758107244968414, -0.11069745570421219, 0.06984181702136993, 0.30193111300468445, -0.017237799242138863, 0.13222916424274445, 0.12855377793312073, -0.07507289201021194, -0.2176056057214737, -0.028876125812530518, 0.07122514396905899, 0.05196409672498703, -0.0746680349111557, -0.1467004418373108, -0.026754386723041534, 0.04543442279100418, -0.020407821983098984, 0.07881515473127365, -0.18668930232524872, -0.13338159024715424, 0.07751093059778214, 0.06071711331605911, 0.1747259795665741, -0.14406783878803253, -0.013416782952845097, -0.07532838732004166, -0.0739479660987854, 0.10574766248464584, -0.04173628240823746, 0.14770713448524475, -0.026498673483729362, 0.00039995284168981016, 0.0041573974303901196, -0.057778190821409225, 0.18650484085083008, -0.08653835952281952, 0.04182031378149986, -0.11714918166399002, 0.030624695122241974, 0.0637001022696495, -0.050602033734321594, 0.09399756789207458, -0.026607844978570938, 0.02434874325990677, -0.21619100868701935, -0.0923433005809784, -0.07810685783624649, 0.014073491096496582, -0.02846975065767765, -0.08880961686372757, -0.08955233544111252, 0.061865195631980896, 0.04217695817351341, 0.006204552017152309, -0.08390632271766663, 0.009374955669045448, -0.022625742480158806, 0.09584333002567291, 0.09347860515117645, 0.027142958715558052, -0.010061126202344894, 0.02240072377026081, -0.014264870434999466, 0.06947418302297592, -0.28154072165489197, -0.00913411844521761, 0.052835334092378616, -0.02227734960615635, 0.12162382900714874, -0.007196784019470215, -0.13396912813186646, 0.07771048694849014, 0.07308303564786911, -0.07786625623703003, -0.08056056499481201, 0.02698083408176899, -0.03999074548482895, -0.02136622741818428, -0.07488176226615906, 0.09658552706241608, -0.09172528982162476, -0.007215684745460749, -0.029516365379095078, 0.03379151225090027, -0.0239871833473444, 0.17552807927131653, 0.053578611463308334, 0.03224863484501839, -0.045130565762519836, 0.17842943966388702, 0.0821407213807106, 0.0014480046229436994, 0.07495871186256409, 0.0576736144721508, -0.14566300809383392, -0.020877931267023087, 0.01322976779192686, -0.00502488249912858, 0.042484305799007416, -0.054158765822649, -0.08097847551107407, -0.05725419893860817, -0.031672779470682144, -0.037518784403800964, 0.020830867812037468, 0.04058396443724632, 0.009239908307790756, -0.010602225549519062, -0.06866295635700226, 0.10913756489753723, 0.05271900072693825, -0.002984020859003067, -0.042561888694763184, 0.0810394212603569, 0.034684211015701294, 0.08042745292186737, -0.03258051350712776, 0.041088931262493134, -0.0841604694724083, 0.030815651640295982, -0.1684248298406601, 0.04898814857006073, -0.06702914834022522, -0.016889290884137154, -0.04286595433950424, -0.02070956490933895, -0.03559793531894684, 0.014110560528934002, -0.034942176192998886, -0.012297630310058594, -0.048012491315603256, 0.03674422204494476, -0.05838404968380928, -0.05610693618655205, 0.04192541167140007, -0.07687065750360489, 0.11677329987287521, 0.029191574081778526, -0.008576441556215286, 0.029474914073944092, -0.11725912243127823, 0.04651409387588501, -0.015214447863399982, 0.006844651885330677, -0.008553098887205124, -0.04560000076889992, 0.07704431563615799, 0.004056875593960285, 0.034097444266080856, 0.0025078938342630863, 0.07748319953680038, -0.07966475188732147, -0.046423107385635376, -0.041573718190193176, 0.030564483255147934, -0.0290832482278347, 0.12620048224925995, 0.09052961319684982, 0.04990954324603081, 0.05279966816306114, -0.04903312399983406, -0.014442717656493187, -0.12277431041002274, -0.03120119497179985, -0.021369434893131256, -0.07444845139980316, 0.016226675361394882, -0.019721301272511482, 0.07498583197593689, -0.018970012664794922, 0.21143674850463867, 0.030437778681516647, -0.11319372802972794, 0.031554270535707474, -0.08990275859832764, 0.012909477576613426, 0.003057898487895727, 0.12090331315994263, 0.01420731283724308, -0.0012505269842222333, -0.07742457091808319, -0.024128371849656105, 0.025514710694551468, 0.036352332681417465, 0.05403963103890419, 0.18617068231105804, 0.005087873432785273, 0.08073408156633377, -0.05095067247748375, -0.07522014528512955, -0.010460653342306614, 0.02691022865474224, -0.054118890315294266, 0.04860372841358185, -0.055665273219347, -0.00519886240363121, 0.21471670269966125, -0.11972631514072418, 0.030369529500603676, -0.024002855643630028, -0.11942557245492935, -0.12536977231502533, -0.07945211976766586, -0.056080374866724014, 0.01568925939500332, 0.035258010029792786, -0.07980114221572876, 0.03990720584988594, 0.1949044018983841, 0.055881090462207794, -0.02558598667383194, 0.16696234047412872, 0.029726579785346985, -0.10428036749362946, 0.08686873316764832, -0.0014171014772728086, -0.006859216373413801, -0.03220191225409508, -0.0787326991558075, 0.012929247692227364, -0.0018100050510838628, 0.08537434041500092, 0.0562807060778141, -0.027863290160894394, 0.052321042865514755, 0.006687013898044825, -0.05834386870265007, -0.023522134870290756, 0.023083003237843513, 0.06433790177106857, 0.15460525453090668, 0.03765963762998581, -0.04358890280127525, 0.006175507791340351, 0.13840141892433167, 0.01587977446615696, -0.10722701996564865, -0.11979372054338455, 0.047251321375370026, -0.04675032198429108, -0.033125460147857666, 0.028873585164546967, -0.07954291254281998, 0.024717364460229874, 0.1934618502855301, 0.15489649772644043, -0.06711799651384354, -0.016780201345682144, -0.037808675318956375, -0.012873750180006027, -0.0071840472519397736, 0.1396847516298294, 0.027104932814836502, 0.13720278441905975, -0.12070627510547638, 0.051645804196596146, -0.007258898112922907, -0.049537453800439835, -0.08062963932752609, 0.13210535049438477, -0.03051343373954296, 0.05823294445872307, -0.1230902299284935, 0.006161559838801622, 0.0027305905241519213, -0.20097748935222626, 0.08592744916677475, -0.03505701199173927, -0.1168118342757225, 0.018740449100732803, -0.1099306121468544, -0.008662177249789238, -0.0246468223631382, 0.007422209717333317, 0.060588084161281586, -0.0004866677336394787, -0.006067059934139252, -0.10409840196371078, -0.02586463838815689, 0.09385888278484344, 0.12302617728710175, 0.17962361872196198, 0.020658619701862335, 0.13957269489765167, 0.0890083909034729, -0.013896283693611622, -0.08681084960699081, 0.10959430038928986, 0.03452901542186737, 0.04924178496003151, 0.029442230239510536, 0.09772169589996338, -0.02037118747830391, -0.041229818016290665, 0.07767878472805023, 0.09731517732143402, 0.043132953345775604, -0.01425148919224739, -0.08007264137268066, -0.12928368151187897, 0.059089433401823044, -0.10916159301996231, 0.13962507247924805, 0.13904832303524017, -0.05577261373400688, 0.02783150225877762, -0.07902754098176956, 0.05436671897768974, 0.039428550750017166, 0.006044555455446243, -0.02413095161318779, -0.17915432155132294, 0.024395683780312538, -0.04268177971243858, 0.06345149874687195, -0.21155908703804016, -0.043247342109680176, -0.08231455087661743, -0.04194646328687668, -0.0909428745508194, 0.12946045398712158, 0.026163607835769653, 0.019192660227417946, -0.056007418781518936, -0.10024053603410721, -0.062473081052303314, 0.04953833669424057, -0.0721471980214119, -0.08700238168239594 ]
null
null
transformers
### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production). Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
{"language": ["ar", "en"], "license": "mit", "tags": ["translation"]}
translation
akhooli/mbart-large-cc25-ar-en
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar", "en" ]
TAGS #transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see example notebook Note: model has limited training set, not fully trained (do not use for production). Other models by me: Abed Khooli
[ "### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli" ]
[ "TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli" ]
[ 51, 73 ]
[ "passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### mbart-large-ar-en\nThis is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production). \nOther models by me: Abed Khooli" ]
[ -0.04427473992109299, -0.029351765289902687, -0.0030057281255722046, 0.02293848618865013, 0.09084364771842957, 0.0229164008051157, 0.17348426580429077, 0.06051851436495781, 0.07905763387680054, -0.04672205448150635, 0.13004794716835022, 0.1321781426668167, 0.02173355408012867, 0.13604778051376343, -0.0610848069190979, -0.2315787672996521, 0.003779462305828929, 0.0616605244576931, -0.12347646802663803, 0.07257022708654404, 0.09426990151405334, -0.06856103241443634, 0.09543365240097046, 0.018691865727305412, -0.08644970506429672, 0.02818925492465496, -0.02661491557955742, -0.12522605061531067, 0.12367422133684158, 0.10278191417455673, 0.08967605978250504, 0.05629855766892433, 0.0030703821685165167, -0.11079706996679306, 0.04129260033369064, -0.032846227288246155, -0.03336662799119949, 0.02738810144364834, 0.018384220078587532, 0.02282705344259739, 0.2464117407798767, -0.004224718082696199, -0.014047417789697647, -0.017856284976005554, -0.055852461606264114, -0.06677142530679703, 0.026555590331554413, 0.01875796541571617, 0.018094783648848534, 0.1068665161728859, 0.0210680291056633, 0.17584329843521118, -0.059754446148872375, 0.0497477650642395, 0.10029450058937073, -0.2673127353191376, -0.00883539579808712, 0.06756003946065903, 0.05221943184733391, 0.0785931646823883, -0.015876563265919685, 0.01514391228556633, 0.03900754079222679, 0.03126794472336769, 0.046050142496824265, -0.10318705439567566, 0.05002956464886665, -0.005126718431711197, -0.08010748773813248, -0.012583047151565552, 0.30172213912010193, -0.04220106825232506, -0.008540942333638668, -0.02846977673470974, -0.019788522273302078, 0.05385107547044754, -0.004888836294412613, -0.01220771111547947, -0.027315102517604828, 0.007343933917582035, 0.015583785250782967, -0.06111018732190132, -0.13566887378692627, -0.00847710482776165, -0.20941375195980072, 0.1380368024110794, 0.03600197285413742, 0.03520314767956734, -0.14010120928287506, 0.0540766716003418, -0.20677290856838226, -0.07986191660165787, 0.01224349346011877, -0.10616403818130493, 0.09261789917945862, 0.017601007595658302, -0.03728435933589935, -0.06677070260047913, 0.07420878857374191, 0.036873262375593185, 0.04703215882182121, 0.014559820294380188, 0.033048536628484726, 0.07789206504821777, 0.04554273188114166, 0.04521365463733673, -0.000637151999399066, -0.05817904695868492, 0.09281034022569656, 0.012167360633611679, -0.04578002169728279, -0.020744385197758675, -0.17239710688591003, -0.09741899371147156, -0.028737815096974373, -0.004158982075750828, -0.011443499475717545, 0.05910404771566391, -0.0009094740962609649, -0.049794428050518036, 0.021560940891504288, -0.054063670337200165, -0.041121385991573334, -0.004437606781721115, -0.04408911615610123, 0.01695488579571247, 0.054288119077682495, 0.06574395298957825, -0.04093049839138985, 0.06220395117998123, -0.05360390245914459, -0.08192239701747894, -0.03836324065923691, -0.07126782089471817, 0.004879013169556856, -0.08177196234464645, 0.10831165313720703, -0.19622573256492615, -0.06594634056091309, 0.009543627500534058, 0.058704908937215805, -0.0008459882810711861, -0.07290948927402496, -0.007914729416370392, -0.0030115568079054356, 0.014085423201322556, -0.03971949964761734, 0.06527737528085709, -0.04996563121676445, 0.053984373807907104, 0.009950866922736168, 0.05888495221734047, -0.19805480539798737, 0.05159813165664673, -0.11292151361703873, -0.014960061758756638, -0.0693439394235611, -0.007651189807802439, 0.006050919182598591, 0.06727299094200134, -0.08981946110725403, -0.05459921434521675, -0.1489272564649582, 0.055093757808208466, 0.008214816451072693, 0.09380067884922028, -0.023211125284433365, -0.08521105349063873, 0.0759277492761612, -0.0499998964369297, -0.14252275228500366, 0.07522266358137131, -0.05212368071079254, 0.16462796926498413, 0.05083341524004936, 0.11599864810705185, -0.023631954565644264, -0.05945038050413132, 0.04892066493630409, 0.045868776738643646, -0.00258637685328722, -0.1099124476313591, 0.10405930131673813, 0.021878892555832863, -0.12200955301523209, 0.025740789249539375, -0.0625975951552391, 0.006809640675783157, -0.02017807587981224, -0.05779087543487549, 0.007526773028075695, -0.03983951359987259, -0.0015386578161269426, -0.01751161925494671, 0.13453300297260284, -0.02533951960504055, -0.017223546281456947, 0.013749648816883564, 0.05379388481378555, -0.012047830037772655, 0.002075935248285532, -0.05824090167880058, -0.009432886727154255, -0.0863681212067604, 0.028580432757735252, -0.10549511760473251, 0.06493256986141205, -0.0010681806597858667, 0.005272080190479755, 0.09627692401409149, 0.1638060063123703, 0.03711196407675743, -0.0029362784698605537, -0.02235788106918335, 0.06549005955457687, 0.05219655856490135, 0.012702560052275658, -0.09279142320156097, -0.1301243007183075, 0.05533521622419357, -0.0206579752266407, 0.018659071996808052, -0.12496334314346313, 0.006924955639988184, -0.04050813242793083, 0.01914094015955925, -0.04752439260482788, 0.11872468888759613, -0.037726204842329025, 0.03657619282603264, -0.048991404473781586, 0.05073845386505127, 0.08691102266311646, 0.031207140535116196, -0.11904795467853546, 0.1542527675628662, -0.1695091873407364, 0.17862793803215027, 0.1707245111465454, -0.10487733781337738, 0.02249184250831604, -0.14697064459323883, -0.009770415723323822, -0.05225140228867531, 0.03202182054519653, 0.011493111960589886, 0.2823222577571869, -0.03736194595694542, 0.14334136247634888, -0.10921978205442429, 0.007117909379303455, 0.036838099360466, -0.08039793372154236, -0.026900064200162888, 0.1130543053150177, 0.15244877338409424, -0.1837649792432785, 0.06167832762002945, 0.22068504989147186, -0.07187338918447495, 0.22056569159030914, 0.02988274395465851, -0.05570381507277489, 0.012287544086575508, -0.04711924120783806, -0.01943553425371647, 0.05682804062962532, -0.21535123884677887, -0.02489505708217621, 0.08314069360494614, 0.007077863905578852, 0.09822189062833786, -0.11297110468149185, -0.02787049114704132, 0.03733353689312935, 0.06626016646623611, -0.05320655182003975, 0.09096372127532959, -0.016233840957283974, 0.0877041444182396, 0.023042025044560432, -0.06561176478862762, 0.08240652084350586, -0.014405112713575363, -0.05672407150268555, 0.1859840750694275, -0.09240438789129257, -0.17464658617973328, -0.1060134619474411, -0.03505489230155945, -0.03128805384039879, 0.028144363313913345, 0.09162585437297821, -0.01424051821231842, -0.02751985751092434, -0.02497583068907261, 0.07989567518234253, -0.07192939519882202, -0.022424545139074326, -0.02922196500003338, 0.024983124807476997, -0.08788743615150452, -0.06626567244529724, -0.06626267731189728, -0.025081615895032883, -0.11752227693796158, 0.1002725213766098, -0.15427091717720032, 0.064236119389534, 0.11959467828273773, -0.016552666202187538, 0.03130712732672691, -0.000872097269166261, 0.11050072312355042, -0.04879569262266159, -0.030107198283076286, 0.1520351767539978, 0.02312924712896347, 0.04058568924665451, 0.14952971041202545, 0.0073369285091757774, 0.007127345539629459, 0.039669860154390335, -0.03263821080327034, -0.11178085952997208, -0.21146735548973083, -0.07115958631038666, -0.09868285059928894, -0.034674033522605896, 0.06965047866106033, 0.028327908366918564, 0.10147123038768768, 0.13009202480316162, 0.0344974659383297, 0.1072888970375061, -0.018772121518850327, 0.064206063747406, 0.18988767266273499, 0.051884666085243225, 0.09980510175228119, -0.042801037430763245, -0.09034890681505203, 0.10972025245428085, 0.12155923247337341, 0.1867140531539917, -0.008758029900491238, 0.0944288894534111, 0.10053888708353043, 0.06089824065566063, 0.11193253099918365, 0.07967022061347961, -0.0108552947640419, -0.015842881053686142, -0.09137199819087982, -0.06256793439388275, -0.0852072462439537, 0.12168212980031967, -0.011051062494516373, -0.05927679315209389, -0.08163172006607056, 0.04775366932153702, -0.01245780847966671, 0.08557918667793274, -0.02990121766924858, -0.21098415553569794, 0.009500736370682716, 0.03161555528640747, -0.009997930377721786, -0.06839120388031006, 0.08490484952926636, 0.07524311542510986, -0.1506718546152115, -0.020314907655119896, -0.02148500457406044, 0.11180523037910461, -0.02193177305161953, 0.06007255241274834, -0.0980219691991806, 0.0013057212345302105, -0.015319050289690495, 0.09684821963310242, -0.30304238200187683, 0.23867610096931458, -0.013962466269731522, 0.02603215165436268, -0.13104063272476196, -0.05134335905313492, 0.07958380877971649, 0.10334917157888412, 0.07457484304904938, -0.0029781111516058445, -0.10340864211320877, -0.07793748378753662, -0.08271432667970657, 0.09336128830909729, 0.0038784448988735676, -0.014067525044083595, 0.024666810408234596, -0.05202952027320862, 0.03516613692045212, 0.0146010871976614, 0.12776118516921997, -0.05665086582303047, -0.12885193526744843, 0.06931859254837036, 0.04353708028793335, -0.06197989732027054, -0.024588465690612793, -0.05299828574061394, 0.04027242958545685, 0.07446680217981339, 0.006830762606114149, -0.09066259860992432, -0.06326290965080261, -0.054630715399980545, 0.07058487832546234, -0.11334633082151413, 0.03897734731435776, -0.0556546151638031, -0.021426554769277573, -0.05879523977637291, -0.13316278159618378, 0.11616584658622742, -0.08355321735143661, -0.022493412718176842, -0.0120814498513937, 0.016898471862077713, -0.01974625326693058, 0.040278442203998566, 0.05150424689054489, -0.034040968865156174, -0.12926152348518372, -0.057721469551324844, -0.03286890685558319, -0.015470368787646294, 0.14188267290592194, 0.03093435801565647, -0.10516110807657242, -0.03910000994801521, -0.007177376188337803, -0.08692068606615067, 0.18332752585411072, 0.16379626095294952, -0.02788023091852665, 0.04091120883822441, 0.24004407227039337, -0.09608093649148941, -0.25639766454696655, -0.08458806574344635, -0.025174593552947044, 0.04982873424887657, -0.032837968319654465, -0.1196378767490387, 0.07009150087833405, 0.043060820549726486, -0.022124214097857475, 0.026664994657039642, -0.28414294123649597, -0.12030958384275436, 0.217982679605484, 0.06471823155879974, 0.399812787771225, -0.148049458861351, -0.022419683635234833, -0.0871780514717102, -0.1670239120721817, 0.10740874707698822, -0.06536687165498734, 0.11069762706756592, -0.04865528643131256, 0.07916155457496643, 0.01497788354754448, -0.043024636805057526, 0.12092804163694382, 0.017758624628186226, 0.007901778444647789, -0.09973177313804626, -0.08187093585729599, 0.043972261250019073, -0.018328692764043808, 0.04649125784635544, -0.06277833878993988, 0.013057295233011246, -0.13551156222820282, -0.07756230235099792, -0.0746321752667427, 0.09762509912252426, -0.006382010877132416, -0.1067890077829361, 0.00012751633767038584, 0.026260770857334137, 0.010248234495520592, 0.022268258035182953, 0.0921555832028389, -0.09380215406417847, 0.03664299473166466, 0.13689053058624268, 0.17451642453670502, -0.03496108204126358, -0.007189365103840828, -0.007472704164683819, -0.019544197246432304, 0.09043656289577484, -0.15943822264671326, 0.02891472727060318, 0.14293240010738373, -0.034880347549915314, 0.06990969181060791, 0.048772700130939484, -0.029493510723114014, 0.020129766315221786, 0.1145075112581253, -0.09396321326494217, 0.0670580044388771, -0.04500187933444977, 0.16452445089817047, 0.06447698920965195, 0.0219289381057024, 0.12657839059829712, -0.08025316894054413, -0.042284898459911346, -0.025850526988506317, -0.014744941145181656, -0.06255887448787689, 0.09839463979005814, 0.028689207509160042, 0.008912945166230202, -0.07152558118104935, 0.05366871878504753, 0.006404249928891659, -0.043464016169309616, 0.030574597418308258, 0.05625573545694351, -0.09088172018527985, -0.10908789932727814, 0.008457547053694725, 0.06380299478769302, -0.18238817155361176, -0.06710627675056458, -0.021469904109835625, -0.12489734590053558, 0.03082430548965931, 0.02449711412191391, 0.0678846687078476, -0.0324568934738636, -0.07601061463356018, -0.06017427146434784, -0.03280835598707199, 0.04309431463479996, -0.0005250303074717522, 0.01408444531261921, -0.043107789009809494, -0.008142020553350449, -0.03256934881210327, 0.09855945408344269, -0.05771978572010994, -0.02857745997607708, -0.10437479615211487, 0.021947788074612617, -0.22496314346790314, 0.030227506533265114, -0.055837541818618774, -0.0435074046254158, -0.02635118179023266, -0.04455198347568512, -0.0787455141544342, 0.011622062884271145, -0.14087814092636108, 0.03332415595650673, -0.04494526982307434, 0.08287259191274643, 0.06886088848114014, -0.040425535291433334, 0.08694462478160858, -0.01627200096845627, 0.06360550969839096, 0.09551321715116501, -0.0704595223069191, 0.06427861005067825, -0.01864244043827057, 0.03330341354012489, 0.023078404366970062, 0.06295766681432724, 0.022051498293876648, -0.0016343409661203623, 0.018512723967432976, 0.08631182461977005, 0.06482066214084625, 0.007862765341997147, 0.06244530528783798, -0.1233210638165474, -0.03713315725326538, -0.03171380236744881, -0.10904571413993835, -0.03263896703720093, -0.014659939333796501, 0.05479307100176811, 0.0722125843167305, 0.12224167585372925, -0.010198267176747322, 0.02555803768336773, -0.02296658232808113, 0.0217386856675148, 0.0031018024310469627, -0.12964282929897308, 0.05286768823862076, -0.11180661618709564, 0.014940301887691021, 0.012886054813861847, 0.2568942904472351, 0.017445355653762817, -0.02759730815887451, -0.0010484147351235151, -0.0034513957798480988, 0.07305971533060074, -0.012422165833413601, 0.28793853521347046, 0.05974320322275162, 0.032677698880434036, -0.051105715334415436, 0.09271930158138275, 0.022002480924129486, 0.10675208270549774, 0.1703685224056244, 0.12186586111783981, 0.1487497240304947, 0.09539373964071274, 0.10796336829662323, 0.020167503505945206, -0.06434924900531769, -0.05435311794281006, 0.021750792860984802, 0.06888346374034882, -0.05768149346113205, 0.04640671983361244, 0.22116969525814056, -0.07209053635597229, 0.007146921008825302, -0.06035887449979782, -0.057017117738723755, -0.1743905246257782, -0.17822830379009247, -0.09395116567611694, -0.07613398134708405, -0.017298154532909393, -0.09856255352497101, -0.03675992786884308, 0.11969305574893951, 0.042197927832603455, -0.06904468685388565, 0.09616661816835403, -0.08163692057132721, -0.13179540634155273, 0.07090674340724945, -0.022457677870988846, 0.010707094334065914, -0.06237158179283142, -0.023957177996635437, -0.06308804452419281, -0.016023993492126465, -0.008362803608179092, -0.009813698008656502, -0.053941331803798676, -0.04587407037615776, -0.03260365501046181, -0.027475295588374138, -0.11373889446258545, 0.0475146509706974, 0.034620240330696106, 0.0947774201631546, 0.000897725229151547, -0.05212438479065895, 0.021952863782644272, 0.19660423696041107, -0.014127770438790321, -0.14961130917072296, -0.05601726844906807, 0.10428754985332489, 0.020397663116455078, 0.04297494888305664, -0.008963655680418015, 0.0051138801500201225, -0.010029943659901619, 0.27761051058769226, 0.28332337737083435, -0.11303509026765823, 0.01313777919858694, 0.044645536690950394, 0.030318019911646843, -0.010156895965337753, 0.1460035741329193, 0.06911514699459076, 0.24818304181098938, -0.09967049956321716, 0.009364782832562923, -0.054477840662002563, 0.07613155990839005, -0.08292389661073685, 0.03747463598847389, 0.0670454204082489, -0.0811321958899498, -0.012961911037564278, 0.03871707618236542, -0.0561700314283371, -0.07701312750577927, -0.10718710720539093, -0.08647828549146652, -0.08681108057498932, -0.038462311029434204, -0.005593553185462952, 0.016315074637532234, 0.07593832910060883, -0.0782162994146347, -0.01321094948798418, -0.022723430767655373, 0.018199782818555832, -0.1603625863790512, 0.005007722415030003, 0.13491760194301605, 0.04169141873717308, 0.09355495125055313, -0.00011581019498407841, 0.12229302525520325, 0.07101073861122131, 0.02649318054318428, 0.013735775835812092, 0.09994146227836609, 0.028827399015426636, 0.006753592751920223, 0.02318641170859337, -0.034493643790483475, -0.030455008149147034, -0.038799479603767395, 0.07662270963191986, -0.10375861078500748, 0.05648256465792656, -0.02676383964717388, -0.03460686653852463, -0.02492137998342514, 0.07374410331249237, -0.12636823952198029, 0.11689525097608566, 0.11492356657981873, -0.009720672853291035, -0.07660811394453049, -0.02846035547554493, 0.06533564627170563, 0.04221678897738457, 0.013566137291491032, -0.056667715311050415, -0.10213898867368698, -0.05304756760597229, -0.03264344111084938, 0.022392671555280685, -0.251797616481781, -0.04353480786085129, -0.09798631817102432, 0.0016187598230317235, -0.08939416706562042, 0.035304922610521317, 0.080794557929039, -0.0009373840875923634, -0.04427250474691391, -0.10224612802267075, -0.049049630761146545, 0.045321784913539886, -0.12566448748111725, -0.0974971279501915 ]
null
null
transformers
### mbart-large-en-ar This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production).
{"language": ["en", "ar"], "license": "mit", "tags": ["translation"]}
translation
akhooli/mbart-large-cc25-en-ar
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "en", "ar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "ar" ]
TAGS #transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us
### mbart-large-en-ar This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. Usage: see example notebook Note: model has limited training set, not fully trained (do not use for production).
[ "### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)." ]
[ "TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)." ]
[ 51, 63 ]
[ "passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #translation #en #ar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### mbart-large-en-ar\nThis is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. \nUsage: see example notebook \nNote: model has limited training set, not fully trained (do not use for production)." ]
[ -0.02557206153869629, -0.07165943086147308, -0.003741991939023137, 0.014367413707077503, 0.1147843599319458, 0.05487526208162308, 0.13544397056102753, 0.035960905253887177, 0.0511639229953289, -0.0434897243976593, 0.16543790698051453, 0.16147840023040771, -0.0006829624180682003, 0.1320985108613968, -0.061912938952445984, -0.14332710206508636, 0.028527284041047096, 0.030065370723605156, -0.03803706541657448, 0.09011751413345337, 0.09248035401105881, -0.07544051110744476, 0.09670432657003403, -0.01625339686870575, -0.11044207960367203, 0.037451330572366714, -0.024296794086694717, -0.08959582448005676, 0.10521867871284485, 0.08474111557006836, 0.12226660549640656, 0.07142464071512222, 0.007003766018897295, -0.17899301648139954, 0.026352791115641594, -0.046614453196525574, -0.05332077667117119, 0.03971301019191742, -0.017782635986804962, 0.017423538491129875, 0.16220982372760773, -0.02151281200349331, -0.01340938825160265, 0.002509308746084571, -0.08910204470157623, -0.05652524158358574, 0.016832157969474792, 0.008089412935078144, 0.00612700916826725, 0.08359488099813461, 0.025848310440778732, 0.13427232205867767, -0.0924082100391388, 0.033268041908741, 0.08247745782136917, -0.27906206250190735, 0.0004671872593462467, 0.08521705865859985, 0.1042025163769722, 0.10294309258460999, -0.016590649262070656, 0.017882853746414185, 0.07676208764314651, 0.04943684861063957, 0.05340690165758133, -0.08893423527479172, -0.017543625086545944, -0.012537790462374687, -0.07096895575523376, -0.0333608016371727, 0.31537747383117676, -0.045316681265830994, -0.020129092037677765, -0.00932792667299509, -0.013154175132513046, 0.03905139118432999, -0.016727784648537636, -0.030449891462922096, -0.027750451117753983, 0.022523216903209686, -0.018947167322039604, -0.07243820279836655, -0.12623468041419983, -0.030119387432932854, -0.23656687140464783, 0.11357910931110382, 0.0028533327858895063, 0.03577711060643196, -0.1504831463098526, 0.039156921207904816, -0.1299230307340622, -0.05316615849733353, -0.006239313166588545, -0.10150326043367386, 0.11930281668901443, -0.015029165893793106, -0.024971168488264084, -0.02346186339855194, 0.057039711624383926, 0.08010698854923248, 0.004734849091619253, 0.01168003398925066, 0.03694895654916763, 0.12134002894163132, 0.03258688002824783, 0.02645941823720932, 0.018707020208239555, -0.06436428427696228, 0.05090619996190071, -0.029704241082072258, -0.03737448528409004, -0.01950230449438095, -0.20952370762825012, -0.08249378949403763, -0.050044432282447815, 0.0399303175508976, -0.019115425646305084, 0.06641169637441635, -0.023047761991620064, -0.01687319576740265, 0.14111995697021484, -0.0436280220746994, -0.02458237111568451, 0.025211451575160027, -0.01680379919707775, 0.017454903572797775, 0.04600553959608078, 0.02422201819717884, -0.021526165306568146, 0.07998466491699219, -0.06682386994361877, -0.059723369777202606, -0.0455876886844635, -0.10090693831443787, 0.04272028058767319, -0.030974604189395905, 0.07097917795181274, -0.20792095363140106, -0.09893818199634552, 0.02282382734119892, 0.04042349010705948, 0.004906456917524338, -0.0007658944232389331, -0.055827781558036804, 0.020035289227962494, 0.03962017968297005, -0.05846979841589928, 0.0011034061899408698, -0.035044435411691666, 0.05710434168577194, -0.011847970075905323, 0.08975255489349365, -0.20064480602741241, 0.029402635991573334, -0.1235850378870964, -0.0007984153344295919, -0.03829660266637802, 0.018913976848125458, 0.019265059381723404, 0.09763124585151672, -0.08072593808174133, -0.07394644618034363, -0.18797528743743896, 0.04912467300891876, -0.0048275175504386425, 0.13656555116176605, -0.07606784254312515, -0.09789282083511353, 0.09354294091463089, -0.05246930941939354, -0.14795620739459991, 0.08190862834453583, -0.03937874361872673, 0.1738971322774887, 0.057753678411245346, 0.12327931076288223, -0.07086585462093353, -0.05892235413193703, 0.02046225592494011, 0.07552381604909897, -0.05025425925850868, -0.12047702074050903, 0.08522827923297882, 0.01804623007774353, -0.16684071719646454, 0.011732266284525394, -0.010125921107828617, 0.039419084787368774, -0.034545768052339554, -0.06149040535092354, 0.029238060116767883, 0.001031748135574162, 0.07196266949176788, -0.04061512276530266, 0.0693897157907486, -0.04884521663188934, -0.0003479825099930167, 0.05194614827632904, 0.03680502250790596, -0.02412174455821514, 0.016227778047323227, -0.07651101797819138, -0.029911112040281296, -0.09016972035169601, 0.03563102334737778, -0.09158787131309509, 0.05310649052262306, -0.0064487336203455925, 0.006626543123275042, 0.0817951112985611, 0.1253696084022522, 0.03803190588951111, -0.02285338193178177, -0.020226892083883286, 0.05746617913246155, 0.06458242237567902, -0.01054869219660759, -0.03898489847779274, -0.13581237196922302, 0.051102641969919205, -0.02888195589184761, -0.028135547414422035, -0.15099099278450012, 0.018618516623973846, -0.05241970345377922, -0.0028105585370212793, -0.0385330505669117, 0.10891170799732208, -0.0368531160056591, 0.07441339641809464, -0.06973863393068314, 0.0581774041056633, 0.0937580019235611, 0.01280733197927475, -0.1292330026626587, 0.14231067895889282, -0.14569512009620667, 0.18068505823612213, 0.16794048249721527, -0.16634930670261383, -0.012896173633635044, -0.08347251266241074, 0.02079286053776741, -0.04034344106912613, 0.03132215887308121, 0.032256461679935455, 0.1971161663532257, -0.031856756657361984, 0.17184868454933167, -0.11777268350124359, -0.006742741446942091, 0.02256450057029724, -0.10397320240736008, -0.04455207660794258, 0.06513505429029465, 0.13685168325901031, -0.18642325699329376, 0.09227695316076279, 0.25791946053504944, -0.0723404735326767, 0.22352108359336853, 0.08918600529432297, -0.03158873692154884, 0.0034942941274493933, -0.027456775307655334, -0.023547396063804626, 0.04309472814202309, -0.2052726000547409, -0.024195626378059387, 0.06563789397478104, 0.033819276839494705, 0.11690562963485718, -0.08893188089132309, -0.03678063303232193, 0.02868838608264923, 0.02501991204917431, -0.12806785106658936, 0.06669887900352478, -0.007393527310341597, 0.07807996869087219, 0.042079076170921326, -0.002081006532534957, 0.09292761981487274, -0.005712294485419989, -0.08899522572755814, 0.1902581751346588, -0.11755687743425369, -0.2744097411632538, -0.14594557881355286, -0.08889982104301453, 0.004590843338519335, 0.05004588142037392, 0.09800395369529724, -0.0650765672326088, -0.014936824329197407, 0.004874662961810827, 0.03365417197346687, -0.078815758228302, -0.03705374151468277, 0.04249422252178192, 0.05638207867741585, -0.03804740682244301, -0.07750307023525238, -0.03336483985185623, -0.023186707869172096, -0.09309856593608856, 0.08323471248149872, -0.1323729157447815, 0.10017696022987366, 0.12962251901626587, -0.030068809166550636, 0.0237860269844532, -0.01786656491458416, 0.18626387417316437, -0.04572366550564766, -0.06716503202915192, 0.10769540816545486, -0.010558288544416428, 0.04134124144911766, 0.18780162930488586, 0.03309730067849159, -0.018834641203284264, 0.02214936912059784, -0.1016431674361229, -0.0982719212770462, -0.2339749038219452, -0.09006575495004654, -0.10878030210733414, -0.040287647396326065, 0.04961118847131729, 0.030029786750674248, 0.12151119858026505, 0.10524601489305496, 0.01031012274324894, 0.07078861445188522, -0.021248599514365196, 0.09652098268270493, 0.22107312083244324, 0.0328977033495903, 0.09711761772632599, -0.07050620019435883, -0.08063143491744995, 0.09867092967033386, 0.16305950284004211, 0.17056116461753845, 0.0888030081987381, 0.1090899184346199, 0.09572767466306686, 0.0613233707845211, 0.11105311661958694, 0.11107712239027023, -0.033838413655757904, -0.031044332310557365, -0.08842010051012039, -0.04830126091837883, -0.09657367318868637, 0.07517115771770477, -0.022362614050507545, -0.04154438525438309, -0.05539064481854439, -0.006780785974115133, 0.05567355826497078, -0.02630007266998291, -0.016500739380717278, -0.21180197596549988, -0.02183934859931469, 0.03723625838756561, 0.013064042665064335, -0.06395672261714935, 0.05542656034231186, 0.11706192791461945, -0.1056385189294815, -0.010003713890910149, 0.036874085664749146, 0.11294407397508621, -0.014319480396807194, 0.07034385204315186, -0.08682602643966675, 0.018780069425702095, 0.0046560633927583694, 0.10534927248954773, -0.2939112186431885, 0.2290729135274887, 0.01332535594701767, 0.03748020529747009, -0.09114392846822739, -0.06139221787452698, 0.011649020947515965, 0.1602424681186676, 0.09301839768886566, 0.017276907339692116, -0.13879404962062836, -0.11880829185247421, -0.0026621255092322826, 0.06672701984643936, 0.06655183434486389, 0.06743726134300232, 0.003714661579579115, -0.05172841250896454, 0.03498364984989166, 0.01352318562567234, 0.04471655189990997, -0.09483078122138977, -0.16531093418598175, 0.053354695439338684, 0.08124405145645142, -0.042417336255311966, 0.0031297721434384584, -0.005478073842823505, 0.061910077929496765, 0.1424226313829422, -0.1421000361442566, -0.05005321279168129, -0.05045623332262039, -0.13324646651744843, 0.06744411587715149, -0.10856495797634125, 0.05444473400712013, -0.05665965750813484, -0.014805268496274948, -0.0788048654794693, -0.109674371778965, 0.11099844425916672, -0.1287858784198761, 0.009450268931686878, -0.0318044014275074, -0.021855749189853668, -0.029982231557369232, 0.04541156068444252, 0.06560918688774109, -0.03763751685619354, -0.13046783208847046, -0.08751915395259857, -0.04442794620990753, -0.03988806903362274, 0.10153324902057648, 0.021485386416316032, -0.14471794664859772, -0.10208874940872192, -0.01470524538308382, -0.08754190057516098, 0.21565361320972443, 0.17386221885681152, -0.06948946416378021, 0.05958157032728195, 0.3301440477371216, -0.09153679013252258, -0.29033026099205017, -0.11278800666332245, -0.040846262127161026, 0.01171192154288292, -0.0660567507147789, -0.14753088355064392, 0.0067192791029810905, 0.06343244761228561, -0.0037811973597854376, 0.008842848241329193, -0.2991583049297333, -0.10220705717802048, 0.13823924958705902, -0.017218781635165215, 0.40407341718673706, -0.10389551520347595, -0.0448702834546566, -0.11813660711050034, -0.14783400297164917, 0.12043482810258865, 0.023590996861457825, 0.11274588853120804, -0.02221926860511303, 0.09759074449539185, -0.005791925359517336, -0.04542800039052963, 0.14184719324111938, 0.013101055286824703, 0.017712272703647614, -0.07070665806531906, -0.08739093691110611, 0.05094613879919052, 0.009662489406764507, 0.04558322951197624, -0.0642198920249939, 0.018937161192297935, -0.07429667562246323, -0.08013507723808289, -0.05988650768995285, 0.08559427410364151, 0.008353031240403652, -0.09874366223812103, -0.028720427304506302, -0.011628828011453152, 0.00014034740161150694, 0.015574085526168346, 0.10451814532279968, -0.11358366906642914, 0.06818945705890656, 0.11444514989852905, 0.21509946882724762, -0.13057315349578857, 0.037559621036052704, 0.03279866278171539, -0.05614015832543373, 0.0945078432559967, -0.17180587351322174, 0.03750121220946312, 0.11150208115577698, -0.051442500203847885, 0.09708739072084427, 0.0616346038877964, 0.013754854910075665, 0.04217297211289406, 0.16854071617126465, -0.08030054718255997, 0.05983252823352814, 0.006000441499054432, 0.1504242718219757, 0.037610799074172974, 0.02545936405658722, 0.06259629875421524, -0.06058540567755699, -0.0207880400121212, -0.03727113455533981, -0.018920453265309334, -0.08750506490468979, 0.07769094407558441, 0.050002213567495346, 0.017501093447208405, -0.07530437409877777, 0.05402173846960068, 0.0433746874332428, -0.07886482030153275, 0.013456554152071476, 0.06635977327823639, -0.09830592572689056, -0.09400388598442078, -0.07136904448270798, 0.0844433456659317, -0.1948881894350052, -0.0904012992978096, 0.013736961409449577, -0.10050522536039352, 0.03745654597878456, 0.06320060789585114, 0.06323374807834625, -0.000625974265858531, -0.05708146467804909, -0.042133770883083344, -0.0463363379240036, 0.002925523556768894, -0.025611238554120064, 0.009102525189518929, -0.0459914393723011, 0.00831806380301714, 0.016984518617391586, 0.11102937906980515, -0.05959051847457886, -0.010859179310500622, -0.10682689398527145, 0.025907406583428383, -0.17245012521743774, 0.031837426126003265, -0.1003161296248436, -0.03975922241806984, 0.0009430015925318003, -0.053413935005664825, -0.10303325951099396, -0.02010117657482624, -0.11843310296535492, 0.049098242074251175, -0.003532340982928872, 0.08654453605413437, 0.027829019352793694, -0.006971947383135557, 0.08825434744358063, 0.003232656279578805, 0.055731985718011856, 0.10149351507425308, -0.06722770631313324, 0.0664929747581482, -0.10179951786994934, -0.019985049962997437, 0.040340177714824677, 0.0673108771443367, 0.014325547032058239, 0.056915611028671265, 0.02126331254839897, 0.10822142660617828, 0.04595126956701279, 0.02291223034262657, 0.05865439027547836, -0.12168831378221512, 0.008216521702706814, -0.051523979753255844, -0.12558968365192413, -0.025265686213970184, -0.02014358714222908, 0.07832381129264832, 0.034976352006196976, 0.16126208007335663, -0.04797297716140747, 0.01269600261002779, -0.022283541038632393, 0.022194065153598785, -0.008875946514308453, -0.13763584196567535, -0.05848241224884987, -0.11238791793584824, -0.0115978317335248, 0.014332365244626999, 0.3053741157054901, -0.05158468708395958, -0.06786853820085526, 0.005039695184677839, 0.003164564725011587, -0.054567839950323105, -0.041134197264909744, 0.24776972830295563, 0.0756666362285614, 0.0013959604548290372, -0.10496468096971512, 0.07496679574251175, 0.020405445247888565, 0.03130689263343811, 0.14844800531864166, 0.1404472291469574, 0.13961651921272278, 0.09096702933311462, 0.04740277677774429, 0.027280285954475403, -0.04227729141712189, 0.008045010268688202, 0.01338431891053915, 0.02736266702413559, -0.03448391333222389, 0.06379417330026627, 0.2630023658275604, -0.05168624594807625, 0.01002715714275837, -0.029951194301247597, -0.037467680871486664, -0.18302686512470245, -0.10126631706953049, -0.10082591325044632, -0.09757260233163834, -0.00795326940715313, -0.10856829583644867, -0.013297445140779018, 0.07211310416460037, 0.047755271196365356, -0.05543026700615883, 0.08025836944580078, -0.04542365297675133, -0.10739514231681824, 0.011303129605948925, -0.02970045618712902, 0.031473394483327866, -0.10694864392280579, -0.0312286838889122, -0.019130747765302658, -0.01910429261624813, 0.034957654774188995, 0.03246494382619858, -0.002689780667424202, -0.03550795093178749, -0.076483815908432, -0.055412184447050095, -0.11817486584186554, 0.10627901554107666, 0.01353300642222166, 0.08267219364643097, -0.019957978278398514, -0.057603463530540466, 0.029387541115283966, 0.1573915183544159, -0.016050809994339943, -0.198294997215271, -0.052308253943920135, 0.15390877425670624, 0.050291404128074646, 0.10190503299236298, -0.034463346004486084, -0.0023199194110929966, -0.04356791079044342, 0.3061256408691406, 0.30902719497680664, -0.10104840248823166, 0.0003282948164269328, 0.03445805609226227, 0.04537554830312729, 0.019522124901413918, 0.1377849280834198, 0.08719252049922943, 0.24564622342586517, -0.058719452470541, -0.031848128885030746, -0.06755504757165909, 0.10181962698698044, -0.07352613657712936, 0.022073589265346527, 0.022390101104974747, -0.06708429008722305, -0.036949120461940765, 0.045328591018915176, -0.07793648540973663, 0.007663298398256302, -0.07506881654262543, -0.08656421303749084, -0.047082096338272095, -0.021890075877308846, 0.09508538991212845, 0.0037421626038849354, 0.03910847753286362, -0.05058510601520538, -0.056462328881025314, -0.008676356635987759, 0.011388101615011692, -0.1646794080734253, -0.007100853603333235, 0.09323454648256302, 0.07415714859962463, 0.12646465003490448, 0.004594699013978243, 0.10597220808267593, 0.06062338128685951, 0.03723888471722603, -0.008719241246581078, 0.12062305957078934, 0.023021776229143143, 0.0670761689543724, 0.028655776754021645, -0.039004962891340256, -0.026604369282722473, -0.005541543010622263, 0.07761403173208237, -0.15577973425388336, 0.07852634787559509, -0.02799646556377411, -0.05928484722971916, -0.0031294934451580048, 0.06137607991695404, -0.05382028594613075, 0.09367617964744568, 0.0940409004688263, 0.012907908298075199, -0.06255301088094711, -0.035578563809394836, 0.0419711209833622, 0.06972701102495193, 0.025497347116470337, -0.06649744510650635, -0.1108844131231308, -0.04212544485926628, -0.03459213674068451, 0.041155196726322174, -0.21846620738506317, -0.007182619534432888, -0.06113515794277191, 0.0332585945725441, -0.09194229543209076, 0.05606812238693237, 0.05142337828874588, 0.0157118309289217, -0.025747012346982956, -0.09326143562793732, 0.0027378592640161514, 0.05352864786982536, -0.08392952382564545, -0.09172411262989044 ]
null
null
transformers
## personachat-arabic (conversational AI) This is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) and fine-tuned from [akhooli/gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) which is a limited text generation model. Usage: see the last section of this [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set which was machine translated (do not use for production).
{"language": ["ar"], "license": "mit", "tags": ["conversational"]}
text-generation
akhooli/personachat-arabic
[ "transformers", "pytorch", "safetensors", "gpt2", "conversational", "ar", "license:mit", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us
## personachat-arabic (conversational AI) This is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) and fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. Usage: see the last section of this example notebook Note: model has limited training set which was machine translated (do not use for production).
[ "## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)." ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)." ]
[ 54, 101 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #conversational #ar #license-mit #endpoints_compatible #has_space #text-generation-inference #region-us \n## personachat-arabic (conversational AI)\nThis is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) \nand fine-tuned from akhooli/gpt2-small-arabic which is a limited text generation model. \nUsage: see the last section of this example notebook \nNote: model has limited training set which was machine translated (do not use for production)." ]
[ -0.023916808888316154, -0.09073778241872787, -0.001003952813334763, -0.003482805099338293, 0.12851417064666748, -0.0012332783080637455, 0.2710667848587036, 0.058486390858888626, 0.025369742885231972, -0.05149206891655922, 0.12136092036962509, -0.06264293193817139, 0.06768041104078293, 0.1720007061958313, 0.10368073731660843, -0.24242256581783295, 0.09464945644140244, -0.03649783879518509, 0.1289396435022354, 0.131923645734787, 0.14146652817726135, -0.003772428957745433, 0.08418188989162445, 0.0630875676870346, -0.13430801033973694, -0.052465200424194336, 0.024824369698762894, -0.13403257727622986, 0.1446579396724701, 0.06897641718387604, 0.10602579265832901, -0.0131156537681818, 0.0007898177718743682, -0.16327199339866638, 0.035739555954933167, 0.004392191302031279, -0.0060300687327980995, -0.016363147646188736, -0.02773931436240673, -0.004292253404855728, 0.2212839424610138, 0.02851617895066738, -0.030654175207018852, 0.005452743731439114, -0.10200455039739609, -0.10967535525560379, 0.04819914698600769, 0.06306616216897964, 0.06260154396295547, 0.11967481672763824, -0.036772411316633224, 0.12979504466056824, -0.10925837606191635, 0.08150040358304977, 0.09250856935977936, -0.23988915979862213, -0.06365550309419632, 0.024613428860902786, 0.0068998620845377445, 0.08898547291755676, -0.03497665002942085, 0.08128196746110916, -0.013743754476308823, 0.009831380099058151, -0.02501782216131687, -0.0442085862159729, -0.0033553617540746927, -0.08042018860578537, -0.0341816321015358, -0.059033382683992386, 0.28074148297309875, -0.008467182517051697, -0.04465535655617714, -0.1043953001499176, -0.01518118567764759, 0.03436098247766495, -0.0072779348120093346, -0.03902331367135048, -0.07402707636356354, 0.001241207355633378, 0.013531375676393509, -0.07526978105306625, -0.11538780480623245, -0.12099864333868027, -0.18746857345104218, 0.17913216352462769, 0.039700947701931, 0.08222943544387817, -0.1108810231089592, -0.007344062440097332, -0.10344403237104416, -0.0369887612760067, -0.02427351102232933, -0.0824202373623848, 0.08040192723274231, 0.04387383908033371, -0.07104725390672684, -0.031125320121645927, 0.06242344155907631, -0.05691869184374809, -0.12354529649019241, 0.055019691586494446, -0.007590734865516424, 0.08382612466812134, 0.01920519769191742, 0.15499214828014374, -0.022817391902208328, 0.11690326035022736, -0.002950591966509819, 0.015576908364892006, 0.009686650708317757, -0.030113460496068, -0.1274818629026413, 0.05465413257479668, 0.10010603815317154, 0.03664223104715347, -0.0629725307226181, 0.16938649117946625, -0.021517986431717873, 0.01655695214867592, 0.03288111463189125, -0.07674732804298401, -0.06697026640176773, 0.024459289386868477, -0.09953010827302933, -0.06585266441106796, 0.010135779157280922, 0.004970356356352568, -0.0880405604839325, -0.10364552587270737, -0.005944258999079466, 0.043682873249053955, -0.02526130899786949, -0.033685918897390366, -0.014546655118465424, -0.005511237308382988, 0.002029143273830414, -0.2708682715892792, -0.14146406948566437, 0.05406288057565689, 0.051937755197286606, -0.01933407038450241, 0.00980877410620451, -0.03436803072690964, 0.05233510956168175, 0.02422359213232994, -0.10138086974620819, -0.10096084326505661, -0.06195884570479393, 0.08844288438558578, 0.01772286556661129, 0.11952494084835052, -0.11010371148586273, 0.04958415776491165, -0.07742854207754135, -0.0023531208280473948, -0.1354409009218216, 0.06091834604740143, -0.011832070536911488, 0.003350527724251151, -0.07997499406337738, -0.006147376261651516, -0.06251084059476852, 0.07339072227478027, -0.033293530344963074, 0.14309754967689514, -0.11670535802841187, -0.07548801600933075, 0.2266932725906372, -0.11773707717657089, -0.09304886311292648, 0.15913747251033783, -0.022579753771424294, 0.10156239569187164, 0.10047520697116852, 0.2983250617980957, -0.10812495648860931, -0.08830421417951584, 0.01767316274344921, 0.1367974579334259, -0.019602805376052856, 0.054895300418138504, 0.07355272769927979, 0.0025236448273062706, -0.05832875892519951, 0.039344582706689835, -0.08356834203004837, 0.15594080090522766, -0.03883926197886467, -0.06628573685884476, 0.05787880718708038, -0.07355859130620956, 0.11392253637313843, 0.022368790581822395, 0.13201558589935303, -0.05410011485219002, -0.11458414047956467, 0.008572525344789028, 0.051657117903232574, 0.005558086559176445, 0.012359960936009884, -0.1909646987915039, 0.058387551456689835, 0.04996391013264656, 0.010619551874697208, -0.05423866584897041, -0.020883500576019287, -0.06313695013523102, 0.10343573242425919, 0.046212878078222275, 0.02291036956012249, 0.047853585332632065, -0.02821503020823002, -0.025018839165568352, 0.007774664089083672, 0.08895574510097504, 0.020628279075026512, -0.029107552021741867, -0.06092001870274544, 0.052565477788448334, -0.020789485424757004, 0.17868253588676453, 0.07022834569215775, -0.004531780257821083, -0.030237233266234398, 0.04584027826786041, -0.049872949719429016, 0.02650088258087635, 0.008442657999694347, 0.0537208653986454, 0.0029095879290252924, 0.0004744826874230057, 0.1108715608716011, 0.015868468210101128, -0.10413128137588501, 0.21381743252277374, -0.1758134365081787, 0.19519083201885223, 0.1765076071023941, -0.06192827597260475, -0.01617828756570816, 0.025730183348059654, 0.02647683396935463, 0.0069334739819169044, 0.05226333066821098, -0.023682337254285812, 0.2791191041469574, -0.055959925055503845, 0.155427947640419, -0.07630429416894913, 0.08573462814092636, -0.01762666553258896, -0.10015996545553207, -0.08098037540912628, 0.03338959068059921, -0.04289820045232773, -0.08470242470502853, 0.1270788460969925, 0.056338436901569366, 0.027503525838255882, 0.266114205121994, 0.05189633369445801, 0.060422904789447784, 0.00878984946757555, 0.0306189376860857, -0.055918071419000626, 0.08167548477649689, -0.32203343510627747, -0.12014098465442657, 0.02058955654501915, 0.04594530537724495, 0.04927752539515495, -0.07171487808227539, -0.04058270901441574, 0.0059684100560843945, -0.08027057349681854, -0.006466940511018038, 0.05604604631662369, -0.030663179233670235, 0.10535536706447601, 0.04539061710238457, -0.09345816820859909, 0.04200657829642296, 0.017940843477845192, -0.09850328415632248, 0.15458698570728302, -0.10956139117479324, -0.40772300958633423, -0.0013489018892869353, -0.03314099833369255, -0.05499233305454254, 0.05785486102104187, 0.07932472974061966, -0.11995820701122284, 0.048127807676792145, -0.040461137890815735, 0.057998351752758026, -0.0453350655734539, -0.04208935424685478, 0.034061577171087265, -0.08455511927604675, 0.012845280580222607, -0.11557327955961227, -0.04469844698905945, -0.004684838000684977, -0.16382235288619995, 0.0712682455778122, -0.1707839071750641, -0.0002569057687651366, 0.04882637783885002, -0.02133367396891117, 0.05868341401219368, -0.09189797937870026, 0.23468662798404694, -0.10111114382743835, -0.020999476313591003, 0.18695998191833496, 0.08319532871246338, -0.016340451315045357, 0.1843736469745636, -0.020742859691381454, -0.02434704080224037, -0.0020607388578355312, -0.04977357015013695, -0.09328150004148483, -0.017521632835268974, -0.12237969785928726, -0.010056703351438046, 0.017900295555591583, -0.005796230398118496, 0.05601944774389267, 0.05466265231370926, 0.029041530564427376, -0.03376695513725281, -0.005260971374809742, 0.0022291552741080523, 0.017918717116117477, 0.0806756392121315, -0.07586362212896347, 0.13432300090789795, -0.013257574290037155, -0.023180268704891205, 0.04462553188204765, 0.00903703086078167, 0.09968121349811554, -0.012439919635653496, 0.047354068607091904, 0.07312274724245071, 0.12126114219427109, 0.09065160900354385, -0.03670574724674225, 0.01369396410882473, -0.05827080085873604, -0.02305569499731064, 0.0004977778880856931, -0.24330677092075348, 0.03917054831981659, 0.05509575083851814, -0.06667501479387283, -0.06752058863639832, 0.04183950647711754, 0.1325352042913437, 0.00020383537048473954, -0.05083556845784187, -0.1538705676794052, -0.08113627880811691, -0.007693160325288773, -0.0551203191280365, -0.10574917495250702, 0.06822885572910309, 0.09033020585775375, -0.18514074385166168, -0.016345730051398277, 0.03752979636192322, 0.0352608859539032, -0.08511800318956375, 0.08509960025548935, -0.06784577667713165, -0.1437220722436905, 0.03006647154688835, 0.07603779435157776, -0.3106405735015869, 0.28555312752723694, 0.021243706345558167, 0.07790104299783707, -0.10170230269432068, -0.05738119035959244, 0.07108354568481445, 0.11471300572156906, 0.12169572710990906, 0.06381849199533463, -0.09967833012342453, -0.09992698580026627, -0.05187682434916496, 0.08791912347078323, 0.038795508444309235, 0.0714954361319542, -0.09706387668848038, -0.02821279689669609, 0.04994744434952736, -0.03147995099425316, 0.09695077687501907, -0.1173117384314537, -0.1168336346745491, 0.015751535072922707, 0.14349569380283356, 0.03817586600780487, -0.08566141128540039, -0.02124433033168316, -0.05142427235841751, 0.06964506953954697, 0.07319989800453186, -0.11427874863147736, -0.048828352242708206, -0.03420928120613098, -0.09464071691036224, -0.08429093658924103, 0.017800020053982735, -0.09884463250637054, -0.03557726740837097, 0.005997473374009132, -0.048790208995342255, 0.044394027441740036, -0.08578896522521973, 0.07270736247301102, 0.013450688682496548, 0.03948678448796272, 0.037829361855983734, 0.04827309772372246, 0.05475854128599167, -0.05739613249897957, -0.06251227110624313, -0.03594546765089035, -0.05053047090768814, -0.008929255418479443, -0.10800237953662872, 0.022726543247699738, -0.021337643265724182, -0.1875518560409546, -0.062461722642183304, -0.10842687636613846, 0.2167719006538391, 0.04147670418024063, -0.021918360143899918, 0.12322736531496048, 0.2708079218864441, 0.0023701591417193413, -0.2960950434207916, -0.1833445280790329, 0.0012383273569867015, -0.0014611365040764213, -0.07903065532445908, -0.1464860588312149, 0.010980826802551746, -0.009528388269245625, -0.0033924842718988657, -0.09524547308683395, -0.2836056351661682, -0.08791596442461014, 0.24001650512218475, 0.05419209226965904, 0.3681720197200775, -0.1453838050365448, -0.01720907911658287, -0.06222590059041977, -0.08612176030874252, -0.02647247165441513, -0.1070023775100708, 0.1234411671757698, -0.002931507769972086, 0.15233924984931946, -0.011856751516461372, 0.016231486573815346, 0.1427789330482483, -0.05871408060193062, -0.028137903660535812, -0.1596401184797287, -0.11481790244579315, 0.011681684292852879, 0.005063091404736042, 0.0560818612575531, -0.12993471324443817, -0.03551693260669708, -0.14358216524124146, -0.04829961061477661, -0.0939466580748558, 0.004196078982204199, 0.023583145812153816, -0.07179944217205048, -0.002415003487840295, 0.05172962322831154, 0.03635338693857193, 0.0662195011973381, -0.0676446333527565, -0.11979006230831146, 0.1775835156440735, 0.10079730302095413, 0.05335497856140137, -0.18524713814258575, 0.004832676146179438, -0.016125790774822235, 0.011749709956347942, 0.0945722907781601, -0.11661523580551147, -0.02584565058350563, 0.017957843840122223, -0.053986065089702606, 0.10419884324073792, 0.0061929901130497456, -0.007906136102974415, 0.09488048404455185, 0.10129077732563019, -0.06433112919330597, -0.1505516618490219, 0.008315835148096085, 0.20570534467697144, 0.07951885461807251, 0.02783893793821335, 0.1521298885345459, -0.03863300383090973, 0.007445208728313446, -0.08942771703004837, 0.00925770215690136, -0.04172862321138382, 0.04163256287574768, -0.040102288126945496, 0.05016142129898071, -0.06685950607061386, 0.05539987236261368, 0.030938299372792244, 0.005122179631143808, 0.10451740026473999, 0.011637969873845577, -0.13166438043117523, -0.13515283167362213, -0.09217701852321625, 0.04177909344434738, 0.012808430939912796, -0.12954770028591156, -0.010813656263053417, -0.15715350210666656, -0.07681199163198471, 0.0579829178750515, 0.0789702832698822, 0.007332099135965109, -0.024227457121014595, -0.007024962920695543, 0.05280863121151924, -0.0036974234972149134, -0.054660528898239136, -0.0873747169971466, -0.04230345040559769, 0.0900345891714096, 0.03469158336520195, 0.13390304148197174, -0.06730494648218155, -0.09607783704996109, -0.15888364613056183, 0.07889027893543243, -0.14742305874824524, -0.010354166850447655, -0.10145861655473709, -0.0221570897847414, 0.0479138046503067, -0.019879134371876717, -0.05108172819018364, -0.011271413415670395, -0.05095021799206734, 0.040369730442762375, -0.007741434965282679, 0.04533737525343895, -0.03649831935763359, 0.0403408482670784, 0.014036529697477818, 0.037343718111515045, 0.13757851719856262, 0.138461634516716, -0.08470321446657181, 0.08563157171010971, -0.21449658274650574, -0.001218363526277244, -0.029144488275051117, -0.018454793840646744, 0.03017091378569603, -0.03094611130654812, 0.04340041056275368, 0.11483760178089142, 0.0763499066233635, 0.06787221878767014, 0.21131011843681335, -0.024492360651493073, 0.061858925968408585, -0.00024546353961341083, -0.004859580658376217, -0.057471126317977905, 0.059554945677518845, 0.06996551156044006, 0.0019131008302792907, 0.050956640392541885, -0.08502930402755737, -0.04063279926776886, 0.013960163109004498, 0.056097738444805145, 0.01475053932517767, -0.10505050420761108, -0.002506792079657316, -0.09511372447013855, 0.004089525435119867, 0.0020189068745821714, 0.2574852705001831, 0.159400075674057, -0.0676557645201683, 0.033919911831617355, -0.011749576777219772, 0.021249059587717056, -0.050993941724300385, 0.07717543095350266, -0.012744014151394367, 0.008264632895588875, 0.034696873277425766, 0.007349046412855387, -0.002085390966385603, 0.05417061969637871, 0.07534608989953995, 0.1276857554912567, 0.04046526923775673, 0.12191881984472275, -0.022645853459835052, -0.004772610031068325, -0.056077152490615845, -0.2271026223897934, -0.11166782677173615, 0.030064091086387634, -0.10299573093652725, 0.05382995307445526, 0.19848357141017914, -0.04040835425257683, 0.014803365804255009, -0.11081136763095856, -0.09197863191366196, -0.09733882546424866, -0.10692284256219864, -0.025994349271059036, -0.16152237355709076, 0.013677548617124557, -0.04052608087658882, -0.06908595561981201, 0.20202478766441345, 0.03557084873318672, -0.058572277426719666, 0.2447764277458191, -0.10178514569997787, -0.08937849849462509, 0.06277894973754883, -0.03631459176540375, 0.02863544225692749, -0.09852418303489685, -0.02799876593053341, -0.03094610385596752, 0.03030906245112419, 0.07833503186702728, 0.02984500303864479, -0.06144387647509575, 0.0340091697871685, -0.07812538743019104, -0.04111742228269577, -0.059472061693668365, 0.01439665723592043, 0.0075594899244606495, 0.2383085936307907, 0.005668123252689838, -0.06440349668264389, -0.01276510301977396, 0.1942065805196762, 0.02387627400457859, -0.14427421987056732, -0.11208980530500412, 0.1616363525390625, -0.0681481659412384, -0.01836588606238365, -0.06541700661182404, 0.021298212930560112, -0.07143779844045639, 0.2931639552116394, 0.3385022282600403, -0.10115502029657364, 0.01690266840159893, -0.06950030475854874, 0.041795141994953156, -0.03448203578591347, 0.150614932179451, 0.10224931687116623, 0.21067573130130768, -0.06804177910089493, 0.04446502774953842, 0.007326842751353979, -0.01208710577338934, -0.14367176592350006, -0.05186418071389198, 0.03212296590209007, 0.02552739903330803, -0.09440896660089493, 0.0499112606048584, -0.15725114941596985, -0.028794093057513237, 0.0007535841432400048, -0.07331929355859756, -0.018649430945515633, 0.01297890767455101, 0.15102554857730865, 0.08624890446662903, 0.08077826350927353, -0.011457025073468685, 0.0227736197412014, -0.01603841409087181, 0.0340438075363636, -0.12228222191333771, -0.10006840527057648, 0.12187088280916214, 0.009462231770157814, 0.18083155155181885, -0.019328735768795013, 0.09362644702196121, 0.058246150612831116, 0.04425695538520813, 0.04615436866879463, 0.20352618396282196, 0.017150046303868294, 0.0028887521475553513, 0.006394644267857075, 0.030728640034794807, -0.019317567348480225, 0.05133432149887085, 0.04623927175998688, -0.04438076540827751, 0.08323581516742706, 0.049219511449337006, 0.004442671779543161, -0.04061315208673477, 0.08504258841276169, -0.10846279561519623, 0.09868030995130539, 0.11782483011484146, 0.025249028578400612, -0.06154392659664154, -0.019315531477332115, 0.02720361389219761, -0.010637571103870869, -0.12671560049057007, -0.09178563207387924, -0.16795504093170166, -0.03726854920387268, -0.036431919783353806, 0.0013482979265972972, -0.2051583081483841, -0.0026400431524962187, -0.0921652615070343, 0.023333922028541565, 0.009215164929628372, 0.04193658009171486, 0.05756765604019165, 0.03881732374429703, -0.010666814632713795, -0.05576954409480095, 0.027709636837244034, 0.07125529646873474, -0.08621460944414139, -0.126250758767128 ]
null
null
transformers
### xlm-r-large-arabic-sent Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other classes (was based on a rate of 3 out of 5 in reviews). Usage: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
{"language": ["ar", "en", "multilingual"], "license": "mit"}
text-classification
akhooli/xlm-r-large-arabic-sent
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ar", "en", "multilingual", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar", "en", "multilingual" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us
### xlm-r-large-arabic-sent Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other classes (was based on a rate of 3 out of 5 in reviews). Usage: see last section in this Colab notebook
[ "### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook" ]
[ 53, 118 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #multilingual #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### xlm-r-large-arabic-sent \nMultilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other \nclasses (was based on a rate of 3 out of 5 in reviews). \nUsage: see last section in this Colab notebook" ]
[ -0.044719576835632324, -0.11797643452882767, -0.0038172006607055664, 0.061359960585832596, 0.10288216918706894, 0.08482526242733002, 0.14766211807727814, 0.07524450868368149, 0.022240126505494118, -0.058079615235328674, -0.007682689465582371, 0.030642345547676086, 0.06805291026830673, 0.03775235638022423, -0.10123488306999207, -0.16654212772846222, 0.019227638840675354, -0.01151975803077221, 0.08428879082202911, 0.13388824462890625, 0.127529114484787, -0.008670929819345474, 0.043702516704797745, 0.008619728498160839, -0.13632120192050934, 0.01703171245753765, 0.08077975362539291, -0.0791521817445755, 0.10560888051986694, 0.17264333367347717, 0.1409601867198944, 0.04690858721733093, -0.06538747251033783, -0.17993687093257904, 0.05011570453643799, -0.01823491044342518, -0.06404579430818558, -0.02285388857126236, 0.05767139047384262, -0.1858176738023758, 0.13092748820781708, -0.0702129602432251, -0.007458787877112627, 0.05596715584397316, -0.041962262243032455, -0.29071372747421265, -0.07611963152885437, 0.11233360320329666, 0.034241579473018646, -0.043951328843832016, -0.005543522071093321, 0.13604208827018738, -0.14942263066768646, 0.10206936299800873, 0.16380847990512848, -0.19957293570041656, -0.019449075683951378, 0.05515991151332855, 0.030274491757154465, 0.09780752658843994, -0.04184139892458916, 0.0746525228023529, 0.041156649589538574, -0.018273446708917618, -0.09039744734764099, -0.09621913731098175, -0.08280375599861145, -0.023319652304053307, -0.05542433634400368, -0.020766958594322205, 0.15218065679073334, 0.01829916425049305, -0.06516249477863312, -0.10593563318252563, -0.027301527559757233, -0.021608086302876472, 0.0067505007609725, -0.007716879714280367, -0.018713440746068954, -0.012598896399140358, 0.1505734771490097, 0.058181196451187134, -0.07198919355869293, 0.009553281590342522, -0.2782476544380188, 0.3445056080818176, 0.027287866920232773, 0.08441668003797531, -0.016915757209062576, 0.029080048203468323, -0.05587193742394447, -0.04689336568117142, -0.02600889466702938, -0.09607762843370438, -0.015983449295163155, 0.029189635068178177, -0.0642288476228714, -0.01196194626390934, 0.06663406640291214, -0.05535389482975006, -0.055706921964883804, 0.08847422897815704, -0.07668370753526688, 0.0863499641418457, 0.054836928844451904, 0.11204773932695389, 0.07406435161828995, -0.00374247832223773, 0.015097171068191528, -0.05949215590953827, 0.06949405372142792, -0.002450396306812763, -0.09641925990581512, -0.041311319917440414, 0.009297122247517109, 0.09468986839056015, -0.10649272054433823, 0.09204921126365662, -0.09253821521997452, -0.015236388891935349, -0.011147085577249527, -0.14931680262088776, 0.03414070978760719, 0.06762493401765823, -0.017037713900208473, 0.08483284711837769, -0.012013658881187439, 0.00750165106728673, -0.045675162225961685, -0.04007774218916893, 0.026990225538611412, 0.08936852216720581, -0.024580800905823708, -0.10079719871282578, 0.041519440710544586, 0.008219921961426735, -0.04946485906839371, -0.16951794922351837, -0.023976709693670273, 0.0005372033920139074, -0.016749901697039604, 0.01197142992168665, 0.04630979150533676, -0.0036954451352357864, 0.09483643621206284, 0.08049774169921875, -0.01734381541609764, 0.040432125329971313, -0.10277616232633591, 0.09175533801317215, 0.04059937968850136, 0.051934875547885895, -0.1459822803735733, 0.01944413222372532, -0.010322540998458862, 0.026427527889609337, -0.1231219470500946, 0.1568739116191864, -0.05313212797045708, -0.08116068691015244, -0.09820809215307236, -0.04104090481996536, 0.07726719230413437, 0.04836219921708107, -0.12838628888130188, 0.12237010151147842, -0.1929280161857605, -0.14967726171016693, 0.1276024729013443, -0.09036123752593994, -0.036183442920446396, 0.15248310565948486, -0.05334140360355377, -0.04825091361999512, 0.08243010938167572, 0.03250603377819061, 0.015086092054843903, -0.04246086999773979, -0.020586827769875526, 0.076108418405056, 0.007818437181413174, 0.0946575403213501, 0.10089550912380219, 0.057110365480184555, -0.15764392912387848, 0.05517802760004997, -0.0026477929204702377, 0.07356560230255127, 0.024725724011659622, -0.07164350897073746, -0.024111641570925713, 0.05200415477156639, 0.18779683113098145, 0.06435380131006241, 0.04221867769956589, -0.09849699586629868, -0.08746189624071121, -0.03467220067977905, 0.04991831257939339, 0.00614134781062603, 0.04744807630777359, -0.11004195362329483, 0.040862008929252625, -0.005707339383661747, 0.003265796694904566, -0.15047016739845276, -0.05472831800580025, -0.027274608612060547, 0.058582939207553864, 0.044141001999378204, 0.12145539373159409, -0.006703234277665615, -0.011068670079112053, -0.11423638463020325, 0.056054502725601196, 0.07224570959806442, 0.0039723459631204605, -0.036550357937812805, -0.16148191690444946, 0.05830548331141472, -0.04346877336502075, 0.14442086219787598, -0.08860284835100174, -0.00489656301215291, 0.08824485540390015, 0.11260869354009628, -0.014112737029790878, 0.11299187690019608, -0.032168179750442505, 0.12447396665811539, -0.04839407652616501, 0.03440559282898903, 0.0898999273777008, -0.07413382083177567, -0.2562600374221802, 0.1378859430551529, -0.178237184882164, 0.1284186989068985, 0.13293133676052094, -0.03213899955153465, -0.06514128297567368, -0.1571258157491684, -0.013093397952616215, 0.003625184763222933, 0.058367036283016205, 0.07633200287818909, 0.18237899243831635, -0.0007967918063513935, 0.12812389433383942, -0.07239966094493866, 0.011128845624625683, -0.01536687184125185, -0.05447296053171158, -0.09753912687301636, 0.16936539113521576, 0.001859451993368566, -0.24295885860919952, 0.14034520089626312, 0.2316475808620453, 0.04763098433613777, 0.15845900774002075, 0.020159857347607613, 0.07554548233747482, -0.035626836121082306, -0.01969725266098976, -0.03244233503937721, -0.018940456211566925, -0.02708994783461094, -0.016231022775173187, 0.050331901758909225, 0.013880017213523388, -0.011740092188119888, -0.12465067207813263, -0.01424702350050211, -0.02462402917444706, -0.007982428185641766, -0.05699101462960243, 0.07196361571550369, 0.0995420590043068, 0.1228073239326477, -0.015182741917669773, -0.05848831683397293, 0.08247751742601395, -0.014561847783625126, -0.11102437973022461, 0.16512084007263184, -0.1358618438243866, -0.322294145822525, -0.0532630980014801, -0.17401760816574097, -0.17997874319553375, -0.014771326445043087, 0.03647438809275627, -0.09403572976589203, 0.002804538467898965, -0.02198774367570877, 0.08459408581256866, -0.10852189362049103, -0.04218010976910591, -0.056128840893507004, -0.021443326026201248, -0.038701027631759644, -0.07685074210166931, -0.037310853600502014, -0.028172828257083893, -0.1010676771402359, 0.09481604397296906, -0.15416917204856873, -0.027306338772177696, 0.17730243504047394, -0.02153574861586094, -0.006445173639804125, -0.10423540323972702, 0.07930884510278702, -0.12230318039655685, -0.08452196419239044, 0.0962735116481781, -0.03760053217411041, 0.05175390467047691, 0.23050609230995178, 0.03536853566765785, -0.028002945706248283, -0.05310731753706932, 0.03869768604636192, -0.05142250657081604, -0.17493079602718353, -0.12558221817016602, -0.1024174913764, -0.0979231595993042, -0.1328907161951065, 0.03567210212349892, -0.04133768379688263, -0.010027567856013775, -0.08501975238323212, -0.07015006244182587, -0.006349832750856876, 0.02623722143471241, 0.2933681309223175, 0.005855795927345753, 0.10471617430448532, -0.07801136374473572, 0.017404526472091675, 0.11275220662355423, 0.07344844937324524, 0.07848979532718658, 0.04272981360554695, 0.039656803011894226, 0.10684656351804733, 0.06908747553825378, 0.11778385937213898, -0.10730734467506409, 0.013070384040474892, -0.024114420637488365, -0.027657879516482353, -0.020126357674598694, -0.10071782767772675, 0.029052698984742165, 0.0666797086596489, 0.03659076616168022, -0.07856210321187973, -0.13650064170360565, 0.12941937148571014, -0.020821528509259224, -0.035545915365219116, -0.13029490411281586, -0.02114994078874588, 0.11171639710664749, -0.039994414895772934, -0.06930112838745117, -0.006286148447543383, -0.07647711783647537, -0.17341315746307373, 0.22854425013065338, -0.036490339785814285, 0.10425763577222824, -0.07121806591749191, -0.0145903080701828, -0.1508455127477646, -0.08094790577888489, 0.02159097045660019, 0.09293798357248306, -0.21726736426353455, 0.22055906057357788, 0.0976819097995758, -0.06053948029875755, -0.04854263365268707, -0.03863406181335449, 0.08416465669870377, 0.1911499947309494, 0.020349815487861633, 0.03583439067006111, -0.11189345270395279, -0.17605771124362946, 0.012208458036184311, 0.07672140747308731, 0.11937862634658813, 0.07846268266439438, 0.00040717891533859074, -0.025836404412984848, 0.061598338186740875, -0.021790657192468643, 0.19269110262393951, -0.1088467389345169, -0.1634523570537567, 0.0796765387058258, 0.1059507429599762, -0.08413863927125931, -0.04137809947133064, -0.13266512751579285, -0.12057714909315109, 0.22280077636241913, -0.1573667824268341, -0.12171757221221924, -0.10707996040582657, -0.005486070644110441, -0.017563819885253906, -0.1155095249414444, -0.058588236570358276, -0.1525261104106903, -0.015536793507635593, -0.057694073766469955, -0.10224057734012604, 0.06334677338600159, 0.003658945206552744, -0.08034467697143555, -0.06660888344049454, 0.17334552109241486, -0.015298969112336636, 0.046357300132513046, 0.006410819943994284, 0.00017609084898140281, 0.011051871813833714, -0.07662665843963623, 0.001047794008627534, 0.14118695259094238, 0.04592995345592499, 0.18697771430015564, -0.006854179780930281, -0.1970914751291275, -0.044718872755765915, -0.11976850032806396, 0.19373203814029694, 0.15084390342235565, -0.05256028473377228, 0.17998985946178436, 0.061007820069789886, -0.025955382734537125, -0.16434691846370697, -0.1017240360379219, 0.04321684688329697, 0.044385917484760284, -0.00299816089682281, -0.044070594012737274, -0.017520137131214142, 0.03286420926451683, 0.02058521658182144, -0.015220369212329388, -0.2618255913257599, -0.08144547790288925, 0.13973192870616913, 0.01151307113468647, 0.31801265478134155, -0.15375110507011414, -0.04606686159968376, -0.11606200039386749, -0.11861623823642731, 0.10383542627096176, 0.03484760969877243, 0.1532968431711197, -0.08085947483778, 0.05808239057660103, -0.015504313632845879, 0.07190100103616714, 0.18885041773319244, -0.052835460752248764, 0.0626593753695488, -0.10754302889108658, -0.16309840977191925, -0.04152917116880417, 0.010653605684638023, -0.09110641479492188, -0.1257605403661728, -0.0626043826341629, -0.15143337845802307, -0.07550476491451263, -0.0504535511136055, 0.03395085036754608, -0.011662942357361317, 0.007482108194380999, -0.0988515168428421, -0.00033051345963031054, -0.02049841545522213, -0.051641322672367096, 0.1446048617362976, -0.12778949737548828, 0.11667939275503159, 0.14685052633285522, 0.17337211966514587, -0.07035910338163376, -0.035962752997875214, -0.0555841438472271, -0.030944066122174263, 0.08886239677667618, -0.1352456957101822, 0.03199173882603645, 0.08758784085512161, -0.04736427962779999, 0.159113809466362, 0.04468325898051262, 0.05172450840473175, 0.08823893964290619, 0.11903906613588333, 0.013702210038900375, -0.24777260422706604, 0.02848140150308609, -0.010831702500581741, 0.0067033926025033, -0.009851865470409393, 0.1286485344171524, 0.03284040465950966, -0.047361962497234344, 0.0006041083834134042, 0.00419882545247674, -0.006606381852179766, 0.030379217118024826, -0.020360466092824936, 0.020867209881544113, -0.09580124914646149, 0.08379019796848297, 0.13874468207359314, -0.05262064188718796, -0.021650224924087524, 0.0652376115322113, -0.08304765820503235, -0.031093420460820198, -0.017136966809630394, 0.14422637224197388, -0.1092085912823677, -0.10409913212060928, -0.019728947430849075, -0.20904570817947388, -0.04062779247760773, 0.172639861702919, 0.09112292528152466, 0.08913674205541611, -0.042594172060489655, -0.0943298265337944, 0.15451563894748688, 0.041072994470596313, 0.021286047995090485, -0.038627658039331436, -0.05536598339676857, 0.12642088532447815, 0.028940537944436073, 0.1662999987602234, -0.048565592616796494, -0.06636890023946762, -0.09700576961040497, 0.0195586159825325, -0.2690475583076477, 0.07006929814815521, -0.0025393955875188112, 0.09697602689266205, 0.02266337163746357, -0.044054385274648666, -0.04937819391489029, -0.031507913023233414, -0.0742972269654274, 0.06852694600820541, 0.02132200263440609, 0.15239772200584412, -0.0648704394698143, -0.0274572242051363, 0.061654675751924515, 0.04938400164246559, 0.0914916917681694, 0.07344944775104523, -0.05859336256980896, 0.08518239110708237, -0.28264033794403076, -0.018063826486468315, 0.07372031360864639, 0.03704944998025894, 0.01943792961537838, -0.0939333587884903, 0.035659853368997574, 0.09026964008808136, 0.03295031562447548, 0.09279438853263855, 0.08327102661132812, -0.06770054996013641, -0.06718821823596954, -0.05558395013213158, -0.10101405531167984, -0.04556060582399368, 0.05930715426802635, 0.034704457968473434, 0.12781831622123718, 0.09794776886701584, -0.015139000490307808, -0.02769213356077671, -0.014646273106336594, -0.030947484076023102, -0.04282449558377266, -0.11876045167446136, -0.1109280064702034, -0.10369540750980377, 0.030829813331365585, 0.08642978966236115, 0.23858173191547394, 0.06945741176605225, -0.0260615274310112, 0.011269320733845234, 0.11739610135555267, 0.03308582678437233, -0.03213782235980034, 0.062269967049360275, 0.005065403878688812, 0.030117999762296677, 0.11588982492685318, -0.04915664717555046, 0.0013114481698721647, 0.09507670998573303, 0.15963800251483917, 0.12469907850027084, 0.043693386018276215, 0.052656140178442, -0.07790113985538483, -0.017867106944322586, 0.1432279348373413, -0.01776246726512909, 0.01053119357675314, 0.032733090221881866, -0.10725443065166473, 0.041364289820194244, 0.11687649041414261, -0.08205005526542664, 0.07257184386253357, -0.06692009419202805, -0.06565836071968079, -0.13553471863269806, -0.0744592696428299, -0.0745348110795021, -0.06659294664859772, 0.003427837509661913, -0.03973207622766495, 0.012716001830995083, 0.030999476090073586, 0.05543951317667961, -0.026610586792230606, -0.021331029012799263, -0.16116619110107422, -0.12856236100196838, 0.039777789264917374, -0.021396677941083908, 0.09867769479751587, -0.020537247881293297, 0.001945499680005014, 0.022037699818611145, -0.05620013177394867, 0.03267858177423477, 0.07397965341806412, 0.05560596287250519, -0.01636286824941635, -0.17106370627880096, -0.0597323440015316, -0.023946156725287437, 0.05563931167125702, 0.11925148218870163, 0.18374384939670563, 0.07805169373750687, 0.02870977483689785, -0.003317884635180235, 0.12538762390613556, 0.07152310013771057, -0.05198850855231285, -0.02695993147790432, 0.14115720987319946, -0.11685988306999207, 0.0016643375856801867, -0.021983791142702103, -0.05552312731742859, -0.04214545711874962, 0.06906033307313919, 0.18176665902137756, -0.06949612498283386, 0.04568808153271675, -0.07509925961494446, 0.05783126875758171, 0.12186644226312637, 0.05983586981892586, -0.005220397375524044, 0.19939051568508148, -0.07106656581163406, 0.010133815929293633, -0.041692472994327545, 0.04221305996179581, -0.03133514150977135, 0.10440786927938461, -0.014875046908855438, -0.037895429879426956, -0.05300453305244446, 0.07956600934267044, -0.0020100371912121773, 0.015920694917440414, 0.1170511394739151, -0.07309100031852722, -0.07955539226531982, -0.006161546800285578, 0.10390149056911469, 0.07523882389068604, -0.03513501212000847, -0.006400613579899073, -0.033183082938194275, 0.010805444791913033, 0.02437678538262844, -0.19236351549625397, -0.06588227301836014, 0.15563201904296875, 0.06835959851741791, 0.010675200261175632, 0.0434948094189167, 0.203161358833313, 0.05481145158410072, 0.048461463302373886, 0.06852509826421738, 0.09153898805379868, 0.025008583441376686, 0.04046924412250519, 0.06171382963657379, 0.03714574873447418, 0.015815110877156258, -0.03282012790441513, 0.079340860247612, 0.04462742805480957, 0.12256261706352234, -0.09521649777889252, -0.13716699182987213, -0.03679357096552849, 0.11942383646965027, -0.13327036798000336, 0.05141991749405861, 0.18884433805942535, 0.008724790066480637, -0.021937774494290352, -0.08524765074253082, -0.030404232442378998, 0.002979760756716132, -0.04689183831214905, -0.006199205759912729, -0.0662699043750763, 0.05990880727767944, 0.11353631317615509, 0.023860344663262367, -0.05937591567635536, -0.07853308320045471, -0.05908685922622681, 0.026844043284654617, -0.03084953874349594, 0.07928674668073654, -0.022262686863541603, -0.031686119735240936, -0.05307549238204956, -0.4484356641769409, 0.068244069814682, 0.04290507733821869, 0.021427016705274582, -0.026904240250587463 ]
null
null
transformers
### xlm-r-large-arabic-toxic (toxic/hate speech classifier) Toxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Usage and further info: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
{"language": ["ar", "en"], "license": "mit"}
text-classification
akhooli/xlm-r-large-arabic-toxic
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar", "en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
### xlm-r-large-arabic-toxic (toxic/hate speech classifier) Toxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Usage and further info: see last section in this Colab notebook
[ "### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook" ]
[ 49, 104 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #ar #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### xlm-r-large-arabic-toxic (toxic/hate speech classifier) \nToxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. \nZero shot classification of other languages (also works in mixed languages - ex. Arabic & English). \nUsage and further info: see last section in this Colab notebook" ]
[ -0.053845711052417755, -0.050342585891485214, -0.005096056032925844, -0.0011734197614714503, 0.1320001482963562, 0.028704095631837845, 0.16459770500659943, 0.13667675852775574, 0.048806507140398026, -0.0857962891459465, 0.028002845123410225, 0.15574368834495544, -0.02090923860669136, 0.037640608847141266, -0.056837256997823715, -0.1295292228460312, 0.008889189921319485, -0.0035771033726632595, 0.024985168129205704, 0.13297270238399506, 0.17396047711372375, 0.005343202501535416, 0.05141616612672806, 0.027926720678806305, -0.12234882265329361, 0.007418446708470583, 0.11697430163621902, -0.13307087123394012, 0.12700574100017548, 0.11041348427534103, 0.10063834488391876, 0.0051707923412323, -0.055524393916130066, -0.16559931635856628, 0.05443325638771057, 0.005963702220469713, -0.03367248550057411, 0.03934188932180405, 0.03828087076544762, -0.2260180115699768, 0.1864173412322998, -0.08897341042757034, -0.034785911440849304, 0.0914272591471672, -0.06328040361404419, -0.22139513492584229, 0.022524073719978333, 0.07946117222309113, 0.10543593764305115, 0.03615870326757431, -0.029193531721830368, 0.18331214785575867, -0.015150782652199268, 0.14569677412509918, 0.20323532819747925, -0.12048965692520142, -0.03332098573446274, -0.06837841123342514, 0.04566800221800804, 0.09748150408267975, -0.0866590142250061, 0.09580449014902115, 0.022738207131624222, -0.048605483025312424, -0.06141940876841545, -0.12802407145500183, -0.002561186207458377, -0.06921111792325974, -0.03765324130654335, 0.007545712869614363, 0.060287099331617355, 0.004315326455980539, -0.04884033277630806, -0.06562094390392303, -0.03439312055706978, -0.05629151314496994, 0.010124308988451958, -0.03449574485421181, -0.03392946720123291, -0.025252843275666237, 0.11467482894659042, 0.018218623474240303, -0.09114431589841843, -0.011778962798416615, -0.1421351283788681, 0.33772581815719604, 0.018168989568948746, 0.07702846825122833, 0.0014623020542785525, -0.032510776072740555, -0.04269802197813988, -0.06803815066814423, -0.023620814085006714, -0.10443076491355896, -0.003338252194225788, 0.008843215182423592, -0.04547962546348572, -0.06526527553796768, 0.07558996230363846, -0.12709404528141022, -0.01948927529156208, 0.04628043994307518, -0.06925949454307556, 0.07834327220916748, 0.025743143633008003, 0.042129263281822205, 0.0645056813955307, 0.027718616649508476, 0.05659393221139908, 0.008519177325069904, 0.03474599868059158, 0.05006186664104462, -0.06310412287712097, -0.017606111243367195, -0.015484975650906563, 0.13209332525730133, -0.07400760799646378, 0.12619630992412567, -0.049494076520204544, -0.0010229975450783968, 0.06284131854772568, -0.11442797631025314, 0.010914414189755917, 0.10437144339084625, -0.02138715609908104, 0.018292203545570374, 0.027251465246081352, -0.007156841456890106, -0.08490636944770813, -0.05187694728374481, 0.0003676087944768369, 0.1248510330915451, -0.05039335787296295, -0.06499113142490387, 0.029112063348293304, 0.09429765492677689, -0.028683306649327278, -0.1953156441450119, -0.0025337254628539085, 0.037874218076467514, -0.028788402676582336, 0.04576300084590912, 0.03146035596728325, -0.006985949818044901, 0.07151462882757187, 0.04907602444291115, -0.06573029607534409, -0.10742507129907608, -0.08310531824827194, 0.1279744952917099, 0.03852374851703644, 0.08620929718017578, -0.08066253364086151, 0.0006901397136971354, -0.002681243931874633, 0.00024090944498311728, -0.06835344433784485, 0.10320676863193512, -0.09708476811647415, 0.004466763231903315, -0.12025817483663559, -0.0125446617603302, 0.011891941539943218, 0.04834170266985893, -0.08170540630817413, 0.15659360587596893, -0.23870183527469635, -0.08924854546785355, 0.12755967676639557, -0.07242542505264282, -0.07706907391548157, 0.1305542141199112, -0.0523846372961998, -0.08754824101924896, 0.10452994704246521, 0.028017228469252586, -0.10874087363481522, -0.06923666596412659, -0.025060657411813736, 0.10014314204454422, -0.10642421245574951, 0.031203586608171463, 0.04938872903585434, 0.0018369352910667658, -0.07156814634799957, 0.0003146441886201501, 0.07189927995204926, 0.10331780463457108, 0.05478909984230995, -0.10217621922492981, -0.02128005400300026, 0.009887315332889557, 0.17150519788265228, 0.003788900328800082, 0.00334222917445004, -0.07093839347362518, -0.12211392819881439, -0.06442378461360931, 0.08014734834432602, 0.0209900364279747, 0.06324929744005203, -0.11083916574716568, 0.022834815084934235, -0.03890588507056236, -0.008903338573873043, -0.1491847187280655, -0.027390779927372932, -0.0890733003616333, 0.08891234546899796, 0.08867126703262329, 0.02041802369058132, 0.02366780675947666, -0.05254896730184555, -0.06223856657743454, 0.061684977263212204, 0.09876135736703873, 0.024495646357536316, -0.09707876294851303, -0.09809560328722, 0.11962306499481201, -0.0227358415722847, 0.05221732705831528, -0.09098599851131439, -0.016052739694714546, 0.08791010826826096, 0.006958061829209328, -0.06024516001343727, 0.09419803321361542, 0.037657711654901505, 0.062249403446912766, -0.038462746888399124, -0.008372488431632519, 0.09270097315311432, -0.0679483413696289, -0.1919599175453186, 0.13721199333667755, -0.16515058279037476, 0.1789351850748062, 0.1654885709285736, -0.06430255621671677, -0.04534531012177467, -0.0352538600564003, -0.008395460434257984, 0.034545037895441055, 0.12738481163978577, 0.08080132305622101, 0.19327569007873535, -0.009054221212863922, 0.1144629567861557, -0.05892220139503479, 0.005712092854082584, -0.0346938893198967, -0.06672169268131256, -0.088821642100811, 0.13189825415611267, 0.003262787126004696, -0.25080713629722595, 0.11567874997854233, 0.2579362690448761, -0.052813317626714706, 0.0772794708609581, 0.07449921220541, 0.05118512734770775, -0.0006856481777504086, -0.055140987038612366, 0.012617208063602448, 0.04615304246544838, -0.02753392979502678, -0.03770913928747177, 0.01998903974890709, -0.02532517910003662, 0.014002857729792595, -0.06134071573615074, -0.02869836613535881, -0.01981024444103241, -0.001918153720907867, -0.13522197306156158, 0.05924715846776962, 0.0747462660074234, 0.1184132844209671, -0.029715048149228096, -0.08449099212884903, 0.03655516356229782, 0.004478061106055975, -0.12240966409444809, 0.13575328886508942, -0.14807233214378357, -0.3350944221019745, 0.021702053025364876, -0.15262854099273682, -0.09022639691829681, 0.025173092260956764, 0.02917475253343582, -0.18000616133213043, 0.006522010080516338, 0.0031910587567836046, 0.056189779192209244, -0.04822613671422005, -0.009687721729278564, 0.021609334275126457, -0.0015802013222128153, 0.04492776840925217, -0.10150858759880066, -0.02545524202287197, -0.06279563903808594, -0.05445627495646477, 0.045877546072006226, -0.09056411683559418, 0.005498233716934919, 0.14029859006404877, -0.027976227924227715, -0.03874572739005089, -0.08539391309022903, 0.1650545597076416, -0.1356048732995987, -0.06458741426467896, 0.14290213584899902, -0.14279890060424805, 0.03517714887857437, 0.1340680867433548, 0.051025956869125366, -0.031511642038822174, -0.045212019234895706, 0.03162273019552231, 0.0007312005618587136, -0.1214287132024765, -0.12053637951612473, -0.06976281851530075, -0.08279058337211609, -0.09992390125989914, 0.07145380228757858, 0.0023757009766995907, 0.017433054745197296, -0.03412913903594017, -0.1531732827425003, 0.022734003141522408, 0.057446375489234924, 0.16339749097824097, -0.014715460129082203, 0.0863189846277237, -0.0811149850487709, -0.028137696906924248, 0.0759183019399643, 0.029901480302214622, 0.03296539932489395, 0.0765581950545311, 0.14216682314872742, 0.11182821542024612, 0.04955579712986946, 0.17159900069236755, -0.020817456766963005, -0.024111568927764893, -0.03549222648143768, -0.004614545963704586, -0.0030415719375014305, -0.15579304099082947, 0.0014431423041969538, 0.0847008228302002, 0.030598627403378487, 0.04620327055454254, -0.0920565277338028, 0.2234654575586319, -0.06822267919778824, -0.08071906864643097, -0.16394272446632385, 0.04428686574101448, 0.06911559402942657, -0.03709326311945915, -0.03436034917831421, 0.015697458758950233, -0.15946944057941437, -0.1510801762342453, 0.1727270931005478, -0.08265667408704758, 0.06988687813282013, -0.0278849508613348, 0.01855582185089588, -0.11464452743530273, -0.07793904840946198, -0.011080245487391949, 0.10039056092500687, -0.3121170103549957, 0.21371516585350037, 0.09759355336427689, -0.025392914190888405, -0.08612766116857529, -0.05326337367296219, 0.10145246982574463, 0.1687973439693451, 0.14641684293746948, 0.005567171610891819, -0.09503483027219772, -0.15264587104320526, -0.044223397970199585, 0.049027182161808014, 0.06579090654850006, 0.1109282374382019, -0.03949977457523346, -0.024642018601298332, -0.007854028604924679, 0.005663566756993532, 0.06084045395255089, -0.14759191870689392, -0.1937904804944992, 0.08997370302677155, 0.06810662895441055, -0.09059266000986099, -0.041039057075977325, -0.09248015284538269, -0.09725898504257202, 0.2767207622528076, -0.15944108366966248, -0.158198744058609, -0.14718717336654663, -0.036817632615566254, -0.00015769831952638924, -0.13647101819515228, -0.06350693106651306, -0.09383939951658249, 0.02024249918758869, -0.07926227897405624, -0.09776855260133743, 0.0714200884103775, -0.06707961112260818, 0.018477408215403557, -0.06648522615432739, 0.22283071279525757, -0.01923440769314766, 0.07277406752109528, 0.024128345772624016, -0.04564664140343666, -0.005383423063904047, -0.07100296765565872, -0.03951021656394005, -0.00696150679141283, -0.04241484776139259, 0.04519219696521759, -0.09167633950710297, -0.21556107699871063, -0.12270216643810272, -0.06124505400657654, 0.25065580010414124, 0.137751504778862, 0.015455753542482853, 0.11732875555753708, 0.09429769217967987, -0.04064280539751053, -0.18869437277317047, -0.1322142481803894, 0.05604567751288414, -0.012885418720543385, 0.01273007970303297, -0.04352731257677078, -0.008687599562108517, 0.012935732491314411, 0.01689363643527031, 0.045870233327150345, -0.16591070592403412, -0.09028351306915283, 0.21661287546157837, 0.04508376121520996, 0.2843915820121765, -0.1422255039215088, -0.024080604314804077, -0.13287854194641113, -0.000047343550249934196, 0.11514744162559509, 0.053404055535793304, 0.09405408799648285, -0.003652404760941863, 0.04937044903635979, 0.029307443648576736, 0.037334006279706955, 0.1576530933380127, -0.040190622210502625, 0.08901173621416092, -0.11955205351114273, -0.2606658637523651, -0.027903256937861443, 0.03504158556461334, -0.08984208852052689, -0.12235894054174423, -0.06254539638757706, -0.1101577877998352, -0.11771367490291595, -0.05949711054563522, 0.05911027267575264, 0.013558811508119106, -0.017038168385624886, -0.01709054596722126, -0.040329981595277786, -0.011043020524084568, -0.0538468211889267, 0.16961465775966644, -0.16816748678684235, 0.0768987312912941, 0.11282127350568771, 0.2147163301706314, -0.025284627452492714, -0.07815541326999664, 0.018985170871019363, 0.009634986519813538, 0.03926751762628555, -0.10845394432544708, 0.04042568802833557, 0.038226161152124405, -0.07977130264043808, 0.07021772116422653, 0.013150111772119999, 0.06866854429244995, 0.11413523554801941, 0.1362253725528717, 0.04819981008768082, -0.14085274934768677, -0.003142806002870202, -0.039967410266399384, -0.03819568455219269, -0.05273997038602829, 0.13689211010932922, 0.03211449831724167, -0.026408782228827477, -0.021621521562337875, -0.029127366840839386, -0.07411553710699081, 0.05266457423567772, 0.03547988086938858, 0.021128175780177116, -0.10281269997358322, 0.04892895370721817, 0.0881633535027504, -0.0005803032545372844, -0.0037326752208173275, 0.11659755557775497, -0.11031646281480789, -0.08203523606061935, -0.06254806369543076, 0.10553253442049026, -0.06728287786245346, -0.04868200048804283, -0.03979981318116188, -0.14041423797607422, -0.08438505977392197, 0.1623552441596985, 0.08180470019578934, 0.06838783621788025, -0.043125007301568985, -0.08537964522838593, 0.10937276482582092, 0.06373225152492523, -0.03005375526845455, -0.040073007345199585, -0.02017148956656456, 0.1730884313583374, 0.008088828064501286, 0.19051235914230347, -0.055979352444410324, -0.008583998307585716, -0.05817405879497528, 0.03569581359624863, -0.14477917551994324, 0.03279620781540871, -0.07123322039842606, 0.0633375346660614, 0.026580512523651123, -0.020356925204396248, -0.045509882271289825, -0.00827446673065424, -0.0834452286362648, 0.06325407326221466, 0.04155421257019043, 0.04858793690800667, -0.09547208994626999, 0.021391114220023155, 0.04127676039934158, 0.06557350605726242, 0.11049334704875946, 0.12268781661987305, -0.11526988446712494, 0.10549428313970566, -0.2732434868812561, -0.0394255630671978, 0.09733392298221588, 0.004844296257942915, 0.015889301896095276, -0.03585948050022125, 0.08887109160423279, 0.09493955224752426, 0.09223618358373642, 0.06595320999622345, 0.05491408705711365, -0.06060602888464928, -0.03172365203499794, 0.006360550411045551, -0.0628521516919136, 0.03919707611203194, -0.035827238112688065, 0.044077470898628235, 0.04625600948929787, 0.1563064604997635, 0.0023093405179679394, -0.042472485452890396, -0.011193448677659035, 0.028368448838591576, -0.0018527050269767642, -0.10273611545562744, -0.1435486525297165, -0.09451554715633392, 0.07061225175857544, 0.01774415746331215, 0.19734257459640503, 0.048979438841342926, -0.0829029381275177, 0.08223718404769897, 0.04948830604553223, 0.00379775557667017, -0.008356557227671146, 0.07764342427253723, -0.0002075374941341579, 0.014664091169834137, 0.08022169768810272, -0.06563694030046463, 0.03591316565871239, -0.04217477887868881, 0.09668978303670883, 0.17054812610149384, 0.15695355832576752, 0.05777830258011818, -0.06071384623646736, -0.05774471163749695, 0.12269224226474762, -0.10175441950559616, -0.05177602916955948, -0.01766430027782917, -0.055028267204761505, -0.006437413394451141, 0.187798410654068, -0.017724648118019104, 0.007028532680124044, -0.036917489022016525, -0.08704951405525208, -0.17648720741271973, -0.10068686306476593, -0.07155650854110718, -0.005339120514690876, 0.04135678708553314, -0.03305206447839737, -0.009322849102318287, 0.05525780841708183, 0.037418432533741, -0.0490310899913311, 0.12510019540786743, -0.1017831340432167, -0.13014358282089233, 0.04368789494037628, -0.01811683550477028, 0.10394870489835739, 0.02553684636950493, 0.06585714966058731, 0.010174734517931938, -0.11539293825626373, 0.05487938970327377, 0.022604865953326225, 0.02660912089049816, 0.06032545119524002, -0.2085488885641098, -0.060856301337480545, -0.00848823320120573, 0.09345567971467972, 0.12964968383312225, 0.28355297446250916, 0.09583115577697754, 0.00533748883754015, -0.0004066023975610733, 0.08163023740053177, 0.0904395803809166, -0.05650759115815163, -0.025477362796664238, 0.11079435795545578, -0.041450999677181244, 0.0054160901345312595, -0.06588519364595413, -0.005765668116509914, 0.0032340113539248705, 0.14946214854717255, 0.2173716127872467, -0.17424120008945465, 0.058535728603601456, -0.11519528925418854, 0.07236362993717194, 0.06580649316310883, 0.030178088694810867, 0.07053495198488235, 0.1722278892993927, -0.05914328619837761, -0.001486620749346912, 0.00923626683652401, 0.027795637026429176, -0.07955186814069748, 0.08250578492879868, -0.028476044535636902, -0.00552601320669055, -0.013409312814474106, 0.0968407616019249, -0.02418495900928974, 0.02057827077805996, -0.07402382791042328, -0.059145737439394, -0.09011586010456085, 0.02875005453824997, 0.035115040838718414, 0.14159415662288666, -0.019123150035738945, 0.043305542320013046, -0.10538181662559509, 0.038415685296058655, 0.008381360210478306, -0.20993927121162415, -0.0433342345058918, 0.1281004548072815, 0.038632262498140335, 0.04266703501343727, 0.06598003953695297, 0.13022781908512115, 0.033465366810560226, -0.004860048182308674, 0.03083585947751999, 0.15529346466064453, 0.022998714819550514, -0.04129881411790848, 0.07799749821424484, 0.011939618736505508, 0.038404595106840134, -0.02007211185991764, 0.044750913977622986, 0.0971088781952858, 0.11764611303806305, -0.08519024401903152, -0.1252305805683136, -0.010584249161183834, 0.14147202670574188, -0.13598696887493134, 0.05794024094939232, 0.15214627981185913, 0.03263767063617706, -0.02057844214141369, -0.05204721912741661, -0.01320461742579937, 0.004847988486289978, -0.09631916135549545, -0.05628315359354019, -0.09492392838001251, 0.041165079921483994, 0.027929071336984634, -0.0012401366839185357, -0.052536848932504654, -0.0417221337556839, -0.10142890363931656, -0.008408267982304096, -0.04889926314353943, 0.018476786091923714, -0.0510006919503212, -0.026854954659938812, -0.00401166221126914, -0.25139740109443665, 0.06142544001340866, 0.000019538743799785152, -0.05743686854839325, -0.06995002925395966 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 529614927 - CO2 Emissions (in grams): 5.999771405025692 ## Validation Metrics - Loss: 0.7582379579544067 - Accuracy: 0.7636103151862464 - Macro F1: 0.770630619486531 - Micro F1: 0.7636103151862464 - Weighted F1: 0.765233270165301 - Macro Precision: 0.7746285216467107 - Micro Precision: 0.7636103151862464 - Weighted Precision: 0.7683270753840836 - Macro Recall: 0.7680576576961138 - Micro Recall: 0.7636103151862464 - Weighted Recall: 0.7636103151862464 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/akilesh96/autonlp-mrcooper_text_classification-529614927 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["akilesh96/autonlp-data-mrcooper_text_classification"], "widget": [{"text": "Not Many People Know About The City 1200 Feet Below Detroit"}, {"text": "Bob accepts the challenge, and the next week they're standing in Saint Peters square. 'This isnt gonna work, he's never going to see me here when theres this much people. You stay here, I'll go talk to him and you'll see me on the balcony, the guards know me too.' Half an hour later, Bob and the pope appear side by side on the balcony. Bobs boss gets a heart attack, and Bob goes to visit him in the hospital."}, {"text": "I\u2019m sorry if you made it this far, but I\u2019m just genuinely idk, I feel like I shouldn\u2019t give up, it\u2019s just getting harder to come back from stuff like this."}], "co2_eq_emissions": 5.999771405025692}
text-classification
akilesh96/autonlp-mrcooper_text_classification-529614927
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:akilesh96/autonlp-data-mrcooper_text_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 529614927 - CO2 Emissions (in grams): 5.999771405025692 ## Validation Metrics - Loss: 0.7582379579544067 - Accuracy: 0.7636103151862464 - Macro F1: 0.770630619486531 - Micro F1: 0.7636103151862464 - Weighted F1: 0.765233270165301 - Macro Precision: 0.7746285216467107 - Micro Precision: 0.7636103151862464 - Weighted Precision: 0.7683270753840836 - Macro Recall: 0.7680576576961138 - Micro Recall: 0.7636103151862464 - Weighted Recall: 0.7636103151862464 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692", "## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692", "## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 74, 43, 152, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-akilesh96/autonlp-data-mrcooper_text_classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 529614927\n- CO2 Emissions (in grams): 5.999771405025692## Validation Metrics\n\n- Loss: 0.7582379579544067\n- Accuracy: 0.7636103151862464\n- Macro F1: 0.770630619486531\n- Micro F1: 0.7636103151862464\n- Weighted F1: 0.765233270165301\n- Macro Precision: 0.7746285216467107\n- Micro Precision: 0.7636103151862464\n- Weighted Precision: 0.7683270753840836\n- Macro Recall: 0.7680576576961138\n- Micro Recall: 0.7636103151862464\n- Weighted Recall: 0.7636103151862464## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.10563471913337708, 0.2122945338487625, -0.0020509466994553804, 0.06496754288673401, 0.125682070851326, 0.036803506314754486, 0.059006284922361374, 0.11749210208654404, 0.004514776170253754, 0.16343790292739868, 0.08685760945081711, 0.16123086214065552, 0.07214061170816422, 0.11827412992715836, -0.08957982063293457, -0.1107502281665802, 0.029110748320817947, 0.019643954932689667, 0.045911695808172226, 0.08290554583072662, 0.06360244750976562, -0.09463021159172058, 0.13166455924510956, -0.008104330860078335, -0.1157648041844368, 0.05509332939982414, 0.06914790719747543, -0.06548643857240677, 0.06833206862211227, 0.10277583450078964, 0.1222379133105278, 0.0049150255508720875, 0.07855065166950226, -0.1394224464893341, -0.020003845915198326, 0.04448162764310837, -0.03870539739727974, 0.08476690202951431, 0.15002088248729706, -0.0006448718486353755, 0.06471286714076996, -0.10238371789455414, 0.08858062326908112, 0.074887715280056, -0.0759047344326973, -0.040472421795129776, -0.11581989377737045, 0.06181388348340988, 0.08048025518655777, 0.09302379190921783, 0.005230715963989496, 0.1974799931049347, -0.021023040637373924, 0.10401307046413422, 0.09127116203308105, -0.23280149698257446, -0.04535859078168869, 0.1838427037000656, -0.032777223736047745, 0.013767093420028687, -0.006927831564098597, 0.01133448351174593, 0.06545354425907135, -0.000012756210708175786, 0.0077336495742201805, -0.0434374175965786, -0.017885727807879448, -0.01321769505739212, -0.11528701335191727, -0.08657622337341309, 0.1643049567937851, 0.022382348775863647, -0.07180441915988922, -0.09394579380750656, -0.07698804140090942, -0.09239073097705841, -0.05152885615825653, -0.04274367168545723, 0.016445675864815712, -0.043378155678510666, -0.057151127606630325, 0.07427448034286499, -0.03304149582982063, -0.0919312834739685, -0.12351027876138687, 0.010699250735342503, 0.007100132293999195, 0.05235407128930092, 0.015845702961087227, 0.019078237935900688, -0.08566059917211533, -0.06425586342811584, -0.01255709957331419, 0.02073906548321247, -0.0926983505487442, -0.06517776846885681, 0.008644943125545979, 0.06290988624095917, 0.05804157257080078, 0.12343788146972656, -0.03345115855336189, 0.11008752882480621, 0.027385655790567398, -0.02043513022363186, -0.048657648265361786, 0.13644835352897644, -0.10877780616283417, -0.11586415022611618, 0.0029136331286281347, -0.03279167786240578, 0.022389225661754608, -0.031288690865039825, -0.047931160777807236, -0.08747522532939911, 0.06997627764940262, 0.03826338052749634, 0.037382256239652634, 0.01583007536828518, -0.06118196249008179, -0.059948332607746124, 0.10235661268234253, -0.09705989807844162, 0.02265036664903164, 0.012931912206113338, -0.12100858241319656, 0.07301347702741623, 0.06193742901086807, 0.005096158012747765, -0.14207080006599426, 0.01886267587542534, -0.12236206978559494, 0.014933837577700615, -0.06924986839294434, -0.13049836456775665, 0.05488660931587219, 0.001561623066663742, -0.03123130463063717, -0.1093088686466217, -0.16218216717243195, -0.09112824499607086, -0.014585191383957863, -0.05927614867687225, -0.04740782827138901, -0.022807728499174118, -0.00673907995223999, 0.04855119064450264, 0.0018550861859694123, 0.02553766779601574, -0.028227992355823517, 0.04243454709649086, 0.055040743201971054, 0.05723414942622185, -0.02979663386940956, 0.040176838636398315, -0.03876460716128349, 0.016257522627711296, -0.11789236962795258, 0.07614228129386902, -0.08545274287462234, 0.04336879029870033, -0.1865185797214508, -0.055760469287633896, 0.07954277843236923, -0.038605015724897385, 0.08047500997781754, 0.09605680406093597, -0.12539318203926086, 0.012583295814692974, 0.10173074156045914, -0.08699017018079758, -0.11793070286512375, 0.06187877804040909, -0.0004420792683959007, -0.0141500448808074, 0.04817858710885048, 0.0965333804488182, 0.15786795318126678, -0.1408960372209549, -0.07193783670663834, 0.00499196071177721, 0.014268506318330765, -0.08049161732196808, 0.08724728971719742, -0.05239114910364151, -0.15028734505176544, 0.0013312025694176555, 0.0013516078470274806, -0.02379423938691616, -0.024691687896847725, -0.06888869404792786, -0.03136371076107025, -0.0402856282889843, 0.0066563282161951065, 0.008975951932370663, 0.017882350832223892, -0.0353696271777153, -0.020802155137062073, 0.07378356158733368, 0.1618933081626892, -0.04904957488179207, -0.04195163771510124, -0.12885476648807526, 0.0557703822851181, -0.13706597685813904, -0.04588991031050682, -0.21458418667316437, -0.08507349342107773, 0.01827395334839821, -0.09838896989822388, 0.01851006969809532, -0.048360615968704224, 0.0808742493391037, 0.04195990785956383, 0.05013369023799896, 0.029303550720214844, 0.09588763862848282, -0.019988732412457466, -0.08284967392683029, -0.04368455708026886, -0.03387146815657616, 0.0031237287912517786, 0.19918383657932281, -0.17707456648349762, 0.016299255192279816, 0.04762403294444084, 0.035967979580163956, -0.0047554513439536095, -0.06452255696058273, -0.01980249211192131, 0.0727907344698906, 0.029655300080776215, -0.05205721780657768, 0.06064087152481079, -0.037025537341833115, -0.09121602028608322, -0.014954213984310627, -0.2516550123691559, 0.20937706530094147, 0.12068795412778854, 0.012113185599446297, -0.0683814138174057, -0.07189551740884781, 0.04333081841468811, -0.04952939227223396, -0.043353915214538574, 0.038334671407938004, 0.1367979496717453, 0.032508525997400284, 0.09381641447544098, -0.07383337616920471, -0.020931566134095192, 0.020310506224632263, -0.02443501353263855, -0.04935280233621597, 0.19789065420627594, 0.04376152157783508, -0.1226542592048645, 0.05924966186285019, -0.01137100625783205, -0.07998967915773392, 0.03883061558008194, 0.02615327015519142, -0.06206311285495758, -0.07079745084047318, 0.011091932654380798, 0.04498142749071121, 0.019604938104748726, -0.026375386863946915, 0.06714320182800293, 0.058438051491975784, -0.026730017736554146, 0.03861571103334427, -0.10513292253017426, 0.027077939361333847, 0.03018937073647976, -0.0566440224647522, -0.0762290433049202, 0.005154706072062254, 0.028640443459153175, 0.10893769562244415, 0.0219317227602005, -0.0014818845083937049, -0.024645190685987473, -0.02264106087386608, -0.13500817120075226, 0.21955040097236633, -0.09188288450241089, -0.13523297011852264, -0.1677577942609787, -0.12022630125284195, -0.0800614282488823, -0.047800254076719284, -0.014661080203950405, -0.04897681251168251, -0.11150429397821426, -0.04867852106690407, -0.1010451465845108, -0.0267502348870039, -0.07786191999912262, 0.03639647364616394, -0.03120720200240612, 0.08946766704320908, -0.13038618862628937, -0.03347319737076759, -0.009935863316059113, -0.11767319589853287, 0.03490983322262764, -0.008234923705458641, 0.13048654794692993, 0.17101438343524933, -0.04100782051682472, 0.03249490261077881, 0.0006396080716513097, 0.21000970900058746, -0.009793051518499851, -0.04876469075679779, 0.20902298390865326, 0.09355239570140839, 0.07418051362037659, 0.10730612277984619, 0.0605773851275444, -0.06828169524669647, -0.006533866748213768, 0.04209669679403305, -0.024193542078137398, -0.19676560163497925, -0.18356195092201233, 0.008121561259031296, -0.014426848851144314, 0.16977040469646454, 0.029887748882174492, 0.019359376281499863, 0.09941063076257706, 0.019948335364460945, 0.0818043053150177, -0.02809656225144863, 0.0713837593793869, 0.1391141563653946, 0.04207964614033699, 0.12072845548391342, -0.08620426803827286, 0.022918062284588814, 0.09109514206647873, -0.0006115440628491342, 0.06703824549913406, 0.031623560935258865, 0.13087637722492218, -0.02024698629975319, 0.1362316906452179, 0.028090931475162506, 0.10812567174434662, 0.03000323660671711, -0.0035154547076672316, 0.05200203135609627, -0.09954089671373367, -0.13241912424564362, -0.01794472709298134, 0.027690410614013672, 0.03826938569545746, -0.09287326782941818, -0.00731127243489027, -0.001649484853260219, 0.04897374287247658, 0.05023724585771561, -0.4546738862991333, -0.064791738986969, 0.024544427171349525, 0.00014355697203427553, -0.10534092783927917, -0.019139517098665237, 0.00281330244615674, -0.13615857064723969, 0.061631940305233, -0.012959649786353111, 0.132418692111969, -0.05639799311757088, -0.0360795259475708, -0.03854324668645859, 0.05729414150118828, -0.006673574913293123, 0.07195112854242325, -0.16359923779964447, 0.16283658146858215, 0.0493035688996315, 0.05337944254279137, -0.0694555938243866, 0.007905611768364906, 0.0395846888422966, 0.00665662856772542, 0.13493649661540985, 0.011273731477558613, -0.09244134277105331, -0.30161166191101074, -0.1431276798248291, 0.029330851510167122, -0.018752308562397957, 0.0037652573082596064, 0.07562457025051117, -0.01770169287919998, -0.009607707150280476, -0.0330546535551548, -0.06646216660737991, -0.09654577821493149, -0.06369315087795258, 0.031046200543642044, 0.07635873556137085, -0.03059149719774723, -0.037605058401823044, -0.04244353249669075, -0.028884723782539368, 0.12538203597068787, -0.08875329792499542, -0.06129677593708038, -0.1368407905101776, -0.021635813638567924, 0.12347838282585144, -0.12431701272726059, 0.03364846855401993, -0.0033072768710553646, 0.09128274023532867, -0.012861061841249466, -0.11630977690219879, 0.06524334102869034, -0.04040710628032684, -0.04028264805674553, 0.044426243752241135, 0.0464043989777565, 0.011179409921169281, 0.054079268127679825, 0.056468330323696136, 0.0329819954931736, -0.03083963505923748, -0.13954855501651764, -0.03997539356350899, 0.07518405467271805, 0.1263607293367386, 0.10341581702232361, 0.03608938306570053, -0.17191405594348907, -0.06505324691534042, 0.08968669176101685, 0.12305139750242233, 0.2171962410211563, -0.06991522014141083, -0.010758507996797562, 0.10896643996238708, -0.03721123933792114, -0.19782961905002594, -0.014524754136800766, 0.025226224213838577, 0.00778849795460701, -0.06310524791479111, -0.053968947380781174, 0.12353748083114624, 0.17083321511745453, -0.04107595235109329, -0.05030190572142601, -0.2807708978652954, -0.1332695186138153, 0.17584408819675446, 0.1451917290687561, 0.037980034947395325, -0.14726927876472473, -0.07796190679073334, -0.12664811313152313, -0.19083671271800995, 0.11931990087032318, -0.04969950392842293, 0.05608412250876427, -0.05078928917646408, 0.08539769053459167, 0.05085679888725281, -0.07425665855407715, 0.15111513435840607, 0.017288340255618095, 0.023508187383413315, -0.04553355276584625, -0.047367848455905914, -0.03927689418196678, -0.09899227321147919, 0.15242089331150055, 0.05337829515337944, 0.08386889845132828, -0.22330516576766968, 0.00421700906008482, -0.004965160507708788, 0.055387113243341446, -0.05463238060474396, -0.006508128251880407, -0.015924138948321342, 0.004205108620226383, -0.005251761991530657, -0.0344078466296196, -0.026353614404797554, -0.04314378276467323, 0.07732918858528137, 0.20785440504550934, 0.10692141950130463, 0.0029233547393232584, -0.07975418865680695, 0.060727186501026154, -0.04768107831478119, 0.050139911472797394, -0.13381803035736084, 0.06969161331653595, 0.1308198720216751, 0.04656242951750755, 0.08310838043689728, 0.02033204771578312, -0.04835488647222519, -0.023608168587088585, 0.03859627619385719, -0.1294143795967102, 0.006156301591545343, -0.006963464431464672, 0.012365620583295822, -0.08746259659528732, -0.035766977816820145, 0.10426168888807297, -0.003165698144584894, -0.021992044523358345, 0.011272916570305824, 0.00706771295517683, -0.012195689603686333, 0.2525610327720642, 0.015774695202708244, 0.09749414771795273, -0.12204346805810928, 0.0745868980884552, 0.09705007821321487, -0.16595566272735596, 0.014428788796067238, 0.0859154686331749, -0.08344866335391998, -0.05808310955762863, 0.010126283392310143, 0.1407516896724701, -0.13619539141654968, -0.06516106426715851, 0.0006257402710616589, -0.06871075183153152, 0.06827235221862793, 0.23409336805343628, 0.10634814202785492, 0.016655901446938515, 0.01000850647687912, -0.0905294343829155, -0.10388974100351334, 0.028945952653884888, 0.08652009069919586, 0.01923857070505619, -0.10011040419340134, 0.1507895588874817, -0.0035613866057246923, 0.0034833550453186035, -0.008265224285423756, -0.01534911897033453, -0.1800040602684021, -0.03169016167521477, -0.040581438690423965, 0.09175637364387512, -0.07075739651918411, 0.0596357099711895, -0.01940959505736828, 0.025799183174967766, -0.04976922646164894, 0.016500350087881088, -0.05886441841721535, -0.06087561324238777, 0.007174792233854532, 0.06865336745977402, -0.12256567180156708, -0.007837474346160889, 0.08285458385944366, -0.02080630138516426, 0.02537599578499794, 0.0902886688709259, 0.06599608808755875, 0.02750794216990471, -0.06796526163816452, -0.009293774142861366, 0.06536528468132019, 0.025783706456422806, 0.07622486352920532, -0.17885372042655945, 0.06412886083126068, 0.0030240940395742655, 0.015520856715738773, 0.04917105659842491, 0.09925296902656555, -0.11223329603672028, -0.004794738255441189, -0.09487650543451309, -0.06478175520896912, -0.13592994213104248, 0.04863985255360603, 0.1558767408132553, 0.06617757678031921, 0.054697707295417786, -0.0753958597779274, 0.019486529752612114, -0.18226461112499237, -0.017234744504094124, -0.02657405659556389, -0.03635367006063461, -0.007565212436020374, -0.010352357290685177, 0.08924153447151184, -0.016530228778719902, 0.08250895887613297, -0.034783363342285156, 0.02913886494934559, 0.015722278505563736, 0.09826713055372238, -0.02320433408021927, -0.05392834171652794, 0.19250717759132385, 0.07679770141839981, 0.00426799152046442, 0.11959006637334824, 0.09807667881250381, 0.009685040451586246, 0.013026035390794277, 0.00600099703297019, 0.08233098685741425, -0.10367051512002945, 0.06661395728588104, 0.047180771827697754, -0.0831170603632927, -0.010442406870424747, 0.060553256422281265, -0.12235142290592194, 0.016729671508073807, -0.04579372704029083, 0.03760315477848053, 0.14305885136127472, -0.15547966957092285, 0.01114561315625906, -0.009370516054332256, -0.0817907452583313, -0.19399631023406982, -0.07695868611335754, -0.12591560184955597, -0.030335847288370132, -0.027392398566007614, -0.12307121604681015, 0.022015895694494247, 0.16691337525844574, 0.010063264518976212, 0.035452019423246384, 0.10366029292345047, -0.2013157457113266, -0.018004463985562325, -0.04607619717717171, -0.001137567451223731, -0.0019252412021160126, 0.002920414786785841, 0.0031137592159211636, 0.05220921337604523, -0.02238593064248562, 0.11734034866094589, 0.022732766345143318, 0.04818941652774811, 0.09730704873800278, -0.026964794844388962, -0.07914028316736221, -0.032737571746110916, 0.03232083097100258, 0.03293228894472122, 0.13431698083877563, 0.03971833735704422, 0.003609840292483568, -0.040336765348911285, 0.21158656477928162, -0.10046279430389404, 0.017555411905050278, -0.11320886015892029, 0.2473989725112915, 0.031571242958307266, 0.04307667165994644, 0.03708643466234207, -0.022200794890522957, 0.035291705280542374, 0.16431854665279388, 0.10083390772342682, 0.01578027755022049, -0.024084337055683136, -0.00577318063005805, -0.005724893882870674, -0.012134467251598835, 0.07611212879419327, 0.051555439829826355, 0.17725640535354614, -0.07473470270633698, 0.039105407893657684, 0.012243024073541164, 0.004744180478155613, -0.08196953684091568, 0.031985092908144, 0.0020841388031840324, -0.014167713932693005, -0.004092259798198938, 0.12008196860551834, -0.02814326249063015, 0.04720240458846092, 0.09041586518287659, -0.09076137095689774, -0.1339242160320282, 0.026607772335410118, -0.042145926505327225, -0.04675213247537613, 0.08309001475572586, -0.04512698948383331, -0.005034265108406544, 0.03074023500084877, 0.010383079759776592, -0.2142930030822754, -0.08498625457286835, -0.00915963388979435, 0.16239072382450104, 0.2671540081501007, 0.03578345850110054, 0.11196766048669815, 0.16881480813026428, -0.0036646153312176466, -0.14433936774730682, 0.12552690505981445, 0.0003948099329136312, -0.15046799182891846, 0.09781955182552338, 0.058751028031110764, -0.03485522046685219, 0.13246606290340424, 0.04494807496666908, -0.16625623404979706, -0.0042110225185751915, -0.03555189445614815, 0.09373047202825546, -0.07128536701202393, 0.01699921302497387, -0.08558487892150879, 0.12370666116476059, 0.154459610581398, -0.01865633949637413, 0.02135159820318222, -0.04282999783754349, 0.04554491490125656, -0.024971015751361847, 0.0067026191391050816, -0.025095101445913315, -0.096986785531044, 0.06631896644830704, -0.20606592297554016, 0.0018585887737572193, -0.28446707129478455, -0.015747450292110443, -0.015301743522286415, -0.059097904711961746, -0.03656177595257759, 0.10535889863967896, 0.02683475986123085, 0.003457470331341028, -0.04465680941939354, -0.18247923254966736, 0.0131095414981246, 0.16317778825759888, -0.12112496048212051, -0.1390143185853958 ]
null
null
transformers
hello
{}
text-generation
akozlo/con_bal60k
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conserv_fulltext_model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3 unbalanced_texts gpt2
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "conserv_fulltext_model", "results": []}]}
text-generation
akozlo/conserv_fulltext_1_18_22
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# conserv_fulltext_model This model is a fine-tuned version of gpt2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3 unbalanced_texts gpt2
[ "# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2" ]
[ 59, 29, 6, 12, 8, 3, 126, 4, 42 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# conserv_fulltext_model\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3\nunbalanced_texts gpt2" ]
[ -0.08681079000234604, 0.14870373904705048, -0.0035047116689383984, 0.0909651517868042, 0.14118827879428864, 0.052474360913038254, 0.10255976021289825, 0.160902738571167, -0.08309794217348099, 0.07539262622594833, 0.0855429545044899, 0.04749413952231407, 0.0663616731762886, 0.1316918283700943, -0.0045042806304991245, -0.2711210548877716, 0.018749743700027466, -0.03281829133629799, -0.029944900423288345, 0.0950707271695137, 0.10974043607711792, -0.07262720167636871, 0.06701718270778656, 0.01145369466394186, -0.14622077345848083, -0.012188689783215523, -0.029935263097286224, -0.04887107387185097, 0.0884767398238182, 0.035649724304676056, 0.06705090403556824, -0.00641242740675807, 0.10576660931110382, -0.20587490499019623, -0.0028666064608842134, 0.07684534043073654, 0.03447762131690979, 0.08347786962985992, 0.08462955057621002, 0.00012364193389657885, 0.08623818308115005, -0.13239991664886475, 0.08439059555530548, 0.024843046441674232, -0.09972161799669266, -0.12984739243984222, -0.08970335125923157, 0.053167764097452164, 0.08684375882148743, 0.09420106559991837, -0.004130825400352478, 0.08114417642354965, -0.093443863093853, 0.05163157731294632, 0.16135577857494354, -0.2632485032081604, -0.04422731325030327, 0.05231459066271782, 0.018463563174009323, 0.05852197855710983, -0.10277729481458664, -0.03563312068581581, 0.017876707017421722, 0.03448336943984032, 0.08112620562314987, 0.0017042813124135137, -0.10055533051490784, 0.005595994647592306, -0.12656164169311523, -0.0414782352745533, 0.14310915768146515, 0.027714058756828308, -0.031182659789919853, -0.1564527153968811, -0.037604257464408875, -0.11715885251760483, -0.01880929432809353, 0.005123981274664402, 0.015792861580848694, -0.00949920155107975, -0.0428425632417202, -0.056156568229198456, -0.06736812740564346, -0.06768735498189926, -0.011971884407103062, 0.06401591002941132, 0.04889563098549843, 0.010666466318070889, -0.009617839939892292, 0.12335170060396194, -0.05169982835650444, -0.1150931790471077, -0.02314206212759018, -0.014731494709849358, -0.1066604033112526, -0.05317232385277748, -0.037344153970479965, -0.011983128264546394, 0.008715084753930569, 0.14645574986934662, -0.02904408983886242, 0.07769466936588287, 0.011425537057220936, 0.009024749509990215, 0.014903328381478786, 0.14090070128440857, -0.05609411001205444, -0.02226918190717697, -0.00448976457118988, 0.07876206934452057, -0.0006148676038719714, -0.019648408517241478, -0.09535402059555054, -0.0358482301235199, 0.07906679064035416, 0.06268342584371567, -0.029447993263602257, 0.039931148290634155, -0.055955782532691956, -0.04326242208480835, 0.06315790861845016, -0.12037088721990585, 0.04456231743097305, 0.003241154598072171, -0.07745036482810974, -0.010044476948678493, 0.009207227267324924, 0.0064787669107317924, -0.05675194039940834, 0.07273125648498535, -0.07485034316778183, -0.004844243638217449, -0.07024501264095306, -0.06273826956748962, 0.01051509752869606, -0.05250821262598038, -0.015506621450185776, -0.052595093846321106, -0.2086385041475296, -0.040357258170843124, 0.030331721529364586, -0.0836988165974617, -0.057628098875284195, -0.04841884970664978, -0.03562808036804199, 0.04104642942547798, -0.010008290410041809, 0.11663880944252014, -0.05959717184305191, 0.06069264933466911, -0.021982038393616676, 0.018154915422201157, 0.052774183452129364, 0.044952407479286194, -0.08161880820989609, 0.0245541799813509, -0.12077982723712921, 0.11837108433246613, -0.08246111124753952, 0.010369454510509968, -0.1271127462387085, -0.09318361431360245, 0.00883091427385807, -0.026356298476457596, 0.05123647674918175, 0.13162349164485931, -0.1593862920999527, -0.023465925827622414, 0.17894187569618225, -0.06021196022629738, -0.052592892199754715, 0.11314951628446579, -0.05401775613427162, 0.007953595370054245, 0.06037775054574013, 0.1554969698190689, 0.1095978245139122, -0.08858625590801239, -0.0008719903999008238, 0.016697324812412262, 0.062378209084272385, 0.04823727905750275, 0.07721928507089615, -0.03573079779744148, 0.011479664593935013, 0.016012875363230705, -0.04273558780550957, 0.022393671795725822, -0.06847045570611954, -0.0835380107164383, -0.048076193779706955, -0.07213975489139557, 0.04972607269883156, 0.009323070757091045, 0.03859935328364372, -0.05357467383146286, -0.12216705828905106, 0.05533081665635109, 0.13484086096286774, -0.06828852742910385, 0.005695556756108999, -0.06692668050527573, 0.03891192376613617, -0.025558829307556152, -0.019043300300836563, -0.17713773250579834, -0.12637002766132355, 0.0529230535030365, -0.03812333568930626, 0.03525951877236366, 0.00488027511164546, 0.057426802814006805, 0.06555309146642685, -0.04016970843076706, -0.016902845352888107, -0.04614415392279625, -0.020345017313957214, -0.0851847231388092, -0.1752193719148636, -0.03868908807635307, -0.025548886507749557, 0.1762743890285492, -0.22509843111038208, 0.004744086414575577, -0.009613960050046444, 0.11483581364154816, 0.017108246684074402, -0.06860911101102829, 0.018031753599643707, 0.02299753576517105, -0.007313949055969715, -0.10910587012767792, 0.03719174489378929, 0.016603877767920494, -0.08240874111652374, -0.019474618136882782, -0.12927649915218353, 0.02981940470635891, 0.0697527602314949, 0.07173913717269897, -0.11685193330049515, -0.062262553721666336, -0.05546315014362335, -0.04219905659556389, -0.09064122289419174, 0.0008800351060926914, 0.2204105406999588, 0.016683371737599373, 0.1246427446603775, -0.06008796766400337, -0.0638706237077713, 0.003981586080044508, 0.011256837286055088, 0.013874193653464317, 0.08037363737821579, 0.07408695667982101, -0.10452980548143387, 0.08571150153875351, 0.0438542515039444, -0.024382688105106354, 0.1377054899930954, -0.0390252023935318, -0.09727496653795242, -0.031276166439056396, 0.029559651389718056, -0.006060321349650621, 0.08177851885557175, -0.10561225563287735, -0.00376178533770144, 0.047822874039411545, 0.04877982661128044, 0.041113004088401794, -0.16458584368228912, -0.011991401202976704, 0.03003760799765587, -0.05436341464519501, -0.004850470926612616, -0.014503988437354565, 0.02679433487355709, 0.0851181298494339, 0.03318821266293526, 0.004719947464764118, 0.01980440504848957, -0.014232499524950981, -0.09351551532745361, 0.18400980532169342, -0.11746063083410263, -0.1689932942390442, -0.11581293493509293, 0.0052972352132201195, -0.04232032597064972, -0.00906600896269083, 0.0029450817964971066, -0.07368883490562439, -0.05777313560247421, -0.0891108512878418, 0.011273698881268501, -0.05448886379599571, -0.009736095555126667, 0.010009421966969967, 0.004653872922062874, 0.052779246121644974, -0.12463942170143127, 0.008766992948949337, 0.009689293801784515, -0.10821104794740677, 0.01675434410572052, 0.03838955610990524, 0.0640290379524231, 0.1500469446182251, 0.014893116429448128, 0.01957073248922825, -0.04407930374145508, 0.24491293728351593, -0.08676016330718994, -0.0010709043126553297, 0.09706313908100128, 0.008413231931626797, 0.06012536212801933, 0.11387462913990021, 0.03365211561322212, -0.08936236798763275, 0.022282127290964127, 0.05365992709994316, -0.01138612162321806, -0.24585646390914917, -0.04636668413877487, -0.049865931272506714, -0.042552173137664795, 0.13050583004951477, 0.05854227766394615, 0.015277374535799026, 0.06321236491203308, -0.02478720247745514, 0.062321681529283524, -0.000054120308050187305, 0.08579553663730621, 0.09166371077299118, 0.043810781091451645, 0.10031682252883911, -0.023661931976675987, -0.024209890514612198, 0.08044421672821045, 0.025309117510914803, 0.27068468928337097, -0.026372643187642097, 0.1543908715248108, 0.022374356165528297, 0.13533362746238708, -0.00837401207536459, 0.01632225140929222, -0.0006862209993414581, 0.0076355477795004845, -0.006224353797733784, -0.05985250324010849, -0.032770827412605286, 0.028865795582532883, 0.008910301141440868, -0.0062884618528187275, -0.0935705304145813, -0.00893490482121706, 0.023755880072712898, 0.2192915827035904, 0.06886858493089676, -0.2803662121295929, -0.06987584382295609, 0.029703162610530853, -0.03126845136284828, -0.0822555348277092, 0.012455404736101627, 0.08505065739154816, -0.15116874873638153, 0.04794614017009735, -0.052079107612371445, 0.09419237822294235, -0.10691044479608536, -0.011421374045312405, 0.05912885069847107, 0.09704738110303879, -0.007292839232832193, 0.10957921296358109, -0.18441422283649445, 0.18097494542598724, 0.01579279452562332, 0.08070287853479385, -0.08110427856445312, 0.04965520650148392, 0.016527405008673668, 0.04387636110186577, 0.10672733932733536, 0.00929872877895832, -0.05569171905517578, -0.15661685168743134, -0.10691462457180023, 0.02355281263589859, 0.10655955225229263, -0.04099487140774727, 0.07157354056835175, -0.05124366283416748, 0.013611835427582264, 0.040461376309394836, -0.08424591273069382, -0.1378966122865677, -0.1592763513326645, 0.049076419323682785, -0.004731879569590092, 0.0029377778992056847, -0.061465147882699966, -0.08209028095006943, -0.04741736501455307, 0.22032399475574493, 0.008570642210543156, -0.07099979370832443, -0.13807186484336853, 0.05292248725891113, 0.14636294543743134, -0.059025850147008896, 0.03740697726607323, 0.01239435002207756, 0.13321740925312042, 0.037118468433618546, -0.08262977749109268, 0.06383804976940155, -0.05148949474096298, -0.16583280265331268, -0.061400704085826874, 0.12651729583740234, 0.05181823670864105, 0.04911772906780243, -0.0073354667983949184, 0.027066558599472046, -0.005357731133699417, -0.11058811098337173, 0.02001170441508293, 0.090962715446949, 0.07129226624965668, 0.0830637589097023, -0.046559713780879974, 0.053866028785705566, -0.03713290020823479, -0.02367551252245903, 0.15302909910678864, 0.2058536857366562, -0.08559180796146393, 0.10834646224975586, 0.04094981774687767, -0.08062197268009186, -0.1601589173078537, 0.03856666013598442, 0.10610126703977585, 0.02396092377603054, 0.01804024539887905, -0.2333805114030838, 0.07208014279603958, 0.12083352357149124, -0.02115071378648281, 0.07289531081914902, -0.3712458312511444, -0.12357085198163986, 0.07026955485343933, 0.07554381340742111, 0.0032896031625568867, -0.14309479296207428, -0.05162498354911804, -0.02473343349993229, -0.12754061818122864, 0.12160192430019379, -0.049928437918424606, 0.12347256392240524, -0.01556770782917738, 0.09667660295963287, 0.03303103521466255, -0.04144638031721115, 0.1549326777458191, 0.039349544793367386, 0.050723303109407425, -0.061308879405260086, 0.03199005872011185, 0.06114499270915985, -0.06031195819377899, 0.05941058695316315, -0.02885380946099758, 0.07215439528226852, -0.1801663190126419, -0.030917277559638023, -0.05920783802866936, 0.03945189341902733, -0.039169032126665115, -0.06493477523326874, -0.06534312665462494, 0.0636141449213028, 0.0726451724767685, -0.025520743802189827, 0.05474032834172249, 0.0218645129352808, 0.06465203315019608, 0.04436333477497101, 0.06932688504457474, 0.0068992190062999725, -0.13712860643863678, -0.01055233459919691, -0.01793680153787136, 0.03824677690863609, -0.13917697966098785, 0.022275980561971664, 0.11913532763719559, 0.03264807164669037, 0.14803087711334229, 0.045258041471242905, -0.05664646998047829, 0.007033654488623142, 0.04213130474090576, -0.11243779957294464, -0.1290532350540161, -0.01673584245145321, -0.01008487306535244, -0.12352297455072403, -0.026717262342572212, 0.10684236884117126, -0.036131758242845535, -0.022948987782001495, -0.0007140261586755514, 0.03726993873715401, -0.012928969226777554, 0.176910400390625, 0.022506875917315483, 0.04884262755513191, -0.096581369638443, 0.12230776995420456, 0.10210704058408737, -0.053649090230464935, 0.05383053421974182, 0.07917014509439468, -0.08629851043224335, -0.024129044264554977, 0.06013057380914688, 0.12371346354484558, -0.03569681569933891, -0.019260646775364876, -0.04348979517817497, -0.09006040543317795, 0.062307000160217285, 0.01298262644559145, 0.03655370697379112, 0.017513636499643326, -0.040850963443517685, 0.013009163551032543, -0.1264161765575409, 0.07165072858333588, 0.059084951877593994, 0.062318529933691025, -0.12402277439832687, 0.1134445071220398, 0.000645698921289295, 0.028357213363051414, -0.009219850413501263, 0.000664246384985745, -0.10182549059391022, -0.025506844744086266, -0.1083943247795105, 0.018294719979166985, -0.04697149619460106, 0.012054944410920143, -0.01936216466128826, -0.027248544618487358, -0.026173293590545654, 0.01922564208507538, -0.06456625461578369, -0.06784627586603165, -0.01822770945727825, 0.06434495747089386, -0.12415838241577148, -0.0064891912043094635, 0.027956780046224594, -0.09758534282445908, 0.10127756744623184, 0.05732598528265953, 0.029325440526008606, 0.019226934760808945, -0.08551513403654099, -0.009338993579149246, 0.019770734012126923, 0.019896894693374634, 0.03825460001826286, -0.12301453948020935, 0.005687850061804056, -0.0364009365439415, 0.022196918725967407, 0.022705629467964172, 0.03414691612124443, -0.13329701125621796, -0.02199743315577507, -0.05525227636098862, -0.03543570265173912, -0.06859873980283737, 0.05814102664589882, 0.08663757145404816, 0.020787427201867104, 0.13604304194450378, -0.06633012741804123, 0.054917704313993454, -0.2020162045955658, -0.0328039713203907, -0.0016031874110922217, -0.01713012531399727, -0.045860543847084045, -0.030610932037234306, 0.07994021475315094, -0.046728961169719696, 0.17022378742694855, -0.016806479543447495, 0.05512957647442818, 0.018514979630708694, -0.0013667969033122063, 0.014518792741000652, 0.011376266367733479, 0.18726208806037903, 0.07999905943870544, -0.03649422526359558, 0.07416210323572159, -0.006240146234631538, 0.05763274431228638, 0.056791845709085464, 0.16472114622592926, 0.09746545553207397, 0.0023612533695995808, 0.03790663555264473, 0.047048021107912064, -0.1294558197259903, -0.14437201619148254, 0.1214919313788414, -0.02836812660098076, 0.10934959352016449, -0.05146428197622299, 0.16279609501361847, 0.07972247153520584, -0.17987333238124847, 0.06781736016273499, -0.03982437774538994, -0.12171214818954468, -0.11013904213905334, -0.10717731714248657, -0.07685623317956924, -0.11462169140577316, 0.02036661095917225, -0.13035689294338226, 0.05906851589679718, 0.08456941694021225, 0.020794961601495743, 0.0031548645347356796, 0.11532540619373322, -0.018904326483607292, -0.014971817843616009, 0.06195516139268875, 0.015892628580331802, 0.022276610136032104, -0.06133827567100525, -0.05619901418685913, 0.040825847536325455, 0.021925250068306923, 0.09724859893321991, -0.027888622134923935, 0.026064736768603325, 0.03276817873120308, -0.01886003091931343, -0.06097336858510971, 0.007391489110887051, 0.017903665080666542, 0.01932886429131031, 0.0622502937912941, 0.051363859325647354, -0.005532125011086464, -0.038697801530361176, 0.2785446345806122, -0.06568660587072372, -0.09251973778009415, -0.1359594315290451, 0.17196491360664368, 0.01463985163718462, -0.014611862599849701, 0.0718444362282753, -0.10158498585224152, -0.0064648170955479145, 0.1767818182706833, 0.17660699784755707, -0.07433715462684631, -0.02151297964155674, 0.010314838960766792, -0.017896752804517746, -0.017090028151869774, 0.1282486468553543, 0.07547709345817566, 0.05980372428894043, -0.06450903415679932, -0.00389875122345984, 0.0027231513522565365, -0.020095329731702805, -0.08253130316734314, 0.0936834067106247, 0.011682430282235146, 0.018381640315055847, -0.036089733242988586, 0.07434388995170593, -0.03721184283494949, -0.11631201207637787, -0.009916759096086025, -0.14090782403945923, -0.18968245387077332, -0.01500619389116764, 0.03857336565852165, -0.015137020498514175, 0.053987547755241394, -0.00682453066110611, -0.005958469118922949, 0.12780512869358063, -0.008821727707982063, -0.0741124302148819, -0.08090168237686157, 0.06860727816820145, -0.020471123978495598, 0.215868279337883, 0.016717761754989624, 0.06906439363956451, 0.10454139858484268, 0.026720505207777023, -0.14675432443618774, 0.02287052385509014, 0.0656093955039978, -0.03602094575762749, 0.039287321269512177, 0.16156716644763947, -0.036803457885980606, 0.05961973965167999, 0.0590413361787796, -0.08451362699270248, 0.0023061528336256742, -0.027565421536564827, 0.005598716903477907, -0.08377690613269806, -0.023329908028244972, -0.06378570944070816, 0.16381217539310455, 0.20458810031414032, -0.036473024636507034, -0.003972511738538742, -0.06284841895103455, 0.016213487833738327, 0.037337251007556915, 0.11102789640426636, -0.039659373462200165, -0.1832626760005951, 0.003372532781213522, 0.05677490308880806, 0.051137786358594894, -0.22432562708854675, -0.09270496666431427, 0.03441311791539192, -0.04863974452018738, -0.06401340663433075, 0.14838340878486633, 0.029132690280675888, 0.025555817410349846, -0.03737413138151169, -0.0998137965798378, -0.0419357568025589, 0.12638674676418304, -0.13564546406269073, -0.057800617069005966 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-bert Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-bert
[ "transformers", "pytorch", "tf", "bert", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #bert #endpoints_compatible #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #bert #endpoints_compatible #region-us \n" ]
[ 26 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #endpoints_compatible #region-us \n" ]
[ -0.0519382543861866, -0.027320021763443947, -0.009764132089912891, -0.0032538732048124075, 0.12203092873096466, 0.037466175854206085, 0.009042004123330116, 0.07347417622804642, 0.11445384472608566, -0.023526279255747795, 0.11918403208255768, 0.19854307174682617, -0.047428879886865616, 0.034996576607227325, -0.06911652535200119, -0.25343912839889526, 0.056837018579244614, 0.10850243270397186, -0.09315312653779984, 0.10027559101581573, 0.04692741110920906, -0.08653239905834198, 0.0697496309876442, -0.048778828233480453, -0.1262734830379486, 0.06432301551103592, 0.04400718957185745, -0.0846443697810173, 0.13183706998825073, 0.06088709831237793, 0.16135188937187195, 0.03878556936979294, -0.12860263884067535, -0.13109640777111053, 0.03566617891192436, 0.01584373228251934, -0.0880003422498703, 0.026918010786175728, 0.06795313209295273, -0.07675633579492569, 0.04368853569030762, 0.06744871288537979, 0.0000652581438771449, 0.04510953277349472, -0.176326721906662, -0.17865219712257385, -0.04033225402235985, 0.0680084228515625, 0.0010986941633746028, 0.05530589073896408, 0.031322114169597626, 0.20231948792934418, -0.14044910669326782, 0.11149867624044418, 0.17974220216274261, -0.32820987701416016, -0.0024254366289824247, 0.07835733890533447, 0.041856568306684494, 0.05643672123551369, -0.0035236477851867676, 0.05162319913506508, 0.020004844292998314, 0.027064481750130653, 0.0009612401481717825, -0.08996759355068207, -0.06211596354842186, 0.08964387327432632, -0.10629377514123917, -0.07971685379743576, 0.2254120260477066, -0.015110119245946407, 0.04084228724241257, 0.08179354667663574, -0.11323974281549454, -0.033332642167806625, 0.0082203084602952, -0.029629532247781754, -0.031394459307193756, 0.06094600260257721, 0.004114678595215082, -0.03917248919606209, -0.11459733545780182, 0.04130971059203148, -0.24569104611873627, 0.2655271291732788, 0.02189009264111519, 0.09525708854198456, -0.23134444653987885, 0.05876314640045166, -0.0726928561925888, -0.07681587338447571, 0.03577464073896408, -0.10101931542158127, 0.015091744251549244, -0.012678784318268299, -0.05956424027681351, 0.02716975286602974, 0.051459815353155136, 0.14054177701473236, -0.0009337703231722116, 0.022963374853134155, -0.015584737062454224, 0.09155338257551193, 0.002966145286336541, 0.08796258270740509, -0.0244596004486084, 0.0015456639230251312, 0.035680294036865234, -0.17874816060066223, -0.040611691772937775, -0.04197341576218605, -0.09485428035259247, -0.06870589405298233, 0.04039795324206352, 0.09549342840909958, 0.009509903378784657, 0.04464595019817352, -0.06087582930922508, -0.011514143086969852, 0.057909075170755386, -0.052709583193063736, -0.02188136614859104, 0.0038244063034653664, 0.03182881698012352, 0.20425215363502502, -0.011945978738367558, -0.03783247247338295, -0.03674011304974556, 0.10061241686344147, -0.08497567474842072, -0.03526772931218147, -0.01868714578449726, -0.048640165477991104, 0.05848388746380806, -0.12420527637004852, 0.06905367970466614, -0.17908571660518646, -0.05495839938521385, 0.055432453751564026, 0.03357434272766113, 0.01250407099723816, 0.025755522772669792, 0.04008230194449425, -0.028584906831383705, -0.024705838412046432, -0.057092856615781784, -0.041877929121255875, -0.05742081627249718, 0.11495847254991531, -0.018769966438412666, 0.05930876359343529, -0.14255619049072266, 0.056966960430145264, -0.06587215512990952, 0.020100990310311317, -0.1425444334745407, -0.03686119243502617, -0.029511619359254837, 0.16492727398872375, -0.0006236573099158704, -0.07267279922962189, -0.14386127889156342, 0.04142189770936966, -0.04502592980861664, 0.15352997183799744, -0.05330772325396538, -0.11421133577823639, 0.2620699107646942, -0.09922351688146591, -0.19211409986019135, 0.07545328140258789, 0.019832735881209373, -0.009515326470136642, 0.07868539541959763, 0.17369548976421356, 0.06302949041128159, -0.09266605228185654, 0.09856861084699631, 0.15532591938972473, -0.1470654308795929, -0.13300856947898865, 0.022281624376773834, -0.019005484879016876, -0.1382136344909668, 0.02891840972006321, 0.012995037250220776, 0.10820422321557999, -0.09593437612056732, 0.002389068715274334, -0.01893600821495056, -0.023710332810878754, 0.07475420087575912, 0.05124349147081375, 0.08591506630182266, -0.07444112747907639, 0.01059661153703928, 0.02769838646054268, -0.017335204407572746, 0.037069376558065414, 0.049418456852436066, -0.05502919480204582, 0.12715983390808105, -0.030201196670532227, 0.009376510977745056, -0.1967129111289978, -0.1260397583246231, -0.0063103665597736835, 0.13402026891708374, -0.026696115732192993, 0.19899339973926544, 0.10673554986715317, -0.08973298221826553, -0.01332789845764637, -0.025700697675347328, 0.12305665016174316, 0.024770068004727364, -0.013723139651119709, -0.05058055371046066, 0.027768710628151894, -0.07127342373132706, -0.09897004067897797, -0.02614632062613964, -0.008973709307610989, 0.15934640169143677, 0.13976310193538666, 0.023497749119997025, 0.046397216618061066, -0.030489258468151093, 0.05174655094742775, -0.013672980479896069, 0.0007942395750433207, 0.08550477772951126, -0.012440686114132404, -0.08698473125696182, 0.17234715819358826, -0.07189275324344635, 0.40628674626350403, 0.20212171971797943, -0.29884424805641174, -0.005996955558657646, 0.004819003399461508, -0.023997247219085693, 0.026467502117156982, 0.12559671700000763, -0.054208677262067795, 0.06665095686912537, 0.018337178975343704, 0.11830319464206696, -0.04171596094965935, -0.06147150695323944, 0.012726669199764729, -0.032136473804712296, -0.048092588782310486, 0.08882739394903183, 0.05195198208093643, -0.18553796410560608, 0.1601165235042572, 0.2724831700325012, 0.07558935135602951, 0.13614650070667267, -0.07456263154745102, -0.03121986798942089, 0.04058309271931648, 0.032491203397512436, -0.03196796029806137, 0.0271753016859293, -0.24344617128372192, -0.03599075600504875, 0.07695035636425018, 0.015495184808969498, 0.07689465582370758, -0.13479779660701752, -0.061162687838077545, 0.03606554493308067, 0.009916122071444988, -0.05762319639325142, 0.11517763882875443, 0.038134921342134476, 0.0996982753276825, 0.013948257081210613, -0.06010504439473152, 0.10814736783504486, 0.016774319112300873, -0.07451086491346359, 0.16540850698947906, -0.13380934298038483, -0.26722627878189087, -0.09338574856519699, -0.12326372414827347, 0.024641457945108414, 0.00014672378893010318, 0.07388658076524734, -0.08628984540700912, -0.026951845735311508, 0.09007605165243149, 0.05231219902634621, -0.14800812304019928, 0.06359276920557022, -0.04713018983602524, 0.025826292112469673, -0.07320202887058258, -0.07569645345211029, -0.07317369431257248, -0.046936001628637314, -0.05762707069516182, 0.11590932309627533, -0.14470942318439484, 0.08948163688182831, 0.13070501387119293, 0.023364072665572166, 0.08771540969610214, -0.02918846346437931, 0.20220030844211578, -0.0741504654288292, -0.010992320254445076, 0.17748519778251648, -0.04410402476787567, 0.09062933921813965, 0.07930151373147964, 0.03683330491185188, -0.06968646496534348, -0.016544748097658157, -0.05195244774222374, -0.10867027938365936, -0.20548702776432037, -0.08243849873542786, -0.135298952460289, 0.025750545784831047, -0.015917126089334488, 0.050561126321554184, 0.100987009704113, 0.050289757549762726, 0.05221550911664963, -0.06939227879047394, -0.04693610221147537, 0.03796180710196495, 0.19744795560836792, -0.027398552745580673, 0.06818733364343643, -0.06814339756965637, -0.07844175398349762, 0.11224529892206192, 0.04011155292391777, 0.1588401198387146, 0.07922294735908508, 0.004005948547273874, 0.06610811501741409, 0.16204719245433807, 0.13110379874706268, 0.1637434959411621, -0.031000612303614616, -0.04466547816991806, -0.021210649982094765, -0.014184569008648396, -0.03104240447282791, -0.00028230276075191796, 0.0952121689915657, -0.14171196520328522, -0.05996495112776756, -0.2332693189382553, 0.07400825619697571, 0.05208748206496239, 0.03713569790124893, -0.14532729983329773, -0.0026638945564627647, 0.04557324945926666, -0.0021796205546706915, -0.04091058671474457, 0.08834055066108704, 0.03592932969331741, -0.11631575971841812, 0.06910338252782822, -0.02974160760641098, 0.0975019708275795, 0.023169061169028282, 0.079803466796875, 0.0011110514169558883, -0.121381014585495, 0.04523578658699989, 0.05608227103948593, -0.2730547785758972, 0.2893122434616089, -0.006144280079752207, -0.08935476839542389, -0.049510009586811066, -0.05139350891113281, 0.0031436760909855366, 0.19751937687397003, 0.11028332263231277, 0.04492397606372833, 0.0065943836234509945, -0.13301721215248108, 0.06468524038791656, 0.0276307575404644, 0.1358376443386078, -0.021856248378753662, -0.04428038373589516, -0.002977613592520356, -0.02020835503935814, -0.003456852165982127, 0.06660448759794235, 0.05694156512618065, -0.10543699562549591, 0.050797540694475174, -0.01651599258184433, 0.013692216016352177, -0.013724102638661861, -0.013122821226716042, -0.07734047621488571, 0.11210741847753525, -0.036430828273296356, -0.060697879642248154, -0.11479295790195465, -0.1374426633119583, 0.11669386178255081, -0.10490847378969193, 0.07253468781709671, -0.07519256323575974, -0.0714644119143486, -0.061484601348638535, -0.21560710668563843, 0.13580256700515747, -0.10583362728357315, 0.021167749539017677, -0.027958912774920464, 0.21197853982448578, -0.06503500789403915, 0.0027526814956218004, -0.006710439920425415, -0.014438402839004993, -0.069017194211483, -0.0826200470328331, 0.012490025721490383, -0.057560428977012634, 0.03308288753032684, 0.030597379431128502, -0.04431882128119469, 0.06857766211032867, 0.017353011295199394, 0.02569381333887577, 0.20668646693229675, 0.18162654340267181, -0.04763133451342583, 0.11022300273180008, 0.1409776359796524, -0.011914649046957493, -0.2666119933128357, -0.056651242077350616, -0.15697816014289856, -0.05931984260678291, -0.014636700041592121, -0.12515892088413239, 0.11693833768367767, 0.023205595090985298, 0.0030687525868415833, 0.15040966868400574, -0.225942000746727, -0.051368411630392075, 0.15509754419326782, 0.019383756443858147, 0.4931022524833679, -0.11803363263607025, -0.0799175575375557, 0.04847966879606247, -0.2553592026233673, 0.12559255957603455, -0.00995383970439434, 0.04142092540860176, -0.01304638758301735, 0.07083501666784286, 0.039865460246801376, -0.0671933963894844, 0.08598122000694275, 0.02308056131005287, 0.02882605604827404, -0.07500572502613068, -0.12813256680965424, 0.0530896857380867, 0.002847570227459073, -0.01860470324754715, 0.08415020257234573, 0.028146645054221153, -0.13599777221679688, -0.01658465526998043, -0.1472906619310379, 0.05734759196639061, 0.031424615532159805, -0.05477670952677727, 0.0002404053957434371, -0.0159312654286623, -0.018032466992735863, -0.014838137663900852, 0.20452992618083954, -0.0369696281850338, 0.16031064093112946, 0.0263175331056118, 0.08635058254003525, -0.22505603730678558, -0.09437306225299835, -0.06945769488811493, -0.06295964866876602, 0.08038776367902756, -0.053197383880615234, 0.051097847521305084, 0.15070320665836334, -0.010119957849383354, 0.006317006889730692, 0.1209004744887352, -0.006425834260880947, -0.05379224568605423, 0.13409236073493958, -0.2388617843389511, -0.05733226612210274, -0.06723228842020035, -0.08154319226741791, 0.1348072737455368, 0.10607225447893143, 0.10901085287332535, 0.06253127753734589, -0.009943895973265171, -0.017554933205246925, -0.0547364167869091, -0.08226016163825989, 0.016598636284470558, 0.0830153301358223, 0.029149286448955536, -0.11218919605016708, 0.031105417758226395, -0.02270912006497383, -0.24229544401168823, -0.04770703241229057, 0.12124108523130417, -0.1440686583518982, -0.10000921785831451, -0.05721968784928322, 0.06645072996616364, -0.17137080430984497, -0.03509913757443428, -0.0070243640802800655, -0.10381218791007996, 0.07723966240882874, 0.31465718150138855, 0.08396455645561218, 0.11683455854654312, -0.0167145486921072, -0.007641023490577936, 0.049978017807006836, -0.06613322347402573, -0.018642107024788857, 0.014270046725869179, -0.10900071263313293, 0.053072962909936905, -0.03349626436829567, 0.17804639041423798, -0.09104074537754059, -0.05826505646109581, -0.18548564612865448, 0.06460312753915787, -0.09451226145029068, -0.11687987297773361, -0.08080396801233292, -0.06172075495123863, 0.018230628222227097, -0.11248873174190521, -0.027141671627759933, -0.02415466494858265, -0.14059622585773468, 0.07246477156877518, 0.05099467560648918, 0.005106923170387745, -0.054867133498191833, -0.04989868402481079, 0.12731413543224335, -0.04205090552568436, 0.10579812526702881, 0.17044131457805634, -0.09542867541313171, 0.1405068039894104, -0.1045435220003128, -0.14129304885864258, 0.10213664174079895, 0.0150831937789917, 0.09433972090482712, 0.10106483846902847, 0.0265190489590168, 0.05190939083695412, 0.013090653344988823, 0.055985353887081146, 0.0011948833707720041, -0.10529489070177078, 0.013797585852444172, 0.02987719140946865, -0.16431519389152527, -0.03550678491592407, -0.08069171756505966, 0.1489269882440567, 0.027673201635479927, 0.051411595195531845, 0.007484564557671547, 0.08624803274869919, -0.04316668212413788, -0.005373162683099508, 0.014731601811945438, -0.19331541657447815, 0.03463058918714523, -0.03904537484049797, 0.013399305753409863, -0.004958235193043947, 0.23115116357803345, -0.06519123166799545, 0.024806570261716843, 0.03763798624277115, 0.011734526604413986, 0.013801529072225094, 0.006582810077816248, 0.23132365942001343, 0.07284604012966156, -0.044500209391117096, -0.12237326055765152, 0.07745730131864548, -0.025972386822104454, -0.048311229795217514, 0.160067617893219, 0.0968691036105156, -0.0008779972558841109, 0.07346946746110916, 0.008684652857482433, 0.040117111057043076, -0.08351675420999527, -0.3068414330482483, 0.0005880663520656526, 0.05390188470482826, -0.0004080653307028115, 0.10278192162513733, 0.13547782599925995, -0.026782996952533722, 0.07586362957954407, -0.012287060730159283, -0.009930981323122978, -0.14092010259628296, -0.07998111099004745, -0.03860793635249138, -0.10701387375593185, 0.018636103719472885, -0.0728125274181366, 0.005572995636612177, 0.11933892220258713, 0.07146399468183517, -0.023640716448426247, 0.13026200234889984, 0.042568936944007874, -0.07072459161281586, 0.05669412389397621, 0.002766501856967807, 0.0237323846668005, 0.020365754142403603, -0.019074173644185066, -0.1444065123796463, -0.06695511937141418, -0.09343139082193375, 0.01841532252728939, -0.07946296036243439, -0.023484082892537117, -0.11396641284227371, -0.09364181011915207, -0.05636921897530556, 0.058891549706459045, -0.06462797522544861, 0.10763886570930481, -0.020995182916522026, 0.010001998394727707, 0.01356064435094595, 0.16561684012413025, -0.0702751949429512, -0.041890550404787064, -0.013677678070962429, 0.21981149911880493, 0.041018348187208176, 0.10365543514490128, 0.0075690425001084805, 0.028365202248096466, -0.08236732333898544, 0.34954604506492615, 0.24368152022361755, -0.04501981660723686, 0.05501217767596245, 0.06435660272836685, 0.05063075199723244, 0.12029954791069031, 0.14472532272338867, 0.10290328413248062, 0.3139810860157013, -0.07516738027334213, -0.04828411713242531, -0.027271248400211334, 0.0288124680519104, -0.08906130492687225, 0.06912975013256073, 0.06379225105047226, -0.06806012988090515, -0.06658823788166046, 0.1061929389834404, -0.15140506625175476, 0.073165163397789, 0.05098837986588478, -0.21422789990901947, -0.03925197571516037, -0.07931607216596603, 0.1121252253651619, -0.007558431010693312, 0.12036492675542831, -0.04320735111832619, -0.12715299427509308, 0.05067778378725052, 0.06094727665185928, -0.27958884835243225, -0.08152859658002853, 0.1255241334438324, 0.006790063809603453, -0.02103787660598755, -0.02455497533082962, 0.013413757085800171, 0.06418756395578384, 0.06180133670568466, -0.018241457641124725, 0.009386696852743626, 0.04159574583172798, -0.09160048514604568, -0.13200053572654724, -0.02173485793173313, 0.020955529063940048, -0.10396905988454819, 0.021776851266622543, -0.19205990433692932, 0.026144854724407196, 0.04638098180294037, -0.026866618543863297, -0.006248581223189831, 0.013403120450675488, -0.06592537462711334, 0.03365224227309227, 0.07499435544013977, 0.011214463040232658, -0.022642677649855614, -0.06710469722747803, -0.02193247713148594, 0.080978162586689, -0.09705041348934174, -0.14508993923664093, -0.004159168340265751, -0.0894705131649971, 0.07667975127696991, -0.0430147647857666, -0.05861308053135872, -0.019356386736035347, -0.04901138320565224, 0.07373028248548508, -0.13136449456214905, 0.051313236355781555, 0.027490707114338875, 0.05054324492812157, 0.02927270345389843, -0.008497674949467182, 0.04490219056606293, 0.05612283572554588, -0.1288987249135971, -0.05947105959057808 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-gpt2 Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-gpt2
[ "transformers", "pytorch", "tf", "gpt2", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #tf #gpt2 #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.03489702567458153, -0.021188847720623016, -0.008413724601268768, 0.009493514895439148, 0.16067612171173096, 0.04350156709551811, 0.03622197359800339, 0.1379895806312561, 0.015667220577597618, -0.024414019659161568, 0.11452130228281021, 0.18001049757003784, 0.003907693549990654, 0.013739313930273056, -0.06826436519622803, -0.2761639356613159, 0.059920743107795715, 0.08576636016368866, -0.06182254105806351, 0.1169091984629631, 0.0514913871884346, -0.03437412530183792, 0.09541764110326767, -0.03398064896464348, -0.16588252782821655, 0.02844986319541931, 0.04739190265536308, -0.1012825295329094, 0.12181203812360764, 0.06453141570091248, 0.08259084820747375, 0.015825951471924782, -0.11821311712265015, -0.12086669355630875, 0.03644178435206413, 0.05389263480901718, -0.0990571528673172, 0.044504258781671524, 0.09719318151473999, -0.1052640974521637, 0.15524336695671082, 0.05400000512599945, -0.06071038544178009, 0.04930275306105614, -0.17500047385692596, -0.1104203537106514, -0.02480817399919033, 0.0492040254175663, 0.006075836718082428, 0.0933508574962616, -0.0013089412823319435, 0.10918556898832321, -0.08557277917861938, 0.11486517637968063, 0.21218423545360565, -0.3336280882358551, -0.008280999958515167, 0.10872916132211685, 0.03501337021589279, 0.057528506964445114, -0.021136580035090446, 0.061493270099163055, 0.021543992683291435, 0.02918325364589691, 0.014372652396559715, -0.08155577629804611, -0.10618877410888672, 0.08262400329113007, -0.10454889386892319, -0.09818603098392487, 0.2180972695350647, -0.04899539053440094, 0.05137583613395691, 0.016807643696665764, -0.1301533281803131, -0.023711182177066803, -0.006293773651123047, 0.033233776688575745, -0.061614107340574265, 0.0912150964140892, 0.03110717050731182, -0.10060060024261475, -0.1203380674123764, -0.04768230393528938, -0.19539874792099, 0.22997860610485077, 0.024068597704172134, 0.08647554367780685, -0.21888215839862823, 0.10557865351438522, -0.0476018525660038, -0.07025192677974701, 0.01190347783267498, -0.11039187014102936, 0.03090471215546131, 0.024706948548555374, -0.06335801631212234, -0.043810442090034485, 0.08680126070976257, 0.07783453166484833, -0.08190710097551346, 0.014326061122119427, -0.05173860117793083, 0.0952160507440567, -0.0005488010356202722, 0.063149593770504, -0.0541498139500618, 0.0422932393848896, 0.033720340579748154, -0.17662198841571808, -0.02409031055867672, -0.06750428676605225, -0.12184775620698929, -0.08824428915977478, 0.044940173625946045, 0.08957917988300323, 0.007487763650715351, 0.08940491825342178, -0.01795271784067154, -0.03258451819419861, 0.0459880530834198, -0.06278913468122482, -0.0409906767308712, 0.017407022416591644, 0.01870553009212017, 0.17587882280349731, 0.00429866649210453, -0.022360526025295258, -0.1603153944015503, 0.029361972585320473, -0.07396674901247025, 0.00037281468394212425, -0.014238186180591583, -0.044821348041296005, 0.026207271963357925, -0.122909776866436, 0.011723407544195652, -0.15922850370407104, -0.16086038947105408, 0.04687940701842308, -0.004030365031212568, -0.01575235277414322, 0.004020885564386845, -0.006352339405566454, -0.07140949368476868, 0.015583692118525505, -0.058218613266944885, 0.00020203339227009565, -0.06520774960517883, 0.12584058940410614, -0.059944216161966324, 0.0640234723687172, -0.14597831666469574, 0.07580026984214783, -0.08319464325904846, 0.005461170803755522, -0.12652727961540222, 0.06918974965810776, 0.0104476073756814, 0.09297344088554382, -0.023339562118053436, -0.07425510883331299, -0.1362805962562561, 0.05049459636211395, -0.046022284775972366, 0.1804448515176773, -0.07368219643831253, -0.12179923802614212, 0.3093971610069275, -0.09073037654161453, -0.1645551323890686, 0.10213667899370193, 0.026867467910051346, -0.008785118348896503, 0.07355426251888275, 0.2192545235157013, 0.0481954962015152, -0.0048566339537501335, 0.07695271074771881, 0.1571372002363205, -0.14643655717372894, -0.09344271570444107, 0.026910725980997086, -0.03373101353645325, -0.12458974868059158, 0.02146776393055916, -0.004581359680742025, 0.08401618152856827, -0.05329624190926552, -0.0015817433595657349, -0.04600958898663521, 0.022523844614624977, 0.06819247454404831, 0.00837688334286213, 0.09570978581905365, -0.04337283968925476, -0.027956750243902206, -0.023892242461442947, -0.02103256806731224, -0.05527855083346367, 0.06617345660924911, -0.01637791283428669, 0.15976738929748535, -0.019164705649018288, 0.0523848757147789, -0.19008545577526093, -0.1005646213889122, -0.018755968660116196, 0.13654860854148865, -0.02743273787200451, 0.10238780081272125, 0.07024551928043365, -0.05264526605606079, -0.023079345002770424, 0.0033046589232981205, 0.1012713760137558, -0.0307946614921093, -0.009751718491315842, -0.04525696858763695, 0.05343129485845566, -0.053159307688474655, -0.0638224184513092, -0.040989115834236145, 0.019662410020828247, 0.13190628588199615, 0.10083112120628357, -0.000008412795978074428, 0.02903035841882229, -0.001301262411288917, 0.00023140413395594805, -0.044731855392456055, -0.02633880451321602, 0.09355220943689346, -0.008367802016437054, -0.0949106365442276, 0.2184341698884964, -0.12610572576522827, 0.2344386875629425, 0.20174719393253326, -0.2939556837081909, 0.02284141629934311, -0.06728050112724304, -0.037967078387737274, 0.04177270084619522, 0.07633811980485916, -0.05755497142672539, 0.13415877521038055, 0.0036737588234245777, 0.15727806091308594, -0.0907488688826561, -0.06603416800498962, 0.0018908868078142405, -0.010470892302691936, 0.0021860115230083466, 0.07785443961620331, 0.08766854554414749, -0.1289670467376709, 0.16844947636127472, 0.19062691926956177, 0.06287727504968643, 0.17421959340572357, -0.040417175740003586, -0.049862246960401535, 0.09436852484941483, 0.055832646787166595, -0.03747089207172394, -0.05808528885245323, -0.251475065946579, -0.005826941225677729, 0.08202244341373444, 0.06879114359617233, 0.1315613090991974, -0.13579341769218445, -0.056826602667570114, -0.019516384229063988, -0.06599477678537369, -0.04864497482776642, 0.09837005287408829, 0.06042110174894333, 0.13366849720478058, -0.0011837773490697145, 0.01721075177192688, 0.11138904094696045, 0.016374794766306877, -0.10566350072622299, 0.22137293219566345, -0.11158567667007446, -0.32954105734825134, -0.12645508348941803, -0.09543824940919876, -0.03319648280739784, 0.03884716331958771, 0.0996958464384079, -0.10575874894857407, 0.007261207327246666, 0.00971034076064825, 0.1360776722431183, -0.12406421452760696, 0.04280814528465271, -0.06302771717309952, 0.040112365037202835, -0.10484539717435837, -0.09311223030090332, -0.05292462557554245, -0.031192848458886147, -0.09294966608285904, 0.1476619839668274, -0.14985254406929016, 0.05241287499666214, 0.18622009456157684, 0.034491345286369324, 0.07764148712158203, -0.052032697945833206, 0.1927827000617981, -0.11054988205432892, -0.0013887243112549186, 0.21191880106925964, -0.02664117142558098, 0.08624618500471115, 0.04103571176528931, -0.0013806616188958287, -0.08897373080253601, -0.0012410798808559775, -0.02090088650584221, -0.11873076856136322, -0.24295486509799957, -0.09311395138502121, -0.13949880003929138, 0.07886340469121933, 0.01357286423444748, 0.06676700711250305, 0.13138525187969208, 0.055968742817640305, -0.025895679369568825, -0.004269619006663561, 0.021276842802762985, 0.06456270813941956, 0.16441674530506134, -0.013346541672945023, 0.08069853484630585, -0.0659722089767456, -0.08892574906349182, 0.11373142153024673, 0.06569572538137436, 0.18404090404510498, 0.00600465340539813, 0.04252307116985321, 0.04386763274669647, 0.06668388843536377, 0.11855259537696838, 0.13622236251831055, -0.026308320462703705, -0.010281819850206375, -0.032300304621458054, -0.03157389909029007, -0.014655929990112782, 0.013814114965498447, 0.013412623666226864, -0.16303402185440063, -0.06896327435970306, -0.14260178804397583, 0.11658075451850891, 0.08673720806837082, 0.060193195939064026, -0.19142693281173706, 0.0026083311531692743, 0.06716994196176529, -0.006922720931470394, -0.10718715190887451, 0.09647408127784729, 0.057432856410741806, -0.12047344446182251, 0.08055002242326736, -0.05173701047897339, 0.11755616217851639, -0.020123278722167015, 0.06886478513479233, -0.022307690232992172, -0.08292634785175323, 0.01194895338267088, 0.09985271096229553, -0.2736223340034485, 0.2327333241701126, -0.003919471986591816, -0.05608883872628212, -0.09086402505636215, -0.014196168631315231, 0.008876722306013107, 0.133252814412117, 0.143311008810997, 0.02823689579963684, 0.016125041991472244, -0.05434997007250786, 0.02592892199754715, 0.04675687476992607, 0.1487584114074707, -0.050048451870679855, -0.028424350544810295, -0.014777849428355694, -0.0033799041993916035, -0.022056899964809418, 0.0008911446784622967, 0.06117500364780426, -0.12796500325202942, 0.05712539330124855, 0.0004382053448352963, 0.05049702525138855, 0.008660669438540936, 0.008188686333596706, -0.09062360227108002, 0.1698286235332489, -0.09058831632137299, -0.1260618269443512, -0.11271292716264725, -0.06728818267583847, 0.08397217094898224, -0.06436518579721451, 0.049089979380369186, -0.0670454129576683, -0.00810396857559681, -0.05611783266067505, -0.24135182797908783, 0.11509864777326584, -0.08112652599811554, -0.02519191801548004, 0.011973943561315536, 0.23379455506801605, -0.07873651385307312, -0.0023746942169964314, 0.014185742475092411, -0.003998454660177231, -0.07553013414144516, -0.12395307421684265, 0.03005521558225155, -0.013571532443165779, 0.05886518210172653, 0.0807451456785202, -0.04827897250652313, 0.056730665266513824, -0.017020519822835922, 0.031716447323560715, 0.2846757471561432, 0.118344746530056, -0.03467092290520668, 0.14534851908683777, 0.08021072298288345, -0.056546907871961594, -0.2825585901737213, -0.04883657023310661, -0.1299365609884262, -0.05882938206195831, -0.08273155242204666, -0.18983472883701324, 0.07569646835327148, 0.041759658604860306, 0.02953329309821129, 0.17712783813476562, -0.29378557205200195, -0.05440058186650276, 0.09503355622291565, 0.013203556649386883, 0.3800232410430908, -0.13711227476596832, -0.10265026986598969, -0.0003089795645792037, -0.20444944500923157, 0.17078502476215363, -0.10143354535102844, 0.09444068372249603, -0.032962240278720856, 0.07278371602296829, 0.039555683732032776, -0.053237222135066986, 0.08306892961263657, 0.06471488624811172, 0.022632241249084473, -0.08420430123806, -0.02995374985039234, 0.06910613924264908, 0.019945189356803894, 0.024558212608098984, -0.004665408283472061, 0.04716692492365837, -0.14523212611675262, -0.03183489292860031, -0.12921024858951569, 0.04696199297904968, 0.04933355003595352, -0.07085876911878586, -0.019162002950906754, -0.04692349582910538, 0.004008008167147636, 0.00626700883731246, 0.1804223358631134, -0.056548550724983215, 0.14722932875156403, 0.049867793917655945, 0.08277390152215958, -0.15070435404777527, -0.05058727785944939, -0.0665200799703598, -0.03506699949502945, 0.09682730585336685, -0.14619098603725433, 0.05846933647990227, 0.11040246486663818, -0.023253200575709343, 0.03641175478696823, 0.13904738426208496, -0.003337281756103039, -0.018502013757824898, 0.12028279900550842, -0.25684329867362976, -0.059033166617155075, -0.09719091653823853, -0.10570159554481506, 0.1114061176776886, 0.11084268987178802, 0.1666247695684433, 0.033322129398584366, -0.013170252554118633, -0.013166965916752815, -0.010645024478435516, -0.05796729773283005, 0.02140110544860363, 0.036751072853803635, 0.02080395445227623, -0.1392669826745987, 0.08872292935848236, -0.025546375662088394, -0.16354751586914062, -0.0036485688760876656, 0.1489465981721878, -0.1487804800271988, -0.1090782880783081, -0.05245090648531914, 0.05260172858834267, -0.14119987189769745, -0.02737327292561531, -0.031168300658464432, -0.12051250785589218, 0.10071635991334915, 0.2208756059408188, 0.05731713026762009, 0.1214601919054985, -0.025135328993201256, -0.023888438940048218, -0.0020697200670838356, -0.060661543160676956, -0.028983423486351967, 0.0037429716903716326, -0.08444804698228836, 0.10455988347530365, -0.03530777245759964, 0.17432411015033722, -0.08425556123256683, -0.062097229063510895, -0.15271544456481934, 0.04473869502544403, -0.10487734526395798, -0.05802140757441521, -0.08279764652252197, -0.054068971425294876, -0.017931153997778893, -0.021816197782754898, -0.04226601868867874, -0.03177621215581894, -0.11940133571624756, 0.035762593150138855, -0.03624512627720833, 0.0000044892472033097874, -0.07822686433792114, -0.008130858652293682, 0.07598529756069183, -0.047080714255571365, 0.15586796402931213, 0.16447517275810242, -0.11342290788888931, 0.14240112900733948, -0.15547457337379456, -0.11466843634843826, 0.11025752127170563, 0.009400593116879463, 0.02679590694606304, 0.10574685037136078, 0.04906648024916649, 0.03826316446065903, -0.0009608428808860481, 0.05800119414925575, -0.025508766993880272, -0.1138070821762085, 0.028579633682966232, -0.05080884322524071, -0.11209703981876373, -0.056502871215343475, -0.03201378881931305, 0.07276902347803116, 0.056661613285541534, 0.047077856957912445, -0.016571518033742905, 0.09937570989131927, -0.0627935528755188, 0.007845757529139519, 0.030019480735063553, -0.17222076654434204, 0.009487118571996689, -0.05287862941622734, 0.034240782260894775, 0.005697670858353376, 0.24612757563591003, 0.003240124089643359, -0.0000047116745918174274, 0.011195522733032703, 0.061739444732666016, 0.04722452163696289, 0.0019528425764292479, 0.2544024884700775, 0.09195879846811295, -0.06597435474395752, -0.10087311267852783, 0.06348471343517303, 0.004198039881885052, 0.028411827981472015, 0.1989322304725647, 0.07132495194673538, -0.01306676585227251, 0.09669101238250732, -0.01271575503051281, 0.008003458380699158, -0.06787926703691483, -0.17312119901180267, 0.027301646769046783, 0.0649636760354042, 0.0007523694657720625, 0.09352727234363556, 0.15914402902126312, -0.03941015526652336, 0.06799253076314926, 0.030227158218622208, -0.05337119847536087, -0.1563500463962555, -0.13703039288520813, -0.04096251726150513, -0.1387273371219635, 0.014226924628019333, -0.13288220763206482, 0.031634628772735596, 0.11023227125406265, 0.0794668197631836, -0.03449437394738197, 0.12881116569042206, 0.0785941407084465, -0.12662018835544586, 0.10430245101451874, -0.02425536885857582, 0.0818149670958519, 0.0490107461810112, -0.023563196882605553, -0.04410858824849129, -0.044835299253463745, -0.022632470354437828, 0.05376069247722626, -0.018345661461353302, 0.024224866181612015, -0.1742192506790161, -0.08752273768186569, -0.048075608909130096, 0.07961082458496094, -0.05992849916219711, 0.12677152454853058, 0.021233459934592247, -0.04661720618605614, 0.039744388312101364, 0.2218700498342514, -0.06341630965471268, -0.0343608632683754, -0.026786193251609802, 0.19108696281909943, 0.04488668590784073, 0.08097406476736069, 0.0058216010220348835, -0.007969084195792675, -0.07486008107662201, 0.35050758719444275, 0.2649090886116028, -0.05943185091018677, 0.020924942567944527, 0.04757446050643921, 0.04616689682006836, 0.17558015882968903, 0.1421521008014679, 0.10855185985565186, 0.28797128796577454, -0.06282341480255127, -0.0778639018535614, -0.018448032438755035, 0.015638943761587143, -0.08710744976997375, 0.11595672369003296, 0.061118654906749725, -0.10757211595773697, -0.03261376544833183, 0.11667726933956146, -0.24067741632461548, 0.09084895998239517, -0.04029184579849243, -0.15861162543296814, -0.04687689244747162, -0.0382293276488781, 0.04658213630318642, 0.022295020520687103, 0.10569298267364502, -0.027507521212100983, -0.11809556931257248, 0.041439395397901535, 0.07011078298091888, -0.2756839692592621, -0.015716807916760445, 0.06702274084091187, -0.028723618015646935, -0.03268684819340706, -0.027876989915966988, 0.04934055730700493, 0.05993259325623512, 0.048332102596759796, -0.010699842125177383, 0.03473098203539848, 0.001072985352948308, -0.021076329052448273, -0.02882295474410057, 0.039843685925006866, 0.006304124370217323, -0.16685764491558075, 0.058570630848407745, -0.13670231401920319, 0.016933107748627663, 0.04119521379470825, -0.03239182010293007, -0.02068369835615158, -0.04429412633180618, -0.08292924612760544, 0.023400042206048965, 0.10071339458227158, 0.002968334825709462, -0.0003295268106739968, -0.09234271198511124, -0.031120190396904945, 0.0045846072025597095, -0.08683722466230392, -0.09343455731868744, -0.06546229124069214, -0.11298885941505432, 0.08883694559335709, -0.0281944889575243, -0.15394791960716248, 0.03175481781363487, -0.06910403072834015, 0.07504644989967346, -0.16566741466522217, 0.07923563569784164, 0.040940213948488235, 0.027956150472164154, 0.00828421302139759, 0.021880704909563065, 0.051552388817071915, 0.08202730119228363, -0.10438036173582077, -0.07357750833034515 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mbart Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-mbart
[ "transformers", "pytorch", "tf", "mbart", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #mbart #endpoints_compatible #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #mbart #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #tf #mbart #endpoints_compatible #region-us \n" ]
[ -0.06456893682479858, -0.07477530837059021, -0.009524213150143623, -0.012417823076248169, 0.13416165113449097, 0.0339563712477684, 0.01959824003279209, 0.08512365072965622, 0.10482505708932877, -0.0297844260931015, 0.09886941313743591, 0.2356390804052353, -0.043584153056144714, 0.0806826502084732, -0.07471432536840439, -0.2289649099111557, 0.06054437905550003, 0.0937415212392807, -0.10106192529201508, 0.11609440296888351, 0.05152088776230812, -0.06167814880609512, 0.06391438096761703, -0.0659891664981842, -0.15061046183109283, 0.05951346084475517, 0.04218115285038948, -0.0816730335354805, 0.11945047974586487, 0.051510054618120193, 0.15066146850585938, 0.04649171233177185, -0.1446717083454132, -0.12387886643409729, 0.03672172129154205, 0.02418832667171955, -0.08580213040113449, 0.028188584372401237, 0.03576912358403206, -0.10162831842899323, 0.06824073195457458, 0.04562045633792877, 0.01541212946176529, 0.046518560498952866, -0.17477189004421234, -0.1841687113046646, -0.05413515493273735, 0.044170670211315155, 0.023060064762830734, 0.058103643357753754, 0.03781527653336525, 0.2210395187139511, -0.15283335745334625, 0.12103721499443054, 0.1941811442375183, -0.31052497029304504, 0.009778172709047794, 0.12172362208366394, 0.05057230964303017, 0.0744752287864685, 0.010081340558826923, 0.04029024764895439, 0.004847714211791754, 0.037623368203639984, 0.01361402403563261, -0.08520661294460297, -0.018835728988051414, 0.08823580294847488, -0.11331350356340408, -0.08730747550725937, 0.2473210096359253, -0.0379280187189579, 0.0413055419921875, 0.06631812453269958, -0.10996561497449875, -0.04130882769823074, 0.0008337497711181641, 0.013739221729338169, -0.042972635477781296, 0.06290428340435028, -0.005922469776123762, -0.036201994866132736, -0.09603355079889297, 0.011492009274661541, -0.25476545095443726, 0.29711583256721497, 0.019054822623729706, 0.10529830306768417, -0.23983417451381683, 0.07333024591207504, -0.08190537989139557, -0.07172202318906784, 0.023346979171037674, -0.10804208368062973, -0.010226896032691002, -0.005463974084705114, -0.05630316212773323, 0.02276112325489521, 0.051506854593753815, 0.17852772772312164, 0.01624000072479248, 0.0341518335044384, -0.017010215669870377, 0.11048701405525208, -0.01015656441450119, 0.0620654858648777, -0.017893075942993164, -0.009481259621679783, 0.05953387916088104, -0.16890384256839752, -0.03165119141340256, -0.044887784868478775, -0.09354249387979507, -0.07550288736820221, 0.028106963261961937, 0.1207648292183876, 0.029514772817492485, 0.05683334171772003, -0.05983074754476547, -0.020880626514554024, 0.10677210241556168, -0.06337161362171173, -0.03274054452776909, -0.012420116923749447, 0.013136623427271843, 0.16137562692165375, 0.018132109194993973, -0.026210539042949677, -0.02326924167573452, 0.11366211622953415, -0.0681295394897461, -0.02596895769238472, -0.020797744393348694, -0.05099636688828468, 0.052827853709459305, -0.10392961651086807, 0.06114128977060318, -0.18975447118282318, -0.10468702763319016, 0.05599592998623848, 0.011907274834811687, 0.0166088305413723, 0.01495654322206974, 0.04692182317376137, -0.03552906587719917, -0.023441530764102936, -0.061552125960588455, -0.018548116087913513, -0.057903680950403214, 0.11117193847894669, -0.0028766298200935125, 0.06877698749303818, -0.14638790488243103, 0.057976625859737396, -0.07436316460371017, 0.028043143451213837, -0.1742599904537201, -0.010305377654731274, -0.04736832156777382, 0.18513338267803192, -0.016421297565102577, -0.06217009946703911, -0.16969195008277893, 0.033946868032217026, -0.0370386578142643, 0.13898691534996033, -0.07107274979352951, -0.12034841626882553, 0.26201874017715454, -0.10284342616796494, -0.18105322122573853, 0.058133892714977264, 0.021544041112065315, -0.005000303033739328, 0.06249439716339111, 0.16049176454544067, 0.07389840483665466, -0.07665681838989258, 0.11623150110244751, 0.12690606713294983, -0.18288320302963257, -0.15938293933868408, 0.028097260743379593, -0.015081699937582016, -0.15016092360019684, 0.02942350134253502, 0.015355688519775867, 0.12138714641332626, -0.0872146263718605, 0.004805503413081169, -0.0349908173084259, -0.02191379852592945, 0.06147007644176483, 0.04403156414628029, 0.07545653730630875, -0.07354722172021866, 0.022195208817720413, 0.027419643476605415, 0.00966428592801094, 0.047470852732658386, 0.04797893017530441, -0.04695518687367439, 0.11275550723075867, -0.05300324037671089, 0.011896313168108463, -0.19807466864585876, -0.0995296835899353, -0.006981140933930874, 0.10274092108011246, -0.007201278582215309, 0.16518919169902802, 0.11791124939918518, -0.08789891749620438, -0.010168584994971752, -0.02043287642300129, 0.1274229884147644, 0.02942853420972824, -0.0005911116022616625, -0.06144433468580246, 0.03095509484410286, -0.07457620650529861, -0.07234816998243332, -0.0007723223534412682, 0.013837041333317757, 0.154775932431221, 0.14848457276821136, 0.027413735166192055, 0.04220586270093918, -0.009359053336083889, 0.050083860754966736, -0.015364162623882294, -0.006358071696013212, 0.07224902510643005, -0.016101276502013206, -0.09737107157707214, 0.20018713176250458, -0.11888545751571655, 0.3836403489112854, 0.21055802702903748, -0.27057167887687683, -0.006314894184470177, -0.009823852218687534, -0.02667130157351494, 0.006928825285285711, 0.1327153444290161, -0.050273824483156204, 0.04965166747570038, 0.022286776453256607, 0.12011823058128357, -0.04735739156603813, -0.06962383538484573, 0.00826205499470234, -0.035025980323553085, -0.03668661043047905, 0.08411895483732224, 0.07188080251216888, -0.1901162713766098, 0.1555512696504593, 0.2612094283103943, 0.06024689972400665, 0.14503143727779388, -0.061365075409412384, -0.02103048749268055, 0.03836524114012718, 0.04001987725496292, -0.02700492925941944, 0.005590911954641342, -0.2237524688243866, -0.03388025611639023, 0.07823222875595093, 0.040387462824583054, 0.10384393483400345, -0.12325134873390198, -0.06546846777200699, 0.043519821017980576, 0.01479911059141159, -0.06621431559324265, 0.1308087557554245, 0.050458986312150955, 0.09709914773702621, 0.012472445145249367, -0.03504953905940056, 0.10590044409036636, 0.015055722557008266, -0.07112973928451538, 0.1549142450094223, -0.15205934643745422, -0.27784132957458496, -0.10475843399763107, -0.09640718251466751, 0.014506151899695396, -0.0024700078647583723, 0.07234705239534378, -0.07809019833803177, -0.02203293889760971, 0.08246766030788422, 0.08856644481420517, -0.11977525055408478, 0.057250045239925385, -0.04555080085992813, 0.04312990978360176, -0.07579179108142853, -0.08830759674310684, -0.06915406137704849, -0.036034226417541504, -0.06977856904268265, 0.11718129366636276, -0.160130113363266, 0.08804056793451309, 0.13309983909130096, 0.02676217071712017, 0.0897858515381813, -0.024975759908556938, 0.19385240972042084, -0.07896851003170013, -0.009505783207714558, 0.1826656013727188, -0.013071184977889061, 0.08834080398082733, 0.09429573267698288, 0.03953946754336357, -0.0665188729763031, -0.0054504480212926865, -0.060374971479177475, -0.1313103288412094, -0.19320939481258392, -0.09814046323299408, -0.15211258828639984, 0.018073156476020813, -0.022427987307310104, 0.059248462319374084, 0.11750930547714233, 0.04762831702828407, 0.034323882311582565, -0.06375116109848022, -0.01236693188548088, 0.0563209168612957, 0.14195474982261658, -0.012622369453310966, 0.08630286157131195, -0.082057423889637, -0.07116474956274033, 0.11861655116081238, 0.07946552336215973, 0.17399777472019196, 0.05211044102907181, 0.01435508206486702, 0.0762857049703598, 0.1595221757888794, 0.14851824939250946, 0.1668444275856018, -0.016719721257686615, -0.04321878030896187, -0.019201118499040604, -0.015845827758312225, -0.04669138789176941, 0.002217064844444394, 0.11861587315797806, -0.12449642270803452, -0.04466209560632706, -0.234188973903656, 0.08849558979272842, 0.04031745716929436, 0.01071435771882534, -0.15678700804710388, 0.008986935950815678, 0.041623275727033615, 0.011506425216794014, -0.021678773686289787, 0.08275751024484634, 0.018017122521996498, -0.11458868533372879, 0.07674790918827057, -0.028236236423254013, 0.1088528037071228, 0.02448420412838459, 0.05060255900025368, 0.0017811425495892763, -0.08589844405651093, 0.029968639835715294, 0.04970813915133476, -0.31285178661346436, 0.26437458395957947, -0.010156835429370403, -0.0856465995311737, -0.05668528378009796, -0.045330651104450226, 0.011471547186374664, 0.19380095601081848, 0.07428187876939774, 0.049826327711343765, -0.02750905603170395, -0.1345585286617279, 0.049634240567684174, 0.010439364239573479, 0.11881580948829651, -0.026688264682888985, -0.05126165598630905, -0.001631272374652326, -0.028574520722031593, -0.016246935352683067, 0.035280704498291016, 0.05795930325984955, -0.10036302357912064, 0.0573619045317173, -0.0005023258272558451, -0.038242943584918976, -0.022983727976679802, 0.0008298427565023303, -0.042343176901340485, 0.11343502253293991, -0.032018452882766724, -0.06797553598880768, -0.1190560832619667, -0.17305625975131989, 0.1351882815361023, -0.09969118982553482, 0.08138243108987808, -0.07631725817918777, -0.07035931944847107, -0.07184012234210968, -0.2317347377538681, 0.13863636553287506, -0.11211688816547394, 0.01912928745150566, -0.018941186368465424, 0.2176593691110611, -0.09238123148679733, -0.006303578615188599, -0.022527821362018585, -0.013962771743535995, -0.08287876099348068, -0.08820978552103043, 0.00371677172370255, -0.01772797480225563, 0.018098708242177963, 0.09477871656417847, -0.009395034052431583, 0.061077117919921875, 0.018574504181742668, 0.0201284047216177, 0.18363802134990692, 0.19275327026844025, -0.048461005091667175, 0.1202712133526802, 0.12240265309810638, 0.00045300539932213724, -0.26609545946121216, -0.04319830238819122, -0.16646841168403625, -0.06660575419664383, -0.01384734082967043, -0.09146302938461304, 0.07438847422599792, 0.026571109890937805, -0.00386485131457448, 0.16166241466999054, -0.2574669122695923, -0.054539017379283905, 0.12611240148544312, 0.027375945821404457, 0.4646010994911194, -0.12431973218917847, -0.08252031356096268, 0.030309822410345078, -0.2862806022167206, 0.09563321620225906, -0.03139045834541321, 0.04582489654421806, -0.022244121879339218, 0.08634933829307556, 0.03760192543268204, -0.0852784812450409, 0.09749612212181091, 0.026463929563760757, 0.03919832035899162, -0.09329673647880554, -0.07774610817432404, 0.046987827867269516, -0.0009397345129400492, 0.0024996467400342226, 0.046049464493989944, 0.03722894564270973, -0.11897725611925125, -0.01727394387125969, -0.1471419483423233, 0.05614778399467468, 0.03539527952671051, -0.044364046305418015, -0.004378759767860174, -0.01894380897283554, -0.03240154683589935, -0.012343773618340492, 0.18923181295394897, -0.0416354238986969, 0.15002863109111786, 0.05257423594594002, 0.06773830950260162, -0.20959365367889404, -0.09379687905311584, -0.05606233328580856, -0.05453796684741974, 0.08025746047496796, -0.08844742923974991, 0.06492271274328232, 0.13572028279304504, -0.015037165023386478, 0.012859464623034, 0.11853323876857758, -0.0211745984852314, -0.05246669426560402, 0.1444488912820816, -0.21584457159042358, -0.02327559143304825, -0.05148855224251747, -0.026652349159121513, 0.1634669452905655, 0.12579701840877533, 0.11197976022958755, 0.05647910758852959, -0.0118709122762084, -0.017669955268502235, -0.04442784935235977, -0.09754212945699692, 0.04101686179637909, 0.08015503734350204, 0.040362805128097534, -0.13233742117881775, 0.05201089754700661, -0.022548282518982887, -0.1924661248922348, -0.05602937564253807, 0.1333654671907425, -0.14898650348186493, -0.10294466465711594, -0.04902070388197899, 0.06460864841938019, -0.14823146164417267, -0.02623373083770275, -0.019144892692565918, -0.09329804033041, 0.07833294570446014, 0.28693026304244995, 0.07699982076883316, 0.11608177423477173, -0.010996848344802856, -0.010548418387770653, 0.01926330290734768, -0.08068118989467621, -0.01792111061513424, 0.03861549124121666, -0.10417257994413376, 0.056928087025880814, -0.03169792518019676, 0.16614772379398346, -0.08822060376405716, -0.05023704841732979, -0.1776847541332245, 0.07721658051013947, -0.08174711465835571, -0.11175697296857834, -0.10259812325239182, -0.05300334095954895, 0.017475340515375137, -0.11469502747058868, -0.0342857800424099, -0.011611263267695904, -0.1449931114912033, 0.06211003288626671, 0.03228423744440079, -0.016709614545106888, -0.04760240018367767, -0.052484236657619476, 0.1232205182313919, -0.043721526861190796, 0.10239645093679428, 0.1786084622144699, -0.09357335418462753, 0.12300863862037659, -0.08176255226135254, -0.13253583014011383, 0.09955397993326187, 0.008677161298692226, 0.08591973036527634, 0.09760512411594391, 0.034256257116794586, 0.052482400089502335, 0.01535513810813427, 0.0521329827606678, -0.0006830461788922548, -0.11346331983804703, 0.017566382884979248, 0.012234595604240894, -0.14767470955848694, -0.03755607828497887, -0.07465135306119919, 0.15481306612491608, 0.04873434826731682, 0.04167317599058151, 0.016865873709321022, 0.0834844708442688, -0.04721922427415848, -0.022484159097075462, 0.0036841975525021553, -0.20052334666252136, 0.051850322633981705, -0.0281407218426466, 0.017399867996573448, -0.004258945118635893, 0.2533140182495117, -0.057211607694625854, -0.01027614064514637, 0.0214715376496315, 0.037279896438121796, 0.04041481763124466, 0.00520883547142148, 0.22171419858932495, 0.06511621177196503, -0.030354944989085197, -0.1168709397315979, 0.08406734466552734, -0.03338547796010971, -0.08822547644376755, 0.1414126455783844, 0.12642709910869598, 0.024418018758296967, 0.05951926112174988, 0.03305152803659439, 0.038792796432971954, -0.06794820725917816, -0.30766475200653076, 0.0010231002233922482, 0.030453352257609367, -0.006136205978691578, 0.06698343902826309, 0.15024271607398987, -0.022746585309505463, 0.08283016830682755, 0.0038654881063848734, -0.006951900664716959, -0.13824428617954254, -0.08199865370988846, -0.03872791305184364, -0.12193863838911057, 0.017036864534020424, -0.06522074341773987, 0.004055017605423927, 0.10703705251216888, 0.06506915390491486, -0.012751099653542042, 0.12739121913909912, 0.041795533150434494, -0.06975753605365753, 0.04328120872378349, -0.010584351606667042, 0.006465231999754906, 0.046131763607263565, -0.018934402614831924, -0.12023679912090302, -0.07863546162843704, -0.07454770058393478, 0.01752769947052002, -0.09849810600280762, -0.007071657571941614, -0.12117929756641388, -0.09589756280183792, -0.053669482469558716, 0.057946156710386276, -0.06944280862808228, 0.10948864370584488, -0.010684927925467491, 0.0035702146124094725, 0.017260076478123665, 0.19232606887817383, -0.06131833419203758, -0.0712035670876503, -0.018825270235538483, 0.19418910145759583, 0.052985481917858124, 0.09115254133939743, -0.005331114865839481, 0.025707656517624855, -0.08035911619663239, 0.3293799161911011, 0.2605923116207123, -0.02970457635819912, 0.06518419086933136, 0.06558466702699661, 0.04794975370168686, 0.11188957840204239, 0.15558390319347382, 0.10754528641700745, 0.28312215209007263, -0.05734492093324661, -0.037052642554044724, -0.02710878849029541, 0.010839243419468403, -0.08094654977321625, 0.04364306852221489, 0.0428190678358078, -0.08233459293842316, -0.061874911189079285, 0.10246133804321289, -0.14915767312049866, 0.0854853093624115, 0.02538764476776123, -0.2282799780368805, -0.04291364550590515, -0.0907200276851654, 0.13323356211185455, -0.009135873056948185, 0.10002801567316055, -0.041535623371601105, -0.1227584183216095, 0.026812031865119934, 0.05316158011555672, -0.2794167995452881, -0.10739845037460327, 0.10804632306098938, 0.00925779901444912, -0.04347698763012886, -0.04543264955282211, 0.01754285767674446, 0.07163307815790176, 0.05819232761859894, -0.020313194021582603, 0.04194854199886322, 0.030610593035817146, -0.0705750361084938, -0.12239182740449905, 0.018700579181313515, 0.0022185659036040306, -0.10376570373773575, 0.026222864165902138, -0.22273202240467072, 0.01993497833609581, -0.0008098430116660893, -0.004710426088422537, -0.013786226511001587, 0.006049289833754301, -0.0490155853331089, 0.041194040328264236, 0.06381761282682419, 0.00445429515093565, 0.0009867548942565918, -0.06929299235343933, -0.018203523010015488, 0.07345103472471237, -0.05711933225393295, -0.14900602400302887, -0.02144867740571499, -0.09440513700246811, 0.06916357576847076, -0.023310741409659386, -0.06605372577905655, -0.030845381319522858, -0.06827660650014877, 0.04181195795536041, -0.12119058519601822, 0.07513443380594254, 0.032659634947776794, 0.0559702143073082, 0.02611793763935566, -0.06573541462421417, 0.040550556033849716, 0.07133708894252777, -0.14315378665924072, -0.06362609565258026 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mpnet Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-mpnet
[ "transformers", "pytorch", "tf", "mpnet", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #mpnet #endpoints_compatible #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #mpnet #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #tf #mpnet #endpoints_compatible #region-us \n" ]
[ -0.05588984489440918, -0.0039598518051207066, -0.007920208387076855, -0.032861266285181046, 0.12064072489738464, 0.01309424452483654, 0.042796675115823746, 0.08287813514471054, -0.01781487837433815, -0.058267224580049515, 0.107779361307621, 0.20413866639137268, -0.04430330917239189, 0.029402533546090126, -0.04511633887887001, -0.2219637632369995, 0.09805525839328766, 0.10290592163801193, -0.14353257417678833, 0.1069713905453682, 0.08096170425415039, -0.028399355709552765, 0.08311422169208527, -0.03353789076209068, -0.12388011068105698, 0.04727168008685112, 0.03937068209052086, -0.07274723798036575, 0.10194554179906845, 0.051719971001148224, 0.13049085438251495, -0.015616721473634243, -0.13053952157497406, -0.14201699197292328, 0.022840149700641632, 0.07462245970964432, -0.08865898102521896, 0.024810558184981346, 0.05435775965452194, -0.03462718054652214, 0.1342765986919403, 0.06954050064086914, -0.010983421467244625, 0.03542622923851013, -0.0877474695444107, -0.1360977739095688, -0.0033410489559173584, 0.0727611631155014, -0.008489188738167286, 0.12440076470375061, 0.05088629946112633, 0.3290618658065796, -0.16950857639312744, 0.13635244965553284, 0.17167063057422638, -0.31747475266456604, -0.0007996758795343339, 0.18322980403900146, 0.0699356272816658, 0.07165078818798065, 0.021555017679929733, 0.008623091503977776, 0.0012352793710306287, 0.036771271377801895, -0.00486011290922761, -0.05378148704767227, -0.07133223861455917, 0.05732054263353348, -0.12644585967063904, -0.07555726170539856, 0.24607646465301514, -0.01817728579044342, 0.10190171748399734, 0.043868765234947205, -0.15022344887256622, -0.056044481694698334, 0.013935527764260769, 0.011943887919187546, -0.028324062004685402, 0.07230667769908905, 0.020090730860829353, -0.019102241843938828, -0.08897848427295685, 0.025604350492358208, -0.23632197082042694, 0.23121191561222076, 0.04808124527335167, 0.12513132393360138, -0.22935867309570312, 0.042488958686590195, -0.030506430193781853, -0.053729135543107986, 0.040785565972328186, -0.12549825012683868, 0.019498363137245178, 0.016645951196551323, -0.06602983921766281, -0.028988052159547806, 0.08956704288721085, 0.11488992720842361, -0.006075102370232344, 0.02380405366420746, -0.00854920782148838, 0.12021278589963913, -0.0034290251787751913, -0.00039360340451821685, -0.09856931865215302, 0.014959742315113544, 0.05190693214535713, -0.1840800940990448, -0.017097560688853264, -0.03961766138672829, -0.06899458169937134, -0.03279665857553482, 0.027933189645409584, 0.09262397140264511, 0.05014524981379509, 0.07734911143779755, -0.02075636386871338, -0.039505552500486374, 0.11139581352472305, -0.05332181975245476, -0.023430000990629196, 0.0014666609931737185, -0.006096378434449434, 0.18527953326702118, 0.030368946492671967, -0.0004891243879683316, -0.10819382965564728, 0.09138122946023941, -0.07300829887390137, -0.013431305065751076, -0.009782012552022934, -0.06453682482242584, 0.08357095718383789, -0.08646374195814133, 0.031912725418806076, -0.2070039063692093, -0.001877324772067368, 0.036615218967199326, 0.05739421397447586, 0.05137168988585472, 0.007073923479765654, 0.05509528890252113, -0.09284836053848267, -0.03761635348200798, -0.05497249960899353, -0.03245000168681145, -0.07979084551334381, 0.07012134790420532, -0.07605640590190887, 0.05406784266233444, -0.1295919418334961, 0.044166404753923416, -0.06861279159784317, -0.011518745683133602, -0.14637453854084015, -0.023195946589112282, -0.09365212172269821, 0.15896578133106232, 0.0021623733919113874, -0.08554152399301529, -0.13621431589126587, 0.0061493185348808765, -0.057918939739465714, 0.11359858512878418, -0.013724691234529018, -0.09814286977052689, 0.24490466713905334, -0.13284167647361755, -0.18270371854305267, 0.07206086069345474, 0.03983572870492935, -0.06340070068836212, 0.049783628433942795, 0.14730025827884674, 0.12695786356925964, -0.11580828577280045, 0.08651963621377945, 0.15376882255077362, -0.2075459212064743, -0.19870023429393768, 0.0042591337114572525, 0.01041689794510603, -0.08169486373662949, -0.004723200108855963, -0.02032713033258915, 0.12539122998714447, -0.09133295714855194, -0.02403983846306801, -0.03152758628129959, -0.04502664878964424, 0.028584742918610573, 0.057789117097854614, 0.0753912478685379, -0.056045159697532654, 0.024305369704961777, 0.007310898043215275, 0.03256300091743469, 0.010974210686981678, 0.08610053360462189, -0.06656970083713531, 0.038838885724544525, -0.008141407743096352, 0.021862365305423737, -0.19182167947292328, -0.1556045413017273, -0.010410839691758156, 0.05076200142502785, -0.031227480620145798, 0.14926747977733612, 0.09654636681079865, -0.08032485097646713, 0.0015618859324604273, 0.003991700243204832, 0.12506671249866486, 0.0509316511452198, 0.004736345261335373, -0.09824150800704956, 0.031453803181648254, -0.04800374433398247, -0.06987368315458298, -0.005611595697700977, 0.004872527904808521, 0.10220988839864731, 0.181165412068367, 0.008909431286156178, 0.029233289882540703, -0.02340095303952694, 0.013932716101408005, -0.04305889457464218, -0.016486620530486107, 0.06395240873098373, 0.0007591992616653442, -0.06445571035146713, 0.20519131422042847, -0.06721046566963196, 0.40082913637161255, 0.22545984387397766, -0.3167949318885803, 0.0228959359228611, 0.05840495973825455, -0.03191586211323738, -0.016809871420264244, 0.12378226220607758, -0.031136728823184967, -0.0071802157908678055, 0.015531575307250023, 0.12251891195774078, -0.06568767130374908, -0.0557744987308979, 0.024853533133864403, -0.05505196750164032, -0.005401281174272299, 0.06272859871387482, 0.08707647770643234, -0.18560631573200226, 0.16292153298854828, 0.17788155376911163, 0.02290925197303295, 0.12071866542100906, -0.06881089508533478, -0.016484923660755157, 0.06732995063066483, 0.048969611525535583, -0.029295556247234344, -0.025926116853952408, -0.2686016857624054, -0.024021951481699944, 0.06990521401166916, 0.07267318665981293, 0.11760776489973068, -0.11490166932344437, -0.05271013081073761, 0.02433132380247116, -0.002859278116375208, -0.036195892840623856, 0.08388455957174301, 0.03672383353114128, 0.09631308168172836, -0.005651440471410751, -0.11113610118627548, 0.11282862722873688, -0.018731698393821716, -0.0873217061161995, 0.1629277914762497, -0.1652224212884903, -0.2888074815273285, -0.07012806832790375, -0.11458280682563782, -0.06098715215921402, -0.00735051603987813, 0.0403008759021759, -0.09588675945997238, -0.02697848528623581, 0.042223259806632996, 0.00226122816093266, -0.09517432004213333, 0.06410841643810272, -0.017471952363848686, 0.07718106359243393, -0.02732408605515957, -0.12218240648508072, -0.02715255878865719, -0.04874025657773018, -0.034056201577186584, 0.11435560137033463, -0.15589606761932373, 0.08673058450222015, 0.173556387424469, 0.015256620943546295, 0.08157908171415329, 0.022411974146962166, 0.1765786111354828, -0.05059191584587097, -0.015229465439915657, 0.15939952433109283, -0.01656309887766838, 0.08727294951677322, 0.07327380776405334, 0.04039797559380531, -0.04862486571073532, 0.012799697928130627, -0.03394076228141785, -0.11038371920585632, -0.22773896157741547, -0.15388761460781097, -0.1250171661376953, 0.03499956801533699, -0.01925504207611084, 0.08710910379886627, 0.10854276269674301, 0.034398533403873444, 0.034830112010240555, -0.11644984781742096, 0.02410370297729969, 0.050682537257671356, 0.15194866061210632, -0.019579296931624413, 0.07736506313085556, -0.09761375188827515, -0.07548794895410538, 0.10539579391479492, 0.050105780363082886, 0.16630424559116364, 0.03527555614709854, -0.020552176982164383, 0.07007195800542831, 0.2151942104101181, 0.12278646230697632, 0.1611877828836441, 0.010597983375191689, -0.049184806644916534, 0.028862226754426956, -0.01475356426090002, -0.025494391098618507, -0.00027643408975563943, 0.07160409539937973, -0.16258125007152557, 0.00531117245554924, -0.1601206511259079, 0.07618743926286697, 0.09673203527927399, 0.024138949811458588, -0.18525253236293793, 0.04259921610355377, -0.014721913263201714, -0.049708042293787, -0.032799914479255676, 0.09550724923610687, 0.04633054509758949, -0.10779866576194763, 0.09534405916929245, -0.02821381203830242, 0.0967772826552391, -0.0017811910947784781, 0.038460079580545425, 0.06411679834127426, -0.11934413015842438, 0.05815881863236427, 0.06302051991224289, -0.21125581860542297, 0.22582803666591644, -0.04735349118709564, -0.08310287445783615, -0.08318885415792465, -0.055833812803030014, 0.005734261125326157, 0.22591815888881683, 0.06116878613829613, 0.07601124048233032, 0.09044129401445389, -0.07444240152835846, 0.0064210109412670135, 0.015706878155469894, 0.13207589089870453, 0.047200608998537064, -0.06716345250606537, 0.00549475708976388, -0.04816298931837082, 0.011221889406442642, 0.018093321472406387, 0.07255738228559494, -0.07386580109596252, 0.03318009153008461, 0.08830510079860687, 0.0028341326396912336, -0.0093421945348382, -0.012961476109921932, -0.09182700514793396, 0.20648497343063354, -0.043459463864564896, -0.0888129323720932, -0.06783238053321838, -0.19838126003742218, 0.12112719565629959, -0.05938684567809105, 0.09614229202270508, -0.06903998553752899, -0.028845369815826416, -0.055111829191446304, -0.23982366919517517, 0.14325296878814697, -0.14475250244140625, 0.03186170384287834, -0.011080346070230007, 0.21173742413520813, -0.04895283281803131, -0.01555263064801693, -0.021245818585157394, -0.041054826229810715, -0.08978045731782913, -0.10920549184083939, -0.08104383200407028, 0.019172677770256996, 0.01786515675485134, 0.11614540964365005, -0.0012166346423327923, 0.03518317639827728, 0.030043382197618484, 0.030187679454684258, 0.21425163745880127, 0.13184373080730438, -0.05182700976729393, 0.0833962932229042, 0.14828501641750336, 0.01883857697248459, -0.29763805866241455, -0.07308454066514969, -0.11345271021127701, -0.12356535345315933, -0.03579004853963852, -0.0581178218126297, 0.14610125124454498, 0.03219633921980858, -0.00887590553611517, 0.1470165252685547, -0.276049941778183, -0.0380106121301651, 0.11104036122560501, -0.004477963782846928, 0.37786728143692017, -0.10627431422472, -0.050947919487953186, 0.009245237335562706, -0.2673071026802063, 0.14959397912025452, -0.08355499058961868, 0.053553227335214615, 0.023349402472376823, 0.037036117166280746, 0.00870346836745739, -0.09613200277090073, 0.06685470044612885, 0.06732525676488876, 0.022744067013263702, -0.08852678537368774, 0.00005362495357985608, 0.1025189608335495, 0.021985160186886787, 0.0466698594391346, 0.09076453745365143, 0.02021499164402485, -0.13425549864768982, -0.005197491496801376, -0.1624520868062973, 0.03409876301884651, 0.05159442871809006, -0.03948115557432175, -0.04186200350522995, -0.022005995735526085, 0.03616824001073837, 0.01054003182798624, 0.21252502501010895, -0.0019132379675284028, 0.12222950160503387, 0.16087596118450165, 0.068271204829216, -0.26875367760658264, -0.13556654751300812, -0.0407390370965004, -0.048582904040813446, 0.10232165455818176, -0.0599684976041317, 0.06595560908317566, 0.1311795860528946, -0.04394996538758278, -0.042644698172807693, 0.11302214115858078, -0.038946665823459625, -0.10985712707042694, 0.12865450978279114, -0.20440147817134857, 0.013384844176471233, -0.03880918398499489, -0.031161237508058548, 0.13692471385002136, 0.16013899445533752, 0.12710295617580414, 0.0057157170958817005, 0.0149712935090065, 0.0013463045470416546, -0.031053729355335236, -0.1241345927119255, 0.0618785060942173, 0.09570744633674622, 0.029007969424128532, -0.14470280706882477, 0.10702469944953918, -0.049207545816898346, -0.18511182069778442, -0.061319973319768906, 0.1602562665939331, -0.18936596810817719, -0.11119908094406128, -0.030756335705518723, 0.007023124489933252, -0.16586889326572418, -0.07999534904956818, -0.002731160493567586, -0.09118815511465073, 0.10111392289400101, 0.19441373646259308, 0.09498465806245804, 0.12255042791366577, -0.004110940266400576, -0.026321548968553543, -0.01759675331413746, -0.10716748982667923, -0.008438470773398876, 0.025473225861787796, -0.15438102185726166, 0.039066705852746964, -0.009197723120450974, 0.16373054683208466, -0.09153752028942108, -0.03369081765413284, -0.12296682596206665, 0.09604185074567795, -0.057299669831991196, -0.11801032721996307, -0.10534932464361191, -0.042127564549446106, 0.004484560340642929, -0.08267476409673691, -0.03588512912392616, 0.01693464256823063, -0.11238852143287659, 0.03348655626177788, 0.013450918719172478, -0.06908879429101944, -0.06746941059827805, -0.03199369087815285, 0.08616650849580765, -0.03750094398856163, 0.10348107665777206, 0.16391849517822266, -0.1283746361732483, 0.08935660868883133, -0.056888263672590256, -0.1478690207004547, 0.13781985640525818, 0.03152990713715553, 0.06409882754087448, 0.07967899739742279, 0.029568733647465706, 0.09553956240415573, 0.020474698394536972, 0.050262611359357834, 0.017998117953538895, -0.10787758976221085, -0.003286071354523301, -0.05775192379951477, -0.10824570804834366, -0.025935791432857513, -0.11170279234647751, 0.17083512246608734, 0.049220435321331024, 0.0999860167503357, 0.03917050361633301, 0.0723903700709343, -0.0305563323199749, -0.01321721263229847, 0.020050354301929474, -0.18948598206043243, 0.09071889519691467, 0.019973933696746826, -0.002188136102631688, -0.052172306925058365, 0.2597348690032959, -0.0491102859377861, -0.05645611137151718, 0.0400233194231987, 0.029799601063132286, -0.033538322895765305, 0.010338149964809418, 0.2130807489156723, 0.0753084272146225, -0.03517456352710724, -0.09160762280225754, 0.04885334521532059, -0.012696203775703907, -0.07191071659326553, 0.11405962705612183, 0.09117263555526733, 0.03467971831560135, 0.05702957138419151, 0.05903398245573044, 0.0388694703578949, -0.12689976394176483, -0.26210224628448486, -0.03911373019218445, 0.06435763835906982, 0.0015971761895343661, 0.019538594409823418, 0.15228164196014404, 0.011814702302217484, 0.04589728266000748, 0.009293527342379093, -0.022248469293117523, -0.1409791260957718, -0.11490495502948761, -0.03397378325462341, -0.16267108917236328, 0.003943136427551508, -0.07176928222179413, -0.008079469203948975, 0.14373351633548737, 0.10505685210227966, -0.029359379783272743, 0.15046799182891846, 0.001864396734163165, -0.09046946465969086, 0.03800148516893387, -0.0008571551879867911, 0.011518336832523346, 0.08249307423830032, -0.013746939599514008, -0.09820631891489029, -0.06328132003545761, -0.05615819990634918, 0.033593546599149704, -0.06689365208148956, 0.06498592346906662, -0.11260344833135605, -0.08907514810562134, -0.06615711003541946, 0.057539209723472595, -0.08444900065660477, 0.1447383165359497, -0.008424499072134495, -0.0017890180461108685, 0.029901770874857903, 0.15413342416286469, -0.0985504761338234, -0.14891895651817322, -0.0424819216132164, 0.19443464279174805, 0.04429808259010315, 0.10342278331518173, -0.027894888073205948, 0.02225693315267563, -0.14382264018058777, 0.34634724259376526, 0.32492145895957947, -0.043455976992845535, 0.057342298328876495, 0.06966358423233032, 0.04097915440797806, 0.07296128571033478, 0.13540644943714142, 0.16955025494098663, 0.3038756549358368, -0.04763762280344963, -0.01832793653011322, -0.04667884483933449, 0.023396367207169533, -0.14479351043701172, -0.03268458694219589, 0.06266659498214722, -0.10129278153181076, -0.05425725132226944, 0.10771823674440384, -0.1951032429933548, 0.1284010261297226, 0.03561219945549965, -0.1726343035697937, -0.025836525484919548, -0.0664210319519043, 0.11258262395858765, -0.0027099433355033398, 0.09391544759273529, -0.02776833437383175, -0.10151156783103943, 0.026789000257849693, 0.039524830877780914, -0.2709296941757202, -0.1258201003074646, 0.08723197132349014, 0.002342495135962963, -0.032014865428209305, -0.017553064972162247, 0.06878726929426193, 0.04626213759183884, 0.040861763060092926, -0.035927243530750275, 0.06219378486275673, 0.02418755553662777, -0.1109866201877594, -0.13087712228298187, -0.044196534901857376, -0.006471238099038601, -0.05989507585763931, -0.004766522906720638, -0.18259155750274658, -0.011606594547629356, 0.028638197109103203, 0.06318861246109009, -0.035801298916339874, -0.019884146749973297, -0.054208725690841675, 0.05405354127287865, 0.05025211349129677, -0.008530139923095703, 0.006872155703604221, -0.08099401742219925, -0.057106226682662964, 0.04184878244996071, -0.13446347415447235, -0.11139515787363052, -0.0863112360239029, -0.08651722967624664, 0.012481183744966984, 0.01925559528172016, 0.02356692962348461, -0.004674886353313923, -0.0714116171002388, 0.02319597639143467, -0.11449816823005676, 0.03100953996181488, 0.018819572404026985, 0.04330410435795784, 0.020304519683122635, 0.042115505784749985, 0.05427849665284157, 0.06072339415550232, -0.13074876368045807, -0.11377722024917603 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-t5 Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-t5
[ "transformers", "pytorch", "tf", "t5", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 36 ]
[ "passage: TAGS\n#transformers #pytorch #tf #t5 #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.025556957349181175, -0.0498620942234993, -0.008333464153110981, 0.010163254104554653, 0.183905690908432, 0.03552944213151932, 0.039415545761585236, 0.12809817492961884, 0.01607143133878708, -0.02768528461456299, 0.09202709048986435, 0.19759666919708252, -0.0035786456428468227, 0.01268537063151598, -0.0913139060139656, -0.2645035982131958, 0.054143406450748444, 0.08283011615276337, -0.04624253511428833, 0.11434551328420639, 0.054158348590135574, -0.04942338541150093, 0.09364448487758636, -0.05604283884167671, -0.1655803918838501, 0.058924756944179535, 0.0491061694920063, -0.10711944103240967, 0.11764702945947647, 0.0500960648059845, 0.10325215011835098, 0.026904484257102013, -0.11717313528060913, -0.13344383239746094, 0.04001658037304878, 0.05723687261343002, -0.1079133003950119, 0.035551518201828, 0.10698103904724121, -0.10631267726421356, 0.13939082622528076, 0.032482124865055084, -0.04715101793408394, 0.06392045319080353, -0.16369040310382843, -0.08227093517780304, -0.004003955516964197, 0.04288163036108017, 0.012633047997951508, 0.10157470405101776, -0.0018055500695481896, 0.11236900091171265, -0.1049252599477768, 0.14271435141563416, 0.20536589622497559, -0.32759517431259155, -0.00848349742591381, 0.10160893201828003, 0.04053305462002754, 0.07959409803152084, -0.02536590024828911, 0.040535230189561844, 0.022536473348736763, 0.02906200662255287, 0.034367840737104416, -0.0795237347483635, -0.1296437829732895, 0.07992076873779297, -0.10024653375148773, -0.08414532989263535, 0.23353490233421326, -0.0324888750910759, 0.0632086992263794, 0.030398860573768616, -0.13774871826171875, -0.05180224031209946, -0.002551209181547165, 0.024579321965575218, -0.04809703677892685, 0.07276851683855057, 0.04003315791487694, -0.07091058790683746, -0.11856009811162949, -0.01904153637588024, -0.19612546265125275, 0.17462554574012756, 0.019606463611125946, 0.07688908278942108, -0.24834725260734558, 0.08626006543636322, -0.01756729744374752, -0.08376669138669968, 0.04434282332658768, -0.1066277027130127, 0.0065461741760373116, 0.008714072406291962, -0.06969090551137924, -0.10168756544589996, 0.09103693068027496, 0.04558008164167404, -0.0666692852973938, 0.011271940544247627, -0.08008155971765518, 0.08525989949703217, 0.000563145789783448, 0.04464556649327278, -0.05616409331560135, 0.016020435839891434, 0.02542242407798767, -0.15492312610149384, -0.03715027496218681, -0.06542135775089264, -0.11301016807556152, -0.0914255753159523, 0.0667802095413208, 0.0990447923541069, 0.010531237348914146, 0.09883497655391693, -0.006809319369494915, -0.03708439692854881, 0.002027304144576192, -0.07884526997804642, -0.055706072598695755, 0.02865602634847164, 0.015396103262901306, 0.19092808663845062, 0.0030321641825139523, -0.036654986441135406, -0.17816372215747833, 0.03724514693021774, -0.08006180822849274, -0.00438503734767437, -0.017806466668844223, -0.07035572826862335, 0.027394872158765793, -0.13568994402885437, 0.017078259959816933, -0.1723025143146515, -0.13682103157043457, 0.041577406227588654, -0.0017318706959486008, -0.008359063416719437, 0.008716067299246788, -0.022434130311012268, -0.08330071717500687, 0.009575878269970417, -0.05464799329638481, -0.0041017085313797, -0.0647754818201065, 0.12626385688781738, -0.05885883420705795, 0.060884784907102585, -0.14902332425117493, 0.08254507929086685, -0.08857745677232742, -0.0027155906427651644, -0.11007542908191681, 0.051809001713991165, 0.017728189006447792, 0.12157394737005234, -0.028951819986104965, -0.07857056707143784, -0.13433873653411865, 0.04780864343047142, -0.0472453311085701, 0.18190929293632507, -0.09095247834920883, -0.10094602406024933, 0.28452226519584656, -0.08246638625860214, -0.18656042218208313, 0.09771335870027542, 0.017788760364055634, -0.00179840880446136, 0.06732184439897537, 0.22119303047657013, 0.06240721419453621, -0.021435562521219254, 0.09157693386077881, 0.15512165427207947, -0.14987359941005707, -0.10788632929325104, 0.011071508750319481, -0.027627790346741676, -0.12678883969783783, 0.022867780178785324, 0.02477557584643364, 0.07815154641866684, -0.05604182928800583, -0.009587670676410198, -0.05013517290353775, 0.010401515290141106, 0.07555365562438965, 0.010259481146931648, 0.0947667583823204, -0.0537375882267952, -0.0046894969418644905, -0.017959412187337875, -0.03226599842309952, -0.05431108921766281, 0.0642724558711052, -0.013825277797877789, 0.15742531418800354, -0.012576940469443798, 0.04912221059203148, -0.2155623883008957, -0.10367617756128311, -0.021531831473112106, 0.14617106318473816, -0.0336466021835804, 0.11827577650547028, 0.05757899954915047, -0.06318715959787369, -0.018429161980748177, -0.002366466913372278, 0.10096500813961029, -0.012232335284352303, -0.009225830435752869, -0.04997078329324722, 0.03945031762123108, -0.05828569456934929, -0.08974454551935196, -0.06650570780038834, 0.019033467397093773, 0.11104564368724823, 0.10449987649917603, 0.01743948645889759, 0.04973798990249634, -0.001493000192567706, 0.021095281466841698, -0.04618543013930321, -0.007430060300976038, 0.1038440614938736, -0.01610339805483818, -0.08350814133882523, 0.19724710285663605, -0.142416849732399, 0.2579944431781769, 0.2010868489742279, -0.32014158368110657, 0.019308017566800117, -0.0633518174290657, -0.03543110936880112, 0.029795274138450623, 0.09046727418899536, -0.06874571740627289, 0.08165290206670761, 0.004355664364993572, 0.16964320838451385, -0.0852845087647438, -0.05545327067375183, 0.005762069020420313, -0.0006165470695123076, -0.008433965966105461, 0.08341933786869049, 0.07167886942625046, -0.15953609347343445, 0.16145820915699005, 0.21865792572498322, 0.05001634359359741, 0.19002819061279297, -0.06269700080156326, -0.061197854578495026, 0.09963925927877426, 0.06276369839906693, -0.04087304323911667, -0.0739949569106102, -0.2549766004085541, -0.007979915477335453, 0.07543255388736725, 0.05608578398823738, 0.12292242050170898, -0.1067858338356018, -0.046620018780231476, -0.007222958840429783, -0.04764670133590698, -0.06686270236968994, 0.10487177222967148, 0.08669193089008331, 0.13665570318698883, -0.006199785508215427, -0.009834875352680683, 0.11377601325511932, -0.0015519300941377878, -0.11270003020763397, 0.21925504505634308, -0.11924058198928833, -0.31637507677078247, -0.12727126479148865, -0.10278074443340302, -0.0398365780711174, 0.014633186161518097, 0.10868315398693085, -0.09761536121368408, 0.0057619474828243256, -0.0036731541622430086, 0.11580904573202133, -0.11788947880268097, 0.039633285254240036, -0.07323426753282547, 0.0595468170940876, -0.09446215629577637, -0.10083069652318954, -0.043692413717508316, -0.028234899044036865, -0.07219460606575012, 0.1330248862504959, -0.16048142313957214, 0.06954684853553772, 0.18819919228553772, 0.01463241595774889, 0.07990624755620956, -0.057685595005750656, 0.18995347619056702, -0.08439488708972931, 0.0019481584895402193, 0.21801479160785675, -0.038922019302845, 0.08304844796657562, 0.07776294648647308, 0.0015106949722394347, -0.07514775544404984, 0.01477334089577198, -0.017775820568203926, -0.1017175167798996, -0.25402674078941345, -0.07966533303260803, -0.15161702036857605, 0.08495477586984634, 0.01294203381985426, 0.05921639874577522, 0.15219491720199585, 0.03763929754495621, 0.00020652097009588033, -0.01867688074707985, 0.02349923923611641, 0.06400702893733978, 0.1783658266067505, 0.0002663944032974541, 0.07339410483837128, -0.06838051974773407, -0.07791364938020706, 0.08894272893667221, 0.05509171634912491, 0.17620018124580383, 0.009151914156973362, 0.06188341975212097, 0.04796423390507698, 0.0801599994301796, 0.11417637020349503, 0.17106471955776215, -0.01924905739724636, -0.002256848616525531, -0.02197531796991825, -0.041074324399232864, 0.0035322520416229963, -0.0037987760733813047, 0.02220412716269493, -0.1309296190738678, -0.10201948881149292, -0.1376224309206009, 0.11091916263103485, 0.11759777367115021, 0.05493374541401863, -0.18601110577583313, 0.016771873459219933, 0.05030904337763786, -0.02184630185365677, -0.09830217063426971, 0.10732463747262955, 0.06654834002256393, -0.10390927642583847, 0.06250216066837311, -0.055460698902606964, 0.12452973425388336, 0.011497418396174908, 0.09179959446191788, -0.006194195244461298, -0.07331494241952896, 0.011689111590385437, 0.09143829345703125, -0.29856640100479126, 0.23710565268993378, -0.0036367070861160755, -0.06061931699514389, -0.08635854721069336, -0.03369267284870148, 0.0036088451743125916, 0.13324487209320068, 0.13866761326789856, 0.01396837830543518, 0.026310790330171585, -0.05534133315086365, 0.049974799156188965, 0.03479206934571266, 0.16440358757972717, -0.03835839778184891, -0.010032719932496548, -0.02447814866900444, -0.016656886786222458, -0.010664376430213451, 0.05065653473138809, 0.04040665924549103, -0.13308249413967133, 0.04235883057117462, 0.008131860755383968, 0.04248732700943947, 0.017106756567955017, 0.00853271596133709, -0.07079759240150452, 0.11968888342380524, -0.09617583453655243, -0.10985630750656128, -0.11919349431991577, -0.07692135870456696, 0.08118490874767303, -0.06434490531682968, 0.052865684032440186, -0.07111366093158722, -0.019253671169281006, -0.058080751448869705, -0.2695158123970032, 0.11836831271648407, -0.08295568078756332, -0.005556707736104727, 0.009515233337879181, 0.22797569632530212, -0.09032566845417023, -0.010162961669266224, 0.01487414538860321, -0.023755919188261032, -0.05969516560435295, -0.09297404438257217, 0.00009714216139400378, -0.030750270932912827, 0.06098182126879692, 0.08827473968267441, -0.0852227658033371, 0.002266658004373312, -0.03610032796859741, 0.04211517423391342, 0.2925969660282135, 0.09027515351772308, -0.0341731533408165, 0.12876473367214203, 0.09531982988119125, -0.057658981531858444, -0.2728493809700012, -0.04262793809175491, -0.12496571242809296, -0.05522753670811653, -0.04513997584581375, -0.15637081861495972, 0.0794300064444542, 0.01700473576784134, 0.051711875945329666, 0.15676192939281464, -0.2856941223144531, -0.05371803045272827, 0.1072702631354332, 0.03666272014379501, 0.37306031584739685, -0.13205233216285706, -0.09468915313482285, 0.013840578496456146, -0.21276232600212097, 0.17850449681282043, -0.11969884485006332, 0.08775898814201355, -0.02746591344475746, 0.051830731332302094, 0.04864737018942833, -0.05216176435351372, 0.04961218684911728, 0.06916505098342896, 0.04563133046030998, -0.08435709774494171, -0.0622575506567955, 0.0693272203207016, 0.005957175977528095, 0.032641973346471786, -0.01140331570059061, 0.050209928303956985, -0.1310265213251114, -0.022040031850337982, -0.14407357573509216, 0.048045068979263306, 0.032926417887210846, -0.06422007828950882, 0.001121325185522437, -0.047875575721263885, 0.03705882281064987, -0.002065138891339302, 0.20496144890785217, -0.06739066541194916, 0.17923232913017273, 0.10908770561218262, 0.10610055923461914, -0.12142448127269745, -0.05304989218711853, -0.06663328409194946, -0.04006655141711235, 0.0919639840722084, -0.12495492398738861, 0.058470796793699265, 0.12055863440036774, -0.0253214780241251, 0.038314349949359894, 0.1414640247821808, 0.005001508630812168, -0.039284415543079376, 0.12706930935382843, -0.24807138741016388, -0.06288990378379822, -0.1125563532114029, -0.13017801940441132, 0.08329693973064423, 0.0999009758234024, 0.16040489077568054, 0.023958658799529076, 0.005424365401268005, -0.0133462343364954, -0.016310447826981544, -0.053614068776369095, 0.015545142814517021, 0.04964972287416458, 0.03636842221021652, -0.12554973363876343, 0.10050572454929352, -0.0062594725750386715, -0.2031954526901245, -0.008554656058549881, 0.1796879768371582, -0.15471847355365753, -0.11152331531047821, -0.04437955468893051, 0.07551480084657669, -0.1274695247411728, -0.02671281062066555, -0.04382869228720665, -0.12428800016641617, 0.09411681443452835, 0.29590606689453125, 0.050454281270504, 0.12093295156955719, -0.021110834553837776, -0.04295196011662483, -0.010316254571080208, -0.02786031737923622, -0.02891198918223381, 0.0025077909231185913, -0.09444872289896011, 0.1017536148428917, -0.04674298316240311, 0.18564322590827942, -0.08294524252414703, -0.06106289103627205, -0.16088467836380005, 0.04434798285365105, -0.1143086701631546, -0.05442880839109421, -0.0701562911272049, -0.052466023713350296, -0.010504759848117828, -0.011848455294966698, -0.0418703518807888, -0.029926186427474022, -0.12049145996570587, 0.03465193510055542, -0.013616511598229408, 0.020968284457921982, -0.06962920725345612, -0.013445517048239708, 0.05946310609579086, -0.05113865062594414, 0.13957396149635315, 0.14901068806648254, -0.14242179691791534, 0.1547851860523224, -0.16689318418502808, -0.12850835919380188, 0.09802892059087753, 0.01162305660545826, 0.046982746571302414, 0.12089784443378448, 0.03537110239267349, 0.036990437656641006, -0.00377893028780818, 0.0416903980076313, -0.0324506051838398, -0.11853516101837158, 0.017774030566215515, -0.03746937960386276, -0.106142558157444, -0.07016213983297348, -0.03943901136517525, 0.07231327891349792, 0.038727130740880966, 0.06552328914403915, -0.026351049542427063, 0.11550283432006836, -0.055219732224941254, -0.0028518331237137318, 0.03159605711698532, -0.1681496798992157, 0.005959310568869114, -0.05900643393397331, 0.038450490683317184, -0.01942465826869011, 0.1972542256116867, -0.0014308348763734102, 0.029102295637130737, 0.018530070781707764, 0.03188104182481766, 0.009606743231415749, 0.01635347306728363, 0.2612278163433075, 0.06819517910480499, -0.07150661945343018, -0.1049504429101944, 0.050964973866939545, -0.00911674089729786, 0.07526625692844391, 0.21529006958007812, 0.10592522472143173, -0.03359869867563248, 0.10369803011417389, 0.0008446961874142289, 0.021700140088796616, -0.04190157726407051, -0.18541476130485535, 0.04876653477549553, 0.08572717756032944, -0.006427639164030552, 0.07393236458301544, 0.17470023036003113, -0.02307436242699623, 0.07757359743118286, 0.01953369379043579, -0.056386757642030716, -0.1539953649044037, -0.1295100450515747, -0.03467527776956558, -0.12513895332813263, 0.005234878975898027, -0.13357006013393402, 0.036242686212062836, 0.11597996950149536, 0.08670873939990997, -0.03868188336491585, 0.1433056890964508, 0.09161774069070816, -0.12283892929553986, 0.1288304179906845, -0.02748313918709755, 0.07794909179210663, 0.04079864174127579, -0.006267481949180365, -0.052907805889844894, -0.0630679503083229, -0.05388902500271797, 0.05091099068522453, -0.027289077639579773, 0.02472563646733761, -0.17909595370292664, -0.10259704291820526, -0.024562494829297066, 0.07008439302444458, -0.06822576373815536, 0.15282893180847168, 0.026638206094503403, -0.059417419135570526, 0.031045621261000633, 0.23384670913219452, -0.07092951983213425, -0.03861398994922638, -0.028752466663718224, 0.19662116467952728, 0.06939003616571426, 0.07309767603874207, 0.007634897716343403, -0.020341787487268448, -0.08364520967006683, 0.35340285301208496, 0.26164335012435913, -0.04843427240848541, 0.03075331822037697, 0.04225361347198486, 0.049149878323078156, 0.1573922336101532, 0.1542154997587204, 0.10521028190851212, 0.28461557626724243, -0.048442739993333817, -0.03613089770078659, -0.01835424080491066, 0.019159501418471336, -0.09279658645391464, 0.12382310628890991, 0.07880928367376328, -0.11198298633098602, -0.021777227520942688, 0.12593349814414978, -0.251970499753952, 0.0814640074968338, -0.03499933332204819, -0.15652987360954285, -0.04196248576045036, -0.08169326931238174, 0.06246594712138176, 0.017838072031736374, 0.10109265893697739, -0.0342007577419281, -0.11605951935052872, 0.03639279678463936, 0.06594159454107285, -0.255899041891098, -0.024570215493440628, 0.06478331983089447, -0.06042667105793953, -0.0582529678940773, -0.022759148851037025, 0.02778058685362339, 0.05834423750638962, 0.059202633798122406, -0.006635615136474371, 0.04958686977624893, 0.013266797177493572, -0.003319013165310025, -0.02386845275759697, 0.04430553689599037, 0.008502352051436901, -0.13385853171348572, 0.040968477725982666, -0.16436199843883514, 0.01912422478199005, 0.04370468109846115, -0.03202611953020096, -0.02066115103662014, -0.03308174014091492, -0.06236361339688301, 0.02541443333029747, 0.1202211007475853, -0.00047706812620162964, 0.006666057743132114, -0.09405289590358734, -0.046339452266693115, 0.010042333975434303, -0.11937116086483002, -0.10255646705627441, -0.04611099511384964, -0.10297725349664688, 0.07697983086109161, -0.0336780771613121, -0.16551463305950165, 0.0338057205080986, -0.06113516166806221, 0.06882968544960022, -0.1861218959093094, 0.07513841986656189, 0.07600340992212296, 0.030908476561307907, 0.010894372127950191, 0.02088305354118347, 0.05373983830213547, 0.10203039646148682, -0.12401337921619415, -0.07904941588640213 ]
null
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-xlnet Changes: use old format for `pytorch_model.bin`.
{}
null
akreal/tiny-random-xlnet
[ "transformers", "pytorch", "tf", "xlnet", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #xlnet #endpoints_compatible #region-us
This is a copy of: URL Changes: use old format for 'pytorch_model.bin'.
[]
[ "TAGS\n#transformers #pytorch #tf #xlnet #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #tf #xlnet #endpoints_compatible #region-us \n" ]
[ -0.0620063878595829, 0.001000062096863985, -0.008241229690611362, -0.0329848937690258, 0.10959868133068085, 0.009995062835514545, 0.06873077154159546, 0.10018325597047806, 0.09273205697536469, -0.05337236821651459, 0.07900480926036835, 0.19148346781730652, -0.025863638147711754, 0.07210364192724228, -0.07234466820955276, -0.16523540019989014, 0.07610983401536942, 0.10342155396938324, -0.16231049597263336, 0.08745960891246796, 0.07000010460615158, -0.05573880299925804, 0.06372014433145523, -0.05611204355955124, -0.12916645407676697, 0.0621248222887516, 0.06490498036146164, -0.07919276505708694, 0.11207220703363419, 0.07049522548913956, 0.16601938009262085, 0.026068521663546562, -0.13803038001060486, -0.17924773693084717, 0.028063787147402763, 0.05832066014409065, -0.10522837936878204, 0.01921202801167965, 0.053516801446676254, -0.05424881726503372, 0.07176093012094498, 0.033471956849098206, -0.04324575513601303, 0.04095064103603363, -0.10449293255805969, -0.15848442912101746, -0.02020089142024517, 0.08968227356672287, 0.01064209919422865, 0.11435530334711075, 0.0454288050532341, 0.2865484654903412, -0.11964540928602219, 0.14855429530143738, 0.18396368622779846, -0.34691452980041504, -0.0002565456088632345, 0.13969144225120544, 0.10255876928567886, 0.11324334889650345, 0.02552829496562481, 0.043312497437000275, 0.024480875581502914, 0.008666171692311764, -0.006457780487835407, -0.07461277395486832, -0.1188076063990593, 0.09080826491117477, -0.10929631441831589, -0.08177009969949722, 0.21581603586673737, -0.02046920545399189, 0.08560261875391006, 0.0542607381939888, -0.13706880807876587, -0.06642575562000275, 0.023722294718027115, -0.01678142510354519, -0.01976638473570347, 0.05810272693634033, 0.030283521860837936, -0.05749678984284401, -0.10920565575361252, 0.038985129445791245, -0.24568353593349457, 0.28715068101882935, 0.04071257263422012, 0.13426607847213745, -0.2507539391517639, 0.03287757560610771, 0.028970107436180115, -0.0820019543170929, 0.03672781214118004, -0.10293043404817581, -0.02341962605714798, 0.02900288626551628, -0.04760922119021416, -0.02920468896627426, 0.1116781085729599, 0.07430225610733032, -0.02884274162352085, 0.008692416362464428, -0.029596759006381035, 0.11676900833845139, 0.0010673549259081483, 0.06148730218410492, -0.06500193476676941, -0.0031344543676823378, 0.06154558062553406, -0.1711432784795761, -0.015877926722168922, -0.057936206459999084, -0.09043408930301666, -0.037027932703495026, 0.029537947848439217, 0.13512566685676575, 0.06222888454794884, 0.045862581580877304, -0.024665022268891335, -0.03007684461772442, 0.07320273667573929, -0.06119990348815918, 0.0018113154219463468, 0.007840546779334545, -0.00763206509873271, 0.16904839873313904, -0.011954551562666893, -0.00823933631181717, -0.09432273358106613, 0.008010483346879482, -0.07521850615739822, -0.01213474478572607, -0.021133622154593468, -0.0786549523472786, 0.05718424543738365, -0.09141531586647034, 0.03261802718043327, -0.1871088147163391, -0.035279422998428345, 0.021402593702077866, 0.03441128507256508, 0.045065250247716904, 0.010609745979309082, 0.028845584020018578, -0.09152060002088547, -0.03645876795053482, -0.05926947295665741, -0.04560846835374832, -0.0701393187046051, 0.0778845027089119, -0.0399777814745903, 0.06878629326820374, -0.14309227466583252, 0.039808209985494614, -0.07359163463115692, -0.020567920058965683, -0.08421847224235535, -0.0007736702100373805, -0.0899406224489212, 0.15273313224315643, 0.01801292411983013, -0.07293671369552612, -0.09943635016679764, 0.028550932183861732, -0.05340305343270302, 0.09889104962348938, -0.07438310980796814, -0.10347006469964981, 0.26997998356819153, -0.11838965117931366, -0.19469404220581055, 0.06685681641101837, 0.03419926390051842, -0.0644017904996872, 0.053325384855270386, 0.16670237481594086, 0.10253003239631653, -0.10732319951057434, 0.05587601289153099, 0.1614532768726349, -0.20675256848335266, -0.18428851664066315, -0.02601134032011032, 0.05506977066397667, -0.04774150624871254, 0.014446258544921875, -0.03651750832796097, 0.12002916634082794, -0.08245901018381119, -0.03769063204526901, -0.040478404611349106, -0.03846677765250206, 0.033564209938049316, 0.05476948618888855, 0.07810612767934799, -0.04206100106239319, 0.013314994983375072, -0.014156472869217396, 0.014838209375739098, -0.007346230559051037, 0.0732433870434761, -0.07418923825025558, 0.08243616670370102, -0.00675581069663167, 0.019844304770231247, -0.1792452484369278, -0.19426585733890533, 0.007763166446238756, 0.0845254436135292, -0.029143329709768295, 0.21137665212154388, 0.07155802845954895, -0.10233718901872635, 0.023052698001265526, -0.023625092580914497, 0.1340845227241516, 0.03223258629441261, -0.016769329085946083, -0.08379320800304413, 0.039140570908784866, -0.05838921666145325, -0.07665029913187027, -0.037822313606739044, 0.0057016294449567795, 0.08429864048957825, 0.13356971740722656, 0.008861406706273556, 0.05841631442308426, -0.028338786214590073, 0.027569392696022987, -0.06048501655459404, -0.01903838850557804, 0.051167938858270645, -0.005928621161729097, -0.11545988917350769, 0.19868716597557068, -0.06418579816818237, 0.409753680229187, 0.20423857867717743, -0.297076016664505, 0.04170677065849304, 0.08372659236192703, -0.031829748302698135, 0.0038078483194112778, 0.11885504424571991, -0.004208472557365894, 0.041587069630622864, 0.0060802786611020565, 0.10743951797485352, -0.06278616189956665, -0.052879128605127335, 0.025320155546069145, -0.0543072409927845, -0.001204772386699915, 0.06390979886054993, 0.057084668427705765, -0.17301273345947266, 0.16498513519763947, 0.15085139870643616, 0.04095928370952606, 0.10622351616621017, -0.0785432904958725, 0.0007561161764897406, 0.05089409276843071, 0.051057565957307816, -0.03456123173236847, 0.013937531970441341, -0.20693199336528778, -0.022828349843621254, 0.05934295430779457, 0.021329490467905998, 0.1158837303519249, -0.1448826640844345, -0.06425953656435013, 0.02229590341448784, -0.035478778183460236, -0.06526662409305573, 0.07477542757987976, 0.04340921714901924, 0.10505276918411255, -0.024698616936802864, -0.12217893451452255, 0.09735353291034698, -0.03453472629189491, -0.09337983280420303, 0.1653895378112793, -0.13714389503002167, -0.3322710692882538, -0.07878145575523376, -0.03708399832248688, -0.048504166305065155, -0.025858810171484947, 0.032505281269550323, -0.08653740584850311, -0.03218379244208336, 0.05075662210583687, -0.04262027144432068, -0.09435196965932846, 0.07508150488138199, -0.034296635538339615, 0.06945500522851944, -0.04878411814570427, -0.11479582637548447, -0.04348381981253624, -0.07480902969837189, -0.06861492991447449, 0.10400021821260452, -0.12192613631486893, 0.09912924468517303, 0.18204794824123383, 0.002177812857553363, 0.07088211178779602, -0.01326457317918539, 0.1533156782388687, -0.07543645054101944, -0.008554059080779552, 0.14636823534965515, -0.014918794855475426, 0.09228634089231491, 0.08521390706300735, 0.0297300573438406, -0.05876142904162407, -0.020199721679091454, -0.050394780933856964, -0.09898610413074493, -0.26259925961494446, -0.12228996306657791, -0.13522323966026306, 0.01934165507555008, -0.07348022609949112, 0.08256823569536209, 0.15799258649349213, 0.02026764489710331, 0.04587290436029434, -0.09394749999046326, -0.04267440363764763, 0.03000948391854763, 0.1530354768037796, 0.007498880382627249, 0.08269905298948288, -0.10610106587409973, -0.06708339601755142, 0.09300393611192703, 0.09473846107721329, 0.20503219962120056, 0.04109900817275047, 0.03249221667647362, 0.07044132053852081, 0.20323455333709717, 0.13342879712581635, 0.12760336697101593, -0.008627967908978462, -0.06017173454165459, 0.029324138537049294, -0.0022001094184815884, 0.006016318220645189, 0.0013871036935597658, 0.05682073161005974, -0.14965951442718506, -0.009002555161714554, -0.16086800396442413, 0.09219370782375336, 0.0644780695438385, -0.003643330652266741, -0.12509582936763763, 0.04694252833724022, 0.02322986349463463, -0.04910191521048546, -0.015038842335343361, 0.06628622114658356, 0.08317951112985611, -0.10480725020170212, 0.0815475583076477, -0.03860880434513092, 0.08476988971233368, 0.01689324527978897, 0.049997229129076004, 0.030223960056900978, -0.12883439660072327, 0.06223083287477493, 0.06286504864692688, -0.23209449648857117, 0.2737605571746826, -0.03037886880338192, -0.06546991318464279, -0.06453303247690201, -0.03987304866313934, -0.023189974948763847, 0.17686745524406433, 0.08410706371068954, 0.0570346936583519, -0.03195442631840706, -0.09457818418741226, 0.025738058611750603, 0.054063450545072556, 0.11704709380865097, 0.0504736490547657, -0.031150905415415764, 0.011489536613225937, -0.046049490571022034, 0.011952887289226055, 0.02923007868230343, 0.07901560515165329, -0.10322222113609314, 0.04518146067857742, 0.06241239979863167, -0.04651061072945595, -0.0038910936564207077, -0.013291750103235245, -0.10825613141059875, 0.20974206924438477, -0.09815690666437149, -0.09886818379163742, -0.06759274750947952, -0.139813631772995, 0.11834630370140076, -0.0909983441233635, 0.06980910152196884, -0.043146971613168716, -0.04062481224536896, -0.06471022218465805, -0.24019263684749603, 0.12056693434715271, -0.1251000314950943, 0.028857534751296043, -0.023659633472561836, 0.19200964272022247, -0.060060497373342514, -0.015985194593667984, -0.006939137354493141, -0.04885592684149742, -0.08112539350986481, -0.10472382605075836, -0.03619847819209099, -0.0025538464542478323, -0.03703485056757927, 0.08591587096452713, 0.021848084405064583, -0.010769971646368504, -0.01082563679665327, 0.033993203192949295, 0.20497922599315643, 0.12429767847061157, -0.07895155251026154, 0.09714052826166153, 0.10771181434392929, -0.024211637675762177, -0.2639382779598236, -0.05262453854084015, -0.12995749711990356, -0.08068719506263733, -0.03131891041994095, -0.07214917242527008, 0.13615569472312927, 0.010074335150420666, 0.0012417699908837676, 0.19319887459278107, -0.2850555181503296, -0.035671550780534744, 0.08810089528560638, -0.0016808717045933008, 0.400448203086853, -0.12313386797904968, -0.06253448128700256, 0.05124089494347572, -0.20254212617874146, 0.16144096851348877, -0.024565160274505615, 0.05286779627203941, 0.004470085725188255, 0.0459136888384819, 0.02635948918759823, -0.08045018464326859, 0.06245186924934387, 0.04041758552193642, 0.04678613319993019, -0.05634988844394684, -0.0793590396642685, 0.08654197305440903, 0.015997961163520813, 0.004063392989337444, 0.04854985699057579, 0.022326592355966568, -0.10018967092037201, -0.001851408276706934, -0.14852505922317505, 0.05764375999569893, 0.050985995680093765, -0.027484016492962837, -0.046381305903196335, -0.03841478377580643, 0.0330093577504158, 0.01381667796522379, 0.22716958820819855, -0.0014397117774933577, 0.155852273106575, 0.1224314495921135, 0.07089588046073914, -0.24446843564510345, -0.10953230410814285, -0.04569065198302269, -0.040147967636585236, 0.10120565444231033, -0.06469191610813141, 0.06267519295215607, 0.15121355652809143, -0.03492235764861107, -0.032444845885038376, 0.12298569828271866, -0.0233337190002203, -0.07285719364881516, 0.13077576458454132, -0.20095394551753998, -0.08221974223852158, -0.05132732167840004, -0.08788622915744781, 0.1340455412864685, 0.1650165468454361, 0.13247431814670563, 0.029518797993659973, -0.007089079357683659, -0.019463054835796356, -0.015823012217879295, -0.09080828726291656, 0.048862677067518234, 0.09705335646867752, 0.040729980915784836, -0.13722234964370728, 0.06904340535402298, -0.009703157469630241, -0.18424592912197113, -0.04246000945568085, 0.15703712403774261, -0.1392059028148651, -0.10533322393894196, -0.03477054089307785, 0.050334054976701736, -0.1949325054883957, -0.08109140396118164, -0.06185157969594002, -0.09811629354953766, 0.05911293253302574, 0.27579960227012634, 0.07038076967000961, 0.12467239797115326, 0.009164862334728241, -0.020760608837008476, 0.00434310594573617, -0.06699346005916595, -0.01419855747371912, 0.021475326269865036, -0.15493932366371155, 0.07178088277578354, -0.00600336492061615, 0.19845512509346008, -0.09141820669174194, -0.03701094910502434, -0.14307831227779388, 0.08325284719467163, -0.08171186596155167, -0.08473832905292511, -0.07714750617742538, -0.053085289895534515, 0.004274322651326656, -0.10244595259428024, -0.04973864555358887, 0.029102278873324394, -0.11652155220508575, 0.05520881339907646, 0.03398915007710457, -0.04877103492617607, -0.0833657756447792, -0.04039471223950386, 0.0670136958360672, -0.020496554672718048, 0.09453592449426651, 0.1550806164741516, -0.10139491409063339, 0.10555852204561234, -0.14119680225849152, -0.11739183217287064, 0.11006928980350494, 0.0588628388941288, 0.09634079784154892, 0.10298869758844376, 0.04472830519080162, 0.0977574959397316, 0.011995452456176281, 0.03850288689136505, -0.06400790065526962, -0.09532807022333145, 0.004474014975130558, -0.03600439429283142, -0.09444613754749298, -0.023605339229106903, -0.09050995111465454, 0.16641706228256226, 0.049650464206933975, 0.07574208825826645, 0.01617163047194481, 0.09724637120962143, -0.05243885889649391, -0.00899547804147005, 0.011007271707057953, -0.18176156282424927, 0.06971678137779236, -0.003780545201152563, 0.009327638894319534, -0.0407831035554409, 0.25886547565460205, -0.011394720524549484, -0.0032503618858754635, 0.018901407718658447, -0.004550764337182045, 0.011200577951967716, 0.02326693944633007, 0.2057902067899704, 0.07406836003065109, -0.035219721496105194, -0.07952340692281723, 0.04040759429335594, -0.031007546931505203, -0.027575606480240822, 0.16664990782737732, 0.07241255789995193, 0.054583918303251266, 0.08580703288316727, 0.06062906235456467, 0.013742495328187943, -0.10168197005987167, -0.2795138955116272, -0.08152905851602554, 0.05956319719552994, -0.0035558410454541445, 0.0009925211779773235, 0.15428075194358826, -0.008950863964855671, 0.06095722317695618, 0.025857163593173027, -0.017865171656012535, -0.14761219918727875, -0.11622996628284454, -0.039258893579244614, -0.14573357999324799, -0.005090187769383192, -0.08536633849143982, -0.0023048645816743374, 0.07981318980455399, 0.06467332690954208, -0.04412218928337097, 0.08870206028223038, 0.10695809870958328, -0.06464925408363342, 0.039288803935050964, 0.012812403030693531, 0.015155398286879063, 0.06946312636137009, 0.025641631335020065, -0.1272287517786026, -0.04960419237613678, -0.07336542010307312, 0.03398756682872772, -0.04472322389483452, 0.0684504508972168, -0.12742879986763, -0.08740445971488953, -0.06803490966558456, 0.04557480290532112, -0.06870517134666443, 0.13320447504520416, 0.02156226336956024, 0.008682915940880775, 0.025653917342424393, 0.17881140112876892, -0.08019004017114639, -0.11980007588863373, -0.014315673150122166, 0.19364532828330994, 0.03335431218147278, 0.08948379755020142, -0.01914127916097641, 0.0201540756970644, -0.13578622043132782, 0.35229015350341797, 0.2989937961101532, -0.03835005313158035, 0.060002073645591736, 0.0436520129442215, 0.03811877593398094, 0.05532125011086464, 0.14000852406024933, 0.14050869643688202, 0.42444825172424316, -0.06172548234462738, -0.056004539132118225, -0.038612525910139084, 0.032372716814279556, -0.13507111370563507, -0.0031156607437878847, 0.045198239386081696, -0.07220721244812012, -0.04904163256287575, 0.10916480422019958, -0.20502953231334686, 0.11666430532932281, 0.03976615145802498, -0.19773437082767487, -0.025898145511746407, -0.05389103293418884, 0.16764873266220093, -0.012017183005809784, 0.09765532612800598, -0.03374800831079483, -0.0995604619383812, 0.04615534469485283, 0.030004212632775307, -0.2642197012901306, -0.06803359091281891, 0.09352224320173264, -0.07788597792387009, -0.01480918750166893, -0.03169608488678932, 0.07447225600481033, 0.05623136833310127, 0.06072836369276047, -0.037827540189027786, 0.05182068794965744, 0.029198942705988884, -0.11099375784397125, -0.09387247264385223, -0.030641432851552963, 0.01257175114005804, -0.08289051800966263, 0.03775927796959877, -0.13116870820522308, 0.015005451627075672, 0.011780795641243458, 0.04231681302189827, -0.030536243692040443, -0.039263468235731125, -0.05598432198166847, 0.0458846241235733, 0.048921387642621994, -0.020923994481563568, 0.009864695370197296, -0.061982907354831696, -0.06888643652200699, 0.0406067855656147, -0.0365934893488884, -0.11236628890037537, -0.07520677149295807, -0.06863021850585938, 0.06525125354528427, 0.01586323231458664, 0.016406651586294174, 0.010851925238966942, -0.07591118663549423, 0.016210690140724182, -0.10819441080093384, 0.02704598195850849, 0.07956930994987488, 0.0416533425450325, 0.023928407579660416, 0.019898906350135803, 0.04893673583865166, 0.05336325243115425, -0.10265221446752548, -0.09607918560504913 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.0475 - Matthews Correlation: 0.6290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 16 | 1.3863 | 0.0 | | No log | 2.0 | 32 | 1.2695 | 0.4503 | | No log | 3.0 | 48 | 1.1563 | 0.6110 | | No log | 4.0 | 64 | 1.0757 | 0.6290 | | No log | 5.0 | 80 | 1.0475 | 0.6290 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.6290322580645161}}]}]}
text-classification
akshara23/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 1.0475 * Matthews Correlation: 0.6290 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.9.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.09626241773366928, 0.08073006570339203, -0.0021306832786649466, 0.11727651953697205, 0.1784171611070633, 0.024780025705695152, 0.11319999396800995, 0.12519477307796478, -0.10626740753650665, 0.013977674767374992, 0.11719918251037598, 0.18385520577430725, 0.007429462857544422, 0.10830631852149963, -0.05732923001050949, -0.25896695256233215, -0.012890186160802841, 0.05172715708613396, -0.07067227363586426, 0.14067544043064117, 0.09567974507808685, -0.13412819802761078, 0.07476764172315598, 0.0015775042120367289, -0.22960594296455383, 0.007221657782793045, 0.013544042594730854, -0.06545180082321167, 0.1474567949771881, 0.01851491443812847, 0.12872643768787384, 0.008673759177327156, 0.07707008719444275, -0.18282069265842438, 0.010533387772738934, 0.04877430945634842, 0.004316950216889381, 0.08625390380620956, 0.05753667652606964, -0.010595539584755898, 0.12675176560878754, -0.08413282781839371, 0.05708644911646843, 0.02071918360888958, -0.11939849704504013, -0.21753011643886566, -0.08016940206289291, 0.030378038063645363, 0.0688147097826004, 0.10979188978672028, -0.0010078392224386334, 0.12567484378814697, -0.10036637634038925, 0.09780725091695786, 0.21301013231277466, -0.27529409527778625, -0.06552794575691223, 0.03589961677789688, 0.007590247318148613, 0.07757236808538437, -0.11335316300392151, -0.02543598972260952, 0.05258244276046753, 0.051496583968400955, 0.1361183375120163, -0.03255874291062355, -0.12748944759368896, 0.009260687045753002, -0.14320214092731476, -0.033403731882572174, 0.14457117021083832, 0.025955749675631523, -0.02515360340476036, -0.04338903725147247, -0.055762216448783875, -0.15554213523864746, -0.03850909695029259, -0.010426721535623074, 0.04188404604792595, -0.033909354358911514, -0.0483216792345047, -0.00038933701580390334, -0.1111488863825798, -0.06593864411115646, -0.07066385447978973, 0.1384611874818802, 0.04009566083550453, 0.008230648003518581, -0.027847345918416977, 0.11172356456518173, 0.02456805109977722, -0.13090293109416962, 0.029775409027934074, 0.026712706312537193, 0.005430450662970543, -0.04933469370007515, -0.06782408803701401, -0.059997156262397766, 0.006903040688484907, 0.1021312028169632, -0.056659918278455734, 0.05188463628292084, 0.026369662955403328, 0.046612586826086044, -0.10126914083957672, 0.19464072585105896, -0.023915868252515793, -0.007642640732228756, 0.011079562827944756, 0.0512034110724926, 0.002690799767151475, -0.008002274669706821, -0.11936972290277481, -0.0006796095403842628, 0.11821819096803665, 0.019082769751548767, -0.06979593634605408, 0.07456149160861969, -0.05385277047753334, -0.028332272544503212, 0.011355724185705185, -0.10253602266311646, 0.03319168463349342, 0.00395246222615242, -0.08180451393127441, -0.011527873575687408, 0.031174058094620705, 0.010740038938820362, -0.03421073406934738, 0.11480197310447693, -0.07426588982343674, 0.04364701732993126, -0.10097415745258331, -0.10679829865694046, 0.016728848218917847, -0.08315294981002808, 0.02292381413280964, -0.10533883422613144, -0.15898765623569489, -0.022941971197724342, 0.05786075070500374, -0.020577648654580116, -0.059296172112226486, -0.05632341280579567, -0.0770839974284172, 0.011200936511158943, -0.018528200685977936, 0.14645451307296753, -0.059541016817092896, 0.11107553541660309, 0.02821260318160057, 0.0624963603913784, -0.050708331167697906, 0.06664548069238663, -0.09111946076154709, -0.004534520208835602, -0.18861962854862213, 0.0526968352496624, -0.051189254969358444, 0.07518991082906723, -0.08640367537736893, -0.11503744125366211, 0.015228205360472202, -0.005930052138864994, 0.0645570382475853, 0.09252604842185974, -0.16833056509494781, -0.07620242983102798, 0.14706216752529144, -0.06920795142650604, -0.10995445400476456, 0.11338939517736435, -0.06035267189145088, 0.058732908219099045, 0.08249668031930923, 0.1724911630153656, 0.0915522575378418, -0.06373323500156403, 0.027123555541038513, 0.00941407959908247, 0.05136363208293915, -0.0748463124036789, 0.05385633558034897, 0.004369891714304686, -0.003883133176714182, 0.040317900478839874, -0.032080233097076416, 0.0693448856472969, -0.09035898745059967, -0.09450077265501022, -0.04010223224759102, -0.09434336423873901, 0.05687650665640831, 0.08374679088592529, 0.0936022624373436, -0.08859475702047348, -0.06380882114171982, 0.08163183182477951, 0.07559874653816223, -0.06319199502468109, 0.03349822014570236, -0.0478074848651886, 0.0602516271173954, -0.02349935658276081, -0.01627686619758606, -0.20391681790351868, 0.00034611631417647004, 0.009823348373174667, 0.0008965537999756634, 0.0178462453186512, 0.01963736303150654, 0.06681612879037857, 0.05107984319329262, -0.05841381847858429, -0.020856676623225212, -0.022853750735521317, -0.004529550671577454, -0.13815422356128693, -0.19202184677124023, -0.0184759721159935, -0.018428383395075798, 0.12738408148288727, -0.20250244438648224, 0.040283720940351486, -0.0072424220852553844, 0.061586566269397736, 0.0008728722459636629, -0.0033613708801567554, -0.043416038155555725, 0.09079036861658096, -0.035034917294979095, -0.044374898076057434, 0.08376225084066391, 0.006924547720700502, -0.08570007234811783, -0.0413597896695137, -0.09007380902767181, 0.1695825308561325, 0.14191213250160217, -0.1317339837551117, -0.07779216021299362, -0.0037600365467369556, -0.058370981365442276, -0.03151828795671463, -0.03484750911593437, 0.042265668511390686, 0.18953818082809448, -0.014853660948574543, 0.15729618072509766, -0.06882724165916443, -0.04659963771700859, 0.0164375901222229, -0.02793344296514988, 0.034913185983896255, 0.12356793135404587, 0.1136327013373375, -0.07068774849176407, 0.140534907579422, 0.1559472531080246, -0.09987123310565948, 0.12780943512916565, -0.04463961347937584, -0.0614800788462162, -0.0020709196105599403, -0.016813604161143303, -0.0031122532673180103, 0.07854892313480377, -0.1493237316608429, -0.008464556187391281, 0.0188615620136261, 0.025335736572742462, 0.029286354780197144, -0.22923247516155243, -0.03340912237763405, 0.02417391911149025, -0.04094536602497101, -0.003890116000548005, -0.019946210086345673, 0.010561596602201462, 0.10818388313055038, -0.00005516849341802299, -0.08182734251022339, 0.043026152998209, 0.0014924104325473309, -0.08398403972387314, 0.2220461070537567, -0.09391199052333832, -0.17229963839054108, -0.12010848522186279, -0.07209847867488861, -0.03968155384063721, 0.009401502087712288, 0.06397872418165207, -0.09878531843423843, -0.022225523367524147, -0.05426587164402008, 0.01836346462368965, -0.0065048555843532085, 0.03740448132157326, 0.002909648697823286, 0.012423468753695488, 0.0674237459897995, -0.1093996912240982, -0.008375965990126133, -0.05694664269685745, -0.06437904387712479, 0.05508354306221008, 0.02995975688099861, 0.10260753333568573, 0.16873736679553986, -0.01929972693324089, 0.008729841560125351, -0.03388465568423271, 0.21323619782924652, -0.0685601681470871, -0.029715679585933685, 0.1346989870071411, -0.010225120931863785, 0.05180804803967476, 0.10605880618095398, 0.06990615278482437, -0.0872654840350151, 0.012783003970980644, 0.019590623676776886, -0.03528563305735588, -0.2315065860748291, -0.05541790649294853, -0.06181982904672623, -0.023107260465621948, 0.09831573069095612, 0.029797306284308434, 0.04876767843961716, 0.06574049592018127, 0.046631667762994766, 0.08109267055988312, -0.02595423348248005, 0.04764441400766373, 0.1280403584241867, 0.04125857353210449, 0.12445860356092453, -0.047221627086400986, -0.06116866692900658, 0.029621679335832596, -0.02119501866400242, 0.22151319682598114, 0.000029239286959636956, 0.12041535973548889, 0.059548549354076385, 0.17996914684772491, 0.005116015672683716, 0.08468496799468994, -0.0011046351864933968, -0.03968261927366257, -0.007672102190554142, -0.03771688789129257, -0.04871421679854393, 0.011685958132147789, -0.061884500086307526, 0.054956454783678055, -0.1256416290998459, -0.022650064900517464, 0.056308068335056305, 0.25135937333106995, 0.024426491931080818, -0.31834572553634644, -0.08577916771173477, -0.0013843784108757973, -0.0347592830657959, -0.01891612447798252, 0.020879223942756653, 0.08761283755302429, -0.1024685874581337, 0.029581576585769653, -0.06703582406044006, 0.09491964429616928, -0.046980760991573334, 0.04726173356175423, 0.06823939830064774, 0.07527843117713928, 0.015279763378202915, 0.08890476077795029, -0.3291291892528534, 0.2661127746105194, -0.0004375642747618258, 0.07126319408416748, -0.08013767004013062, -0.00024344175471924245, 0.037014205008745193, 0.07096270471811295, 0.05608949065208435, -0.014731067232787609, -0.01908187009394169, -0.19036290049552917, -0.05711947754025459, 0.02886943891644478, 0.08676663786172867, -0.025592993944883347, 0.0816814973950386, -0.02699773758649826, 0.007609362248331308, 0.07498998939990997, -0.04006475582718849, -0.052300095558166504, -0.10218276083469391, -0.010170921683311462, 0.014795061200857162, -0.03393843397498131, -0.06003600358963013, -0.11615324765443802, -0.12552988529205322, 0.1522550880908966, -0.029051383957266808, -0.03906882926821709, -0.10985467582941055, 0.08670246601104736, 0.07172330468893051, -0.08638527989387512, 0.05018032714724541, 0.006710932590067387, 0.059015512466430664, 0.03128667548298836, -0.07868143171072006, 0.09988108277320862, -0.06279335170984268, -0.1573597639799118, -0.04974396526813507, 0.11391115188598633, 0.03709380701184273, 0.06303239613771439, -0.006841155234724283, 0.010628650896251202, -0.03804851323366165, -0.09560279548168182, 0.01206916943192482, -0.0018313800683245063, 0.08302471786737442, 0.029848873615264893, -0.07232965528964996, -0.007669774815440178, -0.06778225302696228, -0.03433554247021675, 0.20348268747329712, 0.20928141474723816, -0.09690631181001663, 0.03165453299880028, 0.03455410152673721, -0.07735441625118256, -0.20856720209121704, 0.048398490995168686, 0.0721183568239212, 0.0028274187352508307, 0.03150421008467674, -0.18084554374217987, 0.12800849974155426, 0.09692203998565674, -0.009381653741002083, 0.10642733424901962, -0.33914756774902344, -0.12660793960094452, 0.12254606187343597, 0.14530642330646515, 0.11713702976703644, -0.14445672929286957, -0.021957717835903168, -0.024944663047790527, -0.11031437665224075, 0.10533381998538971, -0.08021047711372375, 0.12094662338495255, -0.03444207087159157, 0.0719883069396019, 0.003277322044596076, -0.0595780611038208, 0.1141546368598938, 0.027873259037733078, 0.0942394807934761, -0.0636340081691742, -0.033489029854536057, 0.03752053901553154, -0.03847679868340492, 0.011887631379067898, -0.07472129911184311, 0.02506856434047222, -0.10197938978672028, -0.020464502274990082, -0.08736814558506012, 0.04171781241893768, -0.03517796844244003, -0.051202449947595596, -0.030187802389264107, 0.020141934975981712, 0.052566371858119965, -0.01174870878458023, 0.12443540245294571, 0.017759351059794426, 0.15366633236408234, 0.12032143026590347, 0.07247787714004517, -0.06299319118261337, -0.06499059498310089, -0.019040029495954514, -0.01394711434841156, 0.05501619353890419, -0.1460132747888565, 0.02979852817952633, 0.14767158031463623, 0.020279284566640854, 0.13681752979755402, 0.08711590617895126, -0.01081984955817461, 0.005239889025688171, 0.06614134460687637, -0.16148433089256287, -0.07336589694023132, -0.006211780942976475, -0.06511392444372177, -0.10370204597711563, 0.04758455231785774, 0.08281344920396805, -0.06908401101827621, -0.010485691018402576, -0.006813719402998686, 0.004384662955999374, -0.06105829402804375, 0.20617879927158356, 0.061241570860147476, 0.04811088740825653, -0.10784398764371872, 0.07665955275297165, 0.05999360606074333, -0.0835152268409729, -0.001167581300251186, 0.07906811684370041, -0.09474040567874908, -0.0523526668548584, 0.10876408219337463, 0.16205711662769318, -0.0457330197095871, -0.04350929334759712, -0.1356692910194397, -0.13032697141170502, 0.08112473040819168, 0.15511338412761688, 0.1261809915304184, 0.017754631116986275, -0.06475166976451874, 0.008576430380344391, -0.12248962372541428, 0.08219172805547714, 0.03917180374264717, 0.06324601173400879, -0.13641852140426636, 0.17416971921920776, 0.017949366942048073, 0.04926265776157379, -0.02342662401497364, 0.02184419333934784, -0.10188574343919754, 0.02278454601764679, -0.11289291083812714, -0.019532402977347374, -0.01794854737818241, 0.00836322270333767, -0.008241930045187473, -0.05163747817277908, -0.04761829227209091, 0.014408408664166927, -0.12300614267587662, -0.02155729942023754, 0.022094085812568665, 0.05890677869319916, -0.10997230559587479, -0.04547825828194618, 0.021378785371780396, -0.06248778849840164, 0.06574094295501709, 0.054574158042669296, 0.009605812840163708, 0.07072918862104416, -0.13782039284706116, -0.006134797353297472, 0.08454497158527374, 0.016519038006663322, 0.060180503875017166, -0.08416066318750381, -0.0037822998128831387, 0.010745378211140633, 0.06463583558797836, 0.027242591604590416, 0.07794865220785141, -0.14437437057495117, 0.0028428707737475634, -0.03728434070944786, -0.08167241513729095, -0.06886347383260727, 0.0360909104347229, 0.08140577375888824, 0.015801815316081047, 0.19730152189731598, -0.08136936277151108, 0.04240375757217407, -0.20756278932094574, 0.0004410716937854886, -0.020257754251360893, -0.11622578650712967, -0.12926585972309113, -0.06926107406616211, 0.06733886897563934, -0.04944871738553047, 0.1294618397951126, 0.03372843191027641, 0.04272034391760826, 0.027334002777934074, -0.01636645942926407, 0.00458237761631608, 0.027151944115757942, 0.21164269745349884, 0.03486444428563118, -0.03524976223707199, 0.07665090262889862, 0.055755406618118286, 0.09619861841201782, 0.11549460887908936, 0.19972774386405945, 0.15908050537109375, -0.021387027576565742, 0.09029453247785568, 0.02094016596674919, -0.04675118252635002, -0.1503242552280426, 0.04640911892056465, -0.05278826132416725, 0.10450619459152222, -0.029236815869808197, 0.20960792899131775, 0.049177952110767365, -0.16940772533416748, 0.05131660774350166, -0.05388747155666351, -0.09386462718248367, -0.10165496170520782, -0.032392192631959915, -0.08297154307365417, -0.14126935601234436, -0.005156505387276411, -0.10887856781482697, 0.012561633251607418, 0.10949955135583878, 0.007981312461197376, -0.02925649844110012, 0.15507405996322632, 0.03257724642753601, 0.012603952549397945, 0.07167714089155197, -0.002082296647131443, -0.03064855933189392, -0.1133071631193161, -0.05805102735757828, -0.021986601874232292, -0.008368778973817825, 0.037209782749414444, -0.0523807592689991, -0.07118736952543259, 0.03479916229844093, -0.033907294273376465, -0.09513261914253235, 0.019217325374484062, 0.02228335104882717, 0.06908734887838364, 0.05594881623983383, 0.011490907520055771, 0.0047878907062113285, -0.009954859502613544, 0.22247768938541412, -0.07500739395618439, -0.08811910450458527, -0.09102480858564377, 0.26826128363609314, 0.05585658550262451, -0.010198751464486122, 0.03266879916191101, -0.059980470687150955, -0.0004846900701522827, 0.2580872178077698, 0.20283587276935577, -0.08596722781658173, -0.007075016852468252, 0.007987482473254204, -0.00867935549467802, -0.008464405313134193, 0.12864182889461517, 0.14866642653942108, 0.046213775873184204, -0.1031038910150528, -0.03887258097529411, -0.053404271602630615, -0.014568895101547241, -0.04795056954026222, 0.06196599453687668, 0.03871016949415207, -0.001708327210508287, -0.036995623260736465, 0.06425849348306656, -0.07055878639221191, -0.09490372985601425, 0.05697963386774063, -0.21254144608974457, -0.16345122456550598, -0.01636679656803608, 0.10847347229719162, -0.0013445595977827907, 0.05838179588317871, -0.024878157302737236, 0.0010979415383189917, 0.07058481872081757, -0.024606218561530113, -0.08800846338272095, -0.07528714835643768, 0.09389876574277878, -0.11258109658956528, 0.18048615753650665, -0.04373558238148689, 0.07093740254640579, 0.11782434582710266, 0.0728365033864975, -0.06316524744033813, 0.05942832678556442, 0.03158150613307953, -0.06679727882146835, 0.04050320386886597, 0.08325225859880447, -0.031655289232730865, 0.03697251155972481, 0.03889520466327667, -0.11831084638834, 0.02645249478518963, -0.08079379796981812, -0.05610472336411476, -0.04209074378013611, -0.04246903955936432, -0.056393589824438095, 0.11895876377820969, 0.22197504341602325, -0.02582543157041073, 0.01036782469600439, -0.07644400000572205, 0.0019993905443698168, 0.043422356247901917, 0.023274317383766174, -0.07948270440101624, -0.22921860218048096, 0.005667639430612326, 0.0490787997841835, -0.01957997865974903, -0.22179949283599854, -0.09172555804252625, 0.0006795427179895341, -0.07589062303304672, -0.10312633216381073, 0.08524785935878754, 0.06501029431819916, 0.04740741848945618, -0.05425837263464928, -0.07869448512792587, -0.0805855393409729, 0.15853507816791534, -0.15701699256896973, -0.09074117988348007 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0812 - Precision: 0.8975 - Recall: 0.9080 - F1: 0.9027 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.1326 | 0.7990 | 0.8043 | 0.8017 | 0.9338 | | No log | 2.0 | 332 | 0.0925 | 0.8770 | 0.8946 | 0.8858 | 0.9618 | | No log | 3.0 | 498 | 0.0812 | 0.8975 | 0.9080 | 0.9027 | 0.9703 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud-ner", "results": []}]}
token-classification
akshaychaudhary/distilbert-base-uncased-finetuned-cloud-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cloud-ner =========================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0812 * Precision: 0.8975 * Recall: 0.9080 * F1: 0.9027 * Accuracy: 0.9703 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10434503853321075, 0.07932277768850327, -0.0021542105823755264, 0.12324507534503937, 0.18117885291576385, 0.0154117401689291, 0.10342364758253098, 0.11795366555452347, -0.11552219837903976, 0.020346563309431076, 0.12737931311130524, 0.19161252677440643, -0.0003065524506382644, 0.1254022717475891, -0.053780991584062576, -0.25177282094955444, -0.00544909480959177, 0.05693703889846802, -0.07687465101480484, 0.1344057321548462, 0.10057210922241211, -0.14128966629505157, 0.08275843411684036, 0.014897349290549755, -0.23755592107772827, 0.008134117349982262, 0.015916187316179276, -0.067073754966259, 0.1424940675497055, 0.013324943371117115, 0.13440552353858948, -0.001248353160917759, 0.08517016470432281, -0.1563616842031479, 0.004778845235705376, 0.05023762583732605, 0.01713418774306774, 0.09038269519805908, 0.0562928207218647, -0.0004724233003798872, 0.10107450187206268, -0.07903352379798889, 0.05318044126033783, 0.016871050000190735, -0.11750415712594986, -0.23266716301441193, -0.08958102017641068, 0.0353231318295002, 0.07206620275974274, 0.09947909414768219, 0.007558758370578289, 0.14441363513469696, -0.09510201215744019, 0.09222660958766937, 0.2275169938802719, -0.28139200806617737, -0.06349701434373856, 0.04011083021759987, -0.0009026827174238861, 0.04525962099432945, -0.10695228725671768, -0.038960039615631104, 0.05867922306060791, 0.05091315880417824, 0.1435626596212387, -0.036678820848464966, -0.11880259215831757, 0.012452912516891956, -0.14897193014621735, -0.03351792320609093, 0.12184678763151169, 0.026482557877898216, -0.03515561670064926, -0.03618975356221199, -0.05667060986161232, -0.16723361611366272, -0.03920105844736099, -0.011618892662227154, 0.04363185539841652, -0.042885418981313705, -0.06566765904426575, 0.01808771677315235, -0.10324759036302567, -0.06306828558444977, -0.0805402547121048, 0.15055160224437714, 0.04445463418960571, 0.014657003805041313, -0.024619758129119873, 0.10938486456871033, 0.0179300419986248, -0.12593360245227814, 0.023975374177098274, 0.028178011998534203, 0.0023876905906945467, -0.059126317501068115, -0.0674186423420906, -0.03604665398597717, 0.0036592877004295588, 0.1213681548833847, -0.06947387754917145, 0.04217692092061043, 0.043851882219314575, 0.042034100741147995, -0.09761182218790054, 0.19736436009407043, -0.04331754148006439, 0.014211470261216164, 0.010802814736962318, 0.03631647303700447, -0.0017010436858981848, 0.005891423672437668, -0.11279342323541641, -0.00008191860251827165, 0.12353520095348358, 0.019096611067652702, -0.0777820348739624, 0.0753462016582489, -0.05135048180818558, -0.02845766581594944, 0.027824362739920616, -0.09827792644500732, 0.03422514721751213, -0.01282274816185236, -0.0880250334739685, -0.009091401472687721, 0.0227163378149271, 0.009979380294680595, -0.022754371166229248, 0.1250169277191162, -0.08886996656656265, 0.04094705730676651, -0.10035109519958496, -0.09962237626314163, 0.01486019417643547, -0.08528398722410202, 0.0337212011218071, -0.1065574362874031, -0.1556529849767685, -0.012033786624670029, 0.05532378330826759, -0.01928732916712761, -0.05888168886303902, -0.0359046645462513, -0.07541327178478241, -0.0009290911839343607, -0.01953265070915222, 0.1408023089170456, -0.05440116673707962, 0.10860501974821091, 0.038193583488464355, 0.0653199553489685, -0.04218501225113869, 0.05959102883934975, -0.10567493736743927, 0.010582290589809418, -0.2022174745798111, 0.03394060209393501, -0.051403820514678955, 0.08213641494512558, -0.09558211266994476, -0.12252257764339447, 0.03218604251742363, -0.014203127473592758, 0.07364875823259354, 0.08043157309293747, -0.148633673787117, -0.06989260017871857, 0.13971179723739624, -0.06719176471233368, -0.10949588567018509, 0.10988649725914001, -0.05908549204468727, 0.04315216839313507, 0.0691341832280159, 0.15094906091690063, 0.07623322308063507, -0.07394596189260483, 0.014857121743261814, -0.005518527701497078, 0.03761016204953194, -0.0852770283818245, 0.054977208375930786, 0.01338272262364626, -0.005703384056687355, 0.03793494403362274, -0.0313841886818409, 0.06867477297782898, -0.10143239051103592, -0.08946534991264343, -0.04302152991294861, -0.10383187979459763, 0.04982125759124756, 0.07696358859539032, 0.09194859117269516, -0.08907774090766907, -0.06312383711338043, 0.09003946185112, 0.08162044733762741, -0.053664952516555786, 0.028555085882544518, -0.06406388431787491, 0.06912066042423248, -0.04936804994940758, -0.029596872627735138, -0.19602279365062714, -0.004808553494513035, 0.010299934074282646, -0.0061147394590079784, 0.014107801020145416, 0.01098197977989912, 0.06761409342288971, 0.056804899126291275, -0.05139205977320671, -0.019243307411670685, -0.01084283646196127, -0.001834170427173376, -0.13615812361240387, -0.1808529794216156, -0.03599371388554573, -0.017707888036966324, 0.10132928937673569, -0.18540474772453308, 0.03112841211259365, -0.021046895533800125, 0.08332569897174835, 0.0027033728547394276, -0.004462642129510641, -0.04626888781785965, 0.09051080793142319, -0.03311324119567871, -0.05396990105509758, 0.07307301461696625, 0.006288302130997181, -0.07276368141174316, -0.04810195788741112, -0.0819299966096878, 0.1813729703426361, 0.13940685987472534, -0.12596426904201508, -0.0882675051689148, -0.004028453025966883, -0.06503946334123611, -0.031265486031770706, -0.03857722133398056, 0.05418555811047554, 0.17301344871520996, -0.017708590254187584, 0.15403792262077332, -0.06813391298055649, -0.05623875930905342, 0.028707843273878098, -0.03532712161540985, 0.029072243720293045, 0.11004670709371567, 0.11974828690290451, -0.08900817483663559, 0.14554564654827118, 0.15391431748867035, -0.10160023719072342, 0.10429691523313522, -0.05077066272497177, -0.06706634908914566, -0.01251672487705946, -0.016507569700479507, 0.0012884426396340132, 0.08919990062713623, -0.11591503769159317, -0.0016212787013500929, 0.022870542481541634, 0.02815311960875988, 0.02011319063603878, -0.224787175655365, -0.03468577563762665, 0.024974405765533447, -0.029814599081873894, 0.0004341141029726714, -0.014815127477049828, 0.015063478611409664, 0.10258816927671432, 0.004534778650850058, -0.09380156546831131, 0.048520393669605255, 0.014564861543476582, -0.0756446123123169, 0.21674270927906036, -0.09022118151187897, -0.14593826234340668, -0.11624488234519958, -0.08634627610445023, -0.04097432270646095, 0.011721969582140446, 0.058565448969602585, -0.09158787876367569, -0.030116815119981766, -0.04525609686970711, 0.012142973951995373, -0.005173596553504467, 0.04623739421367645, 0.014842725358903408, 0.0030495289247483015, 0.08009906858205795, -0.10346952080726624, -0.008789552375674248, -0.05431676283478737, -0.06278429925441742, 0.05348251387476921, 0.03933750092983246, 0.10487201809883118, 0.1569710075855255, -0.03296894207596779, 0.008718988858163357, -0.031654637306928635, 0.23456759750843048, -0.05569463223218918, -0.03520897403359413, 0.1393730193376541, -0.0024011090863496065, 0.056997641921043396, 0.10464373975992203, 0.07013674825429916, -0.08981676399707794, 0.00783043447881937, 0.02534995786845684, -0.03659265860915184, -0.21441587805747986, -0.05255388468503952, -0.05260797590017319, -0.029587462544441223, 0.10359252989292145, 0.028790360316634178, 0.049198396503925323, 0.07697372883558273, 0.04570074751973152, 0.09425698965787888, -0.05499804764986038, 0.05957069993019104, 0.12232394516468048, 0.051078833639621735, 0.12302803993225098, -0.0427282452583313, -0.07306575775146484, 0.030765213072299957, -0.007024371065199375, 0.2321518510580063, -0.0032628895714879036, 0.10881271958351135, 0.05719037353992462, 0.19342875480651855, 0.0038999069947749376, 0.09198717772960663, -0.006460243836045265, -0.044194094836711884, -0.009633555077016354, -0.033296313136816025, -0.04123526066541672, 0.009397660382091999, -0.06226994842290878, 0.05364649370312691, -0.1196807250380516, -0.009289149194955826, 0.050134237855672836, 0.2653961181640625, 0.02273685671389103, -0.3339793086051941, -0.09248965978622437, -0.010218987241387367, -0.03551657497882843, -0.025824835523962975, 0.02162111923098564, 0.07296442240476608, -0.09697280079126358, 0.025622570887207985, -0.07322702556848526, 0.09153342247009277, -0.039509810507297516, 0.04308924823999405, 0.08116107434034348, 0.08779045194387436, 0.019290151074528694, 0.08140913397073746, -0.3185829222202301, 0.26780298352241516, -0.00021187835955061018, 0.07144036144018173, -0.07811768352985382, 0.002582176122814417, 0.029215140268206596, 0.06519816815853119, 0.0599852055311203, -0.01061771996319294, -0.04804646968841553, -0.214927077293396, -0.04657815024256706, 0.022135652601718903, 0.07916843891143799, -0.011979548260569572, 0.08719421178102493, -0.029064571484923363, 0.006556238513439894, 0.07196750491857529, -0.04189407452940941, -0.0415017195045948, -0.08471766859292984, -0.011861145496368408, 0.01880721002817154, -0.04022407904267311, -0.06075732409954071, -0.11136597394943237, -0.13316084444522858, 0.15359462797641754, -0.008845236152410507, -0.04041196033358574, -0.11783681809902191, 0.0812462642788887, 0.08954789489507675, -0.08709132671356201, 0.05931941792368889, 0.0036396142095327377, 0.061620306223630905, 0.03669716417789459, -0.0772317424416542, 0.10600248724222183, -0.06715934723615646, -0.15921403467655182, -0.05289292708039284, 0.09391022473573685, 0.032191697508096695, 0.058982059359550476, -0.00950258132070303, 0.014814728870987892, -0.038374051451683044, -0.09294191002845764, 0.0173097625374794, -0.01866321638226509, 0.08993133157491684, 0.016889214515686035, -0.056656207889318466, 0.017102636396884918, -0.060498014092445374, -0.026830347254872322, 0.18090897798538208, 0.2196655124425888, -0.10287491977214813, 0.013686158694326878, 0.034897755831480026, -0.061918407678604126, -0.19570067524909973, 0.04034947231411934, 0.06748542934656143, -0.0012271776795387268, 0.029113899916410446, -0.16972136497497559, 0.1419256031513214, 0.10551123321056366, -0.014669899828732014, 0.10172899067401886, -0.31665295362472534, -0.1246451586484909, 0.12861160933971405, 0.1473454385995865, 0.12457243353128433, -0.13186009228229523, -0.013426575809717178, -0.01252718549221754, -0.12497249990701675, 0.09699536859989166, -0.05247242748737335, 0.11657574772834778, -0.03681296110153198, 0.09311769157648087, 0.0029251223895698786, -0.06277438998222351, 0.10715985298156738, 0.035358328372240067, 0.10029197484254837, -0.05928600952029228, -0.039941225200891495, 0.031233787536621094, -0.038289107382297516, 0.016063280403614044, -0.05333855375647545, 0.03842533752322197, -0.0916447788476944, -0.017394354566931725, -0.08306533098220825, 0.048500906676054, -0.02767915092408657, -0.058594394475221634, -0.04173893481492996, 0.029515543952584267, 0.04780728742480278, -0.018003428354859352, 0.12610144913196564, 0.038327641785144806, 0.14373327791690826, 0.11571631580591202, 0.05829225480556488, -0.07512116432189941, -0.07014336436986923, -0.017223523929715157, -0.017133120447397232, 0.0630163848400116, -0.13097696006298065, 0.033279649913311005, 0.14940913021564484, 0.02116190455853939, 0.11784529685974121, 0.08631695806980133, -0.014253126457333565, 0.00504465913400054, 0.06137217581272125, -0.1622716188430786, -0.05507568269968033, 0.0022119563072919846, -0.05012131854891777, -0.09594478458166122, 0.06520457565784454, 0.07917432487010956, -0.07316941022872925, -0.016453685238957405, -0.007480594329535961, -0.00021205229859333485, -0.06216226890683174, 0.20866911113262177, 0.062066055834293365, 0.04942914843559265, -0.11116810888051987, 0.06542086601257324, 0.06073828786611557, -0.07383694499731064, -0.007424465846270323, 0.06431394070386887, -0.0902128666639328, -0.04236052185297012, 0.10512682795524597, 0.15635254979133606, -0.08011374622583389, -0.04144655168056488, -0.1354675143957138, -0.12520746886730194, 0.08677853643894196, 0.15890461206436157, 0.12489304691553116, 0.021501824259757996, -0.054475028067827225, 0.007089800201356411, -0.13387662172317505, 0.07424519211053848, 0.044379688799381256, 0.07944312691688538, -0.15576711297035217, 0.1676371842622757, 0.004846530966460705, 0.06041163578629494, -0.02384825609624386, 0.031517721712589264, -0.09938129037618637, 0.018574826419353485, -0.1127130538225174, -0.027855897322297096, -0.03126788139343262, 0.007517954800277948, -0.0004940911894664168, -0.0592070147395134, -0.048951685428619385, 0.0237616915255785, -0.12085966765880585, -0.015275700017809868, 0.035571567714214325, 0.05154969543218613, -0.10946477949619293, -0.043755341321229935, 0.020506858825683594, -0.05741633474826813, 0.06466024369001389, 0.050522539764642715, 0.014762289822101593, 0.057806890457868576, -0.1199878677725792, -0.012177947908639908, 0.08377160131931305, 0.008793972432613373, 0.07745788991451263, -0.09531646221876144, -0.0021185618825256824, 0.01195728313177824, 0.06254539638757706, 0.017126072198152542, 0.06622794270515442, -0.14882692694664001, -0.010463056154549122, -0.030604079365730286, -0.07362741231918335, -0.07045431435108185, 0.019125239923596382, 0.09593947231769562, 0.009765945374965668, 0.19502024352550507, -0.07359140366315842, 0.03785576671361923, -0.20059025287628174, -0.0062465365044772625, -0.02424280345439911, -0.1161719486117363, -0.12972070276737213, -0.05458125099539757, 0.060764577239751816, -0.04407225921750069, 0.13442161679267883, 0.02616490237414837, 0.041718389838933945, 0.028178803622722626, -0.025959709659218788, 0.006476039998233318, 0.02878553792834282, 0.21156518161296844, 0.02859206683933735, -0.03443186730146408, 0.07299944758415222, 0.057333022356033325, 0.09157410264015198, 0.10879490524530411, 0.1862693876028061, 0.15255291759967804, -0.01961454749107361, 0.08521606028079987, 0.020582683384418488, -0.04829508438706398, -0.1694210320711136, 0.03316252678632736, -0.05353350192308426, 0.09272469580173492, -0.01971045322716236, 0.2052977830171585, 0.05683044344186783, -0.16701331734657288, 0.0473184697329998, -0.05388953164219856, -0.08623956888914108, -0.09676872193813324, -0.03370310738682747, -0.07957352697849274, -0.141500785946846, 0.002779398113489151, -0.10325566679239273, 0.011160045862197876, 0.11466927081346512, 0.0076295253820717335, -0.026781436055898666, 0.15887784957885742, 0.027851175516843796, 0.031885918229818344, 0.04794427379965782, 0.0018722532549872994, -0.028002673760056496, -0.09754128754138947, -0.06250259280204773, -0.023123936727643013, -0.01149528194218874, 0.04034755378961563, -0.06283681839704514, -0.06379689276218414, 0.036611877381801605, -0.021615052595734596, -0.0894995853304863, 0.017238706350326538, 0.022441938519477844, 0.06316918879747391, 0.04359293356537819, 0.0020165627356618643, 0.019972143694758415, -0.020427267998456955, 0.20192945003509521, -0.07899655401706696, -0.08263418823480606, -0.09927323460578918, 0.289522647857666, 0.051607292145490646, -0.010741951875388622, 0.03612681105732918, -0.0561472550034523, -0.004417481832206249, 0.2550968527793884, 0.18141189217567444, -0.0769149586558342, -0.011618032120168209, 0.002433459972962737, -0.015313426032662392, -0.024845825508236885, 0.12317108362913132, 0.14786173403263092, 0.04738951101899147, -0.10228031873703003, -0.049345821142196655, -0.06341440230607986, -0.009089515544474125, -0.055267687886953354, 0.05001194402575493, 0.03479713574051857, 0.0038770504761487246, -0.04044526815414429, 0.049030594527721405, -0.06966245174407959, -0.09227500110864639, 0.07133441418409348, -0.19109979271888733, -0.15919677913188934, -0.007607383653521538, 0.10158266127109528, 0.0013105421094223857, 0.058238301426172256, -0.02937724068760872, 0.0035870843566954136, 0.07029356807470322, -0.02412567473948002, -0.08252295851707458, -0.07715246826410294, 0.09691807627677917, -0.09248333424329758, 0.19446077942848206, -0.040437471121549606, 0.07648584991693497, 0.12426755577325821, 0.06962809711694717, -0.08507595956325531, 0.05226566642522812, 0.0339452400803566, -0.07786066830158234, 0.03587929531931877, 0.08748921006917953, -0.02562606707215309, 0.04938745126128197, 0.024773404002189636, -0.13222108781337738, 0.01781325973570347, -0.07532327622175217, -0.0348363034427166, -0.04395242780447006, -0.04922715201973915, -0.04891927167773247, 0.1254318505525589, 0.2148224115371704, -0.026720507070422173, 0.008299464359879494, -0.07867999374866486, 0.015542326495051384, 0.05134269967675209, 0.004448243882507086, -0.08130179345607758, -0.22670459747314453, 0.01274810079485178, 0.05347956344485283, -0.02750125341117382, -0.19576425850391388, -0.09124565124511719, 0.0032196384854614735, -0.08462370187044144, -0.09923550486564636, 0.08249048888683319, 0.058607764542102814, 0.054958608001470566, -0.05453471466898918, -0.057126108556985855, -0.09094274789094925, 0.14695580303668976, -0.15082944929599762, -0.08961563557386398 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Precision: 0.9714 - Recall: 0.9855 - F1: 0.9784 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.0160 | 0.9653 | 0.9420 | 0.9535 | 0.9945 | | No log | 2.0 | 332 | 0.0089 | 0.9623 | 0.9855 | 0.9737 | 0.9965 | | No log | 3.0 | 498 | 0.0074 | 0.9714 | 0.9855 | 0.9784 | 0.9972 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud1-ner", "results": []}]}
token-classification
akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cloud1-ner ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0074 * Precision: 0.9714 * Recall: 0.9855 * F1: 0.9784 * Accuracy: 0.9972 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10434503853321075, 0.07932277768850327, -0.0021542105823755264, 0.12324507534503937, 0.18117885291576385, 0.0154117401689291, 0.10342364758253098, 0.11795366555452347, -0.11552219837903976, 0.020346563309431076, 0.12737931311130524, 0.19161252677440643, -0.0003065524506382644, 0.1254022717475891, -0.053780991584062576, -0.25177282094955444, -0.00544909480959177, 0.05693703889846802, -0.07687465101480484, 0.1344057321548462, 0.10057210922241211, -0.14128966629505157, 0.08275843411684036, 0.014897349290549755, -0.23755592107772827, 0.008134117349982262, 0.015916187316179276, -0.067073754966259, 0.1424940675497055, 0.013324943371117115, 0.13440552353858948, -0.001248353160917759, 0.08517016470432281, -0.1563616842031479, 0.004778845235705376, 0.05023762583732605, 0.01713418774306774, 0.09038269519805908, 0.0562928207218647, -0.0004724233003798872, 0.10107450187206268, -0.07903352379798889, 0.05318044126033783, 0.016871050000190735, -0.11750415712594986, -0.23266716301441193, -0.08958102017641068, 0.0353231318295002, 0.07206620275974274, 0.09947909414768219, 0.007558758370578289, 0.14441363513469696, -0.09510201215744019, 0.09222660958766937, 0.2275169938802719, -0.28139200806617737, -0.06349701434373856, 0.04011083021759987, -0.0009026827174238861, 0.04525962099432945, -0.10695228725671768, -0.038960039615631104, 0.05867922306060791, 0.05091315880417824, 0.1435626596212387, -0.036678820848464966, -0.11880259215831757, 0.012452912516891956, -0.14897193014621735, -0.03351792320609093, 0.12184678763151169, 0.026482557877898216, -0.03515561670064926, -0.03618975356221199, -0.05667060986161232, -0.16723361611366272, -0.03920105844736099, -0.011618892662227154, 0.04363185539841652, -0.042885418981313705, -0.06566765904426575, 0.01808771677315235, -0.10324759036302567, -0.06306828558444977, -0.0805402547121048, 0.15055160224437714, 0.04445463418960571, 0.014657003805041313, -0.024619758129119873, 0.10938486456871033, 0.0179300419986248, -0.12593360245227814, 0.023975374177098274, 0.028178011998534203, 0.0023876905906945467, -0.059126317501068115, -0.0674186423420906, -0.03604665398597717, 0.0036592877004295588, 0.1213681548833847, -0.06947387754917145, 0.04217692092061043, 0.043851882219314575, 0.042034100741147995, -0.09761182218790054, 0.19736436009407043, -0.04331754148006439, 0.014211470261216164, 0.010802814736962318, 0.03631647303700447, -0.0017010436858981848, 0.005891423672437668, -0.11279342323541641, -0.00008191860251827165, 0.12353520095348358, 0.019096611067652702, -0.0777820348739624, 0.0753462016582489, -0.05135048180818558, -0.02845766581594944, 0.027824362739920616, -0.09827792644500732, 0.03422514721751213, -0.01282274816185236, -0.0880250334739685, -0.009091401472687721, 0.0227163378149271, 0.009979380294680595, -0.022754371166229248, 0.1250169277191162, -0.08886996656656265, 0.04094705730676651, -0.10035109519958496, -0.09962237626314163, 0.01486019417643547, -0.08528398722410202, 0.0337212011218071, -0.1065574362874031, -0.1556529849767685, -0.012033786624670029, 0.05532378330826759, -0.01928732916712761, -0.05888168886303902, -0.0359046645462513, -0.07541327178478241, -0.0009290911839343607, -0.01953265070915222, 0.1408023089170456, -0.05440116673707962, 0.10860501974821091, 0.038193583488464355, 0.0653199553489685, -0.04218501225113869, 0.05959102883934975, -0.10567493736743927, 0.010582290589809418, -0.2022174745798111, 0.03394060209393501, -0.051403820514678955, 0.08213641494512558, -0.09558211266994476, -0.12252257764339447, 0.03218604251742363, -0.014203127473592758, 0.07364875823259354, 0.08043157309293747, -0.148633673787117, -0.06989260017871857, 0.13971179723739624, -0.06719176471233368, -0.10949588567018509, 0.10988649725914001, -0.05908549204468727, 0.04315216839313507, 0.0691341832280159, 0.15094906091690063, 0.07623322308063507, -0.07394596189260483, 0.014857121743261814, -0.005518527701497078, 0.03761016204953194, -0.0852770283818245, 0.054977208375930786, 0.01338272262364626, -0.005703384056687355, 0.03793494403362274, -0.0313841886818409, 0.06867477297782898, -0.10143239051103592, -0.08946534991264343, -0.04302152991294861, -0.10383187979459763, 0.04982125759124756, 0.07696358859539032, 0.09194859117269516, -0.08907774090766907, -0.06312383711338043, 0.09003946185112, 0.08162044733762741, -0.053664952516555786, 0.028555085882544518, -0.06406388431787491, 0.06912066042423248, -0.04936804994940758, -0.029596872627735138, -0.19602279365062714, -0.004808553494513035, 0.010299934074282646, -0.0061147394590079784, 0.014107801020145416, 0.01098197977989912, 0.06761409342288971, 0.056804899126291275, -0.05139205977320671, -0.019243307411670685, -0.01084283646196127, -0.001834170427173376, -0.13615812361240387, -0.1808529794216156, -0.03599371388554573, -0.017707888036966324, 0.10132928937673569, -0.18540474772453308, 0.03112841211259365, -0.021046895533800125, 0.08332569897174835, 0.0027033728547394276, -0.004462642129510641, -0.04626888781785965, 0.09051080793142319, -0.03311324119567871, -0.05396990105509758, 0.07307301461696625, 0.006288302130997181, -0.07276368141174316, -0.04810195788741112, -0.0819299966096878, 0.1813729703426361, 0.13940685987472534, -0.12596426904201508, -0.0882675051689148, -0.004028453025966883, -0.06503946334123611, -0.031265486031770706, -0.03857722133398056, 0.05418555811047554, 0.17301344871520996, -0.017708590254187584, 0.15403792262077332, -0.06813391298055649, -0.05623875930905342, 0.028707843273878098, -0.03532712161540985, 0.029072243720293045, 0.11004670709371567, 0.11974828690290451, -0.08900817483663559, 0.14554564654827118, 0.15391431748867035, -0.10160023719072342, 0.10429691523313522, -0.05077066272497177, -0.06706634908914566, -0.01251672487705946, -0.016507569700479507, 0.0012884426396340132, 0.08919990062713623, -0.11591503769159317, -0.0016212787013500929, 0.022870542481541634, 0.02815311960875988, 0.02011319063603878, -0.224787175655365, -0.03468577563762665, 0.024974405765533447, -0.029814599081873894, 0.0004341141029726714, -0.014815127477049828, 0.015063478611409664, 0.10258816927671432, 0.004534778650850058, -0.09380156546831131, 0.048520393669605255, 0.014564861543476582, -0.0756446123123169, 0.21674270927906036, -0.09022118151187897, -0.14593826234340668, -0.11624488234519958, -0.08634627610445023, -0.04097432270646095, 0.011721969582140446, 0.058565448969602585, -0.09158787876367569, -0.030116815119981766, -0.04525609686970711, 0.012142973951995373, -0.005173596553504467, 0.04623739421367645, 0.014842725358903408, 0.0030495289247483015, 0.08009906858205795, -0.10346952080726624, -0.008789552375674248, -0.05431676283478737, -0.06278429925441742, 0.05348251387476921, 0.03933750092983246, 0.10487201809883118, 0.1569710075855255, -0.03296894207596779, 0.008718988858163357, -0.031654637306928635, 0.23456759750843048, -0.05569463223218918, -0.03520897403359413, 0.1393730193376541, -0.0024011090863496065, 0.056997641921043396, 0.10464373975992203, 0.07013674825429916, -0.08981676399707794, 0.00783043447881937, 0.02534995786845684, -0.03659265860915184, -0.21441587805747986, -0.05255388468503952, -0.05260797590017319, -0.029587462544441223, 0.10359252989292145, 0.028790360316634178, 0.049198396503925323, 0.07697372883558273, 0.04570074751973152, 0.09425698965787888, -0.05499804764986038, 0.05957069993019104, 0.12232394516468048, 0.051078833639621735, 0.12302803993225098, -0.0427282452583313, -0.07306575775146484, 0.030765213072299957, -0.007024371065199375, 0.2321518510580063, -0.0032628895714879036, 0.10881271958351135, 0.05719037353992462, 0.19342875480651855, 0.0038999069947749376, 0.09198717772960663, -0.006460243836045265, -0.044194094836711884, -0.009633555077016354, -0.033296313136816025, -0.04123526066541672, 0.009397660382091999, -0.06226994842290878, 0.05364649370312691, -0.1196807250380516, -0.009289149194955826, 0.050134237855672836, 0.2653961181640625, 0.02273685671389103, -0.3339793086051941, -0.09248965978622437, -0.010218987241387367, -0.03551657497882843, -0.025824835523962975, 0.02162111923098564, 0.07296442240476608, -0.09697280079126358, 0.025622570887207985, -0.07322702556848526, 0.09153342247009277, -0.039509810507297516, 0.04308924823999405, 0.08116107434034348, 0.08779045194387436, 0.019290151074528694, 0.08140913397073746, -0.3185829222202301, 0.26780298352241516, -0.00021187835955061018, 0.07144036144018173, -0.07811768352985382, 0.002582176122814417, 0.029215140268206596, 0.06519816815853119, 0.0599852055311203, -0.01061771996319294, -0.04804646968841553, -0.214927077293396, -0.04657815024256706, 0.022135652601718903, 0.07916843891143799, -0.011979548260569572, 0.08719421178102493, -0.029064571484923363, 0.006556238513439894, 0.07196750491857529, -0.04189407452940941, -0.0415017195045948, -0.08471766859292984, -0.011861145496368408, 0.01880721002817154, -0.04022407904267311, -0.06075732409954071, -0.11136597394943237, -0.13316084444522858, 0.15359462797641754, -0.008845236152410507, -0.04041196033358574, -0.11783681809902191, 0.0812462642788887, 0.08954789489507675, -0.08709132671356201, 0.05931941792368889, 0.0036396142095327377, 0.061620306223630905, 0.03669716417789459, -0.0772317424416542, 0.10600248724222183, -0.06715934723615646, -0.15921403467655182, -0.05289292708039284, 0.09391022473573685, 0.032191697508096695, 0.058982059359550476, -0.00950258132070303, 0.014814728870987892, -0.038374051451683044, -0.09294191002845764, 0.0173097625374794, -0.01866321638226509, 0.08993133157491684, 0.016889214515686035, -0.056656207889318466, 0.017102636396884918, -0.060498014092445374, -0.026830347254872322, 0.18090897798538208, 0.2196655124425888, -0.10287491977214813, 0.013686158694326878, 0.034897755831480026, -0.061918407678604126, -0.19570067524909973, 0.04034947231411934, 0.06748542934656143, -0.0012271776795387268, 0.029113899916410446, -0.16972136497497559, 0.1419256031513214, 0.10551123321056366, -0.014669899828732014, 0.10172899067401886, -0.31665295362472534, -0.1246451586484909, 0.12861160933971405, 0.1473454385995865, 0.12457243353128433, -0.13186009228229523, -0.013426575809717178, -0.01252718549221754, -0.12497249990701675, 0.09699536859989166, -0.05247242748737335, 0.11657574772834778, -0.03681296110153198, 0.09311769157648087, 0.0029251223895698786, -0.06277438998222351, 0.10715985298156738, 0.035358328372240067, 0.10029197484254837, -0.05928600952029228, -0.039941225200891495, 0.031233787536621094, -0.038289107382297516, 0.016063280403614044, -0.05333855375647545, 0.03842533752322197, -0.0916447788476944, -0.017394354566931725, -0.08306533098220825, 0.048500906676054, -0.02767915092408657, -0.058594394475221634, -0.04173893481492996, 0.029515543952584267, 0.04780728742480278, -0.018003428354859352, 0.12610144913196564, 0.038327641785144806, 0.14373327791690826, 0.11571631580591202, 0.05829225480556488, -0.07512116432189941, -0.07014336436986923, -0.017223523929715157, -0.017133120447397232, 0.0630163848400116, -0.13097696006298065, 0.033279649913311005, 0.14940913021564484, 0.02116190455853939, 0.11784529685974121, 0.08631695806980133, -0.014253126457333565, 0.00504465913400054, 0.06137217581272125, -0.1622716188430786, -0.05507568269968033, 0.0022119563072919846, -0.05012131854891777, -0.09594478458166122, 0.06520457565784454, 0.07917432487010956, -0.07316941022872925, -0.016453685238957405, -0.007480594329535961, -0.00021205229859333485, -0.06216226890683174, 0.20866911113262177, 0.062066055834293365, 0.04942914843559265, -0.11116810888051987, 0.06542086601257324, 0.06073828786611557, -0.07383694499731064, -0.007424465846270323, 0.06431394070386887, -0.0902128666639328, -0.04236052185297012, 0.10512682795524597, 0.15635254979133606, -0.08011374622583389, -0.04144655168056488, -0.1354675143957138, -0.12520746886730194, 0.08677853643894196, 0.15890461206436157, 0.12489304691553116, 0.021501824259757996, -0.054475028067827225, 0.007089800201356411, -0.13387662172317505, 0.07424519211053848, 0.044379688799381256, 0.07944312691688538, -0.15576711297035217, 0.1676371842622757, 0.004846530966460705, 0.06041163578629494, -0.02384825609624386, 0.031517721712589264, -0.09938129037618637, 0.018574826419353485, -0.1127130538225174, -0.027855897322297096, -0.03126788139343262, 0.007517954800277948, -0.0004940911894664168, -0.0592070147395134, -0.048951685428619385, 0.0237616915255785, -0.12085966765880585, -0.015275700017809868, 0.035571567714214325, 0.05154969543218613, -0.10946477949619293, -0.043755341321229935, 0.020506858825683594, -0.05741633474826813, 0.06466024369001389, 0.050522539764642715, 0.014762289822101593, 0.057806890457868576, -0.1199878677725792, -0.012177947908639908, 0.08377160131931305, 0.008793972432613373, 0.07745788991451263, -0.09531646221876144, -0.0021185618825256824, 0.01195728313177824, 0.06254539638757706, 0.017126072198152542, 0.06622794270515442, -0.14882692694664001, -0.010463056154549122, -0.030604079365730286, -0.07362741231918335, -0.07045431435108185, 0.019125239923596382, 0.09593947231769562, 0.009765945374965668, 0.19502024352550507, -0.07359140366315842, 0.03785576671361923, -0.20059025287628174, -0.0062465365044772625, -0.02424280345439911, -0.1161719486117363, -0.12972070276737213, -0.05458125099539757, 0.060764577239751816, -0.04407225921750069, 0.13442161679267883, 0.02616490237414837, 0.041718389838933945, 0.028178803622722626, -0.025959709659218788, 0.006476039998233318, 0.02878553792834282, 0.21156518161296844, 0.02859206683933735, -0.03443186730146408, 0.07299944758415222, 0.057333022356033325, 0.09157410264015198, 0.10879490524530411, 0.1862693876028061, 0.15255291759967804, -0.01961454749107361, 0.08521606028079987, 0.020582683384418488, -0.04829508438706398, -0.1694210320711136, 0.03316252678632736, -0.05353350192308426, 0.09272469580173492, -0.01971045322716236, 0.2052977830171585, 0.05683044344186783, -0.16701331734657288, 0.0473184697329998, -0.05388953164219856, -0.08623956888914108, -0.09676872193813324, -0.03370310738682747, -0.07957352697849274, -0.141500785946846, 0.002779398113489151, -0.10325566679239273, 0.011160045862197876, 0.11466927081346512, 0.0076295253820717335, -0.026781436055898666, 0.15887784957885742, 0.027851175516843796, 0.031885918229818344, 0.04794427379965782, 0.0018722532549872994, -0.028002673760056496, -0.09754128754138947, -0.06250259280204773, -0.023123936727643013, -0.01149528194218874, 0.04034755378961563, -0.06283681839704514, -0.06379689276218414, 0.036611877381801605, -0.021615052595734596, -0.0894995853304863, 0.017238706350326538, 0.022441938519477844, 0.06316918879747391, 0.04359293356537819, 0.0020165627356618643, 0.019972143694758415, -0.020427267998456955, 0.20192945003509521, -0.07899655401706696, -0.08263418823480606, -0.09927323460578918, 0.289522647857666, 0.051607292145490646, -0.010741951875388622, 0.03612681105732918, -0.0561472550034523, -0.004417481832206249, 0.2550968527793884, 0.18141189217567444, -0.0769149586558342, -0.011618032120168209, 0.002433459972962737, -0.015313426032662392, -0.024845825508236885, 0.12317108362913132, 0.14786173403263092, 0.04738951101899147, -0.10228031873703003, -0.049345821142196655, -0.06341440230607986, -0.009089515544474125, -0.055267687886953354, 0.05001194402575493, 0.03479713574051857, 0.0038770504761487246, -0.04044526815414429, 0.049030594527721405, -0.06966245174407959, -0.09227500110864639, 0.07133441418409348, -0.19109979271888733, -0.15919677913188934, -0.007607383653521538, 0.10158266127109528, 0.0013105421094223857, 0.058238301426172256, -0.02937724068760872, 0.0035870843566954136, 0.07029356807470322, -0.02412567473948002, -0.08252295851707458, -0.07715246826410294, 0.09691807627677917, -0.09248333424329758, 0.19446077942848206, -0.040437471121549606, 0.07648584991693497, 0.12426755577325821, 0.06962809711694717, -0.08507595956325531, 0.05226566642522812, 0.0339452400803566, -0.07786066830158234, 0.03587929531931877, 0.08748921006917953, -0.02562606707215309, 0.04938745126128197, 0.024773404002189636, -0.13222108781337738, 0.01781325973570347, -0.07532327622175217, -0.0348363034427166, -0.04395242780447006, -0.04922715201973915, -0.04891927167773247, 0.1254318505525589, 0.2148224115371704, -0.026720507070422173, 0.008299464359879494, -0.07867999374866486, 0.015542326495051384, 0.05134269967675209, 0.004448243882507086, -0.08130179345607758, -0.22670459747314453, 0.01274810079485178, 0.05347956344485283, -0.02750125341117382, -0.19576425850391388, -0.09124565124511719, 0.0032196384854614735, -0.08462370187044144, -0.09923550486564636, 0.08249048888683319, 0.058607764542102814, 0.054958608001470566, -0.05453471466898918, -0.057126108556985855, -0.09094274789094925, 0.14695580303668976, -0.15082944929599762, -0.08961563557386398 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud2-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8866 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 162 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.8447 | | No log | 2.0 | 324 | 0.8303 | 0.0 | 0.0 | 0.0 | 0.8465 | | No log | 3.0 | 486 | 0.8866 | 0.0 | 0.0 | 0.0 | 0.8453 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud2-ner", "results": []}]}
token-classification
akshaychaudhary/distilbert-base-uncased-finetuned-cloud2-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cloud2-ner ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8866 * Precision: 0.0 * Recall: 0.0 * F1: 0.0 * Accuracy: 0.8453 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10434503853321075, 0.07932277768850327, -0.0021542105823755264, 0.12324507534503937, 0.18117885291576385, 0.0154117401689291, 0.10342364758253098, 0.11795366555452347, -0.11552219837903976, 0.020346563309431076, 0.12737931311130524, 0.19161252677440643, -0.0003065524506382644, 0.1254022717475891, -0.053780991584062576, -0.25177282094955444, -0.00544909480959177, 0.05693703889846802, -0.07687465101480484, 0.1344057321548462, 0.10057210922241211, -0.14128966629505157, 0.08275843411684036, 0.014897349290549755, -0.23755592107772827, 0.008134117349982262, 0.015916187316179276, -0.067073754966259, 0.1424940675497055, 0.013324943371117115, 0.13440552353858948, -0.001248353160917759, 0.08517016470432281, -0.1563616842031479, 0.004778845235705376, 0.05023762583732605, 0.01713418774306774, 0.09038269519805908, 0.0562928207218647, -0.0004724233003798872, 0.10107450187206268, -0.07903352379798889, 0.05318044126033783, 0.016871050000190735, -0.11750415712594986, -0.23266716301441193, -0.08958102017641068, 0.0353231318295002, 0.07206620275974274, 0.09947909414768219, 0.007558758370578289, 0.14441363513469696, -0.09510201215744019, 0.09222660958766937, 0.2275169938802719, -0.28139200806617737, -0.06349701434373856, 0.04011083021759987, -0.0009026827174238861, 0.04525962099432945, -0.10695228725671768, -0.038960039615631104, 0.05867922306060791, 0.05091315880417824, 0.1435626596212387, -0.036678820848464966, -0.11880259215831757, 0.012452912516891956, -0.14897193014621735, -0.03351792320609093, 0.12184678763151169, 0.026482557877898216, -0.03515561670064926, -0.03618975356221199, -0.05667060986161232, -0.16723361611366272, -0.03920105844736099, -0.011618892662227154, 0.04363185539841652, -0.042885418981313705, -0.06566765904426575, 0.01808771677315235, -0.10324759036302567, -0.06306828558444977, -0.0805402547121048, 0.15055160224437714, 0.04445463418960571, 0.014657003805041313, -0.024619758129119873, 0.10938486456871033, 0.0179300419986248, -0.12593360245227814, 0.023975374177098274, 0.028178011998534203, 0.0023876905906945467, -0.059126317501068115, -0.0674186423420906, -0.03604665398597717, 0.0036592877004295588, 0.1213681548833847, -0.06947387754917145, 0.04217692092061043, 0.043851882219314575, 0.042034100741147995, -0.09761182218790054, 0.19736436009407043, -0.04331754148006439, 0.014211470261216164, 0.010802814736962318, 0.03631647303700447, -0.0017010436858981848, 0.005891423672437668, -0.11279342323541641, -0.00008191860251827165, 0.12353520095348358, 0.019096611067652702, -0.0777820348739624, 0.0753462016582489, -0.05135048180818558, -0.02845766581594944, 0.027824362739920616, -0.09827792644500732, 0.03422514721751213, -0.01282274816185236, -0.0880250334739685, -0.009091401472687721, 0.0227163378149271, 0.009979380294680595, -0.022754371166229248, 0.1250169277191162, -0.08886996656656265, 0.04094705730676651, -0.10035109519958496, -0.09962237626314163, 0.01486019417643547, -0.08528398722410202, 0.0337212011218071, -0.1065574362874031, -0.1556529849767685, -0.012033786624670029, 0.05532378330826759, -0.01928732916712761, -0.05888168886303902, -0.0359046645462513, -0.07541327178478241, -0.0009290911839343607, -0.01953265070915222, 0.1408023089170456, -0.05440116673707962, 0.10860501974821091, 0.038193583488464355, 0.0653199553489685, -0.04218501225113869, 0.05959102883934975, -0.10567493736743927, 0.010582290589809418, -0.2022174745798111, 0.03394060209393501, -0.051403820514678955, 0.08213641494512558, -0.09558211266994476, -0.12252257764339447, 0.03218604251742363, -0.014203127473592758, 0.07364875823259354, 0.08043157309293747, -0.148633673787117, -0.06989260017871857, 0.13971179723739624, -0.06719176471233368, -0.10949588567018509, 0.10988649725914001, -0.05908549204468727, 0.04315216839313507, 0.0691341832280159, 0.15094906091690063, 0.07623322308063507, -0.07394596189260483, 0.014857121743261814, -0.005518527701497078, 0.03761016204953194, -0.0852770283818245, 0.054977208375930786, 0.01338272262364626, -0.005703384056687355, 0.03793494403362274, -0.0313841886818409, 0.06867477297782898, -0.10143239051103592, -0.08946534991264343, -0.04302152991294861, -0.10383187979459763, 0.04982125759124756, 0.07696358859539032, 0.09194859117269516, -0.08907774090766907, -0.06312383711338043, 0.09003946185112, 0.08162044733762741, -0.053664952516555786, 0.028555085882544518, -0.06406388431787491, 0.06912066042423248, -0.04936804994940758, -0.029596872627735138, -0.19602279365062714, -0.004808553494513035, 0.010299934074282646, -0.0061147394590079784, 0.014107801020145416, 0.01098197977989912, 0.06761409342288971, 0.056804899126291275, -0.05139205977320671, -0.019243307411670685, -0.01084283646196127, -0.001834170427173376, -0.13615812361240387, -0.1808529794216156, -0.03599371388554573, -0.017707888036966324, 0.10132928937673569, -0.18540474772453308, 0.03112841211259365, -0.021046895533800125, 0.08332569897174835, 0.0027033728547394276, -0.004462642129510641, -0.04626888781785965, 0.09051080793142319, -0.03311324119567871, -0.05396990105509758, 0.07307301461696625, 0.006288302130997181, -0.07276368141174316, -0.04810195788741112, -0.0819299966096878, 0.1813729703426361, 0.13940685987472534, -0.12596426904201508, -0.0882675051689148, -0.004028453025966883, -0.06503946334123611, -0.031265486031770706, -0.03857722133398056, 0.05418555811047554, 0.17301344871520996, -0.017708590254187584, 0.15403792262077332, -0.06813391298055649, -0.05623875930905342, 0.028707843273878098, -0.03532712161540985, 0.029072243720293045, 0.11004670709371567, 0.11974828690290451, -0.08900817483663559, 0.14554564654827118, 0.15391431748867035, -0.10160023719072342, 0.10429691523313522, -0.05077066272497177, -0.06706634908914566, -0.01251672487705946, -0.016507569700479507, 0.0012884426396340132, 0.08919990062713623, -0.11591503769159317, -0.0016212787013500929, 0.022870542481541634, 0.02815311960875988, 0.02011319063603878, -0.224787175655365, -0.03468577563762665, 0.024974405765533447, -0.029814599081873894, 0.0004341141029726714, -0.014815127477049828, 0.015063478611409664, 0.10258816927671432, 0.004534778650850058, -0.09380156546831131, 0.048520393669605255, 0.014564861543476582, -0.0756446123123169, 0.21674270927906036, -0.09022118151187897, -0.14593826234340668, -0.11624488234519958, -0.08634627610445023, -0.04097432270646095, 0.011721969582140446, 0.058565448969602585, -0.09158787876367569, -0.030116815119981766, -0.04525609686970711, 0.012142973951995373, -0.005173596553504467, 0.04623739421367645, 0.014842725358903408, 0.0030495289247483015, 0.08009906858205795, -0.10346952080726624, -0.008789552375674248, -0.05431676283478737, -0.06278429925441742, 0.05348251387476921, 0.03933750092983246, 0.10487201809883118, 0.1569710075855255, -0.03296894207596779, 0.008718988858163357, -0.031654637306928635, 0.23456759750843048, -0.05569463223218918, -0.03520897403359413, 0.1393730193376541, -0.0024011090863496065, 0.056997641921043396, 0.10464373975992203, 0.07013674825429916, -0.08981676399707794, 0.00783043447881937, 0.02534995786845684, -0.03659265860915184, -0.21441587805747986, -0.05255388468503952, -0.05260797590017319, -0.029587462544441223, 0.10359252989292145, 0.028790360316634178, 0.049198396503925323, 0.07697372883558273, 0.04570074751973152, 0.09425698965787888, -0.05499804764986038, 0.05957069993019104, 0.12232394516468048, 0.051078833639621735, 0.12302803993225098, -0.0427282452583313, -0.07306575775146484, 0.030765213072299957, -0.007024371065199375, 0.2321518510580063, -0.0032628895714879036, 0.10881271958351135, 0.05719037353992462, 0.19342875480651855, 0.0038999069947749376, 0.09198717772960663, -0.006460243836045265, -0.044194094836711884, -0.009633555077016354, -0.033296313136816025, -0.04123526066541672, 0.009397660382091999, -0.06226994842290878, 0.05364649370312691, -0.1196807250380516, -0.009289149194955826, 0.050134237855672836, 0.2653961181640625, 0.02273685671389103, -0.3339793086051941, -0.09248965978622437, -0.010218987241387367, -0.03551657497882843, -0.025824835523962975, 0.02162111923098564, 0.07296442240476608, -0.09697280079126358, 0.025622570887207985, -0.07322702556848526, 0.09153342247009277, -0.039509810507297516, 0.04308924823999405, 0.08116107434034348, 0.08779045194387436, 0.019290151074528694, 0.08140913397073746, -0.3185829222202301, 0.26780298352241516, -0.00021187835955061018, 0.07144036144018173, -0.07811768352985382, 0.002582176122814417, 0.029215140268206596, 0.06519816815853119, 0.0599852055311203, -0.01061771996319294, -0.04804646968841553, -0.214927077293396, -0.04657815024256706, 0.022135652601718903, 0.07916843891143799, -0.011979548260569572, 0.08719421178102493, -0.029064571484923363, 0.006556238513439894, 0.07196750491857529, -0.04189407452940941, -0.0415017195045948, -0.08471766859292984, -0.011861145496368408, 0.01880721002817154, -0.04022407904267311, -0.06075732409954071, -0.11136597394943237, -0.13316084444522858, 0.15359462797641754, -0.008845236152410507, -0.04041196033358574, -0.11783681809902191, 0.0812462642788887, 0.08954789489507675, -0.08709132671356201, 0.05931941792368889, 0.0036396142095327377, 0.061620306223630905, 0.03669716417789459, -0.0772317424416542, 0.10600248724222183, -0.06715934723615646, -0.15921403467655182, -0.05289292708039284, 0.09391022473573685, 0.032191697508096695, 0.058982059359550476, -0.00950258132070303, 0.014814728870987892, -0.038374051451683044, -0.09294191002845764, 0.0173097625374794, -0.01866321638226509, 0.08993133157491684, 0.016889214515686035, -0.056656207889318466, 0.017102636396884918, -0.060498014092445374, -0.026830347254872322, 0.18090897798538208, 0.2196655124425888, -0.10287491977214813, 0.013686158694326878, 0.034897755831480026, -0.061918407678604126, -0.19570067524909973, 0.04034947231411934, 0.06748542934656143, -0.0012271776795387268, 0.029113899916410446, -0.16972136497497559, 0.1419256031513214, 0.10551123321056366, -0.014669899828732014, 0.10172899067401886, -0.31665295362472534, -0.1246451586484909, 0.12861160933971405, 0.1473454385995865, 0.12457243353128433, -0.13186009228229523, -0.013426575809717178, -0.01252718549221754, -0.12497249990701675, 0.09699536859989166, -0.05247242748737335, 0.11657574772834778, -0.03681296110153198, 0.09311769157648087, 0.0029251223895698786, -0.06277438998222351, 0.10715985298156738, 0.035358328372240067, 0.10029197484254837, -0.05928600952029228, -0.039941225200891495, 0.031233787536621094, -0.038289107382297516, 0.016063280403614044, -0.05333855375647545, 0.03842533752322197, -0.0916447788476944, -0.017394354566931725, -0.08306533098220825, 0.048500906676054, -0.02767915092408657, -0.058594394475221634, -0.04173893481492996, 0.029515543952584267, 0.04780728742480278, -0.018003428354859352, 0.12610144913196564, 0.038327641785144806, 0.14373327791690826, 0.11571631580591202, 0.05829225480556488, -0.07512116432189941, -0.07014336436986923, -0.017223523929715157, -0.017133120447397232, 0.0630163848400116, -0.13097696006298065, 0.033279649913311005, 0.14940913021564484, 0.02116190455853939, 0.11784529685974121, 0.08631695806980133, -0.014253126457333565, 0.00504465913400054, 0.06137217581272125, -0.1622716188430786, -0.05507568269968033, 0.0022119563072919846, -0.05012131854891777, -0.09594478458166122, 0.06520457565784454, 0.07917432487010956, -0.07316941022872925, -0.016453685238957405, -0.007480594329535961, -0.00021205229859333485, -0.06216226890683174, 0.20866911113262177, 0.062066055834293365, 0.04942914843559265, -0.11116810888051987, 0.06542086601257324, 0.06073828786611557, -0.07383694499731064, -0.007424465846270323, 0.06431394070386887, -0.0902128666639328, -0.04236052185297012, 0.10512682795524597, 0.15635254979133606, -0.08011374622583389, -0.04144655168056488, -0.1354675143957138, -0.12520746886730194, 0.08677853643894196, 0.15890461206436157, 0.12489304691553116, 0.021501824259757996, -0.054475028067827225, 0.007089800201356411, -0.13387662172317505, 0.07424519211053848, 0.044379688799381256, 0.07944312691688538, -0.15576711297035217, 0.1676371842622757, 0.004846530966460705, 0.06041163578629494, -0.02384825609624386, 0.031517721712589264, -0.09938129037618637, 0.018574826419353485, -0.1127130538225174, -0.027855897322297096, -0.03126788139343262, 0.007517954800277948, -0.0004940911894664168, -0.0592070147395134, -0.048951685428619385, 0.0237616915255785, -0.12085966765880585, -0.015275700017809868, 0.035571567714214325, 0.05154969543218613, -0.10946477949619293, -0.043755341321229935, 0.020506858825683594, -0.05741633474826813, 0.06466024369001389, 0.050522539764642715, 0.014762289822101593, 0.057806890457868576, -0.1199878677725792, -0.012177947908639908, 0.08377160131931305, 0.008793972432613373, 0.07745788991451263, -0.09531646221876144, -0.0021185618825256824, 0.01195728313177824, 0.06254539638757706, 0.017126072198152542, 0.06622794270515442, -0.14882692694664001, -0.010463056154549122, -0.030604079365730286, -0.07362741231918335, -0.07045431435108185, 0.019125239923596382, 0.09593947231769562, 0.009765945374965668, 0.19502024352550507, -0.07359140366315842, 0.03785576671361923, -0.20059025287628174, -0.0062465365044772625, -0.02424280345439911, -0.1161719486117363, -0.12972070276737213, -0.05458125099539757, 0.060764577239751816, -0.04407225921750069, 0.13442161679267883, 0.02616490237414837, 0.041718389838933945, 0.028178803622722626, -0.025959709659218788, 0.006476039998233318, 0.02878553792834282, 0.21156518161296844, 0.02859206683933735, -0.03443186730146408, 0.07299944758415222, 0.057333022356033325, 0.09157410264015198, 0.10879490524530411, 0.1862693876028061, 0.15255291759967804, -0.01961454749107361, 0.08521606028079987, 0.020582683384418488, -0.04829508438706398, -0.1694210320711136, 0.03316252678632736, -0.05353350192308426, 0.09272469580173492, -0.01971045322716236, 0.2052977830171585, 0.05683044344186783, -0.16701331734657288, 0.0473184697329998, -0.05388953164219856, -0.08623956888914108, -0.09676872193813324, -0.03370310738682747, -0.07957352697849274, -0.141500785946846, 0.002779398113489151, -0.10325566679239273, 0.011160045862197876, 0.11466927081346512, 0.0076295253820717335, -0.026781436055898666, 0.15887784957885742, 0.027851175516843796, 0.031885918229818344, 0.04794427379965782, 0.0018722532549872994, -0.028002673760056496, -0.09754128754138947, -0.06250259280204773, -0.023123936727643013, -0.01149528194218874, 0.04034755378961563, -0.06283681839704514, -0.06379689276218414, 0.036611877381801605, -0.021615052595734596, -0.0894995853304863, 0.017238706350326538, 0.022441938519477844, 0.06316918879747391, 0.04359293356537819, 0.0020165627356618643, 0.019972143694758415, -0.020427267998456955, 0.20192945003509521, -0.07899655401706696, -0.08263418823480606, -0.09927323460578918, 0.289522647857666, 0.051607292145490646, -0.010741951875388622, 0.03612681105732918, -0.0561472550034523, -0.004417481832206249, 0.2550968527793884, 0.18141189217567444, -0.0769149586558342, -0.011618032120168209, 0.002433459972962737, -0.015313426032662392, -0.024845825508236885, 0.12317108362913132, 0.14786173403263092, 0.04738951101899147, -0.10228031873703003, -0.049345821142196655, -0.06341440230607986, -0.009089515544474125, -0.055267687886953354, 0.05001194402575493, 0.03479713574051857, 0.0038770504761487246, -0.04044526815414429, 0.049030594527721405, -0.06966245174407959, -0.09227500110864639, 0.07133441418409348, -0.19109979271888733, -0.15919677913188934, -0.007607383653521538, 0.10158266127109528, 0.0013105421094223857, 0.058238301426172256, -0.02937724068760872, 0.0035870843566954136, 0.07029356807470322, -0.02412567473948002, -0.08252295851707458, -0.07715246826410294, 0.09691807627677917, -0.09248333424329758, 0.19446077942848206, -0.040437471121549606, 0.07648584991693497, 0.12426755577325821, 0.06962809711694717, -0.08507595956325531, 0.05226566642522812, 0.0339452400803566, -0.07786066830158234, 0.03587929531931877, 0.08748921006917953, -0.02562606707215309, 0.04938745126128197, 0.024773404002189636, -0.13222108781337738, 0.01781325973570347, -0.07532327622175217, -0.0348363034427166, -0.04395242780447006, -0.04922715201973915, -0.04891927167773247, 0.1254318505525589, 0.2148224115371704, -0.026720507070422173, 0.008299464359879494, -0.07867999374866486, 0.015542326495051384, 0.05134269967675209, 0.004448243882507086, -0.08130179345607758, -0.22670459747314453, 0.01274810079485178, 0.05347956344485283, -0.02750125341117382, -0.19576425850391388, -0.09124565124511719, 0.0032196384854614735, -0.08462370187044144, -0.09923550486564636, 0.08249048888683319, 0.058607764542102814, 0.054958608001470566, -0.05453471466898918, -0.057126108556985855, -0.09094274789094925, 0.14695580303668976, -0.15082944929599762, -0.08961563557386398 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hypertuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5683 - Precision: 0.3398 - Recall: 0.6481 - F1: 0.4459 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.3566 | 0.2913 | 0.5556 | 0.3822 | 0.8585 | | No log | 2.0 | 168 | 0.4698 | 0.3366 | 0.6296 | 0.4387 | 0.8730 | | No log | 3.0 | 252 | 0.5683 | 0.3398 | 0.6481 | 0.4459 | 0.8762 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-hypertuned-ner", "results": []}]}
token-classification
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-hypertuned-ner ================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5683 * Precision: 0.3398 * Recall: 0.6481 * F1: 0.4459 * Accuracy: 0.8762 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10434503853321075, 0.07932277768850327, -0.0021542105823755264, 0.12324507534503937, 0.18117885291576385, 0.0154117401689291, 0.10342364758253098, 0.11795366555452347, -0.11552219837903976, 0.020346563309431076, 0.12737931311130524, 0.19161252677440643, -0.0003065524506382644, 0.1254022717475891, -0.053780991584062576, -0.25177282094955444, -0.00544909480959177, 0.05693703889846802, -0.07687465101480484, 0.1344057321548462, 0.10057210922241211, -0.14128966629505157, 0.08275843411684036, 0.014897349290549755, -0.23755592107772827, 0.008134117349982262, 0.015916187316179276, -0.067073754966259, 0.1424940675497055, 0.013324943371117115, 0.13440552353858948, -0.001248353160917759, 0.08517016470432281, -0.1563616842031479, 0.004778845235705376, 0.05023762583732605, 0.01713418774306774, 0.09038269519805908, 0.0562928207218647, -0.0004724233003798872, 0.10107450187206268, -0.07903352379798889, 0.05318044126033783, 0.016871050000190735, -0.11750415712594986, -0.23266716301441193, -0.08958102017641068, 0.0353231318295002, 0.07206620275974274, 0.09947909414768219, 0.007558758370578289, 0.14441363513469696, -0.09510201215744019, 0.09222660958766937, 0.2275169938802719, -0.28139200806617737, -0.06349701434373856, 0.04011083021759987, -0.0009026827174238861, 0.04525962099432945, -0.10695228725671768, -0.038960039615631104, 0.05867922306060791, 0.05091315880417824, 0.1435626596212387, -0.036678820848464966, -0.11880259215831757, 0.012452912516891956, -0.14897193014621735, -0.03351792320609093, 0.12184678763151169, 0.026482557877898216, -0.03515561670064926, -0.03618975356221199, -0.05667060986161232, -0.16723361611366272, -0.03920105844736099, -0.011618892662227154, 0.04363185539841652, -0.042885418981313705, -0.06566765904426575, 0.01808771677315235, -0.10324759036302567, -0.06306828558444977, -0.0805402547121048, 0.15055160224437714, 0.04445463418960571, 0.014657003805041313, -0.024619758129119873, 0.10938486456871033, 0.0179300419986248, -0.12593360245227814, 0.023975374177098274, 0.028178011998534203, 0.0023876905906945467, -0.059126317501068115, -0.0674186423420906, -0.03604665398597717, 0.0036592877004295588, 0.1213681548833847, -0.06947387754917145, 0.04217692092061043, 0.043851882219314575, 0.042034100741147995, -0.09761182218790054, 0.19736436009407043, -0.04331754148006439, 0.014211470261216164, 0.010802814736962318, 0.03631647303700447, -0.0017010436858981848, 0.005891423672437668, -0.11279342323541641, -0.00008191860251827165, 0.12353520095348358, 0.019096611067652702, -0.0777820348739624, 0.0753462016582489, -0.05135048180818558, -0.02845766581594944, 0.027824362739920616, -0.09827792644500732, 0.03422514721751213, -0.01282274816185236, -0.0880250334739685, -0.009091401472687721, 0.0227163378149271, 0.009979380294680595, -0.022754371166229248, 0.1250169277191162, -0.08886996656656265, 0.04094705730676651, -0.10035109519958496, -0.09962237626314163, 0.01486019417643547, -0.08528398722410202, 0.0337212011218071, -0.1065574362874031, -0.1556529849767685, -0.012033786624670029, 0.05532378330826759, -0.01928732916712761, -0.05888168886303902, -0.0359046645462513, -0.07541327178478241, -0.0009290911839343607, -0.01953265070915222, 0.1408023089170456, -0.05440116673707962, 0.10860501974821091, 0.038193583488464355, 0.0653199553489685, -0.04218501225113869, 0.05959102883934975, -0.10567493736743927, 0.010582290589809418, -0.2022174745798111, 0.03394060209393501, -0.051403820514678955, 0.08213641494512558, -0.09558211266994476, -0.12252257764339447, 0.03218604251742363, -0.014203127473592758, 0.07364875823259354, 0.08043157309293747, -0.148633673787117, -0.06989260017871857, 0.13971179723739624, -0.06719176471233368, -0.10949588567018509, 0.10988649725914001, -0.05908549204468727, 0.04315216839313507, 0.0691341832280159, 0.15094906091690063, 0.07623322308063507, -0.07394596189260483, 0.014857121743261814, -0.005518527701497078, 0.03761016204953194, -0.0852770283818245, 0.054977208375930786, 0.01338272262364626, -0.005703384056687355, 0.03793494403362274, -0.0313841886818409, 0.06867477297782898, -0.10143239051103592, -0.08946534991264343, -0.04302152991294861, -0.10383187979459763, 0.04982125759124756, 0.07696358859539032, 0.09194859117269516, -0.08907774090766907, -0.06312383711338043, 0.09003946185112, 0.08162044733762741, -0.053664952516555786, 0.028555085882544518, -0.06406388431787491, 0.06912066042423248, -0.04936804994940758, -0.029596872627735138, -0.19602279365062714, -0.004808553494513035, 0.010299934074282646, -0.0061147394590079784, 0.014107801020145416, 0.01098197977989912, 0.06761409342288971, 0.056804899126291275, -0.05139205977320671, -0.019243307411670685, -0.01084283646196127, -0.001834170427173376, -0.13615812361240387, -0.1808529794216156, -0.03599371388554573, -0.017707888036966324, 0.10132928937673569, -0.18540474772453308, 0.03112841211259365, -0.021046895533800125, 0.08332569897174835, 0.0027033728547394276, -0.004462642129510641, -0.04626888781785965, 0.09051080793142319, -0.03311324119567871, -0.05396990105509758, 0.07307301461696625, 0.006288302130997181, -0.07276368141174316, -0.04810195788741112, -0.0819299966096878, 0.1813729703426361, 0.13940685987472534, -0.12596426904201508, -0.0882675051689148, -0.004028453025966883, -0.06503946334123611, -0.031265486031770706, -0.03857722133398056, 0.05418555811047554, 0.17301344871520996, -0.017708590254187584, 0.15403792262077332, -0.06813391298055649, -0.05623875930905342, 0.028707843273878098, -0.03532712161540985, 0.029072243720293045, 0.11004670709371567, 0.11974828690290451, -0.08900817483663559, 0.14554564654827118, 0.15391431748867035, -0.10160023719072342, 0.10429691523313522, -0.05077066272497177, -0.06706634908914566, -0.01251672487705946, -0.016507569700479507, 0.0012884426396340132, 0.08919990062713623, -0.11591503769159317, -0.0016212787013500929, 0.022870542481541634, 0.02815311960875988, 0.02011319063603878, -0.224787175655365, -0.03468577563762665, 0.024974405765533447, -0.029814599081873894, 0.0004341141029726714, -0.014815127477049828, 0.015063478611409664, 0.10258816927671432, 0.004534778650850058, -0.09380156546831131, 0.048520393669605255, 0.014564861543476582, -0.0756446123123169, 0.21674270927906036, -0.09022118151187897, -0.14593826234340668, -0.11624488234519958, -0.08634627610445023, -0.04097432270646095, 0.011721969582140446, 0.058565448969602585, -0.09158787876367569, -0.030116815119981766, -0.04525609686970711, 0.012142973951995373, -0.005173596553504467, 0.04623739421367645, 0.014842725358903408, 0.0030495289247483015, 0.08009906858205795, -0.10346952080726624, -0.008789552375674248, -0.05431676283478737, -0.06278429925441742, 0.05348251387476921, 0.03933750092983246, 0.10487201809883118, 0.1569710075855255, -0.03296894207596779, 0.008718988858163357, -0.031654637306928635, 0.23456759750843048, -0.05569463223218918, -0.03520897403359413, 0.1393730193376541, -0.0024011090863496065, 0.056997641921043396, 0.10464373975992203, 0.07013674825429916, -0.08981676399707794, 0.00783043447881937, 0.02534995786845684, -0.03659265860915184, -0.21441587805747986, -0.05255388468503952, -0.05260797590017319, -0.029587462544441223, 0.10359252989292145, 0.028790360316634178, 0.049198396503925323, 0.07697372883558273, 0.04570074751973152, 0.09425698965787888, -0.05499804764986038, 0.05957069993019104, 0.12232394516468048, 0.051078833639621735, 0.12302803993225098, -0.0427282452583313, -0.07306575775146484, 0.030765213072299957, -0.007024371065199375, 0.2321518510580063, -0.0032628895714879036, 0.10881271958351135, 0.05719037353992462, 0.19342875480651855, 0.0038999069947749376, 0.09198717772960663, -0.006460243836045265, -0.044194094836711884, -0.009633555077016354, -0.033296313136816025, -0.04123526066541672, 0.009397660382091999, -0.06226994842290878, 0.05364649370312691, -0.1196807250380516, -0.009289149194955826, 0.050134237855672836, 0.2653961181640625, 0.02273685671389103, -0.3339793086051941, -0.09248965978622437, -0.010218987241387367, -0.03551657497882843, -0.025824835523962975, 0.02162111923098564, 0.07296442240476608, -0.09697280079126358, 0.025622570887207985, -0.07322702556848526, 0.09153342247009277, -0.039509810507297516, 0.04308924823999405, 0.08116107434034348, 0.08779045194387436, 0.019290151074528694, 0.08140913397073746, -0.3185829222202301, 0.26780298352241516, -0.00021187835955061018, 0.07144036144018173, -0.07811768352985382, 0.002582176122814417, 0.029215140268206596, 0.06519816815853119, 0.0599852055311203, -0.01061771996319294, -0.04804646968841553, -0.214927077293396, -0.04657815024256706, 0.022135652601718903, 0.07916843891143799, -0.011979548260569572, 0.08719421178102493, -0.029064571484923363, 0.006556238513439894, 0.07196750491857529, -0.04189407452940941, -0.0415017195045948, -0.08471766859292984, -0.011861145496368408, 0.01880721002817154, -0.04022407904267311, -0.06075732409954071, -0.11136597394943237, -0.13316084444522858, 0.15359462797641754, -0.008845236152410507, -0.04041196033358574, -0.11783681809902191, 0.0812462642788887, 0.08954789489507675, -0.08709132671356201, 0.05931941792368889, 0.0036396142095327377, 0.061620306223630905, 0.03669716417789459, -0.0772317424416542, 0.10600248724222183, -0.06715934723615646, -0.15921403467655182, -0.05289292708039284, 0.09391022473573685, 0.032191697508096695, 0.058982059359550476, -0.00950258132070303, 0.014814728870987892, -0.038374051451683044, -0.09294191002845764, 0.0173097625374794, -0.01866321638226509, 0.08993133157491684, 0.016889214515686035, -0.056656207889318466, 0.017102636396884918, -0.060498014092445374, -0.026830347254872322, 0.18090897798538208, 0.2196655124425888, -0.10287491977214813, 0.013686158694326878, 0.034897755831480026, -0.061918407678604126, -0.19570067524909973, 0.04034947231411934, 0.06748542934656143, -0.0012271776795387268, 0.029113899916410446, -0.16972136497497559, 0.1419256031513214, 0.10551123321056366, -0.014669899828732014, 0.10172899067401886, -0.31665295362472534, -0.1246451586484909, 0.12861160933971405, 0.1473454385995865, 0.12457243353128433, -0.13186009228229523, -0.013426575809717178, -0.01252718549221754, -0.12497249990701675, 0.09699536859989166, -0.05247242748737335, 0.11657574772834778, -0.03681296110153198, 0.09311769157648087, 0.0029251223895698786, -0.06277438998222351, 0.10715985298156738, 0.035358328372240067, 0.10029197484254837, -0.05928600952029228, -0.039941225200891495, 0.031233787536621094, -0.038289107382297516, 0.016063280403614044, -0.05333855375647545, 0.03842533752322197, -0.0916447788476944, -0.017394354566931725, -0.08306533098220825, 0.048500906676054, -0.02767915092408657, -0.058594394475221634, -0.04173893481492996, 0.029515543952584267, 0.04780728742480278, -0.018003428354859352, 0.12610144913196564, 0.038327641785144806, 0.14373327791690826, 0.11571631580591202, 0.05829225480556488, -0.07512116432189941, -0.07014336436986923, -0.017223523929715157, -0.017133120447397232, 0.0630163848400116, -0.13097696006298065, 0.033279649913311005, 0.14940913021564484, 0.02116190455853939, 0.11784529685974121, 0.08631695806980133, -0.014253126457333565, 0.00504465913400054, 0.06137217581272125, -0.1622716188430786, -0.05507568269968033, 0.0022119563072919846, -0.05012131854891777, -0.09594478458166122, 0.06520457565784454, 0.07917432487010956, -0.07316941022872925, -0.016453685238957405, -0.007480594329535961, -0.00021205229859333485, -0.06216226890683174, 0.20866911113262177, 0.062066055834293365, 0.04942914843559265, -0.11116810888051987, 0.06542086601257324, 0.06073828786611557, -0.07383694499731064, -0.007424465846270323, 0.06431394070386887, -0.0902128666639328, -0.04236052185297012, 0.10512682795524597, 0.15635254979133606, -0.08011374622583389, -0.04144655168056488, -0.1354675143957138, -0.12520746886730194, 0.08677853643894196, 0.15890461206436157, 0.12489304691553116, 0.021501824259757996, -0.054475028067827225, 0.007089800201356411, -0.13387662172317505, 0.07424519211053848, 0.044379688799381256, 0.07944312691688538, -0.15576711297035217, 0.1676371842622757, 0.004846530966460705, 0.06041163578629494, -0.02384825609624386, 0.031517721712589264, -0.09938129037618637, 0.018574826419353485, -0.1127130538225174, -0.027855897322297096, -0.03126788139343262, 0.007517954800277948, -0.0004940911894664168, -0.0592070147395134, -0.048951685428619385, 0.0237616915255785, -0.12085966765880585, -0.015275700017809868, 0.035571567714214325, 0.05154969543218613, -0.10946477949619293, -0.043755341321229935, 0.020506858825683594, -0.05741633474826813, 0.06466024369001389, 0.050522539764642715, 0.014762289822101593, 0.057806890457868576, -0.1199878677725792, -0.012177947908639908, 0.08377160131931305, 0.008793972432613373, 0.07745788991451263, -0.09531646221876144, -0.0021185618825256824, 0.01195728313177824, 0.06254539638757706, 0.017126072198152542, 0.06622794270515442, -0.14882692694664001, -0.010463056154549122, -0.030604079365730286, -0.07362741231918335, -0.07045431435108185, 0.019125239923596382, 0.09593947231769562, 0.009765945374965668, 0.19502024352550507, -0.07359140366315842, 0.03785576671361923, -0.20059025287628174, -0.0062465365044772625, -0.02424280345439911, -0.1161719486117363, -0.12972070276737213, -0.05458125099539757, 0.060764577239751816, -0.04407225921750069, 0.13442161679267883, 0.02616490237414837, 0.041718389838933945, 0.028178803622722626, -0.025959709659218788, 0.006476039998233318, 0.02878553792834282, 0.21156518161296844, 0.02859206683933735, -0.03443186730146408, 0.07299944758415222, 0.057333022356033325, 0.09157410264015198, 0.10879490524530411, 0.1862693876028061, 0.15255291759967804, -0.01961454749107361, 0.08521606028079987, 0.020582683384418488, -0.04829508438706398, -0.1694210320711136, 0.03316252678632736, -0.05353350192308426, 0.09272469580173492, -0.01971045322716236, 0.2052977830171585, 0.05683044344186783, -0.16701331734657288, 0.0473184697329998, -0.05388953164219856, -0.08623956888914108, -0.09676872193813324, -0.03370310738682747, -0.07957352697849274, -0.141500785946846, 0.002779398113489151, -0.10325566679239273, 0.011160045862197876, 0.11466927081346512, 0.0076295253820717335, -0.026781436055898666, 0.15887784957885742, 0.027851175516843796, 0.031885918229818344, 0.04794427379965782, 0.0018722532549872994, -0.028002673760056496, -0.09754128754138947, -0.06250259280204773, -0.023123936727643013, -0.01149528194218874, 0.04034755378961563, -0.06283681839704514, -0.06379689276218414, 0.036611877381801605, -0.021615052595734596, -0.0894995853304863, 0.017238706350326538, 0.022441938519477844, 0.06316918879747391, 0.04359293356537819, 0.0020165627356618643, 0.019972143694758415, -0.020427267998456955, 0.20192945003509521, -0.07899655401706696, -0.08263418823480606, -0.09927323460578918, 0.289522647857666, 0.051607292145490646, -0.010741951875388622, 0.03612681105732918, -0.0561472550034523, -0.004417481832206249, 0.2550968527793884, 0.18141189217567444, -0.0769149586558342, -0.011618032120168209, 0.002433459972962737, -0.015313426032662392, -0.024845825508236885, 0.12317108362913132, 0.14786173403263092, 0.04738951101899147, -0.10228031873703003, -0.049345821142196655, -0.06341440230607986, -0.009089515544474125, -0.055267687886953354, 0.05001194402575493, 0.03479713574051857, 0.0038770504761487246, -0.04044526815414429, 0.049030594527721405, -0.06966245174407959, -0.09227500110864639, 0.07133441418409348, -0.19109979271888733, -0.15919677913188934, -0.007607383653521538, 0.10158266127109528, 0.0013105421094223857, 0.058238301426172256, -0.02937724068760872, 0.0035870843566954136, 0.07029356807470322, -0.02412567473948002, -0.08252295851707458, -0.07715246826410294, 0.09691807627677917, -0.09248333424329758, 0.19446077942848206, -0.040437471121549606, 0.07648584991693497, 0.12426755577325821, 0.06962809711694717, -0.08507595956325531, 0.05226566642522812, 0.0339452400803566, -0.07786066830158234, 0.03587929531931877, 0.08748921006917953, -0.02562606707215309, 0.04938745126128197, 0.024773404002189636, -0.13222108781337738, 0.01781325973570347, -0.07532327622175217, -0.0348363034427166, -0.04395242780447006, -0.04922715201973915, -0.04891927167773247, 0.1254318505525589, 0.2148224115371704, -0.026720507070422173, 0.008299464359879494, -0.07867999374866486, 0.015542326495051384, 0.05134269967675209, 0.004448243882507086, -0.08130179345607758, -0.22670459747314453, 0.01274810079485178, 0.05347956344485283, -0.02750125341117382, -0.19576425850391388, -0.09124565124511719, 0.0032196384854614735, -0.08462370187044144, -0.09923550486564636, 0.08249048888683319, 0.058607764542102814, 0.054958608001470566, -0.05453471466898918, -0.057126108556985855, -0.09094274789094925, 0.14695580303668976, -0.15082944929599762, -0.08961563557386398 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9988 - Precision: 0.3 - Recall: 0.6 - F1: 0.4 - Accuracy: 0.7870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.8399 | 0.2105 | 0.4 | 0.2759 | 0.75 | | No log | 2.0 | 168 | 0.9664 | 0.3 | 0.6 | 0.4 | 0.7870 | | No log | 3.0 | 252 | 0.9988 | 0.3 | 0.6 | 0.4 | 0.7870 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": []}]}
token-classification
akshaychaudhary/distilbert-base-uncased-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9988 * Precision: 0.3 * Recall: 0.6 * F1: 0.4 * Accuracy: 0.7870 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.2 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ 58, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ -0.103523850440979, 0.09002135694026947, -0.0023307478986680508, 0.12332198023796082, 0.17793519794940948, 0.019137302413582802, 0.11481406539678574, 0.11645552515983582, -0.10948649048805237, 0.01768168807029724, 0.12381846457719803, 0.18894384801387787, 0.00309147615917027, 0.11100766062736511, -0.04874809458851814, -0.25168082118034363, -0.008621321059763432, 0.057939134538173676, -0.09077204018831253, 0.13570277392864227, 0.0982229933142662, -0.13980738818645477, 0.08381298929452896, 0.014254722744226456, -0.2370675504207611, 0.0075003416277468204, 0.01788652502000332, -0.06403520703315735, 0.14846359193325043, 0.0127682751044631, 0.13606655597686768, 0.0016166832065209746, 0.08619825541973114, -0.1632784754037857, 0.004477492533624172, 0.04943491518497467, 0.019283030182123184, 0.09391868859529495, 0.05791611224412918, 0.005128996912389994, 0.0950852707028389, -0.07101569324731827, 0.053626157343387604, 0.021626034751534462, -0.12032949924468994, -0.23730754852294922, -0.08797920495271683, 0.03335510566830635, 0.06430817395448685, 0.09731429815292358, 0.0068978858180344105, 0.1422301083803177, -0.0965442955493927, 0.0894077718257904, 0.22600644826889038, -0.27414655685424805, -0.06281793862581253, 0.04240521788597107, 0.0020039763767272234, 0.050151750445365906, -0.10845781117677689, -0.037035271525382996, 0.057543959468603134, 0.04736587405204773, 0.14142584800720215, -0.034815266728401184, -0.12058132141828537, 0.015251662582159042, -0.14953891932964325, -0.031718909740448, 0.12374020367860794, 0.028785504400730133, -0.033310480415821075, -0.03066367283463478, -0.05874406918883324, -0.16566236317157745, -0.03417956456542015, -0.014829478226602077, 0.046564482152462006, -0.04221895709633827, -0.06473833322525024, 0.013675320893526077, -0.10368451476097107, -0.07017093151807785, -0.07630553096532822, 0.1519497185945511, 0.04508072882890701, 0.013284901157021523, -0.022045906633138657, 0.11426214873790741, 0.019623328000307083, -0.1246880367398262, 0.03151531517505646, 0.029887696728110313, -0.00020343836513347924, -0.05479968711733818, -0.06558907777070999, -0.03495404124259949, 0.005982816684991121, 0.12302777916193008, -0.06780827045440674, 0.03858603164553642, 0.049272213131189346, 0.045483026653528214, -0.10057242959737778, 0.19782112538814545, -0.045826300978660583, 0.012913423590362072, 0.002428070642054081, 0.04376833140850067, -0.0032325731590390205, 0.004926776047796011, -0.1123630702495575, -0.002810664940625429, 0.12068270146846771, 0.017927508801221848, -0.0732434093952179, 0.07089336216449738, -0.0579686276614666, -0.030673447996377945, 0.022723589092493057, -0.0955202579498291, 0.032179683446884155, -0.009958868846297264, -0.09079556912183762, -0.008591748774051666, 0.025252945721149445, 0.011187927797436714, -0.016273735091090202, 0.12113533914089203, -0.09071487188339233, 0.038320980966091156, -0.10026934742927551, -0.10214843600988388, 0.012138503603637218, -0.08762586861848831, 0.03197649121284485, -0.10369838774204254, -0.15408013761043549, -0.010835004039108753, 0.055453091859817505, -0.01820294000208378, -0.05857075750827789, -0.037180326879024506, -0.07385412603616714, -0.003128922078758478, -0.015366659499704838, 0.13861867785453796, -0.05394202470779419, 0.1132793128490448, 0.0367249995470047, 0.06523650884628296, -0.042824700474739075, 0.06211426481604576, -0.10657148063182831, 0.009503399953246117, -0.1924595832824707, 0.03152605518698692, -0.055809129029512405, 0.073683001101017, -0.09461696445941925, -0.12072573602199554, 0.03185691684484482, -0.012468659318983555, 0.07129773497581482, 0.08298724889755249, -0.15413887798786163, -0.07708308100700378, 0.1396806687116623, -0.06755363196134567, -0.10638498514890671, 0.11199767142534256, -0.05613439157605171, 0.04842284694314003, 0.06721840053796768, 0.1507643610239029, 0.08585624396800995, -0.07001210004091263, 0.018776625394821167, -0.0031981358770281076, 0.04165051877498627, -0.07771604508161545, 0.05783223733305931, 0.00664792163297534, -0.008658998645842075, 0.03643493726849556, -0.038326870650053024, 0.07219690084457397, -0.10435257852077484, -0.09208164364099503, -0.04117659479379654, -0.10529254376888275, 0.06258916109800339, 0.07840743660926819, 0.08836015313863754, -0.08579391241073608, -0.06233711168169975, 0.09426329284906387, 0.08571615070104599, -0.052989840507507324, 0.024528177455067635, -0.05777458846569061, 0.06583128124475479, -0.04660578817129135, -0.029178697615861893, -0.19375228881835938, -0.006797500886023045, 0.012664127163589, -0.016681484878063202, 0.019313829019665718, 0.02146596647799015, 0.06870517134666443, 0.06278780102729797, -0.05139855295419693, -0.025546975433826447, -0.02678867243230343, -0.001299272757023573, -0.13269847631454468, -0.18780280649662018, -0.036188364028930664, -0.014218314550817013, 0.11757374554872513, -0.1888873130083084, 0.03451630845665932, -0.02362501621246338, 0.08321183919906616, 0.006543117109686136, -0.005493585951626301, -0.04697544500231743, 0.09375263750553131, -0.031941018998622894, -0.05348337069153786, 0.0719749853014946, 0.0018224725499749184, -0.07672475278377533, -0.05032527446746826, -0.08325174450874329, 0.18367688357830048, 0.13815481960773468, -0.13007916510105133, -0.08702835440635681, -0.0029130291659384966, -0.06545437127351761, -0.034617215394973755, -0.038453731685876846, 0.04840536788105965, 0.16777300834655762, -0.015931766480207443, 0.15222351253032684, -0.06726092845201492, -0.052236758172512054, 0.02627328783273697, -0.038230471312999725, 0.03147832304239273, 0.11538273841142654, 0.12392737716436386, -0.07904218882322311, 0.14937126636505127, 0.1588374674320221, -0.1011141687631607, 0.11438107490539551, -0.05122075229883194, -0.06876008957624435, -0.01465247105807066, -0.017550969496369362, 0.00028601291705854237, 0.09282531589269638, -0.11664099246263504, -0.0005226979264989495, 0.022685810923576355, 0.024498162791132927, 0.019732700660824776, -0.22988493740558624, -0.03662404790520668, 0.02719832956790924, -0.03316221758723259, 0.005261830985546112, -0.015611834824085236, 0.014515242539346218, 0.10363578051328659, 0.0009323123376816511, -0.09518758207559586, 0.04552336037158966, 0.01452655903995037, -0.07237675040960312, 0.21590392291545868, -0.09109693765640259, -0.14336389303207397, -0.12567777931690216, -0.07633742690086365, -0.04302746802568436, 0.012129033915698528, 0.05547988414764404, -0.09631235152482986, -0.025014203041791916, -0.042335059493780136, 0.023201419040560722, -0.0041056228801608086, 0.04290562495589256, 0.00573259312659502, 0.006090271286666393, 0.0822301059961319, -0.10846735537052155, -0.005153366830199957, -0.052839767187833786, -0.06804371625185013, 0.05280553549528122, 0.041342198848724365, 0.10439694672822952, 0.16140033304691315, -0.030277499929070473, 0.004512588959187269, -0.027677491307258606, 0.22955340147018433, -0.056287333369255066, -0.03435760363936424, 0.14315977692604065, -0.003324405290186405, 0.05846130847930908, 0.0981723889708519, 0.07544912397861481, -0.08716627210378647, 0.006883478257805109, 0.0283210389316082, -0.03248230740427971, -0.2183467596769333, -0.051219794899225235, -0.04683661460876465, -0.024035532027482986, 0.10198020190000534, 0.026556970551609993, 0.05035755783319473, 0.07551625370979309, 0.04508015513420105, 0.0921197384595871, -0.055001504719257355, 0.053043801337480545, 0.1212063729763031, 0.045953910797834396, 0.11917310953140259, -0.04107346013188362, -0.07394959777593613, 0.02982577495276928, -0.005856236442923546, 0.22784601151943207, 0.0014808905543759465, 0.11742263287305832, 0.060430366545915604, 0.1963503062725067, 0.0002233405684819445, 0.08806688338518143, -0.0017995794769376516, -0.04055476933717728, -0.009502105414867401, -0.03595626726746559, -0.04178489372134209, 0.009213004261255264, -0.054908230900764465, 0.0602562353014946, -0.11763007193803787, -0.010901407338678837, 0.04740725830197334, 0.2610776722431183, 0.02233097329735756, -0.3299938142299652, -0.09298993647098541, -0.012608028016984463, -0.02950277552008629, -0.022882655262947083, 0.019141806289553642, 0.07972758263349533, -0.09674673527479172, 0.01692850887775421, -0.07223603874444962, 0.08933446556329727, -0.04675116389989853, 0.043983761221170425, 0.08182378113269806, 0.09104738384485245, 0.020170170813798904, 0.08249643445014954, -0.3123118579387665, 0.26955685019493103, 0.000245244475081563, 0.06537347286939621, -0.07295243442058563, 0.0019444922218099236, 0.031657926738262177, 0.06372953206300735, 0.05246962606906891, -0.008799213916063309, -0.02219465933740139, -0.22373031079769135, -0.04871239885687828, 0.019570423290133476, 0.08464066684246063, -0.025386588647961617, 0.08456537127494812, -0.030345510691404343, 0.006804472766816616, 0.07434047013521194, -0.044416800141334534, -0.046676646918058395, -0.08163462579250336, -0.008387481793761253, 0.016577359288930893, -0.03619827702641487, -0.06438055634498596, -0.11277648061513901, -0.13270467519760132, 0.14678384363651276, -0.018349261954426765, -0.03722056746482849, -0.11526377499103546, 0.07934606820344925, 0.09414194524288177, -0.08741575479507446, 0.05978747457265854, 0.004112620372325182, 0.05924085155129433, 0.03602294996380806, -0.07191424816846848, 0.10662755370140076, -0.06451771408319473, -0.16620144248008728, -0.055251311510801315, 0.09464073926210403, 0.03539089858531952, 0.06045255810022354, -0.014887126162648201, 0.01239735260605812, -0.03909507021307945, -0.09123867750167847, 0.020685477182269096, -0.01511969044804573, 0.07852889597415924, 0.024222271516919136, -0.0570831261575222, 0.021217379719018936, -0.062417708337306976, -0.0290946327149868, 0.17705167829990387, 0.22855964303016663, -0.10225839167833328, 0.009908817708492279, 0.04403967782855034, -0.06237529218196869, -0.1941889375448227, 0.0423082560300827, 0.06619076430797577, -0.0019965912215411663, 0.036201704293489456, -0.1780216246843338, 0.13713295757770538, 0.10940836369991302, -0.0144343301653862, 0.10750558227300644, -0.3273228704929352, -0.12194806337356567, 0.1290854960680008, 0.1494370549917221, 0.11566872149705887, -0.13361084461212158, -0.018262138590216637, -0.011364636942744255, -0.12643295526504517, 0.09991973638534546, -0.05644288659095764, 0.1195039302110672, -0.03924344480037689, 0.08999133855104446, 0.0038653272204101086, -0.061524953693151474, 0.11436808854341507, 0.03091161698102951, 0.10197840631008148, -0.05496754124760628, -0.04043542593717575, 0.032753221690654755, -0.03457799181342125, 0.01306205615401268, -0.0550130158662796, 0.03887125104665756, -0.08554333448410034, -0.014205732382833958, -0.08447744697332382, 0.05135143920779228, -0.03131064027547836, -0.06328026950359344, -0.04008864983916283, 0.03031952865421772, 0.03871610015630722, -0.01824844628572464, 0.11672954261302948, 0.03968855366110802, 0.14448599517345428, 0.11667755246162415, 0.052596379071474075, -0.06279274076223373, -0.07734628766775131, -0.020103875547647476, -0.01675282046198845, 0.0668715089559555, -0.1282029002904892, 0.02893090806901455, 0.14871834218502045, 0.02395712025463581, 0.12351254373788834, 0.08457334339618683, -0.019290566444396973, 0.003652875777333975, 0.05842416360974312, -0.16276150941848755, -0.05974629148840904, -0.0030656808521598577, -0.05172562226653099, -0.09656640142202377, 0.06421303749084473, 0.08266670256853104, -0.07499280571937561, -0.014050150290131569, -0.0048558977432549, -0.0023589786142110825, -0.06351251155138016, 0.21077285706996918, 0.06714652478694916, 0.05067985877394676, -0.10665497183799744, 0.07064145058393478, 0.06198551505804062, -0.06930447369813919, -0.013701705262064934, 0.056779686361551285, -0.08711104840040207, -0.041084397584199905, 0.09784757345914841, 0.15849274396896362, -0.08018616586923599, -0.04184921458363533, -0.1400337517261505, -0.12230776995420456, 0.08014452457427979, 0.1550964117050171, 0.12442366033792496, 0.024990029633045197, -0.05552133917808533, 0.009892783127725124, -0.1286093145608902, 0.07551945745944977, 0.042930129915475845, 0.08080665022134781, -0.15535800158977509, 0.17075224220752716, 0.009831945411860943, 0.05655563995242119, -0.02144085243344307, 0.029179802164435387, -0.10028686374425888, 0.016932109370827675, -0.10946930199861526, -0.035173460841178894, -0.021861227229237556, 0.006769904866814613, -0.0016000405885279179, -0.062378209084272385, -0.04474789649248123, 0.021059205755591393, -0.12163746356964111, -0.018797913566231728, 0.03969725966453552, 0.056493647396564484, -0.11306740343570709, -0.04419030249118805, 0.026350488886237144, -0.057282041758298874, 0.0639113113284111, 0.04742217808961868, 0.018172618001699448, 0.05878259614109993, -0.12336495518684387, -0.008165509440004826, 0.08023056387901306, 0.01217541005462408, 0.0741843655705452, -0.09355204552412033, -0.006634257268160582, 0.0009356401860713959, 0.06323288381099701, 0.015033851377665997, 0.06872585415840149, -0.1492055505514145, -0.009786555543541908, -0.031927306205034256, -0.07672324776649475, -0.07081486284732819, 0.0184498131275177, 0.09436232596635818, 0.010294074192643166, 0.1937616765499115, -0.07056774944067001, 0.040055468678474426, -0.20554177463054657, -0.004947849083691835, -0.022964347153902054, -0.11542605608701706, -0.1293366700410843, -0.05716276541352272, 0.058261383324861526, -0.04796980321407318, 0.12991084158420563, 0.02331746742129326, 0.03930681198835373, 0.024594223126769066, -0.023596957325935364, 0.003051033476367593, 0.02756418101489544, 0.20987069606781006, 0.03380899131298065, -0.030048120766878128, 0.06811060011386871, 0.05753975361585617, 0.08964644372463226, 0.10208504647016525, 0.17998355627059937, 0.1532122939825058, -0.026005838066339493, 0.08077444136142731, 0.028686869889497757, -0.04917507618665695, -0.1679028868675232, 0.037772275507450104, -0.05061795189976692, 0.09181970357894897, -0.01910395920276642, 0.21811388432979584, 0.0532693974673748, -0.16522841155529022, 0.04825202748179436, -0.04797956347465515, -0.08590587973594666, -0.09651808440685272, -0.025417102500796318, -0.07647500932216644, -0.14166919887065887, -0.0002146112674381584, -0.1001775786280632, 0.008847066201269627, 0.11832146346569061, 0.004922278691083193, -0.026346983388066292, 0.16093847155570984, 0.033011045306921005, 0.02959277294576168, 0.04740205407142639, 0.002913497155532241, -0.03211793676018715, -0.11153016984462738, -0.06835832446813583, -0.019957317039370537, -0.0027760383673012257, 0.037131574004888535, -0.06491725891828537, -0.07167203724384308, 0.034432895481586456, -0.020047910511493683, -0.09364856779575348, 0.018608998507261276, 0.01650502346456051, 0.058116525411605835, 0.03277217969298363, 0.0009806762682273984, 0.020700454711914062, -0.01944326050579548, 0.20407052338123322, -0.0792548730969429, -0.08256815373897552, -0.09220407903194427, 0.2877435088157654, 0.0455317422747612, -0.007295149844139814, 0.03940923511981964, -0.058039989322423935, -0.004805226344615221, 0.24884240329265594, 0.18317806720733643, -0.08214227110147476, -0.011675294488668442, 0.00852639228105545, -0.016375070437788963, -0.029682613909244537, 0.12004382908344269, 0.14246028661727905, 0.038612544536590576, -0.10193292796611786, -0.04305018484592438, -0.06390916556119919, -0.010249001905322075, -0.04920705035328865, 0.04913453012704849, 0.036681752651929855, 0.004532736260443926, -0.04460112750530243, 0.04989233613014221, -0.06560081243515015, -0.09551385790109634, 0.07586084306240082, -0.19357670843601227, -0.16103370487689972, -0.012913677841424942, 0.10718011856079102, -0.001199452206492424, 0.05816245824098587, -0.03222138434648514, 0.003664691699668765, 0.07044289261102676, -0.02364170551300049, -0.08374470472335815, -0.08221457153558731, 0.09622860699892044, -0.08963325619697571, 0.19356124103069305, -0.04231574758887291, 0.07720644026994705, 0.1211271807551384, 0.06829093396663666, -0.07902681082487106, 0.05250030755996704, 0.038347601890563965, -0.08160073310136795, 0.028835419565439224, 0.0833013504743576, -0.022538913413882256, 0.05541090667247772, 0.025272930040955544, -0.1327611804008484, 0.019293705001473427, -0.06713301688432693, -0.04141637310385704, -0.041503410786390305, -0.04997856542468071, -0.04697557911276817, 0.12384640425443649, 0.21486571431159973, -0.02652636356651783, 0.0071188597939908504, -0.07881058752536774, 0.013701810501515865, 0.05773432180285454, 0.004662684164941311, -0.07962428778409958, -0.2235136181116104, 0.011743240989744663, 0.05167457461357117, -0.025384174659848213, -0.19894814491271973, -0.09304486960172653, 0.004637226462364197, -0.08378882706165314, -0.09568104892969131, 0.08021291345357895, 0.05895943194627762, 0.05803563445806503, -0.051636215299367905, -0.06228886544704437, -0.09224717319011688, 0.14899340271949768, -0.15480521321296692, -0.09021805226802826 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9250 - Recall: 0.9321 - F1: 0.9285 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2399 | 1.0 | 878 | 0.0702 | 0.9118 | 0.9208 | 0.9163 | 0.9805 | | 0.0503 | 2.0 | 1756 | 0.0614 | 0.9176 | 0.9311 | 0.9243 | 0.9824 | | 0.0304 | 3.0 | 2634 | 0.0611 | 0.9250 | 0.9321 | 0.9285 | 0.9834 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9833669595056158}}]}]}
token-classification
al00014/distilbert-base-uncased-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0611 * Precision: 0.9250 * Recall: 0.9321 * F1: 0.9285 * Accuracy: 0.9834 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.9.1 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10255871713161469, 0.10539267212152481, -0.00214369292370975, 0.12020950019359589, 0.15903787314891815, 0.029840590432286263, 0.10807906836271286, 0.12274046242237091, -0.11434255540370941, 0.030879756435751915, 0.12895672023296356, 0.1712215095758438, 0.010373823344707489, 0.12424161285161972, -0.05817195773124695, -0.25059065222740173, -0.0032364886719733477, 0.05006325989961624, -0.07109494507312775, 0.1261829435825348, 0.098833829164505, -0.13841308653354645, 0.09173785150051117, 0.00905834324657917, -0.2146635502576828, 0.0054509988985955715, 0.008342849090695381, -0.05729762837290764, 0.13314498960971832, 0.0294477678835392, 0.13272933661937714, -0.005307616200298071, 0.08937913924455643, -0.18023383617401123, 0.005790883209556341, 0.051778294146060944, 0.005606415681540966, 0.08844007551670074, 0.045780837535858154, 0.008998177014291286, 0.12307481467723846, -0.07930007576942444, 0.05701543390750885, 0.013293053954839706, -0.11489178240299225, -0.21894565224647522, -0.0935593843460083, 0.045796558260917664, 0.0761847272515297, 0.10102034360170364, 0.0023126546293497086, 0.1392800509929657, -0.08791504055261612, 0.09048745781183243, 0.2130136936903, -0.29831841588020325, -0.06735406816005707, 0.04121851921081543, 0.008643759414553642, 0.029652465134859085, -0.10871141403913498, -0.04120428115129471, 0.05491676554083824, 0.048971615731716156, 0.12907281517982483, -0.038429588079452515, -0.1241060346364975, 0.01602264679968357, -0.13965150713920593, -0.028238222002983093, 0.16118167340755463, 0.03782263398170471, -0.029685530811548233, -0.046535979956388474, -0.05643749609589577, -0.16367700695991516, -0.029003163799643517, -0.008906164206564426, 0.046756912022829056, -0.03568905219435692, -0.0653354674577713, 0.009853038005530834, -0.10899555683135986, -0.061145033687353134, -0.08953680098056793, 0.13629408180713654, 0.03519825637340546, 0.01534251868724823, -0.025256918743252754, 0.10268127918243408, 0.007348612416535616, -0.12443239241838455, 0.015354856848716736, 0.028674136847257614, -0.007664091419428587, -0.05595702677965164, -0.05627155303955078, -0.04410756751894951, 0.009763343259692192, 0.14286161959171295, -0.0551065094769001, 0.03977460786700249, 0.04810221493244171, 0.03960094228386879, -0.0797455906867981, 0.1808391660451889, -0.05106561258435249, -0.021555554121732712, 0.008259857073426247, 0.03902958706021309, 0.023277325555682182, -0.0025662092957645655, -0.12032413482666016, 0.007747654803097248, 0.09660116583108902, 0.0040515405125916, -0.06651708483695984, 0.0730704590678215, -0.06183464825153351, -0.020003343001008034, 0.01817041076719761, -0.09099721163511276, 0.03842529281973839, -0.006828721612691879, -0.08226842433214188, -0.020809387788176537, 0.01680723764002323, 0.018180305138230324, -0.008505401201546192, 0.12702760100364685, -0.09571273624897003, 0.021716414019465446, -0.09561675041913986, -0.10818422585725784, 0.030209079384803772, -0.09415706992149353, 0.03555135056376457, -0.09849019348621368, -0.17402802407741547, -0.013611898757517338, 0.06176286190748215, -0.024734605103731155, -0.06315313279628754, -0.04590883105993271, -0.08352536708116531, 0.012991010211408138, -0.016811631619930267, 0.13133253157138824, -0.06592542678117752, 0.09349852800369263, 0.03145521506667137, 0.06399993598461151, -0.055257976055145264, 0.052310626953840256, -0.10168170928955078, 0.015354696661233902, -0.15835103392601013, 0.024904433637857437, -0.054766733199357986, 0.07197403162717819, -0.08802897483110428, -0.10300497710704803, 0.015688220039010048, -0.0035176698584109545, 0.06792531162500381, 0.07805366814136505, -0.17569856345653534, -0.06900952756404877, 0.13671861588954926, -0.07240164279937744, -0.12708479166030884, 0.10982917249202728, -0.061615075916051865, 0.03930359706282616, 0.05871294066309929, 0.15466563403606415, 0.06886140257120132, -0.08944302052259445, -0.016654985025525093, 0.01159551553428173, 0.04444773122668266, -0.0795292928814888, 0.06750805675983429, 0.012015139684081078, 0.03366333991289139, 0.02637074701488018, -0.023802215233445168, 0.05433901771903038, -0.09033822268247604, -0.09238622337579727, -0.03826386481523514, -0.0954262986779213, 0.030527226626873016, 0.07869496196508408, 0.07085664570331573, -0.09471679478883743, -0.0809638723731041, 0.07729575783014297, 0.08897162228822708, -0.05464771389961243, 0.02784215286374092, -0.06983672082424164, 0.07134678959846497, -0.040605880320072174, -0.029259810224175453, -0.1829642802476883, -0.03815934807062149, 0.007149900775402784, 0.006162608973681927, 0.011257500387728214, 0.022818520665168762, 0.06436146795749664, 0.05666200444102287, -0.05284673720598221, -0.019797371700406075, -0.01938941702246666, 0.004207075107842684, -0.1307034194469452, -0.19992096722126007, -0.04014269635081291, -0.026497695595026016, 0.1340215653181076, -0.2040887326002121, 0.030343223363161087, 0.006814993917942047, 0.08995074778795242, 0.021637320518493652, -0.00744190439581871, -0.042293254286050797, 0.08087989687919617, -0.05045080557465553, -0.054142266511917114, 0.06192508712410927, 0.01419511716812849, -0.08415275812149048, -0.05454101413488388, -0.0939415693283081, 0.16774924099445343, 0.13817903399467468, -0.11088939011096954, -0.07995755225419998, -0.011100038886070251, -0.0654543861746788, -0.03531641885638237, -0.042984869331121445, 0.031054645776748657, 0.16384954750537872, -0.013983982615172863, 0.1446874588727951, -0.06793694198131561, -0.05619462952017784, 0.021522950381040573, -0.031580302864313126, 0.010691829957067966, 0.11220297962427139, 0.13252931833267212, -0.07942965626716614, 0.15882043540477753, 0.14937682449817657, -0.09987214207649231, 0.11904339492321014, -0.04426578804850578, -0.07158004492521286, -0.02429875358939171, -0.026336602866649628, -0.0012476415140554309, 0.1112217828631401, -0.1292998045682907, 0.0008620929438620806, 0.02950410731136799, 0.01927774026989937, 0.020746439695358276, -0.22200416028499603, -0.03319869190454483, 0.026686644181609154, -0.032270800322294235, -0.0031534326262772083, -0.016403915360569954, 0.003174364333972335, 0.1022149994969368, 0.006655949167907238, -0.09113230556249619, 0.048952046781778336, 0.0060211182571947575, -0.0736173689365387, 0.21127358078956604, -0.09660577028989792, -0.14268377423286438, -0.11910218745470047, -0.08141279965639114, -0.043917980045080185, 0.012048646807670593, 0.05558047071099281, -0.07520835846662521, -0.04131796956062317, -0.06639181077480316, 0.00021024837042205036, -0.003499555867165327, 0.035326629877090454, 0.013547747395932674, 0.0031348238699138165, 0.06111876294016838, -0.10602512210607529, -0.010456521064043045, -0.05505097284913063, -0.05424712598323822, 0.04503130912780762, 0.04131161794066429, 0.1163402646780014, 0.1537008434534073, -0.017999986186623573, 0.009490380063652992, -0.0336737297475338, 0.23124487698078156, -0.06609251350164413, -0.02330223098397255, 0.12554895877838135, -0.00951826199889183, 0.0449853353202343, 0.12645560503005981, 0.06893262267112732, -0.08906316012144089, 0.005683759693056345, 0.03745684772729874, -0.03216558322310448, -0.21715915203094482, -0.054123278707265854, -0.05746140331029892, -0.010680216364562511, 0.09318132698535919, 0.028766386210918427, 0.04183909296989441, 0.06918559968471527, 0.0412612147629261, 0.09088438749313354, -0.04288830980658531, 0.06200990453362465, 0.12676793336868286, 0.047381915152072906, 0.12393561750650406, -0.04535255208611488, -0.056591663509607315, 0.04485660791397095, 0.0022848325315862894, 0.22837412357330322, -0.00172429031226784, 0.13078740239143372, 0.05701349303126335, 0.1728784739971161, -0.008542804047465324, 0.07629839330911636, -0.007966768927872181, -0.0417538620531559, -0.011562676168978214, -0.03622130677103996, -0.03469984978437424, 0.028467679396271706, -0.05803490802645683, 0.061164744198322296, -0.11257600784301758, 0.01060679741203785, 0.05745697021484375, 0.24646691977977753, 0.045760538429021835, -0.3299061954021454, -0.09469916671514511, 0.004172604531049728, -0.032193563878536224, -0.02332271821796894, 0.03050384856760502, 0.09870076924562454, -0.08401627838611603, 0.035188447684049606, -0.06494250148534775, 0.086822010576725, -0.05109543725848198, 0.0391472727060318, 0.09541983902454376, 0.08947321027517319, 0.011277154088020325, 0.08123572915792465, -0.2940250039100647, 0.2708354890346527, 0.008317360654473305, 0.07414139807224274, -0.07809005677700043, 0.010528163984417915, 0.024364527314901352, 0.06269776821136475, 0.0747823640704155, -0.015394425019621849, -0.055797722190618515, -0.1899176836013794, -0.049145329743623734, 0.02222060039639473, 0.07336984574794769, -0.015231622382998466, 0.09306584298610687, -0.030092580243945122, 0.004327957518398762, 0.07561472803354263, -0.015698770061135292, -0.03639249503612518, -0.10491389781236649, -0.008064720779657364, 0.03538157790899277, -0.054746005684137344, -0.06477759778499603, -0.1089787408709526, -0.1210339367389679, 0.16081374883651733, -0.04243415594100952, -0.0333956703543663, -0.11013834923505783, 0.09151466935873032, 0.08043131977319717, -0.08476796746253967, 0.047682181000709534, 0.006375346798449755, 0.07160719484090805, 0.03735918924212456, -0.06775209307670593, 0.10653603076934814, -0.07269534468650818, -0.16217678785324097, -0.06661860644817352, 0.09736999124288559, 0.02713370881974697, 0.06402166187763214, -0.008831274695694447, 0.0209132619202137, -0.0418827123939991, -0.08689725399017334, 0.01845110021531582, -0.002724801190197468, 0.09766784310340881, 0.013398203067481518, -0.05929989740252495, 0.010071508586406708, -0.0424175038933754, -0.02767971158027649, 0.1879597157239914, 0.23286621272563934, -0.101857490837574, 0.013352539390325546, 0.02542305178940296, -0.06980051100254059, -0.20460721850395203, 0.041747644543647766, 0.05582985654473305, 0.005550634115934372, 0.025357704609632492, -0.1710343211889267, 0.1492459625005722, 0.11691849678754807, -0.014687232673168182, 0.10239079594612122, -0.315012663602829, -0.1228574886918068, 0.1207168698310852, 0.13372543454170227, 0.1005958542227745, -0.13921672105789185, -0.017086707055568695, -0.02037505991756916, -0.13995309174060822, 0.1232801154255867, -0.08145967125892639, 0.11192669719457626, -0.025964654982089996, 0.08104658126831055, 0.0027495794929564, -0.06324520707130432, 0.11274782568216324, 0.033715713769197464, 0.10195375978946686, -0.058011073619127274, -0.04634901508688927, 0.04752787575125694, -0.0372588224709034, 0.02029898762702942, -0.06743178516626358, 0.0265213530510664, -0.10176746547222137, -0.02213866263628006, -0.07029411196708679, 0.04483870789408684, -0.034767914563417435, -0.06590957939624786, -0.04667966440320015, 0.034587591886520386, 0.05000005662441254, -0.01564815267920494, 0.14994733035564423, 0.03694634512066841, 0.13751836121082306, 0.10205323249101639, 0.07660824060440063, -0.07855729758739471, -0.06558439135551453, -0.013557902537286282, -0.01867561787366867, 0.057752255350351334, -0.13447393476963043, 0.028717368841171265, 0.15170200169086456, 0.023830588907003403, 0.13155825436115265, 0.08513402938842773, -0.018760744482278824, 0.00518178241327405, 0.06711912900209427, -0.16196799278259277, -0.0666874572634697, 0.0038276375271379948, -0.053676776587963104, -0.11391056329011917, 0.058184895664453506, 0.08980128914117813, -0.06336728483438492, -0.007139119319617748, -0.0007776335114613175, 0.007409744430333376, -0.05734283849596977, 0.19641217589378357, 0.05983427166938782, 0.04118388146162033, -0.10457219928503036, 0.0754469707608223, 0.05222151800990105, -0.08310344070196152, 0.0048354915343225, 0.058728016912937164, -0.0839768648147583, -0.04587981849908829, 0.07194583863019943, 0.16140908002853394, -0.05818604305386543, -0.05290941148996353, -0.12691229581832886, -0.11901950091123581, 0.08315069228410721, 0.15765614807605743, 0.11749260872602463, 0.02649836428463459, -0.05480186268687248, 0.010587423108518124, -0.1283111423254013, 0.08981902152299881, 0.036831989884376526, 0.07396987080574036, -0.15676289796829224, 0.15613619983196259, 0.0006779058021493256, 0.04166571795940399, -0.019920246675610542, 0.03746664896607399, -0.10788169503211975, 0.007682627998292446, -0.10297049582004547, -0.02030145935714245, -0.047142960131168365, 0.008031056262552738, 0.009526154957711697, -0.054700031876564026, -0.06317801028490067, 0.014586035162210464, -0.10991515219211578, -0.015512466430664062, 0.036923062056303024, 0.058389436453580856, -0.11796459555625916, -0.042472101747989655, 0.018437759950757027, -0.05966944620013237, 0.0707550048828125, 0.04257848858833313, 0.029574135318398476, 0.052835047245025635, -0.1258050948381424, 0.00467936135828495, 0.07774938642978668, 0.020596295595169067, 0.08053634315729141, -0.091107077896595, -0.009126297198235989, 0.009439350105822086, 0.045556068420410156, 0.016294773668050766, 0.07165581732988358, -0.13621610403060913, -0.003663061885163188, -0.02752789855003357, -0.08306777477264404, -0.06870593130588531, 0.028025049716234207, 0.1082243099808693, 0.007815671153366566, 0.21064017713069916, -0.07027922570705414, 0.029456323012709618, -0.19844001531600952, 0.005108644720166922, -0.014156145043671131, -0.1081426590681076, -0.1250874251127243, -0.05312085151672363, 0.06025192141532898, -0.05603271350264549, 0.1442091017961502, 0.023293036967515945, 0.03336489200592041, 0.031485188752412796, -0.019543586298823357, 0.013052559457719326, 0.026209186762571335, 0.20525917410850525, 0.03234351426362991, -0.039444610476493835, 0.057822298258543015, 0.047072168439626694, 0.10399540513753891, 0.11122884601354599, 0.19408397376537323, 0.1397150307893753, -0.00891692005097866, 0.09733594954013824, 0.035476647317409515, -0.07342521101236343, -0.16167418658733368, 0.048152558505535126, -0.05573197081685066, 0.1032773032784462, -0.02105819433927536, 0.21575519442558289, 0.057336531579494476, -0.1711810678243637, 0.03205676004290581, -0.060859475284814835, -0.08630422502756119, -0.10390761494636536, -0.05391940474510193, -0.08464612811803818, -0.1275969296693802, 0.0032541851978749037, -0.12194564938545227, 0.00920549314469099, 0.11332584172487259, 0.007986009120941162, -0.021867569535970688, 0.1516396552324295, 0.0014760080957785249, 0.03924177959561348, 0.042710062116384506, 0.016632605344057083, -0.033798184245824814, -0.10919508337974548, -0.06237000599503517, -0.028679436072707176, -0.020354369655251503, 0.03518085926771164, -0.0604061521589756, -0.0418475978076458, 0.03757363185286522, -0.01605609618127346, -0.08790703117847443, 0.00806200411170721, 0.019143646582961082, 0.06022847816348076, 0.03706628829240799, 0.00912408996373415, 0.023310424759984016, -0.009646313264966011, 0.2022438496351242, -0.0813668966293335, -0.07103036344051361, -0.11440453678369522, 0.24390852451324463, 0.04189208894968033, -0.008028020150959492, 0.03683219105005264, -0.06896308064460754, -0.001963095273822546, 0.24045848846435547, 0.19993019104003906, -0.08220750093460083, -0.011341658420860767, 0.014833211898803711, -0.009544946253299713, -0.036027658730745316, 0.10189886391162872, 0.13757722079753876, 0.06809039413928986, -0.08984304219484329, -0.0591716393828392, -0.05800410732626915, -0.008065124042332172, -0.03937043249607086, 0.0541689433157444, 0.039688728749752045, 0.0012721430975943804, -0.03690909221768379, 0.04527153819799423, -0.06546895205974579, -0.098318912088871, 0.07862482964992523, -0.20992493629455566, -0.16069597005844116, -0.005525708664208651, 0.10550935566425323, -0.0000876415433594957, 0.06282360106706619, -0.029260316863656044, -0.004250907339155674, 0.0838538333773613, -0.01927582174539566, -0.10224735736846924, -0.07042324542999268, 0.09658117592334747, -0.09357200562953949, 0.2178979367017746, -0.04769809544086456, 0.07653883099555969, 0.13215474784374237, 0.06536200642585754, -0.08546527475118637, 0.05732695385813713, 0.04735957831144333, -0.07671468704938889, 0.027728749439120293, 0.0704755038022995, -0.03631087765097618, 0.08122333884239197, 0.04328911378979683, -0.13387589156627655, 0.018757767975330353, -0.06392120569944382, -0.05029890686273575, -0.048373471945524216, -0.031536199152469635, -0.05816710740327835, 0.1353703737258911, 0.21123410761356354, -0.02813940867781639, -0.004653877578675747, -0.06623878329992294, 0.018248744308948517, 0.054806340485811234, 0.030365293845534325, -0.06334705650806427, -0.22013364732265472, 0.02294909954071045, 0.03632303699851036, -0.020299240946769714, -0.20515450835227966, -0.09090075641870499, 0.004679001402109861, -0.074192114174366, -0.09909754246473312, 0.07688712328672409, 0.08126982301473618, 0.04818067327141762, -0.06442708522081375, -0.03695191815495491, -0.07877697050571442, 0.14135105907917023, -0.13996361196041107, -0.09635888040065765 ]
null
null
transformers
# BART Pretrained [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "widget": [{"text": "[BOS]\ubb50 \ud574?[SEP][MASK]\ud558\ub2e4\uac00 \uc774\uc81c [MASK]\ub824\uace0[EOS]"}], "inference": {"parameters": {"max_length": 64}}}
text2text-generation
alaggung/bart-pretrained
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ko" ]
TAGS #transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us
# BART Pretrained [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. 2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다. 데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
[ "# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ "TAGS\n#transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us \n", "# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ 43, 89 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #ko #autotrain_compatible #endpoints_compatible #region-us \n# BART Pretrained\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\n2021-dialogue-summary-competition 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ 0.00237730098888278, -0.017256710678339005, -0.0067395842634141445, -0.0009646045509725809, 0.09113293886184692, -0.0304929930716753, 0.14525561034679413, 0.062046147882938385, 0.030861910432577133, -0.031774017959833145, 0.10147423297166824, 0.11211138963699341, 0.03516906872391701, 0.20527863502502441, -0.036521945148706436, -0.2827666997909546, 0.04692839831113815, 0.03146747872233391, 0.09984122961759567, 0.12841014564037323, 0.13461054861545563, -0.05317196995019913, 0.0529363751411438, 0.034579772502183914, -0.10740834474563599, 0.030850160866975784, -0.02280198596417904, -0.11465262621641159, 0.09480981528759003, 0.00955253280699253, 0.08795958757400513, 0.06387601047754288, -0.04507270082831383, -0.044903289526700974, 0.04863521084189415, -0.03818279504776001, -0.019755378365516663, 0.03986566141247749, -0.034833598881959915, -0.08291233330965042, 0.1752915382385254, 0.10188128054141998, 0.02250555157661438, 0.04511919617652893, -0.1343814879655838, -0.03618370369076729, -0.030927924439311028, 0.017527861520648003, 0.11638760566711426, 0.044199198484420776, -0.043502114713191986, 0.16815678775310516, -0.11042585223913193, 0.0994674414396286, 0.007250434253364801, -0.34726598858833313, -0.04836523160338402, 0.02735172025859356, 0.07593413442373276, 0.03428863734006882, -0.04228654131293297, 0.02845875173807144, 0.06908449530601501, 0.037951964884996414, -0.010650848969817162, -0.08251558244228363, -0.1641022264957428, -0.013832099735736847, -0.09185922890901566, 0.012790375389158726, 0.27309340238571167, -0.026970986276865005, -0.018429076299071312, -0.09144634008407593, -0.00962223019450903, -0.0895850732922554, -0.02274283580482006, -0.08611396700143814, -0.052358485758304596, 0.0022359229624271393, -0.05596974492073059, -0.03511066734790802, -0.08866257220506668, -0.026975171640515327, -0.14513376355171204, 0.26770657300949097, 0.02799387089908123, 0.01464442815631628, -0.16847673058509827, 0.07121765613555908, 0.10211054235696793, -0.1127028837800026, -0.011727118864655495, -0.09382550418376923, -0.04423844814300537, -0.010426116175949574, -0.047555577009916306, -0.10187076777219772, 0.02718406729400158, 0.15108060836791992, 0.09319913387298584, 0.016444751992821693, -0.0049219392240047455, 0.05395971238613129, 0.08149997144937515, 0.10687321424484253, 0.004812933504581451, -0.05437785014510155, 0.0022545952815562487, -0.03700956702232361, 0.014767277054488659, -0.03924638777971268, -0.11326869577169418, 0.001563398283906281, 0.048691052943468094, 0.04142332449555397, 0.0007464916561730206, 0.12672142684459686, -0.08299129456281662, -0.02499016560614109, 0.0407654233276844, -0.03075018711388111, -0.045730940997600555, -0.027592787519097328, -0.06398718804121017, 0.05981253832578659, 0.011411214247345924, 0.06422794610261917, -0.026488477364182472, 0.03858722373843193, -0.03162066265940666, -0.02432708814740181, -0.018659478053450584, -0.03263241797685623, 0.035510268062353134, -0.014573825523257256, 0.02906857617199421, -0.18200531601905823, -0.12247999757528305, -0.020076250657439232, -0.0053150830790400505, -0.026870448142290115, -0.0425305999815464, -0.09893222898244858, 0.019453659653663635, -0.010486523620784283, -0.05989480018615723, 0.007729323580861092, -0.021554674953222275, 0.0749981477856636, -0.012372785247862339, 0.10561701655387878, -0.07890242338180542, 0.05637499317526817, -0.15273205935955048, -0.01721610128879547, -0.09135449677705765, 0.07941972464323044, -0.028094220906496048, 0.07650293409824371, -0.0255611389875412, 0.012519612908363342, -0.15016302466392517, 0.04828939959406853, 0.02434777468442917, 0.1894117146730423, -0.10885756462812424, -0.07246001809835434, 0.18225505948066711, -0.05820325016975403, -0.14694081246852875, 0.13801135122776031, -0.014737309888005257, 0.13393564522266388, 0.13760915398597717, 0.21291090548038483, -0.0008276253356598318, -0.042398568242788315, 0.004789601545780897, 0.044498980045318604, -0.08257997781038284, 0.001487169647589326, 0.06527731567621231, 0.062004454433918, -0.14323580265045166, 0.05667756870388985, 0.0843793973326683, 0.08778190612792969, -0.09153732657432556, -0.027368979528546333, 0.040020231157541275, -0.039764586836099625, 0.1189451515674591, 0.0294235497713089, 0.10934675484895706, -0.07421980053186417, -0.04018859192728996, -0.0234342310577631, 0.04437989741563797, 0.0017412559827789664, 0.00955970585346222, -0.12676800787448883, 0.07677175849676132, 0.03617668151855469, 0.03656740486621857, -0.09719040989875793, -0.01585409604012966, 0.005998918320983648, 0.11318264901638031, 0.06017309054732323, 0.1285179853439331, 0.023903140798211098, -0.0512024387717247, 0.009202061221003532, 0.019484592601656914, 0.10111238807439804, -0.00342559814453125, -0.08080047369003296, -0.09022873640060425, 0.053641363978385925, -0.06921378523111343, 0.14166651666164398, -0.026134934276342392, 0.0019499597838148475, 0.0025700803380459547, 0.1561504453420639, -0.00046376162208616734, 0.024458158761262894, 0.06503172218799591, 0.06226896494626999, -0.036674585193395615, 0.030908893793821335, 0.06304938346147537, 0.020402075722813606, -0.0984911397099495, 0.23680585622787476, -0.09839193522930145, 0.09942179918289185, 0.1415841281414032, -0.11950165778398514, -0.04137082025408745, -0.03014424629509449, -0.03894126042723656, 0.00032331180409528315, 0.06205478310585022, 0.004586583469063044, 0.19462350010871887, -0.016872737556695938, 0.1516222357749939, -0.04357453063130379, -0.05362419784069061, -0.010226981714367867, -0.07347863912582397, -0.001083113718777895, 0.09525345265865326, -0.003650031052529812, -0.17253360152244568, 0.10653527081012726, 0.09272401034832001, 0.04673127830028534, 0.26295700669288635, 0.03798794746398926, 0.016761885955929756, -0.005683422088623047, 0.0007533606258220971, -0.07332174479961395, 0.02877025119960308, -0.23156781494617462, -0.05491713806986809, 0.05288750305771828, -0.03317464143037796, 0.051805272698402405, -0.07479453086853027, -0.04946604743599892, 0.0021242250222712755, 0.012268414720892906, 0.021850809454917908, 0.12145517766475677, -0.003392681246623397, 0.11540569365024567, 0.008864949457347393, -0.08077022433280945, 0.03775634244084358, 0.004448361694812775, -0.09414653480052948, 0.1315329521894455, -0.059850748628377914, -0.3087500035762787, -0.03974515572190285, -0.043846555054187775, -0.002971203997731209, 0.010028265416622162, 0.06664572656154633, -0.056386664509773254, -0.011452716775238514, 0.0039482335560023785, 0.05557302385568619, -0.019996605813503265, -0.002535757375881076, 0.012016783468425274, -0.03009248524904251, -0.08229280263185501, -0.10704082250595093, -0.056015729904174805, -0.059449538588523865, -0.053376730531454086, 0.0918085128068924, -0.12283487617969513, 0.08637262135744095, 0.11234310269355774, 0.0023198784328997135, 0.031084323301911354, -0.06998828053474426, 0.15648043155670166, -0.1300089806318283, -0.002547285985201597, 0.10288049280643463, -0.052821166813373566, 0.0013637448428198695, 0.10247451066970825, -0.010375306941568851, -0.0460088811814785, 0.08761909604072571, -0.04074542224407196, -0.07144797593355179, -0.20704220235347748, -0.11164993792772293, -0.06605736911296844, 0.10065159946680069, -0.015351630747318268, 0.016613399609923363, 0.12597966194152832, 0.06983481347560883, -0.03530631586909294, 0.021609844639897346, -0.009575813077390194, 0.04638414457440376, 0.12726157903671265, -0.04835175722837448, 0.13353483378887177, -0.05963559076189995, -0.11026980727910995, 0.06818893551826477, -0.007204280700534582, 0.05167091637849808, 0.08779042959213257, -0.004501474089920521, 0.06607824563980103, 0.11002261936664581, 0.12411961704492569, 0.03878108412027359, -0.0006828566547483206, -0.03877400606870651, -0.030542436987161636, -0.027027754113078117, -0.07444886118173599, 0.05914187431335449, 0.03721674531698227, -0.09270995855331421, -0.053256720304489136, -0.05679309368133545, 0.09929831326007843, 0.123944491147995, 0.051347363740205765, -0.16958951950073242, -0.046040128916502, 0.02755865268409252, -0.07621616125106812, -0.0354287214577198, 0.08329443633556366, 0.021687716245651245, -0.17225678265094757, 0.07912909984588623, 0.00106431997846812, 0.07481008023023605, -0.039155032485723495, 0.04548516869544983, -0.09962218999862671, -0.08326945453882217, -0.006622631102800369, 0.07524800300598145, -0.341255247592926, 0.22069376707077026, -0.01382134947925806, -0.018362240865826607, -0.11822519451379776, -0.0438627228140831, 0.01557084359228611, 0.03237244486808777, 0.09494411200284958, 0.00639704754576087, 0.019154822453856468, -0.08767533302307129, -0.0490092895925045, 0.05994700640439987, 0.05933540686964989, -0.04955735802650452, 0.0013372179819270968, 0.01296556368470192, -0.00028692945488728583, -0.04217072203755379, -0.056764643639326096, -0.07471281290054321, -0.05962357670068741, 0.05054597556591034, 0.0740819200873375, 0.10820623487234116, 0.02289409562945366, -0.07664752751588821, -0.06217799335718155, 0.11159562319517136, -0.02150675281882286, -0.07349332422018051, -0.07619684934616089, -0.004576309584081173, 0.018863148987293243, -0.07176059484481812, -0.004340143874287605, -0.049245793372392654, -0.025187281891703606, -0.05353327840566635, -0.13331852853298187, 0.08774570375680923, -0.07593192905187607, -0.0857435092329979, -0.0166526660323143, 0.1284586638212204, 0.025159209966659546, 0.05845269560813904, 0.03453787788748741, -0.029534602537751198, -0.02303485758602619, -0.07609770447015762, -0.015332398936152458, -0.033532433211803436, -0.0011314006987959146, -0.01932036504149437, 0.017730092629790306, -0.08006521314382553, -0.089805968105793, -0.02398834004998207, 0.17114543914794922, 0.14742642641067505, -0.05373374745249748, 0.1384531408548355, 0.16277651488780975, 0.008696244098246098, -0.22774800658226013, -0.10209739953279495, -0.005882585421204567, 0.03380719944834709, -0.028844408690929413, -0.14967966079711914, 0.036952584981918335, 0.0023950955364853144, -0.04379997402429581, 0.006134620402008295, -0.21014022827148438, -0.12872052192687988, 0.17047908902168274, -0.03402049466967583, 0.3444059193134308, -0.06792575120925903, -0.04348565638065338, 0.013976069167256355, -0.11168414354324341, 0.11420085281133652, -0.002632793504744768, 0.07189980894327164, 0.008100149221718311, 0.07759460806846619, 0.02505628764629364, 0.006510575767606497, 0.08326886594295502, -0.021524028852581978, 0.002617500489577651, -0.09338119626045227, -0.08063782751560211, -0.036779340356588364, 0.017418615520000458, 0.1228678897023201, -0.041472140699625015, 0.023599648848176003, -0.15785987675189972, -0.041649047285318375, -0.07004669308662415, 0.07159505039453506, 0.021055618301033974, -0.06719034910202026, -0.045169465243816376, 0.025894928723573685, -0.04646556079387665, 0.018704337999224663, 0.1377771943807602, -0.04913724586367607, 0.11497630178928375, 0.03623843193054199, 0.18237940967082977, -0.07960744202136993, 0.1624172478914261, -0.05455901101231575, -0.07461611926555634, 0.09202523529529572, -0.07248444855213165, -0.02330966852605343, 0.10850534588098526, 0.001178692327812314, 0.07194085419178009, 0.029282666742801666, -0.07033083587884903, 0.06501239538192749, 0.12528622150421143, -0.18502411246299744, -0.054201047867536545, -0.09484943002462387, 0.016088023781776428, 0.1034373864531517, 0.08618149906396866, 0.1440390646457672, -0.06951753050088882, -0.05007617548108101, -0.01351745706051588, -0.018282130360603333, -0.07203369587659836, 0.03653804585337639, 0.04540548473596573, 0.02828405238687992, -0.09685672074556351, 0.03538482263684273, 0.040970172733068466, -0.04999779164791107, 0.06847169250249863, 0.0823405459523201, -0.07135675102472305, -0.07817628979682922, -0.12760664522647858, 0.15402962267398834, -0.013833250850439072, -0.05395093560218811, -0.05582476779818535, -0.076716847717762, 0.030519556254148483, 0.21226835250854492, 0.05981126427650452, 0.09146445989608765, -0.02939577028155327, 0.00934538058936596, -0.0011294097639620304, 0.020696336403489113, 0.05967942252755165, -0.00021616544108837843, -0.04517596587538719, 0.11074197292327881, 0.018054714426398277, 0.14197348058223724, -0.1054128035902977, -0.0999315083026886, -0.12030744552612305, 0.04119640588760376, -0.07485172152519226, -0.10841795802116394, -0.1349269151687622, -0.057187557220458984, -0.00781216798350215, -0.10688905417919159, -0.06651949882507324, -0.02674521505832672, -0.09428144991397858, 0.06625592708587646, 0.013585190288722515, 0.054396264255046844, -0.07525541633367538, -0.0043399580754339695, 0.07589922100305557, -0.012898480519652367, 0.11289167404174805, 0.12274735420942307, -0.04888428747653961, 0.07225479185581207, -0.12292184680700302, -0.0043477704748511314, 0.05808491259813309, 0.019922463223338127, 0.03663147985935211, 0.04849684610962868, -0.007854276336729527, 0.06805812567472458, 0.09892028570175171, 0.06646096706390381, 0.05576783046126366, -0.10738663375377655, -0.00934372004121542, 0.035439420491456985, -0.09794853627681732, -0.05671873688697815, -0.001875712419860065, 0.021445082500576973, 0.05203362554311752, 0.0968901515007019, -0.05111711844801903, 0.05009562149643898, -0.08566087484359741, 0.029760785400867462, -0.016322975978255272, -0.11990287899971008, -0.060413382947444916, -0.10167806595563889, 0.025436334311962128, -0.0078020174987614155, 0.19191361963748932, 0.08970140665769577, -0.057857759296894073, 0.026094797998666763, 0.03700634837150574, 0.006074478849768639, 0.01003602147102356, 0.057051919400691986, 0.08475715667009354, -0.009679839946329594, -0.09880213439464569, 0.042695071548223495, -0.00881923083215952, -0.053511716425418854, 0.06872983276844025, 0.08383865654468536, 0.0027310808654874563, 0.0650862604379654, 0.018351957201957703, 0.04218770191073418, -0.05627427250146866, -0.17874065041542053, -0.11174044013023376, 0.025921041145920753, -0.04379647225141525, 0.08408534526824951, 0.1264435201883316, -0.052426427602767944, 0.008189208805561066, -0.0055518620647490025, -0.03291192650794983, -0.12739647924900055, -0.16850480437278748, -0.07213897258043289, -0.09922021627426147, 0.017844844609498978, -0.07578819990158081, 0.016173603013157845, 0.05883931368589401, 0.08071854710578918, -0.06456427276134491, 0.11278299987316132, -0.0006083069019950926, -0.06956851482391357, 0.147197425365448, -0.05052090063691139, 0.04272688552737236, -0.13512998819351196, -0.026940416544675827, -0.07601368427276611, 0.07854001224040985, -0.026484133675694466, 0.028385238721966743, -0.07056205719709396, -0.01251394022256136, -0.05812046304345131, -0.10691972821950912, -0.024887559935450554, 0.012041118927299976, 0.059317078441381454, 0.05542314425110817, 0.04002464562654495, 0.02483559399843216, 0.01626766286790371, 0.2338835895061493, -0.012000980786979198, -0.08257395029067993, -0.14637742936611176, 0.1851954162120819, -0.02435298264026642, 0.028894364833831787, -0.013618716970086098, 0.002903774380683899, -0.06366290897130966, 0.29855769872665405, 0.21378298103809357, -0.04104582965373993, 0.009598095901310444, -0.03718011826276779, 0.041329629719257355, 0.053261835128068924, 0.1310437023639679, 0.05906219407916069, 0.25295862555503845, -0.06207708641886711, -0.030382689088582993, -0.05157783627510071, -0.017525259405374527, -0.0014934802893549204, 0.05945852771401405, 0.050434570759534836, -0.0720866397023201, -0.05602395534515381, 0.10142465680837631, -0.19106587767601013, 0.037513162940740585, -0.13803544640541077, -0.16573674976825714, -0.09695840626955032, -0.007719099521636963, 0.0816965401172638, 0.0810398980975151, 0.091909259557724, 0.0022631827741861343, -0.0014806193066760898, 0.010657310485839844, 0.025524655357003212, -0.09590655565261841, -0.03313348814845085, 0.12656307220458984, -0.09688080847263336, 0.018420910462737083, -0.029418209567666054, 0.09774977713823318, 0.06216542795300484, 0.05389837175607681, -0.02153019607067108, 0.05603238567709923, 0.030506659299135208, 0.011423502117395401, 0.011781028471887112, 0.08861783891916275, 0.05393461510539055, 0.023696739226579666, 0.07186762243509293, -0.13430249691009521, 0.06764307618141174, -0.04718608781695366, -0.008104019798338413, -0.07711844146251678, 0.09930949658155441, -0.03697973117232323, 0.12981396913528442, 0.12429188191890717, -0.04117133468389511, -0.012220540083944798, -0.02415858581662178, 0.009208738803863525, -0.004067994188517332, -0.08347602188587189, -0.0751722976565361, -0.17571090161800385, -0.06799381971359253, 0.0415017232298851, -0.027684826403856277, -0.17742803692817688, 0.04471343755722046, -0.12468823045492172, 0.017792578786611557, -0.03901931643486023, 0.0544976070523262, 0.05616316944360733, 0.013321652077138424, 0.01962926983833313, -0.0502508170902729, 0.03976093605160713, 0.054655469954013824, -0.12421058118343353, -0.07720380276441574 ]
null
null
transformers
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-pretrained](https://huggingface.co/alaggung/bart-pretrained) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
summarization
alaggung/bart-r3f
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "summarization", "ko", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ko" ]
TAGS #transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. bart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
[ "# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ "TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ 51, 103 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #has_space #region-us \n# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-pretrained 모델에 2021-dialogue-summary-competition 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ 0.0043957470916211605, 0.03843561187386513, -0.005781741347163916, -0.010108175687491894, 0.08787675946950912, -0.02153603546321392, 0.13030803203582764, 0.07137732207775116, 0.01625755801796913, -0.028576219454407692, 0.10615841299295425, 0.1026599109172821, 0.019381945952773094, 0.21675238013267517, -0.07707476615905762, -0.2617667615413666, 0.06733972579240799, -0.002719886600971222, 0.002211296930909157, 0.12420449405908585, 0.1464022547006607, -0.04353144019842148, 0.06316617876291275, 0.011014112271368504, -0.14226384460926056, 0.04838995262980461, -0.017780745401978493, -0.1093340516090393, 0.0867377519607544, 0.07422489672899246, 0.09270909428596497, 0.10385093092918396, -0.02008751779794693, -0.04979657754302025, 0.047955792397260666, -0.02866065874695778, -0.04415997490286827, 0.06515228003263474, -0.053475651890039444, -0.07248228043317795, 0.19626691937446594, 0.05120475962758064, 0.023979026824235916, 0.045789480209350586, -0.1231071874499321, 0.0037075525615364313, -0.028881803154945374, -0.00784122385084629, 0.0727662444114685, 0.024562962353229523, -0.030515043064951897, 0.1484849900007248, -0.12489567697048187, 0.09357742965221405, 0.04714876785874367, -0.2999151349067688, -0.05111618712544441, 0.13692684471607208, 0.07496029883623123, 0.041562799364328384, -0.039151616394519806, 0.05097230523824692, 0.06942011415958405, 0.03662382811307907, 0.03494248539209366, -0.06344839930534363, -0.16349154710769653, 0.01677924580872059, -0.0946260467171669, -0.015124918892979622, 0.31902655959129333, -0.006867510732263327, 0.007088354788720608, -0.11072900146245956, -0.04740247130393982, -0.08096000552177429, -0.02167939394712448, -0.060054682195186615, -0.0512278713285923, -0.007715520914644003, -0.062446750700473785, -0.01730976440012455, -0.09185585379600525, -0.033498045057058334, -0.14561812579631805, 0.2595866918563843, -0.006948238704353571, 0.03003448247909546, -0.1580161154270172, 0.05621417984366417, 0.05175098404288292, -0.10857478529214859, 0.012546339072287083, -0.11313331127166748, -0.09063940495252609, 0.01796610653400421, -0.07138574123382568, -0.12646938860416412, 0.06060921400785446, 0.11385840177536011, 0.06873767077922821, 0.01768757402896881, 0.027873117476701736, 0.06383074820041656, 0.10743743926286697, 0.10846636444330215, -0.060777127742767334, -0.07310338318347931, -0.006200417410582304, -0.036367855966091156, -0.0031160188373178244, -0.05314922332763672, -0.11026941239833832, 0.012415348552167416, 0.00900630746036768, 0.038014356046915054, 0.007984676398336887, 0.13257935643196106, -0.08489488810300827, -0.033634986728429794, 0.09287125617265701, -0.040319863706827164, -0.05562850460410118, -0.01095972117036581, -0.06404029577970505, 0.03877696394920349, 0.01736333779990673, 0.037525150924921036, 0.006514487322419882, 0.03714509308338165, -0.042895276099443436, -0.05629310756921768, -0.046002306044101715, -0.07612164318561554, 0.02476184070110321, 0.02014831081032753, 0.043213214725255966, -0.1796339899301529, -0.09207471460103989, -0.032276228070259094, 0.019705411046743393, -0.06252281367778778, -0.04659431055188179, -0.08479588478803635, -0.020281286910176277, 0.018492067232728004, -0.05892188102006912, 0.05656300485134125, -0.02549096569418907, 0.055538393557071686, -0.03948747739195824, 0.13079577684402466, -0.14690592885017395, 0.06011663377285004, -0.12274417281150818, -0.016065610572695732, -0.08323682844638824, 0.10718228667974472, -0.061105016618967056, 0.028956051915884018, -0.040926262736320496, 0.012501193210482597, -0.1337224543094635, 0.04763737693428993, 0.01899411901831627, 0.18687519431114197, -0.15023508667945862, -0.0490332692861557, 0.1321788877248764, -0.06292807310819626, -0.1199149489402771, 0.11575469374656677, -0.012427057139575481, 0.11678475886583328, 0.08901949226856232, 0.2266746163368225, 0.0008767528343014419, -0.010378506034612656, -0.02341463975608349, 0.05682200565934181, -0.08307132124900818, -0.006358294747769833, 0.07337905466556549, 0.10512495785951614, -0.10863883793354034, 0.061931006610393524, 0.0635751411318779, 0.07756083458662033, -0.08432997018098831, -0.024502677842974663, 0.025886686518788338, -0.036722034215927124, 0.12201859802007675, 0.015091871842741966, 0.11267975717782974, -0.07171755284070969, -0.0435471311211586, -0.009216473437845707, 0.055983591824769974, -0.01438173744827509, -0.015071581117808819, -0.1283651739358902, 0.08466900140047073, -0.00950520671904087, 0.042655427008867264, -0.13754379749298096, -0.07034275680780411, -0.019730109721422195, 0.11153775453567505, 0.06676049530506134, 0.20062251389026642, 0.03677622973918915, -0.05914662778377533, -0.008225478231906891, 0.010604750365018845, 0.1036757305264473, 0.02041337825357914, -0.05535563826560974, -0.08192183077335358, 0.017576098442077637, -0.09293217211961746, 0.11469553411006927, -0.0406346395611763, 0.008475994691252708, 0.01800340786576271, 0.1651906818151474, 0.01580011658370495, 0.029905719682574272, 0.0590183325111866, 0.026978420093655586, -0.0369340181350708, 0.027687299996614456, 0.04365084692835808, 0.006326287519186735, -0.10503638535737991, 0.24581177532672882, -0.08150612562894821, 0.164146289229393, 0.13832491636276245, -0.06477496027946472, -0.033235106617212296, -0.013880462385714054, -0.042786065489053726, 0.02782665379345417, 0.03327159956097603, -0.02727103792130947, 0.13706134259700775, -0.004693510942161083, 0.1305585354566574, -0.04084846004843712, -0.04664544016122818, -0.012514994479715824, -0.054125793278217316, -0.033411599695682526, 0.10355086624622345, 0.020832424983382225, -0.2138829529285431, 0.11387118697166443, 0.09611091017723083, 0.05527343600988388, 0.255362868309021, 0.05144717916846275, 0.004429374355822802, -0.0027845546137541533, -0.024640735238790512, -0.07577186077833176, 0.05401336029171944, -0.1806643009185791, -0.05312086641788483, 0.07381386309862137, -0.03041171096265316, 0.06775066256523132, -0.05932976305484772, -0.0447106659412384, 0.00023244641488417983, 0.007742065470665693, -0.0043401652947068214, 0.1404750645160675, 0.009006875567138195, 0.12875084578990936, -0.001865497906692326, -0.09669458121061325, 0.014015339314937592, -0.021817810833454132, -0.07142694294452667, 0.1346278190612793, -0.05029373615980148, -0.31873250007629395, -0.055991094559431076, -0.010777180083096027, -0.024299699813127518, 0.0031074904836714268, 0.05828572064638138, -0.056580133736133575, -0.03139220550656319, -0.024287384003400803, 0.07359377294778824, -0.049076713621616364, -0.019948547706007957, 0.00899551622569561, -0.012256172485649586, -0.06274213641881943, -0.1253386288881302, -0.050103943794965744, -0.043895423412323, -0.017657019197940826, 0.11531570553779602, -0.12083768099546432, 0.10443022102117538, 0.10989632457494736, -0.03494922071695328, 0.03642336279153824, -0.0620090626180172, 0.15622131526470184, -0.09959578514099121, -0.007653978653252125, 0.08499430119991302, -0.016989151015877724, -0.0130238626152277, 0.13179512321949005, 0.002283091889694333, -0.0668775737285614, 0.08186034113168716, -0.03437439724802971, -0.091995969414711, -0.2016080766916275, -0.14967991411685944, -0.08276686817407608, 0.0884333997964859, -0.01708168536424637, 0.031637564301490784, 0.05278957262635231, 0.06686699390411377, -0.008236908353865147, -0.01872892491519451, -0.012730673886835575, 0.03541635721921921, 0.1356048583984375, -0.06067577376961708, 0.14967896044254303, -0.069090336561203, -0.1112881526350975, 0.07895133644342422, 0.005483553279191256, 0.0828295573592186, 0.06326740235090256, 0.010809244588017464, 0.06175553798675537, 0.06794130057096481, 0.12399592250585556, 0.08345365524291992, 0.017949266359210014, -0.04205230996012688, -0.06832550466060638, -0.027591409161686897, -0.08931870758533478, 0.07834849506616592, 0.06737197190523148, -0.11862904578447342, -0.040522102266550064, -0.0397462360560894, 0.09220916032791138, 0.12245460599660873, 0.05596303194761276, -0.2029031664133072, -0.04751289635896683, 0.04105198383331299, -0.06117348000407219, -0.01295486930757761, 0.08269765973091125, 0.09349711984395981, -0.13481192290782928, 0.04207967221736908, 0.004161507822573185, 0.0741078108549118, -0.022620422765612602, 0.034269485622644424, -0.10238591581583023, -0.06607402116060257, -0.0015169470570981503, 0.08046507090330124, -0.29175707697868347, 0.238169327378273, -0.019637983292341232, -0.06702200323343277, -0.1107509583234787, -0.055041905492544174, 0.012676356360316277, 0.013509804382920265, 0.1061645969748497, -0.0002812467864714563, -0.06380175054073334, -0.07367382943630219, -0.04428621381521225, 0.07163684815168381, 0.03805419057607651, -0.03531494364142418, 0.013036241754889488, -0.005537604447454214, 0.0027020499110221863, -0.009148201905190945, 0.005831799935549498, -0.046310920268297195, -0.11923526972532272, 0.04189231991767883, 0.0978730246424675, 0.06432216614484787, 0.005825386848300695, -0.07967231422662735, -0.031001368537545204, 0.13665762543678284, 0.10398414731025696, -0.05887657403945923, -0.09584317356348038, 0.023616597056388855, 0.07248429208993912, -0.06859903037548065, -0.008317508734762669, -0.03546139970421791, 0.01341354288160801, -0.04042283818125725, -0.16269829869270325, 0.10341848433017731, -0.09508006274700165, -0.05208827927708626, -0.02797509729862213, 0.09679929167032242, 0.005980298388749361, 0.07707078754901886, 0.030182380229234695, 0.0039970302022993565, -0.029347410425543785, -0.08726917207241058, -0.013450294733047485, -0.017968209460377693, -0.004042373970150948, 0.029221782460808754, 0.011412827298045158, -0.09181708097457886, -0.024320097640156746, -0.020390769466757774, 0.2064320594072342, 0.11598310619592667, -0.09274698793888092, 0.13025376200675964, 0.12173504382371902, 0.025916215032339096, -0.2569325268268585, -0.10018884390592575, -0.01566576398909092, 0.06938693672418594, -0.001521583180874586, -0.10289514809846878, 0.005906551145017147, 0.0006914953701198101, -0.049436457455158234, -0.03789243847131729, -0.21722789108753204, -0.11132707446813583, 0.15244416892528534, -0.02078641578555107, 0.310398668050766, -0.07749176770448685, -0.022702444344758987, -0.015097348019480705, -0.15355584025382996, 0.1720244586467743, -0.03531557694077492, 0.0809372290968895, 0.0059165358543396, 0.08429618179798126, 0.030143529176712036, -0.016762467101216316, 0.08880770206451416, -0.019816281273961067, -0.01144680380821228, -0.06667698919773102, -0.11169195920228958, 0.007113730069249868, 0.014945236966013908, 0.12093356996774673, -0.06345176696777344, 0.03686968609690666, -0.1527540534734726, -0.032519854605197906, -0.08862252533435822, 0.049638304859399796, 0.024044610559940338, -0.05756573751568794, -0.057672206312417984, 0.04478653892874718, -0.014477036893367767, 0.025074129924178123, 0.1582091897726059, -0.08046888560056686, 0.09702075272798538, 0.1400463581085205, 0.159454345703125, -0.1021842509508133, 0.14240863919258118, -0.01721186749637127, -0.05721891298890114, 0.07588960230350494, -0.13892483711242676, 0.0025560359936207533, 0.11140574514865875, -0.0025466433726251125, 0.08682303130626678, 0.042884405702352524, -0.042054589837789536, 0.06122784689068794, 0.15543651580810547, -0.16238491237163544, -0.10717812180519104, -0.06829869747161865, 0.04061761870980263, 0.07512962073087692, 0.07828278094530106, 0.14987438917160034, -0.07120439410209656, -0.034966934472322464, -0.018841691315174103, 0.0006220170762389898, -0.08064223825931549, 0.07357537001371384, 0.03748897835612297, 0.046415235847234726, -0.10990462452173233, 0.02777443639934063, 0.04449436813592911, -0.04113716259598732, 0.04476805403828621, 0.05533118173480034, -0.07166627049446106, -0.08650723099708557, -0.12659958004951477, 0.0950176790356636, -0.058846451342105865, -0.03275026008486748, -0.054139621555805206, -0.08386276662349701, 0.017834162339568138, 0.14229871332645416, 0.06191949173808098, 0.08134964108467102, -0.044112008064985275, -0.02596605196595192, 0.0013347764033824205, 0.009053632616996765, 0.05882120132446289, 0.008281231857836246, -0.05804210528731346, 0.043003011494874954, -0.01385386660695076, 0.10303165018558502, -0.11409241706132889, -0.06103234365582466, -0.12965473532676697, 0.019481981173157692, -0.1003725528717041, -0.09510461241006851, -0.10645376145839691, -0.04615410044789314, -0.007487500552088022, -0.09415159374475479, -0.07730346918106079, -0.018833905458450317, -0.11170696467161179, 0.06177455559372902, -0.0049113743007183075, 0.06469441205263138, -0.06305136531591415, 0.007258034311234951, 0.05680672824382782, -0.01883092150092125, 0.11334789544343948, 0.1128082424402237, -0.056675951927900314, 0.07799547910690308, -0.11693300306797028, -0.049617741256952286, 0.06931760907173157, 0.024727007374167442, 0.07028540223836899, 0.012252225540578365, 0.00195796275511384, 0.0764140859246254, 0.08541412651538849, 0.05526069551706314, 0.004360145889222622, -0.09387723356485367, 0.003843380603939295, -0.022492138668894768, -0.0747966319322586, -0.060594089329242706, -0.004642641171813011, 0.03880941495299339, 0.08434055745601654, 0.09379411488771439, -0.03939982131123543, 0.035907723009586334, -0.10815764963626862, 0.03652186319231987, -0.01451465766876936, -0.12473957240581512, -0.052936017513275146, -0.09447118639945984, 0.0295072291046381, -0.013059457764029503, 0.22805950045585632, 0.10356143862009048, -0.07859380543231964, 0.032160673290491104, 0.034317731857299805, 0.031824011355638504, 0.006741353310644627, 0.05828185752034187, 0.06615131348371506, 0.005729057360440493, -0.08063172549009323, 0.03700052946805954, -0.003925237338989973, -0.048202019184827805, 0.08671663701534271, 0.07534804940223694, -0.012080497108399868, 0.06431246548891068, 0.04146388918161392, 0.018294360488653183, -0.01422071736305952, -0.09248856455087662, -0.08615241199731827, 0.040826525539159775, -0.06754610687494278, 0.04927040636539459, 0.12827609479427338, -0.06645163148641586, 0.04038112610578537, -0.04293586686253548, -0.02203274890780449, -0.10787751525640488, -0.13427700102329254, -0.0941881313920021, -0.12971457839012146, 0.00884074904024601, -0.11816057562828064, 0.025130268186330795, 0.10223983973264694, 0.07531704008579254, -0.036432474851608276, 0.0819663256406784, -0.004506620112806559, -0.05396837368607521, 0.11370629817247391, -0.0512322299182415, 0.038558825850486755, -0.1247687041759491, 0.012415524572134018, -0.044741176068782806, 0.10303483158349991, -0.020895175635814667, 0.04975634068250656, -0.059275947511196136, -0.029242655262351036, -0.0529620386660099, -0.0904693752527237, -0.06004022806882858, 0.03569003567099571, 0.037744469940662384, 0.07451687753200531, 0.043241504579782486, 0.0020280638709664345, 0.024436751380562782, 0.25115707516670227, -0.04894232377409935, -0.08095114678144455, -0.17452651262283325, 0.155814066529274, -0.025292472913861275, 0.07652875781059265, -0.004800789058208466, -0.025549130514264107, -0.10931628197431564, 0.22277520596981049, 0.28772181272506714, -0.06903822720050812, 0.017527835443615913, -0.02397935464978218, 0.035180576145648956, 0.01571793109178543, 0.1053178533911705, 0.07260973006486893, 0.24472224712371826, -0.07236523181200027, -0.018902283161878586, -0.04336152970790863, -0.012164480052888393, 0.05426175147294998, 0.0738920196890831, 0.04657714068889618, -0.07648348063230515, -0.04753149300813675, 0.08758393675088882, -0.16043072938919067, -0.029756400734186172, -0.16469761729240417, -0.20141765475273132, -0.10523560643196106, -0.013616167940199375, 0.028661975637078285, 0.06381133943796158, 0.12410743534564972, -0.031203806400299072, -0.007534870412200689, 0.015516533516347408, 0.009449006989598274, -0.12135324627161026, -0.0045209480449557304, 0.124655582010746, -0.10423944890499115, 0.021208524703979492, -0.03331334516406059, 0.07613822817802429, 0.08366262912750244, 0.022297488525509834, -0.03261415660381317, 0.0685788169503212, 0.0204894058406353, -0.012910820543766022, 0.017050525173544884, 0.09690477699041367, 0.025787679478526115, 0.0761098861694336, 0.0629744678735733, -0.17145095765590668, 0.07539267092943192, -0.02154918573796749, 0.012950132600963116, -0.06720837205648422, 0.07029042392969131, -0.039841365069150925, 0.14623530209064484, 0.13749496638774872, -0.041455212980508804, 0.001038656453602016, -0.022594744339585304, 0.04044954106211662, 0.01473139226436615, -0.04826592653989792, -0.08254579454660416, -0.16151104867458344, -0.06599879264831543, 0.03883727639913559, -0.02408944070339203, -0.20367497205734253, 0.05090534687042236, -0.11059287935495377, 0.03572038933634758, 0.0030799659434705973, 0.07687298208475113, 0.08216223865747452, 0.01266297698020935, 0.0031440663151443005, -0.06826607137918472, 0.03702389448881149, 0.05883019044995308, -0.119697704911232, -0.07433880120515823 ]
null
null
transformers
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-r3f](https://huggingface.co/alaggung/bart-r3f) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
summarization
alaggung/bart-rl
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "summarization", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ko" ]
TAGS #transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. bart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다.
[ "# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ "TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us \n", "# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ 47, 103 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bart #text2text-generation #summarization #ko #autotrain_compatible #endpoints_compatible #region-us \n# BART R3F\n\n[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.\n\nbart-r3f 모델에 2021-dialogue-summary-competition 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.\n\n데이터는 AIHub 한국어 대화요약 데이터를 사용하였습니다." ]
[ -0.0011565162567421794, 0.014731353148818016, -0.006296293810009956, 0.0014817863702774048, 0.10146302729845047, -0.007712916936725378, 0.12115488201379776, 0.06756991893053055, 0.04513048753142357, -0.04735687002539635, 0.09774233400821686, 0.13588741421699524, 0.0310000441968441, 0.20809243619441986, -0.09323526173830032, -0.25699785351753235, 0.047412723302841187, 0.010521452873945236, 0.04752982780337334, 0.12555082142353058, 0.14988583326339722, -0.026863589882850647, 0.0669671893119812, 0.0036801977548748255, -0.1375093311071396, 0.0472143292427063, -0.00269743031822145, -0.10328183323144913, 0.09237959235906601, 0.07478897273540497, 0.07254679501056671, 0.09715055674314499, -0.013337666168808937, -0.05295991897583008, 0.05122952163219452, -0.04292042925953865, -0.03443817049264908, 0.06818225979804993, -0.061530523002147675, -0.08968652784824371, 0.19967737793922424, 0.07593346387147903, 0.0220112893730402, 0.05680950731039047, -0.11421345919370651, 0.03777691721916199, -0.020500924438238144, 0.003291990142315626, 0.08779045194387436, 0.030657725408673286, -0.022315753623843193, 0.1551761031150818, -0.1156759038567543, 0.11035008728504181, 0.06083759665489197, -0.31138888001441956, -0.04778888076543808, 0.10854021459817886, 0.04707518219947815, 0.021292023360729218, -0.03843226283788681, 0.03142489492893219, 0.06642937660217285, 0.041755180805921555, 0.008313799276947975, -0.07101009041070938, -0.17581094801425934, 0.00018717473722063005, -0.07533067464828491, -0.007460111286491156, 0.3124907910823822, -0.0069321501068770885, -0.006003058049827814, -0.09891258925199509, -0.04137882590293884, -0.07756103575229645, -0.02971668355166912, -0.04900616779923439, -0.06568188965320587, -0.01181865856051445, -0.05998243764042854, -0.006323426961898804, -0.07473690807819366, -0.05569298192858696, -0.13317717611789703, 0.27229198813438416, 0.00799600500613451, 0.02858836017549038, -0.15894900262355804, 0.06308714300394058, 0.07429223507642746, -0.10068686306476593, 0.0015810977201908827, -0.10676392912864685, -0.09467214345932007, 0.027830302715301514, -0.0528649277985096, -0.12355883419513702, 0.06110956147313118, 0.1082950308918953, 0.05824076011776924, 0.021687492728233337, 0.0193448755890131, 0.06068076565861702, 0.09236025810241699, 0.09366965293884277, -0.03358175605535507, -0.05588677525520325, 0.013388670980930328, -0.05140838027000427, -0.008098702877759933, -0.03690125793218613, -0.0949041023850441, 0.022979851812124252, 0.006585938390344381, 0.04613015800714493, -0.028303425759077072, 0.1409623771905899, -0.09803839772939682, -0.03711643069982529, 0.07706963270902634, -0.04502618685364723, -0.07360415905714035, -0.006768415682017803, -0.07749433815479279, 0.04646528884768486, 0.019961269572377205, 0.027299029752612114, -0.01694643311202526, 0.05139840394258499, -0.02776176854968071, -0.05217037722468376, -0.04512661322951317, -0.052971914410591125, 0.024818528443574905, 0.0035861630458384752, 0.04624376818537712, -0.1722293347120285, -0.13631325960159302, -0.026933444663882256, 0.002690340857952833, -0.062764972448349, -0.04999072477221489, -0.10983029007911682, 0.0035081692039966583, -0.007252627983689308, -0.05404391139745712, 0.044547975063323975, -0.013330305926501751, 0.07822047173976898, -0.03220626339316368, 0.12123952805995941, -0.14309468865394592, 0.058888986706733704, -0.13361847400665283, -0.02618410438299179, -0.06942987442016602, 0.1181199923157692, -0.05739377439022064, 0.033174216747283936, -0.02960723638534546, 0.017147745937108994, -0.12777429819107056, 0.040573734790086746, 0.013786732219159603, 0.1955142319202423, -0.1418805867433548, -0.05378027632832527, 0.1593266874551773, -0.065806545317173, -0.12361124902963638, 0.12244746088981628, -0.01739451102912426, 0.1224595382809639, 0.12417984008789062, 0.21971504390239716, -0.006959074642509222, 0.006214233115315437, -0.027748486027121544, 0.04399175941944122, -0.08684497326612473, -0.017265578731894493, 0.06353524327278137, 0.12441208958625793, -0.13733331859111786, 0.08066157251596451, 0.07198045402765274, 0.07853130996227264, -0.0903642401099205, -0.014684366062283516, 0.02321750484406948, -0.04438074678182602, 0.10227230936288834, 0.02646065317094326, 0.11000484973192215, -0.06572126597166061, -0.032641150057315826, -0.045643534511327744, 0.06612823903560638, -0.016591493040323257, -0.021266093477606773, -0.1557740569114685, 0.07243750244379044, 0.023208018392324448, 0.05590616539120674, -0.13468922674655914, -0.05315178632736206, -0.013776283711194992, 0.1285104900598526, 0.08066379278898239, 0.16161517798900604, 0.03164874017238617, -0.0566532276570797, -0.008226861245930195, 0.013744470663368702, 0.11752749234437943, -0.00022940048074815422, -0.04647652804851532, -0.09384088963270187, 0.0353020615875721, -0.08242242783308029, 0.12528565526008606, -0.04388410225510597, 0.0023796262685209513, 0.0023433140013366938, 0.17065595090389252, 0.017173293977975845, 0.025421468541026115, 0.0607006810605526, 0.02884065918624401, -0.03146779164671898, 0.03641928359866142, 0.05195855349302292, 0.0126663101837039, -0.12667614221572876, 0.22853147983551025, -0.048105936497449875, 0.14095556735992432, 0.11579231172800064, -0.05691555514931679, -0.041995178908109665, -0.010081619024276733, -0.04531736671924591, 0.024714887142181396, 0.02111733891069889, -0.014006715267896652, 0.1805001050233841, 0.005626260302960873, 0.14696004986763, -0.04074082896113396, -0.05826698616147041, -0.011889642104506493, -0.05296636372804642, 0.007628804072737694, 0.12306658923625946, 0.030924109742045403, -0.22867617011070251, 0.08749688416719437, 0.032891929149627686, 0.060023073107004166, 0.2592826187610626, 0.04499124735593796, 0.013395031914114952, 0.015137073583900928, 0.0013766908086836338, -0.06805146485567093, 0.03472619131207466, -0.17848025262355804, -0.03163960203528404, 0.06781169027090073, -0.040790725499391556, 0.06106899306178093, -0.06460283696651459, -0.04351457208395004, -0.016406040638685226, -0.005857792682945728, -0.01931673474609852, 0.13822539150714874, 0.012809830717742443, 0.14113277196884155, -0.015190472826361656, -0.10224352031946182, 0.015089605003595352, -0.022773176431655884, -0.08432581275701523, 0.14383868873119354, -0.019838212057948112, -0.3221571445465088, -0.06052139773964882, -0.025617163628339767, -0.030068060383200645, -0.005459173116832972, 0.05876510217785835, -0.061850473284721375, -0.032615646719932556, -0.00420534610748291, 0.07043587416410446, -0.007079425733536482, -0.02689112350344658, 0.02853199653327465, -0.0046769711188972, -0.0664224773645401, -0.11827833950519562, -0.054010260850191116, -0.05389733612537384, -0.030196230858564377, 0.11084801703691483, -0.14210158586502075, 0.10193973034620285, 0.09657204896211624, -0.03250768035650253, 0.04164041206240654, -0.06259520351886749, 0.13679689168930054, -0.0980670228600502, -0.01720302738249302, 0.08107604086399078, -0.05156170576810837, -0.020346486940979958, 0.10138525068759918, -0.00251389155164361, -0.0785529613494873, 0.08913737535476685, -0.03081352636218071, -0.08757542073726654, -0.2471904307603836, -0.13724103569984436, -0.07355217635631561, 0.10892781615257263, -0.021011734381318092, 0.03416946902871132, 0.03188847005367279, 0.07208510488271713, -0.010845356620848179, 0.005527576431632042, -0.006137739401310682, 0.03190319612622261, 0.11413716524839401, -0.053862374275922775, 0.13870906829833984, -0.07866134494543076, -0.11453688144683838, 0.07835610210895538, 0.005093442741781473, 0.09701698273420334, 0.05211584270000458, 0.01794969104230404, 0.05829588696360588, 0.05950652062892914, 0.11754576861858368, 0.10246775299310684, -0.00874005164951086, -0.04271972179412842, -0.06294132024049759, -0.011192567646503448, -0.10778521001338959, 0.06468843668699265, 0.015198602341115475, -0.10101617127656937, -0.048095256090164185, -0.0035832494031637907, 0.09055045992136002, 0.15621092915534973, 0.029590900987386703, -0.19766968488693237, -0.06022874265909195, 0.0355336032807827, -0.0725671797990799, -0.01293849665671587, 0.09803029894828796, 0.06549418717622757, -0.14739766716957092, 0.05426277592778206, -0.005045454483479261, 0.0860879048705101, -0.05993429571390152, 0.029834434390068054, -0.10378417372703552, -0.0598505362868309, 0.00728707667440176, 0.09211692214012146, -0.28996193408966064, 0.23186036944389343, -0.021537961438298225, -0.051161643117666245, -0.12346108257770538, -0.06276139616966248, 0.010118704289197922, -0.0036443534772843122, 0.12713396549224854, -0.007160478737205267, -0.04456920921802521, -0.08951077610254288, -0.045481111854314804, 0.08503684401512146, 0.03620784357190132, -0.030747605487704277, 0.014145578257739544, -0.009580417536199093, 0.006416525226086378, -0.02684914320707321, -0.07063199579715729, -0.04087793827056885, -0.1045737937092781, 0.02506376802921295, 0.10706927627325058, 0.08728258311748505, 0.01246698759496212, -0.0704105868935585, 0.002072129165753722, 0.14995068311691284, 0.06863335520029068, -0.06956271827220917, -0.08763270825147629, 0.04760202020406723, 0.04066396877169609, -0.08390267193317413, -0.03353015333414078, -0.040214914828538895, 0.00477611692622304, -0.03266415372490883, -0.16086557507514954, 0.09498029947280884, -0.08946692198514938, -0.062017083168029785, -0.01829804852604866, 0.1151694655418396, 0.014137504622340202, 0.0808931440114975, 0.03291742131114006, -0.027288157492876053, -0.0029008116107434034, -0.09210051596164703, -0.01631682552397251, -0.02635873667895794, -0.02612522430717945, 0.04021630808711052, -0.015285298228263855, -0.08521860092878342, -0.057429175823926926, -0.03962074592709541, 0.2192445993423462, 0.11331384629011154, -0.07924669235944748, 0.13933347165584564, 0.1232854425907135, 0.021782223135232925, -0.24386177957057953, -0.11791730672121048, -0.004497977904975414, 0.06439439952373505, -0.020123213529586792, -0.1172369047999382, 0.021475734189152718, -0.000671136484015733, -0.03563043475151062, -0.030276663601398468, -0.20524483919143677, -0.10691605508327484, 0.16036191582679749, -0.001425981754437089, 0.32053762674331665, -0.06280741840600967, -0.028581563383340836, -0.02038213610649109, -0.15280473232269287, 0.1563107818365097, -0.013882056809961796, 0.09020821750164032, -0.009699328802525997, 0.10040083527565002, 0.026959139853715897, -0.004177526570856571, 0.055751461535692215, -0.005574269685894251, -0.007358925882726908, -0.05749163031578064, -0.09581662714481354, -0.03126230835914612, 0.037516042590141296, 0.14252910017967224, -0.06732263416051865, 0.052465446293354034, -0.15327948331832886, -0.04461283981800079, -0.07929787784814835, 0.03645126894116402, 0.035449784249067307, -0.05032488331198692, -0.044226814061403275, 0.041802454739809036, -0.02522892691195011, 0.03003750927746296, 0.14724978804588318, -0.08071976900100708, 0.09663048386573792, 0.10382606089115143, 0.1883966326713562, -0.0987725779414177, 0.16443300247192383, -0.04766103997826576, -0.05122165009379387, 0.06416775286197662, -0.12095469981431961, 0.007399083115160465, 0.1231977641582489, 0.006923151668161154, 0.09232964366674423, 0.039712436497211456, -0.04250813648104668, 0.0699281096458435, 0.15260544419288635, -0.17581824958324432, -0.10081563889980316, -0.07747747004032135, 0.04950956255197525, 0.08397004008293152, 0.09339925646781921, 0.15809334814548492, -0.074909508228302, -0.04424066096544266, -0.020784705877304077, 0.005481936037540436, -0.08013435453176498, 0.0806291475892067, 0.019463293254375458, 0.04630859196186066, -0.12466657161712646, 0.026090122759342194, 0.030863070860505104, -0.03378777951002121, 0.04366891086101532, 0.08065915107727051, -0.08685969561338425, -0.07100587338209152, -0.1293845921754837, 0.1312636137008667, -0.06802567094564438, -0.04512231796979904, -0.0898408517241478, -0.0902818888425827, 0.027680493891239166, 0.15065111219882965, 0.05474695563316345, 0.0879368931055069, -0.0432732030749321, -0.03556828200817108, -0.007361747324466705, 0.017956562340259552, 0.07714374363422394, -0.005303975194692612, -0.055119652301073074, 0.013835226185619831, 0.00134372990578413, 0.11317320913076401, -0.10668786615133286, -0.05659399926662445, -0.1270809918642044, 0.037309031933546066, -0.10464666038751602, -0.08004835993051529, -0.08982440829277039, -0.03500654920935631, -0.008790258318185806, -0.0850648432970047, -0.07106467336416245, -0.014829886145889759, -0.1054159477353096, 0.06094048172235489, 0.004430543165653944, 0.06029721722006798, -0.05832802876830101, 0.011983438394963741, 0.06314852833747864, -0.015314233489334583, 0.1206306591629982, 0.1284082978963852, -0.0659639835357666, 0.09666597098112106, -0.14101211726665497, -0.0322624035179615, 0.07461488246917725, 0.030160997062921524, 0.06377192586660385, 0.010261835530400276, 0.02031399868428707, 0.08565306663513184, 0.07788509875535965, 0.056457847356796265, 0.010683112777769566, -0.10810153186321259, 0.004345687571913004, -0.021675243973731995, -0.07975514233112335, -0.0770430862903595, -0.009982812218368053, 0.022319147363305092, 0.0998963937163353, 0.10184817761182785, -0.052210863679647446, 0.04957231134176254, -0.11055271327495575, 0.040659453719854355, 0.003687761491164565, -0.12398328632116318, -0.07852764427661896, -0.10071002691984177, 0.02842012047767639, -0.010720168240368366, 0.20984773337841034, 0.08712311834096909, -0.07847736775875092, 0.03175982087850571, 0.029007744044065475, 0.01661783456802368, -0.01737617887556553, 0.0377432219684124, 0.05926059931516647, 0.0061863260343670845, -0.08106130361557007, 0.023717017844319344, -0.012888909317553043, -0.0580148808658123, 0.10557198524475098, 0.06143945828080177, -0.010697534307837486, 0.0437336191534996, 0.05328132584691048, 0.047084107995033264, 0.00062127027194947, -0.0870593786239624, -0.08577029407024384, 0.021587742492556572, -0.04762004315853119, 0.08343242108821869, 0.12907616794109344, -0.054642800241708755, 0.034235015511512756, -0.045217353850603104, -0.029512764886021614, -0.11888167262077332, -0.13012701272964478, -0.1046316847205162, -0.12590204179286957, 0.03376055136322975, -0.121361643075943, 0.009227368980646133, 0.07934857904911041, 0.07796399295330048, -0.039584897458553314, 0.07842139154672623, -0.01030553039163351, -0.042804788798093796, 0.1201862245798111, -0.05447465553879738, 0.023811986669898033, -0.11330386251211166, 0.014953729696571827, -0.04778331145644188, 0.09838397800922394, -0.017393171787261963, 0.05060059577226639, -0.05368073657155037, -0.032151006162166595, -0.053634196519851685, -0.08785932511091232, -0.05131195858120918, 0.03606817126274109, 0.04714931920170784, 0.07569567859172821, 0.044863611459732056, 0.009765634313225746, 0.026318268850445747, 0.2510119676589966, -0.03566531836986542, -0.08789829909801483, -0.18398723006248474, 0.17623098194599152, -0.019823195412755013, 0.054029688239097595, 0.011818420141935349, -0.016581831499934196, -0.08834107220172882, 0.25322777032852173, 0.26033279299736023, -0.05618349462747574, 0.006921340711414814, -0.04113601893186569, 0.04257126525044441, 0.021072419360280037, 0.11754677444696426, 0.07937374711036682, 0.26492083072662354, -0.07583414763212204, -0.025650056079030037, -0.05315592885017395, -0.00681552616879344, 0.06819359958171844, 0.08298231661319733, 0.0472441129386425, -0.06125706434249878, -0.05351328104734421, 0.09527730196714401, -0.18694783747196198, -0.04199129715561867, -0.1834750771522522, -0.17807932198047638, -0.10087373107671738, -0.030225327238440514, 0.009640187956392765, 0.0746491327881813, 0.11849885433912277, -0.027343900874257088, -0.00806492194533348, 0.024508945643901825, 0.012941034510731697, -0.1384568214416504, -0.003107971278950572, 0.11436288058757782, -0.10254113376140594, 0.005546777509152889, -0.029589839279651642, 0.09992603957653046, 0.06849852204322815, 0.021252570673823357, -0.027239836752414703, 0.07640697807073593, 0.0009718747460283339, -0.002765046199783683, 0.02528132125735283, 0.12812866270542145, 0.03245186060667038, 0.08061704784631729, 0.052192606031894684, -0.1605152189731598, 0.0677206814289093, -0.017699705436825752, 0.0051599666476249695, -0.07560320943593979, 0.09499157220125198, -0.03746910020709038, 0.13584643602371216, 0.15709316730499268, -0.03564547747373581, 0.009062228724360466, -0.04323406517505646, 0.05116589739918709, 0.012534432113170624, -0.07857563346624374, -0.0703115239739418, -0.1745031476020813, -0.06423823535442352, 0.060323361307382584, -0.03261963278055191, -0.23216913640499115, 0.05450628325343132, -0.13269329071044922, 0.027196472510695457, -0.018288269639015198, 0.07587815076112747, 0.08065089583396912, 0.030447548255324364, 0.013262833468616009, -0.08992069959640503, 0.04242429509758949, 0.047369398176670074, -0.11601565778255463, -0.08739861845970154 ]
null
null
transformers
# mt5-large-finetuned-mnli-xtreme-xnli ## Model Description This model takes a pretrained large [multilingual-t5](https://github.com/google-research/multilingual-t5) (also available from [models](https://huggingface.co/google/mt5-large)) and fine-tunes it on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set. It is intended to be used for zero-shot text classification, inspired by [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli). ## Intended Use This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set, a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus: - Arabic - Bulgarian - Chinese - English - French - German - Greek - Hindi - Russian - Spanish - Swahili - Thai - Turkish - Urdu - Vietnamese As per recommendations in [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli), for English-only classification, you might want to check out: - [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) - [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). ### Zero-shot example: The model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, "xnli:". Below is an example, using PyTorch, of the model's use in a similar fashion to the `zero-shot-classification` pipeline. We use the logits from the LM output at the first token to represent confidence. ```python from torch.nn.functional import softmax from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) model.eval() sequence_to_classify = "¿A quién vas a votar en 2020?" candidate_labels = ["Europa", "salud pública", "política"] hypothesis_template = "Este ejemplo es {}." ENTAILS_LABEL = "▁0" NEUTRAL_LABEL = "▁1" CONTRADICTS_LABEL = "▁2" label_inds = tokenizer.convert_tokens_to_ids( [ENTAILS_LABEL, NEUTRAL_LABEL, CONTRADICTS_LABEL]) def process_nli(premise: str, hypothesis: str): """ process to required xnli format with task prefix """ return "".join(['xnli: premise: ', premise, ' hypothesis: ', hypothesis]) # construct sequence of premise, hypothesis pairs pairs = [(sequence_to_classify, hypothesis_template.format(label)) for label in candidate_labels] # format for mt5 xnli task seqs = [process_nli(premise=premise, hypothesis=hypothesis) for premise, hypothesis in pairs] print(seqs) # ['xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es Europa.', # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es salud pública.', # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es política.'] inputs = tokenizer.batch_encode_plus(seqs, return_tensors="pt", padding=True) out = model.generate(**inputs, output_scores=True, return_dict_in_generate=True, num_beams=1) # sanity check that our sequences are expected length (1 + start token + end token = 3) for i, seq in enumerate(out.sequences): assert len( seq) == 3, f"generated sequence {i} not of expected length, 3." \\\\ f" Actual length: {len(seq)}" # get the scores for our only token of interest # we'll now treat these like the output logits of a `*ForSequenceClassification` model scores = out.scores[0] # scores has a size of the model's vocab. # However, for this task we have a fixed set of labels # sanity check that these labels are always the top 3 scoring for i, sequence_scores in enumerate(scores): top_scores = sequence_scores.argsort()[-3:] assert set(top_scores.tolist()) == set(label_inds), \\\\ f"top scoring tokens are not expected for this task." \\\\ f" Expected: {label_inds}. Got: {top_scores.tolist()}." # cut down scores to our task labels scores = scores[:, label_inds] print(scores) # tensor([[-2.5697, 1.0618, 0.2088], # [-5.4492, -2.1805, -0.1473], # [ 2.2973, 3.7595, -0.1769]]) # new indices of entailment and contradiction in scores entailment_ind = 0 contradiction_ind = 2 # we can show, per item, the entailment vs contradiction probas entail_vs_contra_scores = scores[:, [entailment_ind, contradiction_ind]] entail_vs_contra_probas = softmax(entail_vs_contra_scores, dim=1) print(entail_vs_contra_probas) # tensor([[0.0585, 0.9415], # [0.0050, 0.9950], # [0.9223, 0.0777]]) # or we can show probas similar to `ZeroShotClassificationPipeline` # this gives a zero-shot classification style output across labels entail_scores = scores[:, entailment_ind] entail_probas = softmax(entail_scores, dim=0) print(entail_probas) # tensor([7.6341e-03, 4.2873e-04, 9.9194e-01]) print(dict(zip(candidate_labels, entail_probas.tolist()))) # {'Europa': 0.007634134963154793, # 'salud pública': 0.0004287279152777046, # 'política': 0.9919371604919434} ``` Unfortunately, the `generate` function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer. The model is currently not compatible with the existing `zero-shot-classification` pipeline. ## Training This model was pre-trained on a set of 101 languages in the mC4, as described in [the mt5 paper](https://arxiv.org/abs/2010.11934). It was then fine-tuned on the [mt5_xnli_translate_train](https://github.com/google-research/multilingual-t5/blob/78d102c830d76bd68f27596a97617e2db2bfc887/multilingual_t5/tasks.py#L190) task for 8k steps in a similar manner to that described in the [offical repo](https://github.com/google-research/multilingual-t5#fine-tuning), with guidance from [Stephen Mayhew's notebook](https://github.com/mayhewsw/multilingual-t5/blob/master/notebooks/mt5-xnli.ipynb). The resulting model was then converted to :hugging_face: format. ## Eval results Accuracy over XNLI test set: | ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vi | zh | average | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 81.0 | 85.0 | 84.3 | 84.3 | 88.8 | 85.3 | 83.9 | 79.9 | 82.6 | 78.0 | 81.0 | 81.6 | 76.4 | 81.7 | 82.3 | 82.4 |
{"language": ["multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur"], "license": "apache-2.0", "tags": ["pytorch"], "datasets": ["multi_nli", "xnli"], "metrics": ["xnli"]}
text2text-generation
alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
[ "transformers", "pytorch", "tf", "safetensors", "mt5", "text2text-generation", "multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur", "dataset:multi_nli", "dataset:xnli", "arxiv:2010.11934", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11934" ]
[ "multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur" ]
TAGS #transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
mt5-large-finetuned-mnli-xtreme-xnli ==================================== Model Description ----------------- This model takes a pretrained large multilingual-t5 (also available from models) and fine-tunes it on English MNLI and the xtreme\_xnli training set. It is intended to be used for zero-shot text classification, inspired by xlm-roberta-large-xnli. Intended Use ------------ This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on English MNLI and the xtreme\_xnli training set, a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus: * Arabic * Bulgarian * Chinese * English * French * German * Greek * Hindi * Russian * Spanish * Swahili * Thai * Turkish * Urdu * Vietnamese As per recommendations in xlm-roberta-large-xnli, for English-only classification, you might want to check out: * bart-large-mnli * a distilled bart MNLI model. ### Zero-shot example: The model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, "xnli:". Below is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence. Unfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer. The model is currently not compatible with the existing 'zero-shot-classification' pipeline. Training -------- This model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\_xnli\_translate\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\_face: format. Eval results ------------ Accuracy over XNLI test set:
[ "### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:" ]
[ 127, 319 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #mt5 #text2text-generation #multilingual #en #fr #es #de #el #bg #ru #tr #ar #vi #th #zh #hi #sw #ur #dataset-multi_nli #dataset-xnli #arxiv-2010.11934 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n### Zero-shot example:\n\n\nThe model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, \"xnli:\".\n\n\nBelow is an example, using PyTorch, of the model's use in a similar fashion to the 'zero-shot-classification' pipeline. We use the logits from the LM output at the first token to represent confidence.\n\n\nUnfortunately, the 'generate' function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.\n\n\nThe model is currently not compatible with the existing 'zero-shot-classification' pipeline.\n\n\nTraining\n--------\n\n\nThis model was pre-trained on a set of 101 languages in the mC4, as described in the mt5 paper. It was then fine-tuned on the mt5\\_xnli\\_translate\\_train task for 8k steps in a similar manner to that described in the offical repo, with guidance from Stephen Mayhew's notebook. The resulting model was then converted to :hugging\\_face: format.\n\n\nEval results\n------------\n\n\nAccuracy over XNLI test set:" ]
[ -0.08033962547779083, 0.012305120006203651, -0.0027980762533843517, 0.04184078052639961, 0.06199819594621658, -0.009021353907883167, 0.018513327464461327, 0.10350955277681351, -0.06426726281642914, 0.10635777562856674, 0.07003865391016006, 0.10388332605361938, 0.04221488535404205, 0.118998683989048, 0.013676495291292667, -0.24543076753616333, 0.021749790757894516, -0.050106633454561234, 0.07672390341758728, 0.09798926115036011, 0.10251547396183014, -0.03451091796159744, 0.06719377636909485, -0.02137508988380432, -0.03277575224637985, -0.006265142001211643, 0.055045563727617264, -0.04371023550629616, 0.10132044553756714, 0.08311749249696732, 0.043311648070812225, 0.008209779858589172, 0.010133760049939156, -0.1526019275188446, 0.01931733824312687, 0.12519685924053192, 0.032356180250644684, 0.09204205125570297, 0.0451643280684948, -0.09993232041597366, 0.13842371106147766, -0.0403682217001915, 0.04444153606891632, 0.03043322265148163, -0.11527632921934128, -0.13088871538639069, -0.05038847029209137, 0.10934887081384659, -0.0021346164867281914, 0.02837875857949257, -0.01545677799731493, 0.15715935826301575, 0.03169381618499756, 0.12489413470029831, 0.17598958313465118, -0.22257740795612335, -0.03170998394489288, 0.09183032810688019, -0.014301937073469162, 0.07087631523609161, -0.002215089276432991, 0.02170563116669655, -0.020710360258817673, 0.065917007625103, 0.05536540597677231, -0.018758192658424377, -0.021394655108451843, 0.0089727146551013, -0.14843598008155823, -0.05675917863845825, 0.18629759550094604, -0.0390586256980896, -0.08761674910783768, -0.07479348033666611, -0.0967649444937706, -0.005957648158073425, 0.004557562060654163, -0.08431866019964218, -0.018090980127453804, 0.03877614811062813, 0.0026693788822740316, -0.004411741159856319, -0.10342732816934586, 0.017244596034288406, -0.09184285253286362, 0.1420813798904419, 0.0403495691716671, 0.07123786956071854, -0.09585613012313843, 0.1572074592113495, -0.14322468638420105, -0.06054386496543884, -0.04507927969098091, -0.09808164834976196, -0.02415645681321621, 0.004533287603408098, -0.04287378862500191, -0.18270139396190643, 0.010994351468980312, 0.13827021420001984, -0.08271203190088272, 0.0315660685300827, 0.0003611658758018166, 0.08497940748929977, -0.008021069690585136, 0.19771511852741241, -0.07950229197740555, 0.030207712203264236, 0.053206685930490494, -0.02916027046740055, 0.04999887943267822, -0.05585954338312149, -0.015851285308599472, -0.01725912280380726, 0.07387828081846237, 0.03885766863822937, 0.025256529450416565, 0.10042046755552292, -0.04437573626637459, -0.015413962304592133, 0.013933730311691761, -0.12684836983680725, -0.03220820426940918, -0.014304135926067829, -0.057491276413202286, 0.06364906579256058, 0.15173257887363434, -0.06916283816099167, -0.12091828882694244, 0.045294832438230515, -0.05834180861711502, -0.034862980246543884, -0.09638509154319763, -0.12080861628055573, 0.019190914928913116, 0.0532289557158947, -0.058245450258255005, -0.15827415883541107, -0.09124471247196198, -0.02022184245288372, 0.03177667781710625, 0.025092175230383873, 0.06995061039924622, 0.015854617580771446, -0.03880169242620468, -0.03878927603363991, 0.03254231810569763, -0.00885794498026371, -0.03704372048377991, 0.07051266729831696, -0.01938832364976406, 0.054019443690776825, -0.04630414396524429, 0.002903130603954196, -0.14869488775730133, 0.011354515329003334, -0.24308021366596222, 0.05492686852812767, -0.014833166263997555, -0.07257425040006638, -0.09217390418052673, -0.0761248916387558, -0.078725665807724, 0.0032599761616438627, 0.08188267797231674, 0.0991189256310463, -0.19280782341957092, -0.01398817915469408, 0.17270375788211823, -0.14326171576976776, -0.01893552951514721, 0.1408369094133377, 0.009993307292461395, 0.08671963214874268, 0.1064516082406044, 0.16208133101463318, 0.040052805095911026, -0.09007561206817627, -0.01819080300629139, 0.06338558346033096, -0.1220109760761261, 0.11153548955917358, 0.01718311384320259, -0.003341169096529484, -0.06386049091815948, 0.07726117223501205, -0.04590526223182678, -0.017192775383591652, -0.07778465002775192, -0.012781741097569466, -0.03230960667133331, 0.059841860085725784, -0.01598329469561577, 0.00004708554843091406, -0.0690971091389656, -0.07878482341766357, -0.11196645349264145, -0.019225770607590675, 0.09272876381874084, -0.061791419982910156, 0.02115420624613762, -0.08379305154085159, 0.1265561282634735, -0.014457233250141144, -0.009052600711584091, -0.15260572731494904, -0.08941085636615753, 0.023996839299798012, -0.04889592528343201, 0.0433322973549366, 0.044775042682886124, 0.01681826449930668, 0.07233983278274536, -0.019970174878835678, -0.019503017887473106, 0.02336934395134449, -0.00930709857493639, -0.053733740001916885, -0.1356239765882492, -0.022394167259335518, -0.02242041565477848, 0.07905743271112442, -0.15642768144607544, 0.01963329315185547, 0.0000028032727641402744, 0.07057411223649979, 0.007896419614553452, -0.020864183083176613, -0.001321746502071619, 0.020678646862506866, -0.016436712816357613, -0.05186494439840317, 0.05252715200185776, 0.04825306311249733, -0.06285136938095093, 0.13985197246074677, -0.2903304100036621, -0.08869196474552155, 0.07891687750816345, -0.045628514140844345, -0.12151609361171722, 0.03640471026301384, -0.06158147007226944, -0.017107056453824043, -0.07071483880281448, -0.03476909175515175, 0.1443120837211609, 0.0052586765959858894, 0.11432831734418869, -0.09483543038368225, -0.030223440378904343, 0.01570972427725792, -0.08204025030136108, -0.03126734495162964, 0.12176235765218735, 0.015882963314652443, -0.1512303650379181, 0.002285618335008621, -0.013483393006026745, -0.0061822435818612576, 0.16969899833202362, -0.004486492369323969, -0.058864131569862366, -0.061249829828739166, 0.031406041234731674, 0.03134646639227867, 0.06925778836011887, 0.05862776190042496, 0.015239652246236801, 0.061917733401060104, 0.020848626270890236, 0.026337670162320137, -0.1130494773387909, 0.03305964916944504, 0.05054441839456558, -0.03503412753343582, 0.011620663106441498, 0.0774436965584755, -0.00838232971727848, 0.110170878469944, -0.0361715629696846, -0.0033637150190770626, -0.013365209102630615, -0.017014693468809128, -0.1369280368089676, 0.17185017466545105, -0.13554520905017853, -0.28444308042526245, -0.13825282454490662, 0.09732192754745483, -0.07392396032810211, -0.031199701130390167, 0.04694732651114464, 0.02298939786851406, -0.054910480976104736, -0.12028038501739502, 0.01490008644759655, -0.0722881332039833, -0.007511231116950512, -0.20466738939285278, -0.034552983939647675, 0.052602313458919525, -0.1734631359577179, -0.059438128024339676, -0.01850687898695469, -0.10091008991003036, 0.09238644689321518, -0.04327598959207535, 0.05469971522688866, 0.1329285055398941, -0.05066636949777603, 0.02794901467859745, -0.03958113491535187, 0.1544603854417801, -0.010870815254747868, 0.10568102449178696, 0.16704003512859344, -0.005647880956530571, 0.0726504698395729, 0.030531682074069977, -0.011605294421315193, -0.026285311207175255, 0.031604986637830734, -0.008128336630761623, -0.09315960109233856, -0.1616920828819275, -0.08913316577672958, -0.00823842640966177, 0.050872623920440674, 0.015263759531080723, 0.0545651838183403, 0.07128819823265076, -0.004217279609292746, -0.06786338984966278, -0.0816764160990715, 0.06326565146446228, 0.1017148345708847, 0.040274396538734436, -0.029420191422104836, 0.09510535001754761, -0.03460398316383362, 0.006493678782135248, 0.08485666662454605, -0.0645294114947319, 0.12541188299655914, -0.11566809564828873, 0.017596030607819557, 0.11656995862722397, 0.10786660015583038, 0.04188293591141701, 0.06025313958525658, -0.0563274510204792, 0.059080541133880615, -0.04609326645731926, -0.13081921637058258, -0.01705336943268776, 0.05081897974014282, -0.06999167054891586, 0.067380391061306, -0.07684513181447983, 0.02570389211177826, 0.07739856839179993, 0.17455624043941498, 0.06955403089523315, -0.24527236819267273, -0.12572486698627472, -0.058126382529735565, 0.012719041667878628, -0.02515772543847561, 0.03221951052546501, 0.11887964606285095, -0.08559185266494751, 0.03969983756542206, -0.005037001334130764, 0.06693315505981445, -0.02939731255173683, 0.03537759557366371, -0.0070578670129179955, 0.1501348465681076, -0.01647380366921425, 0.07636263221502304, -0.1875268965959549, 0.1693543791770935, 0.024955516681075096, 0.05807946249842644, -0.020562712103128433, 0.005157403647899628, 0.025638682767748833, 0.0965517982840538, 0.07897055894136429, 0.03942372277379036, 0.0037591499276459217, -0.14206428825855255, -0.015986496582627296, 0.034622982144355774, 0.10089848935604095, -0.007260225247591734, 0.05649954453110695, -0.04152650758624077, -0.003338234731927514, 0.03617163375020027, 0.07819584012031555, -0.04971298947930336, -0.06863424181938171, 0.05849046632647514, -0.016460075974464417, -0.060620713979005814, -0.0839657410979271, -0.030311692506074905, 0.03979559242725372, 0.08150941878557205, 0.010297931730747223, -0.0385676771402359, -0.0947798565030098, 0.04559161886572838, 0.09056320041418076, -0.08686845749616623, -0.04461335763335228, -0.05542949587106705, 0.0912175178527832, 0.02416587807238102, -0.1513877660036087, 0.06077471747994423, -0.07195326685905457, -0.12271711230278015, -0.03458879142999649, 0.13175328075885773, 0.052215151488780975, 0.007488077040761709, 0.0061572520062327385, 0.05948762968182564, -0.023744583129882812, -0.10343939810991287, 0.006468380801379681, 0.1678227186203003, 0.05383547022938728, 0.054504647850990295, -0.08060182631015778, 0.052942465990781784, -0.08571433275938034, 0.0069190869107842445, 0.03634141385555267, 0.07632414996623993, -0.10376754403114319, 0.08743703365325928, 0.13657566905021667, -0.12437529116868973, -0.20275239646434784, -0.06173649802803993, -0.008857868611812592, 0.03528856486082077, 0.03327382728457451, -0.008359807543456554, 0.13715803623199463, 0.0529184527695179, 0.0427003912627697, -0.011487931944429874, -0.3365367650985718, -0.09083984047174454, 0.04030508175492287, 0.054681092500686646, 0.046666793525218964, -0.07860619574785233, 0.024607429280877113, 0.04454542696475983, -0.0029618428088724613, 0.05590757727622986, -0.1468677818775177, 0.08200684934854507, 0.0008113975054584444, 0.050436750054359436, 0.05949189141392708, -0.014831474982202053, 0.07822535187005997, -0.07160351425409317, 0.03502625599503517, -0.04845447838306427, 0.005578016862273216, 0.034107696264982224, -0.053619105368852615, 0.15851590037345886, 0.005934515967965126, 0.10438347607851028, 0.0014291630359366536, -0.022763431072235107, -0.08585949242115021, 0.14727750420570374, -0.08030861616134644, -0.08046434074640274, -0.045856550335884094, 0.058300890028476715, 0.08187264204025269, -0.03010605461895466, -0.10612347722053528, -0.07882915437221527, 0.10232865810394287, 0.15342262387275696, 0.029671724885702133, -0.05881350487470627, -0.14441721141338348, 0.016774117946624756, 0.004998265765607357, 0.06612411141395569, -0.0522175095975399, 0.023648886010050774, 0.10572192817926407, 0.03270174562931061, 0.12292810529470444, 0.04284097999334335, -0.15252313017845154, -0.07469658553600311, 0.03200751170516014, -0.18993233144283295, -0.11476877331733704, -0.055983658879995346, 0.004358698148280382, 0.02253233641386032, -0.00659244554117322, 0.15493999421596527, -0.09054339677095413, 0.010649009607732296, 0.0015076438430696726, 0.04800737276673317, -0.03974803537130356, 0.08665220439434052, 0.052202172577381134, 0.021056853234767914, -0.03815590590238571, 0.05106654763221741, 0.037226252257823944, -0.05084604769945145, 0.041349392384290695, 0.09803502261638641, -0.11785659939050674, -0.045488856732845306, -0.03277280554175377, 0.12488582730293274, -0.020698513835668564, -0.07669035345315933, -0.05164118483662605, -0.024431757628917694, 0.01273529976606369, 0.2223372459411621, 0.026934118941426277, 0.05952543392777443, -0.06498036533594131, -0.006682573817670345, -0.10234096646308899, 0.10244457423686981, 0.060092993080616, 0.01906413584947586, -0.04240070655941963, 0.2796768248081207, 0.03665667399764061, 0.017837872728705406, -0.026122504845261574, -0.08061253279447556, -0.12074028700590134, -0.0013310399372130632, -0.04390079155564308, 0.019465001299977303, 0.004245811142027378, -0.02863936871290207, 0.014586321078240871, -0.029688233509659767, 0.017305592074990273, 0.037661124020814896, -0.029065482318401337, -0.001317528891377151, -0.0015016389079391956, 0.07347234338521957, -0.11018040776252747, -0.04163985326886177, 0.012196093797683716, -0.0367400199174881, 0.054577358067035675, 0.07344041764736176, -0.08308879286050797, 0.04240494966506958, -0.12323153018951416, 0.026936396956443787, -0.01887447014451027, 0.04757697135210037, -0.01608295924961567, -0.10930245369672775, 0.02206265553832054, -0.015348614193499088, -0.07418981194496155, -0.004764891695231199, 0.06314033269882202, -0.12086547911167145, -0.008513649925589561, 0.02084173448383808, -0.00948396697640419, -0.1191278025507927, 0.042547743767499924, -0.022819459438323975, 0.1443055421113968, 0.03514641523361206, -0.11849948763847351, 0.04445374757051468, -0.1585652381181717, -0.03622385114431381, 0.02967330999672413, -0.03811776638031006, -0.01534816063940525, -0.00153297686483711, 0.05231062322854996, -0.05765484273433685, 0.04371444880962372, 0.0760021060705185, 0.020192299038171768, 0.010826812125742435, -0.08219575881958008, -0.06109962612390518, -0.026849832385778427, 0.009000747464597225, -0.05149726942181587, 0.015018708072602749, -0.011587828397750854, 0.030310839414596558, -0.01445428654551506, 0.004137205891311169, 0.13242699205875397, 0.08495257794857025, 0.12310776114463806, 0.0008210144005715847, 0.01309262216091156, 0.02348567359149456, -0.05523029714822769, -0.1136142760515213, -0.014506425708532333, 0.10395511239767075, -0.005277232266962528, 0.06575778871774673, 0.1726900190114975, -0.06674423068761826, 0.11662953346967697, -0.025793075561523438, -0.06431429833173752, -0.11012756079435349, -0.27502667903900146, -0.01745297946035862, -0.01272409688681364, -0.049621887505054474, -0.11853824555873871, 0.014945000410079956, 0.06669504940509796, 0.07269515842199326, -0.0494050495326519, 0.049869902431964874, -0.08052615821361542, -0.09898573160171509, 0.02367645688354969, 0.0013934294693171978, 0.04157249629497528, 0.03514529764652252, 0.012738409452140331, 0.02532052807509899, 0.054274071007966995, 0.020041748881340027, 0.060143448412418365, 0.13037371635437012, -0.007613231893628836, -0.05491740629076958, -0.05782431364059448, 0.013382850214838982, -0.01669454574584961, 0.01304535660892725, 0.08830764889717102, 0.06607867777347565, -0.08810760825872421, -0.005837295204401016, 0.2361891269683838, -0.028114251792430878, -0.1597837209701538, -0.12342964857816696, 0.37049391865730286, -0.003429484087973833, -0.024129781872034073, 0.004042583052068949, -0.08327186107635498, -0.052286844700574875, 0.14580950140953064, 0.20099155604839325, 0.03460118919610977, 0.00683737313374877, -0.0046401177532970905, -0.0027858400717377663, 0.013965312391519547, 0.07575760036706924, 0.07245246320962906, 0.2801052927970886, -0.0481523722410202, 0.12467574328184128, -0.07059166580438614, 0.05384891852736473, -0.08401662856340408, 0.06750200688838959, -0.00039060396375134587, -0.037517525255680084, -0.050303295254707336, 0.05201561748981476, -0.0034525995142757893, -0.22829851508140564, -0.03998752310872078, -0.09930064529180527, -0.055369745939970016, -0.01103071216493845, -0.027131984010338783, -0.07095316052436829, 0.08433312177658081, -0.04702272266149521, 0.0034174718894064426, 0.11969141662120819, 0.014181542210280895, -0.06644245982170105, -0.046146880835294724, 0.03117438033223152, -0.051166024059057236, 0.10615909099578857, 0.008086087182164192, 0.06880657374858856, 0.10241639614105225, 0.048083607107400894, -0.03204135596752167, 0.10586993396282196, -0.010484929196536541, -0.038901492953300476, -0.023904643952846527, 0.07017994672060013, 0.00039526409818790853, 0.050156962126493454, 0.03507857769727707, -0.12701232731342316, 0.022641608491539955, -0.04130702465772629, -0.0409076102077961, -0.04459049925208092, 0.034704793244600296, -0.058389171957969666, 0.1351688653230667, 0.19950740039348602, -0.006764967925846577, -0.004561202600598335, -0.1319545954465866, -0.007212243042886257, 0.025042714551091194, -0.07340388000011444, 0.02667011320590973, -0.039282143115997314, 0.034084293991327286, -0.030375400558114052, 0.02024468407034874, -0.19005146622657776, -0.04588670656085014, 0.05276409909129143, -0.05399331822991371, -0.012946870177984238, 0.12727996706962585, 0.03725758194923401, 0.04331629350781441, -0.04789106547832489, 0.05222563073039055, 0.005477473605424166, 0.11773762851953506, -0.10451459884643555, -0.09982491284608841 ]
null
null
transformers
# Rick Sanchez DialoGPT Model
{"tags": ["conversational"]}
text-generation
alankar/DialoGPT-small-rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick Sanchez DialoGPT Model
[ "# Rick Sanchez DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick Sanchez DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick Sanchez DialoGPT Model" ]
[ -0.05704520270228386, 0.1080707237124443, -0.005703833419829607, 0.024355918169021606, 0.1347416192293167, -0.009864812716841698, 0.13915762305259705, 0.13641619682312012, -0.014821183867752552, -0.025234131142497063, 0.13788719475269318, 0.23441068828105927, -0.0040086545050144196, 0.0579121895134449, -0.09891517460346222, -0.29657089710235596, 0.032161157578229904, 0.05994465947151184, -0.0033263780642300844, 0.11953802406787872, 0.0843273475766182, -0.043882302939891815, 0.08131924271583557, 0.0018995096907019615, -0.14373421669006348, 0.011346335522830486, 0.04636937007308006, -0.13702289760112762, 0.11601521074771881, 0.08168332278728485, 0.03479677438735962, 0.06183161959052086, -0.03211790323257446, -0.10245182365179062, 0.03838932886719704, -0.008999419398605824, -0.03427799046039581, 0.06022527068853378, 0.031745243817567825, -0.1152564138174057, 0.09468080848455429, 0.0923495814204216, -0.005728692281991243, 0.049891795963048935, -0.17913517355918884, -0.010704654268920422, -0.021677182987332344, 0.055929314345121384, 0.08334671705961227, 0.09012723714113235, -0.03841714933514595, 0.09080751240253448, -0.04324564337730408, 0.07660475373268127, 0.08530165255069733, -0.28937292098999023, -0.030906030908226967, 0.06582700461149216, 0.05632982775568962, 0.06222769245505333, -0.012348905205726624, 0.10370101034641266, 0.04712950810790062, -0.014536825940012932, -0.020318668335676193, -0.09295357018709183, -0.08654087781906128, 0.01945175603032112, -0.06887777894735336, -0.00602162629365921, 0.2560831606388092, -0.030627258121967316, 0.0731891319155693, -0.08859450370073318, -0.10249431431293488, 0.004030927084386349, -0.03497277945280075, -0.05301825329661369, -0.08995666354894638, 0.0700719803571701, -0.003147976705804467, -0.07389466464519501, -0.1290099322795868, -0.021585101261734962, -0.1774103045463562, 0.19141581654548645, 0.030293408781290054, 0.023750921711325645, -0.2208036631345749, 0.08902101963758469, 0.045917924493551254, -0.11613845080137253, 0.04777151718735695, -0.0842585563659668, 0.027763593941926956, 0.03184368088841438, -0.015087970532476902, -0.059821996837854385, 0.06819985806941986, 0.09782791137695312, 0.01923726685345173, 0.009750176221132278, -0.024553336203098297, 0.05652669072151184, 0.04215332120656967, 0.09357214719057083, -0.002894732868298888, -0.0361810103058815, 0.015707144513726234, -0.09473340213298798, 0.013285800814628601, -0.06974472850561142, -0.20285023748874664, -0.01343308761715889, 0.030690573155879974, 0.06404593586921692, 0.0605037696659565, 0.11637318879365921, -0.016192488372325897, -0.07014694064855576, 0.04394420608878136, -0.011219148524105549, -0.02391223981976509, 0.008600763976573944, 0.005595726426690817, 0.1813707947731018, 0.011592349968850613, 0.04672492668032646, -0.08541523665189743, 0.0021381767001003027, -0.04958593100309372, -0.03829700127243996, -0.02637419104576111, -0.043410710990428925, 0.004262345843017101, -0.01814153417944908, 0.01607448235154152, -0.16901227831840515, -0.1370115429162979, -0.022032571956515312, -0.023941930383443832, -0.05494401231408119, -0.10453005880117416, -0.1106305792927742, 0.010454395785927773, 0.0411594994366169, -0.07347700744867325, -0.006038041319698095, -0.05349244922399521, 0.10734197497367859, -0.0012300090165808797, 0.07703675329685211, -0.07842288166284561, 0.07365122437477112, -0.06573385000228882, -0.025447865948081017, -0.10093135386705399, 0.13386206328868866, 0.00915649812668562, 0.06603219360113144, -0.046941112726926804, -0.007621072698384523, -0.10842157155275345, 0.08102882653474808, -0.06603449583053589, 0.25178468227386475, -0.10469595342874527, -0.11071616411209106, 0.2805403769016266, -0.03361968696117401, -0.1264788806438446, 0.10199446976184845, -0.01158563606441021, 0.11561296135187149, 0.15402540564537048, 0.2052226960659027, 0.02928532473742962, -0.02268681675195694, 0.10423996299505234, 0.1035756841301918, -0.057625655084848404, -0.03801124170422554, 0.041060492396354675, -0.03943869471549988, -0.08562899380922318, 0.029806632548570633, 0.017141755670309067, 0.06328166276216507, -0.04716106131672859, -0.014570656232535839, 0.02421940304338932, 0.004092389717698097, 0.07496705651283264, -0.024279450997710228, 0.13514691591262817, -0.023218633607029915, -0.0656837597489357, -0.06177486851811409, 0.01964477449655533, -0.04003036767244339, 0.020440705120563507, -0.08908485621213913, 0.06243852525949478, -0.03572830185294151, 0.057841621339321136, -0.13513502478599548, -0.06440334767103195, -0.052385009825229645, 0.2330688089132309, 0.06854398548603058, 0.08484960347414017, 0.04045721888542175, -0.06823423504829407, -0.0003254515759181231, 0.0230836383998394, 0.19774475693702698, -0.012182417325675488, -0.07111652195453644, -0.1060645654797554, 0.09369703382253647, -0.06330309808254242, 0.08606080710887909, -0.059275124222040176, 0.007605451624840498, -0.026874825358390808, 0.06961184740066528, -0.0269512627273798, 0.040469661355018616, 0.0006163049256429076, -0.023647982627153397, -0.07465367019176483, -0.0149429552257061, 0.10460925847291946, 0.010055731050670147, -0.10779253393411636, 0.2434917390346527, -0.19769670069217682, 0.11526761204004288, 0.16096965968608856, -0.22217433154582977, -0.008169818669557571, -0.11098682880401611, -0.011975600384175777, 0.010464251041412354, 0.03273862600326538, -0.04017077758908272, 0.22867226600646973, -0.010608958080410957, 0.1853235810995102, -0.052233923226594925, -0.01996525749564171, -0.027332648634910583, -0.06422537565231323, 0.019287196919322014, 0.10971896350383759, 0.12856750190258026, -0.161560520529747, 0.1724557876586914, 0.06672785431146622, 0.08213970810174942, 0.16275310516357422, 0.023765239864587784, 0.018852105364203453, 0.055699001997709274, 0.014213238842785358, -0.01790653169155121, -0.06882723420858383, -0.18352845311164856, -0.02486453764140606, 0.06696174293756485, 0.03141540661454201, 0.11100433766841888, -0.11560750752687454, -0.04409283027052879, 0.01155218854546547, -0.007257997989654541, 0.04618756100535393, 0.12712539732456207, -0.003129301592707634, 0.12465701252222061, -0.008397440426051617, -0.08989791572093964, 0.06356243789196014, 0.025369787588715553, -0.09814108163118362, 0.182835653424263, -0.1034003496170044, -0.32152217626571655, -0.1001197025179863, -0.18328212201595306, -0.03920574113726616, 0.07533707469701767, 0.11137884855270386, -0.13466644287109375, 0.003127885051071644, 0.03510995954275131, 0.09001503139734268, -0.10122435539960861, -0.0034966380335390568, -0.012268266640603542, -0.018193284049630165, -0.13420377671718597, -0.08291704952716827, -0.06102906912565231, -0.04295424371957779, -0.03346853703260422, 0.10250663757324219, -0.17059698700904846, 0.0539877749979496, 0.26917001605033875, 0.09507580101490021, 0.05430034175515175, -0.04344318434596062, 0.1592034101486206, -0.10573985427618027, 0.012773060239851475, 0.22541004419326782, -0.028745699673891068, 0.05365750566124916, 0.0892547219991684, -0.01033081579953432, -0.0708671286702156, 0.020250815898180008, -0.02718094177544117, -0.0714477151632309, -0.2280162125825882, -0.13114430010318756, -0.10388115793466568, 0.05737285315990448, 0.06432957202196121, 0.0326518714427948, 0.1693384051322937, 0.10345755517482758, -0.042771194130182266, 0.014231901615858078, 0.04525286331772804, 0.08099555969238281, 0.24561424553394318, -0.07478486001491547, 0.13777120411396027, -0.020003067329525948, -0.17604942619800568, 0.06821287423372269, 0.08701446652412415, 0.07066261768341064, 0.0939561203122139, 0.13011965155601501, 0.02880261279642582, 0.03623313829302788, 0.09038466960191727, 0.045518048107624054, 0.022583454847335815, -0.03737230971455574, -0.06662941724061966, -0.044609375298023224, -0.041899174451828, 0.021367410197854042, 0.03182210028171539, -0.14257657527923584, -0.05327456444501877, 0.004599247593432665, 0.04934147000312805, 0.04460717737674713, 0.04937165975570679, -0.1958761215209961, -0.01135042030364275, 0.08069007098674774, 0.0008143498562276363, -0.08933985978364944, 0.0729956179857254, -0.010731075890362263, -0.11471421271562576, 0.046170588582754135, -0.02729932591319084, 0.12909768521785736, -0.07558268308639526, 0.08029930293560028, -0.14030702412128448, -0.06785701215267181, 0.011536509729921818, 0.11896203458309174, -0.2636930048465729, 0.20840856432914734, -0.008380764164030552, -0.049465201795101166, -0.1043824851512909, -0.009141412563621998, 0.0023304640781134367, 0.0944279134273529, 0.1368221640586853, -0.028159884735941887, -0.02392721176147461, 0.024199169129133224, -0.06698837131261826, 0.03141431510448456, 0.08238276839256287, -0.08262956887483597, 0.0013082197401672602, -0.04166802391409874, 0.0039241621270775795, 0.009456396102905273, -0.06101514399051666, 0.01121380366384983, -0.195927694439888, 0.0798632875084877, 0.05245203897356987, 0.06079527735710144, 0.04320540651679039, -0.030458878725767136, -0.12451554834842682, 0.21634705364704132, -0.01915883459150791, -0.09401129186153412, -0.09610380977392197, -0.02037319913506508, 0.01868581213057041, -0.08247993141412735, -0.029365237802267075, -0.05376124754548073, 0.03249189257621765, -0.0736650601029396, -0.1903923898935318, 0.12846902012825012, -0.11052907258272171, -0.028645969927310944, -0.05812210589647293, 0.2216455489397049, -0.030725445598363876, 0.015262283384799957, 0.059073857963085175, -0.026270287111401558, -0.09585471451282501, -0.09591566771268845, -0.007837353274226189, 0.022675657644867897, 0.027353649958968163, -0.013003773055970669, -0.04600683972239494, -0.03253196179866791, -0.07994730770587921, -0.018432755023241043, 0.3114815652370453, 0.10657966881990433, -0.053566571325063705, 0.1609998643398285, 0.08925200253725052, -0.07996044307947159, -0.24130167067050934, -0.11830049753189087, -0.06823843717575073, -0.04297657683491707, -0.04875720292329788, -0.17909106612205505, 0.07042492181062698, -0.01572689227759838, -0.0246592964977026, 0.0796264261007309, -0.34351006150245667, -0.09367087483406067, 0.17016243934631348, -0.044724494218826294, 0.4543110132217407, -0.1197502538561821, -0.10162397474050522, -0.06263615190982819, -0.1313125193119049, 0.18072150647640228, -0.0014751619892194867, 0.10033301264047623, 0.004829281009733677, 0.16866052150726318, 0.05691388249397278, 0.007217222824692726, 0.091414675116539, 0.01798011176288128, -0.0663527175784111, -0.07840543240308762, -0.10491379350423813, -0.03505389019846916, 0.005603624042123556, -0.0021735846530646086, -0.070311039686203, 0.020419610664248466, -0.15853211283683777, -0.06377539038658142, -0.08453743904829025, 0.02356107160449028, 0.030920391902327538, -0.05867331475019455, 0.013508422300219536, -0.06677638739347458, 0.018330350518226624, -0.001379468129016459, 0.19494818150997162, -0.11257137358188629, 0.17101415991783142, 0.04597465693950653, 0.1332368403673172, -0.08957637846469879, -0.0664193332195282, -0.09592875093221664, -0.04850716516375542, 0.07897713780403137, -0.12196645140647888, 0.028588851913809776, 0.10687820613384247, -0.026256760582327843, 0.08356694877147675, 0.0898364707827568, -0.007075367029756308, 0.034319691359996796, 0.09755269438028336, -0.21034450829029083, -0.08239499479532242, -0.0750756561756134, 0.03635190799832344, 0.08414819836616516, 0.09669569879770279, 0.19893206655979156, 0.012653730809688568, -0.042145922780036926, 0.017787763848900795, 0.012123693712055683, -0.02111114002764225, 0.07857295125722885, 0.018965713679790497, 0.005439399741590023, -0.1433452069759369, 0.052979227155447006, 0.010302988812327385, -0.08479844033718109, 0.010003048926591873, 0.1269667148590088, -0.0933220237493515, -0.11143316328525543, -0.03672108054161072, 0.14701539278030396, -0.17777521908283234, -0.0062329513020813465, -0.0675484910607338, -0.13784073293209076, 0.0540735125541687, 0.08879818022251129, 0.04015353322029114, 0.03582773730158806, -0.09314056485891342, -0.023970693349838257, -0.027464643120765686, -0.025517743080854416, 0.06011157110333443, -0.016900639981031418, -0.06295756995677948, 0.07077009975910187, -0.024854036048054695, 0.11451400071382523, -0.08354704827070236, -0.08851433545351028, -0.16065533459186554, 0.05232835188508034, -0.0971856415271759, -0.051306720823049545, -0.09556061774492264, -0.050184283405542374, -0.01728140190243721, -0.018070710822939873, -0.02822391875088215, -0.04367216303944588, -0.10629069805145264, 0.04816720634698868, -0.03879733756184578, 0.02260771207511425, -0.06238244101405144, 0.02379411831498146, 0.03523104265332222, -0.015178869478404522, 0.1198926493525505, 0.12207183241844177, -0.09698602557182312, 0.09035449475049973, -0.16394847631454468, -0.06776027381420135, 0.11319122463464737, 0.01993078552186489, 0.060301147401332855, 0.06648512184619904, 0.011058407835662365, 0.06193515285849571, 0.047181855887174606, 0.04019154608249664, 0.0011482342379167676, -0.0998595729470253, 0.05959494039416313, -0.025470629334449768, -0.11498484015464783, -0.05095286667346954, 0.004914015997201204, 0.01974906586110592, 0.04762796312570572, 0.09024947136640549, -0.07045641541481018, 0.10133861005306244, -0.0719725638628006, 0.042781490832567215, 0.013207492418587208, -0.1567831039428711, -0.009022838436067104, -0.07855422794818878, 0.051177605986595154, 0.018598362803459167, 0.16054493188858032, 0.01182752288877964, 0.026072200387716293, 0.010315481573343277, 0.07682152092456818, 0.04349011927843094, -0.014741134829819202, 0.21185405552387238, 0.10036209225654602, -0.025498010218143463, -0.09448950737714767, 0.10583885759115219, 0.05347297713160515, 0.04882397875189781, 0.13073812425136566, 0.00329616479575634, -0.014263730496168137, 0.08692904561758041, 0.002064551692456007, 0.02444906160235405, -0.11166326701641083, -0.12022344022989273, -0.034913238137960434, 0.03916458785533905, -0.018694007769227028, 0.07413183152675629, 0.13662488758563995, -0.011044695042073727, 0.01868942379951477, -0.006493001710623503, -0.044404536485672, -0.19629815220832825, -0.21793615818023682, -0.07676366716623306, -0.13648608326911926, -0.0023855564650148153, -0.11510718613862991, 0.041815925389528275, 0.008664922788739204, 0.07993809133768082, -0.08146228641271591, 0.05119030550122261, 0.06000566482543945, -0.1558382213115692, 0.07134677469730377, -0.023100191727280617, 0.1049720048904419, -0.07798602432012558, 0.0240509994328022, -0.06541567295789719, 0.07175038009881973, 0.01739879511296749, 0.029955588281154633, -0.01989707536995411, 0.008211890235543251, -0.12742145359516144, -0.08334774523973465, -0.06036959961056709, 0.06557390093803406, 0.020560268312692642, 0.1673227995634079, 0.009943484328687191, -0.023078134283423424, 0.028660951182246208, 0.24841417372226715, -0.0622759610414505, -0.06388328224420547, -0.06632015854120255, 0.20368391275405884, -0.019206369295716286, 0.09927452355623245, -0.04167409613728523, 0.010532806627452374, -0.07129248231649399, 0.3616236448287964, 0.2931338846683502, -0.10953228175640106, 0.007534074131399393, -0.023572852835059166, 0.042554765939712524, 0.11510708183050156, 0.1042989119887352, 0.07050987333059311, 0.29585832357406616, -0.05323539301753044, -0.035456158220767975, -0.00002445635254844092, 0.0010794458212330937, -0.06095365062355995, 0.08202893286943436, 0.03708086162805557, -0.050908174365758896, -0.00022808888752479106, 0.14211015403270721, -0.2293669879436493, 0.05093219503760338, -0.1549203097820282, -0.17726412415504456, -0.08134126663208008, -0.008463856764137745, 0.11377648264169693, 0.03384561836719513, 0.10970432311296463, -0.004765030462294817, -0.0765727236866951, 0.0467694029211998, 0.03101363778114319, -0.19725514948368073, 0.009119519963860512, 0.06916453689336777, -0.02850601077079773, -0.030441200360655785, -0.02334762178361416, 0.06269988417625427, 0.07391422241926193, 0.05389029160141945, -0.01931828074157238, 0.03749391436576843, -0.00035577634116634727, -0.041961804032325745, 0.07208401709794998, -0.0301519688218832, 0.008827175945043564, -0.0679439827799797, 0.08395512402057648, -0.18772968649864197, 0.04201417416334152, 0.018391063436865807, -0.04758477583527565, -0.04135806858539581, 0.04440581426024437, -0.07019207626581192, 0.08052141219377518, 0.07222563028335571, -0.01630892977118492, -0.02569187991321087, -0.013696021400392056, -0.005180103238672018, 0.000036183802876621485, -0.011484390124678612, -0.10217433422803879, -0.1737447828054428, -0.13257969915866852, 0.06753268837928772, 0.018290087580680847, -0.20535635948181152, 0.03693879395723343, -0.12776882946491241, 0.02865419164299965, -0.10825670510530472, 0.07439035177230835, 0.07718028128147125, 0.02790611796081066, -0.0036239037290215492, -0.022755812853574753, 0.03530992195010185, 0.0841168612241745, -0.12845547497272491, -0.06076517328619957 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 1311135 ## Validation Metrics - Loss: 0.35616958141326904 - Accuracy: 0.8979447200566973 - Macro F1: 0.8545383956197669 - Micro F1: 0.8979447200566975 - Weighted F1: 0.8983951947775538 - Macro Precision: 0.8615833774439791 - Micro Precision: 0.8979447200566973 - Weighted Precision: 0.9013559365881655 - Macro Recall: 0.8516503001777104 - Micro Recall: 0.8979447200566973 - Weighted Recall: 0.8979447200566973 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
text-classification
albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135
[ "transformers", "pytorch", "albert", "text-classification", "autonlp", "bn", "dataset:albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 1311135 ## Validation Metrics - Loss: 0.35616958141326904 - Accuracy: 0.8979447200566973 - Macro F1: 0.8545383956197669 - Micro F1: 0.8979447200566975 - Weighted F1: 0.8983951947775538 - Macro Precision: 0.8615833774439791 - Micro Precision: 0.8979447200566973 - Weighted Precision: 0.9013559365881655 - Macro Recall: 0.8516503001777104 - Micro Recall: 0.8979447200566973 - Weighted Recall: 0.8979447200566973 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135", "## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135", "## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 74, 25, 151, 17 ]
[ "passage: TAGS\n#transformers #pytorch #albert #text-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 1311135## Validation Metrics\n\n- Loss: 0.35616958141326904\n- Accuracy: 0.8979447200566973\n- Macro F1: 0.8545383956197669\n- Micro F1: 0.8979447200566975\n- Weighted F1: 0.8983951947775538\n- Macro Precision: 0.8615833774439791\n- Micro Precision: 0.8979447200566973\n- Weighted Precision: 0.9013559365881655\n- Macro Recall: 0.8516503001777104\n- Micro Recall: 0.8979447200566973\n- Weighted Recall: 0.8979447200566973## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.07918614149093628, 0.18374678492546082, -0.003503861604258418, 0.13563503324985504, 0.12141451984643936, 0.05811679735779762, 0.09033432602882385, 0.1548585444688797, 0.014859529212117195, 0.13370682299137115, 0.1085161492228508, 0.16687382757663727, 0.06170359626412392, 0.14822152256965637, -0.0844932422041893, -0.1495373696088791, 0.0001619576069060713, 0.019550511613488197, 0.07071222364902496, 0.066168412566185, 0.06432050466537476, -0.04407142847776413, 0.0993487536907196, -0.03941948339343071, -0.11474259942770004, 0.03301991522312164, 0.08557375520467758, -0.06980183720588684, 0.05426493659615517, 0.09306018054485321, 0.10043462365865707, -0.03508484736084938, 0.06769607216119766, -0.09409445524215698, -0.020645512267947197, 0.054266076534986496, -0.00997204426676035, 0.07305639982223511, 0.18119357526302338, -0.004386925138533115, 0.023733189329504967, -0.13382083177566528, 0.07444977015256882, 0.09505479037761688, -0.08579932153224945, -0.16168871521949768, -0.14322243630886078, 0.07711107283830643, 0.10296688228845596, 0.057786066085100174, 0.008179794996976852, 0.1696678251028061, -0.006326046772301197, 0.1072888895869255, 0.07605297863483429, -0.2780580222606659, -0.0467480793595314, 0.21004575490951538, -0.04725354537367821, -0.02904338575899601, 0.0030757500790059566, 0.010637435130774975, 0.0528089813888073, 0.029089801013469696, 0.0017018248327076435, -0.0759892538189888, -0.06751363724470139, -0.0435960553586483, -0.11933667212724686, -0.029892118647694588, 0.12670812010765076, 0.014968608506023884, -0.07565020024776459, -0.09333197772502899, -0.041652776300907135, -0.07346264272928238, -0.04448617249727249, -0.0023233972024172544, 0.015538488514721394, -0.03648267686367035, -0.009968513622879982, 0.05946273356676102, 0.009837176650762558, -0.04796665906906128, -0.13428747653961182, 0.015805624425411224, 0.008529022336006165, 0.04608961567282677, 0.014667563140392303, -0.0027869734913110733, -0.06624358892440796, -0.03919445350766182, -0.0042446269653737545, 0.014816264621913433, -0.07702919840812683, -0.07051178067922592, 0.012863396666944027, 0.044405173510313034, 0.04629884660243988, 0.16807794570922852, -0.029638070613145828, 0.13214914500713348, 0.039387743920087814, -0.01468192134052515, -0.04864073917269707, 0.09288886934518814, -0.104136161506176, -0.11266569793224335, 0.043283503502607346, -0.01634104549884796, 0.011696659959852695, -0.04034149646759033, -0.05753490701317787, -0.06549043208360672, 0.06602559238672256, 0.06531674414873123, 0.031613435596227646, 0.03349308669567108, -0.060164518654346466, -0.06253787130117416, -0.019553184509277344, -0.11854388564825058, 0.0638599619269371, 0.007121329661458731, -0.11181151121854782, 0.10382883250713348, 0.05064881965517998, -0.008766165934503078, -0.11973598599433899, 0.03529497981071472, -0.10771925002336502, 0.008826391771435738, -0.08254310488700867, -0.132012277841568, 0.04869275912642479, 0.0012333202175796032, -0.029391711577773094, -0.09660723805427551, -0.17345012724399567, -0.0864916443824768, 0.005080035421997309, -0.10843957960605621, -0.0432458259165287, 0.016014834865927696, -0.027659114450216293, 0.045464515686035156, 0.018782909959554672, 0.05688532441854477, -0.021999601274728775, 0.013513571582734585, 0.05854246765375137, 0.07665913552045822, -0.057719793170690536, 0.0228695347905159, -0.01934770680963993, 0.031576573848724365, -0.11005926877260208, 0.07080361247062683, -0.0901983380317688, 0.04071114957332611, -0.16707554459571838, -0.03678029403090477, 0.11973848193883896, -0.03487146645784378, 0.06918061524629593, 0.09393437951803207, -0.13991518318653107, 0.00813229288905859, 0.10590014606714249, -0.03836758807301521, -0.10204523056745529, 0.08681098371744156, 0.012277357280254364, -0.011681163683533669, 0.030577730387449265, 0.12178681045770645, 0.14581504464149475, -0.04136557877063751, -0.07752535492181778, 0.0040153320878744125, 0.029305223375558853, -0.058699220418930054, 0.10392313450574875, -0.03335766866803169, -0.13900762796401978, 0.006547258701175451, 0.06277091801166534, -0.013929211534559727, -0.03244747966527939, -0.05095377564430237, -0.026208123192191124, -0.029149236157536507, -0.009378431364893913, 0.005279995035380125, 0.024281678721308708, -0.03600100055336952, -0.032022036612033844, 0.04615495353937149, 0.14095637202262878, -0.01981404796242714, -0.02885410189628601, -0.14150503277778625, 0.08859223872423172, -0.0927773118019104, -0.021328182891011238, -0.21619610488414764, -0.07189904153347015, 0.014472017996013165, -0.17995187640190125, 0.02024242654442787, -0.04925685375928879, 0.07396040856838226, 0.04650997743010521, 0.04735545441508293, 0.03951659053564072, 0.09467743337154388, -0.030514968559145927, -0.09702687710523605, -0.07061183452606201, -0.05822337418794632, 0.0038931001909077168, 0.22619347274303436, -0.18062029778957367, 0.012444223277270794, 0.02326223812997341, 0.05214023217558861, -0.014508684165775776, -0.048408541828393936, -0.018970362842082977, 0.07961070537567139, 0.022569457069039345, -0.07132207602262497, 0.107240229845047, -0.019523179158568382, -0.0396694578230381, -0.06236700341105461, -0.2340230643749237, 0.12053138017654419, 0.09688285738229752, 0.04495725780725479, -0.08978957682847977, -0.033265333622694016, 0.03776136785745621, -0.0360686220228672, -0.0013172610197216272, 0.04242899641394615, 0.13955317437648773, 0.04280812665820122, 0.11665157228708267, -0.04091178625822067, -0.03231329843401909, 0.0151592455804348, -0.05345610901713371, -0.023816514760255814, 0.19315628707408905, 0.04348725453019142, -0.1112840548157692, 0.0905759334564209, 0.010163708589971066, -0.09355796873569489, 0.05506850406527519, 0.022764530032873154, -0.02316092699766159, -0.08982717245817184, -0.001913438318297267, 0.0706428736448288, 0.00012882200826425105, 0.030136719346046448, 0.0614515095949173, 0.0730651319026947, -0.013143264688551426, 0.018199047073721886, -0.07618758827447891, 0.021609628573060036, 0.013731083832681179, -0.024987880140542984, -0.020074520260095596, 0.010016879998147488, 0.05922854691743851, 0.12793900072574615, 0.019222963601350784, 0.015546994283795357, 0.012285229749977589, -0.012468014843761921, -0.1068982258439064, 0.2349998503923416, -0.09624147415161133, -0.15221518278121948, -0.16850201785564423, -0.18882907927036285, -0.11339019984006882, -0.08175177127122879, -0.02625197544693947, -0.05863845720887184, -0.09477589279413223, -0.06472942233085632, -0.02398940734565258, -0.02333029918372631, -0.06522931158542633, 0.037078000605106354, -0.01356985978782177, 0.10902151465415955, -0.11263886094093323, -0.035245876759290695, 0.025611095130443573, -0.10509984195232391, 0.04734531417489052, 0.02361023984849453, 0.06433513015508652, 0.14635181427001953, -0.03502781316637993, 0.03459823876619339, 0.006797957234084606, 0.21587391197681427, 0.03935036435723305, -0.02452307753264904, 0.20794916152954102, 0.051686856895685196, 0.04890640452504158, 0.08584176003932953, 0.06352142989635468, -0.0834469199180603, -0.021791134029626846, 0.08209573477506638, -0.013398639857769012, -0.20561400055885315, -0.18365293741226196, -0.004762358032166958, 0.10773075371980667, 0.12017574906349182, 0.02077503502368927, 0.011577274650335312, 0.07872871309518814, 0.046411462128162384, 0.09111011028289795, -0.051973164081573486, 0.07387150079011917, 0.1373259723186493, 0.03200775384902954, 0.1337013840675354, -0.0738358274102211, 0.030474822968244553, 0.1117606982588768, -0.011570806615054607, 0.06542760878801346, 0.051494624465703964, 0.07194673269987106, -0.017494510859251022, 0.07917499542236328, 0.0316796749830246, 0.10988491773605347, 0.012976882047951221, -0.014756754972040653, 0.041813768446445465, -0.06895323842763901, -0.07628925889730453, -0.030428558588027954, 0.013134152628481388, 0.04630280286073685, -0.11267757415771484, 0.017325833439826965, -0.0001321237359661609, 0.10749510675668716, 0.06480368226766586, -0.42579981684684753, -0.03844217583537102, 0.02547258883714676, -0.009664816781878471, -0.10381338000297546, -0.028023958206176758, -0.03119216114282608, -0.14381112158298492, 0.07148760557174683, -0.04611813649535179, 0.12024358659982681, -0.09535864740610123, -0.022816702723503113, 0.006631779950112104, 0.07900490611791611, 0.009015632793307304, 0.05334244295954704, -0.14912879467010498, 0.12706796824932098, 0.05429413169622421, 0.03405972197651863, -0.06521567702293396, 0.03882880508899689, 0.029952237382531166, -0.009560475125908852, 0.1410585641860962, 0.016496051102876663, -0.12187878042459488, -0.3246164619922638, -0.10676375776529312, 0.010584412142634392, -0.01052831206470728, 0.010566651821136475, 0.09247647225856781, -0.056950170546770096, -0.0019007048103958368, -0.04602830857038498, -0.023196272552013397, -0.09353002905845642, -0.07717181742191315, 0.03819971904158592, 0.08189750462770462, -0.08025497198104858, -0.03088112734258175, -0.02104462869465351, -0.02202582359313965, 0.14332301914691925, -0.1206003949046135, -0.049394574016332626, -0.15097051858901978, 0.042763907462358475, 0.10911143571138382, -0.1142992302775383, 0.04494359716773033, -0.047221217304468155, 0.05849473923444748, -0.011546269059181213, -0.1382206827402115, 0.07095982879400253, -0.05732632800936699, -0.027007373049855232, 0.009928712621331215, 0.02117316983640194, -0.0374746136367321, 0.06585643440485, 0.027010437101125717, 0.022008489817380905, 0.010852005332708359, -0.12074431777000427, -0.024960532784461975, 0.03233076259493828, 0.12288671731948853, 0.06032219156622887, -0.05189263075590134, -0.08911660313606262, -0.035952068865299225, 0.07149527966976166, 0.17425395548343658, 0.3047806918621063, -0.06941795349121094, -0.02083153836429119, 0.06664878875017166, -0.04478662088513374, -0.23548947274684906, -0.029625210911035538, 0.02450799010694027, -0.0025179502554237843, -0.018188374117016792, -0.09790387004613876, 0.148448184132576, 0.19983389973640442, -0.01648346334695816, -0.022500181570649147, -0.28336894512176514, -0.11187124252319336, 0.13680996000766754, 0.11166869103908539, 0.051681116223335266, -0.1803441047668457, -0.05065430328249931, -0.11205972731113434, -0.1385147124528885, 0.13623209297657013, -0.07947953790426254, 0.07312249392271042, -0.05433506518602371, 0.05680721253156662, 0.03748229891061783, -0.0640191063284874, 0.1668574959039688, -0.023483386263251305, 0.03873935714364052, -0.061937116086483, -0.05321027711033821, -0.06266947090625763, -0.08171216398477554, 0.10955740511417389, 0.003719043917953968, 0.06860680878162384, -0.2520736753940582, 0.005933800246566534, -0.0012965237256139517, 0.06433131545782089, -0.06060870736837387, -0.020346319302916527, -0.0035420602653175592, 0.06047888845205307, -0.03305951878428459, -0.025345098227262497, -0.012487790547311306, -0.03648873046040535, 0.10192079097032547, 0.20710106194019318, 0.07242331653833389, -0.0448325015604496, -0.0848848894238472, 0.03845858573913574, -0.04791706055402756, 0.03303363546729088, -0.11143074184656143, 0.055415455251932144, 0.1319856494665146, 0.033790022134780884, 0.08341962844133377, 0.05285936966538429, -0.021149443462491035, -0.029194846749305725, 0.039817795157432556, -0.12715069949626923, 0.029660329222679138, 0.029017161577939987, 0.05019909143447876, -0.09040280431509018, -0.07050397992134094, 0.13567699491977692, 0.020847709849476814, -0.03218913450837135, 0.02905827946960926, -0.0007464832160621881, -0.031200408935546875, 0.238693967461586, -0.0080126216635108, 0.0829925611615181, -0.09991627931594849, 0.0905826985836029, 0.10255562514066696, -0.12802450358867645, 0.005731670185923576, 0.15808869898319244, -0.06796219199895859, -0.07012603431940079, 0.021054554730653763, 0.16813205182552338, -0.11366072297096252, -0.04743737354874611, -0.02199614606797695, -0.10171279311180115, 0.06416879594326019, 0.1679515242576599, 0.08959820121526718, -0.008650439791381359, -0.008921949192881584, -0.11350832879543304, -0.12463528662919998, 0.04132488742470741, 0.08133444935083389, 0.004652426578104496, -0.11059575527906418, 0.14993484318256378, -0.01504514366388321, 0.020863614976406097, -0.01170647144317627, 0.025244997814297676, -0.22570264339447021, -0.044050704687833786, -0.06914100050926208, 0.050855014473199844, -0.05877471715211868, 0.043739546090364456, -0.01703157275915146, 0.0436633862555027, -0.05866292491555214, 0.005887952167540789, -0.05816412717103958, -0.08892270177602768, -0.0032366919331252575, 0.07865028828382492, -0.06752011924982071, -0.023023994639515877, 0.041305407881736755, -0.021642472594976425, 0.039156533777713776, 0.040698084980249405, 0.06650882959365845, -0.023060301318764687, -0.028894629329442978, -0.028681263327598572, 0.03398888558149338, 0.011379443109035492, 0.07856465131044388, -0.21770937740802765, 0.05045458301901817, -0.020880986005067825, 0.031051503494381905, 0.07030340284109116, 0.12484602630138397, -0.1044495701789856, 0.011702990159392357, -0.11172980815172195, -0.05166340991854668, -0.10265396535396576, 0.03079906292259693, 0.14204442501068115, 0.06786468625068665, 0.0736665204167366, -0.09506979584693909, 0.06237592548131943, -0.19117358326911926, -0.025028645992279053, -0.039671193808317184, -0.05337781831622124, -0.004128897096961737, 0.0006030782824382186, 0.09144563972949982, -0.019227560609579086, 0.07573432475328445, 0.012157655321061611, 0.014983206987380981, 0.043046142905950546, 0.07976917922496796, -0.01861991174519062, -0.02848215401172638, 0.15153147280216217, 0.07392536103725433, 0.00007265544263646007, 0.11843011528253555, 0.10740151256322861, 0.03473925217986107, 0.06769481301307678, 0.06010238453745842, 0.09897277504205704, -0.10245528072118759, 0.06353704631328583, 0.02615741826593876, -0.1053234338760376, -0.025272220373153687, 0.14408999681472778, -0.0581589974462986, 0.04899870231747627, -0.08213479071855545, 0.03064166009426117, 0.12028324604034424, -0.12440504878759384, 0.032793160527944565, -0.0061533767729997635, -0.06099534034729004, -0.20873425900936127, -0.088008813560009, -0.11520873755216599, -0.013073755428195, -0.03415488824248314, -0.1011420413851738, 0.038182854652404785, 0.17816397547721863, 0.019216733053326607, 0.0283734779804945, 0.07950834184885025, -0.2644311189651489, -0.013468516990542412, -0.02511235699057579, -0.00455387681722641, -0.023521462455391884, -0.024654792621731758, -0.016597438603639603, 0.011987052857875824, 0.009630847722291946, 0.08827167004346848, 0.034298233687877655, 0.031923916190862656, 0.08397810161113739, -0.04325886815786362, -0.09670862555503845, -0.03854287415742874, 0.01168394461274147, 0.031117167323827744, 0.17123034596443176, 0.021455982699990273, -0.008472524583339691, -0.047323938459157944, 0.1686202734708786, -0.07584255188703537, 0.01774272695183754, -0.10718132555484772, 0.2539577782154083, -0.013934800401329994, 0.04367464780807495, 0.00001295036418014206, -0.004091476555913687, -0.001479231403209269, 0.17936591804027557, 0.10969537496566772, -0.016115369275212288, -0.03277626261115074, 0.034678131341934204, -0.006273518316447735, -0.039826493710279465, 0.14227522909641266, 0.04837901145219803, 0.11015349626541138, -0.060824599117040634, 0.04806212708353996, -0.01427923422306776, -0.02607407048344612, -0.12121056765317917, 0.08170253038406372, 0.02922799438238144, 0.008483722805976868, 0.03856036439538002, 0.09108293801546097, -0.05554323270916939, 0.1001381129026413, 0.09186576306819916, -0.1139221265912056, -0.1688959300518036, 0.019657060503959656, -0.03150247037410736, -0.04991157725453377, 0.10507780313491821, -0.033792514353990555, 0.004202853422611952, 0.014009840786457062, -0.02571198157966137, -0.16567274928092957, -0.11992056667804718, -0.011660851538181305, 0.11089693754911423, 0.29815059900283813, 0.027404645457863808, 0.08470702171325684, 0.1844908446073532, -0.04265379160642624, -0.18110623955726624, 0.05620372295379639, 0.013328355737030506, -0.10238829255104065, 0.10109755396842957, 0.07809177041053772, -0.05446814373135567, 0.15858440101146698, 0.029039671644568443, -0.16059616208076477, -0.0185944065451622, 0.0203635785728693, 0.05340099334716797, -0.056937288492918015, 0.017859280109405518, -0.09397899359464645, 0.12418399006128311, 0.17997409403324127, -0.029383579269051552, -0.015308300033211708, -0.057287149131298065, 0.06251677125692368, -0.01384355966001749, 0.0380006767809391, -0.04315865784883499, -0.11939679831266403, 0.08223499357700348, -0.260165810585022, 0.01717124879360199, -0.28640905022621155, -0.017893334850668907, -0.018929537385702133, -0.051771506667137146, -0.0918433889746666, 0.10898449271917343, 0.03619454428553581, -0.0021755751222372055, -0.04224887117743492, -0.2547591030597687, 0.012261520139873028, 0.13867394626140594, -0.09319468587636948, -0.11839031428098679 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 1301123 ## Validation Metrics - Loss: 0.14097803831100464 - Accuracy: 0.9740097463451206 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
token-classification
albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
[ "transformers", "pytorch", "safetensors", "albert", "token-classification", "autonlp", "bn", "dataset:albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 1301123 ## Validation Metrics - Loss: 0.14097803831100464 - Accuracy: 0.9740097463451206 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123", "## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123", "## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 76, 24, 46, 17 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #albert #token-classification #autonlp #bn #dataset-albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 1301123## Validation Metrics\n\n- Loss: 0.14097803831100464\n- Accuracy: 0.9740097463451206\n- Precision: 0.0\n- Recall: 0.0\n- F1: 0.0## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.1732017993927002, 0.18005973100662231, -0.0017610753420740366, 0.12011082470417023, 0.12407881766557693, 0.00012012081424472854, 0.06556486338376999, 0.06301893293857574, 0.041378989815711975, 0.05255093052983284, 0.15745128691196442, 0.19385212659835815, 0.021568099036812782, 0.15999476611614227, -0.11828342080116272, -0.13779164850711823, 0.07371252030134201, 0.04840654879808426, 0.20820248126983643, 0.1279243528842926, 0.05296429991722107, -0.11184705793857574, 0.09069584310054779, 0.029301593080163002, -0.1272103190422058, -0.002590615302324295, 0.10416604578495026, -0.14385908842086792, 0.1116722822189331, 0.03532283008098602, 0.13850367069244385, 0.007039234507828951, 0.12694436311721802, -0.10256189107894897, -0.014938018284738064, -0.0013049726840108633, 0.015383961610496044, 0.07772212475538254, 0.05507669970393181, -0.05334460362792015, -0.07044081389904022, 0.027111278846859932, 0.07272805273532867, 0.017544090747833252, -0.09869313985109329, -0.12661950290203094, -0.047555726021528244, 0.0979180634021759, 0.09901529550552368, 0.10920160263776779, -0.006432647351175547, 0.27372288703918457, -0.05768290162086487, 0.10317163914442062, 0.044158145785331726, -0.3043954372406006, -0.020081063732504845, 0.07697086781263351, -0.044496774673461914, -0.0719686970114708, 0.009718278422951698, 0.031222892925143242, 0.07359706610441208, 0.03203080594539642, 0.1133691817522049, -0.027232935652136803, -0.1233936995267868, -0.02665061689913273, -0.10401740670204163, -0.07552090287208557, 0.21080522239208221, 0.02704118750989437, -0.08904676884412766, -0.03381052240729332, -0.09905213862657547, -0.0757291242480278, -0.07040592283010483, -0.05522669106721878, -0.006968055851757526, -0.044933706521987915, -0.05113370716571808, 0.06720227003097534, -0.07775379717350006, -0.06375142931938171, -0.13976047933101654, 0.13872559368610382, 0.030827432870864868, 0.08797523379325867, -0.03115069307386875, 0.09224222600460052, -0.08038023859262466, -0.07595992088317871, -0.010202435776591301, -0.028527095913887024, -0.022542821243405342, -0.06227388232946396, -0.01664823666214943, 0.030121754854917526, 0.014659060165286064, 0.14834266901016235, 0.039521511644124985, 0.005708445329219103, 0.006404861342161894, 0.018139773979783058, 0.02366398088634014, 0.1810676008462906, -0.12794293463230133, 0.0110621377825737, 0.08836082369089127, 0.0031658143270760775, 0.02687578648328781, -0.019244734197854996, -0.03073727898299694, -0.0528496615588665, 0.2237953394651413, 0.04872598499059677, -0.0030942598823457956, 0.0764886885881424, -0.05715217813849449, -0.03669384494423866, 0.012903958559036255, -0.10145042091608047, 0.0038158188108354807, 0.002276359824463725, -0.12004046142101288, 0.07611912488937378, 0.0840320885181427, -0.017122464254498482, -0.09269537031650543, 0.008433341979980469, -0.09695377200841904, 0.019738776609301567, -0.024404728785157204, -0.1318090409040451, 0.020538929849863052, -0.005972317885607481, 0.04230782389640808, -0.20025670528411865, -0.28868526220321655, -0.0038777505978941917, 0.0471951961517334, -0.0293225459754467, -0.003490006783977151, -0.03796340897679329, -0.002736339345574379, -0.017411358654499054, -0.060925256460905075, -0.11590872704982758, -0.05602407082915306, 0.06028113141655922, 0.03387058526277542, 0.04296574369072914, -0.07616113126277924, 0.03307230398058891, -0.13031242787837982, -0.00006166312232380733, -0.09837415814399719, 0.038670651614665985, -0.03384527191519737, 0.019363341853022575, -0.1321049928665161, -0.036401789635419846, 0.10091017186641693, -0.0074595240876078606, 0.07434087991714478, 0.16278183460235596, -0.0891546681523323, -0.0022436471190303564, 0.11213625222444534, -0.09867357462644577, -0.1134955957531929, 0.13263677060604095, -0.05816100165247917, 0.026125961914658546, 0.10528700053691864, 0.057398125529289246, 0.06569941341876984, -0.09617584198713303, -0.04948393255472183, 0.004316486418247223, -0.033024340867996216, -0.10707546025514603, 0.03396839648485184, 0.06337767094373703, -0.20983363687992096, 0.058473553508520126, -0.0017089579487219453, 0.013717018067836761, -0.08033724129199982, -0.08884994685649872, -0.04365845397114754, -0.085983507335186, 0.08923648297786713, 0.00009626943938201293, 0.08364361524581909, -0.013189367949962616, -0.0689312219619751, 0.011552238836884499, 0.11253988742828369, -0.035608354955911636, -0.05083591863512993, -0.15571632981300354, 0.1728115826845169, -0.20307622849941254, -0.038353994488716125, -0.18657808005809784, -0.04601563885807991, -0.0057080453261733055, -0.001403435948304832, -0.03719507157802582, -0.02012898027896881, 0.05536319687962532, 0.06520211696624756, 0.041405946016311646, -0.040641192346811295, 0.07642564177513123, 0.01227581687271595, -0.10704190284013748, -0.0020948888268321753, -0.030324842780828476, -0.034674327820539474, 0.18989713490009308, -0.1585984081029892, -0.000650073925498873, -0.11289787292480469, 0.014398555271327496, -0.00018012091459240764, 0.00597058329731226, -0.03638117387890816, 0.025280755013227463, -0.022174062207341194, -0.02377225086092949, 0.04439477622509003, -0.012101145461201668, -0.06126844137907028, -0.004258890636265278, -0.18953098356723785, 0.2460888922214508, 0.13711810111999512, -0.0441259928047657, -0.05592426285147667, 0.008782684803009033, 0.013986059464514256, 0.013873850926756859, -0.05688006430864334, 0.037854600697755814, 0.11401789635419846, 0.03976854309439659, 0.13802213966846466, -0.06651259958744049, 0.011547494679689407, 0.054480794817209244, -0.10472124069929123, -0.0455528162419796, 0.08896477520465851, 0.002796002896502614, -0.15326976776123047, 0.08533842861652374, 0.06722551584243774, -0.12845447659492493, 0.011987878009676933, 0.017127761617302895, -0.0401589535176754, -0.022753139957785606, -0.042000774294137955, -0.004818824585527182, 0.09402953088283539, 0.010699121281504631, 0.03796566277742386, 0.07300522178411484, -0.017705094069242477, -0.0052427309565246105, -0.1022808700799942, -0.010456650517880917, 0.03489270433783531, -0.0005679839523509145, -0.07535398006439209, -0.020149122923612595, 0.03384917974472046, 0.10446009039878845, 0.00629799161106348, -0.12239381670951843, 0.04328084737062454, 0.033129457384347916, -0.09971465170383453, 0.22065305709838867, -0.0645352452993393, -0.19793233275413513, -0.13772813975811005, -0.08292631059885025, -0.0814158022403717, -0.008410842157900333, 0.012700012885034084, -0.0003691107558552176, -0.08408643305301666, -0.07521680742502213, -0.07713496685028076, 0.0328991673886776, -0.061509907245635986, 0.014574605040252209, -0.07298639416694641, 0.06414631754159927, -0.09821826219558716, -0.06032755225896835, -0.051477160304784775, -0.09336858987808228, 0.15142330527305603, -0.028892194852232933, 0.07434208691120148, 0.14904259145259857, -0.07242538034915924, 0.03200894594192505, 0.019511906430125237, 0.2026457041501999, 0.025866320356726646, -0.042089879512786865, 0.21634116768836975, -0.007601513527333736, 0.02520873211324215, 0.10479195415973663, 0.025582652539014816, -0.07376287132501602, -0.02336971089243889, -0.0006415616371668875, -0.01699201948940754, -0.1426868885755539, -0.1614454984664917, 0.05965055525302887, 0.04782741144299507, 0.14109620451927185, 0.004470318555831909, 0.07317185401916504, 0.15274207293987274, 0.03480720520019531, 0.036512020975351334, -0.03401154279708862, 0.06952521950006485, 0.13720326125621796, 0.005226702895015478, 0.13206368684768677, -0.009112591855227947, -0.06509324163198471, 0.033764246851205826, 0.006148430053144693, 0.10608989000320435, 0.02694682590663433, -0.11842367798089981, 0.00196696980856359, 0.14146657288074493, 0.03239470720291138, 0.1843854784965515, 0.053135015070438385, -0.009683990851044655, 0.004144853446632624, -0.040540944784879684, -0.14497056603431702, -0.009281473234295845, -0.020638080313801765, 0.07026812434196472, -0.14193275570869446, 0.008150971494615078, 0.01156536303460598, 0.10417642444372177, 0.15964250266551971, -0.4937567114830017, -0.12214281409978867, 0.0026385881938040257, -0.037782538682222366, -0.1347752958536148, 0.019252518191933632, -0.09097598493099213, -0.11881166696548462, -0.01302432268857956, -0.0654727965593338, 0.08789978176355362, -0.08229487389326096, 0.025414982810616493, -0.11120913922786713, 0.015761584043502808, -0.014576369896531105, 0.08402841538190842, -0.1951061487197876, 0.2520958483219147, 0.05056656524538994, 0.08114099502563477, -0.08525988459587097, -0.004456558730453253, 0.04562196135520935, 0.08813638985157013, 0.1728047877550125, -0.01419668085873127, 0.06930438429117203, -0.2787889242172241, -0.14959491789340973, 0.07369165867567062, -0.09224262833595276, 0.021549560129642487, 0.08504509180784225, 0.005848069209605455, 0.016651462763547897, -0.01481904648244381, 0.03529738262295723, -0.1650410294532776, -0.010069706477224827, -0.017970411106944084, 0.07087364792823792, 0.03232075646519661, -0.022337978705763817, -0.0655868649482727, -0.09426160156726837, 0.105830617249012, 0.05567183718085289, -0.05495079234242439, -0.11875161528587341, 0.05260462313890457, 0.0720314234495163, -0.11211065948009491, 0.0435076467692852, -0.029306279495358467, 0.058808259665966034, -0.01996314898133278, -0.13275735080242157, 0.08016529679298401, -0.08914466202259064, -0.012115532532334328, 0.013587902300059795, -0.020584166049957275, 0.04027977213263512, 0.006905869580805302, 0.10690156370401382, 0.03481043130159378, -0.0440911129117012, -0.07586623728275299, -0.006913819815963507, 0.09065242856740952, 0.06245313584804535, 0.07811833918094635, -0.029366251081228256, -0.2232556790113449, -0.07647355645895004, 0.11494456976652145, 0.1677331030368805, 0.1662668138742447, -0.06974194943904877, -0.04891212284564972, 0.1997475028038025, 0.0105125168338418, -0.2527344524860382, -0.043748997151851654, -0.03939869999885559, 0.030418993905186653, -0.028777379542589188, -0.03827584534883499, 0.14169378578662872, 0.1346447914838791, -0.06476132571697235, -0.030598383396863937, -0.1864091157913208, -0.08453574776649475, 0.3166627287864685, 0.14340299367904663, 0.20760035514831543, -0.05390723794698715, -0.0018325666896998882, -0.07582330703735352, -0.1805468052625656, 0.11550585925579071, -0.061550579965114594, 0.05446027219295502, -0.04389381781220436, 0.12360107898712158, 0.04516363888978958, -0.06300784647464752, 0.09252181649208069, -0.006941637955605984, 0.07758202403783798, -0.03173523023724556, -0.037041179835796356, -0.011631393805146217, -0.10059648007154465, 0.21677763760089874, 0.02535202167928219, 0.07760607451200485, -0.16300565004348755, -0.03808402642607689, -0.04774414747953415, 0.12870930135250092, -0.0021548231597989798, -0.06550826877355576, 0.04032214730978012, 0.0023364785593003035, 0.0004923955420963466, -0.04057024046778679, -0.02014116756618023, 0.015133093111217022, 0.06605701893568039, 0.16289281845092773, 0.049214012920856476, -0.030219942331314087, 0.005222003906965256, 0.00799911841750145, -0.07248040288686752, 0.11944260448217392, -0.10687841475009918, 0.0856727659702301, 0.106756292283535, -0.01661767065525055, 0.10594252496957779, 0.03686320781707764, -0.05019594728946686, 0.00288048735819757, 0.02034163847565651, -0.1509910523891449, 0.03305599093437195, 0.004654955584555864, -0.00265133916400373, -0.029093774035573006, 0.0667899027466774, 0.14091739058494568, -0.11278584599494934, -0.030855480581521988, -0.02552907168865204, 0.003437567735090852, -0.015121341682970524, 0.20328593254089355, 0.016211766749620438, 0.05786672234535217, -0.11533059924840927, 0.08160529285669327, 0.042224958539009094, -0.05642944946885109, 0.03984517976641655, -0.07923180609941483, -0.10191641002893448, -0.12841254472732544, -0.0031576724722981453, 0.17659248411655426, -0.1478438377380371, -0.06222250312566757, -0.057737767696380615, -0.07797857373952866, 0.019512031227350235, 0.15851347148418427, 0.08707454055547714, 0.03844274580478668, -0.032433412969112396, -0.0939440205693245, -0.1320917010307312, 0.07196731120347977, 0.19099609553813934, 0.03181104734539986, -0.15668512880802155, 0.10742226988077164, -0.023336779326200485, 0.06628970056772232, -0.05196990445256233, -0.020705867558717728, -0.13232196867465973, 0.03023308888077736, -0.18593916296958923, 0.040513552725315094, -0.0861404612660408, 0.03292965516448021, 0.011996808461844921, 0.030682915821671486, -0.0324099175632, 0.016206812113523483, -0.08460380136966705, 0.02742450125515461, 0.05979466810822487, 0.02399394102394581, -0.09672226011753082, -0.06467718631029129, 0.0049233390018343925, -0.022800002247095108, 0.07304786145687103, 0.12603087723255157, -0.004434772301465273, 0.08799107372760773, -0.121817946434021, -0.024117106571793556, 0.08495311439037323, 0.020278625190258026, 0.09707716852426529, -0.0754295065999031, 0.07386776059865952, 0.05601773038506508, -0.004755891859531403, 0.03476906940340996, 0.11317833513021469, -0.09680002182722092, -0.0548667274415493, -0.029137983918190002, -0.05748295038938522, -0.10289882868528366, 0.014220320619642735, 0.10196243226528168, 0.019297538325190544, 0.13425672054290771, -0.09292270243167877, 0.04371950775384903, -0.1371353566646576, -0.009298537857830524, -0.028180740773677826, -0.07675953954458237, -0.0970069020986557, -0.035002391785383224, 0.05994948372244835, -0.026394609361886978, 0.07995866984128952, 0.02824607491493225, 0.0484306700527668, -0.025356024503707886, 0.010785621590912342, -0.0063908835873007774, -0.03897090628743172, 0.15821687877178192, 0.06622285395860672, -0.01716502755880356, -0.013458846136927605, 0.08563018590211868, 0.07715754210948944, -0.012546677142381668, 0.001772575662471354, 0.07282421737909317, -0.10307040065526962, 0.12641049921512604, 0.04591802507638931, -0.03491510823369026, -0.05498626083135605, -0.1462477445602417, -0.11387511342763901, 0.06296777725219727, 0.04081040620803833, -0.013329977169632912, 0.12585075199604034, -0.02134671062231064, -0.026495736092329025, -0.023623796179890633, -0.0632140040397644, -0.19070163369178772, -0.14657799899578094, -0.1252242922782898, -0.03634754940867424, 0.007496505044400692, -0.08289545029401779, -0.0696338638663292, 0.1196194738149643, 0.022521082311868668, -0.04956052824854851, 0.10340791195631027, -0.05437790974974632, -0.006504817865788937, 0.03353746235370636, -0.012278864160180092, -0.03958556801080704, -0.016931885853409767, -0.0010427035158500075, -0.00433987844735384, 0.042207568883895874, 0.0604591928422451, -0.002595256082713604, 0.01729653589427471, 0.11453574150800705, -0.03018607199192047, -0.11598669737577438, -0.04665447771549225, 0.02808641456067562, 0.03037993237376213, 0.07674045115709305, 0.027406828477978706, 0.011283498257398605, -0.029655756428837776, 0.2091284990310669, -0.08539438247680664, -0.013166917487978935, -0.1342071145772934, 0.42476537823677063, 0.006757332012057304, 0.04253210872411728, 0.02479652315378189, -0.0413905531167984, 0.06100903078913689, 0.1943964958190918, 0.12341132760047913, 0.001056801644153893, 0.011592564173042774, -0.030975237488746643, -0.01964784599840641, -0.06586943566799164, 0.08560360968112946, 0.032185833901166916, 0.13283777236938477, -0.089513398706913, 0.05987901985645294, -0.03259516507387161, -0.033773861825466156, -0.07606541365385056, 0.01969391293823719, -0.006634359713643789, -0.010341192595660686, -0.08752460777759552, 0.09340909868478775, -0.09400084614753723, 0.08550950139760971, 0.04077187553048134, -0.008332820609211922, -0.11248161643743515, -0.008600391447544098, -0.05019568279385567, 0.01569243147969246, 0.11927041411399841, -0.08668014407157898, 0.026450086385011673, 0.05631667375564575, 0.0035857888869941235, -0.12471642345190048, -0.05844748392701149, 0.03722459450364113, 0.1882276087999344, 0.2791876196861267, 0.06205352395772934, 0.10111622512340546, 0.1064433827996254, 0.009531001560389996, -0.1111559346318245, 0.1526644080877304, -0.015192133374512196, -0.05029131472110748, 0.08583931624889374, 0.013934575952589512, 0.004554955754429102, 0.06841088831424713, 0.029377218335866928, -0.1853310465812683, -0.020685827359557152, -0.045840825885534286, 0.004332152660936117, -0.06538432836532593, 0.03137228637933731, -0.010493585839867592, 0.10046197474002838, 0.11514748632907867, -0.04491432011127472, 0.007964040152728558, -0.07862494885921478, 0.09875840693712234, 0.04549966752529144, -0.11243479698896408, -0.010152163915336132, -0.1149534061551094, 0.05275549739599228, -0.09602364897727966, -0.010416022501885891, -0.2506324350833893, 0.014558924362063408, -0.06107233092188835, -0.09403970837593079, -0.04926850646734238, 0.05143669992685318, 0.09896539151668549, 0.045426104217767715, -0.03351711109280586, -0.007287273649126291, -0.003860635217279196, 0.1008983850479126, -0.07893623411655426, -0.11951223015785217 ]
null
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "clip", "emoji": "\ud83d\udc41", "colorFrom": "indigo", "colorTo": "blue", "sdk": "streamlit", "app_file": "app.py", "pinned": true}
null
allen0s/clip
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Configuration 'title': _string_ Display title for the Space 'emoji': _string_ Space emoji (emoji-only character allowed) 'colorFrom': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'colorTo': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'sdk': _string_ Can be either 'gradio' or 'streamlit' 'sdk_version' : _string_ Only applicable for 'streamlit' SDK. See doc for more info on supported versions. 'app_file': _string_ Path to your main application file (which contains either 'gradio' or 'streamlit' Python code). Path is relative to the root of the repository. 'pinned': _boolean_ Whether the Space stays on top of your list.
[ "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ "TAGS\n#region-us \n", "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 6, 223 ]
[ "passage: TAGS\n#region-us \n# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 0.01188071072101593, 0.07758358120918274, -0.005383076146245003, -0.017373213544487953, 0.08687979727983475, -0.014924844726920128, 0.014434631913900375, 0.06603410094976425, 0.10808582603931427, 0.1384299099445343, 0.02763586863875389, 0.09634341299533844, 0.009154659695923328, 0.1522364765405655, 0.006923646666109562, -0.22283697128295898, 0.042200393974781036, -0.0709344744682312, 0.04902972653508186, 0.06943602859973907, 0.06273981928825378, -0.059291329234838486, 0.07202128320932388, -0.0033088354393839836, -0.14888131618499756, 0.00013695177040062845, -0.010616403073072433, -0.049460891634225845, 0.014828769490122795, -0.0402386374771595, 0.08266407251358032, -0.04675670340657234, -0.07371697574853897, -0.1268932968378067, 0.033357325941324234, 0.12697471678256989, 0.033907450735569, 0.002259220229461789, 0.12230198830366135, -0.12981177866458893, 0.21807576715946198, -0.1327449381351471, 0.05513199418783188, -0.014647294767200947, -0.018211161717772484, -0.15117362141609192, -0.0412733368575573, -0.05453411117196083, 0.14670124650001526, 0.009025073610246181, -0.008476284332573414, 0.01575237512588501, -0.12312111258506775, 0.08234678208827972, 0.06933248043060303, -0.04727475345134735, -0.002634770004078746, 0.1116911768913269, 0.08801890909671783, 0.037870731204748154, -0.12108538299798965, 0.0075067500583827496, -0.03785065934062004, -0.010196342132985592, -0.03730084374547005, -0.05277198180556297, -0.10130736231803894, 0.02550225891172886, -0.08296948671340942, -0.0009194708545692265, 0.25919461250305176, 0.012544205412268639, -0.05758257955312729, -0.11951438337564468, -0.06565803289413452, -0.045700762420892715, 0.02577689290046692, 0.060137517750263214, 0.053701069205999374, 0.06539168953895569, 0.10311403125524521, -0.0007050674175843596, -0.12313074618577957, -0.010358340106904507, -0.12153321504592896, 0.15558311343193054, -0.027887029573321342, 0.020990798249840736, -0.11456135660409927, 0.08364246785640717, -0.08822081238031387, -0.13817736506462097, 0.014043902978301048, -0.10895320028066635, 0.00031807392952032387, 0.06523092091083527, -0.0740472599864006, -0.17337968945503235, 0.0711340457201004, 0.1878124326467514, 0.055560074746608734, 0.0983857661485672, -0.0769592747092247, 0.04823235049843788, 0.10609938204288483, 0.191655695438385, -0.07476762682199478, 0.00942059326916933, 0.02892918698489666, -0.1705435961484909, 0.09933915734291077, -0.08998927474021912, -0.1121046394109726, 0.018870292231440544, -0.001934586907736957, -0.000014767882021260448, 0.10403572767972946, 0.0064650182612240314, -0.08259890973567963, -0.06819719076156616, 0.11214480549097061, -0.08646366745233536, 0.08762615919113159, 0.04516882076859474, -0.03648534417152405, 0.05987478047609329, -0.027545860037207603, 0.033786140382289886, 0.03255436569452286, 0.18013893067836761, -0.04335426539182663, -0.03640882298350334, -0.1593049317598343, -0.10343391448259354, 0.04724676534533501, -0.09820203483104706, 0.05610208958387375, -0.06877691298723221, -0.045289840549230576, -0.044973164796829224, 0.014098557643592358, -0.000728745711967349, 0.05700746551156044, 0.05061240494251251, -0.11077108979225159, 0.12225869297981262, 0.0473838746547699, -0.010428318753838539, -0.045939430594444275, 0.04395761713385582, -0.014665937051177025, 0.08389930427074432, -0.07425318658351898, 0.006531501188874245, -0.08674965053796768, 0.030134806409478188, -0.31573250889778137, 0.0038507028948515654, -0.01876232586801052, 0.10097015649080276, -0.001635766588151455, -0.00516595458611846, -0.03464873880147934, -0.03676575794816017, -0.05587775260210037, 0.046409010887145996, -0.25948604941368103, 0.011800145730376244, 0.1486954241991043, -0.00558213796466589, -0.010950867086648941, 0.039532337337732315, 0.015502169728279114, -0.19489143788814545, 0.0033431637566536665, 0.382671982049942, 0.12433561682701111, -0.15602239966392517, -0.038460731506347656, 0.002253052545711398, -0.12435132265090942, 0.05122614651918411, 0.10650063306093216, -0.028285304084420204, 0.06810537725687027, 0.06492038071155548, -0.13770891726016998, 0.03194277361035347, 0.08137232065200806, 0.07254006713628769, -0.06185802444815636, 0.03309902548789978, 0.12447807937860489, -0.001426891190931201, -0.09820882230997086, -0.12830325961112976, -0.044034551829099655, 0.05778408423066139, 0.12614697217941284, 0.010718805715441704, -0.005161978770047426, -0.08368363976478577, 0.15632237493991852, 0.046334970742464066, -0.01825164072215557, -0.11742157489061356, -0.10392706096172333, 0.039694882929325104, 0.15260495245456696, -0.04313033074140549, 0.00972882192581892, 0.02338254079222679, 0.0057436628267169, 0.06214966997504234, -0.06808450818061829, 0.005501836538314819, -0.0404035858809948, 0.07184121012687683, -0.06626638770103455, 0.0597655288875103, -0.04996529221534729, -0.07479199767112732, -0.054193515330553055, -0.01938489079475403, 0.154617577791214, 0.16577643156051636, 0.08953801542520523, -0.08143158257007599, 0.07282175868749619, -0.0971396267414093, -0.07091189175844193, -0.05644267797470093, -0.0658361092209816, -0.014500929042696953, 0.10139623284339905, 0.12220189720392227, -0.18264023959636688, 0.05132247507572174, 0.12537862360477448, 0.0016902342904359102, 0.06873060762882233, 0.0471314862370491, 0.000008568487828597426, 0.07041674107313156, -0.03394358977675438, -0.026566192507743835, 0.039171043783426285, 0.06057918071746826, -0.004764103796333075, -0.045834168791770935, -0.03129440173506737, 0.0007111160084605217, -0.08782535046339035, -0.046953946352005005, 0.01650119572877884, 0.09927795827388763, 0.021815184503793716, 0.06723066419363022, 0.07200349122285843, 0.11227423697710037, 0.23267285525798798, -0.01663021929562092, -0.04860781878232956, -0.05390782281756401, -0.0038662166334688663, -0.072230763733387, 0.05298231542110443, -0.044093791395425797, -0.013703000731766224, 0.06197461113333702, 0.02880055084824562, -0.0241240244358778, -0.07767774909734726, -0.048432767391204834, 0.015537015162408352, 0.01294061541557312, 0.058635298162698746, 0.13916529715061188, 0.03883228823542595, 0.013341385871171951, -0.03627052530646324, 0.03799179568886757, -0.08247525244951248, -0.06778591871261597, -0.009052245877683163, 0.0850275531411171, -0.2374516725540161, -0.27590590715408325, -0.06182103976607323, -0.1899542510509491, -0.05442836135625839, 0.10173444449901581, 0.06149669736623764, -0.0981135293841362, -0.06572254002094269, -0.010261597111821175, -0.017206426709890366, -0.10618901252746582, -0.030549757182598114, -0.19057513773441315, -0.00282036024145782, -0.0530216358602047, -0.08368751406669617, -0.04087941721081734, 0.07227448374032974, 0.07781261950731277, 0.13454799354076385, 0.11990272998809814, 0.13019338250160217, 0.14590215682983398, -0.04064978286623955, -0.017342550680041313, 0.030587121844291687, 0.1189412996172905, -0.11379950493574142, 0.09215140342712402, 0.15846885740756989, 0.04160125181078911, 0.10976667702198029, 0.17799557745456696, -0.01809956505894661, -0.08431658893823624, 0.09001435339450836, 0.03243125602602959, 0.002199815586209297, -0.14897596836090088, -0.09807609766721725, -0.09747834503650665, -0.024533651769161224, -0.01050117053091526, 0.08103906363248825, -0.02973933517932892, 0.00024748386931605637, 0.007691757287830114, -0.031353335827589035, -0.11500386148691177, 0.10164745151996613, 0.10783034563064575, -0.051677361130714417, 0.06240885704755783, -0.03621061518788338, 0.013111197389662266, 0.12872914969921112, -0.005574287846684456, 0.05351933091878891, 0.0009217691840603948, 0.02266230620443821, 0.07706180214881897, 0.12979085743427277, 0.05972360819578171, -0.06920131295919418, -0.012724172323942184, -0.018883759155869484, -0.02852329984307289, -0.04018702358007431, -0.051866352558135986, 0.016110291704535484, 0.07158230245113373, -0.07070600986480713, 0.007464050315320492, -0.09313590079545975, 0.04392194375395775, -0.013408638536930084, 0.040764421224594116, -0.09933379292488098, 0.11283421516418457, 0.11212150752544403, 0.06982560455799103, -0.20660647749900818, -0.0049742055125534534, 0.1760960966348648, -0.06036512181162834, 0.026148896664381027, 0.044760819524526596, 0.07438094913959503, -0.013310940004885197, -0.014131118543446064, -0.011971941217780113, 0.04165353998541832, 0.008321966044604778, 0.10816291719675064, -0.06053003668785095, -0.06731956452131271, -0.009565652348101139, -0.01802060380578041, 0.0145226139575243, -0.031234830617904663, 0.023711146786808968, 0.15951348841190338, -0.0065234447829425335, 0.05780748277902603, -0.17307095229625702, -0.08096909523010254, -0.054502543061971664, -0.021976597607135773, 0.16028445959091187, -0.09405897557735443, 0.021642018109560013, -0.017742451280355453, -0.03450736030936241, -0.029039451852440834, -0.06952325999736786, -0.0375576987862587, -0.08077406883239746, 0.022223329171538353, 0.004659013357013464, 0.04072054848074913, -0.07474403083324432, 0.03581817448139191, 0.04575775936245918, 0.07663757354021072, 0.008526667021214962, -0.027415957301855087, -0.09199786931276321, -0.1843370795249939, 0.06291311979293823, -0.049490317702293396, 0.04931570217013359, -0.0418127179145813, 0.1938740313053131, 0.06365559250116348, -0.05853547528386116, 0.05742616578936577, -0.03859667852520943, 0.03838387504220009, -0.13857907056808472, 0.07207682728767395, -0.07659886032342911, -0.016371112316846848, -0.007355353329330683, 0.11035165935754776, -0.1062881276011467, -0.15562652051448822, 0.06501084566116333, 0.16950535774230957, 0.10116761177778244, 0.000806302996352315, -0.022203318774700165, 0.0725877434015274, 0.05569668486714363, 0.0068956539034843445, 0.06090042367577553, 0.1454852670431137, -0.12914572656154633, 0.1224699541926384, -0.022552968934178352, -0.016733380034565926, -0.13407345116138458, 0.03897436335682869, -0.02403831109404564, 0.05824385955929756, 0.03790315240621567, -0.18016976118087769, 0.08470097184181213, -0.03233107551932335, 0.01641049236059189, 0.23477694392204285, -0.18917188048362732, -0.06158251315355301, 0.05588087812066078, 0.024497007951140404, -0.04277771711349487, -0.11648520082235336, -0.09813736379146576, -0.029879916459321976, -0.05052601546049118, 0.11488782614469528, -0.04573405534029007, 0.04909282177686691, -0.031638309359550476, 0.1112939864397049, 0.047230225056409836, -0.045135047286748886, 0.1427699476480484, -0.14035338163375854, 0.0977340042591095, -0.12127474695444107, 0.019972048699855804, 0.09111752361059189, -0.07159112393856049, 0.10494855046272278, -0.06665443629026413, 0.06383790075778961, -0.2465050369501114, 0.0022746575996279716, -0.008453061804175377, 0.036550372838974, 0.0271987933665514, -0.05680028721690178, -0.12901988625526428, -0.03715227171778679, -0.027381405234336853, -0.01813647337257862, -0.11713598668575287, -0.0031143249943852425, -0.14133024215698242, -0.057005152106285095, -0.08749523013830185, 0.02312685362994671, -0.21061889827251434, -0.004185882862657309, 0.008126300759613514, 0.020437484607100487, -0.17857614159584045, -0.04297766089439392, 0.03774886205792427, 0.004375527147203684, 0.08832122385501862, -0.023119816556572914, -0.04940380901098251, 0.014956346713006496, 0.13044969737529755, -0.12233772873878479, -0.0006630075513385236, -0.03437092527747154, 0.14777947962284088, -0.011739841662347317, -0.11739847809076309, 0.0032358316238969564, 0.07741342484951019, -0.032717783004045486, -0.003090545302256942, 0.04521242901682854, 0.08729007840156555, -0.016245700418949127, 0.05914886295795441, 0.0005832412862218916, -0.07385926693677902, 0.01753399521112442, 0.07166670262813568, -0.03103218413889408, 0.0253831148147583, 0.04003673419356346, -0.0640636757016182, -0.036020029336214066, 0.11157411336898804, 0.08526992052793503, 0.14425128698349, 0.0024558203294873238, 0.07784372568130493, -0.022310519590973854, 0.00008107958274194971, 0.007436560466885567, 0.06408929824829102, 0.039241448044776917, -0.06688732653856277, -0.048639725893735886, 0.0198516845703125, 0.10516323149204254, -0.026003355160355568, 0.057434793561697006, -0.12909218668937683, -0.08399637043476105, 0.037286579608917236, -0.0039027638267725706, -0.01567487232387066, -0.08358988910913467, -0.04786192625761032, -0.05242536962032318, -0.04371176287531853, 0.0586145780980587, 0.1470838487148285, -0.0020743575878441334, 0.005813091527670622, -0.01973113976418972, -0.04642482101917267, -0.025618139654397964, -0.055881984531879425, -0.07332699000835419, -0.048941005021333694, 0.06819722801446915, -0.11012738198041916, -0.07231386750936508, 0.16018956899642944, -0.03682415932416916, -0.03815343603491783, 0.024433957412838936, 0.01551902573555708, -0.00039856525836512446, -0.14088329672813416, -0.10607647895812988, 0.14317864179611206, 0.029827237129211426, 0.012417588382959366, -0.15009038150310516, 0.02611035853624344, -0.01723400130867958, 0.014754951931536198, -0.06131420657038689, 0.018221061676740646, -0.1636582612991333, -0.01831182837486267, -0.043449562042951584, -0.1960551142692566, -0.07952366024255753, -0.02105804532766342, -0.006272517144680023, 0.11141568422317505, 0.16052664816379547, 0.051811136305332184, 0.006949711591005325, 0.005004440434277058, -0.02623261883854866, -0.006475407164543867, -0.013523302972316742, 0.06349780410528183, 0.039204467087984085, 0.0024625249207019806, -0.02758321352303028, 0.0603170283138752, 0.10930006951093674, -0.12960131466388702, -0.036593466997146606, 0.15204331278800964, -0.012650004588067532, 0.031441085040569305, 0.1599513441324234, -0.011068953201174736, 0.02534940093755722, 0.08766882121562958, 0.05402905493974686, 0.06659457087516785, -0.011877855286002159, 0.022817092016339302, 0.12724968791007996, 0.02715393155813217, -0.05997871980071068, -0.08889736980199814, -0.01388144213706255, -0.2833007872104645, -0.07705571502447128, -0.03963233903050423, 0.08437919616699219, -0.036246880888938904, 0.26679450273513794, 0.12403151392936707, -0.1266176998615265, 0.0516984798014164, 0.0333801694214344, -0.04046184569597244, -0.0784478411078453, -0.15067048370838165, -0.02651614509522915, -0.1089402586221695, 0.002701305551454425, -0.10374482721090317, 0.08816846460103989, -0.03821096569299698, -0.0022927771788090467, -0.025286901742219925, 0.08528466522693634, -0.04238740727305412, -0.14017419517040253, -0.0010722818551585078, -0.005889455787837505, -0.05190213397145271, 0.08433298766613007, 0.07148399204015732, -0.01335175707936287, -0.02401786483824253, 0.07422652095556259, 0.024782950058579445, -0.004932098090648651, 0.009790784679353237, -0.14268329739570618, -0.02815517596900463, 0.03501781448721886, 0.007378872949630022, -0.05755603685975075, 0.06268104165792465, 0.07430897653102875, -0.02182610146701336, -0.0035758463200181723, 0.3859916031360626, -0.002008322160691023, -0.00420699967071414, 0.021913999691605568, -0.17859221994876862, 0.0202576145529747, 0.050627049058675766, -0.06285877525806427, -0.1814487725496292, -0.12856777012348175, 0.1440022885799408, 0.010789863765239716, 0.04751095920801163, 0.00413023354485631, 0.0036507844924926758, 0.01860237494111061, 0.024117661640048027, 0.12237895280122757, 0.05381025746464729, 0.20935729146003723, 0.02940075471997261, 0.037343814969062805, -0.013649571686983109, -0.039105575531721115, -0.1428230255842209, -0.08808896690607071, -0.041783563792705536, -0.10876533389091492, -0.06712602078914642, 0.07452433556318283, 0.03308483213186264, 0.08906224370002747, -0.017640581354498863, 0.012726355344057083, -0.047113630920648575, 0.05965685844421387, 0.17941376566886902, -0.03781856968998909, 0.06464013457298279, 0.0029464554972946644, -0.07043617963790894, 0.08819912374019623, 0.0008902386180125177, -0.12900254130363464, -0.004896699916571379, 0.0014196228003129363, -0.07022278755903244, 0.15389502048492432, -0.02325236052274704, 0.005016704089939594, 0.06732019782066345, 0.04813087359070778, -0.08010302484035492, 0.059342797845602036, 0.0013369007501751184, -0.08320751786231995, 0.03120153211057186, 0.17014345526695251, 0.010565650649368763, -0.07222873717546463, 0.12183177471160889, -0.01722615398466587, 0.013417752459645271, -0.08210001140832901, 0.16389773786067963, -0.1405809074640274, 0.08207181096076965, -0.16919106245040894, 0.029745303094387054, 0.022214224562048912, 0.012673028744757175, -0.008893320336937904, -0.06229591369628906, -0.008654721081256866, -0.01413356140255928, -0.040051933377981186, -0.010774712078273296, 0.05027569457888603, -0.026332490146160126, 0.2655848264694214, 0.013165590353310108, -0.08682727068662643, -0.07146721333265305, -0.027951331809163094, 0.04633788391947746, -0.0429544635117054, 0.09822317212820053, -0.024975966662168503, 0.008648942224681377, -0.08020338416099548, -0.11325552314519882, 0.0160344447940588, 0.07119356095790863, -0.12669649720191956, -0.05326187238097191 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 441411446 - CO2 Emissions (in grams): 0.4362732160754736 ## Validation Metrics - Loss: 0.7598486542701721 - Accuracy: 0.8222222222222222 - Macro F1: 0.2912091747693842 - Micro F1: 0.8222222222222222 - Weighted F1: 0.7707160863181806 - Macro Precision: 0.29631463146314635 - Micro Precision: 0.8222222222222222 - Weighted Precision: 0.7341339689524508 - Macro Recall: 0.30174603174603176 - Micro Recall: 0.8222222222222222 - Weighted Recall: 0.8222222222222222 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alecmullen/autonlp-group-classification-441411446 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["alecmullen/autonlp-data-group-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 0.4362732160754736}
text-classification
alecmullen/autonlp-group-classification-441411446
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:alecmullen/autonlp-data-group-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 441411446 - CO2 Emissions (in grams): 0.4362732160754736 ## Validation Metrics - Loss: 0.7598486542701721 - Accuracy: 0.8222222222222222 - Macro F1: 0.2912091747693842 - Micro F1: 0.8222222222222222 - Weighted F1: 0.7707160863181806 - Macro Precision: 0.29631463146314635 - Micro Precision: 0.8222222222222222 - Weighted Precision: 0.7341339689524508 - Macro Recall: 0.30174603174603176 - Micro Recall: 0.8222222222222222 - Weighted Recall: 0.8222222222222222 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736", "## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736", "## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 71, 44, 150, 17 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-alecmullen/autonlp-data-group-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 441411446\n- CO2 Emissions (in grams): 0.4362732160754736## Validation Metrics\n\n- Loss: 0.7598486542701721\n- Accuracy: 0.8222222222222222\n- Macro F1: 0.2912091747693842\n- Micro F1: 0.8222222222222222\n- Weighted F1: 0.7707160863181806\n- Macro Precision: 0.29631463146314635\n- Micro Precision: 0.8222222222222222\n- Weighted Precision: 0.7341339689524508\n- Macro Recall: 0.30174603174603176\n- Micro Recall: 0.8222222222222222\n- Weighted Recall: 0.8222222222222222## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.08660732954740524, 0.21990026533603668, -0.003738943487405777, 0.06986107677221298, 0.1000184416770935, 0.03149009123444557, 0.04852662980556488, 0.10617169737815857, -0.003051609033718705, 0.14506559073925018, 0.07359719276428223, 0.17444415390491486, 0.0794019028544426, 0.09401383996009827, -0.09055162221193314, -0.13091294467449188, 0.02607928402721882, 0.004119678400456905, 0.04751916229724884, 0.08808556199073792, 0.06896656006574631, -0.08913375437259674, 0.1165238469839096, 0.010292576625943184, -0.09857349842786789, 0.048021797090768814, 0.06926756352186203, -0.07990813255310059, 0.07179656624794006, 0.10258666425943375, 0.1469396948814392, -0.004953327588737011, 0.0933084785938263, -0.15191128849983215, -0.017694957554340363, 0.05562731996178627, -0.03001714125275612, 0.08358936756849289, 0.17104138433933258, -0.004510907921940088, 0.07103254646062851, -0.07861898839473724, 0.10768156498670578, 0.0800967589020729, -0.07429422438144684, -0.07741281390190125, -0.09875819832086563, 0.07969959080219269, 0.09942806512117386, 0.07973912358283997, 0.0031354757957160473, 0.18093103170394897, -0.03475860506296158, 0.09372372925281525, 0.09984622150659561, -0.22879433631896973, -0.052814919501543045, 0.168997123837471, -0.018448805436491966, 0.015062747523188591, -0.005839487072080374, -0.012874801643192768, 0.03855736926198006, 0.009108196943998337, 0.018041521310806274, -0.05984960496425629, -0.049031805247068405, -0.008788959123194218, -0.12696072459220886, -0.0727299302816391, 0.14011889696121216, 0.00838788878172636, -0.06482209265232086, -0.08108944445848465, -0.08049673587083817, -0.07282200455665588, -0.031245853751897812, -0.04125034809112549, 0.00006607919931411743, -0.03918240964412689, -0.05669514462351799, 0.06475619226694107, -0.04191838204860687, -0.0812661200761795, -0.1285688877105713, 0.013622213155031204, 0.027885926887392998, 0.05928827077150345, 0.022959019988775253, 0.031069841235876083, -0.05208495259284973, -0.050487007945775986, 0.0018151222029700875, 0.004343659617006779, -0.11619285494089127, -0.060374777764081955, 0.001174566918052733, 0.10633818060159683, 0.05243798717856407, 0.17189262807369232, -0.013937827199697495, 0.10518811643123627, 0.04641055688261986, -0.01880338415503502, -0.04189590364694595, 0.10553501546382904, -0.12509818375110626, -0.10165650397539139, 0.0024068080820143223, -0.04605476185679436, 0.014252517372369766, -0.033676307648420334, -0.049801964312791824, -0.07738333940505981, 0.040307123214006424, 0.04984205216169357, 0.038698066025972366, 0.0044768257066607475, -0.05336718261241913, -0.07435090839862823, 0.05705007538199425, -0.11079537868499756, 0.031819239258766174, 0.034212153404951096, -0.1294289082288742, 0.05647754669189453, 0.032814908772706985, 0.01727212220430374, -0.13591310381889343, 0.02012093923985958, -0.10019808262586594, 0.006633694749325514, -0.0865604504942894, -0.12643344700336456, 0.05623258650302887, 0.048579830676317215, -0.036217257380485535, -0.11303719878196716, -0.1513497531414032, -0.07138915359973907, 0.015438957139849663, -0.07189062237739563, -0.049830302596092224, 0.0015069146174937487, 0.021754128858447075, 0.035171858966350555, -0.016418570652604103, 0.039869729429483414, -0.024602094665169716, 0.04111769422888756, 0.044499415904283524, 0.05419665202498436, -0.005917271599173546, 0.037476420402526855, -0.028189148753881454, 0.026690563187003136, -0.10382393002510071, 0.05725301802158356, -0.08682867884635925, 0.030909180641174316, -0.18482047319412231, -0.06875036656856537, 0.09559285640716553, -0.045905981212854385, 0.05575873330235481, 0.03736200928688049, -0.10387290269136429, 0.023482026532292366, 0.10606458783149719, -0.07455462217330933, -0.09776323288679123, 0.06658896803855896, -0.008610168471932411, -0.010604027658700943, 0.04124658182263374, 0.08972755074501038, 0.19867244362831116, -0.14457136392593384, -0.057317402213811874, 0.0044768378138542175, 0.015049480833113194, -0.05778798833489418, 0.09569455683231354, -0.029045986011624336, -0.1463746875524521, 0.0048360321670770645, 0.00008762544894125313, -0.02312719263136387, -0.01119296345859766, -0.07756568491458893, -0.025425957515835762, -0.031209757551550865, -0.016031362116336823, 0.0036860976833850145, -0.003047431353479624, -0.02937941811978817, -0.028424812480807304, 0.04651296138763428, 0.17228451371192932, -0.04612039774656296, -0.054411131888628006, -0.14902831614017487, 0.05877979099750519, -0.09884678572416306, -0.05504642054438591, -0.20466996729373932, -0.07852500677108765, 0.010094506666064262, -0.1414276510477066, 0.0165446437895298, -0.021689647808670998, 0.06743314117193222, 0.051643893122673035, 0.057012591511011124, 0.04550359025597572, 0.10571365058422089, -0.02298366278409958, -0.04962541535496712, -0.022023774683475494, -0.037242479622364044, 0.01903834193944931, 0.1915457844734192, -0.1657455712556839, 0.019973034039139748, 0.04047800600528717, 0.037725143134593964, -0.021175747737288475, -0.05359075963497162, -0.045937538146972656, 0.05834868177771568, 0.026106081902980804, -0.0477103665471077, 0.05385685712099075, -0.028363697230815887, -0.05044439062476158, -0.034569308161735535, -0.25897324085235596, 0.1777837872505188, 0.11154130101203918, -0.0022216946817934513, -0.07009147852659225, -0.07003286480903625, 0.02826468087732792, -0.03803596645593643, -0.04431696608662605, 0.03358514606952667, 0.14355367422103882, 0.03764845430850983, 0.09079588204622269, -0.08592239022254944, -0.0387745201587677, 0.009494300931692123, -0.03457827866077423, -0.02454821951687336, 0.18948115408420563, 0.09866280108690262, -0.11935096234083176, 0.04741749167442322, -0.026589741930365562, -0.09791040420532227, 0.008455143310129642, 0.04676051437854767, -0.05491764098405838, -0.08668001741170883, 0.01613447070121765, 0.04891514778137207, 0.027445128187537193, 0.013257856480777264, 0.08731107413768768, 0.06797688454389572, -0.028234515339136124, 0.03448127210140228, -0.1337997019290924, 0.01878570392727852, 0.023206599056720734, -0.049647655338048935, -0.06102091819047928, 0.0022502578794956207, 0.04053182899951935, 0.10130714625120163, 0.00866781733930111, -0.013548239134252071, -0.03384457156062126, -0.032226476818323135, -0.12013472616672516, 0.20663616061210632, -0.09460663050413132, -0.18505536019802094, -0.1596672534942627, -0.16708557307720184, -0.07516507059335709, -0.044379547238349915, -0.007181336637586355, -0.0349128283560276, -0.11689344793558121, -0.04631902649998665, -0.08445283770561218, -0.03315932676196098, -0.09943247586488724, 0.01256774552166462, -0.010088055394589901, 0.09217951446771622, -0.13385039567947388, -0.025662431493401527, 0.014163615182042122, -0.14119090139865875, 0.04778296500444412, 0.006349046714603901, 0.10134491324424744, 0.17426469922065735, -0.023384789004921913, 0.0357302688062191, 0.012224998325109482, 0.21458815038204193, 0.00032658863347023726, -0.04092404618859291, 0.21014618873596191, 0.07972298562526703, 0.08435054868459702, 0.11948111653327942, 0.06677893549203873, -0.06244164705276489, -0.00750219589099288, 0.05768105760216713, -0.01749701239168644, -0.1961444467306137, -0.17808689177036285, 0.01764042116701603, -0.005217419937252998, 0.17230696976184845, 0.029841890558600426, 0.014552788808941841, 0.10055892169475555, 0.011713479645550251, 0.04640074074268341, -0.012041452340781689, 0.07167913764715195, 0.16576632857322693, 0.03045271895825863, 0.1161118745803833, -0.07241233438253403, 0.0032255323603749275, 0.09396827220916748, 0.03390930965542793, 0.10444524139165878, 0.05289798974990845, 0.11265023797750473, -0.016011890023946762, 0.15163405239582062, 0.021987004205584526, 0.10477079451084137, 0.02933673746883869, 0.0038455931935459375, 0.05171884596347809, -0.07913635671138763, -0.11112222075462341, -0.024105293676257133, 0.030245482921600342, 0.02947479858994484, -0.06707175076007843, -0.021234741434454918, -0.00744737358763814, 0.0600329227745533, 0.03558040037751198, -0.4266813099384308, -0.021962525323033333, 0.016652682796120644, -0.03829209506511688, -0.1019035205245018, -0.008162237703800201, 0.0035372665151953697, -0.14407813549041748, 0.03936196118593216, -0.021046621724963188, 0.13187426328659058, -0.057617902755737305, -0.04656754434108734, -0.018508296459913254, 0.06140245497226715, 0.0024512012023478746, 0.09775018692016602, -0.12062258273363113, 0.14212815463542938, 0.035295963287353516, 0.04835374653339386, -0.07140501588582993, 0.002273100893944502, 0.028349485248327255, -0.014551566913723946, 0.12062079459428787, 0.010774490423500538, -0.12209323048591614, -0.3226514160633087, -0.14770735800266266, 0.030799008905887604, -0.009769376367330551, -0.005166264716535807, 0.08867660164833069, -0.03905706852674484, 0.0002917024539783597, -0.03330829739570618, -0.0828627496957779, -0.09080309420824051, -0.0824490487575531, 0.030575139448046684, 0.07026452571153641, -0.033665530383586884, -0.04327095299959183, -0.021729035302996635, -0.01663086749613285, 0.11327145993709564, -0.10279621183872223, -0.05533851310610771, -0.1296532154083252, -0.044100720435380936, 0.1399262547492981, -0.12090619653463364, 0.04187082499265671, -0.015387128107249737, 0.10594634711742401, -0.0036614590790122747, -0.1024453267455101, 0.04535537585616112, -0.04292219504714012, -0.038689833134412766, 0.03490319475531578, 0.0333726704120636, 0.020180314779281616, 0.0570385716855526, 0.06434936821460724, 0.030267497524619102, -0.06153571605682373, -0.14939537644386292, -0.06133846938610077, 0.061381325125694275, 0.13892176747322083, 0.0776827484369278, 0.011462729424238205, -0.13376981019973755, -0.0688343420624733, 0.08246174454689026, 0.13767176866531372, 0.21981768310070038, -0.07454853504896164, -0.01591859944164753, 0.09345999360084534, -0.02702534757554531, -0.184505894780159, -0.04991693049669266, 0.027721084654331207, -0.0077402060851454735, -0.05578668415546417, -0.06708233803510666, 0.12240142375230789, 0.20614033937454224, -0.04944351315498352, -0.05634722486138344, -0.2975572347640991, -0.12546546757221222, 0.17243269085884094, 0.1299157291650772, -0.0076488652266561985, -0.15478509664535522, -0.06320980191230774, -0.12879453599452972, -0.15546518564224243, 0.15915507078170776, -0.060761842876672745, 0.05625741183757782, -0.0367417074739933, 0.10648559033870697, 0.03446393460035324, -0.06842663139104843, 0.16738277673721313, 0.013049766421318054, 0.016365036368370056, -0.050245560705661774, -0.039925459772348404, -0.025138825178146362, -0.08309818804264069, 0.12073265016078949, 0.046048540621995926, 0.07518842816352844, -0.22184652090072632, -0.018192818388342857, 0.004079270176589489, 0.05848783999681473, -0.05683545768260956, -0.010106063447892666, -0.034562818706035614, 0.023525111377239227, 0.003348297905176878, -0.03056238777935505, -0.06857561320066452, -0.044974394142627716, 0.05359186232089996, 0.20484627783298492, 0.08351889252662659, 0.03377918899059296, -0.10669920593500137, 0.04762132465839386, -0.029542677104473114, 0.04690353199839592, -0.09436748921871185, 0.07423070073127747, 0.12723308801651, 0.02959715947508812, 0.08364394307136536, 0.018662001937627792, -0.050942208617925644, -0.017864827066659927, 0.038019608706235886, -0.12140215933322906, 0.010258221998810768, 0.014873240143060684, 0.0750841423869133, -0.09590377658605576, -0.06686977297067642, 0.08088749647140503, 0.016398295760154724, -0.03874754533171654, 0.022623348981142044, 0.00924532301723957, -0.010803897865116596, 0.2411951720714569, 0.025121336802840233, 0.0864395871758461, -0.10782250761985779, 0.058937497437000275, 0.12341000139713287, -0.14045386016368866, -0.012705603614449501, 0.07468856871128082, -0.07286227494478226, -0.06368058174848557, 0.010130315087735653, 0.0906606987118721, -0.14493204653263092, -0.07585400342941284, 0.014627720229327679, -0.07313671708106995, 0.06635270267724991, 0.21185071766376495, 0.10176709294319153, 0.008092931471765041, 0.014479155652225018, -0.08029678463935852, -0.1013323962688446, 0.05012865737080574, 0.09175526350736618, 0.013771874830126762, -0.09327684342861176, 0.1503332555294037, 0.016722947359085083, -0.013583098538219929, 0.0026874893810600042, -0.02149888314306736, -0.1832839846611023, -0.02064601145684719, -0.09668060392141342, 0.09218332916498184, -0.06511130183935165, 0.06413614004850388, 0.0021759674418717623, 0.02345048449933529, -0.05186973139643669, 0.002987462794408202, -0.06114601343870163, -0.05899719521403313, 0.0016148576978594065, 0.06339544802904129, -0.12425185739994049, -0.007244060281664133, 0.10418929904699326, -0.02218143828213215, 0.01910613477230072, 0.08501002192497253, 0.05365484207868576, 0.016726873815059662, -0.04653032124042511, -0.020023444667458534, 0.029232170432806015, 0.060688700526952744, 0.08012574911117554, -0.19979214668273926, 0.0755416676402092, 0.014908898621797562, 0.015073824673891068, 0.044483669102191925, 0.09477656334638596, -0.12244141101837158, 0.014456008560955524, -0.09374679625034332, -0.0990242063999176, -0.12406054884195328, 0.01965436153113842, 0.12264784425497055, 0.0639917179942131, 0.06720033288002014, -0.05623573064804077, 0.04963596165180206, -0.16942079365253448, -0.0205087848007679, -0.024118339642882347, -0.015104035846889019, 0.03200968727469444, -0.020248383283615112, 0.07881299406290054, -0.0070288884453475475, 0.11182078719139099, -0.014247868210077286, 0.02507462538778782, 0.007908722385764122, 0.0641663447022438, -0.013516757637262344, -0.047055598348379135, 0.17444030940532684, 0.08223918825387955, 0.01748063415288925, 0.1117275059223175, 0.06760333478450775, 0.000369630433851853, -0.057540349662303925, -0.0010461198398843408, 0.10922881960868835, -0.09119001775979996, 0.007686492521315813, 0.05474131926894188, -0.11204804480075836, -0.009990844875574112, 0.07123943418264389, -0.11244119703769684, -0.0015802200650796294, -0.04648290574550629, 0.07076112926006317, 0.1439831554889679, -0.15684416890144348, 0.01450932864099741, -0.005772078409790993, -0.07559654116630554, -0.20997153222560883, -0.09742680191993713, -0.1236632764339447, -0.029611676931381226, -0.02120722085237503, -0.11409436166286469, 0.018852416425943375, 0.1662689745426178, 0.0115855373442173, 0.03324912488460541, 0.0802639052271843, -0.19966661930084229, -0.02133195288479328, -0.07382465898990631, 0.01894807629287243, 0.016540758311748505, -0.011753984726965427, 0.0022524595260620117, 0.03404776751995087, -0.008435587398707867, 0.11998675763607025, 0.01700965315103531, 0.03986161947250366, 0.07685258984565735, -0.047619178891181946, -0.05138717591762543, -0.040892694145441055, 0.012592127546668053, 0.032776471227407455, 0.12520240247249603, 0.033025071024894714, 0.014230204746127129, -0.03371603041887283, 0.20155347883701324, -0.0999784916639328, -0.0007290736539289355, -0.1122567355632782, 0.2619626820087433, 0.0018602965865284204, 0.04525652155280113, 0.045202020555734634, -0.0055760047398507595, 0.013364133425056934, 0.19311659038066864, 0.10426667332649231, 0.002643766812980175, -0.01789771020412445, 0.018758879974484444, -0.00825499091297388, -0.017864692956209183, 0.08493684977293015, 0.07350011169910431, 0.2137344479560852, -0.07303954660892487, 0.02554890513420105, 0.017607221379876137, 0.016286706551909447, -0.10730002820491791, 0.02966170199215412, -0.0046983580105006695, -0.0024613968562334776, -0.013073951005935669, 0.11925021559000015, -0.018108513206243515, 0.044653017073869705, 0.08405002951622009, -0.033650510013103485, -0.1389327496290207, 0.04104743152856827, -0.024496497586369514, -0.0671141967177391, 0.07566835731267929, -0.053257763385772705, -0.02697569504380226, 0.0370573066174984, 0.013237967155873775, -0.20299285650253296, -0.07865855097770691, 0.025111624971032143, 0.1634071320295334, 0.2864135801792145, 0.034105896949768066, 0.13348183035850525, 0.17231784760951996, -0.020214542746543884, -0.1309344619512558, 0.12807567417621613, 0.02771345153450966, -0.15690071880817413, 0.09216070920228958, 0.05366141349077225, -0.03606243431568146, 0.14995205402374268, 0.061440978199243546, -0.14894436299800873, -0.00031481674523092806, -0.03110831044614315, 0.11408543586730957, -0.0722300335764885, 0.023978471755981445, -0.09150098264217377, 0.10705730319023132, 0.16187751293182373, -0.03400273993611336, 0.02748323418200016, -0.05132879316806793, 0.055551037192344666, -0.018076328560709953, 0.024008167907595634, -0.010663073509931564, -0.10092349350452423, 0.056844957172870636, -0.20970609784126282, 0.00792204961180687, -0.27279290556907654, -0.03260401636362076, 0.005357377231121063, -0.06426659971475601, -0.031207071617245674, 0.10872933268547058, 0.013401895761489868, 0.0025107944384217262, -0.04644957557320595, -0.1402980536222458, -0.011832518503069878, 0.14742709696292877, -0.11950518190860748, -0.12601089477539062 ]
null
null
transformers
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way: ``` import torch import torch.nn as nn import os import copy import random import numpy as np import pandas as pd from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup from transformers.file_utils import ( cached_path, hf_bucket_url, is_remote_url, ) archive_file = hf_bucket_url( "alenusch/par_cls_bert", filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt", revision=None, mirror=None, ) resolved_archive_file = cached_path( archive_file, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, ) os.environ["TOKENIZERS_PARALLELISM"] = "false" class SentencePairClassifier(nn.Module): def __init__(self, bert_model): super(SentencePairClassifier, self).__init__() self.bert_layer = AutoModel.from_pretrained(bert_model) self.cls_layer = nn.Linear(768, 1) self.dropout = nn.Dropout(p=0.1) @autocast() def forward(self, input_ids, attn_masks, token_type_ids): cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False) logits = self.cls_layer(self.dropout(pooler_output)) return logits class CustomDataset(Dataset): def __init__(self, data, maxlen, bert_model): self.data = data self.tokenizer = AutoTokenizer.from_pretrained(bert_model) self.maxlen = maxlen self.targets = False def __len__(self): return len(self.data) def __getitem__(self, index): sent1 = str(self.data[index][0]) sent2 = str(self.data[index][1]) encoded_pair = self.tokenizer(sent1, sent2, padding='max_length', # Pad to max_length truncation=True, # Truncate to max_length max_length=self.maxlen, return_tensors='pt') # Return torch.Tensor objects token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens return token_ids, attn_masks, token_type_ids def get_probs_from_logits(logits): probs = torch.sigmoid(logits.unsqueeze(-1)) return probs.detach().cpu().numpy() def test_prediction(net, device, dataloader, with_labels=False): net.eval() probs_all = [] with torch.no_grad(): for seq, attn_masks, token_type_ids in tqdm(dataloader): seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device) logits = net(seq, attn_masks, token_type_ids) probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1) probs_all += probs.tolist() return probs_all device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert") if torch.cuda.device_count() > 1: cls_model = nn.DataParallel(model) cls_model.load_state_dict(torch.load(resolved_archive_file)) cls_model.to(device) variants = [["sentence1", "sentence2"]] test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert") test_loader = DataLoader(test_set, batch_size=16, num_workers=5) res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False) ```
{}
feature-extraction
alenusch/par_cls_bert
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way:
[ "## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:" ]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n", "## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:" ]
[ 32, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n## Classifier to check if two sequences are paraphrase or not\n\nTrained based on ruBert by DeepPavlov.\n\nUse this way:" ]
[ -0.007634428795427084, -0.0379219688475132, -0.006064954213798046, 0.12069746106863022, 0.11466033011674881, -0.043656449764966965, 0.05050041899085045, 0.11600874364376068, -0.00660090334713459, 0.03844907134771347, 0.13556623458862305, 0.11757727712392807, -0.027405621483922005, -0.06754011660814285, -0.052852433174848557, -0.26726484298706055, 0.054550085216760635, 0.026095639914274216, -0.002449007472023368, 0.1371990442276001, 0.11105465888977051, -0.09630761295557022, 0.026674235239624977, 0.0003544096543919295, -0.049600861966609955, 0.09181360900402069, 0.01639713905751705, -0.0437326580286026, 0.1134372130036354, 0.010800756514072418, 0.12685222923755646, 0.02315574325621128, -0.00761049659922719, -0.11987093091011047, 0.03864764794707298, 0.01354686077684164, -0.036142174154520035, 0.005504067521542311, 0.15891985595226288, -0.18412025272846222, -0.04778337478637695, 0.03938857465982437, 0.047666095197200775, -0.02811511978507042, -0.16389229893684387, -0.16195110976696014, -0.08423037827014923, 0.023610493168234825, 0.1554821878671646, 0.09250432252883911, -0.030661683529615402, 0.0924399122595787, -0.15415963530540466, 0.0817590206861496, 0.2919231355190277, -0.3838105797767639, -0.03718097135424614, 0.019339151680469513, 0.007651779800653458, 0.008206220343708992, -0.047440312802791595, 0.010800137184560299, -0.010328837670385838, -0.016571659594774246, 0.026619412004947662, -0.07612151652574539, -0.11889877915382385, 0.0630413368344307, -0.19174709916114807, -0.016575347632169724, 0.11493796855211258, -0.03975794091820717, 0.07283177226781845, -0.04034962132573128, -0.04447956755757332, -0.019951900467276573, -0.010669686831533909, -0.06340648978948593, -0.04998862370848656, 0.02137857861816883, -0.02582034468650818, 0.015744324773550034, -0.09385285526514053, -0.07696425169706345, -0.07251603901386261, 0.10385677963495255, 0.049811434000730515, 0.012695270590484142, -0.106959767639637, 0.03036905638873577, -0.0005497439997270703, -0.09076304733753204, 0.04339231178164482, -0.06408759206533432, 0.007159506902098656, -0.025719989091157913, -0.18480312824249268, -0.12693825364112854, 0.05386572331190109, 0.2268960028886795, 0.10393057018518448, 0.06990177929401398, 0.009539508260786533, 0.05615357682108879, 0.019679950550198555, 0.12865859270095825, -0.022251006215810776, 0.05782346427440643, 0.009148425422608852, -0.06328394263982773, -0.027713727205991745, -0.02704073116183281, -0.1382012516260147, -0.015875253826379776, 0.1830819547176361, 0.08828006684780121, -0.08840575069189072, 0.003420027904212475, -0.03900806978344917, -0.01926942728459835, -0.10542750358581543, -0.14855462312698364, 0.04322011396288872, 0.06013013422489166, -0.025921573862433434, -0.013353862799704075, -0.06602072715759277, -0.008222064934670925, -0.10741487145423889, 0.012843926437199116, -0.01655091717839241, 0.08365699648857117, -0.009322217665612698, -0.1169300377368927, -0.0010496481554582715, -0.11616246402263641, 0.022824985906481743, -0.17711971700191498, -0.04371093958616257, -0.06000925973057747, 0.038533005863428116, -0.04914313182234764, 0.09172658622264862, -0.06901729106903076, 0.0009648566483519971, -0.020018896088004112, 0.021788470447063446, -0.04287615418434143, -0.03958398848772049, 0.08925234526395798, -0.016693342477083206, 0.02921966277062893, 0.06399621069431305, 0.08697180449962616, -0.16475273668766022, -0.010561701841652393, -0.10161153972148895, 0.05636470392346382, -0.02976546809077263, -0.027218230068683624, -0.11874352395534515, -0.07305525243282318, -0.06834422796964645, 0.004903397988528013, -0.0007249739137478173, 0.11261854320764542, -0.17559513449668884, -0.08014627546072006, 0.18875759840011597, -0.08335236459970474, -0.0874410942196846, 0.12543578445911407, -0.08516614884138107, -0.03021879494190216, 0.03886999934911728, 0.2710631489753723, 0.10799938440322876, -0.010076403617858887, 0.1263420581817627, 0.02673581801354885, -0.019708512350916862, 0.061536360532045364, 0.1308000236749649, -0.023441731929779053, 0.0007884770166128874, -0.04644616320729256, -0.020420126616954803, -0.029307041317224503, -0.014666973613202572, -0.1121237501502037, 0.011031999252736568, 0.02562883123755455, 0.09780290722846985, -0.009814336895942688, 0.11257737874984741, -0.05920059233903885, -0.05692792683839798, -0.005859155207872391, -0.008694477379322052, -0.06286581605672836, 0.03409027308225632, -0.0826248899102211, 0.18031542003154755, 0.05313115194439888, -0.0048487489111721516, -0.24261371791362762, 0.04359259828925133, 0.01681116409599781, 0.08352640271186829, -0.0381709448993206, 0.09901302307844162, 0.062384605407714844, -0.007397930603474379, 0.02268260531127453, 0.000881435233168304, 0.055903349071741104, -0.006358637008816004, -0.04737909883260727, -0.05100414901971817, -0.031209319829940796, -0.05716675892472267, -0.0229786466807127, -0.05890572443604469, -0.026362909004092216, 0.025221696123480797, 0.12899483740329742, 0.02163798362016678, 0.03605293855071068, -0.03854607418179512, 0.08921443670988083, 0.008142713457345963, -0.012045586481690407, 0.09439333528280258, -0.05570223182439804, -0.009359864518046379, 0.04977152496576309, -0.0747067779302597, 0.11191670596599579, 0.08854468911886215, -0.27900007367134094, -0.06190284714102745, -0.004477076698094606, -0.0013037241296842694, 0.0624956376850605, -0.028303023427724838, 0.08054069429636002, 0.19257701933383942, 0.02238386869430542, 0.13389530777931213, -0.09077859669923782, -0.03363286331295967, -0.0330103300511837, -0.08984008431434631, 0.0439630001783371, 0.14480681717395782, 0.03954298794269562, -0.18591083586215973, 0.08844238519668579, 0.18072958290576935, -0.10516885668039322, 0.03519636020064354, -0.06599853932857513, -0.06604151427745819, -0.013331272639334202, 0.09136638045310974, -0.000983219244517386, -0.04201936721801758, -0.07469163089990616, -0.07325387746095657, 0.040951114147901535, 0.016316652297973633, 0.020857462659478188, -0.15695640444755554, -0.004906693939119577, 0.015575111843645573, -0.027555720880627632, 0.030466090887784958, 0.07256539911031723, 0.03496230021119118, 0.041260816156864166, 0.02330724708735943, -0.12153791636228561, 0.060620907694101334, -0.030873406678438187, -0.09826996177434921, 0.20294757187366486, -0.06616377830505371, -0.21566316485404968, -0.09126744419336319, -0.11280739307403564, -0.017691221088171005, 0.046394266188144684, 0.11378321051597595, -0.07535974681377411, 0.030423365533351898, -0.01179379690438509, 0.04362824186682701, -0.08368537575006485, -0.004241331946104765, -0.1369743049144745, 0.05392744019627571, -0.04908469319343567, -0.03271897882223129, -0.03750385716557503, -0.04775957390666008, -0.059329211711883545, 0.08562865108251572, -0.050302937626838684, 0.002821591915562749, 0.0998951718211174, 0.013083445839583874, 0.048046525567770004, -0.061256490647792816, 0.16117602586746216, -0.032291922718286514, -0.12652119994163513, 0.22421497106552124, -0.10090788453817368, 0.06181499361991882, 0.04502783715724945, 0.014606506563723087, -0.04012392833828926, -0.022134149447083473, -0.003570093307644129, -0.052310023456811905, -0.1286243498325348, -0.05845398083329201, -0.06751661002635956, -0.008654664270579815, 0.10235907882452011, 0.013461841270327568, -0.09367381781339645, 0.016529088839888573, 0.04251165688037872, -0.10212288796901703, 0.02132709138095379, 0.06624805182218552, 0.1731862872838974, -0.0012207007966935635, 0.13140161335468292, 0.012599549256265163, -0.11694037169218063, -0.02490079589188099, 0.013405960984528065, 0.11998404562473297, 0.07932056486606598, -0.04198974743485451, 0.030107218772172928, 0.19480180740356445, 0.05556892603635788, 0.01507154107093811, 0.0008705832879059017, -0.0022458478342741728, -0.03447336703538895, -0.049726396799087524, -0.09099871665239334, 0.05748215317726135, 0.0820130929350853, -0.07491523772478104, -0.0875072032213211, -0.061527419835329056, 0.0626334697008133, 0.2391243577003479, 0.11056781560182571, -0.1823388636112213, -0.010545321740210056, -0.005278376396745443, -0.07676275074481964, 0.026159008964896202, 0.10009580850601196, -0.10943068563938141, -0.15778402984142303, -0.042980849742889404, -0.05842314660549164, 0.11070011556148529, -0.03039989247918129, 0.04276420921087265, -0.07438685745000839, -0.12439306080341339, 0.054484445601701736, 0.12534639239311218, -0.20955857634544373, 0.15816046297550201, -0.016710912808775902, -0.008040569722652435, -0.05038033798336983, -0.0002122590522048995, 0.008180858567357063, -0.010266599245369434, 0.13715295493602753, -0.0273719672113657, -0.044554054737091064, -0.1296621561050415, 0.018710723146796227, 0.02040911465883255, 0.18725714087486267, -0.10283062607049942, 0.04852201044559479, -0.06786011904478073, 0.008295901119709015, -0.04066124185919762, 0.08657670021057129, 0.043342456221580505, -0.08492877334356308, 0.012116280384361744, -0.17280644178390503, 0.05268215760588646, -0.01252495963126421, -0.031080646440386772, -0.12402508407831192, 0.04547376558184624, -0.18360620737075806, -0.02411957085132599, -0.063690684735775, 0.01460986863821745, 0.032210707664489746, -0.08739068359136581, 0.05325176939368248, -0.033498141914606094, 0.023227162659168243, -0.03698747232556343, -0.1318228840827942, 0.08926133811473846, -0.06849513202905655, -0.02052840031683445, -0.014997122809290886, 0.2038639634847641, -0.03923696652054787, 0.04539948329329491, 0.06684655696153641, 0.12008469551801682, -0.07405129075050354, -0.026396220549941063, 0.0020934701897203922, -0.11908408254384995, 0.00751663651317358, 0.040837377309799194, -0.10662383586168289, 0.08124346286058426, -0.1280619502067566, 0.0782068520784378, 0.2890838384628296, 0.16538171470165253, -0.07935486733913422, 0.16519853472709656, 0.042023688554763794, 0.019571876153349876, -0.26544666290283203, -0.10685001313686371, 0.04001284018158913, 0.006205620709806681, -0.00512396264821291, -0.20357781648635864, 0.14056289196014404, 0.05348408594727516, 0.0026037446223199368, -0.08337973058223724, -0.2924104928970337, -0.07838752865791321, 0.16244608163833618, -0.005575410556048155, 0.19140471518039703, -0.1232815608382225, -0.07601578533649445, 0.03070118837058544, 0.022437961772084236, 0.09944718331098557, -0.0048014698550105095, 0.11742958426475525, 0.017037132754921913, -0.04914109781384468, -0.0041181715205311775, 0.01268990058451891, 0.09964598715305328, -0.032827626913785934, 0.07617777585983276, -0.029306622222065926, -0.07999372482299805, -0.01760941930115223, -0.020467914640903473, -0.03245348855853081, 0.027069030329585075, 0.07036077976226807, -0.22223208844661713, -0.011217121034860611, -0.03610512241721153, 0.05619761347770691, 0.03350303694605827, -0.049043942242860794, -0.019645284861326218, 0.025942722335457802, 0.030738692730665207, -0.0004798344452865422, 0.26927676796913147, -0.06166176125407219, 0.10064274817705154, 0.07273717224597931, 0.0032012765295803547, 0.039513833820819855, -0.12954190373420715, -0.05888746678829193, -0.033138636499643326, 0.14293478429317474, -0.025369547307491302, 0.06427392363548279, 0.051780253648757935, 0.03142858296632767, 0.08727732300758362, 0.10010921210050583, 0.01679997704923153, -0.02438552863895893, 0.06675919890403748, -0.19545702636241913, -0.010483086109161377, -0.03532428294420242, -0.0020325533114373684, 0.036785632371902466, 0.008871205151081085, 0.17936831712722778, -0.017232276499271393, -0.06429029256105423, 0.021955328062176704, 0.012407945469021797, -0.08154528588056564, 0.054015614092350006, 0.05777265131473541, 0.06936745345592499, -0.09332495182752609, 0.04523307457566261, 0.048680614680051804, -0.10184706747531891, 0.04721216484904289, 0.0729592889547348, -0.08806004375219345, -0.0844523087143898, -0.05517952889204025, 0.21148833632469177, -0.07402567565441132, -0.014601249247789383, -0.11833774298429489, -0.043209582567214966, 0.06900928914546967, 0.19931916892528534, 0.1778314709663391, 0.08047100156545639, -0.04426492378115654, -0.028857465833425522, 0.03598674014210701, 0.02580324560403824, 0.09582871943712234, -0.030741583555936813, -0.07782755047082901, 0.028587065637111664, -0.026058189570903778, 0.11211251467466354, -0.08092641085386276, -0.07419445365667343, -0.1689659059047699, 0.06170922517776489, -0.08812406659126282, 0.0021574152633547783, -0.03190673515200615, -0.007360465358942747, 0.019497543573379517, 0.041794996708631516, -0.03588394448161125, -0.019183754920959473, -0.09498399496078491, 0.023487837985157967, -0.08016514778137207, 0.05953184887766838, -0.1210685670375824, -0.004961112048476934, 0.07254741340875626, -0.050238579511642456, 0.052658289670944214, 0.14132875204086304, -0.02815108373761177, 0.11002916097640991, -0.08035025745630264, -0.168070450425148, 0.030792390927672386, 0.023860935121774673, 0.0018994130659848452, -0.09935373067855835, 0.037430308759212494, -0.0034413121175020933, -0.039528246968984604, 0.021498119458556175, 0.10570217669010162, -0.11975719779729843, 0.0056392415426671505, -0.07563824206590652, -0.12030158936977386, -0.05904189497232437, 0.015997640788555145, 0.008159762248396873, 0.14791087806224823, 0.1797865331172943, -0.08636070787906647, 0.1479552835226059, -0.008644678629934788, -0.014860467985272408, -0.04238817095756531, -0.09156165271997452, -0.11076704412698746, -0.08055363595485687, 0.021229838952422142, -0.038607072085142136, 0.14602892100811005, 0.12449680268764496, 0.025881895795464516, 0.03317297250032425, 0.059314943850040436, 0.09002703428268433, 0.07482296228408813, 0.21545103192329407, 0.14024069905281067, -0.05830046162009239, -0.06919825077056885, 0.08312496542930603, 0.006894009653478861, 0.1322239339351654, 0.08233781903982162, 0.3193102777004242, -0.007200518157333136, 0.0911487266421318, 0.047626372426748276, 0.010669580660760403, 0.07212509959936142, -0.02750803343951702, 0.10929346829652786, 0.06946112215518951, -0.011833676137030125, 0.13031433522701263, 0.1394955962896347, -0.07805393636226654, 0.033211007714271545, 0.0037870588712394238, -0.04286966100335121, -0.13206812739372253, -0.07066013664007187, -0.10773253440856934, -0.11953075975179672, 0.014664062298834324, -0.04862693324685097, -0.05659942328929901, 0.09302689880132675, 0.07070595026016235, -0.006832834333181381, 0.09017449617385864, -0.05306074768304825, -0.09049446880817413, 0.09099414944648743, -0.06507892906665802, 0.007185858208686113, 0.13939914107322693, -0.08919768035411835, 0.04189638793468475, -0.10198316723108292, 0.004667976871132851, -0.017011258751153946, 0.038764093071222305, -0.029710758477449417, -0.17802667617797852, -0.13166113197803497, 0.024241935461759567, 0.020275196060538292, -0.02959396503865719, 0.1678794026374817, 0.042227935045957565, -0.0031014427077025175, 0.004858098458498716, 0.28149864077568054, -0.04462368041276932, -0.032545000314712524, -0.08763158321380615, 0.2853855788707733, 0.11119108647108078, 0.1459577977657318, -0.04010700061917305, -0.05172426626086235, -0.003941384144127369, 0.18320855498313904, 0.16911181807518005, -0.07791921496391296, 0.041683170944452286, 0.12258785218000412, 0.05155187100172043, 0.08858085423707962, 0.05939699336886406, 0.047100793570280075, 0.13173507153987885, -0.11231708526611328, -0.08891342580318451, -0.07359880954027176, -0.04419896751642227, -0.18032023310661316, 0.021103693172335625, 0.1337222307920456, -0.05085530877113342, -0.02987850271165371, 0.1445855051279068, -0.12848606705665588, -0.003368627978488803, -0.008680848404765129, -0.15776529908180237, -0.16641691327095032, -0.04208867624402046, 0.0873802900314331, 0.038200754672288895, 0.1377815455198288, -0.0016640500398352742, -0.0321170836687088, -0.06533870100975037, 0.0808684304356575, -0.026734162122011185, -0.0778074711561203, 0.10290899127721786, -0.0034912931732833385, -0.08115116506814957, -0.02316315285861492, 0.12753553688526154, 0.08805926144123077, 0.0829673781991005, 0.0797383114695549, 0.07722063362598419, 0.058049339801073074, -0.032441284507513046, -0.022288689389824867, 0.09449893981218338, 0.0021309196017682552, -0.00025012873811647296, 0.07643704116344452, -0.13869008421897888, 0.054903630167245865, -0.052877165377140045, -0.05301552265882492, -0.08770791441202164, 0.07232587039470673, -0.06437141448259354, 0.030002987012267113, 0.17822113633155823, -0.020905928686261177, -0.01042468287050724, -0.06478400528430939, 0.016017014160752296, 0.08092225342988968, -0.14910843968391418, -0.11625125259160995, -0.1375209093093872, -0.035512182861566544, -0.024857712909579277, -0.0606921911239624, -0.05461396649479866, -0.05988410487771034, -0.0008235137793235481, 0.056677237153053284, -0.0407206229865551, 0.09057480096817017, -0.005438198335468769, 0.01746305264532566, 0.007255490403622389, -0.18193349242210388, 0.06109783798456192, 0.028706055134534836, -0.10624359548091888, -0.07504230737686157 ]
null
null
transformers
alex6095/SanctiMolyOH_Cpu
{}
feature-extraction
alex6095/SanctiMolyOH_Cpu
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us
alex6095/SanctiMolyOH_Cpu
[]
[ "TAGS\n#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us \n" ]
[ 35 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us \n" ]
[ -0.03586828336119652, -0.007227653171867132, -0.007106279022991657, 0.011765087954699993, 0.10185123980045319, 0.0250946544110775, -0.008171798661351204, 0.10367301851511002, 0.030566126108169556, 0.04913673549890518, 0.11326921731233597, 0.18179652094841003, -0.06470964848995209, 0.03216451406478882, -0.05907301977276802, -0.2641049921512604, 0.08687902987003326, 0.07409008592367172, -0.0706201121211052, 0.07971625030040741, 0.06671436876058578, -0.11998610943555832, 0.05405344069004059, -0.003166471142321825, -0.13981661200523376, 0.05541599541902542, -0.011467360891401768, -0.07783560454845428, 0.11843696236610413, 0.002543775364756584, 0.18368855118751526, 0.02878868207335472, -0.09733621776103973, -0.10494343191385269, 0.026334600523114204, -0.0005765886162407696, -0.06466273963451385, 0.040379974991083145, 0.01881226897239685, -0.10266336053609848, 0.07063997536897659, 0.011560525745153427, 0.016938362270593643, -0.010460183955729008, -0.15190665423870087, -0.19968245923519135, -0.060142334550619125, 0.02897001802921295, -0.04073324427008629, 0.0869261622428894, 0.0052718170918524265, 0.11900104582309723, -0.17618095874786377, 0.06861619651317596, 0.23259852826595306, -0.2761138379573822, -0.002889614552259445, 0.13458770513534546, 0.15654024481773376, 0.0023080562241375446, -0.03179965913295746, 0.044667262583971024, 0.006725247949361801, 0.023825598880648613, 0.06087098270654678, -0.07139581441879272, -0.07870741188526154, 0.07933799922466278, -0.11773696541786194, -0.07995781302452087, 0.22571423649787903, -0.052127864211797714, 0.07784111052751541, -0.013646330684423447, -0.11122461408376694, -0.07818561792373657, -0.0007318395655602217, 0.01008523814380169, -0.005049367435276508, 0.034697696566581726, 0.022310635074973106, -0.028894735500216484, -0.13873295485973358, 0.03748829662799835, -0.1885480135679245, 0.19744306802749634, -0.013403203338384628, 0.06793820858001709, -0.15522608160972595, 0.06493815779685974, -0.0610017292201519, -0.11574546992778778, 0.04280242696404457, -0.09876697510480881, 0.0301814042031765, 0.028473153710365295, -0.11846214532852173, 0.0066393599845469, 0.04226609319448471, 0.13319723308086395, -0.05206705257296562, -0.0024519057478755713, 0.05602516233921051, 0.11136669665575027, 0.058009855449199677, 0.12105301022529602, -0.017770687118172646, -0.03376851975917816, -0.02841206081211567, -0.07650628685951233, -0.010367226786911488, -0.07390295714139938, -0.12479449808597565, -0.06547264754772186, 0.039378754794597626, 0.039733678102493286, 0.06375925242900848, 0.014129860326647758, -0.06693372875452042, 0.015226171351969242, 0.0628439337015152, -0.07235398888587952, 0.030523261055350304, -0.019653519615530968, 0.051213912665843964, 0.14244671165943146, 0.00838479120284319, -0.03092159889638424, 0.01634375937283039, 0.06970255076885223, -0.09812282770872116, 0.029045309871435165, -0.06000455841422081, -0.10947763174772263, 0.03262295201420784, -0.18401284515857697, 0.042666856199502945, -0.1619766652584076, -0.0403791107237339, 0.013203529641032219, 0.05711207538843155, -0.01356083806604147, 0.010121683590114117, 0.05435818433761597, -0.06857789307832718, 0.060798607766628265, -0.05839039012789726, -0.07662069797515869, -0.061660535633563995, 0.08428262174129486, -0.03194637969136238, 0.11258833110332489, -0.15456707775592804, 0.08864046633243561, -0.07954438775777817, 0.051892079412937164, -0.1555408537387848, 0.0031252724584192038, -0.04200313612818718, 0.13177406787872314, 0.0156808290630579, -0.08801625669002533, -0.15487506985664368, 0.06257664412260056, -0.013454561121761799, 0.10526096075773239, -0.14061298966407776, -0.08149804174900055, 0.12855952978134155, -0.09836628288030624, -0.12797538936138153, 0.06721343100070953, -0.012312627397477627, -0.014841021969914436, -0.01444244384765625, 0.24947376549243927, 0.09144466370344162, -0.05774447321891785, -0.0031983095686882734, 0.15128207206726074, -0.08515218645334244, -0.07167953997850418, 0.03378273919224739, -0.010295073501765728, 0.027508549392223358, 0.01495450921356678, 0.015130385756492615, 0.07379838079214096, -0.05779631435871124, -0.05692914128303528, -0.06014931574463844, -0.015523102134466171, 0.12285853922367096, 0.05427170544862747, 0.1069798693060875, -0.04687274247407913, -0.02795972302556038, 0.057359181344509125, 0.004027002025395632, 0.013850129209458828, 0.058843307197093964, -0.02205454185605049, 0.23178315162658691, -0.06934854388237, -0.027589034289121628, -0.252134770154953, -0.06835669279098511, -0.03715498000383377, 0.07289566099643707, -0.04067099839448929, 0.25396478176116943, 0.07207833975553513, -0.07126013189554214, 0.02738051488995552, -0.03791596367955208, 0.04390706121921539, 0.05562272295355797, -0.04398482292890549, -0.035186655819416046, -0.0447789765894413, -0.09696626663208008, -0.06667213886976242, -0.009102840907871723, 0.019014352932572365, 0.10552380979061127, 0.11304107308387756, -0.007903965190052986, 0.03795725107192993, -0.053872957825660706, 0.06724975258111954, -0.0617629811167717, -0.004031750839203596, 0.05685737729072571, -0.022382525727152824, -0.03941845893859863, 0.15622714161872864, -0.1402655690908432, 0.32330507040023804, 0.20446453988552094, -0.2955980598926544, 0.007241822313517332, 0.0148446224629879, -0.030513256788253784, 0.06294690817594528, 0.061183586716651917, -0.052890289574861526, -0.00641755573451519, -0.02985508367419243, 0.09863146394491196, -0.010558289475739002, -0.024358514696359634, -0.008276243694126606, -0.04583839699625969, -0.08343597501516342, 0.03776467591524124, 0.021569689735770226, -0.08339648693799973, 0.18350912630558014, 0.346650093793869, -0.025387000292539597, 0.15436924993991852, -0.028869224712252617, -0.01891612447798252, -0.0037470124661922455, -0.025243490934371948, -0.07561580091714859, 0.08275091648101807, -0.26184841990470886, -0.07223458588123322, 0.07975579798221588, 0.01896769367158413, 0.08848392963409424, -0.12101346999406815, -0.03907785564661026, 0.059695445001125336, 0.059757526963949203, -0.07918118685483932, 0.11404460668563843, 0.0715535581111908, 0.05955228954553604, 0.008530588820576668, -0.06906856596469879, 0.06661130487918854, 0.014591744169592857, 0.01100672036409378, 0.1311105340719223, -0.13185198605060577, -0.25986459851264954, -0.08974624425172806, -0.0923813208937645, 0.016858011484146118, 0.024434952065348625, 0.11410384625196457, -0.06168951094150543, -0.01801270991563797, 0.013524253852665424, 0.031079567968845367, -0.1317896693944931, 0.03836982697248459, -0.06973250210285187, 0.014014548622071743, -0.06394863873720169, -0.10197395086288452, -0.07433243095874786, -0.05067472904920578, -0.012391156516969204, 0.11185909807682037, -0.028093062341213226, 0.11433625966310501, 0.13770020008087158, 0.014962649904191494, 0.056581657379865646, -0.0037146760150790215, 0.21357402205467224, -0.057746488600969315, -0.039804648607969284, 0.2165786474943161, 0.011531202122569084, 0.08381747454404831, 0.10947564989328384, 0.042077939957380295, -0.032068416476249695, -0.03620868921279907, -0.03389858454465866, -0.12376949191093445, -0.08628050237894058, -0.12962716817855835, -0.16640034317970276, -0.021229233592748642, 0.005044606979936361, 0.04387074336409569, 0.09003828465938568, 0.05406472459435463, 0.0499216690659523, -0.04723566398024559, -0.08551345020532608, 0.017573527991771698, 0.2131788283586502, -0.05398481339216232, 0.13507254421710968, -0.03691045939922333, -0.10175710171461105, 0.06402328610420227, 0.04590795561671257, 0.204873189330101, 0.05583775416016579, -0.009915217757225037, 0.07540249079465866, 0.2062719613313675, 0.12367431819438934, 0.1308516412973404, -0.00006655928154941648, -0.02540554665029049, -0.021899480372667313, -0.012544054538011551, -0.02653125673532486, 0.060505419969558716, 0.21552225947380066, -0.1284836232662201, -0.07114206254482269, -0.1891143023967743, 0.09440284222364426, 0.04228971153497696, 0.06684017926454544, -0.17648793756961823, -0.014165720902383327, 0.08273662626743317, 0.012474458664655685, -0.03835710138082504, 0.04783192649483681, 0.07894586771726608, -0.07281693071126938, 0.005856414791196585, -0.017084812745451927, 0.083010233938694, 0.05231071636080742, 0.08940298110246658, -0.07086192071437836, -0.16106732189655304, 0.05622848495841026, 0.04152369126677513, -0.19092674553394318, 0.2351415902376175, -0.032608795911073685, -0.10023269057273865, -0.040479499846696854, 0.013403975404798985, 0.039906881749629974, 0.14524942636489868, 0.0945974811911583, 0.0388307198882103, -0.09145765751600266, -0.14727036654949188, 0.07478954643011093, -0.011656657792627811, 0.11705063283443451, -0.04645493999123573, 0.006578507367521524, -0.01442163996398449, 0.01154015026986599, 0.007946042343974113, 0.18378345668315887, 0.052540503442287445, -0.17075838148593903, 0.07792503386735916, -0.02273085154592991, -0.012907665222883224, -0.0233532153069973, -0.032358940690755844, -0.1374739557504654, 0.11796700954437256, -0.023329611867666245, -0.035829413682222366, -0.10604437440633774, -0.09128814190626144, 0.15575812757015228, -0.05086423084139824, 0.10165033489465714, -0.05174450948834419, -0.021173421293497086, -0.08280864357948303, -0.1736634373664856, 0.11528674513101578, -0.09381315857172012, 0.03473001345992088, -0.025615448132157326, 0.13100962340831757, -0.11074601858854294, 0.03487255796790123, 0.01460545975714922, 0.07890342175960541, -0.17040623724460602, -0.09641982614994049, -0.007879178039729595, -0.018400060012936592, 0.06307539343833923, 0.0745219960808754, -0.02905113622546196, 0.0245179645717144, 0.06849006563425064, 0.08931822329759598, 0.23749811947345734, 0.12055620551109314, -0.10896579176187515, 0.1225501075387001, 0.03146236017346382, 0.003753908909857273, -0.3061577379703522, -0.057508695870637894, -0.14836417138576508, -0.0046733529306948185, 0.06589016318321228, -0.07834797352552414, 0.10059424489736557, 0.01852148212492466, -0.03813715651631355, 0.07519499212503433, -0.2562706172466278, -0.06092860922217369, 0.12446127086877823, -0.04825843870639801, 0.3869050443172455, -0.12048480659723282, -0.051119983196258545, 0.022741304710507393, -0.2313285917043686, 0.09289323538541794, -0.05352924391627312, 0.0839860737323761, -0.02570013515651226, 0.038001421838998795, 0.04514504224061966, -0.0697057694196701, 0.15896403789520264, 0.012373993173241615, 0.04864038527011871, -0.08216524124145508, -0.13205884397029877, 0.12471912056207657, -0.05378478765487671, 0.0021780224051326513, 0.0029090933967381716, 0.019226370379328728, -0.18197225034236908, 0.014515829272568226, -0.13804250955581665, 0.10699842870235443, 0.01038310769945383, -0.03745346516370773, -0.04464242234826088, -0.005139571148902178, 0.0287045668810606, 0.027404576539993286, 0.25281471014022827, -0.02485978975892067, 0.15840239822864532, 0.07015623897314072, -0.01294673141092062, -0.18495488166809082, -0.1677575409412384, 0.0020151122007519007, -0.026839064434170723, 0.10245270282030106, -0.09914609789848328, 0.03912299498915672, 0.10949800163507462, -0.013176367618143559, 0.021400174126029015, 0.14117901027202606, 0.02262410707771778, 0.009955300949513912, 0.15123489499092102, -0.18919861316680908, -0.053242962807416916, -0.03388158604502678, -0.09336650371551514, 0.07737039774656296, 0.03620844706892967, 0.10703817009925842, 0.04239247366786003, 0.004174217116087675, -0.02176537550985813, -0.03248616307973862, -0.09066055715084076, 0.03520906716585159, 0.05302615836262703, 0.06053451821208, -0.11972786486148834, -0.004818298853933811, 0.020311787724494934, -0.229909747838974, -0.036481574177742004, 0.060924138873815536, -0.07148376852273941, -0.152117058634758, -0.13000300526618958, 0.02427787333726883, -0.13110202550888062, 0.007553974166512489, -0.019129620864987373, -0.11019285768270493, 0.03415050730109215, 0.16423140466213226, 0.1177273616194725, 0.11286264657974243, -0.03502098098397255, 0.0009021764853969216, 0.03046506829559803, -0.04122273623943329, 0.02791205421090126, 0.04427554830908775, -0.12446190416812897, 0.048674218356609344, -0.03274786099791527, 0.15662413835525513, -0.08785759657621384, -0.042671699076890945, -0.12414193898439407, 0.008496235124766827, -0.059626150876283646, -0.11096788197755814, -0.13875789940357208, -0.0784224420785904, 0.02385111339390278, -0.05957423895597458, -0.04101422056555748, -0.018460653722286224, -0.1392393559217453, 0.005553402006626129, -0.022527996450662613, 0.02962581068277359, -0.08974350243806839, -0.025846851989626884, 0.09413492679595947, -0.06659086793661118, 0.0807354524731636, 0.14068566262722015, -0.06530646234750748, 0.07647939771413803, -0.044939033687114716, -0.17997923493385315, 0.10601289570331573, 0.02491965889930725, 0.08875089138746262, 0.07359633594751358, -0.0007731757941655815, 0.0316067710518837, 0.030436735600233078, 0.020361995324492455, -0.03465941175818443, -0.10008499026298523, -0.0004677054239436984, -0.022281216457486153, -0.15229493379592896, -0.019925514236092567, -0.06119677424430847, 0.16523882746696472, 0.039337579160928726, 0.10876079648733139, 0.020534496754407883, 0.07234757393598557, -0.06416996568441391, 0.0005208576912991703, -0.022474002093076706, -0.17034316062927246, 0.033730942755937576, -0.05728153511881828, 0.019531384110450745, -0.009447495453059673, 0.263528436422348, 0.05094461515545845, -0.012598887085914612, 0.026646152138710022, 0.06536554545164108, 0.052866313606500626, 0.016608422622084618, 0.2186870127916336, 0.1074996218085289, -0.05750394985079765, -0.09202317893505096, 0.07762658596038818, 0.022015567868947983, 0.006913629826158285, 0.09317916631698608, 0.15893326699733734, 0.07078346610069275, 0.11557279527187347, 0.041092466562986374, -0.003519495250657201, -0.15323634445667267, -0.18579284846782684, -0.000408829451771453, 0.07505831122398376, -0.039223603904247284, -0.0029882239177823067, 0.12262741476297379, -0.04344509169459343, 0.1125507727265358, -0.024645093828439713, -0.007533808704465628, -0.10206058621406555, -0.036394502967596054, -0.032310985028743744, -0.13173574209213257, -0.03273128718137741, -0.07084482163190842, 0.042141713201999664, 0.18303702771663666, 0.0008343450608663261, 0.0026737248990684748, 0.16341349482536316, 0.034453317523002625, -0.038467466831207275, 0.04468446597456932, -0.004841686226427555, 0.02252330631017685, 0.003916345536708832, 0.0014058098895475268, -0.09491833299398422, -0.04739758372306824, -0.04784678295254707, 0.021489320322871208, -0.0941084623336792, -0.01777615211904049, -0.12145070731639862, -0.10620544850826263, -0.05270243436098099, 0.036480799317359924, -0.06759178638458252, 0.1437578797340393, 0.0011852913303300738, 0.003073543542996049, -0.016469772905111313, 0.19765762984752655, -0.11170663684606552, -0.01871301420032978, -0.019288036972284317, 0.14682219922542572, 0.08933477103710175, 0.09206400066614151, -0.031037231907248497, -0.010515240952372551, -0.0946112796664238, 0.1860930621623993, 0.2867399752140045, -0.051731061190366745, 0.08605033904314041, 0.07755344361066818, 0.02455322816967964, 0.056216612458229065, 0.047714002430438995, 0.11646021157503128, 0.28737470507621765, -0.08083236217498779, -0.04880659282207489, -0.06303567439317703, -0.01763940416276455, -0.10530674457550049, 0.013043400831520557, 0.06783310323953629, -0.07656772434711456, -0.052870579063892365, 0.060389529913663864, -0.15102487802505493, 0.09899251908063889, 0.13713805377483368, -0.2600216865539551, -0.05322295427322388, -0.023655854165554047, 0.21092860400676727, -0.025788387283682823, 0.13237175345420837, -0.05603526160120964, -0.12780939042568207, 0.05126282572746277, 0.019423190504312515, -0.1982308030128479, -0.026285095140337944, 0.11793976277112961, -0.004832139238715172, -0.007333625573664904, -0.049036089330911636, -0.03213796392083168, 0.08716367930173874, 0.12154696881771088, -0.01198945939540863, 0.045460011810064316, 0.04534458741545677, -0.10852556675672531, -0.08893349766731262, 0.02988322824239731, 0.007136424537748098, -0.08733206242322922, 0.06247463449835777, -0.23836663365364075, 0.047921061515808105, 0.0330115482211113, -0.008724546059966087, -0.00047336594434455037, -0.07198839634656906, -0.03818441554903984, 0.055014532059431076, 0.07593701034784317, 0.01164654828608036, -0.040992677211761475, -0.02162739634513855, -0.027900341898202896, 0.06050776690244675, -0.048432569950819016, -0.19193069636821747, -0.05997200682759285, -0.049881771206855774, 0.05363297462463379, -0.047490183264017105, -0.03022567369043827, -0.07714047282934189, 0.002975807059556246, 0.06495482474565506, -0.06808404624462128, 0.047733742743730545, 0.0675477460026741, 0.022355737164616585, 0.010628639720380306, -0.016509970650076866, 0.01815125346183777, 0.07772675901651382, -0.1396608054637909, -0.054062120616436005 ]
null
null
transformers
# DanBERT ## Model description DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. The model can be found at: * [danbert-da](https://huggingface.co/alexanderfalk/danbert-small-cased) ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("alexanderfalk/danbert-small-cased") model = AutoModel.from_pretrained("alexanderfalk/danbert-small-cased") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Anonymization of Danish, Real-Time Data, and Personalized Modelling}, author={Alexander Falk}, } ```
{"language": ["da", "en"], "license": "apache-2.0", "tags": ["named entity recognition", "token criticality"], "datasets": ["custom danish dataset"], "metrics": ["array of metric identifiers"], "inference": false}
fill-mask
alexanderfalk/danbert-small-cased
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "named entity recognition", "token criticality", "da", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "da", "en" ]
TAGS #transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us
# DanBERT ## Model description DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. The model can be found at: * danbert-da ## Intended uses & limitations #### How to use ### BibTeX entry and citation info
[ "# DanBERT", "## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da", "## Intended uses & limitations", "#### How to use", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us \n", "# DanBERT", "## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da", "## Intended uses & limitations", "#### How to use", "### BibTeX entry and citation info" ]
[ 54, 4, 72, 9, 5, 11 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #named entity recognition #token criticality #da #en #license-apache-2.0 #autotrain_compatible #region-us \n# DanBERT## Model description\n\nDanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. \nThe model can be found at:\n\n* danbert-da## Intended uses & limitations#### How to use### BibTeX entry and citation info" ]
[ -0.011106355115771294, 0.04705578833818436, 0.0003008160274475813, 0.0705963596701622, 0.05409131199121475, -0.027636265382170677, 0.2548733651638031, 0.03581715747714043, 0.12007012218236923, -0.026415595784783363, 0.17082303762435913, 0.046575967222452164, 0.012707576155662537, 0.17983582615852356, 0.015552802011370659, -0.35231900215148926, 0.0875810831785202, 0.04195309802889824, -0.0036788589786738157, 0.054139357060194016, 0.12423893064260483, -0.09139250218868256, 0.02397020533680916, -0.0311095230281353, -0.08367988467216492, -0.023942310363054276, -0.043304599821567535, -0.05830308049917221, 0.15327663719654083, 0.00007821656618034467, 0.06889975070953369, 0.09026335179805756, 0.0883905440568924, -0.07272946089506149, 0.019714927300810814, -0.05257898569107056, -0.02282574400305748, 0.10014907270669937, -0.06612224876880646, 0.14978301525115967, 0.051070570945739746, 0.07734786719083786, 0.07814573496580124, -0.04073421657085419, -0.07117100059986115, -0.11846760660409927, 0.007940026000142097, 0.17123427987098694, 0.10658935457468033, 0.04898893088102341, -0.018976885825395584, 0.07587504386901855, -0.06720094382762909, 0.02899486944079399, -0.10858727991580963, -0.1719120740890503, -0.009158051572740078, 0.1812065690755844, 0.08207456767559052, -0.001887153135612607, -0.060066454112529755, 0.07476554811000824, 0.051062725484371185, 0.0635933130979538, 0.026425987482070923, -0.06200969219207764, 0.14940807223320007, -0.030370861291885376, -0.10788184404373169, 0.00483607966452837, 0.17230284214019775, 0.033087845891714096, -0.09938342124223709, -0.11405883729457855, 0.03447388485074043, 0.17517271637916565, -0.03996922820806503, -0.12586870789527893, -0.011946158483624458, -0.006073622032999992, 0.02575473114848137, -0.09290015697479248, -0.05790776014328003, -0.09251123666763306, -0.03351673483848572, 0.10700615495443344, 0.004783024545758963, -0.014319604262709618, -0.07655598223209381, 0.02775454893708229, -0.14732681214809418, -0.09524310380220413, -0.0001801852195058018, -0.07399283349514008, 0.05710089951753616, -0.04179849475622177, -0.014601643197238445, -0.0540483184158802, 0.028807902708649635, 0.11702897399663925, 0.11550352722406387, -0.043496329337358475, -0.05737532302737236, 0.08643684536218643, 0.052214365452528, 0.16795381903648376, -0.06067659333348274, 0.012475693598389626, 0.043936602771282196, 0.09915341436862946, -0.005705283954739571, -0.027817130088806152, -0.24627923965454102, -0.004862438887357712, 0.12873414158821106, 0.0028293542563915253, 0.004422906786203384, 0.08462901413440704, -0.023418821394443512, -0.03314709663391113, 0.11183152347803116, -0.02181369625031948, 0.01886233314871788, 0.008851454593241215, -0.08412114530801773, -0.013228656724095345, 0.017633667215704918, 0.01947137527167797, -0.03564203530550003, 0.09962902963161469, -0.035251278430223465, -0.07340686023235321, -0.03123600408434868, -0.21780531108379364, 0.05742543935775757, -0.061250798404216766, 0.06326005607843399, -0.12364771217107773, -0.13586051762104034, -0.0019922368228435516, 0.10214100033044815, -0.03759782388806343, -0.07212281972169876, -0.05510135740041733, -0.021705951541662216, -0.029611065983772278, -0.059791721403598785, 0.0011326575186103582, 0.0024867120664566755, 0.024766337126493454, -0.11257879436016083, 0.07910577952861786, -0.16716733574867249, 0.0644414871931076, -0.08635847270488739, -0.006960665341466665, -0.11303897202014923, 0.04808489978313446, -0.051869988441467285, -0.0037670035380870104, -0.1025124341249466, -0.03444412723183632, 0.008759632706642151, 0.06982700526714325, 0.04018029570579529, 0.21141231060028076, -0.17684438824653625, -0.047178518027067184, 0.09810087829828262, -0.05946829915046692, -0.09091334044933319, 0.13921859860420227, -0.07144264131784439, 0.1938769668340683, 0.09913180768489838, 0.1484387069940567, 0.02159077301621437, -0.16740313172340393, 0.13771334290504456, 0.11893417686223984, 0.08172513544559479, 0.011393018998205662, 0.0813659280538559, -0.022371765226125717, -0.10798187553882599, 0.00909077376127243, -0.08847402036190033, 0.02391854301095009, -0.0363992303609848, -0.06440531462430954, 0.09694220125675201, -0.041909873485565186, 0.08909836411476135, 0.021565942093729973, 0.08991307020187378, -0.008728047832846642, -0.0457586795091629, 0.19110345840454102, 0.01892542466521263, -0.03397785872220993, -0.020792735740542412, -0.031287483870983124, 0.03054559789597988, -0.08666475862264633, 0.06395120918750763, -0.10551933944225311, 0.04572763293981552, 0.01545497216284275, 0.02779024839401245, 0.06551969796419144, 0.16810296475887299, 0.0493694506585598, 0.06600405275821686, 0.0031797096598893404, 0.010451248846948147, -0.05219726637005806, 0.048372782766819, -0.09651033580303192, -0.13878607749938965, -0.041650403290987015, -0.1075095683336258, 0.08547135442495346, -0.13521258533000946, 0.04065823554992676, -0.12035677582025528, -0.025804948061704636, -0.0058189923875033855, 0.03825438767671585, -0.0007726079784333706, 0.06499578058719635, -0.05548318475484848, 0.025520596653223038, 0.08256955444812775, -0.029253417626023293, -0.09294816851615906, 0.0850735679268837, 0.01624506153166294, 0.08914656192064285, 0.13752910494804382, -0.05215445160865784, -0.0038998760282993317, -0.007909674197435379, -0.005038549657911062, -0.015336637385189533, -0.022439289838075638, -0.09531550854444504, 0.1277063488960266, 0.0432201512157917, 0.13266389071941376, -0.06399103999137878, 0.048190947622060776, 0.009678056463599205, -0.04804862290620804, -0.08488043397665024, 0.09490201622247696, 0.01971076801419258, -0.07978694140911102, 0.1495184302330017, 0.15301835536956787, -0.041284821927547455, 0.10717268288135529, -0.01416931115090847, -0.017330532893538475, 0.009306127205491066, -0.06768181920051575, -0.013944369740784168, 0.15802383422851562, -0.11334862560033798, -0.05655404180288315, 0.03483300656080246, 0.015275776386260986, -0.018411917611956596, -0.0856480523943901, -0.05252668261528015, 0.0031047097872942686, -0.05020780488848686, -0.09207183122634888, 0.024943653494119644, -0.1054258942604065, 0.07331065088510513, 0.09258205443620682, -0.2064342051744461, 0.07737256586551666, 0.009967817924916744, -0.11119228601455688, 0.18954624235630035, -0.07116225361824036, -0.24669937789440155, -0.12844862043857574, -0.012575489468872547, -0.045302096754312515, 0.05331144481897354, -0.008464423008263111, -0.017859607934951782, -0.030347784981131554, -0.021609202027320862, 0.13186869025230408, -0.07971422374248505, -0.04792548716068268, -0.04372519627213478, -0.05365545675158501, -0.05017215013504028, -0.11764384806156158, -0.030833259224891663, -0.05260521173477173, 0.028395825996994972, 0.011146645061671734, -0.1404278725385666, 0.021279647946357727, 0.12207921594381332, -0.040498439222574234, 0.009851733222603798, -0.010579368099570274, 0.2277548760175705, -0.03097456321120262, 0.10549458116292953, 0.09910382330417633, -0.09068400412797928, -0.00810407754033804, 0.20909154415130615, 0.03983031213283539, -0.007298958953469992, 0.0020246882922947407, -0.01668868400156498, -0.0770110934972763, -0.07677145302295685, -0.08007977902889252, -0.024167437106370926, 0.11725054681301117, 0.15882053971290588, 0.03870456665754318, 0.1122351884841919, 0.06522839516401291, 0.007546012755483389, 0.0883241668343544, 0.08004718273878098, 0.07332278788089752, 0.06722626835107803, -0.05127464979887009, 0.10931191593408585, 0.03379061818122864, -0.06757910549640656, 0.009894165210425854, 0.04403216019272804, -0.001972617581486702, 0.1072542667388916, 0.01584424078464508, 0.051296722143888474, -0.031214933842420578, 0.057740092277526855, 0.1744208037853241, -0.08234946429729462, 0.00010244474106002599, -0.05947994440793991, -0.08322381973266602, -0.027182433754205704, 0.09591545909643173, 0.03465729206800461, 0.005218032747507095, -0.10473243147134781, -0.13950935006141663, -0.014626519754529, 0.028615880757570267, 0.16437242925167084, -0.1627173125743866, -0.1373959481716156, 0.043825842440128326, -0.002021599793806672, -0.08553777635097504, 0.027097761631011963, 0.03600136563181877, -0.10865749418735504, -0.0496751144528389, -0.04975789785385132, 0.13488194346427917, -0.03933217376470566, 0.05264543741941452, -0.13633425533771515, -0.0516354963183403, -0.0012680029030889273, 0.10654287040233612, -0.4564644694328308, 0.20919795334339142, -0.001431837328709662, 0.04117153584957123, -0.10018566995859146, -0.009020105004310608, 0.016620170325040817, 0.1707286685705185, 0.12716975808143616, 0.00613199919462204, 0.16490799188613892, -0.05708271265029907, -0.11156205087900162, 0.014662039466202259, -0.07871945947408676, -0.08825042843818665, -0.025925982743501663, 0.03531891852617264, 0.02760247327387333, 0.030833061784505844, 0.09508609771728516, -0.17239370942115784, -0.036401212215423584, 0.023835843428969383, -0.0451354905962944, 0.0689052939414978, -0.0035860962234437466, -0.1321689635515213, -0.08924973756074905, 0.05886662006378174, -0.07286951690912247, -0.06599434465169907, -0.0685921162366867, 0.09325750172138214, -0.0022124070674180984, -0.04755052551627159, -0.01868089661002159, -0.07686074078083038, 0.04478384926915169, -0.13304968178272247, -0.09241512417793274, 0.06844769418239594, -0.12156450748443604, -0.044191937893629074, -0.04498562961816788, 0.034332118928432465, 0.07460466027259827, 0.05550768971443176, 0.10735808312892914, -0.019537117332220078, -0.019490007311105728, -0.06284961104393005, 0.05389222502708435, -0.049010105431079865, 0.07526518404483795, -0.0770738273859024, -0.16868604719638824, -0.05365246534347534, -0.04776576906442642, 0.042516883462667465, 0.10012970864772797, 0.1894831657409668, -0.033532388508319855, 0.08327552676200867, 0.3772449195384979, -0.06858741492033005, -0.3437846601009369, 0.041488297283649445, 0.0020993631333112717, 0.08230604231357574, -0.07135862112045288, -0.252668172121048, 0.04842677712440491, -0.011574980802834034, -0.04954091086983681, -0.0148971201851964, -0.1381399929523468, -0.11781968921422958, 0.3193950057029724, 0.07706709206104279, 0.25973474979400635, -0.08699400722980499, -0.03933050110936165, -0.05350843071937561, -0.10929858684539795, 0.18085166811943054, -0.02221137285232544, 0.01555177103728056, 0.027956625446677208, 0.08198751509189606, 0.046142399311065674, -0.03475435823202133, 0.12171383947134018, 0.015597003512084484, 0.014772998169064522, -0.09460459649562836, -0.20913009345531464, 0.034727878868579865, -0.025962267071008682, 0.15507221221923828, -0.04659292846918106, 0.006352386437356472, -0.049706749618053436, -0.06963878870010376, -0.0969262644648552, 0.09965796768665314, -0.0652226135134697, -0.19267061352729797, 0.011132429353892803, 0.12104275077581406, -0.03292737528681755, 0.011304264888167381, 0.1654558777809143, -0.05382530763745308, 0.026022816076874733, 0.09625179320573807, 0.10931430011987686, -0.006373806856572628, 0.1359671652317047, 0.05249955505132675, -0.10565897077322006, 0.15313765406608582, -0.08772017061710358, 0.00958908163011074, 0.10784792900085449, 0.01706196740269661, 0.16531217098236084, 0.04155411198735237, -0.10419578850269318, -0.05196550488471985, 0.02091592364013195, -0.12538129091262817, -0.11717672646045685, -0.027005329728126526, -0.048571761697530746, 0.04330230504274368, 0.048453353345394135, 0.10276730358600616, -0.12434514611959457, -0.006009998265653849, 0.031182298436760902, 0.009981085546314716, -0.09537996351718903, 0.1036515086889267, 0.08385391533374786, 0.08048011362552643, -0.04743902385234833, 0.01644933968782425, 0.029547851532697678, -0.07893580198287964, 0.06714845448732376, -0.06418602168560028, -0.10129646956920624, -0.08808788657188416, -0.030560027807950974, 0.1915612667798996, 0.017360977828502655, -0.0492657870054245, -0.005345277022570372, -0.11957772821187973, 0.012038679793477058, 0.08159372955560684, 0.06771775335073471, -0.018665069714188576, -0.08089043200016022, 0.01206931658089161, -0.10302586853504181, 0.09721999615430832, -0.061612825840711594, -0.025714313611388206, 0.0009240575018338859, 0.06692399084568024, -0.02003399096429348, 0.12315629422664642, -0.08514939248561859, -0.05814812332391739, -0.1760779768228531, 0.014796512201428413, -0.1955527812242508, -0.04430051147937775, -0.07600052654743195, -0.013367131352424622, -0.010503226891160011, -0.04919939488172531, 0.05341874808073044, -0.035337407141923904, -0.1075534075498581, 0.016619140282273293, 0.008477229624986649, 0.02558301016688347, -0.05953967571258545, -0.07687317579984665, 0.014873802661895752, -0.012525925412774086, 0.080663301050663, 0.00500867422670126, -0.007517101708799601, 0.052542544901371, -0.1382424384355545, 0.0667523518204689, 0.035763271152973175, 0.02687917649745941, 0.06538268178701401, -0.055880360305309296, -0.009932177141308784, -0.004034415818750858, -0.008189942687749863, 0.026053840294480324, 0.15047766268253326, -0.04164385795593262, -0.03266037255525589, 0.028111189603805542, -0.07364048063755035, -0.03897934406995773, 0.1406129002571106, -0.019271288067102432, 0.08955664932727814, 0.13448813557624817, -0.03507484868168831, 0.07637526839971542, -0.007200865540653467, 0.0037832558155059814, -0.03399205580353737, -0.10312807559967041, -0.02202092483639717, -0.10692764818668365, -0.003256519790738821, -0.06585901230573654, 0.18304874002933502, 0.11262084543704987, -0.009826327674090862, 0.009930498898029327, -0.0690927505493164, 0.04483041912317276, 0.009875505231320858, 0.2842983603477478, 0.02617618441581726, 0.010482408106327057, -0.162479966878891, 0.13112743198871613, -0.0034922107588499784, 0.17705194652080536, 0.05697087198495865, 0.11091474443674088, -0.016764158383011818, 0.0747116357088089, 0.1233804002404213, 0.03842610493302345, -0.036795638501644135, -0.11179746687412262, 0.11536383628845215, 0.0815812200307846, -0.020687531679868698, 0.124686099588871, 0.05420569330453873, -0.1148856058716774, 0.04722493141889572, 0.002085518091917038, -0.09495611488819122, -0.13397355377674103, -0.16678377985954285, -0.039680175483226776, 0.007419479079544544, -0.01053852029144764, -0.07236100733280182, -0.09472665190696716, -0.007777076214551926, 0.05650174617767334, -0.06828314065933228, 0.021565604954957962, -0.1336083859205246, -0.026405850425362587, 0.11481164395809174, -0.015350783243775368, -0.024739710614085197, -0.1255112886428833, -0.023052187636494637, -0.07470154017210007, 0.0304829441010952, -0.012479742057621479, -0.020025838166475296, 0.0013764018658548594, -0.02513906918466091, -0.010407392866909504, -0.072633758187294, -0.030104076489806175, -0.007790282368659973, 0.08587004244327545, 0.18936850130558014, -0.0020896007772535086, -0.09874502569437027, 0.028424937278032303, 0.08062721788883209, 0.0050413585267961025, -0.1370047628879547, -0.0952530950307846, 0.27821460366249084, -0.04109066352248192, 0.08768517524003983, -0.014864934608340263, -0.01607276126742363, -0.04521612077951431, 0.23283331096172333, 0.3494679927825928, -0.07326247543096542, -0.012433596886694431, 0.02015840820968151, 0.0011127728503197432, 0.011996431276202202, 0.14845189452171326, -0.028245577588677406, 0.20606729388237, -0.05425019934773445, 0.04240540415048599, -0.04889119416475296, -0.06250932812690735, -0.04497960954904556, 0.0683898776769638, 0.1037534698843956, -0.08841513097286224, -0.13119064271450043, 0.08115146309137344, -0.09413112699985504, -0.17808794975280762, -0.02050694450736046, -0.0934581533074379, -0.10172145068645477, -0.0596679225564003, -0.09929820150136948, 0.031567931175231934, 0.06870287656784058, -0.037267692387104034, 0.07943232357501984, 0.0015263550449162722, -0.028823086991906166, -0.008735351264476776, -0.014809143729507923, 0.15278007090091705, 0.15025874972343445, 0.10791327059268951, 0.007576978299766779, 0.13727495074272156, 0.08784051984548569, 0.040540266782045364, -0.0008027019212022424, 0.08197630941867828, 0.03699376434087753, 0.07246866077184677, 0.010027267038822174, -0.003315643174573779, -0.03419109806418419, 0.009794327430427074, 0.03724121302366257, -0.18318459391593933, 0.018768813461065292, -0.11354367434978485, -0.241825133562088, -0.10855169594287872, 0.15699145197868347, -0.05551483482122421, 0.09526057541370392, 0.11939086765050888, -0.0093312356621027, -0.10411115735769272, -0.06487911939620972, 0.08405081927776337, 0.034515317529439926, -0.06502209603786469, -0.08618653565645218, -0.04729700833559036, -0.05086991935968399, -0.10113493353128433, -0.006075242534279823, -0.3553820550441742, 0.015400695614516735, -0.08817905932664871, 0.002054422628134489, -0.013769266195595264, 0.013437986373901367, 0.07760567963123322, 0.015335681848227978, -0.039842911064624786, -0.07391636073589325, -0.00008249394886661321, 0.06553499400615692, -0.08485449105501175, -0.08888839185237885 ]
null
null
transformers
# ArcheoBERTje-NER A Dutch BERT model for Named Entity Recognition in the Archaeology domain This is the [ArcheoBERTje](https://huggingface.co/alexbrandsen/ArcheoBERTje) model finetuned for NER, targeting the following entities: - Time periods - Places - Artefacts - Contexts - Materials - Species
{}
token-classification
alexbrandsen/ArcheoBERTje-NER
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us
# ArcheoBERTje-NER A Dutch BERT model for Named Entity Recognition in the Archaeology domain This is the ArcheoBERTje model finetuned for NER, targeting the following entities: - Time periods - Places - Artefacts - Contexts - Materials - Species
[ "# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species" ]
[ "TAGS\n#transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species" ]
[ 40, 72 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# ArcheoBERTje-NER\nA Dutch BERT model for Named Entity Recognition in the Archaeology domain\n\nThis is the ArcheoBERTje model finetuned for NER, targeting the following entities:\n\n- Time periods\n- Places\n- Artefacts\n- Contexts\n- Materials\n- Species" ]
[ 0.03161006420850754, 0.08138449490070343, -0.00460828049108386, 0.10351991653442383, 0.03510697931051254, -0.0350106880068779, -0.016599826514720917, 0.04209291189908981, 0.11789091676473618, 0.009630711749196053, 0.06503094732761383, 0.1309264749288559, -0.008995257318019867, -0.15291324257850647, -0.04690518602728844, -0.2663203477859497, 0.045761268585920334, 0.07800902426242828, 0.059398505836725235, 0.09413141012191772, 0.05620848760008812, -0.09991738945245743, 0.09516933560371399, 0.07070634514093399, -0.10238250344991684, 0.03921493515372276, -0.07454166561365128, -0.09298601001501083, 0.1599346250295639, -0.10164988785982132, 0.12298978120088577, -0.0197906531393528, 0.012631879188120365, -0.07805100828409195, -0.014055061154067516, -0.10152918100357056, -0.02095826156437397, -0.0053019034676253796, 0.04303233325481415, -0.12350860238075256, 0.05438908934593201, 0.06303422898054123, -0.017148679122328758, -0.07947864383459091, -0.11229858547449112, -0.10681313276290894, 0.036722347140312195, 0.05539129674434662, -0.08897798508405685, 0.07460961490869522, 0.006859629414975643, 0.12294140458106995, -0.14296680688858032, 0.031748685985803604, 0.13450083136558533, -0.1972953826189041, -0.07538887858390808, -0.015830721706151962, -0.01324019767343998, 0.0648309588432312, -0.051047276705503464, 0.09313615411520004, -0.06606343388557434, 0.07845396548509598, 0.07307019084692001, -0.08406036347150803, -0.13434270024299622, 0.029551099985837936, -0.13313131034374237, 0.01911204867064953, 0.15883611142635345, 0.0266510471701622, 0.0712655708193779, 0.04215764254331589, -0.05129313841462135, 0.0074822306632995605, 0.010484887287020683, -0.09456957876682281, -0.021143941208720207, -0.08346255123615265, 0.12358744442462921, 0.03986407443881035, 0.01379196997731924, 0.05624089390039444, -0.17540423572063446, 0.20174013078212738, 0.032725270837545395, 0.03624388203024864, -0.12601834535598755, -0.02314186841249466, -0.12251925468444824, -0.03757316991686821, -0.020720984786748886, 0.02957254834473133, -0.07169821858406067, -0.05036517232656479, -0.010621016845107079, 0.12957793474197388, 0.03547811135649681, 0.1521516740322113, 0.11275998502969742, 0.027257131412625313, -0.0648118406534195, 0.1050536185503006, 0.04745280370116234, 0.11363428086042404, -0.025523575022816658, -0.1089995950460434, 0.07077737152576447, -0.1228957325220108, -0.05081065371632576, -0.005669126287102699, -0.20261050760746002, -0.11463873833417892, 0.18598130345344543, 0.03137454763054848, 0.07053688168525696, 0.04287277162075043, 0.03544236347079277, -0.05313778296113014, -0.11712909489870071, -0.0038062434177845716, 0.05657186359167099, -0.033380817621946335, -0.057377807796001434, 0.059014689177274704, -0.12902536988258362, 0.01978357508778572, -0.02723751962184906, 0.04875059053301811, -0.005243946332484484, 0.03936903923749924, 0.07270079106092453, -0.12592293322086334, 0.07148642092943192, -0.10760683566331863, 0.03462141007184982, -0.3157096207141876, -0.09485432505607605, 0.04244612529873848, 0.08711277693510056, -0.05272092670202255, -0.012408167123794556, -0.04059005528688431, -0.04342908039689064, 0.0031448048539459705, -0.07843385636806488, -0.13729353249073029, -0.07576855272054672, -0.0559735968708992, -0.07398378103971481, 0.14164581894874573, -0.1287352293729782, 0.06529468297958374, -0.11625700443983078, 0.001450725132599473, -0.09236795455217361, -0.06985768675804138, -0.04412194341421127, 0.028092486783862114, -0.08423791825771332, 0.0036085639148950577, -0.12082182615995407, 0.013883127830922604, 0.01944415271282196, 0.046988893300294876, -0.050285208970308304, -0.12301404774188995, 0.04147878289222717, -0.016078030690550804, -0.05488193780183792, 0.13685759902000427, 0.021141408011317253, 0.0123941320925951, 0.02851085551083088, 0.2558128833770752, -0.04874114692211151, -0.03020341694355011, 0.05891471728682518, -0.035289913415908813, -0.04005589336156845, -0.06217380613088608, 0.0007996176136657596, 0.08434520661830902, -0.009684020653367043, 0.033064331859350204, -0.12651130557060242, 0.050436750054359436, -0.02377781830728054, -0.01212508138269186, 0.015433074906468391, -0.028124649077653885, 0.20531779527664185, -0.039432182908058167, 0.15999510884284973, -0.06376475840806961, -0.0256486926227808, 0.10142756998538971, -0.08336438983678818, 0.05393187701702118, 0.06811290979385376, 0.014824045822024345, 0.2498735785484314, 0.013481765054166317, 0.02264222875237465, -0.15906521677970886, -0.055820152163505554, 0.13788489997386932, -0.12043746560811996, 0.13712529838085175, -0.011112576350569725, 0.05057153478264809, -0.035302285104990005, -0.05580827221274376, 0.017420709133148193, -0.004096189513802528, 0.03308818116784096, -0.04484948515892029, -0.061406996101140976, 0.025792373344302177, 0.020972056314349174, -0.025683652609586716, -0.026046637445688248, 0.027836989611387253, -0.010017289780080318, 0.09928157180547714, -0.040437184274196625, 0.05293864756822586, -0.11944025754928589, 0.07614922523498535, -0.05280311033129692, 0.06623319536447525, 0.10110694915056229, -0.040446870028972626, -0.05807109549641609, 0.19860830903053284, -0.018969066441059113, 0.14791885018348694, 0.13632646203041077, -0.32665032148361206, 0.04283209517598152, 0.04300661385059357, 0.03058711253106594, -0.0443766750395298, -0.002483768854290247, -0.07880213111639023, 0.23547892272472382, 0.03831997513771057, 0.050015855580568314, -0.08398931473493576, -0.057428423315286636, -0.04830454662442207, -0.03495578467845917, -0.08962832391262054, 0.12698175013065338, 0.053051892668008804, -0.20473195612430573, 0.16430063545703888, 0.23073123395442963, -0.17945657670497894, 0.017450369894504547, 0.10344044119119644, 0.00002054959986708127, 0.03273655101656914, -0.06380122900009155, 0.016422156244516373, 0.019657064229249954, -0.16784444451332092, -0.06896066665649414, 0.06358854472637177, 0.04789089784026146, -0.024640804156661034, -0.02429725043475628, 0.05367481708526611, 0.030945638194680214, 0.09142185747623444, 0.05928545817732811, 0.035370178520679474, 0.002660677768290043, 0.15422187745571136, 0.014974123798310757, -0.2229936271905899, 0.001284326077438891, 0.017871402204036713, -0.037814877927303314, 0.12629260122776031, -0.0764920637011528, -0.3069973587989807, -0.07315797358751297, -0.132597416639328, -0.155385822057724, -0.04354767128825188, 0.05535440519452095, -0.040704648941755295, 0.03797637298703194, 0.05727514252066612, 0.044850513339042664, -0.11894167214632034, -0.014335954561829567, -0.09399788826704025, -0.0436028391122818, -0.1142173483967781, 0.013672193512320518, -0.10875377058982849, -0.11449719965457916, 0.028894424438476562, 0.16358409821987152, -0.10339563339948654, 0.1518235057592392, 0.065372534096241, -0.11740905046463013, 0.03125031292438507, -0.036095961928367615, 0.1200016587972641, -0.029201703146100044, 0.07308678328990936, 0.12962262332439423, -0.10958155244588852, 0.05940857529640198, 0.11322061717510223, 0.008009285666048527, -0.00903165340423584, -0.10165213793516159, 0.05828266590833664, -0.106285959482193, -0.034504760056734085, -0.11034229397773743, -0.11457165330648422, 0.03352392092347145, 0.1531478613615036, 0.0046614245511591434, 0.16821135580539703, -0.06263955682516098, 0.05130139738321304, 0.01920771785080433, 0.010281195864081383, 0.10120806843042374, 0.22881264984607697, 0.06307986378669739, 0.10144850611686707, 0.1038815975189209, -0.11843241751194, -0.011322983540594578, 0.12714649736881256, 0.15597519278526306, 0.20428799092769623, 0.02547479048371315, -0.009612299501895905, 0.0670841783285141, 0.17431338131427765, -0.011886811815202236, -0.05494999140501022, 0.005626535043120384, -0.009006405249238014, -0.0547928661108017, 0.07263556867837906, 0.06774814426898956, 0.13959743082523346, -0.00873170979321003, -0.014661630615592003, -0.18357037007808685, 0.06561572849750519, 0.06579210609197617, 0.03858359903097153, -0.20356979966163635, 0.05638759210705757, 0.0026679891161620617, -0.07817243039608002, -0.05328959599137306, 0.04399001970887184, -0.10520727187395096, -0.1388169229030609, 0.056435227394104004, -0.04917563125491142, 0.11921554058790207, -0.0336187444627285, 0.10713862627744675, -0.04621477797627449, -0.16695095598697662, 0.03276609629392624, -0.03136706352233887, -0.17190590500831604, 0.32685765624046326, -0.034961409866809845, -0.14248418807983398, -0.04540935158729553, -0.10745280981063843, 0.04623541608452797, 0.1370042860507965, 0.1287573128938675, 0.044707272201776505, -0.20614087581634521, 0.05336780846118927, -0.008118241094052792, 0.03231129050254822, 0.016989124938845634, -0.11398758739233017, 0.032409995794296265, 0.03413143754005432, 0.030711371451616287, -0.017194127663969994, 0.17140185832977295, 0.0356900580227375, -0.0374753512442112, -0.02384178154170513, 0.041905477643013, -0.02113172970712185, 0.08423544466495514, -0.07532849162817001, -0.18064922094345093, 0.10799653828144073, -0.05131015181541443, 0.03750054910778999, -0.09256459772586823, 0.02008705586194992, -0.012172096408903599, -0.06941340118646622, 0.018947292119264603, -0.09645277261734009, 0.04448501020669937, -0.07261578738689423, -0.20347164571285248, 0.10638292878866196, -0.06422416865825653, 0.04823480546474457, -0.06356725096702576, -0.030377177521586418, 0.12790551781654358, 0.08369778841733932, 0.02329808473587036, 0.05700181797146797, -0.059845756739377975, 0.013725532218813896, 0.08214525878429413, 0.09173813462257385, -0.06297086924314499, 0.005849584937095642, -0.1322624683380127, -0.03472384437918663, -0.09859108179807663, 0.05304870754480362, 0.19661326706409454, 0.07682598382234573, -0.03623127192258835, 0.03493742272257805, 0.20020098984241486, -0.04675852134823799, -0.4232824146747589, 0.07438737154006958, 0.014838595874607563, 0.019152116030454636, -0.05158615857362747, -0.08403947949409485, 0.25853726267814636, 0.13612236082553864, -0.01184857077896595, -0.04608537256717682, -0.01154547743499279, -0.07151501625776291, 0.23020051419734955, -0.02461269125342369, 0.2767576277256012, 0.03841579332947731, 0.04276144132018089, -0.051562707871198654, -0.17799066007137299, 0.009471320547163486, 0.04044622927904129, -0.008196369744837284, -0.08939329534769058, 0.1484314203262329, -0.0005504029104486108, 0.04188767820596695, 0.030834626406431198, 0.17430199682712555, 0.019469691440463066, -0.03250499442219734, -0.1754516065120697, -0.011750375851988792, -0.11581826955080032, -0.037000589072704315, 0.06520751118659973, -0.06633671373128891, 0.0112614706158638, 0.02968980185687542, -0.1301114559173584, 0.25659042596817017, 0.034383900463581085, -0.04065787047147751, -0.0016972196754068136, 0.031688496470451355, 0.009788471274077892, 0.027791321277618408, 0.2839498817920685, -0.04109833389520645, 0.09906750917434692, 0.03395918756723404, 0.029614383354783058, -0.006668258924037218, -0.01350906491279602, -0.06680590659379959, -0.021021896973252296, 0.07125090807676315, 0.13945171236991882, 0.01704401895403862, 0.15548452734947205, -0.010401650331914425, -0.0033066472969949245, 0.09081480652093887, 0.02275315299630165, -0.04901760071516037, -0.01715852878987789, -0.03463677689433098, 0.004684996325522661, -0.031748928129673004, -0.14940209686756134, 0.07674985378980637, 0.024526115506887436, 0.10390350222587585, -0.04018133133649826, -0.03934955224394798, 0.023243237286806107, -0.030184511095285416, -0.024370593950152397, -0.07661779969930649, -0.05579015612602234, 0.004364680964499712, -0.03203520178794861, 0.06489133089780807, 0.02571551501750946, 0.009939060546457767, 0.01211489550769329, 0.028149716556072235, -0.09286670386791229, -0.07796809822320938, -0.038863781839609146, 0.15683607757091522, -0.2183273434638977, 0.003467370057478547, 0.04638490080833435, -0.14240168035030365, 0.05126252397894859, 0.22260336577892303, 0.07633160054683685, -0.08102051168680191, -0.0743064433336258, 0.02027781307697296, -0.000637565681245178, 0.06901902705430984, -0.09519433230161667, 0.10235191136598587, -0.0812082439661026, -0.09728662669658661, -0.05734773352742195, 0.11635039746761322, -0.06817708909511566, -0.05263299494981766, -0.2119138538837433, 0.07958593964576721, -0.14555922150611877, -0.021312877535820007, -0.0976584181189537, -0.03439333662390709, 0.022095002233982086, -0.06197346746921539, -0.06302788853645325, 0.026037171483039856, -0.11974591016769409, 0.028976380825042725, 0.04243648797273636, 0.06832366436719894, 0.022986674681305885, -0.09293023496866226, 0.04257912188768387, -0.05705241858959198, 0.08005518466234207, 0.17693205177783966, 0.008412966504693031, 0.20816706120967865, -0.14886964857578278, -0.07396671175956726, 0.07566272467374802, 0.10483495891094208, 0.12527677416801453, 0.04889271408319473, -0.030139628797769547, 0.03202565014362335, -0.0203620083630085, 0.08546970784664154, -0.04675658419728279, -0.01703622378408909, -0.00397128239274025, -0.07556883245706558, -0.18125808238983154, 0.008217147551476955, 0.06942463666200638, 0.07817284017801285, -0.012320846319198608, 0.032168079167604446, 0.009304781444370747, 0.033579275012016296, 0.03468726947903633, 0.04503358528017998, -0.01965751126408577, -0.18961471319198608, -0.05088039115071297, -0.1424061357975006, 0.052154555916786194, -0.015937697142362595, 0.20063763856887817, 0.13849110901355743, -0.04613244906067848, 0.03529149666428566, 0.018656373023986816, -0.10549535602331161, 0.04566962271928787, 0.03777814283967018, 0.04818585142493248, -0.10015884041786194, 0.019134601578116417, 0.023944849148392677, -0.0046601612120866776, 0.14400836825370789, 0.22636932134628296, 0.2586395740509033, 0.004831766709685326, 0.03339921683073044, 0.1859218031167984, 0.004283278714865446, -0.08527054637670517, -0.12422242760658264, 0.04091228172183037, 0.17981988191604614, 0.06520622968673706, 0.1611562967300415, 0.06667899340391159, 0.014421037398278713, 0.037276871502399445, -0.05368911474943161, -0.03268233314156532, -0.1251201331615448, -0.22398239374160767, -0.06208694353699684, -0.018645143136382103, -0.0589313879609108, -0.03525721654295921, -0.08097277581691742, -0.03622007742524147, 0.019995376467704773, -0.05007914826273918, -0.02173445001244545, -0.010957220569252968, -0.08089186996221542, 0.1001979261636734, -0.06914099305868149, -0.023897957056760788, -0.03957585617899895, -0.028382522985339165, -0.09255368262529373, 0.0409824512898922, -0.050131406635046005, -0.02207222394645214, -0.09948877990245819, -0.06870390474796295, -0.13580623269081116, -0.0783623605966568, 0.02147579751908779, -0.0868406817317009, -0.14535346627235413, -0.08543552458286285, 0.05169646441936493, -0.10565073788166046, 0.02765672281384468, 0.044426947832107544, 0.027382291853427887, 0.0013421067269518971, 0.06299367547035217, 0.3215678334236145, 0.01786540262401104, 0.0725046694278717, -0.004276604391634464, 0.06049606204032898, 0.0038471007719635963, 0.17653129994869232, 0.23570382595062256, -0.007999472320079803, 0.02566450461745262, 0.023647073656320572, 0.018222106620669365, 0.048140667378902435, 0.003856286406517029, 0.042129866778850555, 0.18762937188148499, -0.039528876543045044, -0.050187014043331146, -0.07926574349403381, -0.0043296185322105885, -0.13154587149620056, 0.03157064691185951, 0.14774572849273682, -0.06569985300302505, -0.14169633388519287, 0.03629699721932411, -0.21523556113243103, 0.05677814781665802, 0.052193477749824524, -0.12728513777256012, -0.1348705142736435, -0.0649893581867218, -0.11178436130285263, -0.012348620221018791, 0.06852485984563828, -0.11284137517213821, -0.10521450638771057, -0.022751491516828537, 0.029332812875509262, -0.12641938030719757, -0.05017487332224846, 0.10376942902803421, 0.09109672158956528, 0.05264516547322273, -0.039174653589725494, 0.014217458665370941, 0.12326795607805252, 0.07542077451944351, 0.050081368535757065, -0.04320090264081955, 0.01700557954609394, 0.011123809963464737, -0.003312096232548356, 0.02399482950568199, 0.010777699761092663, 0.06938841938972473, 0.11081814765930176, -0.0548093244433403, 0.021089794114232063, -0.025974823161959648, -0.08547210693359375, -0.02053399384021759, 0.07146504521369934, 0.02610761672258377, 0.03907644748687744, 0.08972878009080887, 0.001315187313593924, -0.05718532204627991, -0.08165008574724197, -0.11229323595762253, 0.112523652613163, 0.046408187597990036, -0.06383543461561203, -0.08283920586109161, -0.07256675511598587, -0.05284234508872032, -0.01661248505115509, -0.1454465240240097, -0.11045020818710327, -0.04098224267363548, 0.020942728966474533, 0.003008622443303466, -0.03740259259939194, 0.09564344584941864, -0.04522078484296799, 0.006558522116392851, -0.07925835251808167, 0.04865965247154236, 0.14181607961654663, -0.04378692805767059, -0.05577242746949196 ]
null
null
transformers
# ArcheoBERTje A Dutch BERT model for the Archaeology domain This model is based on the Dutch BERTje model by wietsedv (https://github.com/wietsedv/bertje). We further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (https://easy.dans.knaw.nl/ui/home).
{}
fill-mask
alexbrandsen/ArcheoBERTje
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
# ArcheoBERTje A Dutch BERT model for the Archaeology domain This model is based on the Dutch BERTje model by wietsedv (URL We further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL
[ "# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL" ]
[ 39, 72 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# ArcheoBERTje\nA Dutch BERT model for the Archaeology domain\n\nThis model is based on the Dutch BERTje model by wietsedv (URL \n\nWe further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (URL" ]
[ 0.0019821133464574814, 0.06830266118049622, -0.002828224329277873, 0.11940990388393402, -0.019379904493689537, -0.0719759538769722, 0.031051402911543846, 0.03539545461535454, 0.14995379745960236, -0.048501674085855484, 0.13667909801006317, 0.13155460357666016, -0.04211318865418434, -0.03119264915585518, -0.025294534862041473, -0.2914571464061737, 0.024872316047549248, 0.06088151037693024, -0.07988179475069046, 0.059229038655757904, 0.05480824038386345, -0.14002889394760132, 0.1040513888001442, 0.02342214435338974, -0.07226032763719559, 0.0983797088265419, -0.12546201050281525, -0.06613714247941971, 0.14552925527095795, -0.07815016061067581, 0.13568955659866333, -0.019552841782569885, 0.09158272296190262, 0.07398273795843124, -0.011612631380558014, -0.12114480882883072, -0.0022261019330471754, 0.04022003710269928, 0.05098133906722069, 0.03779752179980278, -0.028428224846720695, 0.0853976309299469, -0.04529225826263428, -0.07012423127889633, -0.0808413103222847, -0.07136105000972748, -0.04094548523426056, -0.06259817630052567, 0.04729578644037247, 0.04351949691772461, 0.0011638510040938854, 0.1283690631389618, -0.1319863647222519, 0.04600892215967178, 0.14009049534797668, -0.28630709648132324, -0.027524305507540703, 0.049083542078733444, 0.03880270943045616, 0.020556163042783737, -0.06822535395622253, 0.1357019692659378, -0.012204065918922424, 0.06635580956935883, 0.03951927646994591, -0.1327986717224121, -0.04554710537195206, -0.017008308321237564, -0.061395857483148575, -0.00948786549270153, 0.23023302853107452, 0.006342277862131596, -0.002327573485672474, 0.05305718258023262, -0.05622362717986107, 0.14848659932613373, -0.020585771650075912, -0.0048456331714987755, -0.0375368669629097, -0.04831424728035927, 0.0017081322148442268, -0.04800579324364662, -0.04009304568171501, 0.01319228857755661, -0.146196186542511, 0.20648467540740967, -0.000397305004298687, -0.004204040393233299, -0.11102161556482315, 0.09106747061014175, -0.105825275182724, -0.11291009932756424, 0.0009377259411849082, 0.04256414249539375, 0.009748745709657669, -0.05059662461280823, 0.002573292702436447, -0.08027321100234985, 0.04417087137699127, 0.14289747178554535, 0.1461487114429474, 0.02416076697409153, -0.11321976780891418, 0.08314938843250275, 0.07246170192956924, 0.08241860568523407, -0.08115887641906738, -0.13779164850711823, 0.06730301678180695, -0.11012867838144302, 0.010804574005305767, 0.0361398309469223, -0.15491609275341034, -0.13887888193130493, 0.07785621285438538, 0.01637101359665394, 0.06164945662021637, -0.0034719742834568024, 0.05664694681763649, -0.0324295274913311, -0.031338442116975784, -0.018802443519234657, 0.04515162482857704, -0.08291874080896378, -0.013714230619370937, 0.034443292766809464, -0.028495056554675102, 0.036404337733983994, 0.035792648792266846, 0.10431885719299316, -0.021317483857274055, 0.01780722662806511, 0.010918451473116875, -0.17179767787456512, 0.03382771089673042, -0.0748366117477417, 0.03453003242611885, -0.20943845808506012, -0.17508363723754883, 0.06207387521862984, 0.09046343713998795, -0.05718086659908295, 0.024877389892935753, -0.018689392134547234, -0.003805311396718025, 0.03203579783439636, -0.06892701238393784, 0.09104488044977188, -0.03298148140311241, 0.0031036497093737125, -0.1044110506772995, 0.10714686661958694, -0.178097665309906, 0.040128372609615326, -0.09011691063642502, 0.003684686031192541, -0.23542946577072144, -0.04501374438405037, -0.0017026012064889073, 0.07069581747055054, -0.07482190430164337, 0.002599194413051009, -0.10955796390771866, 0.025467492640018463, 0.12816186249256134, 0.14423805475234985, -0.09519968181848526, -0.02784438617527485, 0.14773203432559967, -0.026143796741962433, -0.08215486258268356, 0.15852472186088562, -0.05059327185153961, 0.02710157074034214, 0.021546052768826485, 0.1410340815782547, -0.10699909180402756, -0.10425460338592529, 0.056341689079999924, 0.027476638555526733, 0.082177072763443, -0.10447958111763, 0.07138187438249588, -0.046614207327365875, 0.020214559510350227, 0.012450329028069973, -0.07703729718923569, 0.058444615453481674, -0.029190078377723694, 0.02533595636487007, 0.012919933535158634, -0.10231827944517136, 0.16565366089344025, -0.017630193382501602, 0.16296343505382538, -0.12357157468795776, -0.011078444309532642, 0.08123288303613663, -0.015156480483710766, -0.009320580400526524, -0.0025643242988735437, 0.004648193717002869, 0.15298683941364288, -0.1548762321472168, 0.02036147750914097, -0.1400323510169983, -0.0465720035135746, 0.09221860766410828, -0.028075451031327248, -0.001887134276330471, 0.12905661761760712, 0.14613299071788788, 0.037860844284296036, -0.04705582931637764, 0.015184273943305016, -0.03705413267016411, 0.04021196812391281, -0.12065070122480392, -0.05307647958397865, -0.03998700901865959, -0.054916780441999435, -0.15228603780269623, 0.08963067084550858, -0.0326373316347599, -0.05164959654211998, 0.1736895740032196, -0.020207645371556282, 0.012159942649304867, -0.06602656841278076, 0.05793324112892151, -0.054679784923791885, 0.03776697814464569, 0.010390319861471653, -0.020374389365315437, 0.005048038437962532, 0.11813703924417496, 0.051409587264060974, 0.16053834557533264, 0.16083277761936188, -0.23084020614624023, 0.07991212606430054, 0.04722663387656212, 0.0021266965195536613, -0.030216895043849945, -0.07492794096469879, -0.23562420904636383, 0.21906572580337524, 0.059277214109897614, 0.09062045067548752, -0.04654978960752487, -0.03324555605649948, -0.02004670910537243, -0.04322056472301483, -0.05590170621871948, 0.12024010717868805, 0.0033482469152659178, -0.11898691207170486, 0.13316784799098969, 0.21991212666034698, -0.09938260167837143, -0.005484180990606546, 0.05125514045357704, -0.025682007893919945, -0.003510594367980957, -0.07684480398893356, -0.005753715056926012, 0.09373801201581955, -0.17227794229984283, -0.06124921143054962, 0.08514748513698578, -0.017527781426906586, -0.01267003919929266, 0.02512587420642376, 0.01885814405977726, 0.020931480452418327, 0.11928888410329819, 0.012253818102180958, 0.04632144421339035, -0.029239242896437645, 0.11433631181716919, -0.023269077762961388, -0.13720352947711945, -0.01998254284262657, 0.005522727034986019, 0.035405632108449936, 0.11049485951662064, -0.06870001554489136, -0.3012915849685669, -0.10362135618925095, -0.214339017868042, -0.04810540750622749, -0.00586664630100131, 0.0610039159655571, -0.11134389042854309, -0.0604572594165802, 0.065340057015419, 0.07413812726736069, -0.06683746725320816, 0.026618266478180885, -0.01579819619655609, -0.10386557877063751, -0.10250195115804672, -0.07157613337039948, -0.12055429071187973, -0.08286973834037781, 0.001555263763293624, 0.14051955938339233, -0.0731876865029335, 0.11672291159629822, -0.06662314385175705, -0.08482147753238678, 0.058169592171907425, 0.019458958879113197, 0.07662926614284515, 0.03795187547802925, 0.04343413561582565, 0.16925311088562012, -0.1146640032529831, 0.023425834253430367, 0.0890992134809494, 0.06656413525342941, -0.059303347021341324, -0.03878529742360115, 0.024886010214686394, -0.1097949743270874, -0.0635492205619812, -0.09237267822027206, -0.09379666298627853, -0.04328247532248497, 0.15974149107933044, -0.021551700308918953, 0.023569626733660698, 0.056083690375089645, 0.04922017082571983, 0.058984074741601944, -0.07715880125761032, 0.016059983521699905, 0.0656619668006897, 0.018768634647130966, 0.08907661586999893, 0.0704231783747673, -0.1451152265071869, -0.005639348644763231, 0.011238993145525455, 0.06002364680171013, 0.09783229231834412, 0.006457696668803692, -0.042142678052186966, 0.07427337020635605, 0.11121898144483566, 0.18881455063819885, -0.04337267577648163, -0.037984929978847504, -0.023582881316542625, -0.0721132755279541, 0.03724570944905281, 0.02787592262029648, 0.09577952325344086, 0.02396155707538128, -0.034815117716789246, -0.11452947556972504, 0.032494593411684036, 0.05445655435323715, 0.1201702207326889, -0.16720269620418549, 0.01931801252067089, 0.020366817712783813, -0.015991270542144775, -0.08759869635105133, 0.011011072434484959, -0.013305535539984703, -0.1289808452129364, -0.0055888039059937, -0.07028309255838394, 0.1215692013502121, -0.05327608436346054, 0.08001796901226044, -0.07850704342126846, -0.07317066192626953, -0.020466534420847893, -0.042497701942920685, -0.29111313819885254, 0.3168836534023285, -0.019805867224931717, -0.006544492207467556, -0.06759031116962433, -0.0008245527860708535, 0.07153329998254776, -0.006315004080533981, 0.16963854432106018, 0.027764683589339256, 0.10254448652267456, 0.08677051216363907, -0.19282490015029907, 0.028436336666345596, -0.07706385105848312, -0.13877339661121368, 0.055358901619911194, 0.0801553949713707, 0.0008518345421180129, -0.049456387758255005, 0.11488483846187592, -0.04511483386158943, -0.006316895596683025, -0.03223060071468353, -0.006961809936910868, 0.01667516864836216, 0.058628033846616745, -0.09780003875494003, -0.19953899085521698, 0.1492626965045929, 0.11725302040576935, -0.06282040476799011, -0.09477711468935013, 0.1592395156621933, 0.10945924371480942, -0.04725665971636772, 0.030367104336619377, -0.05473746731877327, -0.010538475587964058, -0.07895994931459427, -0.12820589542388916, 0.08290920406579971, -0.14936962723731995, 0.11174100637435913, -0.07911255210638046, 0.012971475720405579, 0.09595241397619247, 0.06355512887239456, 0.04599811136722565, 0.04323755204677582, -0.03744221851229668, -0.017564423382282257, 0.03905302286148071, -0.06092100217938423, 0.05095003545284271, -0.0393727608025074, -0.10759287327528, 0.09831079095602036, -0.022236282005906105, 0.02672727033495903, 0.17918117344379425, 0.08715086430311203, -0.03885143622756004, 0.002079149940982461, 0.22313575446605682, -0.01975724659860134, -0.3930031955242157, -0.004126596264541149, 0.04715311527252197, 0.08238623291254044, -0.0050152139738202095, -0.11947944760322571, 0.2382686734199524, 0.07671957463026047, -0.007464392110705376, -0.12934884428977966, -0.06456451117992401, -0.08628707379102707, 0.32488203048706055, 0.02202797308564186, 0.38123342394828796, 0.014342752285301685, 0.012561448849737644, -0.011650887317955494, -0.27969399094581604, -0.050693072378635406, 0.07829028367996216, -0.03815750032663345, -0.05850806087255478, 0.12701064348220825, 0.0666913315653801, -0.03493441268801689, 0.062072668224573135, 0.0756107047200203, 0.031151244416832924, -0.05105706676840782, -0.09728991985321045, -0.017071764916181564, -0.06156393140554428, 0.0581633597612381, 0.037428613752126694, -0.05366060137748718, -0.08493220061063766, 0.0455717034637928, -0.07192691415548325, 0.16829238831996918, -0.0006219504866749048, -0.0963502824306488, 0.10335803776979446, -0.01755906641483307, -0.047285184264183044, 0.05557939037680626, 0.30426427721977234, 0.06538303941488266, 0.027062850072979927, 0.003168125869706273, 0.07092399895191193, -0.028543421998620033, -0.058790650218725204, 0.019796498119831085, -0.025341404601931572, 0.018551265820860863, 0.12429436296224594, 0.018251094967126846, 0.17353130877017975, 0.04274595156311989, -0.006259596906602383, 0.054328106343746185, -0.008555357344448566, 0.011218960396945477, 0.027557989582419395, -0.12926779687404633, 0.013442796654999256, -0.026955945417284966, -0.03150911256670952, 0.07845095545053482, -0.006058196537196636, 0.14824286103248596, -0.027890264987945557, -0.012534953653812408, 0.008470572531223297, -0.028231531381607056, 0.0028853376861661673, 0.07277676463127136, -0.05104675143957138, -0.0023839634377509356, -0.08305613696575165, 0.08055827766656876, -0.04939589276909828, -0.0048741730861365795, 0.03902725130319595, -0.027051430195569992, -0.05974455177783966, -0.04811035469174385, 0.03506256639957428, 0.16518902778625488, -0.10696419328451157, 0.023757804185152054, -0.04269295930862427, -0.08501625061035156, -0.015121047385036945, 0.03444612771272659, 0.10438760370016098, -0.078832246363163, -0.08529520779848099, -0.016484593972563744, -0.0463445819914341, 0.10080622136592865, 0.040936920791864395, 0.06701985001564026, -0.026582768186926842, -0.04173802211880684, -0.1081836149096489, 0.03584995120763779, -0.05866606906056404, 0.008151024580001831, -0.09632258862257004, 0.021315187215805054, -0.19242605566978455, -0.0781613141298294, -0.11654429137706757, -0.08184965699911118, -0.030847543850541115, -0.11855469644069672, -0.018825124949216843, 0.027725592255592346, -0.12681755423545837, 0.042781904339790344, 0.06994634866714478, 0.026601210236549377, 0.005500294733792543, -0.11689788848161697, 0.05603477731347084, -0.06712955981492996, 0.05956530198454857, 0.182462677359581, 0.025881066918373108, 0.1359117329120636, -0.06679262220859528, -0.05457000806927681, 0.05246156081557274, 0.10537628829479218, 0.16610737144947052, 0.07096608728170395, -0.0355612151324749, 0.02918209694325924, 0.017066797241568565, 0.03858131915330887, 0.10196203738451004, -0.03575586527585983, 0.029614755883812904, 0.03257915750145912, -0.10851214826107025, -0.00215289113111794, 0.10678854584693909, 0.12210603058338165, 0.044433776289224625, -0.016629884019494057, -0.004865844734013081, 0.03420083224773407, -0.03151802346110344, 0.027624379843473434, -0.04151751846075058, -0.12852440774440765, -0.058358605951070786, -0.09857470542192459, 0.059503089636564255, -0.02336806431412697, 0.07707953453063965, 0.10809606313705444, 0.01083131693303585, -0.01011724304407835, 0.004641713108867407, 0.022990068420767784, 0.011686280369758606, 0.1627955436706543, -0.006792807951569557, -0.08236908167600632, -0.08943962305784225, 0.06630581617355347, 0.044771503657102585, 0.15358614921569824, 0.1568758487701416, 0.14470545947551727, 0.03481519967317581, 0.024366656318306923, 0.08479847759008408, -0.021212497726082802, -0.1362798810005188, -0.15881729125976562, 0.12239187955856323, 0.175190269947052, 0.03167007863521576, 0.08859279006719589, 0.01629732921719551, 0.016309596598148346, -0.017360903322696686, 0.023031027987599373, 0.0011005671694874763, -0.10509533435106277, -0.07315225154161453, -0.0332738421857357, 0.0733339712023735, -0.02855127863585949, -0.11525251716375351, -0.010381382890045643, -0.034092020243406296, 0.029994577169418335, -0.0379161536693573, 0.09740809351205826, -0.01375439390540123, -0.07982277870178223, 0.060419969260692596, -0.03000073879957199, 0.028915509581565857, -0.05152294412255287, -0.003384398529306054, -0.16287927329540253, 0.08743449300527573, -0.09342394769191742, 0.011634763330221176, -0.1111636683344841, -0.05211303010582924, -0.030950471758842468, -0.06200803443789482, -0.047454528510570526, -0.11690283566713333, -0.06602759659290314, -0.021722489967942238, 0.048511289060115814, -0.06293002516031265, -0.05026276037096977, 0.02594156749546528, -0.0006569410325028002, 0.046873822808265686, 0.028281010687351227, 0.1558557152748108, 0.024224471300840378, 0.07367351651191711, 0.04356728494167328, 0.05779024958610535, 0.001535580842755735, 0.201381117105484, 0.16370241343975067, 0.03521280735731125, 0.019131537526845932, 0.041718147695064545, 0.00991076324135065, 0.03719080984592438, 0.026316260918974876, -0.01887531764805317, 0.19983933866024017, -0.055639855563640594, -0.042918745428323746, -0.09518328309059143, -0.06832543015480042, -0.0835169106721878, -0.051997486501932144, 0.06848763674497604, -0.05498956888914108, -0.09016945958137512, 0.060213759541511536, -0.010780736804008484, 0.009517173282802105, -0.04867284372448921, -0.1700509637594223, -0.08928081393241882, -0.0434018149971962, -0.09835989773273468, 0.06045576184988022, 0.10410153120756149, -0.14034631848335266, 0.016156380996108055, 0.10220794379711151, 0.004657410550862551, -0.08498521149158478, -0.07058297842741013, 0.10458673536777496, 0.05376981198787689, 0.06126667931675911, -0.024217261001467705, 0.007598002441227436, 0.12201756983995438, 0.0041011059656739235, 0.014645970426499844, -0.0655122846364975, 0.02634209394454956, 0.01140130776911974, 0.03284088522195816, -0.019263243302702904, -0.01626082882285118, 0.0029798659961670637, -0.009903729893267155, -0.017175249755382538, 0.026952948421239853, -0.012111795134842396, -0.10718100517988205, 0.0034812460653483868, 0.07662743330001831, 0.005235792137682438, 0.07163523137569427, 0.07692868262529373, -0.03380412608385086, -0.030033862218260765, -0.040649838745594025, 0.015057381242513657, 0.12405390292406082, -0.013944551348686218, -0.12672942876815796, -0.15484674274921417, -0.06612648069858551, -0.04289339855313301, -0.08667263388633728, -0.15099084377288818, -0.0772748664021492, -0.1087658703327179, 0.026888828724622726, -0.06651244312524796, -0.0847756639122963, 0.07451238483190536, -0.026094183325767517, 0.027302023023366928, 0.19190195202827454, -0.0027272910811007023, 0.0767928883433342, -0.06292138248682022, -0.06788837909698486 ]
null
null
transformers
# wav2vec2-large-xlsr-polish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.846030 ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "pl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2vec2 Large 53 Polish by Alex Leu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pl", "type": "common_voice", "args": "pl"}, "metrics": [{"type": "wer", "value": 24.84603, "name": "Test WER"}]}]}]}
automatic-speech-recognition
alexcleu/wav2vec2-large-xlsr-polish
[ "transformers", "pytorch", "jax", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "pl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pl" ]
TAGS #transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-polish Fine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 24.846030 ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030", "## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030", "## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 85, 60, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-polish\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Polish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\nTest Result: 24.846030## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.1590825617313385, -0.0023187820333987474, -0.0030325329862535, -0.02981872484087944, 0.08129357546567917, -0.041220523416996, 0.22326013445854187, 0.07158166170120239, -0.012995102442800999, 0.0031583241652697325, 0.04994583502411842, 0.03436199203133583, 0.039906542748212814, 0.09431580454111099, -0.019647175446152687, -0.19828060269355774, 0.04716802015900612, -0.0068880910985171795, 0.07587869465351105, 0.12892761826515198, 0.10765763372182846, -0.08071917295455933, -0.02153952419757843, 0.08091961592435837, -0.12730421125888824, 0.0451839305460453, 0.04197857901453972, -0.13134296238422394, 0.14854660630226135, 0.05405512824654579, 0.07774119079113007, 0.03617745637893677, 0.04669434204697609, -0.18355251848697662, 0.02640010230243206, 0.03596419468522072, 0.012951607815921307, 0.012230264954268932, 0.06636231392621994, -0.06603507697582245, 0.1257314234972, 0.02683623693883419, -0.009850723668932915, 0.03147632256150246, -0.05723124369978905, -0.24184446036815643, -0.02913082018494606, 0.050482284277677536, 0.10088032484054565, 0.12780511379241943, -0.07047277688980103, 0.12483876198530197, -0.13028179109096527, 0.1110791489481926, 0.08206852525472641, -0.21474336087703705, -0.028122391551733017, -0.002063743770122528, 0.005370993632823229, 0.10868722200393677, -0.043639328330755234, 0.041433729231357574, 0.021631043404340744, 0.0164751298725605, -0.00849661324173212, -0.030565481632947922, -0.1532287299633026, -0.054927315562963486, -0.13291113078594208, -0.050439972430467606, 0.21038444340229034, -0.027499040588736534, -0.06547997891902924, -0.17225822806358337, 0.00007035077578620985, 0.01821405068039894, -0.010828564874827862, -0.046959396451711655, -0.03931235894560814, -0.006063763052225113, -0.012101828120648861, -0.011869723908603191, -0.10470195859670639, -0.12248487025499344, 0.00160744518507272, 0.1846531331539154, 0.039629705250263214, 0.02219907008111477, -0.0935063511133194, 0.07335779815912247, -0.04473338648676872, -0.07813896238803864, 0.015324393287301064, 0.042562779039144516, -0.06432195007801056, 0.01708448864519596, -0.07217129319906235, -0.1706761121749878, 0.049460042268037796, -0.02122393436729908, 0.021989302709698677, 0.02851944789290428, -0.017271187156438828, 0.07400208711624146, 0.015813840553164482, 0.07721073925495148, -0.043521348387002945, -0.01866201125085354, 0.008771995082497597, 0.003902643220499158, -0.02282392978668213, -0.01780015602707863, -0.05397317558526993, -0.04969552904367447, 0.050813812762498856, 0.09140626341104507, -0.034268029034137726, 0.018350055441260338, 0.009424376301467419, -0.017092788591980934, 0.007371974177658558, -0.10353909432888031, -0.05835467949509621, 0.07303804159164429, 0.007984551601111889, 0.0867694765329361, 0.00011549756891326979, 0.0391363799571991, -0.08729998022317886, 0.026802033185958862, 0.046877797693014145, 0.03799539804458618, 0.009412730112671852, -0.10353632271289825, 0.007232400588691235, -0.010487126186490059, -0.0016529493732377887, -0.11724425107240677, -0.09621153771877289, -0.07015534490346909, -0.009825407527387142, 0.04043092951178551, 0.015805473551154137, -0.08607347309589386, -0.015545478090643883, -0.005884304642677307, -0.06164101883769035, 0.024073993787169456, -0.05886824056506157, 0.09513606876134872, -0.019006328657269478, 0.025064950808882713, 0.03563333675265312, 0.05796203389763832, -0.12094420194625854, -0.06945566087961197, -0.015668489038944244, 0.11064303666353226, -0.0303784366697073, -0.05915715545415878, -0.06764807552099228, -0.0742080956697464, -0.026851920410990715, 0.05753599852323532, 0.05055765062570572, 0.10249672085046768, -0.23531171679496765, -0.08311081677675247, 0.19815467298030853, -0.1585419476032257, -0.035622354596853256, 0.21688857674598694, -0.013192768208682537, 0.10315877199172974, 0.15830275416374207, 0.280003160238266, 0.12134689837694168, -0.17326463758945465, 0.00978787150233984, -0.013318629004061222, -0.01476626843214035, -0.0052661593072116375, 0.06158997491002083, -0.05941707640886307, -0.03120402991771698, 0.03848157450556755, -0.08252663910388947, 0.08144906908273697, -0.02937428466975689, -0.06371694803237915, -0.01169454213231802, -0.09338830411434174, 0.09914062172174454, 0.03859499469399452, 0.011793091893196106, -0.08180099725723267, -0.06623216718435287, 0.04166775569319725, 0.13536670804023743, -0.14570201933383942, 0.022699818015098572, -0.08743353933095932, 0.10035792738199234, -0.10300431400537491, -0.020032230764627457, -0.13080771267414093, 0.12655501067638397, -0.03611969202756882, 0.05932847782969475, 0.04063022509217262, 0.11423800140619278, 0.027355758473277092, 0.024158364161849022, -0.04129553213715553, -0.04214868322014809, 0.012794839218258858, 0.003883163910359144, -0.04143359139561653, -0.11134030669927597, 0.00405991030856967, -0.053868819028139114, 0.09818863123655319, -0.14580972492694855, -0.0003016248519998044, 0.038840893656015396, 0.03238958492875099, -0.001782032079063356, -0.012347652576863766, 0.03216792643070221, 0.09347677230834961, 0.027591852471232414, 0.0009852530201897025, 0.03990579769015312, 0.01336669921875, -0.028506223112344742, 0.1489701271057129, -0.20434975624084473, 0.050817470997571945, 0.11670859903097153, -0.025875240564346313, -0.04012376442551613, 0.031525421887636185, -0.03431099280714989, -0.009622658602893353, -0.0649946853518486, -0.01155196875333786, 0.27375030517578125, -0.011028905399143696, 0.0990365743637085, -0.10149115324020386, -0.0020276575814932585, 0.04352947697043419, -0.08526051044464111, 0.0389380156993866, 0.08742881566286087, -0.04445502907037735, -0.018500953912734985, 0.06304743140935898, -0.00918187852948904, -0.06168275326490402, 0.2594539225101471, -0.029809454455971718, -0.08895353972911835, 0.019277414306998253, 0.023307058960199356, -0.01523754745721817, 0.1286955177783966, -0.16738739609718323, -0.032604482024908066, 0.03044811449944973, 0.04857949540019035, 0.07429224252700806, -0.13862086832523346, 0.012954638339579105, 0.012814892455935478, -0.1242070198059082, -0.15149390697479248, 0.0721760243177414, -0.025904597714543343, 0.07789731025695801, -0.12417010962963104, -0.03258669376373291, 0.007821829989552498, -0.038049113005399704, -0.1664542257785797, 0.13209283351898193, -0.06870490312576294, -0.23380546271800995, -0.1087198406457901, 0.032813165336847305, 0.000020172579752397723, -0.0027500097639858723, 0.1003318652510643, -0.11739836633205414, 0.011371065862476826, -0.020230203866958618, 0.10517425090074539, 0.003480303566902876, -0.020042071118950844, -0.11793084442615509, 0.011002754792571068, 0.0562182292342186, -0.12762704491615295, 0.0007868435932323337, -0.06797705590724945, -0.03690728545188904, 0.015766361728310585, 0.002055840101093054, 0.017393197864294052, 0.13916075229644775, -0.014289408922195435, 0.014545023441314697, -0.045507047325372696, 0.16982921957969666, -0.1288636028766632, -0.04913773015141487, 0.17027533054351807, -0.030922042205929756, -0.026633361354470253, 0.09625666588544846, 0.02767680399119854, -0.05016692727804184, -0.013584769330918789, -0.014033906161785126, -0.07725491374731064, -0.20979717373847961, -0.1523246467113495, -0.05434606224298477, -0.05316441133618355, -0.01656375452876091, 0.009196015074849129, 0.05495309829711914, 0.029676347970962524, -0.06371299922466278, -0.1213424950838089, 0.05748015269637108, -0.014572879299521446, 0.11666689068078995, 0.0047703953459858894, 0.08522601425647736, -0.05683022364974022, -0.05588725954294205, 0.018626917153596878, -0.012690653093159199, 0.15737493336200714, 0.03047451563179493, 0.029245059937238693, 0.08630179613828659, 0.14833641052246094, 0.0951945036649704, 0.10598423331975937, -0.03816549852490425, -0.007299347314983606, 0.028887039050459862, -0.08967886865139008, -0.03294076398015022, 0.011622046120464802, 0.08837946504354477, -0.02114430069923401, -0.08368583023548126, -0.05480896309018135, 0.06379234045743942, 0.16568708419799805, 0.05631198361515999, -0.18917281925678253, -0.09671062231063843, -0.051321059465408325, -0.06754916906356812, 0.0016366401687264442, 0.038361188024282455, 0.16682353615760803, -0.1331423819065094, 0.016223439946770668, -0.021376673132181168, 0.06620897352695465, -0.02865060232579708, 0.026529798284173012, -0.10184542089700699, 0.0006125638610683382, -0.020825373008847237, 0.10671169310808182, -0.23786762356758118, 0.22638042271137238, 0.016486044973134995, 0.16796588897705078, -0.08292634785175323, -0.02379353530704975, 0.018889296799898148, 0.039340727031230927, 0.11628808826208115, 0.009778080508112907, 0.01645982451736927, -0.10407885164022446, -0.10702186822891235, 0.07081519067287445, 0.013743768446147442, 0.03955078125, 0.03832182288169861, 0.013575292192399502, 0.023867372423410416, 0.0050004408694803715, -0.08429523557424545, -0.1457240730524063, -0.09083632379770279, 0.005509717855602503, 0.15042580664157867, 0.07976865768432617, -0.02652062475681305, -0.09525061398744583, -0.08554573357105255, 0.05477296561002731, -0.04958188906311989, -0.0794377326965332, -0.06945805996656418, -0.07713790982961655, 0.11114222556352615, -0.06986291706562042, -0.006382819265127182, 0.09164348989725113, 0.09129225462675095, -0.05013936758041382, -0.04053565487265587, 0.02450193464756012, -0.11342664062976837, -0.11967985332012177, 0.006008156109601259, 0.192402645945549, 0.12290000170469284, 0.06829718500375748, 0.07733222097158432, 0.010702711530029774, -0.004114787094295025, -0.05854066461324692, -0.02435714192688465, 0.04262777045369148, -0.10892721265554428, 0.03057306818664074, 0.04895959421992302, -0.15933488309383392, -0.13645817339420319, -0.04321695491671562, 0.16717137396335602, 0.09779274463653564, -0.05180852860212326, 0.1770484298467636, 0.19048869609832764, -0.07057950645685196, -0.1852758675813675, -0.024337351322174072, 0.08323252946138382, 0.11243126541376114, -0.017725158482789993, -0.12993210554122925, 0.06898406893014908, 0.016607893630862236, -0.027874603867530823, -0.037848711013793945, -0.2885313928127289, -0.14393830299377441, 0.19586774706840515, -0.0004130386223550886, 0.14683587849140167, -0.009870601817965508, -0.012857935391366482, -0.0033461605198681355, 0.0657220184803009, 0.03474341705441475, -0.1816340684890747, 0.09162848442792892, 0.04301866888999939, 0.09132303297519684, 0.060065388679504395, -0.025978203862905502, 0.11064545810222626, 0.06126880645751953, 0.0040369597263634205, -0.020022636279463768, 0.0630105510354042, 0.026452306658029556, 0.027163280174136162, 0.11771930754184723, -0.12887011468410492, 0.04656454175710678, -0.11053680628538132, -0.09136544913053513, -0.08263576775789261, 0.09054700285196304, 0.001060677575878799, -0.041582487523555756, 0.02281864359974861, -0.04783899337053299, 0.01753241941332817, 0.0052610174752771854, -0.06334930658340454, -0.12148724496364594, 0.06950157135725021, 0.07818017899990082, 0.17161788046360016, -0.05066242069005966, -0.09751186519861221, -0.010784103535115719, -0.037102628499269485, 0.11167363077402115, -0.042156659066677094, 0.019352871924638748, 0.06681791692972183, 0.046821217983961105, 0.10606859624385834, 0.008589165285229683, -0.0898727998137474, 0.0749715119600296, 0.03510485962033272, -0.10973549634218216, -0.11672861129045486, -0.015547730959951878, -0.027609065175056458, -0.010902220383286476, 0.045761995017528534, 0.11646466702222824, -0.10483457148075104, -0.0008142534643411636, -0.053039733320474625, -0.008331057615578175, -0.10710091888904572, 0.2364993393421173, 0.027375679463148117, 0.0568348653614521, -0.11395759135484695, 0.023981435224413872, -0.022962938994169235, -0.07464831322431564, 0.048869650810956955, -0.039165593683719635, -0.08410505950450897, -0.06016051024198532, -0.006852095481008291, 0.06794925779104233, 0.06776957213878632, -0.16512398421764374, -0.0740509033203125, -0.11330854147672653, -0.02232699654996395, 0.09730909764766693, 0.06648308038711548, 0.010763860307633877, -0.1052076444029808, -0.06371786445379257, -0.13029880821704865, 0.0807441920042038, 0.10089840739965439, -0.027652259916067123, -0.0892447680234909, 0.23380586504936218, 0.07490994036197662, 0.013049593195319176, -0.04798546060919762, -0.05506464093923569, -0.013302044942975044, 0.08750659972429276, -0.07453130930662155, -0.005901131313294172, -0.060459066182374954, 0.011217459104955196, 0.006880690809339285, -0.05921739712357521, -0.00932092871516943, 0.060921769589185715, -0.08444763720035553, 0.07856065034866333, 0.007773932069540024, 0.04357760399580002, -0.09614791721105576, 0.033425845205783844, 0.003180608619004488, -0.05484844371676445, 0.10611142218112946, 0.16545924544334412, -0.1075543537735939, 0.1359487920999527, -0.21730439364910126, -0.02285804972052574, 0.046921905130147934, 0.05067940801382065, -0.03346971422433853, -0.08743716031312943, 0.03851386159658432, 0.10758465528488159, 0.04684128239750862, 0.029478760436177254, 0.0847042053937912, -0.06651825457811356, 0.03553884103894234, -0.035045091062784195, 0.0003787976165767759, -0.03636768460273743, 0.04543965309858322, 0.03374561294913292, 0.11414898186922073, 0.16926611959934235, -0.12641358375549316, 0.10212554782629013, -0.10127126425504684, 0.008726942352950573, -0.04638528823852539, -0.04702837020158768, -0.10445119440555573, -0.04737478867173195, 0.07136311382055283, -0.04215490445494652, 0.13841846585273743, 0.03915462642908096, 0.05199342966079712, -0.023784492164850235, -0.08338027447462082, 0.049098122864961624, -0.01266529131680727, 0.26898640394210815, 0.02628229930996895, 0.019838586449623108, -0.059302665293216705, -0.010248697362840176, 0.0032588657923042774, 0.07816942036151886, 0.0039970953948795795, 0.19094140827655792, 0.02422155812382698, 0.059869322925806046, 0.08886361867189407, -0.045402444899082184, -0.024196384474635124, -0.09576426446437836, -0.09375102818012238, 0.023283230140805244, -0.04543081298470497, 0.18691234290599823, 0.17374013364315033, -0.07888798415660858, 0.06574995815753937, 0.02946721576154232, -0.08909623324871063, -0.1343037635087967, -0.10356055200099945, -0.04244346544146538, -0.12549670040607452, 0.013191699981689453, -0.09394921362400055, 0.0065145306289196014, 0.06573367863893509, 0.05310690775513649, -0.02987476997077465, 0.18681098520755768, 0.010686805471777916, -0.07883130759000778, 0.09960772097110748, -0.07806801795959473, 0.005280968267470598, -0.09277479350566864, -0.0013419894967228174, 0.12899726629257202, -0.0245891772210598, 0.075278140604496, 0.011558083817362785, -0.06599491089582443, 0.011143626645207405, -0.08446604013442993, -0.055282048881053925, -0.00044435527524910867, -0.01809750124812126, 0.11072512716054916, 0.14977607131004333, 0.12333802878856659, -0.06774367392063141, -0.03003707155585289, 0.13184459507465363, -0.012593603692948818, -0.1725318878889084, -0.12330017238855362, 0.12169761955738068, 0.01927344501018524, 0.026261087507009506, 0.006931822746992111, -0.04441915079951286, 0.02005109004676342, 0.21883010864257812, 0.25089341402053833, 0.08112162351608276, 0.05332900956273079, -0.05570018291473389, -0.004373172298073769, -0.033842120319604874, 0.06663971394300461, 0.04981445148587227, 0.26210346817970276, -0.017537543550133705, 0.047202568501234055, -0.10423137247562408, -0.05293067917227745, -0.019000159576535225, 0.069831982254982, -0.04612519592046738, -0.1121479719877243, -0.0024123580660670996, 0.16709838807582855, -0.04343307390809059, -0.09018721431493759, -0.1041751578450203, -0.07147544622421265, -0.09977806359529495, 0.010955365374684334, 0.038220979273319244, 0.09621238708496094, 0.025226447731256485, -0.07313283532857895, 0.014269880950450897, 0.08811508864164352, 0.009608296677470207, -0.06174590066075325, -0.08538258820772171, 0.03446900472044945, -0.056307315826416016, 0.06386291235685349, -0.0005328567349351943, 0.16930420696735382, 0.02719666250050068, 0.08608420938253403, -0.009413942694664001, 0.14527174830436707, 0.00417304364964366, -0.07339660078287125, 0.05194512754678726, 0.11683294922113419, -0.029584158211946487, 0.0955645963549614, 0.04610692709684372, -0.12848395109176636, 0.07491660118103027, -0.11462368816137314, -0.015752404928207397, -0.06839703023433685, 0.06340985000133514, -0.020257817581295967, 0.07220906019210815, 0.0947861596941948, -0.05893244594335556, -0.017279131338000298, -0.04850311204791069, 0.05127478763461113, 0.05268799886107445, -0.06395523995161057, -0.010677238926291466, -0.26829665899276733, -0.01506196428090334, -0.057166796177625656, -0.043213289231061935, -0.22370004653930664, -0.020260049030184746, -0.009592147544026375, -0.07925926148891449, 0.0035598964896053076, 0.02783268131315708, 0.07475855201482773, 0.0013406752841547132, -0.006160991732031107, 0.028967073187232018, 0.028113780543208122, 0.1328548640012741, -0.1358172446489334, -0.09470009803771973 ]
null
null
transformers
t5_boolq
{}
text2text-generation
alexcruz0202/t5_boolq
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5_boolq
[]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.00556661281734705, 0.0164349228143692, -0.007315334863960743, 0.024348841980099678, 0.166501984000206, 0.024344393983483315, 0.11518356949090958, 0.1412411630153656, -0.0020334594883024693, -0.035958148539066315, 0.1319235861301422, 0.21714316308498383, -0.006268311757594347, 0.08315006643533707, -0.08710680902004242, -0.2602083683013916, 0.03483840078115463, 0.05276213958859444, 0.0049579935148358345, 0.12762698531150818, 0.08691143244504929, -0.0646481066942215, 0.09440414607524872, -0.03804538771510124, -0.17094822227954865, 0.05289003252983093, 0.06358526647090912, -0.12921307981014252, 0.11203359812498093, 0.04470131918787956, 0.10704579949378967, 0.035496506839990616, -0.04978400841355324, -0.14172321557998657, 0.0296106468886137, 0.026950722560286522, -0.06861023604869843, 0.06236075982451439, 0.1136597990989685, -0.09615244716405869, 0.08870459347963333, 0.0556039921939373, -0.004051631316542625, 0.062145017087459564, -0.15644147992134094, -0.029072636738419533, -0.01713588647544384, 0.023426201194524765, 0.07808161526918411, 0.09537342935800552, -0.008744281716644764, 0.1289428174495697, -0.09439463913440704, 0.13085374236106873, 0.15587438642978668, -0.3147599399089813, 0.001229330780915916, 0.04856342077255249, 0.05912892520427704, 0.08336716890335083, -0.016771415248513222, 0.03740086406469345, 0.02475069649517536, 0.028233950957655907, 0.042602118104696274, -0.08473630249500275, -0.1701638251543045, 0.042069677263498306, -0.0844234824180603, -0.05861080437898636, 0.24913406372070312, -0.05834462493658066, 0.06408444046974182, -0.01192506030201912, -0.11543367058038712, -0.06456129997968674, -0.011278037913143635, -0.012939955107867718, -0.04709155857563019, 0.06321226805448532, 0.02679656445980072, -0.05803138390183449, -0.13286004960536957, -0.009396729059517384, -0.17277660965919495, 0.11429595947265625, 0.011107098311185837, 0.055417537689208984, -0.23684222996234894, 0.0894838273525238, 0.045466348528862, -0.10835321247577667, 0.06076562777161598, -0.09032987058162689, 0.01951918564736843, -0.019337479025125504, -0.05594807490706444, -0.14819347858428955, 0.06912460923194885, 0.09622079879045486, 0.022458840161561966, 0.029469674453139305, -0.06034425273537636, 0.08020190894603729, 0.030660733580589294, 0.07118292897939682, 0.002764588687568903, -0.035829924046993256, 0.05543043091893196, -0.11155472695827484, -0.008295934647321701, -0.06744275242090225, -0.14817972481250763, -0.05471540614962578, 0.08553145080804825, 0.09807302802801132, 0.029591085389256477, 0.0872388631105423, -0.044323358684778214, -0.042564451694488525, 0.010892827063798904, -0.08642291277647018, -0.011313864029943943, -0.000025251778424717486, 0.017184332013130188, 0.13600346446037292, 0.016563422977924347, 0.014259100891649723, -0.15025922656059265, 0.051360122859478, -0.07618893682956696, -0.003882812336087227, -0.03447994589805603, -0.07451999187469482, 0.026431044563651085, -0.0926901325583458, 0.016483480110764503, -0.1643074005842209, -0.153541699051857, 0.019637132063508034, 0.019818242639303207, -0.01814674586057663, -0.05446401610970497, -0.04473382234573364, -0.03356395289301872, 0.050795428454875946, -0.06109105795621872, 0.007418809924274683, -0.04204783961176872, 0.09961801022291183, -0.03490151837468147, 0.0686439722776413, -0.10930459946393967, 0.07527212053537369, -0.1283227801322937, -0.024262387305498123, -0.07863514870405197, 0.05983925983309746, 0.0200795941054821, 0.13076506555080414, -0.03833391144871712, -0.023659348487854004, -0.060193415731191635, 0.03925630450248718, -0.0268486887216568, 0.19988413155078888, -0.1042189672589302, -0.10171450674533844, 0.2354324758052826, -0.06842701882123947, -0.1713089793920517, 0.09375571459531784, 0.0027509552892297506, 0.05962032452225685, 0.08849970251321793, 0.1733561009168625, 0.0375605970621109, -0.020121192559599876, 0.10614369064569473, 0.09608419239521027, -0.10053163021802902, -0.0855114683508873, 0.012432892806828022, -0.017932431772351265, -0.12291114777326584, 0.042022403329610825, 0.09157063812017441, 0.07639165967702866, -0.048442572355270386, -0.037454720586538315, -0.04233349487185478, -0.0037850758526474237, 0.07970551401376724, 0.003191957715898752, 0.12530799210071564, -0.060514260083436966, -0.017125345766544342, -0.00970730371773243, -0.021197473630309105, -0.02157456800341606, 0.0427994504570961, -0.029060563072562218, 0.11202826350927353, -0.044375836849212646, 0.04996176064014435, -0.19708573818206787, -0.07950518280267715, -0.00009459419379709288, 0.14823977649211884, 0.0025853270199149847, 0.08866212517023087, 0.053792256861925125, -0.03104301728308201, -0.0064215571619570255, -0.01630372181534767, 0.13401302695274353, -0.006087199319154024, -0.07446936517953873, -0.07821033149957657, 0.04426480084657669, -0.06450248509645462, -0.025050701573491096, -0.07281817495822906, 0.016727562993764877, 0.009908524341881275, 0.11566682159900665, 0.031677234917879105, 0.05078164488077164, -0.01658935472369194, 0.016670551151037216, -0.08533018827438354, 0.014296403154730797, 0.09961540251970291, -0.01141710951924324, -0.05103765428066254, 0.20229773223400116, -0.17161768674850464, 0.23491214215755463, 0.18393823504447937, -0.28944259881973267, 0.006632600445300341, -0.03537070378661156, -0.025985898450016975, 0.0020077917724847794, 0.056325092911720276, -0.024217087775468826, 0.08345092087984085, -0.0014518649550154805, 0.19566179811954498, -0.061056189239025116, -0.053328365087509155, 0.005299531389027834, -0.0574905127286911, -0.008797192946076393, 0.06659712642431259, 0.08905737847089767, -0.18937712907791138, 0.16803357005119324, 0.23161664605140686, 0.02284090220928192, 0.16994214057922363, -0.006134420167654753, -0.04078718274831772, 0.06990283727645874, -0.010529168881475925, -0.03422388434410095, -0.09309064596891403, -0.17318937182426453, -0.02589605376124382, 0.07576539367437363, 0.03613846004009247, 0.08636131882667542, -0.10028368979692459, -0.03196824714541435, -0.0030699449125677347, 0.0036774331238120794, -0.0154800433665514, 0.09314090013504028, 0.07135064154863358, 0.12889064848423004, -0.02095034345984459, -0.013992778956890106, 0.11097750067710876, 0.009291634894907475, -0.11979115754365921, 0.1863044798374176, -0.1367644965648651, -0.33287522196769714, -0.14580926299095154, -0.172042116522789, -0.028890058398246765, 0.034660134464502335, 0.11098358780145645, -0.09576473385095596, -0.024381177499890327, -0.00200450187548995, 0.07208182662725449, -0.08791472017765045, 0.026362471282482147, -0.08504201471805573, 0.06435829401016235, -0.06155692785978317, -0.07484325021505356, -0.04913013055920601, -0.009192944504320621, -0.03951077535748482, 0.1387929618358612, -0.12161171436309814, 0.05527077242732048, 0.18643830716609955, 0.0024109859950840473, 0.055052563548088074, -0.03348764404654503, 0.1838768720626831, -0.06276846677064896, 0.011544623412191868, 0.21395781636238098, -0.06411220878362656, 0.0745253935456276, 0.1306767761707306, -0.0033746296539902687, -0.06828748434782028, 0.03352054953575134, -0.03297126665711403, -0.07394568622112274, -0.26617541909217834, -0.0919879674911499, -0.13333486020565033, 0.07579639554023743, 0.0671529769897461, 0.05104738473892212, 0.17074435949325562, 0.06376895308494568, -0.0021396984811872244, 0.04823816567659378, 0.02085288241505623, 0.08897827565670013, 0.17748302221298218, -0.0035200107377022505, 0.12296830117702484, -0.05708124861121178, -0.11661257594823837, 0.07658019661903381, 0.06053204461932182, 0.11748291552066803, 0.06144772842526436, 0.0673404335975647, 0.009640947915613651, 0.09566781669855118, 0.13296754658222198, 0.14900599420070648, 0.02468167617917061, -0.008608612231910229, -0.030044887214899063, -0.03201429173350334, -0.039632637053728104, 0.03699196130037308, 0.027697665616869926, -0.11566830426454544, -0.09036512672901154, -0.08160438388586044, 0.06716005504131317, 0.13062477111816406, 0.07317515462636948, -0.22939440608024597, 0.021544968709349632, 0.07740186899900436, -0.04538768529891968, -0.1127815991640091, 0.08245086669921875, -0.011997534893453121, -0.1321650892496109, 0.05299573391675949, -0.059155527502298355, 0.12868814170360565, -0.03321857377886772, 0.09155638515949249, -0.036200251430273056, -0.07173743844032288, 0.023195916786789894, 0.1081700548529625, -0.3327305316925049, 0.19491779804229736, 0.004171358421444893, -0.06359637528657913, -0.10467778891324997, -0.0019751235377043486, 0.0009388330508954823, 0.11369986087083817, 0.10460136085748672, -0.001098173321224749, -0.044636908918619156, -0.07322456687688828, -0.004860122688114643, 0.020925045013427734, 0.1282682567834854, -0.03900206461548805, 0.012867438606917858, -0.060800474137067795, -0.020295564085245132, -0.018256759271025658, -0.0022203531116247177, -0.02081105299293995, -0.16639147698879242, 0.0740898847579956, 0.018359249457716942, 0.06382673978805542, 0.017137285321950912, -0.023163197562098503, -0.04883239418268204, 0.2122536450624466, -0.05754205211997032, -0.0916326716542244, -0.12432167679071426, -0.06284135580062866, 0.05895516648888588, -0.07722198963165283, 0.0446588434278965, -0.0745319053530693, 0.022527653723955154, -0.04819094017148018, -0.243226557970047, 0.1347477287054062, -0.09412279725074768, -0.03712499886751175, -0.05321687459945679, 0.1769246608018875, -0.08598630130290985, 0.004587682895362377, 0.019671428948640823, 0.005797455552965403, -0.09387195110321045, -0.05803963914513588, 0.005930939689278603, -0.007833045907318592, 0.043111652135849, 0.027385283261537552, -0.08851016312837601, -0.04925180599093437, -0.04387403652071953, 0.0025156724732369184, 0.32157042622566223, 0.13255396485328674, -0.0451158843934536, 0.17638471722602844, 0.11866987496614456, -0.09226285666227341, -0.28666549921035767, -0.09232616424560547, -0.08508557081222534, -0.02612167038023472, -0.014090736396610737, -0.17296333611011505, 0.07169285416603088, -0.011569414287805557, 0.001220228150486946, 0.11183511465787888, -0.25064438581466675, -0.08535761386156082, 0.13973328471183777, 0.0218928512185812, 0.3438052237033844, -0.11660566926002502, -0.09572115540504456, -0.037015512585639954, -0.16204795241355896, 0.17565034329891205, -0.05098377540707588, 0.08589936047792435, -0.02931063622236252, 0.09435304999351501, 0.05406441166996956, -0.035384826362133026, 0.049389392137527466, 0.004597121383994818, 0.008760917000472546, -0.10559062659740448, -0.057581186294555664, 0.06263675540685654, -0.015296169556677341, 0.03261565789580345, -0.052770473062992096, 0.040970027446746826, -0.12462522089481354, -0.029079878702759743, -0.09401141107082367, 0.04943455010652542, 0.022681253030896187, -0.06377900391817093, 0.03368838131427765, -0.07297802716493607, 0.02431732974946499, -0.004222060553729534, 0.22948065400123596, -0.03911164030432701, 0.16924336552619934, 0.14965012669563293, 0.12832023203372955, -0.10761105269193649, 0.023132294416427612, -0.07074703276157379, -0.06771499663591385, 0.07442385703325272, -0.11606685817241669, 0.06824298948049545, 0.11452312767505646, -0.03803333640098572, 0.06692792475223541, 0.11090198904275894, 0.007042061071842909, -0.018452122807502747, 0.13045786321163177, -0.2555803954601288, 0.01838049292564392, -0.09133486449718475, -0.034731827676296234, 0.04473074525594711, 0.059897102415561676, 0.1758844554424286, 0.013937903568148613, -0.046279918402433395, -0.006654669996351004, 0.009265775792300701, -0.05292464420199394, 0.06189149618148804, 0.021519040688872337, 0.028436847031116486, -0.12892818450927734, 0.09216773509979248, 0.04164006561040878, -0.15696687996387482, 0.014136283658444881, 0.20570343732833862, -0.12955474853515625, -0.11714471131563187, 0.009732695296406746, 0.1272372156381607, -0.12340531498193741, -0.0131310960277915, -0.06835518032312393, -0.12049886584281921, 0.08346058428287506, 0.1870250254869461, 0.05310768634080887, 0.08864229917526245, -0.04889966920018196, -0.052613768726587296, -0.0414779894053936, 0.019885722547769547, 0.010466893203556538, 0.024678871035575867, -0.10123980790376663, 0.0558118037879467, -0.03420061618089676, 0.1606583297252655, -0.08762852847576141, -0.06293909251689911, -0.15223504602909088, 0.029476208612322807, -0.1285882592201233, -0.05573326349258423, -0.06554782390594482, -0.04992866516113281, -0.00988073367625475, -0.016155900433659554, -0.04487239196896553, -0.039896611124277115, -0.12048979848623276, 0.01255242433398962, -0.0355960987508297, 0.040716752409935, -0.06325489282608032, -0.015957634896039963, 0.06713803857564926, -0.04783564805984497, 0.1234511286020279, 0.1244230642914772, -0.10297807306051254, 0.13015666604042053, -0.12901681661605835, -0.10247262567281723, 0.10341163724660873, 0.022168707102537155, 0.05857599526643753, 0.07140576094388962, 0.014355037361383438, 0.06138899549841881, 0.020014280453324318, 0.030626345425844193, 0.014497648924589157, -0.11934783309698105, 0.020539645105600357, -0.028154902160167694, -0.1567612886428833, -0.06687948107719421, -0.03541361168026924, 0.032845932990312576, 0.005566192790865898, 0.12214449048042297, -0.04963922128081322, 0.12121456861495972, -0.0739358589053154, 0.01540429051965475, 0.0030216770246624947, -0.1645183116197586, -0.07887569069862366, -0.08572901785373688, 0.028631536290049553, -0.01980959065258503, 0.1820257008075714, 0.028917625546455383, 0.04076537489891052, 0.028494594618678093, 0.0580499991774559, 0.0030040740966796875, 0.027813585475087166, 0.2076839804649353, 0.07256311923265457, -0.07106154412031174, -0.10604323446750641, 0.06415551900863647, 0.010025255382061005, 0.050124362111091614, 0.15928223729133606, 0.047759078443050385, -0.0001553031470393762, 0.0993572399020195, -0.015316850505769253, 0.029706554487347603, -0.08815840631723404, -0.14614541828632355, 0.010274967178702354, 0.07664129137992859, -0.008370366878807545, 0.08240756392478943, 0.17205661535263062, -0.008965100161731243, 0.028628967702388763, -0.021051079034805298, -0.050595544278621674, -0.17782315611839294, -0.14621272683143616, -0.08161406964063644, -0.10460387915372849, -0.009174822829663754, -0.10601648688316345, 0.058225058019161224, 0.039410240948200226, 0.06155374273657799, -0.06584067642688751, 0.07655779272317886, 0.09756571054458618, -0.11320552229881287, 0.07725733518600464, -0.030474407598376274, 0.06184573471546173, -0.002521720016375184, 0.005873269401490688, -0.08997280895709991, -0.004574684891849756, -0.03502881899476051, 0.04654679447412491, -0.055807504802942276, 0.02598988637328148, -0.14996908605098724, -0.1267300844192505, -0.023885613307356834, 0.05561595410108566, -0.048713523894548416, 0.11875221878290176, 0.01903730072081089, -0.02826787903904915, 0.03075653687119484, 0.22936390340328217, -0.08101353794336319, -0.06313319504261017, -0.045722268521785736, 0.2392023652791977, 0.05798419192433357, 0.08968336880207062, 0.0011541121639311314, -0.004275737330317497, -0.08654017746448517, 0.33573782444000244, 0.2875623404979706, -0.06669571250677109, 0.02185043878853321, 0.020036788657307625, 0.03247951716184616, 0.10445816069841385, 0.14738473296165466, 0.0807812362909317, 0.25269845128059387, -0.07112409919500351, 0.004070702008903027, -0.020794164389371872, -0.0035252978559583426, -0.094292551279068, 0.12061961740255356, 0.04871074855327606, -0.07605911046266556, -0.016266820952296257, 0.09616681933403015, -0.234622985124588, 0.1442924290895462, -0.09042277187108994, -0.16555511951446533, -0.0650661438703537, -0.022269470617175102, 0.12511363625526428, 0.0057012471370399, 0.08388835191726685, -0.013910903595387936, -0.09222894161939621, 0.06527531147003174, 0.026899857446551323, -0.2155075967311859, -0.001321874326094985, 0.0646858662366867, -0.11317645013332367, -0.013093317858874798, -0.01084262877702713, 0.04255429282784462, 0.06837044656276703, 0.06063440442085266, -0.052938252687454224, 0.02750498242676258, -0.0017553698271512985, -0.0005278441240079701, 0.02887236885726452, 0.05862223729491234, 0.019802596420049667, -0.08147921413183212, 0.05538501590490341, -0.14378812909126282, 0.031788941472768784, -0.04858637601137161, -0.02897854894399643, 0.0008240027818828821, 0.0006675400654785335, -0.032527755945920944, 0.054671213030815125, 0.09969543665647507, -0.01098863035440445, 0.0038473340682685375, -0.08210724592208862, -0.030329594388604164, 0.014884191565215588, -0.09322559833526611, -0.10513637214899063, -0.10709530115127563, -0.0982118621468544, 0.10922635346651077, -0.005953612271696329, -0.20968568325042725, 0.01261181477457285, -0.10233365744352341, 0.03503730893135071, -0.20695984363555908, 0.0975503996014595, 0.10488341748714447, 0.01344336662441492, 0.0057689351961016655, -0.03261208534240723, 0.051563702523708344, 0.1015261709690094, -0.12671351432800293, -0.08701961487531662 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 136 | 1.7446 | 9.0564 | 17.8356 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-de =========================== This model is a fine-tuned version of t5-small on the wmt16 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 74, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.0889618918299675, 0.10018717497587204, -0.0038034876342862844, 0.0875915065407753, 0.10987268388271332, -0.006065878085792065, 0.1548226922750473, 0.15311281383037567, -0.12781468033790588, 0.05975473299622536, 0.14377059042453766, 0.13524594902992249, 0.04719994217157364, 0.1622452586889267, -0.07003141194581985, -0.2509947121143341, 0.04694842919707298, 0.05292709171772003, -0.024515189230442047, 0.1250804364681244, 0.08556091785430908, -0.12100115418434143, 0.09253433346748352, 0.026408683508634567, -0.18699954450130463, -0.006213481072336435, -0.0036945375613868237, -0.08250162750482559, 0.10384908318519592, 0.03392484784126282, 0.0943026915192604, 0.0359443798661232, 0.050692059099674225, -0.16067081689834595, 0.007637455593794584, 0.06008118763566017, 0.005335124209523201, 0.09981442987918854, 0.05680391192436218, -0.011764120310544968, 0.11047093570232391, -0.07125017791986465, 0.06808391958475113, 0.02578830160200596, -0.1286083608865738, -0.2486647665500641, -0.10707380622625351, 0.03615095466375351, 0.06913943588733673, 0.08334584534168243, -0.0034911809489130974, 0.17422205209732056, -0.024854348972439766, 0.11302846670150757, 0.2573734521865845, -0.30541113018989563, -0.05738135054707527, -0.011187662370502949, 0.04940136894583702, 0.07208728045225143, -0.07599978148937225, -0.0335182324051857, 0.026652071624994278, 0.04799387976527214, 0.14402137696743011, -0.013358701020479202, -0.030273912474513054, -0.015802348032593727, -0.1358109563589096, -0.06817124038934708, 0.16067858040332794, 0.0331592783331871, -0.0404660627245903, -0.06097012758255005, -0.07883435487747192, -0.1956735998392105, -0.049151234328746796, 0.005347377620637417, 0.04561522603034973, -0.03460345044732094, -0.09236953407526016, -0.011077901348471642, -0.06884627789258957, -0.044534437358379364, -0.0591474212706089, 0.14221684634685516, 0.04652761295437813, 0.020285094156861305, -0.06731901317834854, 0.07181817293167114, -0.037953414022922516, -0.1601819396018982, -0.01698904298245907, 0.01943247765302658, 0.009004397317767143, -0.037600353360176086, -0.038418397307395935, -0.12897749245166779, 0.009250171482563019, 0.16273121535778046, -0.10580261051654816, 0.0819801464676857, -0.03743277117609978, 0.03924175724387169, -0.07957291603088379, 0.18343903124332428, -0.013169340789318085, 0.015672575682401657, 0.011536928825080395, 0.06097846478223801, 0.051767125725746155, -0.0281629990786314, -0.11016197502613068, 0.03777598589658737, 0.10943955928087234, 0.02440483681857586, -0.03822707757353783, 0.07109023630619049, -0.04037937894463539, -0.022119438275694847, 0.04845936968922615, -0.10463885962963104, 0.03516760841012001, -0.017063098028302193, -0.06567388772964478, -0.0033286684192717075, 0.022152649238705635, 0.00037023439654149115, -0.04419801011681557, 0.09527205675840378, -0.08407957851886749, 0.022050870582461357, -0.08436626940965652, -0.13485689461231232, 0.034500665962696075, -0.08937765657901764, 0.002971746027469635, -0.10042174160480499, -0.14661282300949097, -0.008515236899256706, 0.05994325503706932, -0.0475052110850811, -0.04512200132012367, -0.05026707053184509, -0.09856995195150375, 0.050555892288684845, -0.022451147437095642, 0.07744697481393814, -0.07160860300064087, 0.08438809216022491, 0.04234414920210838, 0.0809149444103241, -0.05101334676146507, 0.046328771859407425, -0.08941980451345444, 0.0432528480887413, -0.22246547043323517, 0.055213361978530884, -0.05586071312427521, 0.09496485441923141, -0.10505664348602295, -0.10117320716381073, 0.014916041865944862, -0.024406567215919495, 0.10363724827766418, 0.083235003054142, -0.16368018090724945, -0.0705142468214035, 0.2040679156780243, -0.08537935465574265, -0.132719025015831, 0.12734933197498322, -0.04489300400018692, 0.007412342354655266, 0.0514046773314476, 0.2173624187707901, 0.05093968287110329, -0.10109665989875793, -0.013638305477797985, -0.04937012493610382, 0.041749563068151474, -0.056164953857660294, 0.06600240617990494, 0.007654708344489336, 0.07759273797273636, 0.0060957917012274265, 0.03418958932161331, 0.02877034805715084, -0.08474141359329224, -0.07506627589464188, -0.05957686901092529, -0.07280667126178741, 0.009806346148252487, 0.03671940788626671, 0.0699932724237442, -0.1340281367301941, -0.10551224648952484, 0.06443066149950027, 0.0730585902929306, -0.08123745024204254, 0.05893176421523094, -0.11029735207557678, 0.0983676016330719, -0.05753879249095917, 0.004173141438513994, -0.18576739728450775, -0.012712741270661354, 0.034700099378824234, -0.007434891536831856, 0.027131114155054092, -0.043978672474622726, 0.07337325811386108, 0.06556110084056854, -0.034277208149433136, -0.02971459925174713, -0.019985290244221687, 0.003781670704483986, -0.11572112888097763, -0.19584612548351288, -0.0321429967880249, -0.035036493092775345, 0.07160268723964691, -0.16012562811374664, 0.04448380693793297, 0.06861530989408493, 0.11636024713516235, 0.042730044573545456, -0.021229762583971024, -0.01255827210843563, 0.07361818850040436, -0.051086924970149994, -0.070628322660923, 0.05500299483537674, 0.02782449685037136, -0.08551867306232452, 0.0018194757867604494, -0.16175806522369385, 0.154799222946167, 0.14245985448360443, -0.025168202817440033, -0.0554656982421875, 0.0033412091434001923, -0.05259142443537712, -0.02913234569132328, -0.017089268192648888, 0.01796439103782177, 0.16147151589393616, 0.016629355028271675, 0.16156162321567535, -0.0970781072974205, -0.05230238661170006, 0.05127745494246483, -0.03647667169570923, -0.004355373326689005, 0.10980631411075592, 0.03899703547358513, -0.11948812752962112, 0.13681532442569733, 0.14531607925891876, -0.06026061624288559, 0.13393163681030273, -0.06679556518793106, -0.06732750684022903, -0.029002675786614418, -0.006800261326134205, 0.03426207974553108, 0.08658391982316971, -0.11938536167144775, -0.016079893335700035, 0.033992163836956024, 0.038633279502391815, 0.010428558103740215, -0.18911288678646088, 0.01215033046901226, 0.03870466351509094, -0.056264664977788925, -0.04045813903212547, -0.00988764688372612, 0.015177085064351559, 0.10035194456577301, 0.019329704344272614, -0.06183362752199173, 0.03273870423436165, 0.014217282645404339, -0.06118536740541458, 0.1749614179134369, -0.10991654545068741, -0.1608627736568451, -0.12575273215770721, -0.10769690573215485, -0.05757590010762215, -0.0019224989227950573, 0.08612291514873505, -0.07656458020210266, -0.05460170656442642, -0.10109291225671768, -0.017100568860769272, -0.01290886290371418, 0.02786404639482498, 0.06264768540859222, -0.00901100318878889, 0.07225117832422256, -0.1141415387392044, -0.028893403708934784, -0.014110361225903034, -0.0004329607472755015, 0.06530620157718658, 0.01298973336815834, 0.11306057870388031, 0.12546204030513763, -0.03624982759356499, 0.04133879393339157, -0.037483811378479004, 0.23114866018295288, -0.06967732310295105, -0.014262578450143337, 0.12877319753170013, -0.01002978254109621, 0.08610434830188751, 0.11538460105657578, 0.04814082384109497, -0.09886609762907028, 0.00244920770637691, 0.010083095170557499, -0.04951471835374832, -0.22090914845466614, -0.01716863177716732, -0.051388904452323914, 0.01471567340195179, 0.104718416929245, 0.03373697027564049, 0.04137340560555458, 0.04467182606458664, 0.01906985603272915, 0.07308189570903778, -0.013730555772781372, 0.11503862589597702, 0.12489750981330872, 0.06437566876411438, 0.14160650968551636, -0.06303827464580536, -0.028852084651589394, 0.050609856843948364, 0.007656233385205269, 0.22086907923221588, 0.007228535134345293, 0.20208941400051117, 0.046651940792798996, 0.143122136592865, 0.0326094925403595, 0.06933867186307907, -0.018387332558631897, -0.012851139530539513, -0.012561392039060593, -0.04697495326399803, -0.036881256848573685, 0.021444279700517654, -0.07183002680540085, 0.027003398165106773, -0.10479747503995895, 0.0204644612967968, 0.05386028811335564, 0.2982966899871826, 0.025294557213783264, -0.36833131313323975, -0.10606665909290314, 0.010138831101357937, -0.06051772087812424, -0.04396027326583862, 0.018265828490257263, 0.0825275331735611, -0.06561599671840668, 0.0809062048792839, -0.08091625571250916, 0.11449533700942993, -0.04751993715763092, 0.04110082611441612, 0.0490453727543354, 0.09785151481628418, -0.00889129564166069, 0.045181747525930405, -0.3011925220489502, 0.2654477655887604, 0.024175632745027542, 0.07286050915718079, -0.07133463770151138, 0.017550664022564888, 0.00662947865203023, 0.05419699102640152, 0.04937662184238434, -0.014630620367825031, -0.12910081446170807, -0.14813919365406036, -0.08631867915391922, 0.011116819456219673, 0.09800343215465546, 0.027759475633502007, 0.12220645695924759, -0.017010929062962532, -0.00002501258859410882, 0.046614088118076324, -0.036256831139326096, -0.04672054946422577, -0.10230942815542221, 0.024601366370916367, 0.05529299005866051, -0.007192531600594521, -0.06919382512569427, -0.09014382213354111, -0.07264269888401031, 0.17319455742835999, 0.009034284390509129, -0.06025511398911476, -0.12295106053352356, 0.037891000509262085, 0.08032338321208954, -0.08426667749881744, 0.03359789401292801, -0.013128218241035938, 0.11393196135759354, 0.009590060450136662, -0.08163774758577347, 0.12319160252809525, -0.051789022982120514, -0.17225110530853271, -0.04307409003376961, 0.10639934241771698, 0.004715582821518183, 0.06030649691820145, -0.013616231270134449, 0.03849664703011513, -0.03048780746757984, -0.07237827032804489, 0.026521455496549606, -0.003804456442594528, 0.0829302966594696, -0.03673078864812851, -0.009207946248352528, 0.023086044937372208, -0.06286559998989105, -0.026891257613897324, 0.17408393323421478, 0.2580972909927368, -0.08685941249132156, 0.06270705908536911, 0.03934316337108612, -0.055402252823114395, -0.1551039069890976, 0.012106400914490223, 0.05088965222239494, -0.002042846754193306, -0.009857390075922012, -0.17474021017551422, 0.03459995612502098, 0.09835419058799744, -0.014358550310134888, 0.08447948098182678, -0.3101573586463928, -0.13019220530986786, 0.08451607078313828, 0.1248011663556099, 0.09267030656337738, -0.16537512838840485, -0.0445391982793808, -0.03659622743725777, -0.15378986299037933, 0.13217517733573914, -0.11072412133216858, 0.11804161965847015, -0.030744118615984917, 0.11028193682432175, 0.008513242937624454, -0.05913268402218819, 0.11324562877416611, -0.006611996330320835, 0.08476176112890244, -0.07566628605127335, 0.03790871798992157, 0.10735906660556793, -0.08159590512514114, 0.04977639392018318, -0.09693151712417603, 0.03211710974574089, -0.1041845977306366, -0.01444699615240097, -0.057022400200366974, -0.0006707028369419277, -0.02680104412138462, -0.03217508643865585, -0.048764459788799286, -0.0003845257742796093, 0.07141455262899399, -0.02152969501912594, 0.20483402907848358, 0.015946265310049057, 0.13606402277946472, 0.16108080744743347, 0.09986325353384018, -0.132023885846138, -0.04206868261098862, 0.010358831845223904, -0.028196940198540688, 0.04948762431740761, -0.1694498211145401, 0.04418465495109558, 0.1406477689743042, -0.00015520719171036035, 0.11992725729942322, 0.07032907754182816, -0.05864020437002182, 0.027852090075612068, 0.05507712811231613, -0.16705912351608276, -0.10706877708435059, 0.011340298689901829, 0.051287151873111725, -0.10960327088832855, 0.06106821820139885, 0.13331277668476105, -0.05658911541104317, -0.01304624043405056, 0.00838756188750267, 0.018102802336215973, -0.022916948422789574, 0.17573466897010803, 0.022673746570944786, 0.062439367175102234, -0.10821185261011124, 0.08385340869426727, 0.05282314121723175, -0.1086616963148117, 0.05389882251620293, 0.1233585998415947, -0.0969887375831604, -0.025160573422908783, 0.04061412438750267, 0.16254658997058868, -0.05832265317440033, -0.05789635330438614, -0.15426459908485413, -0.12379501760005951, 0.1044270321726799, 0.19633923470973969, 0.059792764484882355, 0.0074940999038517475, -0.035445984452962875, 0.0010553509928286076, -0.12584267556667328, 0.08493409305810928, 0.04083512723445892, 0.08571337908506393, -0.12995398044586182, 0.12459170818328857, -0.012515992857515812, 0.03594915568828583, -0.014508889056742191, 0.020290417596697807, -0.11302360892295837, 0.008788900449872017, -0.1400783658027649, 0.003786991583183408, -0.050736553966999054, -0.003594272769987583, -0.011953326873481274, -0.03968077898025513, -0.06483050435781479, 0.019401853904128075, -0.11472497880458832, -0.03059404157102108, 0.012182301841676235, 0.026761310175061226, -0.11252160370349884, -0.01770937070250511, 0.008882529102265835, -0.08476942032575607, 0.07711406797170639, 0.04965311661362648, -0.014612595550715923, 0.028151432052254677, -0.0427568145096302, 0.0005170538206584752, 0.060175348073244095, 0.005754841025918722, 0.076975017786026, -0.09736845642328262, -0.02463458850979805, 0.013580533675849438, 0.03075076825916767, 0.027737542986869812, 0.10168669372797012, -0.11851734668016434, 0.005333000794053078, -0.00827743485569954, -0.0640556812286377, -0.06912565976381302, 0.05891118571162224, 0.10030189156532288, 0.015579627826809883, 0.18520799279212952, -0.07800532877445221, 0.02439546026289463, -0.1891445368528366, 0.0029481006786227226, 0.017541419714689255, -0.14603017270565033, -0.0557294562458992, -0.04303717240691185, 0.06539062410593033, -0.07098278403282166, 0.12075351923704147, -0.0011569955386221409, 0.021919503808021545, 0.050985440611839294, -0.04577350988984108, -0.04533423110842705, 0.015661561861634254, 0.17541365325450897, 0.033101532608270645, -0.0444985069334507, 0.06799964606761932, 0.01606045663356781, 0.08962514251470566, 0.1074957475066185, 0.1960233598947525, 0.13658182322978973, 0.042333297431468964, 0.10927547514438629, 0.03039924055337906, -0.032990068197250366, -0.1804201751947403, 0.06466136872768402, -0.043692849576473236, 0.1490284949541092, -0.010319146327674389, 0.19452378153800964, 0.12665902078151703, -0.13991506397724152, 0.04713459312915802, -0.040486134588718414, -0.0859677866101265, -0.108208067715168, -0.08314966410398483, -0.09306423366069794, -0.15479591488838196, -0.0073462058790028095, -0.1201031357049942, 0.06425068527460098, 0.0529496893286705, 0.020022930577397346, 0.0007071530562825501, 0.12408716976642609, 0.024245090782642365, 0.013213171623647213, 0.05724010244011879, -0.007572897244244814, -0.042386844754219055, -0.05228404700756073, -0.07993343472480774, 0.013838911429047585, 0.002043097512796521, 0.05337490513920784, 0.006395380012691021, -0.012339613400399685, 0.040672678500413895, -0.026810528710484505, -0.11085304617881775, 0.015736492350697517, 0.03723237290978432, 0.054509811103343964, 0.030476436018943787, 0.011228226125240326, -0.005428374279290438, -0.011219194158911705, 0.1924048364162445, -0.08198820054531097, -0.07071993499994278, -0.11487160623073578, 0.22960267961025238, 0.02375829964876175, -0.03510696440935135, 0.02668762393295765, -0.062320683151483536, -0.01713687554001808, 0.19934654235839844, 0.16954658925533295, -0.026265615597367287, -0.011713625863194466, -0.025644907727837563, -0.007407497148960829, -0.02550303004682064, 0.10090558975934982, 0.1294013410806656, 0.01921679638326168, -0.06390310078859329, -0.039078619331121445, -0.06077705696225166, -0.008595924824476242, -0.061323706060647964, 0.059153057634830475, 0.018955357372760773, -0.005986575968563557, -0.03195764869451523, 0.047469109296798706, -0.06376256048679352, -0.05825977399945259, 0.010574703104794025, -0.20286200940608978, -0.1521214246749878, 0.005458497442305088, 0.08741406351327896, -0.01396067626774311, 0.05628187209367752, -0.0019079222111031413, -0.0029863896779716015, 0.08260838687419891, -0.02030239626765251, -0.07490933686494827, -0.06666035205125809, 0.09186477959156036, -0.17081722617149353, 0.1766585111618042, -0.03232965245842934, 0.025107553228735924, 0.14256949722766876, 0.050191160291433334, -0.10890831798315048, 0.06518226116895676, 0.03907470777630806, -0.05728655308485031, 0.00679123355075717, 0.13023218512535095, -0.03004981391131878, 0.08009734749794006, 0.0408703051507473, -0.12585115432739258, -0.01938614435493946, -0.07527001947164536, -0.02483987994492054, -0.01966194435954094, -0.05457032471895218, -0.044267114251852036, 0.11975893378257751, 0.19763976335525513, -0.04218223690986633, 0.0025521493516862392, -0.060464419424533844, 0.01717217266559601, 0.058490999042987823, -0.017820322886109352, -0.05998595058917999, -0.26374825835227966, 0.0008293183636851609, 0.08817808330059052, -0.006519087590277195, -0.2610302269458771, -0.08783864229917526, -0.0025086316745728254, -0.03645826876163483, -0.10744258016347885, 0.08932945877313614, 0.08979803323745728, 0.04611853510141373, -0.0649639144539833, -0.031316179782152176, -0.06646561622619629, 0.17030535638332367, -0.1382666826248169, -0.06668490916490555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned128-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned128-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned128-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-small-finetuned128-en-to-de This model is a fine-tuned version of t5-small on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
[ "# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ 74, 39, 6, 12, 8, 3, 103, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-small-finetuned128-en-to-de\n\nThis model is a fine-tuned version of t5-small on the wmt16 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ -0.08020960539579391, 0.1339806765317917, -0.0033827435690909624, 0.0869351178407669, 0.13309738039970398, 0.025282016023993492, 0.0943756178021431, 0.16219645738601685, -0.11810790002346039, 0.060355160385370255, 0.06467720866203308, 0.06432444602251053, 0.06146895885467529, 0.11928745359182358, -0.03411496430635452, -0.22895190119743347, -0.0018889415077865124, -0.005835506599396467, -0.0491192527115345, 0.10184066742658615, 0.11203839629888535, -0.07551619410514832, 0.07989783585071564, -0.010170976631343365, -0.15790966153144836, 0.04625462740659714, -0.035975366830825806, -0.051658470183610916, 0.08972794562578201, 0.03422525152564049, 0.08339491486549377, 0.017605217173695564, 0.11721784621477127, -0.22602027654647827, -0.00013034297444391996, 0.08724229037761688, 0.01990438997745514, 0.07794451713562012, 0.05177105963230133, -0.013135823421180248, 0.1057717427611351, -0.16624131798744202, 0.09664440155029297, 0.02772963047027588, -0.06979571282863617, -0.13483040034770966, -0.08821891248226166, 0.07592564821243286, 0.0788799524307251, 0.1018173098564148, 0.013430380262434483, 0.14687588810920715, -0.07483388483524323, 0.08611313998699188, 0.21066626906394958, -0.23777437210083008, -0.037350017577409744, 0.042180199176073074, 0.04990245774388313, 0.074187271296978, -0.10029780119657516, -0.02856064774096012, 0.036080773919820786, 0.040377888828516006, 0.09170915186405182, -0.016089053824543953, -0.13528412580490112, 0.0051500494591891766, -0.12319027632474899, -0.026545841246843338, 0.18798430263996124, 0.03368932381272316, -0.02860509417951107, -0.10260536521673203, -0.06456679850816727, -0.12470807880163193, -0.011610327288508415, -0.024191493168473244, 0.03893483057618141, -0.04444876313209534, -0.03198349475860596, -0.05076416954398155, -0.07783946394920349, -0.04735523462295532, -0.012397931888699532, 0.06806374341249466, 0.04952462017536163, 0.013224954716861248, -0.04138229787349701, 0.10285894572734833, 0.000035868877603206784, -0.11614414304494858, -0.025964941829442978, 0.004093031864613295, -0.09071551263332367, -0.05803851783275604, -0.027987658977508545, -0.06032779812812805, -0.007349598687142134, 0.14106635749340057, -0.0544428713619709, 0.07274509221315384, 0.0018461012514308095, 0.0003500480088405311, -0.004667291883379221, 0.11872120946645737, -0.04817318543791771, -0.031332988291978836, 0.015345118008553982, 0.07525912672281265, 0.017582986503839493, -0.010182554833590984, -0.09349147975444794, -0.02965797856450081, 0.09036724269390106, 0.07889934629201889, -0.01932941935956478, 0.04302653670310974, -0.029226772487163544, -0.039811961352825165, 0.04862647503614426, -0.1530320942401886, 0.03640254586935043, -0.016415273770689964, -0.08351258933544159, -0.017508305609226227, 0.04327280446887016, -0.016156699508428574, -0.07120711356401443, 0.05276473984122276, -0.06775667518377304, -0.0014073261991143227, -0.07244416326284409, -0.07805950939655304, 0.04051865637302399, -0.06945732980966568, -0.006270101293921471, -0.07097716629505157, -0.20644035935401917, -0.038024406880140305, 0.027076007798314095, -0.06480500102043152, -0.05356312543153763, -0.04115191102027893, -0.07072027027606964, 0.022767620161175728, -0.01250499952584505, 0.14329709112644196, -0.05163419246673584, 0.06380850076675415, -0.010016925632953644, 0.024327674880623817, 0.023174181580543518, 0.05352648347616196, -0.08554787188768387, 0.014970708638429642, -0.10957290232181549, 0.09132301807403564, -0.08430369943380356, 0.02625873312354088, -0.12777496874332428, -0.0933583453297615, 0.0072015756741166115, -0.021239854395389557, 0.04736705496907234, 0.1200854629278183, -0.1751057654619217, -0.021254291757941246, 0.15205033123493195, -0.059813350439071655, -0.05823998525738716, 0.0957011803984642, -0.04432874172925949, 0.021485747769474983, 0.06425351649522781, 0.15651382505893707, 0.12685634195804596, -0.14720748364925385, -0.0283662136644125, 0.028115911409258842, 0.0331619530916214, -0.006687004119157791, 0.05570690333843231, 0.006621913984417915, 0.06228076294064522, 0.0055462270975112915, -0.03178573027253151, -0.008185259066522121, -0.06300820410251617, -0.08131307363510132, -0.06120718643069267, -0.07383986562490463, 0.016972165554761887, 0.03778525069355965, 0.025339001789689064, -0.07830123603343964, -0.12911222875118256, 0.11987055093050003, 0.14410407841205597, -0.0661378800868988, 0.029871342703700066, -0.07962285727262497, 0.01884372904896736, -0.02424013428390026, -0.017509691417217255, -0.20091161131858826, -0.1231643408536911, 0.03353185951709747, -0.06183767318725586, 0.0489153116941452, 0.019017541781067848, 0.059088874608278275, 0.0546451173722744, -0.05064063519239426, -0.018424885347485542, -0.06563707441091537, 0.0016621926333755255, -0.08935247361660004, -0.18754278123378754, -0.05571544170379639, -0.029552534222602844, 0.14079852402210236, -0.2318703830242157, 0.02300873212516308, 0.013145431876182556, 0.12846998870372772, 0.023472877219319344, -0.04922926053404808, 0.017728814855217934, 0.032724007964134216, -0.021914655342698097, -0.10051582008600235, 0.02878057397902012, -0.0028129464481025934, -0.06731709092855453, -0.019832085818052292, -0.1435105800628662, 0.04972204566001892, 0.0821552723646164, 0.06729431450366974, -0.09751180559396744, -0.002599342493340373, -0.05763104930520058, -0.05032606050372124, -0.08565375208854675, -0.013239909894764423, 0.18932363390922546, 0.012303626164793968, 0.13041071593761444, -0.061635132879018784, -0.08213154226541519, 0.005992493592202663, 0.011499078013002872, -0.015959760174155235, 0.09997839480638504, 0.062380723655223846, -0.11950506269931793, 0.1000514104962349, 0.06087552383542061, -0.02364315278828144, 0.13863709568977356, -0.050314921885728836, -0.09910321980714798, -0.013976050540804863, 0.009362070821225643, -0.010799378156661987, 0.09475184231996536, -0.09233667701482773, -0.0012004576856270432, 0.04069985821843147, 0.020187705755233765, 0.038917943835258484, -0.1648225039243698, -0.0003886064514517784, 0.03223216533660889, -0.04973684251308441, -0.01195947453379631, -0.027790116146206856, 0.036058489233255386, 0.09169204533100128, 0.011610644869506359, -0.01197370421141386, 0.02428375743329525, -0.006484984885901213, -0.09750549495220184, 0.17717882990837097, -0.12084095925092697, -0.18559925258159637, -0.12421370297670364, 0.00352701754309237, -0.03708648681640625, -0.042235117405653, 0.01827663742005825, -0.08294647186994553, -0.06377311795949936, -0.10665254294872284, 0.010155589319765568, -0.055957596749067307, -0.021578378975391388, 0.030121907591819763, 0.03508313000202179, 0.06707026809453964, -0.1387321650981903, 0.012062860652804375, 0.0043041519820690155, -0.0871531218290329, 0.0025155283510684967, 0.031014002859592438, 0.10093814879655838, 0.1393730491399765, -0.020340630784630775, 0.02064940519630909, -0.04426092281937599, 0.18844765424728394, -0.06998080760240555, 0.026768432930111885, 0.11049880087375641, 0.010829024948179722, 0.057948097586631775, 0.12043865770101547, 0.02796247787773609, -0.08310674130916595, 0.029013097286224365, 0.06702493131160736, -0.019964715465903282, -0.2777654230594635, -0.04586805775761604, -0.032124754041433334, -0.05360230430960655, 0.09874093532562256, 0.06204501539468765, 0.03399868309497833, 0.025762617588043213, -0.016658058390021324, 0.06408735364675522, -0.0028353072702884674, 0.0803096741437912, 0.10818048566579819, 0.03815671056509018, 0.0886366069316864, -0.05844720080494881, -0.013393345288932323, 0.0779556855559349, 0.037391453981399536, 0.2491808831691742, -0.04119351878762245, 0.16381458938121796, 0.02638261765241623, 0.1247100681066513, -0.01331640500575304, 0.03191883862018585, 0.020914291962981224, 0.012934122234582901, 0.011938287876546383, -0.066597118973732, -0.010985802859067917, 0.028819091618061066, -0.01673031412065029, 0.013921307399868965, -0.08425341546535492, 0.03240744024515152, 0.010986424051225185, 0.25252166390419006, 0.04407632350921631, -0.2926322817802429, -0.07203977555036545, 0.011406117118895054, -0.04288777336478233, -0.0588187649846077, 0.011352604255080223, 0.11146766692399979, -0.12214459478855133, 0.07504002004861832, -0.04451735317707062, 0.09672100096940994, -0.06494064629077911, -0.01419456209987402, 0.04769935831427574, 0.12373515963554382, -0.005659734830260277, 0.09948287159204483, -0.2149471789598465, 0.20301568508148193, 0.029460852965712547, 0.09855733066797256, -0.07520495355129242, 0.03318985924124718, 0.0039007999002933502, 0.0826709121465683, 0.11313503235578537, 0.0009336637449450791, -0.0589226596057415, -0.13711294531822205, -0.1084023118019104, 0.02185564488172531, 0.10468827188014984, 0.0017616560216993093, 0.08446868509054184, -0.04769027605652809, -0.009305348619818687, 0.049701619893312454, -0.0975692942738533, -0.14917205274105072, -0.1495409905910492, 0.031738389283418655, 0.00993905495852232, -0.061448801308870316, -0.06607888638973236, -0.1026289239525795, -0.01617518812417984, 0.1958310902118683, 0.009280126541852951, -0.06151727959513664, -0.14773032069206238, 0.07719120383262634, 0.12169891595840454, -0.07463288307189941, 0.0038286102935671806, 0.022148599848151207, 0.13074491918087006, 0.03179197758436203, -0.11528998613357544, 0.058016106486320496, -0.061167676001787186, -0.14100061357021332, -0.04548227787017822, 0.13353577256202698, 0.04816748574376106, 0.05739981681108475, -0.013141453266143799, 0.009479106403887272, 0.016426166519522667, -0.07351909577846527, 0.013159525580704212, 0.09253523498773575, 0.080555260181427, 0.060079123824834824, -0.08635455369949341, -0.003992500714957714, -0.04221298173069954, -0.029063936322927475, 0.1557566225528717, 0.1709316521883011, -0.08479128777980804, 0.10610829293727875, 0.057377319782972336, -0.10073117911815643, -0.19469033181667328, 0.06123385578393936, 0.08699613064527512, 0.008143468759953976, 0.03589889034628868, -0.205245703458786, 0.09500548243522644, 0.10838881880044937, -0.0004382136685308069, 0.07002226263284683, -0.3548920750617981, -0.12964391708374023, 0.06953732669353485, 0.08788160979747772, -0.010320017114281654, -0.13612514734268188, -0.037846360355615616, -0.0286959670484066, -0.16716991364955902, 0.12393718957901001, -0.07893925905227661, 0.10964788496494293, -0.0096893934533, 0.10694848001003265, 0.02369813434779644, -0.037810202687978745, 0.1127082109451294, 0.051964033395051956, 0.06741560995578766, -0.06646768748760223, 0.029896045103669167, 0.1086096540093422, -0.07123761624097824, 0.0800253227353096, -0.036569006741046906, 0.059252336621284485, -0.17029157280921936, -0.023656226694583893, -0.06445658951997757, 0.06650949269533157, -0.05268704518675804, -0.05517583340406418, -0.05790785700082779, 0.04587837681174278, 0.07677248865365982, -0.04563533142209053, 0.07613546401262283, 0.022773537784814835, 0.06222048029303551, 0.09691585600376129, 0.10416372865438461, -0.0195968896150589, -0.12545646727085114, -0.012118969112634659, -0.021212397143244743, 0.03632723167538643, -0.1487971395254135, 0.02482893504202366, 0.12812288105487823, 0.04192063957452774, 0.13154084980487823, 0.025009052827954292, -0.06204521656036377, -0.012359208427369595, 0.029336033388972282, -0.10003456473350525, -0.13753215968608856, -0.01623864844441414, -0.03154279664158821, -0.12621735036373138, 0.009064090438187122, 0.10411994159221649, -0.06344670802354813, -0.020174767822027206, -0.011148540303111076, 0.04095666855573654, -0.01798648200929165, 0.18331579864025116, 0.048791494220495224, 0.059688352048397064, -0.08929812908172607, 0.1356881707906723, 0.09196335077285767, -0.08714710921049118, 0.0661177784204483, 0.1051512137055397, -0.08327699452638626, -0.03253401070833206, 0.08540679514408112, 0.13942043483257294, -0.04711197316646576, -0.0499175600707531, -0.0675891786813736, -0.08594518154859543, 0.07497876137495041, 0.12323088198900223, 0.03562070056796074, -0.0038677924312651157, -0.02652880735695362, 0.004495453089475632, -0.15397098660469055, 0.09422679245471954, 0.035025544464588165, 0.06920216232538223, -0.13506309688091278, 0.10844148695468903, 0.01658317632973194, 0.05671612545847893, -0.014633425511419773, 0.01620342768728733, -0.07044443488121033, -0.014499098062515259, -0.12988993525505066, 0.005078453570604324, -0.014724167063832283, 0.015463157556951046, -0.02573099359869957, -0.03329648822546005, -0.04061831906437874, 0.05904611572623253, -0.06575893610715866, -0.0681242048740387, -0.001207405817694962, 0.053133655339479446, -0.14025045931339264, -0.015102104283869267, 0.017191793769598007, -0.0950324609875679, 0.0766364187002182, 0.04990334436297417, 0.0045461589470505714, 0.03235211223363876, -0.07411476224660873, -0.0222641509026289, 0.02825092524290085, 0.04687601327896118, 0.07191840559244156, -0.09262745082378387, -0.005233153700828552, -0.014967527240514755, 0.031586915254592896, 0.020819958299398422, 0.06261943280696869, -0.11582598835229874, -0.016039002686738968, -0.07807435095310211, -0.04920579865574837, -0.07116605341434479, 0.06632911413908005, 0.10005082935094833, 0.02008982002735138, 0.15122027695178986, -0.07056515663862228, 0.04982072860002518, -0.20360413193702698, -0.03337414935231209, 0.004621809348464012, -0.032535817474126816, -0.034913431853055954, -0.0230835173279047, 0.08073709905147552, -0.057879429310560226, 0.1317404955625534, 0.002393158385530114, 0.06854239851236343, 0.0465923547744751, -0.027892043814063072, -0.05010255053639412, 0.004943295381963253, 0.15590012073516846, 0.049618128687143326, -0.02223321422934532, 0.09074575453996658, -0.02643810771405697, 0.07627405226230621, 0.05163662135601044, 0.1902768611907959, 0.14003892242908478, -0.008618111722171307, 0.06643141806125641, 0.059361476451158524, -0.124261774122715, -0.14807608723640442, 0.10532581061124802, -0.031143615022301674, 0.130814790725708, -0.049717988818883896, 0.158839151263237, 0.10095673054456711, -0.1561897248029709, 0.0635424330830574, -0.05686052888631821, -0.1179717406630516, -0.1186666190624237, -0.06654734164476395, -0.083839550614357, -0.09962266683578491, 0.009893333539366722, -0.1251889020204544, 0.05279770866036415, 0.07181503623723984, 0.022637614980340004, 0.013552600517868996, 0.13735635578632355, -0.02174343168735504, 0.0006662060040980577, 0.04687417298555374, 0.009894495829939842, -0.004969549365341663, -0.06903347373008728, -0.028977928683161736, 0.061871085315942764, 0.01938687451183796, 0.07632078975439072, -0.028118757531046867, 0.03271449729800224, 0.04487134888768196, -0.03127644583582878, -0.0675007700920105, 0.014299392700195312, 0.024752847850322723, 0.029934121295809746, 0.050119031220674515, 0.06262200325727463, -0.006708100438117981, -0.03387344628572464, 0.26983842253685, -0.059538859874010086, -0.1063893586397171, -0.12761013209819794, 0.18079382181167603, 0.046550095081329346, -0.02246970310807228, 0.08485212922096252, -0.11274909973144531, -0.012029353529214859, 0.17159326374530792, 0.16609913110733032, -0.030389927327632904, -0.020510060712695122, -0.010660001076757908, -0.011016858741641045, -0.03911810368299484, 0.12427179515361786, 0.11245053261518478, 0.044892873615026474, -0.060709401965141296, -0.03085024654865265, -0.007857616990804672, -0.02946912683546543, -0.08482396602630615, 0.09009341895580292, 0.009313808754086494, 0.008519037626683712, -0.011982114054262638, 0.06671142578125, 0.0009617547621019185, -0.18681399524211884, 0.02188427560031414, -0.17011035978794098, -0.17219100892543793, -0.022821752354502678, 0.09342272579669952, -0.02345976233482361, 0.03493763878941536, 0.0009378176182508469, -0.004998312797397375, 0.14918252825737, -0.010533316060900688, -0.10723583400249481, -0.08612777292728424, 0.08327208459377289, -0.0998031347990036, 0.19978149235248566, -0.005582168698310852, 0.0679573118686676, 0.10684096813201904, 0.014698794111609459, -0.14981196820735931, 0.045671358704566956, 0.060972899198532104, -0.02398400567471981, 0.03585872799158096, 0.1697588711977005, -0.04854457452893257, 0.0802120715379715, 0.031839195638895035, -0.10526493936777115, -0.020462585613131523, -0.03469584509730339, -0.006231307052075863, -0.07336646318435669, -0.013410866260528564, -0.059753935784101486, 0.14954371750354767, 0.19882164895534515, -0.028941040858626366, 0.013199076056480408, -0.09674437344074249, 0.004675372038036585, 0.048611391335725784, 0.0774431824684143, -0.014323358424007893, -0.18386542797088623, 0.016979707404971123, 0.0030885778833180666, 0.05297994613647461, -0.23371706902980804, -0.08555186539888382, 0.047728005796670914, -0.05776224657893181, -0.07871709764003754, 0.12969230115413666, 0.0748501867055893, 0.04782041907310486, -0.03898893669247627, -0.08006827533245087, -0.03405943885445595, 0.1387293040752411, -0.16862493753433228, -0.04002987593412399 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned16-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 2.1906 | 23.3821 | 12.956 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned16-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned16-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned16-en-to-de ============================= This model is a fine-tuned version of t5-small on the wmt16 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 74, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.0889618918299675, 0.10018717497587204, -0.0038034876342862844, 0.0875915065407753, 0.10987268388271332, -0.006065878085792065, 0.1548226922750473, 0.15311281383037567, -0.12781468033790588, 0.05975473299622536, 0.14377059042453766, 0.13524594902992249, 0.04719994217157364, 0.1622452586889267, -0.07003141194581985, -0.2509947121143341, 0.04694842919707298, 0.05292709171772003, -0.024515189230442047, 0.1250804364681244, 0.08556091785430908, -0.12100115418434143, 0.09253433346748352, 0.026408683508634567, -0.18699954450130463, -0.006213481072336435, -0.0036945375613868237, -0.08250162750482559, 0.10384908318519592, 0.03392484784126282, 0.0943026915192604, 0.0359443798661232, 0.050692059099674225, -0.16067081689834595, 0.007637455593794584, 0.06008118763566017, 0.005335124209523201, 0.09981442987918854, 0.05680391192436218, -0.011764120310544968, 0.11047093570232391, -0.07125017791986465, 0.06808391958475113, 0.02578830160200596, -0.1286083608865738, -0.2486647665500641, -0.10707380622625351, 0.03615095466375351, 0.06913943588733673, 0.08334584534168243, -0.0034911809489130974, 0.17422205209732056, -0.024854348972439766, 0.11302846670150757, 0.2573734521865845, -0.30541113018989563, -0.05738135054707527, -0.011187662370502949, 0.04940136894583702, 0.07208728045225143, -0.07599978148937225, -0.0335182324051857, 0.026652071624994278, 0.04799387976527214, 0.14402137696743011, -0.013358701020479202, -0.030273912474513054, -0.015802348032593727, -0.1358109563589096, -0.06817124038934708, 0.16067858040332794, 0.0331592783331871, -0.0404660627245903, -0.06097012758255005, -0.07883435487747192, -0.1956735998392105, -0.049151234328746796, 0.005347377620637417, 0.04561522603034973, -0.03460345044732094, -0.09236953407526016, -0.011077901348471642, -0.06884627789258957, -0.044534437358379364, -0.0591474212706089, 0.14221684634685516, 0.04652761295437813, 0.020285094156861305, -0.06731901317834854, 0.07181817293167114, -0.037953414022922516, -0.1601819396018982, -0.01698904298245907, 0.01943247765302658, 0.009004397317767143, -0.037600353360176086, -0.038418397307395935, -0.12897749245166779, 0.009250171482563019, 0.16273121535778046, -0.10580261051654816, 0.0819801464676857, -0.03743277117609978, 0.03924175724387169, -0.07957291603088379, 0.18343903124332428, -0.013169340789318085, 0.015672575682401657, 0.011536928825080395, 0.06097846478223801, 0.051767125725746155, -0.0281629990786314, -0.11016197502613068, 0.03777598589658737, 0.10943955928087234, 0.02440483681857586, -0.03822707757353783, 0.07109023630619049, -0.04037937894463539, -0.022119438275694847, 0.04845936968922615, -0.10463885962963104, 0.03516760841012001, -0.017063098028302193, -0.06567388772964478, -0.0033286684192717075, 0.022152649238705635, 0.00037023439654149115, -0.04419801011681557, 0.09527205675840378, -0.08407957851886749, 0.022050870582461357, -0.08436626940965652, -0.13485689461231232, 0.034500665962696075, -0.08937765657901764, 0.002971746027469635, -0.10042174160480499, -0.14661282300949097, -0.008515236899256706, 0.05994325503706932, -0.0475052110850811, -0.04512200132012367, -0.05026707053184509, -0.09856995195150375, 0.050555892288684845, -0.022451147437095642, 0.07744697481393814, -0.07160860300064087, 0.08438809216022491, 0.04234414920210838, 0.0809149444103241, -0.05101334676146507, 0.046328771859407425, -0.08941980451345444, 0.0432528480887413, -0.22246547043323517, 0.055213361978530884, -0.05586071312427521, 0.09496485441923141, -0.10505664348602295, -0.10117320716381073, 0.014916041865944862, -0.024406567215919495, 0.10363724827766418, 0.083235003054142, -0.16368018090724945, -0.0705142468214035, 0.2040679156780243, -0.08537935465574265, -0.132719025015831, 0.12734933197498322, -0.04489300400018692, 0.007412342354655266, 0.0514046773314476, 0.2173624187707901, 0.05093968287110329, -0.10109665989875793, -0.013638305477797985, -0.04937012493610382, 0.041749563068151474, -0.056164953857660294, 0.06600240617990494, 0.007654708344489336, 0.07759273797273636, 0.0060957917012274265, 0.03418958932161331, 0.02877034805715084, -0.08474141359329224, -0.07506627589464188, -0.05957686901092529, -0.07280667126178741, 0.009806346148252487, 0.03671940788626671, 0.0699932724237442, -0.1340281367301941, -0.10551224648952484, 0.06443066149950027, 0.0730585902929306, -0.08123745024204254, 0.05893176421523094, -0.11029735207557678, 0.0983676016330719, -0.05753879249095917, 0.004173141438513994, -0.18576739728450775, -0.012712741270661354, 0.034700099378824234, -0.007434891536831856, 0.027131114155054092, -0.043978672474622726, 0.07337325811386108, 0.06556110084056854, -0.034277208149433136, -0.02971459925174713, -0.019985290244221687, 0.003781670704483986, -0.11572112888097763, -0.19584612548351288, -0.0321429967880249, -0.035036493092775345, 0.07160268723964691, -0.16012562811374664, 0.04448380693793297, 0.06861530989408493, 0.11636024713516235, 0.042730044573545456, -0.021229762583971024, -0.01255827210843563, 0.07361818850040436, -0.051086924970149994, -0.070628322660923, 0.05500299483537674, 0.02782449685037136, -0.08551867306232452, 0.0018194757867604494, -0.16175806522369385, 0.154799222946167, 0.14245985448360443, -0.025168202817440033, -0.0554656982421875, 0.0033412091434001923, -0.05259142443537712, -0.02913234569132328, -0.017089268192648888, 0.01796439103782177, 0.16147151589393616, 0.016629355028271675, 0.16156162321567535, -0.0970781072974205, -0.05230238661170006, 0.05127745494246483, -0.03647667169570923, -0.004355373326689005, 0.10980631411075592, 0.03899703547358513, -0.11948812752962112, 0.13681532442569733, 0.14531607925891876, -0.06026061624288559, 0.13393163681030273, -0.06679556518793106, -0.06732750684022903, -0.029002675786614418, -0.006800261326134205, 0.03426207974553108, 0.08658391982316971, -0.11938536167144775, -0.016079893335700035, 0.033992163836956024, 0.038633279502391815, 0.010428558103740215, -0.18911288678646088, 0.01215033046901226, 0.03870466351509094, -0.056264664977788925, -0.04045813903212547, -0.00988764688372612, 0.015177085064351559, 0.10035194456577301, 0.019329704344272614, -0.06183362752199173, 0.03273870423436165, 0.014217282645404339, -0.06118536740541458, 0.1749614179134369, -0.10991654545068741, -0.1608627736568451, -0.12575273215770721, -0.10769690573215485, -0.05757590010762215, -0.0019224989227950573, 0.08612291514873505, -0.07656458020210266, -0.05460170656442642, -0.10109291225671768, -0.017100568860769272, -0.01290886290371418, 0.02786404639482498, 0.06264768540859222, -0.00901100318878889, 0.07225117832422256, -0.1141415387392044, -0.028893403708934784, -0.014110361225903034, -0.0004329607472755015, 0.06530620157718658, 0.01298973336815834, 0.11306057870388031, 0.12546204030513763, -0.03624982759356499, 0.04133879393339157, -0.037483811378479004, 0.23114866018295288, -0.06967732310295105, -0.014262578450143337, 0.12877319753170013, -0.01002978254109621, 0.08610434830188751, 0.11538460105657578, 0.04814082384109497, -0.09886609762907028, 0.00244920770637691, 0.010083095170557499, -0.04951471835374832, -0.22090914845466614, -0.01716863177716732, -0.051388904452323914, 0.01471567340195179, 0.104718416929245, 0.03373697027564049, 0.04137340560555458, 0.04467182606458664, 0.01906985603272915, 0.07308189570903778, -0.013730555772781372, 0.11503862589597702, 0.12489750981330872, 0.06437566876411438, 0.14160650968551636, -0.06303827464580536, -0.028852084651589394, 0.050609856843948364, 0.007656233385205269, 0.22086907923221588, 0.007228535134345293, 0.20208941400051117, 0.046651940792798996, 0.143122136592865, 0.0326094925403595, 0.06933867186307907, -0.018387332558631897, -0.012851139530539513, -0.012561392039060593, -0.04697495326399803, -0.036881256848573685, 0.021444279700517654, -0.07183002680540085, 0.027003398165106773, -0.10479747503995895, 0.0204644612967968, 0.05386028811335564, 0.2982966899871826, 0.025294557213783264, -0.36833131313323975, -0.10606665909290314, 0.010138831101357937, -0.06051772087812424, -0.04396027326583862, 0.018265828490257263, 0.0825275331735611, -0.06561599671840668, 0.0809062048792839, -0.08091625571250916, 0.11449533700942993, -0.04751993715763092, 0.04110082611441612, 0.0490453727543354, 0.09785151481628418, -0.00889129564166069, 0.045181747525930405, -0.3011925220489502, 0.2654477655887604, 0.024175632745027542, 0.07286050915718079, -0.07133463770151138, 0.017550664022564888, 0.00662947865203023, 0.05419699102640152, 0.04937662184238434, -0.014630620367825031, -0.12910081446170807, -0.14813919365406036, -0.08631867915391922, 0.011116819456219673, 0.09800343215465546, 0.027759475633502007, 0.12220645695924759, -0.017010929062962532, -0.00002501258859410882, 0.046614088118076324, -0.036256831139326096, -0.04672054946422577, -0.10230942815542221, 0.024601366370916367, 0.05529299005866051, -0.007192531600594521, -0.06919382512569427, -0.09014382213354111, -0.07264269888401031, 0.17319455742835999, 0.009034284390509129, -0.06025511398911476, -0.12295106053352356, 0.037891000509262085, 0.08032338321208954, -0.08426667749881744, 0.03359789401292801, -0.013128218241035938, 0.11393196135759354, 0.009590060450136662, -0.08163774758577347, 0.12319160252809525, -0.051789022982120514, -0.17225110530853271, -0.04307409003376961, 0.10639934241771698, 0.004715582821518183, 0.06030649691820145, -0.013616231270134449, 0.03849664703011513, -0.03048780746757984, -0.07237827032804489, 0.026521455496549606, -0.003804456442594528, 0.0829302966594696, -0.03673078864812851, -0.009207946248352528, 0.023086044937372208, -0.06286559998989105, -0.026891257613897324, 0.17408393323421478, 0.2580972909927368, -0.08685941249132156, 0.06270705908536911, 0.03934316337108612, -0.055402252823114395, -0.1551039069890976, 0.012106400914490223, 0.05088965222239494, -0.002042846754193306, -0.009857390075922012, -0.17474021017551422, 0.03459995612502098, 0.09835419058799744, -0.014358550310134888, 0.08447948098182678, -0.3101573586463928, -0.13019220530986786, 0.08451607078313828, 0.1248011663556099, 0.09267030656337738, -0.16537512838840485, -0.0445391982793808, -0.03659622743725777, -0.15378986299037933, 0.13217517733573914, -0.11072412133216858, 0.11804161965847015, -0.030744118615984917, 0.11028193682432175, 0.008513242937624454, -0.05913268402218819, 0.11324562877416611, -0.006611996330320835, 0.08476176112890244, -0.07566628605127335, 0.03790871798992157, 0.10735906660556793, -0.08159590512514114, 0.04977639392018318, -0.09693151712417603, 0.03211710974574089, -0.1041845977306366, -0.01444699615240097, -0.057022400200366974, -0.0006707028369419277, -0.02680104412138462, -0.03217508643865585, -0.048764459788799286, -0.0003845257742796093, 0.07141455262899399, -0.02152969501912594, 0.20483402907848358, 0.015946265310049057, 0.13606402277946472, 0.16108080744743347, 0.09986325353384018, -0.132023885846138, -0.04206868261098862, 0.010358831845223904, -0.028196940198540688, 0.04948762431740761, -0.1694498211145401, 0.04418465495109558, 0.1406477689743042, -0.00015520719171036035, 0.11992725729942322, 0.07032907754182816, -0.05864020437002182, 0.027852090075612068, 0.05507712811231613, -0.16705912351608276, -0.10706877708435059, 0.011340298689901829, 0.051287151873111725, -0.10960327088832855, 0.06106821820139885, 0.13331277668476105, -0.05658911541104317, -0.01304624043405056, 0.00838756188750267, 0.018102802336215973, -0.022916948422789574, 0.17573466897010803, 0.022673746570944786, 0.062439367175102234, -0.10821185261011124, 0.08385340869426727, 0.05282314121723175, -0.1086616963148117, 0.05389882251620293, 0.1233585998415947, -0.0969887375831604, -0.025160573422908783, 0.04061412438750267, 0.16254658997058868, -0.05832265317440033, -0.05789635330438614, -0.15426459908485413, -0.12379501760005951, 0.1044270321726799, 0.19633923470973969, 0.059792764484882355, 0.0074940999038517475, -0.035445984452962875, 0.0010553509928286076, -0.12584267556667328, 0.08493409305810928, 0.04083512723445892, 0.08571337908506393, -0.12995398044586182, 0.12459170818328857, -0.012515992857515812, 0.03594915568828583, -0.014508889056742191, 0.020290417596697807, -0.11302360892295837, 0.008788900449872017, -0.1400783658027649, 0.003786991583183408, -0.050736553966999054, -0.003594272769987583, -0.011953326873481274, -0.03968077898025513, -0.06483050435781479, 0.019401853904128075, -0.11472497880458832, -0.03059404157102108, 0.012182301841676235, 0.026761310175061226, -0.11252160370349884, -0.01770937070250511, 0.008882529102265835, -0.08476942032575607, 0.07711406797170639, 0.04965311661362648, -0.014612595550715923, 0.028151432052254677, -0.0427568145096302, 0.0005170538206584752, 0.060175348073244095, 0.005754841025918722, 0.076975017786026, -0.09736845642328262, -0.02463458850979805, 0.013580533675849438, 0.03075076825916767, 0.027737542986869812, 0.10168669372797012, -0.11851734668016434, 0.005333000794053078, -0.00827743485569954, -0.0640556812286377, -0.06912565976381302, 0.05891118571162224, 0.10030189156532288, 0.015579627826809883, 0.18520799279212952, -0.07800532877445221, 0.02439546026289463, -0.1891445368528366, 0.0029481006786227226, 0.017541419714689255, -0.14603017270565033, -0.0557294562458992, -0.04303717240691185, 0.06539062410593033, -0.07098278403282166, 0.12075351923704147, -0.0011569955386221409, 0.021919503808021545, 0.050985440611839294, -0.04577350988984108, -0.04533423110842705, 0.015661561861634254, 0.17541365325450897, 0.033101532608270645, -0.0444985069334507, 0.06799964606761932, 0.01606045663356781, 0.08962514251470566, 0.1074957475066185, 0.1960233598947525, 0.13658182322978973, 0.042333297431468964, 0.10927547514438629, 0.03039924055337906, -0.032990068197250366, -0.1804201751947403, 0.06466136872768402, -0.043692849576473236, 0.1490284949541092, -0.010319146327674389, 0.19452378153800964, 0.12665902078151703, -0.13991506397724152, 0.04713459312915802, -0.040486134588718414, -0.0859677866101265, -0.108208067715168, -0.08314966410398483, -0.09306423366069794, -0.15479591488838196, -0.0073462058790028095, -0.1201031357049942, 0.06425068527460098, 0.0529496893286705, 0.020022930577397346, 0.0007071530562825501, 0.12408716976642609, 0.024245090782642365, 0.013213171623647213, 0.05724010244011879, -0.007572897244244814, -0.042386844754219055, -0.05228404700756073, -0.07993343472480774, 0.013838911429047585, 0.002043097512796521, 0.05337490513920784, 0.006395380012691021, -0.012339613400399685, 0.040672678500413895, -0.026810528710484505, -0.11085304617881775, 0.015736492350697517, 0.03723237290978432, 0.054509811103343964, 0.030476436018943787, 0.011228226125240326, -0.005428374279290438, -0.011219194158911705, 0.1924048364162445, -0.08198820054531097, -0.07071993499994278, -0.11487160623073578, 0.22960267961025238, 0.02375829964876175, -0.03510696440935135, 0.02668762393295765, -0.062320683151483536, -0.01713687554001808, 0.19934654235839844, 0.16954658925533295, -0.026265615597367287, -0.011713625863194466, -0.025644907727837563, -0.007407497148960829, -0.02550303004682064, 0.10090558975934982, 0.1294013410806656, 0.01921679638326168, -0.06390310078859329, -0.039078619331121445, -0.06077705696225166, -0.008595924824476242, -0.061323706060647964, 0.059153057634830475, 0.018955357372760773, -0.005986575968563557, -0.03195764869451523, 0.047469109296798706, -0.06376256048679352, -0.05825977399945259, 0.010574703104794025, -0.20286200940608978, -0.1521214246749878, 0.005458497442305088, 0.08741406351327896, -0.01396067626774311, 0.05628187209367752, -0.0019079222111031413, -0.0029863896779716015, 0.08260838687419891, -0.02030239626765251, -0.07490933686494827, -0.06666035205125809, 0.09186477959156036, -0.17081722617149353, 0.1766585111618042, -0.03232965245842934, 0.025107553228735924, 0.14256949722766876, 0.050191160291433334, -0.10890831798315048, 0.06518226116895676, 0.03907470777630806, -0.05728655308485031, 0.00679123355075717, 0.13023218512535095, -0.03004981391131878, 0.08009734749794006, 0.0408703051507473, -0.12585115432739258, -0.01938614435493946, -0.07527001947164536, -0.02483987994492054, -0.01966194435954094, -0.05457032471895218, -0.044267114251852036, 0.11975893378257751, 0.19763976335525513, -0.04218223690986633, 0.0025521493516862392, -0.060464419424533844, 0.01717217266559601, 0.058490999042987823, -0.017820322886109352, -0.05998595058917999, -0.26374825835227966, 0.0008293183636851609, 0.08817808330059052, -0.006519087590277195, -0.2610302269458771, -0.08783864229917526, -0.0025086316745728254, -0.03645826876163483, -0.10744258016347885, 0.08932945877313614, 0.08979803323745728, 0.04611853510141373, -0.0649639144539833, -0.031316179782152176, -0.06646561622619629, 0.17030535638332367, -0.1382666826248169, -0.06668490916490555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned300-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.1454 | 14.2319 | 17.8329 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned300-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned300-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned300-en-to-de ============================== This model is a fine-tuned version of t5-small on the wmt16 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 74, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.0889618918299675, 0.10018717497587204, -0.0038034876342862844, 0.0875915065407753, 0.10987268388271332, -0.006065878085792065, 0.1548226922750473, 0.15311281383037567, -0.12781468033790588, 0.05975473299622536, 0.14377059042453766, 0.13524594902992249, 0.04719994217157364, 0.1622452586889267, -0.07003141194581985, -0.2509947121143341, 0.04694842919707298, 0.05292709171772003, -0.024515189230442047, 0.1250804364681244, 0.08556091785430908, -0.12100115418434143, 0.09253433346748352, 0.026408683508634567, -0.18699954450130463, -0.006213481072336435, -0.0036945375613868237, -0.08250162750482559, 0.10384908318519592, 0.03392484784126282, 0.0943026915192604, 0.0359443798661232, 0.050692059099674225, -0.16067081689834595, 0.007637455593794584, 0.06008118763566017, 0.005335124209523201, 0.09981442987918854, 0.05680391192436218, -0.011764120310544968, 0.11047093570232391, -0.07125017791986465, 0.06808391958475113, 0.02578830160200596, -0.1286083608865738, -0.2486647665500641, -0.10707380622625351, 0.03615095466375351, 0.06913943588733673, 0.08334584534168243, -0.0034911809489130974, 0.17422205209732056, -0.024854348972439766, 0.11302846670150757, 0.2573734521865845, -0.30541113018989563, -0.05738135054707527, -0.011187662370502949, 0.04940136894583702, 0.07208728045225143, -0.07599978148937225, -0.0335182324051857, 0.026652071624994278, 0.04799387976527214, 0.14402137696743011, -0.013358701020479202, -0.030273912474513054, -0.015802348032593727, -0.1358109563589096, -0.06817124038934708, 0.16067858040332794, 0.0331592783331871, -0.0404660627245903, -0.06097012758255005, -0.07883435487747192, -0.1956735998392105, -0.049151234328746796, 0.005347377620637417, 0.04561522603034973, -0.03460345044732094, -0.09236953407526016, -0.011077901348471642, -0.06884627789258957, -0.044534437358379364, -0.0591474212706089, 0.14221684634685516, 0.04652761295437813, 0.020285094156861305, -0.06731901317834854, 0.07181817293167114, -0.037953414022922516, -0.1601819396018982, -0.01698904298245907, 0.01943247765302658, 0.009004397317767143, -0.037600353360176086, -0.038418397307395935, -0.12897749245166779, 0.009250171482563019, 0.16273121535778046, -0.10580261051654816, 0.0819801464676857, -0.03743277117609978, 0.03924175724387169, -0.07957291603088379, 0.18343903124332428, -0.013169340789318085, 0.015672575682401657, 0.011536928825080395, 0.06097846478223801, 0.051767125725746155, -0.0281629990786314, -0.11016197502613068, 0.03777598589658737, 0.10943955928087234, 0.02440483681857586, -0.03822707757353783, 0.07109023630619049, -0.04037937894463539, -0.022119438275694847, 0.04845936968922615, -0.10463885962963104, 0.03516760841012001, -0.017063098028302193, -0.06567388772964478, -0.0033286684192717075, 0.022152649238705635, 0.00037023439654149115, -0.04419801011681557, 0.09527205675840378, -0.08407957851886749, 0.022050870582461357, -0.08436626940965652, -0.13485689461231232, 0.034500665962696075, -0.08937765657901764, 0.002971746027469635, -0.10042174160480499, -0.14661282300949097, -0.008515236899256706, 0.05994325503706932, -0.0475052110850811, -0.04512200132012367, -0.05026707053184509, -0.09856995195150375, 0.050555892288684845, -0.022451147437095642, 0.07744697481393814, -0.07160860300064087, 0.08438809216022491, 0.04234414920210838, 0.0809149444103241, -0.05101334676146507, 0.046328771859407425, -0.08941980451345444, 0.0432528480887413, -0.22246547043323517, 0.055213361978530884, -0.05586071312427521, 0.09496485441923141, -0.10505664348602295, -0.10117320716381073, 0.014916041865944862, -0.024406567215919495, 0.10363724827766418, 0.083235003054142, -0.16368018090724945, -0.0705142468214035, 0.2040679156780243, -0.08537935465574265, -0.132719025015831, 0.12734933197498322, -0.04489300400018692, 0.007412342354655266, 0.0514046773314476, 0.2173624187707901, 0.05093968287110329, -0.10109665989875793, -0.013638305477797985, -0.04937012493610382, 0.041749563068151474, -0.056164953857660294, 0.06600240617990494, 0.007654708344489336, 0.07759273797273636, 0.0060957917012274265, 0.03418958932161331, 0.02877034805715084, -0.08474141359329224, -0.07506627589464188, -0.05957686901092529, -0.07280667126178741, 0.009806346148252487, 0.03671940788626671, 0.0699932724237442, -0.1340281367301941, -0.10551224648952484, 0.06443066149950027, 0.0730585902929306, -0.08123745024204254, 0.05893176421523094, -0.11029735207557678, 0.0983676016330719, -0.05753879249095917, 0.004173141438513994, -0.18576739728450775, -0.012712741270661354, 0.034700099378824234, -0.007434891536831856, 0.027131114155054092, -0.043978672474622726, 0.07337325811386108, 0.06556110084056854, -0.034277208149433136, -0.02971459925174713, -0.019985290244221687, 0.003781670704483986, -0.11572112888097763, -0.19584612548351288, -0.0321429967880249, -0.035036493092775345, 0.07160268723964691, -0.16012562811374664, 0.04448380693793297, 0.06861530989408493, 0.11636024713516235, 0.042730044573545456, -0.021229762583971024, -0.01255827210843563, 0.07361818850040436, -0.051086924970149994, -0.070628322660923, 0.05500299483537674, 0.02782449685037136, -0.08551867306232452, 0.0018194757867604494, -0.16175806522369385, 0.154799222946167, 0.14245985448360443, -0.025168202817440033, -0.0554656982421875, 0.0033412091434001923, -0.05259142443537712, -0.02913234569132328, -0.017089268192648888, 0.01796439103782177, 0.16147151589393616, 0.016629355028271675, 0.16156162321567535, -0.0970781072974205, -0.05230238661170006, 0.05127745494246483, -0.03647667169570923, -0.004355373326689005, 0.10980631411075592, 0.03899703547358513, -0.11948812752962112, 0.13681532442569733, 0.14531607925891876, -0.06026061624288559, 0.13393163681030273, -0.06679556518793106, -0.06732750684022903, -0.029002675786614418, -0.006800261326134205, 0.03426207974553108, 0.08658391982316971, -0.11938536167144775, -0.016079893335700035, 0.033992163836956024, 0.038633279502391815, 0.010428558103740215, -0.18911288678646088, 0.01215033046901226, 0.03870466351509094, -0.056264664977788925, -0.04045813903212547, -0.00988764688372612, 0.015177085064351559, 0.10035194456577301, 0.019329704344272614, -0.06183362752199173, 0.03273870423436165, 0.014217282645404339, -0.06118536740541458, 0.1749614179134369, -0.10991654545068741, -0.1608627736568451, -0.12575273215770721, -0.10769690573215485, -0.05757590010762215, -0.0019224989227950573, 0.08612291514873505, -0.07656458020210266, -0.05460170656442642, -0.10109291225671768, -0.017100568860769272, -0.01290886290371418, 0.02786404639482498, 0.06264768540859222, -0.00901100318878889, 0.07225117832422256, -0.1141415387392044, -0.028893403708934784, -0.014110361225903034, -0.0004329607472755015, 0.06530620157718658, 0.01298973336815834, 0.11306057870388031, 0.12546204030513763, -0.03624982759356499, 0.04133879393339157, -0.037483811378479004, 0.23114866018295288, -0.06967732310295105, -0.014262578450143337, 0.12877319753170013, -0.01002978254109621, 0.08610434830188751, 0.11538460105657578, 0.04814082384109497, -0.09886609762907028, 0.00244920770637691, 0.010083095170557499, -0.04951471835374832, -0.22090914845466614, -0.01716863177716732, -0.051388904452323914, 0.01471567340195179, 0.104718416929245, 0.03373697027564049, 0.04137340560555458, 0.04467182606458664, 0.01906985603272915, 0.07308189570903778, -0.013730555772781372, 0.11503862589597702, 0.12489750981330872, 0.06437566876411438, 0.14160650968551636, -0.06303827464580536, -0.028852084651589394, 0.050609856843948364, 0.007656233385205269, 0.22086907923221588, 0.007228535134345293, 0.20208941400051117, 0.046651940792798996, 0.143122136592865, 0.0326094925403595, 0.06933867186307907, -0.018387332558631897, -0.012851139530539513, -0.012561392039060593, -0.04697495326399803, -0.036881256848573685, 0.021444279700517654, -0.07183002680540085, 0.027003398165106773, -0.10479747503995895, 0.0204644612967968, 0.05386028811335564, 0.2982966899871826, 0.025294557213783264, -0.36833131313323975, -0.10606665909290314, 0.010138831101357937, -0.06051772087812424, -0.04396027326583862, 0.018265828490257263, 0.0825275331735611, -0.06561599671840668, 0.0809062048792839, -0.08091625571250916, 0.11449533700942993, -0.04751993715763092, 0.04110082611441612, 0.0490453727543354, 0.09785151481628418, -0.00889129564166069, 0.045181747525930405, -0.3011925220489502, 0.2654477655887604, 0.024175632745027542, 0.07286050915718079, -0.07133463770151138, 0.017550664022564888, 0.00662947865203023, 0.05419699102640152, 0.04937662184238434, -0.014630620367825031, -0.12910081446170807, -0.14813919365406036, -0.08631867915391922, 0.011116819456219673, 0.09800343215465546, 0.027759475633502007, 0.12220645695924759, -0.017010929062962532, -0.00002501258859410882, 0.046614088118076324, -0.036256831139326096, -0.04672054946422577, -0.10230942815542221, 0.024601366370916367, 0.05529299005866051, -0.007192531600594521, -0.06919382512569427, -0.09014382213354111, -0.07264269888401031, 0.17319455742835999, 0.009034284390509129, -0.06025511398911476, -0.12295106053352356, 0.037891000509262085, 0.08032338321208954, -0.08426667749881744, 0.03359789401292801, -0.013128218241035938, 0.11393196135759354, 0.009590060450136662, -0.08163774758577347, 0.12319160252809525, -0.051789022982120514, -0.17225110530853271, -0.04307409003376961, 0.10639934241771698, 0.004715582821518183, 0.06030649691820145, -0.013616231270134449, 0.03849664703011513, -0.03048780746757984, -0.07237827032804489, 0.026521455496549606, -0.003804456442594528, 0.0829302966594696, -0.03673078864812851, -0.009207946248352528, 0.023086044937372208, -0.06286559998989105, -0.026891257613897324, 0.17408393323421478, 0.2580972909927368, -0.08685941249132156, 0.06270705908536911, 0.03934316337108612, -0.055402252823114395, -0.1551039069890976, 0.012106400914490223, 0.05088965222239494, -0.002042846754193306, -0.009857390075922012, -0.17474021017551422, 0.03459995612502098, 0.09835419058799744, -0.014358550310134888, 0.08447948098182678, -0.3101573586463928, -0.13019220530986786, 0.08451607078313828, 0.1248011663556099, 0.09267030656337738, -0.16537512838840485, -0.0445391982793808, -0.03659622743725777, -0.15378986299037933, 0.13217517733573914, -0.11072412133216858, 0.11804161965847015, -0.030744118615984917, 0.11028193682432175, 0.008513242937624454, -0.05913268402218819, 0.11324562877416611, -0.006611996330320835, 0.08476176112890244, -0.07566628605127335, 0.03790871798992157, 0.10735906660556793, -0.08159590512514114, 0.04977639392018318, -0.09693151712417603, 0.03211710974574089, -0.1041845977306366, -0.01444699615240097, -0.057022400200366974, -0.0006707028369419277, -0.02680104412138462, -0.03217508643865585, -0.048764459788799286, -0.0003845257742796093, 0.07141455262899399, -0.02152969501912594, 0.20483402907848358, 0.015946265310049057, 0.13606402277946472, 0.16108080744743347, 0.09986325353384018, -0.132023885846138, -0.04206868261098862, 0.010358831845223904, -0.028196940198540688, 0.04948762431740761, -0.1694498211145401, 0.04418465495109558, 0.1406477689743042, -0.00015520719171036035, 0.11992725729942322, 0.07032907754182816, -0.05864020437002182, 0.027852090075612068, 0.05507712811231613, -0.16705912351608276, -0.10706877708435059, 0.011340298689901829, 0.051287151873111725, -0.10960327088832855, 0.06106821820139885, 0.13331277668476105, -0.05658911541104317, -0.01304624043405056, 0.00838756188750267, 0.018102802336215973, -0.022916948422789574, 0.17573466897010803, 0.022673746570944786, 0.062439367175102234, -0.10821185261011124, 0.08385340869426727, 0.05282314121723175, -0.1086616963148117, 0.05389882251620293, 0.1233585998415947, -0.0969887375831604, -0.025160573422908783, 0.04061412438750267, 0.16254658997058868, -0.05832265317440033, -0.05789635330438614, -0.15426459908485413, -0.12379501760005951, 0.1044270321726799, 0.19633923470973969, 0.059792764484882355, 0.0074940999038517475, -0.035445984452962875, 0.0010553509928286076, -0.12584267556667328, 0.08493409305810928, 0.04083512723445892, 0.08571337908506393, -0.12995398044586182, 0.12459170818328857, -0.012515992857515812, 0.03594915568828583, -0.014508889056742191, 0.020290417596697807, -0.11302360892295837, 0.008788900449872017, -0.1400783658027649, 0.003786991583183408, -0.050736553966999054, -0.003594272769987583, -0.011953326873481274, -0.03968077898025513, -0.06483050435781479, 0.019401853904128075, -0.11472497880458832, -0.03059404157102108, 0.012182301841676235, 0.026761310175061226, -0.11252160370349884, -0.01770937070250511, 0.008882529102265835, -0.08476942032575607, 0.07711406797170639, 0.04965311661362648, -0.014612595550715923, 0.028151432052254677, -0.0427568145096302, 0.0005170538206584752, 0.060175348073244095, 0.005754841025918722, 0.076975017786026, -0.09736845642328262, -0.02463458850979805, 0.013580533675849438, 0.03075076825916767, 0.027737542986869812, 0.10168669372797012, -0.11851734668016434, 0.005333000794053078, -0.00827743485569954, -0.0640556812286377, -0.06912565976381302, 0.05891118571162224, 0.10030189156532288, 0.015579627826809883, 0.18520799279212952, -0.07800532877445221, 0.02439546026289463, -0.1891445368528366, 0.0029481006786227226, 0.017541419714689255, -0.14603017270565033, -0.0557294562458992, -0.04303717240691185, 0.06539062410593033, -0.07098278403282166, 0.12075351923704147, -0.0011569955386221409, 0.021919503808021545, 0.050985440611839294, -0.04577350988984108, -0.04533423110842705, 0.015661561861634254, 0.17541365325450897, 0.033101532608270645, -0.0444985069334507, 0.06799964606761932, 0.01606045663356781, 0.08962514251470566, 0.1074957475066185, 0.1960233598947525, 0.13658182322978973, 0.042333297431468964, 0.10927547514438629, 0.03039924055337906, -0.032990068197250366, -0.1804201751947403, 0.06466136872768402, -0.043692849576473236, 0.1490284949541092, -0.010319146327674389, 0.19452378153800964, 0.12665902078151703, -0.13991506397724152, 0.04713459312915802, -0.040486134588718414, -0.0859677866101265, -0.108208067715168, -0.08314966410398483, -0.09306423366069794, -0.15479591488838196, -0.0073462058790028095, -0.1201031357049942, 0.06425068527460098, 0.0529496893286705, 0.020022930577397346, 0.0007071530562825501, 0.12408716976642609, 0.024245090782642365, 0.013213171623647213, 0.05724010244011879, -0.007572897244244814, -0.042386844754219055, -0.05228404700756073, -0.07993343472480774, 0.013838911429047585, 0.002043097512796521, 0.05337490513920784, 0.006395380012691021, -0.012339613400399685, 0.040672678500413895, -0.026810528710484505, -0.11085304617881775, 0.015736492350697517, 0.03723237290978432, 0.054509811103343964, 0.030476436018943787, 0.011228226125240326, -0.005428374279290438, -0.011219194158911705, 0.1924048364162445, -0.08198820054531097, -0.07071993499994278, -0.11487160623073578, 0.22960267961025238, 0.02375829964876175, -0.03510696440935135, 0.02668762393295765, -0.062320683151483536, -0.01713687554001808, 0.19934654235839844, 0.16954658925533295, -0.026265615597367287, -0.011713625863194466, -0.025644907727837563, -0.007407497148960829, -0.02550303004682064, 0.10090558975934982, 0.1294013410806656, 0.01921679638326168, -0.06390310078859329, -0.039078619331121445, -0.06077705696225166, -0.008595924824476242, -0.061323706060647964, 0.059153057634830475, 0.018955357372760773, -0.005986575968563557, -0.03195764869451523, 0.047469109296798706, -0.06376256048679352, -0.05825977399945259, 0.010574703104794025, -0.20286200940608978, -0.1521214246749878, 0.005458497442305088, 0.08741406351327896, -0.01396067626774311, 0.05628187209367752, -0.0019079222111031413, -0.0029863896779716015, 0.08260838687419891, -0.02030239626765251, -0.07490933686494827, -0.06666035205125809, 0.09186477959156036, -0.17081722617149353, 0.1766585111618042, -0.03232965245842934, 0.025107553228735924, 0.14256949722766876, 0.050191160291433334, -0.10890831798315048, 0.06518226116895676, 0.03907470777630806, -0.05728655308485031, 0.00679123355075717, 0.13023218512535095, -0.03004981391131878, 0.08009734749794006, 0.0408703051507473, -0.12585115432739258, -0.01938614435493946, -0.07527001947164536, -0.02483987994492054, -0.01966194435954094, -0.05457032471895218, -0.044267114251852036, 0.11975893378257751, 0.19763976335525513, -0.04218223690986633, 0.0025521493516862392, -0.060464419424533844, 0.01717217266559601, 0.058490999042987823, -0.017820322886109352, -0.05998595058917999, -0.26374825835227966, 0.0008293183636851609, 0.08817808330059052, -0.006519087590277195, -0.2610302269458771, -0.08783864229917526, -0.0025086316745728254, -0.03645826876163483, -0.10744258016347885, 0.08932945877313614, 0.08979803323745728, 0.04611853510141373, -0.0649639144539833, -0.031316179782152176, -0.06646561622619629, 0.17030535638332367, -0.1382666826248169, -0.06668490916490555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned32-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.4226 | 21.9554 | 17.8089 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned32-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned32-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned32-en-to-de ============================= This model is a fine-tuned version of t5-small on the wmt16 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 74, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.0889618918299675, 0.10018717497587204, -0.0038034876342862844, 0.0875915065407753, 0.10987268388271332, -0.006065878085792065, 0.1548226922750473, 0.15311281383037567, -0.12781468033790588, 0.05975473299622536, 0.14377059042453766, 0.13524594902992249, 0.04719994217157364, 0.1622452586889267, -0.07003141194581985, -0.2509947121143341, 0.04694842919707298, 0.05292709171772003, -0.024515189230442047, 0.1250804364681244, 0.08556091785430908, -0.12100115418434143, 0.09253433346748352, 0.026408683508634567, -0.18699954450130463, -0.006213481072336435, -0.0036945375613868237, -0.08250162750482559, 0.10384908318519592, 0.03392484784126282, 0.0943026915192604, 0.0359443798661232, 0.050692059099674225, -0.16067081689834595, 0.007637455593794584, 0.06008118763566017, 0.005335124209523201, 0.09981442987918854, 0.05680391192436218, -0.011764120310544968, 0.11047093570232391, -0.07125017791986465, 0.06808391958475113, 0.02578830160200596, -0.1286083608865738, -0.2486647665500641, -0.10707380622625351, 0.03615095466375351, 0.06913943588733673, 0.08334584534168243, -0.0034911809489130974, 0.17422205209732056, -0.024854348972439766, 0.11302846670150757, 0.2573734521865845, -0.30541113018989563, -0.05738135054707527, -0.011187662370502949, 0.04940136894583702, 0.07208728045225143, -0.07599978148937225, -0.0335182324051857, 0.026652071624994278, 0.04799387976527214, 0.14402137696743011, -0.013358701020479202, -0.030273912474513054, -0.015802348032593727, -0.1358109563589096, -0.06817124038934708, 0.16067858040332794, 0.0331592783331871, -0.0404660627245903, -0.06097012758255005, -0.07883435487747192, -0.1956735998392105, -0.049151234328746796, 0.005347377620637417, 0.04561522603034973, -0.03460345044732094, -0.09236953407526016, -0.011077901348471642, -0.06884627789258957, -0.044534437358379364, -0.0591474212706089, 0.14221684634685516, 0.04652761295437813, 0.020285094156861305, -0.06731901317834854, 0.07181817293167114, -0.037953414022922516, -0.1601819396018982, -0.01698904298245907, 0.01943247765302658, 0.009004397317767143, -0.037600353360176086, -0.038418397307395935, -0.12897749245166779, 0.009250171482563019, 0.16273121535778046, -0.10580261051654816, 0.0819801464676857, -0.03743277117609978, 0.03924175724387169, -0.07957291603088379, 0.18343903124332428, -0.013169340789318085, 0.015672575682401657, 0.011536928825080395, 0.06097846478223801, 0.051767125725746155, -0.0281629990786314, -0.11016197502613068, 0.03777598589658737, 0.10943955928087234, 0.02440483681857586, -0.03822707757353783, 0.07109023630619049, -0.04037937894463539, -0.022119438275694847, 0.04845936968922615, -0.10463885962963104, 0.03516760841012001, -0.017063098028302193, -0.06567388772964478, -0.0033286684192717075, 0.022152649238705635, 0.00037023439654149115, -0.04419801011681557, 0.09527205675840378, -0.08407957851886749, 0.022050870582461357, -0.08436626940965652, -0.13485689461231232, 0.034500665962696075, -0.08937765657901764, 0.002971746027469635, -0.10042174160480499, -0.14661282300949097, -0.008515236899256706, 0.05994325503706932, -0.0475052110850811, -0.04512200132012367, -0.05026707053184509, -0.09856995195150375, 0.050555892288684845, -0.022451147437095642, 0.07744697481393814, -0.07160860300064087, 0.08438809216022491, 0.04234414920210838, 0.0809149444103241, -0.05101334676146507, 0.046328771859407425, -0.08941980451345444, 0.0432528480887413, -0.22246547043323517, 0.055213361978530884, -0.05586071312427521, 0.09496485441923141, -0.10505664348602295, -0.10117320716381073, 0.014916041865944862, -0.024406567215919495, 0.10363724827766418, 0.083235003054142, -0.16368018090724945, -0.0705142468214035, 0.2040679156780243, -0.08537935465574265, -0.132719025015831, 0.12734933197498322, -0.04489300400018692, 0.007412342354655266, 0.0514046773314476, 0.2173624187707901, 0.05093968287110329, -0.10109665989875793, -0.013638305477797985, -0.04937012493610382, 0.041749563068151474, -0.056164953857660294, 0.06600240617990494, 0.007654708344489336, 0.07759273797273636, 0.0060957917012274265, 0.03418958932161331, 0.02877034805715084, -0.08474141359329224, -0.07506627589464188, -0.05957686901092529, -0.07280667126178741, 0.009806346148252487, 0.03671940788626671, 0.0699932724237442, -0.1340281367301941, -0.10551224648952484, 0.06443066149950027, 0.0730585902929306, -0.08123745024204254, 0.05893176421523094, -0.11029735207557678, 0.0983676016330719, -0.05753879249095917, 0.004173141438513994, -0.18576739728450775, -0.012712741270661354, 0.034700099378824234, -0.007434891536831856, 0.027131114155054092, -0.043978672474622726, 0.07337325811386108, 0.06556110084056854, -0.034277208149433136, -0.02971459925174713, -0.019985290244221687, 0.003781670704483986, -0.11572112888097763, -0.19584612548351288, -0.0321429967880249, -0.035036493092775345, 0.07160268723964691, -0.16012562811374664, 0.04448380693793297, 0.06861530989408493, 0.11636024713516235, 0.042730044573545456, -0.021229762583971024, -0.01255827210843563, 0.07361818850040436, -0.051086924970149994, -0.070628322660923, 0.05500299483537674, 0.02782449685037136, -0.08551867306232452, 0.0018194757867604494, -0.16175806522369385, 0.154799222946167, 0.14245985448360443, -0.025168202817440033, -0.0554656982421875, 0.0033412091434001923, -0.05259142443537712, -0.02913234569132328, -0.017089268192648888, 0.01796439103782177, 0.16147151589393616, 0.016629355028271675, 0.16156162321567535, -0.0970781072974205, -0.05230238661170006, 0.05127745494246483, -0.03647667169570923, -0.004355373326689005, 0.10980631411075592, 0.03899703547358513, -0.11948812752962112, 0.13681532442569733, 0.14531607925891876, -0.06026061624288559, 0.13393163681030273, -0.06679556518793106, -0.06732750684022903, -0.029002675786614418, -0.006800261326134205, 0.03426207974553108, 0.08658391982316971, -0.11938536167144775, -0.016079893335700035, 0.033992163836956024, 0.038633279502391815, 0.010428558103740215, -0.18911288678646088, 0.01215033046901226, 0.03870466351509094, -0.056264664977788925, -0.04045813903212547, -0.00988764688372612, 0.015177085064351559, 0.10035194456577301, 0.019329704344272614, -0.06183362752199173, 0.03273870423436165, 0.014217282645404339, -0.06118536740541458, 0.1749614179134369, -0.10991654545068741, -0.1608627736568451, -0.12575273215770721, -0.10769690573215485, -0.05757590010762215, -0.0019224989227950573, 0.08612291514873505, -0.07656458020210266, -0.05460170656442642, -0.10109291225671768, -0.017100568860769272, -0.01290886290371418, 0.02786404639482498, 0.06264768540859222, -0.00901100318878889, 0.07225117832422256, -0.1141415387392044, -0.028893403708934784, -0.014110361225903034, -0.0004329607472755015, 0.06530620157718658, 0.01298973336815834, 0.11306057870388031, 0.12546204030513763, -0.03624982759356499, 0.04133879393339157, -0.037483811378479004, 0.23114866018295288, -0.06967732310295105, -0.014262578450143337, 0.12877319753170013, -0.01002978254109621, 0.08610434830188751, 0.11538460105657578, 0.04814082384109497, -0.09886609762907028, 0.00244920770637691, 0.010083095170557499, -0.04951471835374832, -0.22090914845466614, -0.01716863177716732, -0.051388904452323914, 0.01471567340195179, 0.104718416929245, 0.03373697027564049, 0.04137340560555458, 0.04467182606458664, 0.01906985603272915, 0.07308189570903778, -0.013730555772781372, 0.11503862589597702, 0.12489750981330872, 0.06437566876411438, 0.14160650968551636, -0.06303827464580536, -0.028852084651589394, 0.050609856843948364, 0.007656233385205269, 0.22086907923221588, 0.007228535134345293, 0.20208941400051117, 0.046651940792798996, 0.143122136592865, 0.0326094925403595, 0.06933867186307907, -0.018387332558631897, -0.012851139530539513, -0.012561392039060593, -0.04697495326399803, -0.036881256848573685, 0.021444279700517654, -0.07183002680540085, 0.027003398165106773, -0.10479747503995895, 0.0204644612967968, 0.05386028811335564, 0.2982966899871826, 0.025294557213783264, -0.36833131313323975, -0.10606665909290314, 0.010138831101357937, -0.06051772087812424, -0.04396027326583862, 0.018265828490257263, 0.0825275331735611, -0.06561599671840668, 0.0809062048792839, -0.08091625571250916, 0.11449533700942993, -0.04751993715763092, 0.04110082611441612, 0.0490453727543354, 0.09785151481628418, -0.00889129564166069, 0.045181747525930405, -0.3011925220489502, 0.2654477655887604, 0.024175632745027542, 0.07286050915718079, -0.07133463770151138, 0.017550664022564888, 0.00662947865203023, 0.05419699102640152, 0.04937662184238434, -0.014630620367825031, -0.12910081446170807, -0.14813919365406036, -0.08631867915391922, 0.011116819456219673, 0.09800343215465546, 0.027759475633502007, 0.12220645695924759, -0.017010929062962532, -0.00002501258859410882, 0.046614088118076324, -0.036256831139326096, -0.04672054946422577, -0.10230942815542221, 0.024601366370916367, 0.05529299005866051, -0.007192531600594521, -0.06919382512569427, -0.09014382213354111, -0.07264269888401031, 0.17319455742835999, 0.009034284390509129, -0.06025511398911476, -0.12295106053352356, 0.037891000509262085, 0.08032338321208954, -0.08426667749881744, 0.03359789401292801, -0.013128218241035938, 0.11393196135759354, 0.009590060450136662, -0.08163774758577347, 0.12319160252809525, -0.051789022982120514, -0.17225110530853271, -0.04307409003376961, 0.10639934241771698, 0.004715582821518183, 0.06030649691820145, -0.013616231270134449, 0.03849664703011513, -0.03048780746757984, -0.07237827032804489, 0.026521455496549606, -0.003804456442594528, 0.0829302966594696, -0.03673078864812851, -0.009207946248352528, 0.023086044937372208, -0.06286559998989105, -0.026891257613897324, 0.17408393323421478, 0.2580972909927368, -0.08685941249132156, 0.06270705908536911, 0.03934316337108612, -0.055402252823114395, -0.1551039069890976, 0.012106400914490223, 0.05088965222239494, -0.002042846754193306, -0.009857390075922012, -0.17474021017551422, 0.03459995612502098, 0.09835419058799744, -0.014358550310134888, 0.08447948098182678, -0.3101573586463928, -0.13019220530986786, 0.08451607078313828, 0.1248011663556099, 0.09267030656337738, -0.16537512838840485, -0.0445391982793808, -0.03659622743725777, -0.15378986299037933, 0.13217517733573914, -0.11072412133216858, 0.11804161965847015, -0.030744118615984917, 0.11028193682432175, 0.008513242937624454, -0.05913268402218819, 0.11324562877416611, -0.006611996330320835, 0.08476176112890244, -0.07566628605127335, 0.03790871798992157, 0.10735906660556793, -0.08159590512514114, 0.04977639392018318, -0.09693151712417603, 0.03211710974574089, -0.1041845977306366, -0.01444699615240097, -0.057022400200366974, -0.0006707028369419277, -0.02680104412138462, -0.03217508643865585, -0.048764459788799286, -0.0003845257742796093, 0.07141455262899399, -0.02152969501912594, 0.20483402907848358, 0.015946265310049057, 0.13606402277946472, 0.16108080744743347, 0.09986325353384018, -0.132023885846138, -0.04206868261098862, 0.010358831845223904, -0.028196940198540688, 0.04948762431740761, -0.1694498211145401, 0.04418465495109558, 0.1406477689743042, -0.00015520719171036035, 0.11992725729942322, 0.07032907754182816, -0.05864020437002182, 0.027852090075612068, 0.05507712811231613, -0.16705912351608276, -0.10706877708435059, 0.011340298689901829, 0.051287151873111725, -0.10960327088832855, 0.06106821820139885, 0.13331277668476105, -0.05658911541104317, -0.01304624043405056, 0.00838756188750267, 0.018102802336215973, -0.022916948422789574, 0.17573466897010803, 0.022673746570944786, 0.062439367175102234, -0.10821185261011124, 0.08385340869426727, 0.05282314121723175, -0.1086616963148117, 0.05389882251620293, 0.1233585998415947, -0.0969887375831604, -0.025160573422908783, 0.04061412438750267, 0.16254658997058868, -0.05832265317440033, -0.05789635330438614, -0.15426459908485413, -0.12379501760005951, 0.1044270321726799, 0.19633923470973969, 0.059792764484882355, 0.0074940999038517475, -0.035445984452962875, 0.0010553509928286076, -0.12584267556667328, 0.08493409305810928, 0.04083512723445892, 0.08571337908506393, -0.12995398044586182, 0.12459170818328857, -0.012515992857515812, 0.03594915568828583, -0.014508889056742191, 0.020290417596697807, -0.11302360892295837, 0.008788900449872017, -0.1400783658027649, 0.003786991583183408, -0.050736553966999054, -0.003594272769987583, -0.011953326873481274, -0.03968077898025513, -0.06483050435781479, 0.019401853904128075, -0.11472497880458832, -0.03059404157102108, 0.012182301841676235, 0.026761310175061226, -0.11252160370349884, -0.01770937070250511, 0.008882529102265835, -0.08476942032575607, 0.07711406797170639, 0.04965311661362648, -0.014612595550715923, 0.028151432052254677, -0.0427568145096302, 0.0005170538206584752, 0.060175348073244095, 0.005754841025918722, 0.076975017786026, -0.09736845642328262, -0.02463458850979805, 0.013580533675849438, 0.03075076825916767, 0.027737542986869812, 0.10168669372797012, -0.11851734668016434, 0.005333000794053078, -0.00827743485569954, -0.0640556812286377, -0.06912565976381302, 0.05891118571162224, 0.10030189156532288, 0.015579627826809883, 0.18520799279212952, -0.07800532877445221, 0.02439546026289463, -0.1891445368528366, 0.0029481006786227226, 0.017541419714689255, -0.14603017270565033, -0.0557294562458992, -0.04303717240691185, 0.06539062410593033, -0.07098278403282166, 0.12075351923704147, -0.0011569955386221409, 0.021919503808021545, 0.050985440611839294, -0.04577350988984108, -0.04533423110842705, 0.015661561861634254, 0.17541365325450897, 0.033101532608270645, -0.0444985069334507, 0.06799964606761932, 0.01606045663356781, 0.08962514251470566, 0.1074957475066185, 0.1960233598947525, 0.13658182322978973, 0.042333297431468964, 0.10927547514438629, 0.03039924055337906, -0.032990068197250366, -0.1804201751947403, 0.06466136872768402, -0.043692849576473236, 0.1490284949541092, -0.010319146327674389, 0.19452378153800964, 0.12665902078151703, -0.13991506397724152, 0.04713459312915802, -0.040486134588718414, -0.0859677866101265, -0.108208067715168, -0.08314966410398483, -0.09306423366069794, -0.15479591488838196, -0.0073462058790028095, -0.1201031357049942, 0.06425068527460098, 0.0529496893286705, 0.020022930577397346, 0.0007071530562825501, 0.12408716976642609, 0.024245090782642365, 0.013213171623647213, 0.05724010244011879, -0.007572897244244814, -0.042386844754219055, -0.05228404700756073, -0.07993343472480774, 0.013838911429047585, 0.002043097512796521, 0.05337490513920784, 0.006395380012691021, -0.012339613400399685, 0.040672678500413895, -0.026810528710484505, -0.11085304617881775, 0.015736492350697517, 0.03723237290978432, 0.054509811103343964, 0.030476436018943787, 0.011228226125240326, -0.005428374279290438, -0.011219194158911705, 0.1924048364162445, -0.08198820054531097, -0.07071993499994278, -0.11487160623073578, 0.22960267961025238, 0.02375829964876175, -0.03510696440935135, 0.02668762393295765, -0.062320683151483536, -0.01713687554001808, 0.19934654235839844, 0.16954658925533295, -0.026265615597367287, -0.011713625863194466, -0.025644907727837563, -0.007407497148960829, -0.02550303004682064, 0.10090558975934982, 0.1294013410806656, 0.01921679638326168, -0.06390310078859329, -0.039078619331121445, -0.06077705696225166, -0.008595924824476242, -0.061323706060647964, 0.059153057634830475, 0.018955357372760773, -0.005986575968563557, -0.03195764869451523, 0.047469109296798706, -0.06376256048679352, -0.05825977399945259, 0.010574703104794025, -0.20286200940608978, -0.1521214246749878, 0.005458497442305088, 0.08741406351327896, -0.01396067626774311, 0.05628187209367752, -0.0019079222111031413, -0.0029863896779716015, 0.08260838687419891, -0.02030239626765251, -0.07490933686494827, -0.06666035205125809, 0.09186477959156036, -0.17081722617149353, 0.1766585111618042, -0.03232965245842934, 0.025107553228735924, 0.14256949722766876, 0.050191160291433334, -0.10890831798315048, 0.06518226116895676, 0.03907470777630806, -0.05728655308485031, 0.00679123355075717, 0.13023218512535095, -0.03004981391131878, 0.08009734749794006, 0.0408703051507473, -0.12585115432739258, -0.01938614435493946, -0.07527001947164536, -0.02483987994492054, -0.01966194435954094, -0.05457032471895218, -0.044267114251852036, 0.11975893378257751, 0.19763976335525513, -0.04218223690986633, 0.0025521493516862392, -0.060464419424533844, 0.01717217266559601, 0.058490999042987823, -0.017820322886109352, -0.05998595058917999, -0.26374825835227966, 0.0008293183636851609, 0.08817808330059052, -0.006519087590277195, -0.2610302269458771, -0.08783864229917526, -0.0025086316745728254, -0.03645826876163483, -0.10744258016347885, 0.08932945877313614, 0.08979803323745728, 0.04611853510141373, -0.0649639144539833, -0.031316179782152176, -0.06646561622619629, 0.17030535638332367, -0.1382666826248169, -0.06668490916490555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned8-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 136 | 3.6717 | 3.9127 | 4.0207 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned8-en-to-de", "results": []}]}
text2text-generation
alexrfelicio/t5-small-finetuned8-en-to-de
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned8-en-to-de ============================ This model is a fine-tuned version of t5-small on the wmt16 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 74, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.0889618918299675, 0.10018717497587204, -0.0038034876342862844, 0.0875915065407753, 0.10987268388271332, -0.006065878085792065, 0.1548226922750473, 0.15311281383037567, -0.12781468033790588, 0.05975473299622536, 0.14377059042453766, 0.13524594902992249, 0.04719994217157364, 0.1622452586889267, -0.07003141194581985, -0.2509947121143341, 0.04694842919707298, 0.05292709171772003, -0.024515189230442047, 0.1250804364681244, 0.08556091785430908, -0.12100115418434143, 0.09253433346748352, 0.026408683508634567, -0.18699954450130463, -0.006213481072336435, -0.0036945375613868237, -0.08250162750482559, 0.10384908318519592, 0.03392484784126282, 0.0943026915192604, 0.0359443798661232, 0.050692059099674225, -0.16067081689834595, 0.007637455593794584, 0.06008118763566017, 0.005335124209523201, 0.09981442987918854, 0.05680391192436218, -0.011764120310544968, 0.11047093570232391, -0.07125017791986465, 0.06808391958475113, 0.02578830160200596, -0.1286083608865738, -0.2486647665500641, -0.10707380622625351, 0.03615095466375351, 0.06913943588733673, 0.08334584534168243, -0.0034911809489130974, 0.17422205209732056, -0.024854348972439766, 0.11302846670150757, 0.2573734521865845, -0.30541113018989563, -0.05738135054707527, -0.011187662370502949, 0.04940136894583702, 0.07208728045225143, -0.07599978148937225, -0.0335182324051857, 0.026652071624994278, 0.04799387976527214, 0.14402137696743011, -0.013358701020479202, -0.030273912474513054, -0.015802348032593727, -0.1358109563589096, -0.06817124038934708, 0.16067858040332794, 0.0331592783331871, -0.0404660627245903, -0.06097012758255005, -0.07883435487747192, -0.1956735998392105, -0.049151234328746796, 0.005347377620637417, 0.04561522603034973, -0.03460345044732094, -0.09236953407526016, -0.011077901348471642, -0.06884627789258957, -0.044534437358379364, -0.0591474212706089, 0.14221684634685516, 0.04652761295437813, 0.020285094156861305, -0.06731901317834854, 0.07181817293167114, -0.037953414022922516, -0.1601819396018982, -0.01698904298245907, 0.01943247765302658, 0.009004397317767143, -0.037600353360176086, -0.038418397307395935, -0.12897749245166779, 0.009250171482563019, 0.16273121535778046, -0.10580261051654816, 0.0819801464676857, -0.03743277117609978, 0.03924175724387169, -0.07957291603088379, 0.18343903124332428, -0.013169340789318085, 0.015672575682401657, 0.011536928825080395, 0.06097846478223801, 0.051767125725746155, -0.0281629990786314, -0.11016197502613068, 0.03777598589658737, 0.10943955928087234, 0.02440483681857586, -0.03822707757353783, 0.07109023630619049, -0.04037937894463539, -0.022119438275694847, 0.04845936968922615, -0.10463885962963104, 0.03516760841012001, -0.017063098028302193, -0.06567388772964478, -0.0033286684192717075, 0.022152649238705635, 0.00037023439654149115, -0.04419801011681557, 0.09527205675840378, -0.08407957851886749, 0.022050870582461357, -0.08436626940965652, -0.13485689461231232, 0.034500665962696075, -0.08937765657901764, 0.002971746027469635, -0.10042174160480499, -0.14661282300949097, -0.008515236899256706, 0.05994325503706932, -0.0475052110850811, -0.04512200132012367, -0.05026707053184509, -0.09856995195150375, 0.050555892288684845, -0.022451147437095642, 0.07744697481393814, -0.07160860300064087, 0.08438809216022491, 0.04234414920210838, 0.0809149444103241, -0.05101334676146507, 0.046328771859407425, -0.08941980451345444, 0.0432528480887413, -0.22246547043323517, 0.055213361978530884, -0.05586071312427521, 0.09496485441923141, -0.10505664348602295, -0.10117320716381073, 0.014916041865944862, -0.024406567215919495, 0.10363724827766418, 0.083235003054142, -0.16368018090724945, -0.0705142468214035, 0.2040679156780243, -0.08537935465574265, -0.132719025015831, 0.12734933197498322, -0.04489300400018692, 0.007412342354655266, 0.0514046773314476, 0.2173624187707901, 0.05093968287110329, -0.10109665989875793, -0.013638305477797985, -0.04937012493610382, 0.041749563068151474, -0.056164953857660294, 0.06600240617990494, 0.007654708344489336, 0.07759273797273636, 0.0060957917012274265, 0.03418958932161331, 0.02877034805715084, -0.08474141359329224, -0.07506627589464188, -0.05957686901092529, -0.07280667126178741, 0.009806346148252487, 0.03671940788626671, 0.0699932724237442, -0.1340281367301941, -0.10551224648952484, 0.06443066149950027, 0.0730585902929306, -0.08123745024204254, 0.05893176421523094, -0.11029735207557678, 0.0983676016330719, -0.05753879249095917, 0.004173141438513994, -0.18576739728450775, -0.012712741270661354, 0.034700099378824234, -0.007434891536831856, 0.027131114155054092, -0.043978672474622726, 0.07337325811386108, 0.06556110084056854, -0.034277208149433136, -0.02971459925174713, -0.019985290244221687, 0.003781670704483986, -0.11572112888097763, -0.19584612548351288, -0.0321429967880249, -0.035036493092775345, 0.07160268723964691, -0.16012562811374664, 0.04448380693793297, 0.06861530989408493, 0.11636024713516235, 0.042730044573545456, -0.021229762583971024, -0.01255827210843563, 0.07361818850040436, -0.051086924970149994, -0.070628322660923, 0.05500299483537674, 0.02782449685037136, -0.08551867306232452, 0.0018194757867604494, -0.16175806522369385, 0.154799222946167, 0.14245985448360443, -0.025168202817440033, -0.0554656982421875, 0.0033412091434001923, -0.05259142443537712, -0.02913234569132328, -0.017089268192648888, 0.01796439103782177, 0.16147151589393616, 0.016629355028271675, 0.16156162321567535, -0.0970781072974205, -0.05230238661170006, 0.05127745494246483, -0.03647667169570923, -0.004355373326689005, 0.10980631411075592, 0.03899703547358513, -0.11948812752962112, 0.13681532442569733, 0.14531607925891876, -0.06026061624288559, 0.13393163681030273, -0.06679556518793106, -0.06732750684022903, -0.029002675786614418, -0.006800261326134205, 0.03426207974553108, 0.08658391982316971, -0.11938536167144775, -0.016079893335700035, 0.033992163836956024, 0.038633279502391815, 0.010428558103740215, -0.18911288678646088, 0.01215033046901226, 0.03870466351509094, -0.056264664977788925, -0.04045813903212547, -0.00988764688372612, 0.015177085064351559, 0.10035194456577301, 0.019329704344272614, -0.06183362752199173, 0.03273870423436165, 0.014217282645404339, -0.06118536740541458, 0.1749614179134369, -0.10991654545068741, -0.1608627736568451, -0.12575273215770721, -0.10769690573215485, -0.05757590010762215, -0.0019224989227950573, 0.08612291514873505, -0.07656458020210266, -0.05460170656442642, -0.10109291225671768, -0.017100568860769272, -0.01290886290371418, 0.02786404639482498, 0.06264768540859222, -0.00901100318878889, 0.07225117832422256, -0.1141415387392044, -0.028893403708934784, -0.014110361225903034, -0.0004329607472755015, 0.06530620157718658, 0.01298973336815834, 0.11306057870388031, 0.12546204030513763, -0.03624982759356499, 0.04133879393339157, -0.037483811378479004, 0.23114866018295288, -0.06967732310295105, -0.014262578450143337, 0.12877319753170013, -0.01002978254109621, 0.08610434830188751, 0.11538460105657578, 0.04814082384109497, -0.09886609762907028, 0.00244920770637691, 0.010083095170557499, -0.04951471835374832, -0.22090914845466614, -0.01716863177716732, -0.051388904452323914, 0.01471567340195179, 0.104718416929245, 0.03373697027564049, 0.04137340560555458, 0.04467182606458664, 0.01906985603272915, 0.07308189570903778, -0.013730555772781372, 0.11503862589597702, 0.12489750981330872, 0.06437566876411438, 0.14160650968551636, -0.06303827464580536, -0.028852084651589394, 0.050609856843948364, 0.007656233385205269, 0.22086907923221588, 0.007228535134345293, 0.20208941400051117, 0.046651940792798996, 0.143122136592865, 0.0326094925403595, 0.06933867186307907, -0.018387332558631897, -0.012851139530539513, -0.012561392039060593, -0.04697495326399803, -0.036881256848573685, 0.021444279700517654, -0.07183002680540085, 0.027003398165106773, -0.10479747503995895, 0.0204644612967968, 0.05386028811335564, 0.2982966899871826, 0.025294557213783264, -0.36833131313323975, -0.10606665909290314, 0.010138831101357937, -0.06051772087812424, -0.04396027326583862, 0.018265828490257263, 0.0825275331735611, -0.06561599671840668, 0.0809062048792839, -0.08091625571250916, 0.11449533700942993, -0.04751993715763092, 0.04110082611441612, 0.0490453727543354, 0.09785151481628418, -0.00889129564166069, 0.045181747525930405, -0.3011925220489502, 0.2654477655887604, 0.024175632745027542, 0.07286050915718079, -0.07133463770151138, 0.017550664022564888, 0.00662947865203023, 0.05419699102640152, 0.04937662184238434, -0.014630620367825031, -0.12910081446170807, -0.14813919365406036, -0.08631867915391922, 0.011116819456219673, 0.09800343215465546, 0.027759475633502007, 0.12220645695924759, -0.017010929062962532, -0.00002501258859410882, 0.046614088118076324, -0.036256831139326096, -0.04672054946422577, -0.10230942815542221, 0.024601366370916367, 0.05529299005866051, -0.007192531600594521, -0.06919382512569427, -0.09014382213354111, -0.07264269888401031, 0.17319455742835999, 0.009034284390509129, -0.06025511398911476, -0.12295106053352356, 0.037891000509262085, 0.08032338321208954, -0.08426667749881744, 0.03359789401292801, -0.013128218241035938, 0.11393196135759354, 0.009590060450136662, -0.08163774758577347, 0.12319160252809525, -0.051789022982120514, -0.17225110530853271, -0.04307409003376961, 0.10639934241771698, 0.004715582821518183, 0.06030649691820145, -0.013616231270134449, 0.03849664703011513, -0.03048780746757984, -0.07237827032804489, 0.026521455496549606, -0.003804456442594528, 0.0829302966594696, -0.03673078864812851, -0.009207946248352528, 0.023086044937372208, -0.06286559998989105, -0.026891257613897324, 0.17408393323421478, 0.2580972909927368, -0.08685941249132156, 0.06270705908536911, 0.03934316337108612, -0.055402252823114395, -0.1551039069890976, 0.012106400914490223, 0.05088965222239494, -0.002042846754193306, -0.009857390075922012, -0.17474021017551422, 0.03459995612502098, 0.09835419058799744, -0.014358550310134888, 0.08447948098182678, -0.3101573586463928, -0.13019220530986786, 0.08451607078313828, 0.1248011663556099, 0.09267030656337738, -0.16537512838840485, -0.0445391982793808, -0.03659622743725777, -0.15378986299037933, 0.13217517733573914, -0.11072412133216858, 0.11804161965847015, -0.030744118615984917, 0.11028193682432175, 0.008513242937624454, -0.05913268402218819, 0.11324562877416611, -0.006611996330320835, 0.08476176112890244, -0.07566628605127335, 0.03790871798992157, 0.10735906660556793, -0.08159590512514114, 0.04977639392018318, -0.09693151712417603, 0.03211710974574089, -0.1041845977306366, -0.01444699615240097, -0.057022400200366974, -0.0006707028369419277, -0.02680104412138462, -0.03217508643865585, -0.048764459788799286, -0.0003845257742796093, 0.07141455262899399, -0.02152969501912594, 0.20483402907848358, 0.015946265310049057, 0.13606402277946472, 0.16108080744743347, 0.09986325353384018, -0.132023885846138, -0.04206868261098862, 0.010358831845223904, -0.028196940198540688, 0.04948762431740761, -0.1694498211145401, 0.04418465495109558, 0.1406477689743042, -0.00015520719171036035, 0.11992725729942322, 0.07032907754182816, -0.05864020437002182, 0.027852090075612068, 0.05507712811231613, -0.16705912351608276, -0.10706877708435059, 0.011340298689901829, 0.051287151873111725, -0.10960327088832855, 0.06106821820139885, 0.13331277668476105, -0.05658911541104317, -0.01304624043405056, 0.00838756188750267, 0.018102802336215973, -0.022916948422789574, 0.17573466897010803, 0.022673746570944786, 0.062439367175102234, -0.10821185261011124, 0.08385340869426727, 0.05282314121723175, -0.1086616963148117, 0.05389882251620293, 0.1233585998415947, -0.0969887375831604, -0.025160573422908783, 0.04061412438750267, 0.16254658997058868, -0.05832265317440033, -0.05789635330438614, -0.15426459908485413, -0.12379501760005951, 0.1044270321726799, 0.19633923470973969, 0.059792764484882355, 0.0074940999038517475, -0.035445984452962875, 0.0010553509928286076, -0.12584267556667328, 0.08493409305810928, 0.04083512723445892, 0.08571337908506393, -0.12995398044586182, 0.12459170818328857, -0.012515992857515812, 0.03594915568828583, -0.014508889056742191, 0.020290417596697807, -0.11302360892295837, 0.008788900449872017, -0.1400783658027649, 0.003786991583183408, -0.050736553966999054, -0.003594272769987583, -0.011953326873481274, -0.03968077898025513, -0.06483050435781479, 0.019401853904128075, -0.11472497880458832, -0.03059404157102108, 0.012182301841676235, 0.026761310175061226, -0.11252160370349884, -0.01770937070250511, 0.008882529102265835, -0.08476942032575607, 0.07711406797170639, 0.04965311661362648, -0.014612595550715923, 0.028151432052254677, -0.0427568145096302, 0.0005170538206584752, 0.060175348073244095, 0.005754841025918722, 0.076975017786026, -0.09736845642328262, -0.02463458850979805, 0.013580533675849438, 0.03075076825916767, 0.027737542986869812, 0.10168669372797012, -0.11851734668016434, 0.005333000794053078, -0.00827743485569954, -0.0640556812286377, -0.06912565976381302, 0.05891118571162224, 0.10030189156532288, 0.015579627826809883, 0.18520799279212952, -0.07800532877445221, 0.02439546026289463, -0.1891445368528366, 0.0029481006786227226, 0.017541419714689255, -0.14603017270565033, -0.0557294562458992, -0.04303717240691185, 0.06539062410593033, -0.07098278403282166, 0.12075351923704147, -0.0011569955386221409, 0.021919503808021545, 0.050985440611839294, -0.04577350988984108, -0.04533423110842705, 0.015661561861634254, 0.17541365325450897, 0.033101532608270645, -0.0444985069334507, 0.06799964606761932, 0.01606045663356781, 0.08962514251470566, 0.1074957475066185, 0.1960233598947525, 0.13658182322978973, 0.042333297431468964, 0.10927547514438629, 0.03039924055337906, -0.032990068197250366, -0.1804201751947403, 0.06466136872768402, -0.043692849576473236, 0.1490284949541092, -0.010319146327674389, 0.19452378153800964, 0.12665902078151703, -0.13991506397724152, 0.04713459312915802, -0.040486134588718414, -0.0859677866101265, -0.108208067715168, -0.08314966410398483, -0.09306423366069794, -0.15479591488838196, -0.0073462058790028095, -0.1201031357049942, 0.06425068527460098, 0.0529496893286705, 0.020022930577397346, 0.0007071530562825501, 0.12408716976642609, 0.024245090782642365, 0.013213171623647213, 0.05724010244011879, -0.007572897244244814, -0.042386844754219055, -0.05228404700756073, -0.07993343472480774, 0.013838911429047585, 0.002043097512796521, 0.05337490513920784, 0.006395380012691021, -0.012339613400399685, 0.040672678500413895, -0.026810528710484505, -0.11085304617881775, 0.015736492350697517, 0.03723237290978432, 0.054509811103343964, 0.030476436018943787, 0.011228226125240326, -0.005428374279290438, -0.011219194158911705, 0.1924048364162445, -0.08198820054531097, -0.07071993499994278, -0.11487160623073578, 0.22960267961025238, 0.02375829964876175, -0.03510696440935135, 0.02668762393295765, -0.062320683151483536, -0.01713687554001808, 0.19934654235839844, 0.16954658925533295, -0.026265615597367287, -0.011713625863194466, -0.025644907727837563, -0.007407497148960829, -0.02550303004682064, 0.10090558975934982, 0.1294013410806656, 0.01921679638326168, -0.06390310078859329, -0.039078619331121445, -0.06077705696225166, -0.008595924824476242, -0.061323706060647964, 0.059153057634830475, 0.018955357372760773, -0.005986575968563557, -0.03195764869451523, 0.047469109296798706, -0.06376256048679352, -0.05825977399945259, 0.010574703104794025, -0.20286200940608978, -0.1521214246749878, 0.005458497442305088, 0.08741406351327896, -0.01396067626774311, 0.05628187209367752, -0.0019079222111031413, -0.0029863896779716015, 0.08260838687419891, -0.02030239626765251, -0.07490933686494827, -0.06666035205125809, 0.09186477959156036, -0.17081722617149353, 0.1766585111618042, -0.03232965245842934, 0.025107553228735924, 0.14256949722766876, 0.050191160291433334, -0.10890831798315048, 0.06518226116895676, 0.03907470777630806, -0.05728655308485031, 0.00679123355075717, 0.13023218512535095, -0.03004981391131878, 0.08009734749794006, 0.0408703051507473, -0.12585115432739258, -0.01938614435493946, -0.07527001947164536, -0.02483987994492054, -0.01966194435954094, -0.05457032471895218, -0.044267114251852036, 0.11975893378257751, 0.19763976335525513, -0.04218223690986633, 0.0025521493516862392, -0.060464419424533844, 0.01717217266559601, 0.058490999042987823, -0.017820322886109352, -0.05998595058917999, -0.26374825835227966, 0.0008293183636851609, 0.08817808330059052, -0.006519087590277195, -0.2610302269458771, -0.08783864229917526, -0.0025086316745728254, -0.03645826876163483, -0.10744258016347885, 0.08932945877313614, 0.08979803323745728, 0.04611853510141373, -0.0649639144539833, -0.031316179782152176, -0.06646561622619629, 0.17030535638332367, -0.1382666826248169, -0.06668490916490555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alexrink/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6399 - Validation Loss: 6.0028 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.2, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 11.4991 | 6.9902 | 0 | | 6.5958 | 6.2502 | 1 | | 6.1443 | 6.1638 | 2 | | 5.9379 | 6.0765 | 3 | | 5.7739 | 5.9393 | 4 | | 5.7033 | 6.0061 | 5 | | 5.7070 | 5.9305 | 6 | | 5.7000 | 5.9698 | 7 | | 5.6888 | 5.9223 | 8 | | 5.6657 | 5.9773 | 9 | | 5.6827 | 5.9734 | 10 | | 5.6380 | 5.9428 | 11 | | 5.6532 | 5.9799 | 12 | | 5.6617 | 5.9974 | 13 | | 5.6402 | 5.9563 | 14 | | 5.6710 | 5.9926 | 15 | | 5.6999 | 5.9764 | 16 | | 5.6573 | 5.9557 | 17 | | 5.6297 | 5.9678 | 18 | | 5.6399 | 6.0028 | 19 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "alexrink/t5-small-finetuned-xsum", "results": []}]}
text2text-generation
alexrink/t5-small-finetuned-xsum
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
alexrink/t5-small-finetuned-xsum ================================ This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 5.6399 * Validation Loss: 6.0028 * Epoch: 19 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 0.2, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.26.1 * TensorFlow 2.11.0 * Datasets 2.9.0 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2" ]
[ 70, 116, 4, 32 ]
[ "passage: TAGS\n#transformers #tf #tensorboard #t5 #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 0.2, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.26.1\n* TensorFlow 2.11.0\n* Datasets 2.9.0\n* Tokenizers 0.13.2" ]
[ -0.03629407659173012, 0.05577809363603592, -0.005083226598799229, 0.06489390134811401, 0.09230822324752808, -0.0010928722331300378, 0.17223040759563446, 0.15891525149345398, -0.1285303682088852, 0.08340493589639664, 0.14134933054447174, 0.1692872941493988, 0.05335000529885292, 0.15901324152946472, -0.1100078895688057, -0.1721276342868805, 0.0637342557311058, 0.018630584701895714, -0.01193480845540762, 0.10408586263656616, 0.078789122402668, -0.08585981279611588, 0.10426372289657593, 0.00548179354518652, -0.17420147359371185, 0.029164088889956474, 0.08826000988483429, -0.09593707323074341, 0.09718174487352371, 0.06634508818387985, 0.061773549765348434, 0.04115656763315201, 0.000022836311472929083, -0.17516446113586426, 0.011396043933928013, 0.10088668018579483, -0.021719714626669884, 0.08600364625453949, 0.013393274508416653, -0.03424724191427231, 0.14117351174354553, -0.08623149245977402, 0.04113662615418434, 0.055386513471603394, -0.12898105382919312, -0.2305542230606079, -0.1315830945968628, 0.04520675539970398, 0.05154220014810562, 0.06161230430006981, -0.006089452188462019, 0.2182055413722992, -0.0009554697899147868, 0.12111162394285202, 0.23297221958637238, -0.3641201853752136, -0.043738093227148056, 0.03409230336546898, 0.045826975256204605, 0.060570795089006424, -0.05180948227643967, 0.04490107297897339, 0.05564914271235466, 0.043733660131692886, 0.0967082604765892, -0.03978341817855835, -0.036838598549366, -0.03915939852595329, -0.0992487296462059, -0.04492225870490074, 0.1357719749212265, 0.022865476086735725, -0.07242081314325333, -0.06366750597953796, -0.07367877662181854, -0.1779475212097168, -0.03071354515850544, -0.05113689973950386, 0.04196145758032799, 0.007081576623022556, -0.085062675178051, -0.055906057357788086, -0.0716605857014656, -0.03707315772771835, -0.08575575798749924, 0.14627805352210999, 0.022508902475237846, 0.04937781020998955, -0.06478584557771683, 0.03939824923872948, -0.08950807899236679, -0.14057333767414093, -0.032913051545619965, -0.003882823046296835, -0.0015572757693007588, -0.045342158526182175, -0.061859775334596634, -0.17308174073696136, 0.06913504749536514, 0.16615474224090576, -0.10554257780313492, 0.10839146375656128, -0.13771706819534302, 0.041350193321704865, -0.10181491076946259, 0.1386500746011734, -0.003504797350615263, 0.01722867414355278, 0.03601091355085373, 0.024900393560528755, 0.09311416000127792, -0.047169990837574005, -0.10003077238798141, 0.02842104621231556, 0.09649031609296799, 0.0379520058631897, -0.02730327844619751, 0.09753204882144928, -0.05038968846201897, -0.008200197480618954, -0.018798360601067543, -0.10234109312295914, 0.028644438832998276, -0.01264228392392397, -0.055934496223926544, 0.024697067216038704, 0.05568329244852066, 0.004402593709528446, -0.06326153129339218, 0.03694311901926994, -0.061857130378484726, 0.003804730484262109, -0.06314343214035034, -0.13543230295181274, 0.04780469462275505, -0.14005358517169952, -0.03576807305216789, -0.0857502818107605, -0.13905949890613556, 0.00045014912029728293, 0.06234673783183098, -0.05330873653292656, 0.01140721794217825, -0.05218499153852463, -0.1452329307794571, 0.052670713514089584, -0.018446514382958412, 0.0690300390124321, -0.05942843481898308, 0.06644177436828613, 0.015476874075829983, 0.08863214403390884, -0.09798232465982437, 0.02472684718668461, -0.06358151882886887, 0.02298608422279358, -0.2457691878080368, 0.07647836208343506, -0.05951380357146263, 0.06580452620983124, -0.14643262326717377, -0.05677357688546181, 0.00853700004518032, -0.006690128706395626, 0.11003924906253815, 0.10917134582996368, -0.19659510254859924, -0.06392998993396759, 0.1833559274673462, -0.11094845086336136, -0.11838138848543167, 0.11908979713916779, -0.0430053174495697, 0.028978286311030388, 0.08498094230890274, 0.18414373695850372, -0.03829308599233627, -0.10737989097833633, -0.011027813889086246, -0.04156596213579178, -0.03800395503640175, 0.00424317317083478, 0.014154008589684963, -0.029343755915760994, 0.028843317180871964, 0.005962517578154802, 0.03357464447617531, -0.0038153512869030237, -0.05808725580573082, -0.057853128761053085, -0.06714415550231934, -0.04313516616821289, 0.060306698083877563, 0.005161427427083254, 0.05758949741721153, -0.13276375830173492, -0.1319836527109146, 0.057172391563653946, 0.012044201605021954, -0.05334924906492233, 0.07489798963069916, -0.1272285133600235, 0.07796984910964966, -0.023908419534564018, 0.023419061675667763, -0.17631305754184723, -0.02960730530321598, 0.030522748827934265, 0.04837280511856079, 0.042172085493803024, -0.03765581175684929, 0.07881796360015869, 0.010492443107068539, -0.05715182423591614, 0.022092964500188828, 0.008635357953608036, 0.01296002883464098, -0.09487240761518478, -0.241228848695755, 0.001965607050806284, -0.040643446147441864, 0.03694237396121025, -0.18270549178123474, 0.0431734099984169, 0.13278134167194366, 0.13516375422477722, 0.05507727339863777, -0.016490254551172256, -0.024855827912688255, 0.03660491853952408, -0.04997139051556587, -0.06662058085203171, 0.03681638091802597, 0.03527460992336273, -0.1379251480102539, 0.039882682263851166, -0.18976947665214539, 0.1458897888660431, 0.16875804960727692, -0.053849536925554276, -0.09849320352077484, 0.04600108414888382, -0.024908021092414856, -0.012284704484045506, -0.00034198485082015395, 0.010930664837360382, 0.14746494591236115, 0.03269677981734276, 0.14798173308372498, -0.08710227161645889, -0.06076423451304436, 0.05856085568666458, -0.05039738863706589, -0.020587993785738945, 0.06108429282903671, -0.04723029211163521, -0.15266171097755432, 0.1135677844285965, 0.12907490134239197, -0.07000254839658737, 0.12396460026502609, -0.055995874106884, -0.050928663462400436, -0.059745870530605316, 0.034830447286367416, 0.054831258952617645, 0.06887983530759811, -0.11927872151136398, -0.013333207927644253, 0.01808461733162403, 0.02601185254752636, -0.008953915908932686, -0.16632816195487976, 0.025598347187042236, 0.005843617953360081, -0.07273352891206741, 0.0014308299869298935, 0.020330825820565224, 0.015836497768759727, 0.12572357058525085, 0.03748762607574463, -0.02108803391456604, 0.07790929079055786, 0.0015252105658873916, -0.08656372129917145, 0.18694958090782166, -0.11809708178043365, -0.1482614427804947, -0.11099016666412354, -0.11466323584318161, -0.09040306508541107, -0.002483277814462781, 0.0543067529797554, -0.10248645395040512, -0.06105485558509827, -0.09584963321685791, -0.018503183498978615, -0.013258621096611023, 0.05336512252688408, 0.06102504953742027, -0.004311005584895611, 0.11130790412425995, -0.10737741738557816, -0.05601268261671066, -0.036199621856212616, -0.01980462111532688, 0.04067855700850487, 0.009429254569113255, 0.04535066708922386, 0.1105293408036232, -0.052881594747304916, 0.049806393682956696, -0.06425414234399796, 0.19089475274085999, -0.05547120049595833, 0.009588176384568214, 0.13508135080337524, -0.03457032889127731, 0.08237951248884201, 0.12471050024032593, 0.04106273874640465, -0.11737636476755142, 0.01937960647046566, 0.06387684494256973, -0.05403011292219162, -0.25753411650657654, 0.0003992076381109655, -0.037529684603214264, -0.026939895004034042, 0.04503818601369858, 0.05056401714682579, 0.1614873856306076, 0.02546146884560585, 0.02278777025640011, 0.09803862869739532, 0.03217785432934761, 0.11452384293079376, 0.1797424703836441, 0.05936293676495552, 0.13450945913791656, -0.07379709184169769, 0.004618450999259949, 0.06392313539981842, -0.004515491425991058, 0.18527865409851074, 0.03804808855056763, 0.13752798736095428, 0.0880580022931099, 0.07341478019952774, 0.015412194654345512, 0.016530945897102356, -0.009032147005200386, -0.028179030865430832, -0.0029930435121059418, -0.07152386009693146, -0.035724345594644547, 0.03659757226705551, -0.084534652531147, 0.039298467338085175, -0.07567846775054932, 0.050743699073791504, 0.0934973806142807, 0.28606149554252625, 0.05815408378839493, -0.33805349469184875, -0.09727996587753296, 0.018408741801977158, -0.04147301986813545, -0.028284285217523575, -0.008380276151001453, 0.07729276269674301, -0.05488751083612442, 0.13985732197761536, -0.08340897411108017, 0.07489832490682602, -0.023988621309399605, 0.05645181983709335, 0.029636304825544357, 0.09407088905572891, -0.015415667556226254, 0.0006884634494781494, -0.3576626181602478, 0.2691783905029297, 0.05590105056762695, 0.11309321969747543, -0.0735924243927002, 0.03567790240049362, 0.03375011309981346, 0.0386313796043396, 0.10284820944070816, -0.02793702855706215, -0.1438802182674408, -0.1123594269156456, -0.06327465176582336, -0.006466918159276247, 0.14051853120326996, 0.07348780333995819, 0.10295426845550537, -0.03180878981947899, 0.006326713599264622, 0.05972321704030037, -0.01708369143307209, -0.1148296371102333, -0.06749509274959564, 0.030893530696630478, 0.06882266700267792, -0.04844038560986519, -0.059851936995983124, -0.07242297381162643, -0.06140121445059776, 0.2354406863451004, -0.06861986964941025, -0.06567598134279251, -0.13502219319343567, 0.07162429392337799, 0.04595988988876343, -0.05703701823949814, 0.03465970233082771, -0.0192489642649889, 0.09827753156423569, 0.01287919282913208, -0.12927888333797455, 0.1419164091348648, -0.023065267130732536, -0.17665258049964905, -0.041609879583120346, 0.11777474731206894, 0.012820308096706867, 0.04796328768134117, 0.009313568472862244, 0.060514118522405624, 0.04493827000260353, -0.08589015156030655, 0.07603033632040024, 0.013554044999182224, 0.053237129002809525, -0.03324992582201958, 0.004075231961905956, -0.0412764772772789, -0.056529540568590164, 0.02003663219511509, 0.16635389626026154, 0.2618183195590973, -0.0915815681219101, 0.08906711637973785, 0.024055883288383484, -0.0830804780125618, -0.19306392967700958, 0.07205348461866379, 0.03542263060808182, -0.019217537716031075, -0.034468576312065125, -0.14236190915107727, 0.03790253400802612, 0.08044798672199249, -0.009052207693457603, 0.07548587024211884, -0.28697553277015686, -0.14446993172168732, 0.06107578054070473, 0.11537192761898041, 0.1539028137922287, -0.1623198240995407, -0.07430875301361084, -0.06109800934791565, -0.09146154671907425, 0.13980211317539215, -0.1873505562543869, 0.10119090229272842, 0.007963773794472218, 0.04222914204001427, 0.004980857949703932, -0.04252105578780174, 0.08064983040094376, -0.024360571056604385, 0.0922769159078598, -0.08239669352769852, -0.007230755873024464, 0.1775859147310257, -0.08669697493314743, 0.060056257992982864, -0.09906763583421707, 0.016176996752619743, -0.05473758652806282, 0.00043612837907858193, -0.06228739023208618, 0.0427192859351635, -0.041932929307222366, -0.030186742544174194, -0.04029199108481407, -0.0023360487539321184, 0.07898630201816559, -0.03339753672480583, 0.18993784487247467, -0.02133936621248722, 0.18901048600673676, 0.23531706631183624, 0.12621961534023285, -0.11246759444475174, 0.03367888182401657, 0.06938380748033524, -0.056183550506830215, 0.04653766378760338, -0.19760027527809143, 0.057517144829034805, 0.10594097524881363, -0.008102190680801868, 0.12160194665193558, 0.06980736553668976, -0.07371792942285538, 0.050965048372745514, 0.06560744345188141, -0.1524990350008011, -0.1231316477060318, 0.03760755807161331, -0.007794479839503765, -0.08052056282758713, 0.10026835650205612, 0.17083312571048737, -0.03195823356509209, 0.019900713115930557, 0.02463621087372303, 0.020490212365984917, -0.06847091764211655, 0.11332987248897552, -0.0024091035593301058, 0.04464363679289818, -0.10135539621114731, 0.126358762383461, 0.020489662885665894, -0.09347690641880035, 0.12023462355136871, 0.08943043649196625, -0.09442925453186035, -0.013413100503385067, 0.025876270607113838, 0.14574173092842102, -0.021640107035636902, -0.0510387122631073, -0.14835989475250244, -0.15054123103618622, 0.07581876963376999, 0.30457478761672974, 0.045124806463718414, 0.0451538972556591, -0.04173296317458153, -0.002852329518646002, -0.0980062335729599, 0.057298123836517334, 0.024141812697052956, 0.0614045150578022, -0.12821434438228607, 0.1523793488740921, -0.0020114604849368334, 0.015583313070237637, -0.03382643684744835, 0.019029079005122185, -0.1472252458333969, 0.0015717636561021209, -0.15320846438407898, 0.015350988134741783, -0.0333314947783947, -0.021184053272008896, 0.004134767688810825, -0.04506001994013786, -0.08509133756160736, 0.03612278029322624, -0.09764442592859268, -0.02972523868083954, 0.0372866690158844, 0.016494255512952805, -0.1435636430978775, -0.02961362712085247, -0.016582641750574112, -0.08270027488470078, 0.07184503972530365, 0.049771733582019806, -0.03424016386270523, 0.042759817093610764, -0.07606298476457596, 0.002671748399734497, 0.0842624306678772, -0.020415300503373146, 0.06361741572618484, -0.08705426752567291, -0.015305534936487675, 0.010675567202270031, 0.04116183519363403, 0.050512611865997314, 0.1326688528060913, -0.08591760694980621, -0.013945132493972778, -0.024530695751309395, -0.037809040397405624, -0.04884777218103409, 0.07365018874406815, 0.15383315086364746, -0.00765629019588232, 0.17147128283977509, -0.11518002301454544, -0.00978894717991352, -0.16738823056221008, 0.015812432393431664, 0.02263290248811245, -0.13445863127708435, -0.08562357723712921, -0.020549220964312553, 0.07521165907382965, -0.09108524769544601, 0.1147913858294487, -0.019887303933501244, 0.04346776008605957, 0.07801822572946548, -0.06344833970069885, -0.09523008018732071, 0.03653136268258095, 0.18652044236660004, 0.030139770358800888, -0.051096849143505096, 0.03336545079946518, -0.009734941646456718, 0.08585047721862793, 0.04521862417459488, 0.2374543845653534, 0.12124497443437576, 0.02121351659297943, 0.13946817815303802, 0.06072961166501045, 0.003120338311418891, -0.14875784516334534, 0.14132060110569, -0.08661014586687088, 0.16079282760620117, -0.029458776116371155, 0.10079393535852432, 0.14023683965206146, -0.1451198309659958, 0.028439095243811607, -0.033811744302511215, -0.07046284526586533, -0.13987986743450165, -0.11266005784273148, -0.10375447571277618, -0.14737041294574738, 0.00026936657377518713, -0.11207815259695053, 0.08037625253200531, 0.030521210283041, 0.03952240198850632, -0.0028943622019141912, 0.11282861977815628, -0.04805981367826462, 0.004231580533087254, 0.09716211259365082, -0.023391926661133766, -0.04816177487373352, -0.03452164679765701, -0.06432212144136429, 0.042441226541996, 0.014281823299825191, 0.039350979030132294, 0.0399964265525341, 0.03146887198090553, 0.04137980192899704, -0.06081051751971245, -0.11192537844181061, 0.05317145213484764, 0.0551738515496254, 0.04018101096153259, 0.03187105804681778, 0.046156056225299835, -0.03250526264309883, -0.01591808907687664, 0.14700044691562653, -0.10016156733036041, -0.052153345197439194, -0.15337207913398743, 0.2543925344944, 0.014115078374743462, 0.01359941903501749, -0.008509056642651558, -0.07552935183048248, -0.03707931190729141, 0.19501258432865143, 0.15488268435001373, -0.005440519191324711, -0.004333126358687878, 0.004826931748539209, -0.003559976350516081, -0.027860043570399284, 0.11074589192867279, 0.0813707709312439, -0.023790303617715836, -0.04546672850847244, -0.05221765860915184, -0.01742413267493248, -0.028046783059835434, -0.04802806302905083, 0.09170401096343994, 0.009525598026812077, -0.013390491716563702, -0.017434241250157356, 0.056604381650686264, -0.06816507130861282, -0.07599055767059326, 0.041675079613924026, -0.21562230587005615, -0.12166088819503784, 0.017799830064177513, 0.02374142035841942, -0.015607817098498344, 0.05563933402299881, 0.00717174680903554, -0.009132909588515759, 0.08710779994726181, -0.029690038412809372, -0.06717319041490555, -0.06953523308038712, 0.06569506973028183, -0.14126168191432953, 0.1642618328332901, -0.023427089676260948, 0.018617477267980576, 0.15149998664855957, 0.03402264788746834, -0.09175711125135422, 0.06125933676958084, 0.02913535200059414, -0.0695742592215538, -0.017173053696751595, 0.10055416077375412, -0.01518100593239069, 0.10729122906923294, 0.0692092552781105, -0.1078280359506607, 0.011626959778368473, -0.09770800173282623, -0.07113722711801529, -0.04048573970794678, -0.050434261560440063, -0.07849974185228348, 0.10050968825817108, 0.19992509484291077, -0.03567371889948845, 0.026635395362973213, -0.04985400661826134, -0.006324784364551306, 0.07351791113615036, -0.03922899439930916, -0.05820143222808838, -0.25035515427589417, 0.046705763787031174, 0.11928499490022659, 0.012530856765806675, -0.25152865052223206, -0.08218491077423096, 0.00015077846182975918, 0.0012581205228343606, -0.12894119322299957, 0.07506214082241058, 0.10833507776260376, 0.04844828322529793, -0.05524326488375664, -0.11968863010406494, -0.015041785314679146, 0.17362527549266815, -0.09817136079072952, -0.05380959063768387 ]
null
null
transformers
Paper: https://arxiv.org/abs/2204.03951 Code: https://github.com/alexyalunin/RuBioRoBERTa
{}
fill-mask
alexyalunin/RuBioBERT
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:2204.03951", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2204.03951" ]
[]
TAGS #transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us
Paper: URL Code: URL
[]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 49 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.04768984392285347, 0.04198440536856651, -0.0054769739508628845, 0.03899885714054108, 0.09409639984369278, 0.028139764443039894, 0.08185535669326782, 0.09388740360736847, 0.06674682348966599, 0.052584338933229446, 0.19400733709335327, 0.13616640865802765, -0.03838194161653519, 0.14948871731758118, -0.04446394369006157, -0.22308404743671417, 0.06647691875696182, 0.04873301461338997, -0.08657428622245789, 0.09648778289556503, 0.06418158113956451, -0.1010613963007927, 0.07746853679418564, -0.017143312841653824, -0.12099923938512802, 0.06165138632059097, 0.03977824002504349, -0.10620954632759094, 0.14004819095134735, 0.02434084191918373, 0.2019290328025818, 0.02450105920433998, -0.044457826763391495, -0.0517442524433136, 0.03264748677611351, 0.013627885840833187, -0.07646842300891876, 0.07924357056617737, -0.0005122603033669293, -0.038264594972133636, -0.016545061022043228, 0.006562038324773312, 0.010448361746966839, 0.020108448341488838, -0.15212278068065643, -0.16162951290607452, -0.04228335618972778, 0.045670539140701294, -0.008306656964123249, 0.08241574466228485, 0.0205089058727026, 0.20772750675678253, -0.10073261708021164, 0.07318927347660065, 0.22384224832057953, -0.34943559765815735, -0.00039609873783774674, 0.11955477297306061, 0.07201234251260757, -0.01352872047573328, -0.03510645776987076, 0.07410911470651627, 0.039627619087696075, 0.01902635581791401, 0.07842040807008743, -0.05831284821033478, -0.08625064790248871, 0.05062029883265495, -0.10396579653024673, -0.0744696781039238, 0.18343095481395721, -0.03796140477061272, 0.06742019206285477, 0.023092690855264664, -0.13492846488952637, -0.10062544047832489, 0.014349536970257759, 0.0005119067500345409, -0.006119986530393362, 0.01620006002485752, -0.011465992778539658, -0.013958992436528206, -0.15019957721233368, 0.018686683848500252, -0.22756847739219666, 0.21898388862609863, -0.018766900524497032, 0.07586516439914703, -0.14802318811416626, 0.062487728893756866, -0.0587083175778389, -0.1316055804491043, 0.08305957913398743, -0.07430703938007355, 0.02405470795929432, 0.03477742150425911, -0.08976465463638306, -0.02329685539007187, 0.04224285110831261, 0.1557917296886444, 0.046037331223487854, 0.01970418356359005, 0.07322658598423004, 0.10625694692134857, 0.019756371155381203, 0.0907653421163559, -0.04031074419617653, -0.04748614504933357, 0.023769542574882507, -0.04630982130765915, 0.04240171238780022, -0.06949133425951004, -0.15186969935894012, -0.08843167871236801, 0.041441403329372406, 0.04179856926202774, 0.06688874959945679, 0.027407169342041016, -0.06041167303919792, 0.03157107159495354, 0.10269654542207718, -0.05440077185630798, 0.02970869280397892, -0.028810104355216026, 0.04603910818696022, 0.05748417600989342, 0.05042509362101555, -0.025520604103803635, 0.024396393448114395, 0.1021268293261528, -0.1097983866930008, -0.018924258649349213, -0.05316717550158501, -0.1192491352558136, 0.04823404550552368, -0.10960733890533447, 0.019954629242420197, -0.20674565434455872, -0.021959463134407997, 0.03835136815905571, 0.04860618710517883, -0.02694551646709442, -0.024831393733620644, 0.08790737390518188, -0.04059649258852005, 0.08871641010046005, -0.04523544758558273, -0.008815083652734756, -0.03960063308477402, 0.07542567700147629, 0.012540159747004509, 0.15494613349437714, -0.12364929914474487, 0.042210452258586884, -0.06787453591823578, 0.026798423379659653, -0.14863350987434387, -0.07707054167985916, -0.04787087067961693, 0.09948280453681946, -0.01093229278922081, -0.05200875923037529, -0.11090750247240067, 0.039147429168224335, 0.04489395394921303, 0.14281941950321198, -0.10844249278306961, -0.07711867243051529, 0.13375289738178253, -0.0757455825805664, -0.11790190637111664, 0.07806502282619476, 0.008905713446438313, -0.04123137146234512, -0.02624627761542797, 0.14246465265750885, -0.01899070292711258, -0.13944828510284424, -0.00009580237383488566, 0.11703115701675415, -0.09168365597724915, -0.11157166957855225, 0.050300486385822296, 0.008596224710345268, -0.07554912567138672, 0.011452068574726582, 0.05970023572444916, 0.08442680537700653, -0.05706658959388733, -0.051922302693128586, -0.049823980778455734, -0.045947637408971786, 0.15350064635276794, 0.021940119564533234, 0.1127251535654068, -0.07465316355228424, -0.053697068244218826, -0.008078662678599358, 0.02192440629005432, 0.08778481185436249, 0.041770171374082565, -0.0414840504527092, 0.1664549857378006, -0.12523719668388367, -0.011210350319743156, -0.1678677350282669, -0.08735392242670059, -0.04603823274374008, 0.053678061813116074, -0.01719708740711212, 0.18325275182724, 0.10789401829242706, -0.04807617515325546, -0.008106913417577744, -0.03563805669546127, 0.06151926890015602, 0.05752572417259216, -0.06766541302204132, -0.08627021312713623, -0.03070581890642643, -0.08406470715999603, -0.023067431524395943, -0.030490798875689507, 0.003931384067982435, -0.00637074513360858, 0.13437454402446747, -0.011589720845222473, 0.05026448890566826, -0.03375188261270523, 0.04133949056267738, -0.05611512437462807, -0.0016473543364554644, 0.053483955562114716, -0.010522988624870777, -0.030810726806521416, 0.17944753170013428, -0.1686781346797943, 0.3838282525539398, 0.19843833148479462, -0.26949942111968994, -0.03854069113731384, 0.07639606297016144, -0.010179063305258751, 0.013291430659592152, 0.04952636733651161, -0.03660266473889351, -0.03306133300065994, -0.03491131216287613, 0.13243362307548523, -0.009791102260351181, -0.005521673709154129, 0.03745640814304352, -0.09451232850551605, -0.08227456361055374, 0.0515376441180706, 0.043054863810539246, -0.12023068964481354, 0.19950902462005615, 0.3286515474319458, -0.053973011672496796, 0.10728171467781067, 0.05569528788328171, -0.016975246369838715, -0.03984130918979645, -0.08053971827030182, -0.04368600621819496, 0.09336452931165695, -0.1553843766450882, -0.06074095517396927, 0.0919763520359993, -0.012220113538205624, 0.05364920198917389, -0.1315215528011322, -0.04702957719564438, 0.052499573677778244, 0.08687666058540344, -0.08795544505119324, 0.14287686347961426, 0.03701653704047203, 0.10094856470823288, 0.026016172021627426, -0.06850042939186096, 0.06430460512638092, 0.02487533912062645, -0.010618036612868309, 0.12583650648593903, -0.1319504976272583, -0.31038567423820496, -0.14402726292610168, -0.13547083735466003, 0.010197900235652924, 0.03981519490480423, 0.06891359388828278, -0.09104925394058228, -0.053083404898643494, 0.036411017179489136, -0.023716788738965988, -0.0901007354259491, 0.06753808259963989, -0.04614793509244919, -0.010883733630180359, -0.0024390423204749823, -0.07622887939214706, -0.07458822429180145, -0.018523450940847397, -0.009825755842030048, 0.1271316260099411, -0.005666573066264391, 0.10214672982692719, 0.12604638934135437, -0.012762135826051235, 0.04199233651161194, 0.021369189023971558, 0.2006591558456421, -0.05590235814452171, 0.007460400927811861, 0.18494360148906708, -0.0026747819501906633, 0.07980712503194809, 0.15076413750648499, 0.029120249673724174, -0.01951306313276291, -0.015027998015284538, -0.04204370081424713, -0.1132979467511177, -0.12210790812969208, -0.10452062636613846, -0.13011877238750458, -0.040445633232593536, 0.053090088069438934, 0.059529826045036316, 0.11342330276966095, 0.06516577303409576, 0.051019348204135895, -0.0034849282819777727, -0.1426943838596344, 0.046134836971759796, 0.20325669646263123, -0.04893520474433899, 0.14737270772457123, -0.046421922743320465, -0.10897248983383179, 0.05802741274237633, 0.04720309376716614, 0.08008906245231628, 0.08533304929733276, -0.02780299074947834, 0.02616284415125847, 0.18946410715579987, 0.13945399224758148, 0.12369006872177124, 0.03783585876226425, -0.0812472552061081, -0.00985136441886425, -0.012446300126612186, -0.01815001852810383, 0.06659303605556488, 0.13788779079914093, -0.10008560121059418, -0.03620730713009834, -0.15100938081741333, 0.03350865840911865, 0.06047596037387848, 0.10985773056745529, -0.23520328104496002, -0.017803573980927467, 0.05382052809000015, 0.00518902949988842, -0.06727079302072525, 0.017732219770550728, 0.051155563443899155, -0.08096060901880264, 0.021100779995322227, -0.0031252852641046047, 0.0677669569849968, 0.0767115131020546, 0.07635987550020218, -0.0741046890616417, -0.0834052711725235, 0.008772405795753002, 0.05237038806080818, -0.24608206748962402, 0.27908414602279663, -0.006853717844933271, -0.10687670856714249, -0.05269067734479904, -0.013268346898257732, 0.05035173520445824, 0.10679960995912552, 0.07326816022396088, 0.051981836557388306, -0.054298993200063705, -0.16321995854377747, 0.00045351459993980825, -0.013036467134952545, 0.07702884823083878, -0.004611389711499214, 0.006221852730959654, -0.01517669390887022, -0.03211575001478195, 0.017218340188264847, 0.211772158741951, 0.003680215682834387, -0.11878879368305206, 0.10111071169376373, 0.08510402590036392, -0.04108458757400513, -0.01571536995470524, -0.08474501967430115, -0.1665991246700287, 0.1462855041027069, 0.01999051310122013, -0.006363578140735626, -0.10743767023086548, -0.08753720670938492, 0.14570261538028717, -0.08415794372558594, 0.11256642639636993, -0.0814516618847847, -0.001757505931891501, -0.08774800598621368, -0.13724775612354279, 0.16719090938568115, -0.11829572170972824, -0.01951119862496853, -0.06615332514047623, 0.09752949327230453, -0.1065872460603714, 0.05818556249141693, -0.028310246765613556, 0.08377803862094879, -0.15640847384929657, -0.04923313483595848, 0.07974669337272644, -0.0719839334487915, 0.06357888132333755, 0.010431958362460136, -0.007943419739603996, -0.014956044964492321, 0.05914454907178879, 0.028727388009428978, 0.23862801492214203, 0.2454454004764557, -0.10885597765445709, 0.11461430788040161, 0.11752220243215561, 0.005396722815930843, -0.32412323355674744, -0.08092799037694931, -0.1447363793849945, 0.021826043725013733, 0.04197831079363823, -0.08108645677566528, 0.04817013815045357, -0.016266046091914177, -0.0763927549123764, 0.11302301287651062, -0.172568216919899, -0.0926266610622406, 0.21051079034805298, -0.03846398741006851, 0.45760592818260193, -0.10836850106716156, -0.03390217199921608, -0.029132109135389328, -0.170298770070076, 0.04244031384587288, 0.00918392650783062, 0.09725238382816315, -0.04827917367219925, 0.10231577605009079, 0.03362075239419937, -0.09239505976438522, 0.1400974541902542, -0.07884691655635834, 0.025664320215582848, -0.12016179412603378, -0.1548464298248291, 0.0926034227013588, -0.05126146972179413, -0.01102896686643362, -0.017444586381316185, 0.01399289071559906, -0.09507972747087479, 0.02036120556294918, -0.11987114697694778, 0.10037319362163544, 0.01775582693517208, -0.04683757200837135, -0.0038483955431729555, -0.013867387548089027, -0.018263189122080803, -0.015849290415644646, 0.21588079631328583, -0.015533501282334328, 0.18432065844535828, 0.15130357444286346, -0.03783879056572914, -0.14073088765144348, -0.08117297291755676, 0.021323131397366524, -0.07865037769079208, 0.1160578802227974, -0.08614964783191681, 0.03543677553534508, 0.09570105373859406, -0.014001944102346897, 0.029459528625011444, 0.10461292415857315, -0.0017396443290635943, -0.01995977573096752, 0.16512353718280792, -0.21757593750953674, 0.030815621837973595, -0.007336492650210857, 0.03183821216225624, 0.05231039971113205, 0.03969847038388252, 0.11472948640584946, 0.00699254497885704, -0.022839149460196495, 0.006325834430754185, -0.020139621570706367, -0.08009395003318787, 0.05990658327937126, 0.08494064211845398, 0.06753049790859222, -0.10062076151371002, 0.009206431917846203, 0.013564037159085274, -0.1680932492017746, 0.007971251383423805, 0.08413760364055634, -0.06854626536369324, -0.1323147416114807, -0.047502510249614716, 0.023981204256415367, -0.09712020307779312, -0.016527391970157623, -0.04657256230711937, -0.07947840541601181, 0.04714353755116463, 0.18390290439128876, 0.09444441646337509, 0.039029721170663834, -0.022259509190917015, -0.020725753158330917, 0.016669852659106255, -0.019077405333518982, 0.01117974054068327, 0.061015911400318146, -0.1201920211315155, 0.04574232175946236, -0.026633370667696, 0.149873286485672, -0.09947305917739868, -0.01953709125518799, -0.15793685615062714, -0.001213564071804285, -0.09188174456357956, -0.10639498382806778, -0.08257059752941132, -0.09007135778665543, 0.011117021553218365, -0.09396037459373474, -0.06982161849737167, -0.02640477754175663, -0.1379171758890152, -0.009784298948943615, 0.01741655170917511, 0.011303999461233616, -0.07323438674211502, -0.03686794638633728, 0.11416735500097275, -0.029783494770526886, 0.0692344680428505, 0.12593242526054382, -0.039092592895030975, 0.04539116472005844, -0.04254370182752609, -0.13674207031726837, 0.08589078485965729, 0.012282826006412506, 0.10097256302833557, 0.02873544581234455, -0.0024805336724966764, 0.017375661060214043, 0.05078309774398804, 0.0265851691365242, 0.09882466495037079, -0.08312450349330902, 0.03598194569349289, -0.006240434944629669, -0.15930792689323425, -0.008643211796879768, -0.08428402990102768, 0.1187366172671318, 0.004561570473015308, 0.08221043646335602, -0.022215422242879868, 0.0617203451693058, -0.07937536388635635, 0.025066407397389412, -0.055527638643980026, -0.15214158594608307, -0.004484177567064762, -0.026689313352108, 0.029624128714203835, -0.024402616545557976, 0.21691852807998657, -0.0018835557857528329, -0.04015781730413437, 0.03907531499862671, 0.09560038149356842, -0.031005162745714188, -0.016690533608198166, 0.12297140061855316, 0.07850528508424759, -0.06373797357082367, -0.07826829701662064, 0.10697351396083832, 0.02120949886739254, 0.00011086379527114332, 0.09074472635984421, 0.08047637343406677, 0.09857024252414703, 0.11322218179702759, 0.00853549875319004, -0.04734160751104355, -0.16300112009048462, -0.18629257380962372, -0.07671298086643219, 0.07874128967523575, -0.03496376797556877, 0.01366705447435379, 0.16838206350803375, 0.0021683110389858484, 0.04178355261683464, -0.07274743169546127, 0.003750563133507967, -0.1536714732646942, -0.10821975022554398, -0.06551484018564224, -0.09658653289079666, -0.010774798691272736, -0.009098571725189686, 0.04298233240842819, 0.14936015009880066, 0.013202395290136337, 0.0009663768578320742, 0.1401377022266388, 0.031379133462905884, -0.022502386942505836, -0.005588180385529995, 0.017259031534194946, 0.031685855239629745, -0.018177315592765808, -0.0022528364788740873, -0.11413080245256424, -0.020144004374742508, -0.047221314162015915, 0.0007872036076150835, -0.0696951150894165, 0.006633572280406952, -0.06433869153261185, -0.12357812374830246, -0.07526148110628128, 0.03895939886569977, -0.02082538791000843, 0.12829461693763733, -0.01815110817551613, 0.07106931507587433, -0.0245589017868042, 0.1814662516117096, -0.115017369389534, -0.04901530221104622, -0.023581577464938164, 0.1701391041278839, 0.0082699004560709, 0.0860823318362236, -0.061823390424251556, 0.01241448987275362, -0.1294655203819275, 0.24370338022708893, 0.334825724363327, -0.0788978710770607, 0.0872768834233284, 0.06354408711194992, 0.018879583105444908, 0.03521665185689926, 0.08055557310581207, 0.09832116216421127, 0.23505595326423645, -0.10885081440210342, -0.033538006246089935, -0.07438891381025314, -0.011330404318869114, -0.08237868547439575, 0.03336421400308609, 0.023665405809879303, -0.054421622306108475, -0.06607059389352798, 0.019546646624803543, -0.11029909551143646, 0.08592695742845535, 0.06641119718551636, -0.2610234022140503, -0.07135523855686188, 0.02368789352476597, 0.19713139533996582, -0.01541893370449543, 0.12113150954246521, -0.04765249788761139, -0.07729929685592651, 0.04004139453172684, 0.004403234459459782, -0.1558080017566681, -0.06501562148332596, 0.11829107999801636, -0.026116013526916504, 0.0723000094294548, -0.040727727115154266, 0.02252173237502575, 0.11666088551282883, 0.08907435089349747, -0.07041994482278824, 0.037384577095508575, 0.033823274075984955, -0.13395045697689056, -0.0830523669719696, 0.007219805382192135, 0.006501058582216501, -0.08917518705129623, 0.05123177543282509, -0.1854313313961029, 0.0383419506251812, -0.043855972588062286, 0.011157361790537834, 0.008170800283551216, -0.004846916068345308, -0.023162268102169037, 0.07295000553131104, 0.06123819947242737, -0.009891750290989876, -0.056660234928131104, -0.024826614186167717, -0.039782267063856125, 0.06446734070777893, -0.07897438108921051, -0.1671392321586609, -0.07852254807949066, -0.01726680062711239, 0.03140037879347801, -0.003707950934767723, -0.12804411351680756, -0.05742552503943443, -0.07272939383983612, 0.01845128834247589, -0.08231974393129349, 0.0327061302959919, 0.06728635728359222, 0.028696417808532715, 0.006543188355863094, -0.03959718719124794, 0.035797785967588425, 0.06964999437332153, -0.15872685611248016, -0.08216789364814758 ]
null
null
transformers
### Contact [email protected] https://t.me/pavel_blinoff ### Paper https://arxiv.org/abs/2204.03951 ### Code https://github.com/alexyalunin/RuBioRoBERTa ### Citation ``` @misc{alex2022rubioroberta, title={RuBioRoBERTa: a pre-trained biomedical language model for Russian language biomedical text mining}, author={Alexander Yalunin and Alexander Nesterov and Dmitriy Umerenkov}, year={2022}, eprint={2204.03951}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["ru"], "multilinguality": ["monolingual"], "widget": [{"text": "\u0416\u0430\u043b\u043e\u0431\u044b \u043d\u0430 \u0431\u043e\u043b\u044c \u0432\u043d\u0438\u0437\u0443 <mask> \u043f\u043e\u0441\u043b\u0435 \u043f\u0440\u0438\u0451\u043c\u0430 \u043f\u0438\u0449\u0438.", "example_title": "pain_example"}, {"text": "\u041f\u0430\u0446\u0438\u0435\u043d\u0442\u043a\u0430 \u043d\u0430\u0431\u043b\u044e\u0434\u0430\u043b\u0430\u0441\u044c \u0443 <mask> \u043f\u043e \u043f\u043e\u0432\u043e\u0434\u0443 \u0433\u0440\u0438\u0431\u043a\u043e\u0432\u043e\u0433\u043e \u043f\u043e\u0440\u0430\u0436\u0435\u043d\u0438\u044f \u043a\u043e\u0436\u0438.", "example_title": "spec_example"}, {"text": "\u041f\u043e\u044f\u0432\u0438\u043b\u0441\u044f \u0437\u0443\u0434 \u0442\u0435\u043b\u0430, <mask> \u0432\u0435\u0441\u0430, \u043f\u043e\u0442\u043b\u0438\u0432\u043e\u0441\u0442\u044c, \u043f\u0440\u043e\u0432\u043e\u0434\u0438\u043b \u043a\u043e\u043d\u0442\u0440\u043e\u043b\u044c \u0441\u0430\u0445\u0430\u0440\u0430 \u043a\u0440\u043e\u0432\u0438.", "example_title": "weight_example"}]}
fill-mask
alexyalunin/RuBioRoBERTa
[ "transformers", "pytorch", "roberta", "fill-mask", "ru", "arxiv:2204.03951", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2204.03951" ]
[ "ru" ]
TAGS #transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us
### Contact URL@URL https://t.me/pavel_blinoff ### Paper URL ### Code URL
[ "### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff", "### Paper\nURL", "### Code\nURL" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us \n", "### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff", "### Paper\nURL", "### Code\nURL" ]
[ 48, 18, 4, 4 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #ru #arxiv-2204.03951 #autotrain_compatible #endpoints_compatible #region-us \n### Contact\n\nURL@URL\n\nhttps://t.me/pavel_blinoff### Paper\nURL### Code\nURL" ]
[ -0.0704975351691246, 0.10873851925134659, -0.006773879751563072, 0.06896120309829712, 0.13539406657218933, 0.019770454615354538, 0.09687109291553497, 0.07841484248638153, -0.015175455249845982, 0.03352852165699005, 0.22969549894332886, 0.17399632930755615, 0.00218045711517334, 0.18509232997894287, -0.01722044311463833, -0.2216392606496811, 0.003996353596448898, 0.03581155464053154, -0.03605265915393829, 0.11831162869930267, 0.07256434112787247, -0.06248236447572708, 0.09879428148269653, -0.0015275885816663504, -0.09170639514923096, 0.09468311816453934, 0.03641793131828308, -0.0976954996585846, 0.11035400629043579, 0.03478027880191803, 0.13856784999370575, 0.024780049920082092, -0.010578839108347893, -0.07661215960979462, 0.03398270532488823, -0.026960203424096107, -0.09322631359100342, 0.06553462892770767, 0.025430073961615562, -0.09513276815414429, 0.07678266614675522, -0.026563778519630432, -0.053795281797647476, 0.05790778249502182, -0.14928868412971497, -0.15277737379074097, -0.029072178527712822, 0.12954246997833252, 0.04769958183169365, 0.10962508618831635, 0.022455643862485886, 0.21022897958755493, -0.02776515483856201, 0.10747542977333069, 0.27069830894470215, -0.3041283190250397, -0.04674382135272026, 0.01744154468178749, 0.0009056953131221235, -0.013584240339696407, -0.007113645784556866, 0.07048636674880981, 0.058567989617586136, 0.0004771138192154467, -0.01589861698448658, -0.08382214605808258, -0.09960706532001495, 0.009010943584144115, -0.07430881261825562, -0.04607294872403145, 0.1788281947374344, -0.017538247630000114, 0.010524706915020943, 0.14390668272972107, -0.06939952075481415, -0.08716659992933273, -0.0217424388974905, 0.008889429271221161, -0.013339770026504993, 0.012383392080664635, -0.07435503602027893, -0.021974464878439903, -0.13829457759857178, -0.016906144097447395, -0.1254480928182602, 0.19398218393325806, -0.015762286260724068, 0.04882011190056801, -0.1377256214618683, 0.037677060812711716, -0.06461486965417862, -0.11761655658483505, 0.04615427181124687, -0.04940300062298775, 0.08728925883769989, 0.016069192439317703, -0.025407925248146057, -0.10293176025152206, 0.08093380928039551, 0.20812352001667023, 0.09216215461492538, 0.021062837913632393, 0.05729746073484421, 0.08399730920791626, -0.05724334716796875, 0.08214046061038971, -0.05507174879312515, -0.04053156450390816, 0.055643271654844284, -0.1048082634806633, 0.07705144584178925, -0.030752411112189293, -0.1707419753074646, -0.09500271826982498, 0.0071789780631661415, 0.10301093757152557, 0.032646145671606064, 0.028177723288536072, -0.08166263997554779, 0.026825565844774246, 0.11488571017980576, -0.05948598310351372, -0.014447666704654694, -0.03477708250284195, 0.00353303668089211, 0.06307047605514526, 0.019519038498401642, -0.027062341570854187, -0.050396449863910675, 0.12586793303489685, -0.09101685881614685, 0.015153458341956139, -0.02514299750328064, -0.06383106857538223, 0.062404815107584, -0.12750142812728882, 0.035398248583078384, -0.21921153366565704, -0.08289840072393417, 0.04181739315390587, 0.04988442733883858, -0.02973034791648388, 0.004533777944743633, 0.02350066415965557, -0.036682307720184326, 0.03715141490101814, -0.008010252378880978, -0.014258728362619877, -0.03822857514023781, 0.08063901215791702, 0.024512091651558876, 0.15133145451545715, -0.08435473591089249, 0.016503620892763138, -0.08300438523292542, -0.02508769929409027, -0.14604079723358154, -0.11419908702373505, -0.05392875894904137, 0.13398627936840057, -0.05399784445762634, -0.0475345142185688, -0.04870019108057022, -0.021993422880768776, 0.08716771006584167, 0.20192928612232208, -0.03132858872413635, -0.08390384912490845, 0.18401138484477997, -0.06717748939990997, -0.08171145617961884, 0.08954820036888123, 0.04396401718258858, -0.018171580508351326, 0.019746001809835434, 0.055759578943252563, 0.048884179443120956, -0.1821429282426834, 0.01844383403658867, 0.08363140374422073, -0.16434097290039062, -0.16626770794391632, 0.0671512559056282, -0.05421359837055206, -0.061046261340379715, 0.026741931214928627, 0.09150727838277817, 0.07533712685108185, -0.03768225759267807, -0.05751439929008484, -0.002090709051117301, -0.07078644633293152, 0.11573678255081177, 0.02481910027563572, 0.08962863683700562, -0.09905990958213806, -0.06846850365400314, -0.1222994476556778, 0.03891678526997566, 0.10181596130132675, 0.03386107087135315, -0.07397138327360153, 0.08564459532499313, -0.08654094487428665, -0.007600939366966486, -0.13730108737945557, 0.0083100451156497, -0.05789259076118469, 0.054267432540655136, 0.029859229922294617, 0.03930456191301346, 0.12234381586313248, -0.044747792184352875, -0.025270739570260048, -0.042771872133016586, 0.03344878926873207, 0.01024105865508318, -0.03429025039076805, -0.08794189989566803, 0.04047267884016037, -0.043053217232227325, -0.00009662462252890691, -0.033931661397218704, -0.01821957156062126, 0.04958590865135193, 0.10975399613380432, 0.002125196624547243, 0.022637659683823586, -0.02425612136721611, 0.030571376904845238, -0.03959392011165619, 0.0031602145172655582, 0.09006664901971817, -0.0032340362668037415, -0.04161033034324646, 0.05985002592206001, -0.03234553337097168, 0.3037153482437134, 0.15747612714767456, -0.2668024003505707, -0.09452473372220993, 0.13695071637630463, -0.02445925399661064, 0.008127295412123203, 0.07080402225255966, 0.01685124821960926, 0.007234171964228153, -0.008370419964194298, 0.1319877803325653, -0.01022239401936531, 0.0074931117706000805, 0.06060919165611267, -0.1170605719089508, -0.044634900987148285, 0.09057822078466415, 0.1129206120967865, -0.12398681044578552, 0.1439313143491745, 0.17796288430690765, -0.05330463498830795, 0.13288594782352448, 0.05142313987016678, -0.04283398762345314, -0.03929497301578522, -0.010225929319858551, 0.031209582462906837, 0.07639214396476746, -0.0846431627869606, -0.039874184876680374, 0.046858157962560654, -0.06615195423364639, 0.024094274267554283, -0.13152644038200378, -0.06860377639532089, 0.017904331907629967, 0.013936526142060757, -0.08300502598285675, 0.11666697263717651, -0.06386622786521912, 0.09820280969142914, 0.06682204455137253, -0.06398902088403702, 0.06759162992238998, 0.032708995044231415, -0.05112886428833008, 0.14149412512779236, -0.09230104088783264, -0.33225545287132263, -0.21722067892551422, -0.1406327784061432, 0.007067006081342697, 0.03989747539162636, 0.05879553407430649, -0.17645856738090515, -0.06920842081308365, 0.06641494482755661, -0.036333490163087845, -0.04314340278506279, 0.02873862348496914, -0.025131316855549812, 0.04760057479143143, 0.014346147887408733, -0.04539022594690323, -0.042203404009342194, -0.011531596072018147, 0.027089746668934822, 0.10595130920410156, -0.0647541731595993, 0.12869219481945038, 0.07080719619989395, 0.013817092403769493, 0.053334664553403854, 0.01159792859107256, 0.14265350997447968, -0.06726031005382538, 0.031274229288101196, 0.19512660801410675, -0.02501733973622322, 0.09693814069032669, 0.17032447457313538, 0.0457787849009037, -0.04225592687726021, 0.011404621414840221, -0.039705585688352585, -0.09546656161546707, -0.19657614827156067, -0.092990443110466, -0.07686477154493332, 0.05346609279513359, 0.0541277676820755, 0.049232158809900284, 0.10796874761581421, 0.10741620510816574, 0.06085829809308052, 0.0037674056366086006, -0.10273490846157074, 0.10765967518091202, 0.10553274303674698, -0.006945061031728983, 0.08737808465957642, -0.10709988325834274, -0.09920705109834671, 0.08872760087251663, -0.0010779974982142448, 0.04777511954307556, 0.09010518342256546, 0.045557647943496704, 0.010035673156380653, 0.12405373901128769, 0.10952938348054886, 0.11322423070669174, 0.08161529153585434, -0.08178108930587769, 0.0233029555529356, -0.03626616299152374, -0.01152848731726408, 0.033589690923690796, 0.03591010347008705, -0.04225657507777214, -0.04315831884741783, -0.10736826807260513, 0.020901519805192947, 0.07456818968057632, 0.09778159856796265, -0.21926017105579376, -0.03152593597769737, 0.010296568274497986, 0.02761065401136875, -0.042576033622026443, -0.012077772989869118, -0.0685817077755928, -0.10978469252586365, 0.06240822747349739, -0.02920829877257347, 0.07090705633163452, 0.05036349967122078, 0.052331190556287766, -0.06253234297037125, 0.009620587341487408, -0.00431104376912117, 0.07924899458885193, -0.21141166985034943, 0.32054176926612854, 0.03858979418873787, 0.007731813471764326, -0.05191250890493393, -0.031174572184681892, 0.0432964451611042, 0.11479110270738602, 0.14730103313922882, 0.04180469736456871, 0.015214725397527218, -0.17439186573028564, -0.008230351842939854, 0.008481048047542572, 0.12872730195522308, 0.019078826531767845, 0.006481298711150885, -0.021086109802126884, -0.06514135003089905, -0.034322112798690796, 0.07376580685377121, -0.046426981687545776, -0.08811851590871811, 0.08809665590524673, 0.04238826036453247, 0.04129881039261818, -0.011211065575480461, -0.060739342123270035, -0.05104987695813179, 0.21449553966522217, -0.04179222136735916, -0.03351512551307678, -0.10311315208673477, -0.06422960758209229, 0.0788227915763855, -0.14898578822612762, 0.11105342954397202, -0.07919647544622421, -0.0075078378431499004, -0.07003802061080933, -0.08468208461999893, 0.11558455973863602, -0.09937942773103714, -0.009204527363181114, -0.052867401391267776, 0.15298433601856232, -0.04418127238750458, 0.02882520854473114, -0.05035652592778206, 0.042404357343912125, -0.10587730258703232, -0.0742262676358223, 0.09762363135814667, -0.10433866083621979, 0.06143650785088539, 0.008204671554267406, -0.023316795006394386, -0.05479670688509941, -0.03467412292957306, -0.022101882845163345, 0.21806848049163818, 0.30586329102516174, -0.07666455954313278, 0.06895474344491959, 0.17958208918571472, 0.005643259733915329, -0.3018656373023987, -0.08559390157461166, -0.11730669438838959, -0.008092091418802738, -0.03332003206014633, -0.11326699703931808, 0.0090928440913558, 0.00047437610919587314, -0.04359717667102814, 0.13970860838890076, -0.14129765331745148, -0.11083958297967911, 0.18640321493148804, 0.023698389530181885, 0.37646687030792236, -0.10146043449640274, -0.041819799691438675, -0.10015270859003067, -0.22512784600257874, -0.028277914971113205, 0.031967971473932266, 0.09471200406551361, -0.04108409211039543, 0.07806451618671417, 0.00837485771626234, -0.08570247143507004, 0.09691715240478516, -0.06224043667316437, -0.0028333212248981, -0.10953567177057266, -0.14860543608665466, 0.06689856201410294, 0.0005941363633610308, 0.03741832077503204, -0.0006460529984906316, 0.004038281738758087, -0.04266193509101868, -0.015905695036053658, -0.061255499720573425, 0.1085786446928978, 0.025892790406942368, -0.07836346328258514, -0.02714003063738346, -0.012982062995433807, -0.06521502137184143, -0.025132372975349426, 0.1498015820980072, -0.031328704208135605, 0.13528646528720856, 0.14523553848266602, 0.0306420736014843, -0.1002482995390892, -0.015186378732323647, 0.01765565574169159, -0.11146657168865204, 0.07004731148481369, -0.07713363319635391, 0.007893565110862255, 0.1058785542845726, 0.013979093171656132, 0.013914117589592934, 0.04506613314151764, -0.043775513768196106, -0.00754113495349884, 0.159703329205513, -0.23860248923301697, 0.02642492577433586, -0.03891899064183235, -0.048471368849277496, 0.011981979943811893, 0.09574291855096817, 0.11038627475500107, -0.02270451933145523, -0.0360884852707386, 0.021734297275543213, -0.012574870139360428, -0.07847709208726883, 0.06318444013595581, 0.1367037296295166, 0.023735279217362404, -0.0780111700296402, 0.04942953586578369, -0.026062287390232086, -0.16381962597370148, 0.0028738854452967644, 0.12788011133670807, -0.12702761590480804, -0.11649294942617416, 0.02642454020678997, 0.0669570192694664, -0.1701524704694748, -0.04079148918390274, -0.13416777551174164, -0.0014548858162015676, 0.0643482431769371, 0.2044963389635086, 0.08681709319353104, -0.0013595485361292958, -0.0075311181135475636, -0.015019547194242477, -0.054074663668870926, 0.005778441671282053, 0.06517674773931503, 0.047204285860061646, -0.10835100710391998, 0.06378712505102158, 0.000008279310350189917, 0.14336547255516052, -0.07606638967990875, -0.01048923097550869, -0.16873395442962646, 0.015501861460506916, -0.05649155005812645, -0.08610352873802185, -0.08228885382413864, -0.0531967394053936, -0.011728255078196526, -0.08999345451593399, -0.07253335416316986, -0.01280294544994831, -0.11439472436904907, 0.0006206614198163152, 0.03710320219397545, -0.014527187682688236, -0.09386678785085678, -0.01400893647223711, 0.11462479829788208, 0.012256319634616375, 0.059911325573921204, 0.11690276861190796, -0.0101090706884861, 0.07228418439626694, -0.12617917358875275, -0.05274735763669014, 0.05981746315956116, -0.020583391189575195, 0.08169977366924286, 0.025440692901611328, 0.027378050610423088, -0.0016603756230324507, 0.03587929531931877, 0.03919258341193199, 0.09451556950807571, -0.10323560982942581, 0.10598170012235641, -0.0033785414416342974, -0.1452147215604782, -0.06329254806041718, -0.022707708179950714, 0.09912306070327759, -0.025572162121534348, 0.10246787965297699, -0.07580757886171341, 0.10000874102115631, -0.028272554278373718, 0.038914669305086136, -0.039320532232522964, -0.1385253667831421, -0.04597696661949158, -0.06528089195489883, 0.0014834939502179623, -0.037496499717235565, 0.07564622163772583, -0.03267360478639603, 0.04137381166219711, 0.04057901352643967, 0.07039007544517517, -0.02071671560406685, -0.018830860033631325, 0.07115565985441208, 0.06298461556434631, -0.06556739658117294, -0.1219521090388298, 0.09541071951389313, 0.014227316714823246, -0.05165770277380943, 0.11899179965257645, 0.05605301633477211, 0.09889113157987595, 0.0916956439614296, -0.024525389075279236, 0.0060099647380411625, -0.12926241755485535, -0.19549301266670227, -0.026282310485839844, 0.04145096614956856, 0.0050129699520766735, 0.06589025259017944, 0.22906720638275146, -0.0023605083115398884, -0.014259886927902699, 0.004893860314041376, -0.0034118290059268475, -0.14697831869125366, -0.1385134905576706, -0.0741209089756012, -0.08377207070589066, 0.0511971153318882, 0.0063620153814554214, 0.027631398290395737, 0.019807862117886543, 0.014266557060182095, -0.04080432653427124, 0.14893339574337006, -0.018028296530246735, -0.042418770492076874, 0.04484458267688751, -0.015797801315784454, -0.004652827978134155, -0.006850223056972027, 0.03533686324954033, -0.11092966794967651, -0.0747026801109314, -0.03825904801487923, 0.008480288088321686, -0.0501626655459404, -0.006606059614568949, -0.057703662663698196, -0.11068349331617355, -0.02668602764606476, 0.10764112323522568, 0.011203130707144737, 0.10939060896635056, -0.013200943358242512, 0.055940546095371246, 0.007023850455880165, 0.11472566425800323, -0.06307119131088257, -0.09055126458406448, -0.03743964061141014, 0.166904017329216, 0.03482040390372276, 0.08607420325279236, -0.07281316071748734, -0.0032435946632176638, -0.05079348757863045, 0.3216474950313568, 0.25795698165893555, 0.0001801997423171997, 0.06609755754470825, 0.02775302715599537, 0.04425663501024246, 0.05327950045466423, 0.07505609095096588, 0.08630647510290146, 0.23339951038360596, -0.09280699491500854, -0.04169159755110741, -0.07491185516119003, -0.005387493874877691, -0.11007270961999893, 0.030757179483771324, 0.049747537821531296, -0.04181138798594475, -0.05923652648925781, 0.09716208279132843, -0.1587979942560196, 0.0691564604640007, 0.04014691710472107, -0.16681630909442902, -0.06321161240339279, 0.030444860458374023, 0.11419729143381119, 0.04688456654548645, 0.11788021773099899, -0.033321280032396317, -0.0563855804502964, 0.049987781792879105, 0.049735452979803085, -0.17751240730285645, -0.09220960736274719, 0.05676765367388725, -0.09463135898113251, 0.08112845569849014, -0.06289823353290558, 0.013216591440141201, 0.14804206788539886, 0.03503704071044922, -0.08932336419820786, 0.07081515341997147, 0.05246637389063835, -0.09752359241247177, -0.0027107486966997385, -0.018198521807789803, 0.013671407476067543, -0.09528984129428864, 0.02214447595179081, -0.0695984810590744, 0.04402316361665726, -0.008316384628415108, 0.06011679396033287, -0.029668312519788742, 0.10358303785324097, -0.08898860216140747, 0.0690860003232956, 0.08050760626792908, -0.010830573737621307, -0.058549314737319946, -0.04209278151392937, 0.0008622531313449144, 0.08535145968198776, -0.12449213117361069, -0.08438580483198166, -0.06409677863121033, -0.021195536479353905, 0.026245221495628357, 0.023948753252625465, -0.15968899428844452, -0.02097504772245884, -0.11912589520215988, 0.014824283309280872, -0.10992481559515, 0.03296520188450813, 0.05611329898238182, 0.03528836369514465, 0.007816197350621223, -0.03774894401431084, 0.030764397233724594, 0.05396832898259163, -0.15234026312828064, -0.09917060285806656 ]
null
null
transformers
# RuBio for paper: dsdfsfsdf
{}
fill-mask
alexyalunin/my-awesome-model
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
# RuBio for paper: dsdfsfsdf
[ "# RuBio\n\nfor paper: dsdfsfsdf" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "# RuBio\n\nfor paper: dsdfsfsdf" ]
[ 36, 13 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# RuBio\n\nfor paper: dsdfsfsdf" ]
[ -0.040277283638715744, 0.004631409887224436, -0.008436281234025955, 0.0006507636280730367, 0.11426199972629547, 0.017937928438186646, 0.16581815481185913, 0.07740416377782822, 0.04926438629627228, 0.03303806483745575, 0.17085935175418854, 0.161610946059227, 0.00013601499085780233, 0.2207765281200409, -0.10988669842481613, -0.25484710931777954, 0.07345712929964066, 0.06539313495159149, -0.09965340793132782, 0.06707591563463211, 0.08845683932304382, -0.06850770115852356, 0.05091173201799393, -0.06218243017792702, -0.17566116154193878, 0.015916790813207626, -0.009776916354894638, -0.07450756430625916, 0.07007578015327454, 0.06724477559328079, 0.16258926689624786, 0.09528595209121704, -0.02156909927725792, -0.05279767885804176, 0.06302939355373383, -0.043197162449359894, -0.058808743953704834, 0.06572945415973663, 0.017203014343976974, -0.016743052750825882, 0.09306372702121735, 0.018318360671401024, -0.03738172724843025, -0.010612843558192253, -0.11889796704053879, -0.24505427479743958, -0.04654702916741371, 0.12398354709148407, 0.03039093129336834, 0.023887796327471733, 0.008422689512372017, 0.10701063275337219, 0.011367649771273136, 0.09439186006784439, 0.17858199775218964, -0.22219200432300568, -0.06855718791484833, 0.13694258034229279, 0.030134225264191628, -0.08589676022529602, -0.021325256675481796, 0.06880456954240799, -0.009562555700540543, 0.012463434599339962, -0.02162468433380127, -0.08776351809501648, 0.005844093859195709, -0.02160695753991604, -0.07621617615222931, 0.030060669407248497, 0.21653702855110168, -0.041610267013311386, -0.0019600223749876022, -0.01009124331176281, -0.08679560571908951, 0.07184936851263046, -0.08109676837921143, -0.04624290391802788, -0.05363927409052849, 0.02569529227912426, 0.02317546308040619, -0.019932996481657028, -0.10352714359760284, 0.043007783591747284, -0.16353023052215576, 0.28687724471092224, 0.004996113479137421, 0.04535139724612236, -0.15806365013122559, 0.03957076370716095, -0.055455271154642105, -0.12792083621025085, 0.01920400746166706, -0.12621578574180603, 0.07774737477302551, 0.02073785662651062, -0.04686775803565979, -0.16833490133285522, 0.10263188928365707, 0.22327278554439545, 0.13828356564044952, 0.017644597217440605, 0.05035325139760971, 0.10525372624397278, 0.01408072467893362, 0.059285081923007965, -0.007986360229551792, 0.015402132645249367, 0.06001117452979088, -0.0781102105975151, 0.05413167551159859, -0.0674005001783371, -0.14722062647342682, -0.011925259605050087, -0.01977436989545822, -0.0017501632682979107, 0.021724509075284004, 0.02116919867694378, -0.03745223581790924, 0.0037903289776295424, 0.21165823936462402, -0.04126279428601265, -0.05892690271139145, -0.04483424872159958, 0.04937952756881714, 0.1846788227558136, 0.04031218960881233, -0.008854313753545284, 0.013988385908305645, 0.250436395406723, -0.014879577793180943, -0.02828178182244301, 0.002277114661410451, -0.08521150052547455, 0.012651599012315273, -0.13542068004608154, 0.07039378583431244, -0.17310383915901184, -0.174772247672081, 0.024016065523028374, 0.0401562824845314, -0.041375115513801575, 0.023889945819973946, 0.05978931859135628, -0.02471250854432583, 0.005232393275946379, 0.023627683520317078, -0.04267703741788864, -0.0062979296781122684, 0.09913746267557144, 0.04571790620684624, 0.14982707798480988, -0.20750078558921814, 0.03737950325012207, -0.022509800270199776, -0.022499021142721176, -0.12709568440914154, -0.032451797276735306, -0.08414475619792938, 0.09805196523666382, 0.011138126254081726, -0.051302988082170486, -0.15766116976737976, 0.023154031485319138, -0.003501683473587036, 0.1591263711452484, -0.13927637040615082, -0.11215391755104065, 0.26255592703819275, -0.12691587209701538, -0.09511272609233856, 0.06964364647865295, 0.01185289304703474, 0.06957970559597015, 0.024066057056188583, 0.10640156269073486, 0.07773476839065552, -0.13978634774684906, 0.016231324523687363, 0.12491503357887268, -0.06434259563684464, -0.07364658266305923, 0.05043666809797287, 0.03234485909342766, -0.019550219178199768, 0.06290005147457123, 0.05119989067316055, 0.062015097588300705, -0.05205778032541275, -0.026544244959950447, -0.010912411846220493, -0.03401673212647438, 0.14737986028194427, 0.04004305601119995, 0.12271586060523987, -0.020759671926498413, -0.0020211192313581705, -0.057274527847766876, 0.003559444798156619, 0.05312040075659752, -0.008638719096779823, -0.05840117484331131, 0.15230022370815277, -0.01744520105421543, 0.04929358884692192, -0.1828812062740326, -0.07390372455120087, -0.02166709303855896, 0.09001029282808304, 0.005093252751976252, 0.15879864990711212, 0.08894804120063782, -0.009570030495524406, -0.050855860114097595, 0.030220141634345055, 0.06951919198036194, -0.0015626903623342514, -0.02238084003329277, -0.024915529415011406, 0.05750126764178276, -0.12712591886520386, 0.0033196823205798864, -0.054251253604888916, 0.032504789531230927, 0.054970573633909225, 0.10996560007333755, 0.051961008459329605, 0.03497782349586487, 0.0024688271805644035, 0.019390860572457314, -0.018894052132964134, -0.0009005089523270726, 0.07030200213193893, 0.009735994972288609, -0.08162498474121094, 0.024033285677433014, -0.03692181780934334, 0.38491907715797424, 0.12790891528129578, -0.14012400805950165, -0.06079983338713646, -0.009144028648734093, -0.0073901885189116, 0.02164170891046524, -0.01024605892598629, -0.0015014668460935354, 0.007795217912644148, 0.0043446640484035015, 0.09379420429468155, -0.013406318612396717, 0.02427343651652336, 0.03636346384882927, -0.07504123449325562, -0.029362637549638748, 0.037111930549144745, 0.0632004663348198, -0.11251793056726456, 0.13338689506053925, 0.21218125522136688, 0.01926429383456707, 0.11533153057098389, -0.028786692768335342, 0.009223167784512043, 0.01842055656015873, 0.006708130706101656, 0.011072680354118347, 0.028670350089669228, -0.025220120325684547, 0.006091502029448748, 0.10130076855421066, -0.07776634395122528, 0.02457098662853241, -0.07966504245996475, -0.061367228627204895, -0.0006704049301333725, 0.031899504363536835, -0.06317373365163803, 0.2122674137353897, -0.0135438721626997, 0.07994650304317474, -0.010907876305282116, -0.022784816101193428, 0.08866669237613678, 0.03783276304602623, -0.017988920211791992, 0.153791144490242, -0.08308339864015579, -0.31981292366981506, -0.15073953568935394, -0.09393790364265442, 0.025511611253023148, 0.04079929739236832, 0.08821622282266617, -0.08133498579263687, -0.0703861191868782, 0.06731914728879929, -0.03376254439353943, 0.01932329125702381, 0.022365756332874298, -0.0004959207726642489, 0.0067900740541517735, -0.06299082189798355, -0.059491924941539764, -0.04401066154241562, -0.011472485959529877, 0.12642423808574677, 0.20265048742294312, -0.05358697846531868, 0.11150816082954407, 0.041602764278650284, 0.009005241096019745, 0.05656108260154724, 0.002895898651331663, 0.199886292219162, -0.07975573092699051, 0.04139697924256325, 0.2559658885002136, -0.05827638506889343, 0.07779066264629364, 0.13498428463935852, 0.03145492449402809, -0.054665736854076385, 0.010196344926953316, -0.08865034580230713, -0.12697255611419678, -0.12390400469303131, -0.05864014849066734, -0.10866989195346832, 0.00927470251917839, 0.001002345816232264, 0.05716630816459656, 0.05755099654197693, 0.12260039150714874, 0.036666374653577805, 0.008618536405265331, -0.0025114906020462513, 0.04452148452401161, 0.10064729303121567, 0.0016112945741042495, 0.14357689023017883, -0.08901084959506989, -0.13669031858444214, 0.08588609844446182, -0.03871666640043259, 0.16319723427295685, 0.0752953290939331, -0.07974079996347427, 0.029348675161600113, 0.028917456045746803, 0.15915587544441223, 0.18884244561195374, 0.04449447616934776, -0.0684381052851677, -0.04444264620542526, -0.032893721014261246, -0.013895705342292786, 0.018294138833880424, -0.016741633415222168, -0.13570836186408997, 0.029576843604445457, -0.08695385605096817, 0.007965080440044403, 0.03840557485818863, 0.04144800454378128, -0.1367001086473465, -0.0026139942929148674, 0.04469054192304611, 0.10443557053804398, -0.07566187530755997, -0.035185668617486954, -0.03142000734806061, -0.10756083577871323, 0.09225299209356308, -0.0733635276556015, 0.0673481822013855, 0.02850395254790783, 0.06257110089063644, -0.054427627474069595, -0.08118129521608353, 0.04412828013300896, 0.058904435485601425, -0.24034340679645538, 0.21496360003948212, -0.00017465032578911632, -0.02868405357003212, -0.04949287697672844, 0.02264590933918953, 0.05909085273742676, 0.11146990954875946, 0.12509725987911224, -0.0024589032400399446, -0.06089640036225319, -0.10778066515922546, -0.024648644030094147, 0.019704902544617653, 0.1343640238046646, -0.030499467626214027, -0.02235664241015911, -0.004308608360588551, -0.04152839630842209, -0.023600401356816292, 0.0710349828004837, -0.01811293698847294, -0.14823490381240845, 0.16046611964702606, -0.02215060219168663, 0.005317772272974253, -0.018010053783655167, -0.05158614367246628, -0.11245007812976837, 0.1390390843153, -0.018956830725073814, -0.1045118197798729, -0.13593728840351105, -0.038379598408937454, 0.044586434960365295, -0.11459878832101822, 0.06274821609258652, -0.09646082669496536, 0.019976120442152023, -0.09040383249521255, -0.17382945120334625, 0.08460255712270737, -0.11665096879005432, -0.04035453870892525, -0.05754369497299194, 0.04660844802856445, -0.07683304697275162, 0.011286139488220215, -0.013956275768578053, 0.019775917753577232, -0.07232239842414856, -0.07524214684963226, 0.08877494931221008, -0.07696999609470367, -0.030341992154717445, 0.031955890357494354, -0.08822906017303467, -0.04873841628432274, 0.0167362242937088, -0.015082104131579399, 0.14117403328418732, 0.28279656171798706, -0.06924227625131607, 0.08255600184202194, 0.10846700519323349, 0.008842183277010918, -0.3541300296783447, -0.13660384714603424, -0.07740377634763718, 0.011082840152084827, -0.023466045036911964, -0.14574730396270752, 0.1064407154917717, 0.0004748466017190367, -0.05006628483533859, 0.17565111815929413, -0.10734067112207413, -0.09331318736076355, 0.24768541753292084, 0.002777955261990428, 0.4464254081249237, -0.14849908649921417, -0.05970064178109169, -0.05604389309883118, -0.15143783390522003, 0.0391010157763958, -0.011754159815609455, 0.04935096204280853, -0.05295586585998535, 0.01920425146818161, 0.012347433716058731, -0.06349065899848938, 0.09265375137329102, -0.05450109764933586, 0.039743125438690186, -0.09712020307779312, -0.09701500087976456, 0.011036774143576622, 0.020308872684836388, 0.029302183538675308, 0.01587560400366783, 0.027666548267006874, -0.055813029408454895, -0.04220607504248619, -0.045774541795253754, 0.07701641321182251, 0.02524290606379509, -0.05221795663237572, -0.026363322511315346, -0.017609700560569763, -0.09065587818622589, -0.013950714841485023, 0.18094687163829803, -0.031084928661584854, 0.17056874930858612, 0.1469852477312088, -0.026223452761769295, -0.04788525775074959, 0.020440852269530296, -0.06913479417562485, -0.08057195693254471, 0.021607941016554832, -0.0016266023740172386, 0.00009406822209712118, 0.11596814543008804, -0.025360792875289917, 0.0670168325304985, 0.0705370306968689, 0.02936497889459133, 0.0050811246037483215, 0.14512236416339874, -0.21756070852279663, -0.043153315782547, -0.055010855197906494, -0.015168232843279839, 0.009768202900886536, 0.037028998136520386, 0.08952340483665466, 0.013834632933139801, -0.024030903354287148, 0.013511109165847301, 0.006753831170499325, -0.018410637974739075, 0.07586228102445602, 0.08393660187721252, 0.0492476187646389, -0.08601178228855133, -0.02878601849079132, -0.014506330713629723, -0.12503601610660553, -0.05969739705324173, 0.0621003694832325, -0.13615548610687256, -0.12330964207649231, -0.00470638507977128, 0.10670740157365799, -0.07891042530536652, -0.007696195039898157, -0.07619091123342514, -0.14035972952842712, 0.04036790132522583, 0.19863414764404297, 0.10679806768894196, -0.023336131125688553, -0.016211826354265213, -0.030308615416288376, 0.012566706165671349, 0.014899484813213348, 0.08316913992166519, 0.07697030901908875, -0.05211947113275528, -0.04657754302024841, -0.06391005963087082, 0.12523554265499115, -0.12062150985002518, -0.004594049882143736, -0.15429411828517914, -0.03220139443874359, -0.0664701983332634, -0.034870609641075134, -0.02198796533048153, -0.08569934964179993, 0.0027583111077547073, -0.05263744667172432, 0.04062359407544136, -0.07047285884618759, -0.11369506269693375, 0.05521686002612114, 0.01802884042263031, -0.00957423634827137, -0.03776289522647858, -0.08077877014875412, 0.08898775279521942, -0.013870498165488243, 0.0659107193350792, 0.12495261430740356, -0.051760777831077576, 0.06528348475694656, -0.10100679844617844, -0.06755867600440979, 0.1394762396812439, 0.04435262456536293, 0.024229755625128746, 0.06363166123628616, 0.01619911380112171, 0.0033160673920065165, -0.009627406485378742, 0.06447149813175201, 0.09553948789834976, -0.0822988972067833, 0.07680534571409225, -0.13039718568325043, -0.12078318744897842, -0.047019246965646744, -0.042103372514247894, 0.11645745486021042, 0.10147470980882645, 0.10290631651878357, -0.07251183688640594, 0.10488182306289673, 0.00402967119589448, 0.023572852835059166, -0.004376292694360018, -0.2088475078344345, 0.003892664099112153, -0.06998254358768463, -0.010935230180621147, -0.0032605845481157303, 0.1668367087841034, -0.05587717890739441, -0.0791650339961052, 0.024514302611351013, -0.01889031194150448, -0.02299116924405098, -0.02662917599081993, 0.07153288275003433, 0.12699119746685028, -0.03916553407907486, -0.13177435100078583, 0.08626420795917511, -0.002530569676309824, -0.08715754002332687, 0.17677980661392212, 0.10385134816169739, -0.06356294453144073, 0.08254174143075943, -0.04429830610752106, 0.03441910073161125, 0.014125668443739414, -0.12688885629177094, -0.021303877234458923, 0.04671894758939743, 0.009088842198252678, 0.07083616405725479, 0.13488005101680756, -0.006779316812753677, 0.007124162279069424, 0.014233827590942383, -0.027747754007577896, -0.1460048109292984, -0.0561620332300663, -0.08354552090167999, -0.01631893776357174, 0.0161333866417408, -0.012855392880737782, -0.0385129377245903, -0.0066800545901060104, 0.023375945165753365, -0.03489288315176964, 0.10864142328500748, -0.04410993307828903, -0.008845336735248566, 0.07481633126735687, -0.053187549114227295, -0.0771392434835434, 0.01866862177848816, -0.0026445172261446714, -0.13379402458667755, 0.0509851835668087, -0.005796603858470917, 0.006303167436271906, -0.043068770319223404, -0.04340308532118797, -0.10126082599163055, -0.12478204816579819, -0.05965812876820564, 0.0776134729385376, -0.024483876302838326, 0.08908259868621826, -0.006623034365475178, 0.03752049803733826, 0.006926406174898148, 0.05050789192318916, -0.04457571730017662, -0.08381826430559158, -0.03195761516690254, 0.02366825006902218, 0.012890120968222618, 0.10667267441749573, -0.04142700508236885, 0.010150476358830929, -0.08583958446979523, 0.2623392343521118, 0.28264477849006653, -0.013101078569889069, 0.08395382016897202, 0.07687226682901382, 0.04727378860116005, 0.08887773752212524, 0.07445307821035385, 0.07073934376239777, 0.26589417457580566, -0.06455443054437637, -0.056316912174224854, -0.05119315907359123, -0.01463345531374216, -0.13301712274551392, 0.021112356334924698, 0.09606675058603287, -0.04436590522527695, -0.02824072167277336, 0.10150177776813507, -0.2017398178577423, 0.022969907149672508, 0.04000317305326462, -0.15836289525032043, -0.06270308047533035, -0.030300993472337723, -0.023571275174617767, 0.005776329431682825, 0.08796969056129456, -0.07478126138448715, -0.04417210817337036, 0.09913115203380585, 0.010833303444087505, -0.1322963684797287, 0.049603044986724854, 0.030882205814123154, -0.0776083841919899, -0.06546995043754578, -0.021459495648741722, 0.009941019117832184, 0.07698548585176468, 0.03404887393116951, 0.0016520002391189337, 0.0777299627661705, -0.01065230555832386, -0.04091261327266693, -0.029000243172049522, 0.06624386459589005, -0.026593558490276337, -0.12181974202394485, 0.0722101554274559, -0.13869662582874298, 0.020275434479117393, -0.005436318460851908, -0.07399911433458328, -0.012034958228468895, 0.1299898326396942, -0.0984424352645874, 0.03669259324669838, 0.10352278500795364, 0.04040605202317238, -0.020486559718847275, -0.00046198631753213704, 0.02858479879796505, 0.06480610370635986, -0.07857705652713776, -0.10274069011211395, -0.010343567468225956, -0.05924718454480171, 0.013644893653690815, 0.010571004822850227, -0.2212991565465927, -0.0188448429107666, -0.19165457785129547, 0.07226124405860901, -0.08822986483573914, 0.04933638498187065, 0.049315717071294785, 0.005956774111837149, 0.0061796968802809715, -0.07822782546281815, 0.012601347640156746, 0.014834338799118996, -0.11941061913967133, -0.047712475061416626 ]
null
null
transformers
<img src="https://raw.githubusercontent.com/alger-ia/dziribert/main/dziribert_drawing.png" alt="drawing" width="25%" height="25%" align="right"/> # DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets). For more information, please visit our paper: https://arxiv.org/pdf/2109.12346.pdf. ## How to use ```python from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained("alger-ia/dziribert") model = BertForMaskedLM.from_pretrained("alger-ia/dziribert") ``` You can find a fine-tuning script in our Github repo: https://github.com/alger-ia/dziribert ## Limitations The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user. ### How to cite ```bibtex @article{dziribert, title={DziriBERT: a Pre-trained Language Model for the Algerian Dialect}, author={Abdaoui, Amine and Berrimi, Mohamed and Oussalah, Mourad and Moussaoui, Abdelouahab}, journal={arXiv preprint arXiv:2109.12346}, year={2021} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
{"language": ["ar", "dz"], "license": "apache-2.0", "tags": ["pytorch", "bert", "multilingual", "ar", "dz"], "widget": [{"text": " \u0623\u0646\u0627 \u0645\u0646 \u0627\u0644\u062c\u0632\u0627\u0626\u0631 \u0645\u0646 \u0648\u0644\u0627\u064a\u0629 [MASK] "}, {"text": "rabi [MASK] khouya sami"}, {"text": " \u0631\u0628\u064a [MASK] \u062e\u0648\u064a\u0627 \u0644\u0639\u0632\u064a\u0632"}, {"text": "tahya el [MASK]."}, {"text": "rouhi ya dzayer [MASK]"}], "inference": true}
fill-mask
alger-ia/dziribert
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "multilingual", "ar", "dz", "arxiv:2109.12346", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.12346" ]
[ "ar", "dz" ]
TAGS #transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
<img src="URL alt="drawing" width="25%" height="25%" align="right"/> # DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets). For more information, please visit our paper: URL ## How to use You can find a fine-tuning script in our Github repo: URL ## Limitations The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user. ### How to cite ## Contact Please contact URL@URL for any question, feedback or request.
[ "# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL", "## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL", "## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.", "### How to cite", "## Contact \n\nPlease contact URL@URL for any question, feedback or request." ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL", "## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL", "## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.", "### How to cite", "## Contact \n\nPlease contact URL@URL for any question, feedback or request." ]
[ 72, 102, 21, 114, 5, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #multilingual #ar #dz #arxiv-2109.12346 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# DziriBERT\n\n\nDziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).\n\nFor more information, please visit our paper: URL## How to use\n\n\n\nYou can find a fine-tuning script in our Github repo: URL## Limitations\n\nThe pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.### How to cite## Contact \n\nPlease contact URL@URL for any question, feedback or request." ]
[ -0.030770329758524895, -0.003591852495446801, -0.0025083282962441444, 0.031641989946365356, 0.08195275068283081, -0.042080655694007874, 0.1776677817106247, -0.01224369928240776, 0.09639892727136612, 0.010929090902209282, 0.09302758425474167, -0.03031623549759388, 0.05276607722043991, 0.16031844913959503, 0.0677853375673294, -0.16287465393543243, 0.031282536685466766, -0.11183576285839081, 0.0203029066324234, 0.11511801183223724, 0.10519622266292572, -0.013882771134376526, 0.07053393870592117, 0.035478562116622925, -0.044992849230766296, 0.056695595383644104, 0.00729122431948781, -0.08101161569356918, 0.07057628780603409, 0.09653264284133911, 0.1256846934556961, 0.03897791728377342, 0.044916704297065735, -0.07714065164327621, 0.03227242827415466, 0.07330971956253052, -0.024889187887310982, -0.051599860191345215, 0.041551485657691956, -0.10380014777183533, 0.1663416177034378, -0.06127816438674927, 0.03244411572813988, 0.03593146428465843, -0.11408457159996033, -0.05192660912871361, -0.011533803306519985, 0.019944777712225914, 0.16381299495697021, 0.11618606746196747, -0.041055914014577866, 0.06048337370157242, -0.06941406428813934, 0.061689939349889755, 0.10260436683893204, -0.10625530779361725, -0.006808953359723091, -0.0011877960059791803, -0.03887007385492325, 0.06402157247066498, -0.028213560581207275, 0.06178601458668709, 0.029464296996593475, 0.017177674919366837, 0.055276017636060715, -0.0601985864341259, 0.11370767652988434, -0.08058305084705353, -0.13803286850452423, -0.09113994240760803, 0.06583816558122635, -0.009595437906682491, -0.09530787169933319, -0.1767609417438507, -0.01952061615884304, 0.10027772933244705, 0.005956356413662434, -0.043666090816259384, -0.0207925233989954, -0.02140398509800434, 0.0812632143497467, 0.035569459199905396, -0.055590011179447174, -0.08947449177503586, -0.09806518256664276, 0.24313707649707794, -0.00646203150972724, 0.023164890706539154, -0.07081368565559387, 0.11874494701623917, -0.050456464290618896, -0.12879244983196259, -0.06526049971580505, -0.08386997133493423, -0.10636108368635178, 0.003294198540970683, -0.03234118968248367, -0.1335250586271286, -0.03287379816174507, 0.07054001837968826, 0.0038149249739944935, 0.0314665324985981, -0.023578772321343422, 0.018272677436470985, 0.09296309947967529, 0.07078465074300766, -0.0813097134232521, 0.0024531492963433266, -0.007271253038197756, -0.006585574708878994, 0.03099149465560913, -0.027386462315917015, -0.0253822673112154, -0.021551920101046562, -0.0632595494389534, 0.10525050014257431, 0.018997827544808388, 0.0611986368894577, -0.042862068861722946, -0.07340391725301743, 0.13808487355709076, -0.12596553564071655, -0.08239655941724777, -0.026888152584433556, -0.124465212225914, -0.05320989713072777, 0.04891558364033699, -0.008887169882655144, -0.10709146410226822, 0.032888446003198624, -0.024579402059316635, -0.02832544781267643, -0.05876470357179642, -0.1474958211183548, 0.001481904648244381, 0.005491102114319801, -0.05993085354566574, -0.17944848537445068, -0.1431337296962738, -0.0364203080534935, 0.030964409932494164, 0.016049129888415337, 0.055024467408657074, -0.042357075959444046, -0.009300487115979195, 0.03974200412631035, 0.010195483453571796, -0.0877142921090126, -0.04955829307436943, 0.029404569417238235, -0.042890675365924835, 0.10739641636610031, 0.08192727714776993, 0.02635279670357704, -0.08602471649646759, 0.017994966357946396, -0.2516086995601654, 0.18521903455257416, -0.05834825336933136, 0.018070831894874573, -0.10266613960266113, -0.04811669513583183, -0.05857347697019577, 0.055827438831329346, 0.04269172623753548, 0.21839486062526703, -0.14833173155784607, -0.04953938350081444, 0.21140797436237335, -0.14092333614826202, -0.04620850831270218, 0.1573442965745926, -0.028377220034599304, -0.01714913547039032, 0.14660416543483734, 0.09314331412315369, 0.047045618295669556, -0.13547122478485107, 0.0027768323197960854, 0.05073060467839241, -0.14326252043247223, 0.1687643826007843, 0.07670868933200836, 0.004401740152388811, 0.03591085225343704, -0.03345112502574921, 0.0008457995136268437, 0.11245511472225189, -0.007285989820957184, -0.059241052716970444, 0.06100054457783699, 0.03311951830983162, 0.09684249758720398, 0.007983815856277943, -0.029052944853901863, 0.014681183733046055, -0.12812727689743042, -0.16329072415828705, 0.0695805624127388, -0.04621477425098419, -0.02799946255981922, -0.12166700512170792, -0.06333265453577042, -0.024678563699126244, 0.05137982591986656, -0.17425911128520966, -0.10102005302906036, -0.03945856913924217, -0.04806961491703987, 0.08263003081083298, -0.037188488990068436, 0.035973649471998215, 0.03883424773812294, -0.02398093417286873, -3.373444883436605e-7, -0.0012295629130676389, -0.045567724853754044, -0.045927390456199646, -0.09286490827798843, 0.031060384586453438, -0.03560319170355797, 0.070949487388134, -0.1418774127960205, 0.016346456483006477, 0.006573294289410114, -0.03426807001233101, 0.018403377383947372, 0.01849588006734848, 0.05208514630794525, 0.02835492417216301, -0.015545896254479885, -0.06046811118721962, -0.03296516835689545, -0.08282152563333511, -0.12683358788490295, 0.10500365495681763, -0.17434197664260864, -0.008414911106228828, 0.07551702111959457, 0.036198366433382034, -0.0981922447681427, 0.10134325176477432, -0.0184067003428936, -0.00821662787348032, 0.0024559604935348034, 0.002331071998924017, 0.15503105521202087, 0.04537830501794815, 0.06899426877498627, -0.09502968937158585, 0.028468117117881775, 0.03729861229658127, -0.025680556893348694, -0.00010144105908693746, 0.07947441190481186, -0.04514133930206299, -0.23882576823234558, 0.02316974848508835, 0.03397000953555107, 0.040879447013139725, 0.1474592238664627, 0.05252201482653618, -0.05216323956847191, 0.049168601632118225, 0.031865596771240234, 0.004889064002782106, 0.04655604436993599, 0.04771072044968605, -0.03849716857075691, 0.023294834420084953, 0.014605578035116196, -0.025523900985717773, -0.0411037914454937, -0.0039008406456559896, 0.02948934957385063, -0.08492312580347061, -0.1819261759519577, 0.06698212772607803, -0.026761578395962715, 0.11452624201774597, 0.04260075464844704, -0.054368797689676285, -0.009645887650549412, -0.07849396765232086, -0.1314399540424347, 0.23064975440502167, -0.05691435560584068, -0.33493006229400635, -0.021615561097860336, 0.027490412816405296, -0.1008155569434166, 0.07833068817853928, 0.036068957298994064, -0.11518190056085587, -0.05704718083143234, -0.08063946664333344, 0.06672749668359756, -0.028506102040410042, -0.058061376214027405, -0.08290788531303406, -0.04744624346494675, -0.08179419487714767, -0.16494131088256836, -0.011291618458926678, -0.05863653123378754, -0.069969043135643, 0.04159630462527275, -0.08889777213335037, 0.07314775139093399, 0.1477963775396347, 0.020856071263551712, -0.03535635769367218, -0.05231153592467308, 0.17504194378852844, -0.1573847085237503, 0.015932394191622734, 0.12319700419902802, 0.007059201132506132, 0.09835725277662277, 0.1752392053604126, 0.004080424550920725, -0.09807782620191574, 0.09434734284877777, 0.05890565738081932, -0.09852144867181778, -0.11967244744300842, -0.11107172071933746, -0.04431414231657982, -0.06898580491542816, 0.05398797616362572, 0.038370367139577866, 0.11252889037132263, 0.012215078808367252, -0.13090473413467407, -0.03824002668261528, 0.10377510637044907, 0.0785275474190712, -0.0546562634408474, 0.028616763651371002, 0.0681014358997345, -0.0477396622300148, -0.06456369906663895, 0.08233185857534409, -0.07792450487613678, 0.23896700143814087, -0.03782346844673157, 0.10685019195079803, 0.1323106437921524, -0.04456986486911774, 0.04049494490027428, 0.07788775861263275, 0.0030500604771077633, -0.024268807843327522, -0.024213576689362526, -0.07998242974281311, -0.062403131276369095, 0.05138746649026871, -0.011328794062137604, -0.03466573730111122, -0.060833483934402466, 0.0005300777847878635, 0.05864929035305977, 0.17494192719459534, -0.05059065669775009, -0.22443453967571259, -0.06052793934941292, 0.020158926025032997, -0.026734821498394012, -0.04688439890742302, 0.010735495947301388, 0.10060647875070572, -0.13324332237243652, 0.1072126105427742, 0.0030053481459617615, 0.10285842418670654, 0.001357751083560288, 0.008795633912086487, -0.13634994626045227, 0.014037830755114555, -0.041895631700754166, 0.09544376283884048, -0.25190117955207825, 0.16668404638767242, 0.009107986465096474, 0.08449966460466385, -0.11966709047555923, -0.029941612854599953, 0.07655584812164307, 0.08088532835245132, 0.19289858639240265, 0.043909940868616104, 0.05464709922671318, -0.09396742284297943, -0.03652024269104004, -0.006009902339428663, 0.06010979041457176, -0.06457206606864929, 0.016370832920074463, 0.10773857682943344, -0.01300422940403223, -0.008572510443627834, -0.01947670243680477, -0.17165754735469818, -0.11301220208406448, 0.05015880614519119, -0.04292584955692291, 0.029478419572114944, -0.0038531594909727573, -0.0253815446048975, 0.06468899548053741, 0.12665222585201263, -0.13073290884494781, -0.1450221985578537, -0.10814733058214188, -0.02231365069746971, 0.007978701032698154, -0.10967625677585602, 0.009204120375216007, 0.01261618360877037, 0.06915576010942459, -0.0494009405374527, -0.08584099262952805, 0.07906398177146912, -0.09606364369392395, 0.006325269117951393, -0.03416261076927185, 0.06198537349700928, 0.19737912714481354, 0.018340153619647026, 0.043361883610486984, -0.058678969740867615, 0.009967656806111336, -0.16550037264823914, -0.06162063404917717, 0.05424002930521965, -0.009776412509381771, 0.11339271813631058, 0.02985631674528122, -0.11946843564510345, -0.13950230181217194, 0.053397756069898605, 0.049175459891557693, 0.10559273511171341, -0.029510073363780975, 0.1491757333278656, 0.1938193440437317, -0.03684402257204056, -0.232129767537117, -0.07193850725889206, 0.09582239389419556, 0.06640305370092392, 0.015417622402310371, -0.16494561731815338, 0.007514569908380508, -0.053976111114025116, 0.014690219424664974, 0.08498433977365494, -0.31499603390693665, -0.13567711412906647, 0.11888324469327927, 0.058479536324739456, 0.16186653077602386, -0.0636608749628067, 0.02470995858311653, -0.09026157110929489, -0.009881881065666676, 0.10934443771839142, -0.04975982382893562, 0.06036560237407684, 0.04000836983323097, 0.05059102922677994, 0.020069347694516182, 0.01174942310899496, 0.1281481385231018, 0.11127860099077225, 0.1250629723072052, -0.10374459624290466, 0.03581973537802696, 0.06150663644075394, -0.05139263719320297, 0.12657204270362854, 0.03537364304065704, 0.018904095515608788, -0.16269941627979279, -0.10174715518951416, -0.068264439702034, 0.0659710243344307, -0.00627132086083293, -0.036610186100006104, 0.006669950671494007, 0.04079870134592056, 0.10401276499032974, 0.01245144847780466, -0.04965668171644211, -0.11843889206647873, -0.0034073928836733103, -0.040771979838609695, 0.1980876475572586, -0.029199853539466858, -0.04810987040400505, 0.01459952350705862, 0.05968143418431282, 0.1311308741569519, -0.19912996888160706, 0.05673632398247719, 0.0646413266658783, 0.04959980025887489, 0.06269636005163193, 0.03614642098546028, -0.08481910079717636, 0.04049089178442955, 0.07725528627634048, -0.0526343435049057, -0.11791500449180603, -0.028934530913829803, -0.02652744948863983, -0.004536065738648176, -0.042841702699661255, 0.07184191793203354, -0.01661089062690735, 0.026381097733974457, -0.003880489384755492, 0.020472737029194832, -0.05457274615764618, 0.12265899777412415, 0.0020112248603254557, 0.04457791522145271, -0.07438814640045166, 0.06437443941831589, 0.04908148944377899, -0.08823727071285248, 0.03965243324637413, 0.06675351411104202, -0.15513893961906433, -0.052278898656368256, -0.14371733367443085, 0.06736554950475693, 0.026969818398356438, -0.05990206450223923, 0.044447239488363266, -0.0631810650229454, -0.02593858353793621, 0.12332316488027573, 0.029985105618834496, 0.027362430468201637, -0.046581119298934937, -0.01988162100315094, -0.00578596256673336, 0.009463203139603138, 0.09895241260528564, -0.06111981347203255, 0.002943317173048854, 0.034982357174158096, 0.07874752581119537, 0.12387818098068237, -0.07209838181734085, -0.08663162589073181, -0.06531721353530884, 0.059171225875616074, -0.04296344146132469, 0.03662322089076042, -0.07437027990818024, 0.028205273672938347, -0.02848457172513008, -0.008220396935939789, -0.016692230477929115, 0.017361830919981003, -0.0473579540848732, 0.004216805566102266, -0.00208160188049078, 0.04784306138753891, -0.12150808423757553, -0.06147971749305725, 0.0027756099589169025, -0.04704604670405388, 0.07946322858333588, 0.1163192093372345, -0.07223010063171387, 0.017784714698791504, -0.2086353302001953, -0.013047434389591217, -0.010330486111342907, 0.025191688910126686, -0.038479845970869064, -0.07619812339544296, 0.03534418344497681, -0.00889421533793211, -0.015314474701881409, -0.017948905006051064, -0.050394900143146515, -0.07990853488445282, 0.07234630733728409, 0.05260218307375908, -0.013119596056640148, -0.07765637338161469, 0.1024727076292038, 0.05074774846434593, 0.03790270909667015, 0.07000633329153061, -0.010211839340627193, 0.021002905443310738, -0.05210038274526596, -0.04532420262694359, 0.026527583599090576, 0.04709729924798012, 0.04834107309579849, -0.0716591402888298, 0.03752124682068825, -0.0036236827727407217, 0.060523197054862976, 0.0448724664747715, 0.057976339012384415, 0.019947154447436333, 0.017704609781503677, 0.02375514805316925, -0.0049153766594827175, -0.04223615303635597, 0.016331927850842476, 0.011270121671259403, 0.03332970291376114, -0.017303112894296646, 0.022566070780158043, 0.04754628613591194, 0.12508516013622284, 0.08605203032493591, 0.14800742268562317, 0.02856326289474964, -0.05426566302776337, -0.016802899539470673, -0.08557373285293579, -0.11778183281421661, 0.026313399896025658, -0.010301193222403526, -0.016251398250460625, -0.06166749820113182, 0.15817277133464813, -0.01775071769952774, 0.07198379188776016, 0.07340804487466812, -0.0765206515789032, -0.0768461599946022, -0.2068662941455841, 0.042872779071331024, 0.0094430111348629, 0.027827151119709015, -0.07508163154125214, 0.06233029067516327, 0.12970857322216034, 0.08861235529184341, -0.01760477013885975, 0.18216058611869812, -0.138011634349823, -0.16304156184196472, 0.08920823037624359, -0.05200249329209328, 0.04914729669690132, 0.07636032998561859, 0.07791747897863388, 0.05907710641622543, -0.004549490753561258, 0.04753924533724785, 0.06431075930595398, 0.00918214675039053, 0.06610769033432007, -0.1150284856557846, -0.05010445415973663, -0.034672074019908905, 0.07375212758779526, 0.06583657115697861, 0.2122693657875061, 0.0695326030254364, -0.07602310180664062, 0.008248360827565193, 0.13058704137802124, 0.032936230301856995, -0.12964311242103577, -0.10263970494270325, 0.2267000526189804, 0.0460665300488472, -0.005319895222783089, -0.07984257489442825, -0.0911920890212059, -0.019626010209321976, 0.128068745136261, 0.10107646137475967, -0.02201259881258011, -0.004658978898078203, -0.12316138297319412, 0.030036935582756996, 0.02730126678943634, 0.1067066565155983, 0.004476992879062891, 0.3983423113822937, -0.06475106626749039, 0.13451211154460907, -0.010897776111960411, -0.006750970613211393, -0.075007364153862, 0.05589663237333298, 0.0026840597856789827, -0.008477882482111454, -0.06340757757425308, 0.14148454368114471, -0.10718382894992828, -0.10914351046085358, 0.01717022992670536, 0.04421871900558472, -0.01350054144859314, 0.011225798167288303, -0.13987702131271362, 0.09929113835096359, 0.087879478931427, 0.012264079414308071, -0.033328618854284286, 0.04678313061594963, 0.03895818442106247, -0.06622286885976791, -0.08517514169216156, 0.05790271610021591, 0.01804177649319172, 0.10063188523054123, -0.01604144461452961, 0.1848384141921997, 0.06993555277585983, 0.007136055734008551, -0.02899862453341484, 0.04607304185628891, 0.007566182874143124, 0.031111182644963264, 0.02468191087245941, 0.1477222889661789, -0.015930522233247757, -0.05463932827115059, -0.0002006792346946895, -0.006851539481431246, 0.049617279320955276, -0.028716344386339188, 0.0254276841878891, -0.07455498725175858, 0.12091092020273209, -0.07538212090730667, 0.07765085250139236, 0.09795364737510681, 0.028468208387494087, 0.04110660031437874, -0.03850729763507843, 0.0016881960909813643, -0.03090822324156761, -0.04184228554368019, -0.03445978835225105, -0.12049279361963272, 0.04340993985533714, 0.02518361248075962, -0.007115887012332678, -0.2268882691860199, 0.010734040290117264, -0.011185431852936745, 0.005969024728983641, 0.10204705595970154, 0.040698662400245667, -0.023868702352046967, 0.008180572651326656, -0.03674587234854698, -0.25185203552246094, 0.03191141411662102, 0.10387436300516129, -0.08782622218132019, -0.1091470718383789 ]
null
null
transformers
<p>Chinese Bert Large Model</p> <p>bert large中文预训练模型</p> #### 训练语料 中文wiki, 2018-2020海量新闻语料
{}
fill-mask
algolet/bert-large-chinese
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
<p>Chinese Bert Large Model</p> <p>bert large中文预训练模型</p> #### 训练语料 中文wiki, 2018-2020海量新闻语料
[ "#### 训练语料\n中文wiki, 2018-2020海量新闻语料" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "#### 训练语料\n中文wiki, 2018-2020海量新闻语料" ]
[ 36, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n#### 训练语料\n中文wiki, 2018-2020海量新闻语料" ]
[ -0.04017168655991554, 0.044857509434223175, -0.008145793341100216, 0.014904295094311237, 0.12497042119503021, -0.0011396059999242425, 0.10833724588155746, 0.06993185728788376, 0.09543073177337646, 0.00257630436681211, 0.16087542474269867, 0.16666539013385773, 0.01803215779364109, 0.15023070573806763, -0.04617779329419136, -0.31796178221702576, 0.056823600083589554, 0.1098782941699028, -0.029005661606788635, 0.13838662207126617, 0.0746070072054863, -0.09630198776721954, 0.107204370200634, -0.0013002996565774083, -0.0941697284579277, 0.0351661816239357, 0.05736689269542694, -0.12053576856851578, 0.149769127368927, 0.016954200342297554, 0.19626230001449585, 0.006332725286483765, -0.05441659688949585, -0.04932335764169693, 0.04425891116261482, -0.019919291138648987, -0.07514636218547821, 0.05037433281540871, 0.021528292447328568, -0.062101565301418304, 0.043632227927446365, 0.04145721718668938, -0.0034531073179095984, 0.07000315934419632, -0.13459980487823486, -0.08466138690710068, -0.027787083759903908, 0.08459111303091049, 0.09583008289337158, 0.06429698318243027, 0.002287892857566476, 0.17042547464370728, -0.12439616024494171, 0.08935472369194031, 0.12921099364757538, -0.35626471042633057, -0.020494289696216583, 0.001526597305200994, 0.03158296272158623, -0.034034062176942825, -0.03784490004181862, 0.043692078441381454, 0.03600826486945152, 0.015423809178173542, 0.00974454265087843, -0.08558394759893417, -0.02628406696021557, 0.0026436264161020517, -0.07906075567007065, 0.0072568790055811405, 0.16652140021324158, -0.03162278234958649, 0.02957230620086193, 0.008517798967659473, -0.08539922535419464, -0.07388981431722641, -0.04068753495812416, -0.05407487973570824, -0.009935002774000168, 0.03502707555890083, -0.0076501681469380856, -0.033066488802433014, -0.09935275465250015, 0.0225016288459301, -0.22921545803546906, 0.23882608115673065, 0.033467184752225876, 0.03841210901737213, -0.1699657291173935, 0.011736194603145123, 0.009242757223546505, -0.11846078187227249, 0.03413081541657448, -0.06030747666954994, 0.044694073498249054, 0.019987713545560837, -0.021333910524845123, -0.03116045705974102, 0.022067002952098846, 0.14360661804676056, 0.054092638194561005, 0.059999026358127594, 0.025412360206246376, 0.10719608515501022, 0.01031459029763937, 0.07742399722337723, -0.03916358947753906, -0.04481424391269684, 0.05033598467707634, -0.10133818536996841, 0.05017313361167908, -0.04220990836620331, -0.12035616487264633, -0.05815700814127922, -0.00972029659897089, 0.04023733362555504, 0.0049241227097809315, 0.0685523971915245, -0.07834238559007645, 0.00000653612005407922, 0.12032503634691238, -0.06338907778263092, -0.006633787881582975, -0.031706780195236206, -0.003959652502089739, 0.16888228058815002, 0.015037084929645061, -0.006553751416504383, -0.019864998757839203, 0.16768202185630798, -0.09236004203557968, 0.003017859999090433, -0.02140018343925476, -0.021135114133358, 0.021565094590187073, -0.09492164105176926, 0.046126388013362885, -0.1651298552751541, -0.11401274055242538, 0.05952507629990578, 0.03015105612576008, 0.0034390874207019806, -0.03367678448557854, 0.04782725125551224, -0.014090538024902344, -0.00029157495009712875, -0.03442610055208206, -0.06016340106725693, -0.02729906514286995, 0.07421956211328506, 0.02930530346930027, 0.11458050459623337, -0.11173351854085922, 0.05486755445599556, -0.10333632677793503, 0.046322956681251526, -0.17977696657180786, -0.05467759445309639, -0.001812335685826838, 0.1269650161266327, 0.008794870227575302, -0.02732076123356819, -0.09797658771276474, 0.016848843544721603, 0.005883351434022188, 0.17023296654224396, -0.1048014909029007, -0.14460726082324982, 0.2230033278465271, -0.10487876087427139, -0.155255988240242, 0.11869968473911285, 0.02420716919004917, -0.010217703878879547, 0.04918788745999336, 0.09425446391105652, -0.04673229530453682, -0.13705351948738098, 0.007399315480142832, 0.08239639550447464, -0.13338376581668854, -0.06512940675020218, 0.052195172756910324, 0.014606356620788574, -0.10007213801145554, 0.0476573146879673, 0.08895669877529144, 0.054333411157131195, -0.08600331842899323, -0.060212939977645874, 0.01570354588329792, -0.05939517170190811, 0.1548134684562683, 0.006947864778339863, 0.10756180435419083, -0.08411779254674911, -0.017443165183067322, -0.06232656538486481, 0.01990574784576893, 0.08488646149635315, 0.0353485532104969, -0.11439599841833115, 0.0906590074300766, 0.004201225005090237, 0.015134517103433609, -0.12001997232437134, -0.04022159054875374, 0.006605206988751888, 0.09636532515287399, -0.001391126192174852, 0.025218838825821877, 0.09347297251224518, -0.042247090488672256, -0.03497086465358734, -0.02898535318672657, 0.09238112717866898, 0.013470473699271679, -0.023231538012623787, -0.09709339588880539, 0.040431343019008636, -0.045176707208156586, 0.015081255696713924, -0.018673351034522057, -0.007341763004660606, -0.036632340401411057, 0.16235730051994324, -0.028518203645944595, 0.03503832221031189, -0.053055860102176666, 0.047960519790649414, -0.05532380938529968, 0.03865674138069153, 0.0537412092089653, 0.0005764466477558017, -0.09841509163379669, 0.22393189370632172, -0.09482751041650772, 0.37886127829551697, 0.20316462218761444, -0.26765117049217224, -0.055604465305805206, 0.031464941799640656, -0.013975849375128746, -0.020610995590686798, 0.09416299313306808, 0.036976467818021774, 0.09899493306875229, -0.0028464151546359062, 0.15116460621356964, -0.015811242163181305, 0.0339156799018383, 0.04421146214008331, -0.0862904042005539, -0.03959150239825249, 0.06283164769411087, 0.10391401499509811, -0.14818094670772552, 0.18534022569656372, 0.24450066685676575, -0.014850794337689877, 0.13735802471637726, 0.04125560075044632, -0.002830413868650794, -0.04618450626730919, -0.04346673935651779, -0.028051994740962982, 0.05928642675280571, -0.18092337250709534, -0.04638000205159187, 0.0404597669839859, -0.06316929310560226, 0.041778963059186935, -0.11215993016958237, -0.06924267113208771, 0.023726152256131172, 0.03686258941888809, -0.04281790554523468, 0.10562898963689804, -0.0011870453599840403, 0.10001951456069946, 0.018145225942134857, -0.0510096400976181, 0.075416699051857, 0.0415862500667572, -0.0659685730934143, 0.1301133632659912, -0.12481078505516052, -0.3317754566669464, -0.0730346217751503, -0.20523539185523987, 0.02307278849184513, 0.031810637563467026, 0.025083884596824646, -0.11296764016151428, -0.05629761144518852, 0.09800799936056137, -0.02794463187456131, -0.09365597367286682, 0.06619314849376678, -0.0015610205009579659, 0.006067302078008652, -0.04032579064369202, -0.03258395940065384, -0.0543585941195488, -0.04648861289024353, -0.06047552078962326, 0.11235623806715012, -0.07200129330158234, 0.10079299658536911, 0.10522744059562683, 0.01759464479982853, 0.04628399759531021, -0.007575205061584711, 0.11599907279014587, -0.11487195640802383, 0.001942704082466662, 0.18476055562496185, -0.061964526772499084, 0.09371193498373032, 0.14748510718345642, 0.015297245234251022, -0.043488625437021255, 0.002273180056363344, -0.03570668771862984, -0.09749644994735718, -0.17019011080265045, -0.0848553255200386, -0.10833070427179337, 0.05472789704799652, 0.0189517755061388, 0.04429788887500763, 0.17867863178253174, 0.09623882174491882, 0.019887331873178482, 0.012334677390754223, -0.10512296855449677, 0.03500721603631973, 0.10924211889505386, -0.03820459917187691, 0.12836439907550812, -0.053661998361349106, -0.10159136354923248, 0.04967859014868736, 0.0027774409390985966, 0.06776835024356842, 0.11505251377820969, -0.013546094298362732, 0.04529888182878494, 0.2087302953004837, 0.17197412252426147, 0.0672539621591568, 0.01146090030670166, -0.08810590207576752, 0.01289759948849678, -0.001771510113030672, -0.03852153196930885, 0.04693141207098961, 0.13377989828586578, -0.07671979069709778, -0.025754259899258614, -0.07171931117773056, 0.05846129730343819, 0.11640109866857529, 0.05069046840071678, -0.17325973510742188, -0.03410404920578003, 0.014455252327024937, -0.005851658992469311, -0.04703653231263161, 0.06254694610834122, -0.012735462747514248, -0.1636652797460556, 0.11672906577587128, -0.023716647177934647, 0.09301348030567169, 0.02441190369427204, 0.09148558974266052, -0.05959717184305191, -0.05418478325009346, 0.012097001075744629, 0.028424877673387527, -0.30829721689224243, 0.3055300712585449, -0.0016138532664626837, -0.04245396703481674, -0.05389285832643509, -0.03237980231642723, 0.06847959756851196, 0.10235165804624557, 0.13602091372013092, 0.023480532690882683, -0.03700082376599312, -0.15338370203971863, -0.028998708352446556, 0.029586387798190117, 0.10603039711713791, -0.01948913186788559, -0.03434285894036293, -0.0022414817940443754, -0.04922046139836311, -0.01566530391573906, 0.10059624165296555, -0.0545431487262249, -0.11723029613494873, 0.05976516008377075, 0.05052844434976578, 0.02385575696825981, 0.009752010926604271, -0.05230673402547836, -0.09408887475728989, 0.18798129260540009, -0.036801956593990326, -0.02471800521016121, -0.10420869290828705, -0.08757618069648743, 0.06261511892080307, -0.12537075579166412, 0.08911929279565811, -0.08473841100931168, -0.007460621185600758, -0.08604589849710464, -0.12718325853347778, 0.13679271936416626, -0.10939137637615204, -0.039051420986652374, -0.07494870573282242, 0.14769093692302704, -0.032342709600925446, 0.057585522532463074, -0.007535567507147789, 0.005276630632579327, -0.05265019088983536, -0.0714862272143364, 0.0636005774140358, -0.09889958053827286, 0.023589983582496643, 0.03180164471268654, -0.05108015984296799, -0.039624035358428955, -0.04845363646745682, -0.025737565010786057, 0.19385482370853424, 0.22119168937206268, -0.04485894367098808, 0.12572303414344788, 0.1943056434392929, 0.019727706909179688, -0.30211305618286133, -0.13901285827159882, -0.1306658685207367, 0.02095428667962551, -0.014091907069087029, -0.1882903128862381, 0.08093932271003723, -0.003818405792117119, -0.04927590861916542, 0.11569669097661972, -0.13646769523620605, -0.11340686678886414, 0.20880605280399323, -0.022372353821992874, 0.34843385219573975, -0.08601951599121094, -0.06897954642772675, 0.006556190550327301, -0.06096499413251877, 0.050097860395908356, 0.041073989123106, 0.05900530517101288, -0.036391403526067734, 0.09593044966459274, 0.0016980735817924142, -0.059538379311561584, 0.08852598816156387, -0.07831773906946182, 0.0011197020066902041, -0.09569819271564484, -0.15684090554714203, 0.039952345192432404, 0.014948719181120396, 0.015603584237396717, 0.002926572458818555, 0.0047666714526712894, -0.027208801358938217, -0.01531197503209114, -0.08446290343999863, 0.09209006279706955, 0.012849345803260803, -0.06472189724445343, 0.00047574806376360357, 0.017887400463223457, -0.04837256669998169, -0.0010224510915577412, 0.19285570085048676, 0.022844653576612473, 0.15994864702224731, 0.047432996332645416, 0.03352978080511093, -0.11869286000728607, -0.017849909141659737, -0.07500370591878891, -0.08699755370616913, 0.09329638630151749, -0.0612732395529747, 0.011008898727595806, 0.1002684235572815, 0.010057304985821247, 0.032769396901130676, 0.0855046957731247, -0.019884034991264343, 0.01361567061394453, 0.11736930161714554, -0.23191951215267181, -0.030655425041913986, -0.048989325761795044, -0.008767145685851574, 0.08937067538499832, 0.05493829399347305, 0.05459452047944069, -0.002452715765684843, -0.04355509206652641, -0.017179397866129875, -0.009796736761927605, -0.06055742874741554, 0.028329236432909966, 0.05452358350157738, 0.013381046243011951, -0.12399464100599289, 0.006506405770778656, 0.018430519849061966, -0.18219690024852753, 0.022456277161836624, 0.1456850916147232, -0.09595558047294617, -0.08345791697502136, -0.08529458194971085, 0.10079118609428406, -0.046113841235637665, -0.030679024755954742, -0.06410703808069229, -0.10468926280736923, 0.05218806862831116, 0.2330760955810547, 0.09789400547742844, 0.05773076415061951, -0.027805615216493607, -0.04324720799922943, -0.007898491807281971, -0.02572401985526085, 0.029644662514328957, 0.024810440838336945, -0.10016441345214844, 0.05733447149395943, 0.04462099447846413, 0.1914176046848297, -0.10139647126197815, -0.05873549357056618, -0.1288069486618042, 0.050603292882442474, -0.08806737512350082, -0.09620476514101028, -0.14529019594192505, -0.10052407532930374, 0.002464035525918007, -0.11187616735696793, -0.0877641811966896, -0.05328129231929779, -0.10267645120620728, 0.028813382610678673, 0.0602945014834404, 0.0052317483350634575, -0.070966437458992, -0.02275574393570423, 0.1537906527519226, -0.03088505007326603, 0.08065205812454224, 0.19445274770259857, -0.0317886583507061, 0.10260144621133804, -0.09347134083509445, -0.09452440589666367, 0.09982940554618835, 0.011620820499956608, 0.07983193546533585, 0.1039007231593132, -0.009857550263404846, 0.04910086467862129, 0.034540481865406036, 0.05713615566492081, 0.08854816108942032, -0.11180512607097626, 0.03915966674685478, 0.006659417878836393, -0.16653794050216675, -0.03597475588321686, -0.06285624206066132, 0.10683402419090271, -0.0010158196091651917, 0.0772649273276329, -0.056190263479948044, 0.1266295313835144, -0.057403597980737686, 0.025472188368439674, -0.054003067314624786, -0.14313416182994843, -0.020163264125585556, -0.04790626838803291, 0.017101578414440155, -0.012824570760130882, 0.22367411851882935, -0.06818826496601105, -0.007593183312565088, 0.047213807702064514, 0.07993188500404358, -0.09288284927606583, 0.025171950459480286, 0.11630459874868393, 0.11709962785243988, -0.07667703181505203, -0.07469626516103745, 0.0756649523973465, 0.004865744151175022, -0.03672504797577858, 0.07978726178407669, 0.02546606957912445, 0.07708597183227539, 0.09888637065887451, -0.015290400013327599, 0.007145596668124199, -0.10827146470546722, -0.22312074899673462, -0.15039680898189545, -0.005287373438477516, 0.04922492802143097, 0.05266619846224785, 0.17544445395469666, 0.013988681137561798, 0.0534980334341526, 0.006478561088442802, -0.018866127356886864, -0.17153173685073853, -0.10855121165513992, -0.08415457606315613, -0.04142681881785393, 0.016271673142910004, -0.012597265653312206, -0.0009374045766890049, 0.06785069406032562, 0.04946611076593399, -0.04179694503545761, 0.1501074880361557, 0.07190924882888794, -0.02444194070994854, 0.050721924751996994, 0.0064074876718223095, 0.006830989383161068, -0.03427897393703461, -0.03586419299244881, -0.15593232214450836, -0.018162734806537628, -0.04232238605618477, -0.00031966963433660567, -0.13414965569972992, 0.038137394934892654, -0.04722396656870842, -0.13482880592346191, -0.03621228411793709, 0.021836962550878525, 0.020689159631729126, 0.04469482600688934, -0.023863758891820908, 0.04951545596122742, -0.020422082394361496, 0.12871670722961426, -0.04112530127167702, -0.0070654163137078285, -0.06621792912483215, 0.21761061251163483, 0.0034266223665326834, 0.04457586631178856, -0.02560068666934967, 0.06574612110853195, -0.09086807072162628, 0.33809587359428406, 0.29357463121414185, -0.08939104527235031, 0.06102501600980759, 0.011802163906395435, 0.03545710816979408, 0.042023565620183945, 0.040405623614788055, 0.08763346076011658, 0.32665959000587463, -0.098213791847229, -0.03304707258939743, -0.07731205970048904, -0.034985028207302094, -0.07698263972997665, 0.0356946662068367, 0.07426099479198456, -0.017857477068901062, -0.07726050913333893, 0.06484212726354599, -0.17640629410743713, 0.11097605526447296, 0.03089793026447296, -0.24333003163337708, -0.04223044589161873, 0.013906535692512989, 0.09129699319601059, 0.08713703602552414, 0.09785228967666626, -0.010426025837659836, -0.05651713162660599, 0.04610559344291687, 0.04149358347058296, -0.18617507815361023, -0.04705341160297394, 0.1353025734424591, -0.021316302940249443, 0.09297386556863785, -0.015561169944703579, -0.006643129047006369, 0.09038600325584412, 0.09276687353849411, -0.015774762257933617, 0.0018179763574153185, 0.03255327790975571, -0.05828360840678215, -0.08188287168741226, 0.034412216395139694, 0.025487875565886497, -0.11094202101230621, 0.04679381474852562, -0.1329284906387329, 0.06086171790957451, -0.12071920186281204, -0.04064822196960449, 0.0013431812403723598, 0.10148531198501587, -0.036390043795108795, 0.06426294893026352, 0.09921719878911972, -0.012679429724812508, -0.030163191258907318, -0.024495607241988182, -0.021849757060408592, 0.03522494062781334, -0.11051122844219208, -0.15029063820838928, -0.08186420053243637, -0.05822978913784027, 0.053385429084300995, -0.008941479958593845, -0.15611989796161652, -0.04335474222898483, -0.07275073230266571, 0.017960242927074432, -0.141555055975914, -0.024589568376541138, 0.036980483680963516, 0.049511898308992386, 0.016945315524935722, -0.03282225504517555, 0.054719556123018265, 0.021595582365989685, -0.11872145533561707, -0.10466090589761734 ]
null
null
transformers
<h3 align="center"> <p>MT5 Base Model for Chinese Question Generation</p> </h3> <h3 align="center"> <p>基于mt5的中文问题生成任务</p> </h3> #### 可以通过安装question-generation包开始用 ``` pip install question-generation ``` 使用方法请参考github项目:https://github.com/algolet/question_generation #### 在线使用 可以直接在线使用我们的模型:https://www.algolet.com/applications/qg #### 通过transformers调用 ``` python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg") model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg") model.eval() text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”" text = "question generation: " + text inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=512) with torch.no_grad(): outs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=128, no_repeat_ngram_size=4, num_beams=4) question = tokenizer.decode(outs[0], skip_special_tokens=True) questions = [q.strip() for q in question.split("<sep>") if len(q.strip()) > 0] print(questions) ['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?'] ``` #### 指标 rouge-1: 0.4041 rouge-2: 0.2104 rouge-l: 0.3843 --- language: - zh tags: - mt5 - question generation metrics: - rouge ---
{}
text2text-generation
algolet/mt5-base-chinese-qg
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<h3 align="center"> <p>MT5 Base Model for Chinese Question Generation</p> </h3> <h3 align="center"> <p>基于mt5的中文问题生成任务</p> </h3> #### 可以通过安装question-generation包开始用 使用方法请参考github项目:URL #### 在线使用 可以直接在线使用我们的模型:URL #### 通过transformers调用 #### 指标 rouge-1: 0.4041 rouge-2: 0.2104 rouge-l: 0.3843 --- language: - zh tags: - mt5 - question generation metrics: - rouge ---
[ "#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL", "#### 在线使用\n可以直接在线使用我们的模型:URL", "#### 通过transformers调用", "#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---" ]
[ "TAGS\n#transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL", "#### 在线使用\n可以直接在线使用我们的模型:URL", "#### 通过transformers调用", "#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---" ]
[ 49, 23, 14, 8, 44 ]
[ "passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n#### 可以通过安装question-generation包开始用\n\n使用方法请参考github项目:URL#### 在线使用\n可以直接在线使用我们的模型:URL#### 通过transformers调用#### 指标\nrouge-1: 0.4041\n\nrouge-2: 0.2104\n\nrouge-l: 0.3843\n\n---\nlanguage: \n - zh\n \ntags:\n- mt5\n- question generation\n\nmetrics:\n- rouge\n\n---" ]
[ -0.061163224279880524, 0.07440362125635147, -0.004667361732572317, 0.04928801208734512, 0.1402231901884079, -0.002748943166807294, 0.11351779103279114, 0.11831178516149521, 0.0665922462940216, 0.01130050327628851, 0.18062284588813782, 0.15451745688915253, -0.007846332155168056, 0.08596724271774292, -0.06554864346981049, -0.1746891438961029, -0.004168238490819931, 0.04856119677424431, 0.0057400427758693695, 0.143691286444664, 0.09045962244272232, -0.046020135283470154, 0.12891434133052826, -0.0019287769682705402, -0.09333515912294388, 0.04993659630417824, -0.006671271286904812, -0.04937507584691048, 0.10410366952419281, 0.04542251303792, 0.039818111807107925, 0.10000676661729813, 0.03646962717175484, -0.15837375819683075, 0.0308968685567379, -0.008896850980818272, -0.048830028623342514, 0.06516123563051224, 0.03600478917360306, -0.12929357588291168, 0.09284184873104095, 0.013515884056687355, -0.021426329389214516, 0.07995070517063141, -0.09517663717269897, -0.024999678134918213, -0.06684000045061111, -0.015589505434036255, 0.059594038873910904, 0.10224650055170059, -0.00026594859082251787, 0.178634911775589, -0.13398528099060059, 0.08153121173381805, 0.28662243485450745, -0.24752455949783325, -0.028564194217324257, 0.14812147617340088, 0.11917345225811005, 0.0948299765586853, -0.02555103972554207, 0.10969994217157364, 0.10022556036710739, 0.02459310181438923, 0.004172155167907476, -0.10733934491872787, 0.003933090250939131, 0.03244175389409065, -0.1287451982498169, -0.035100679844617844, 0.30446702241897583, 0.002866968745365739, -0.0370611771941185, 0.03279358521103859, -0.05319764092564583, -0.019007505849003792, -0.0441688671708107, -0.04930266737937927, -0.026111694052815437, -0.009466135874390602, -0.06566662341356277, -0.0917031541466713, -0.09891404211521149, -0.09965517371892929, -0.07428016513586044, 0.10892745852470398, 0.012618109583854675, 0.04435068741440773, -0.17724962532520294, 0.08799529820680618, -0.07690005749464035, -0.08037428557872772, -0.027106741443276405, -0.1171698123216629, 0.02832883782684803, 0.00821506604552269, -0.026468580588698387, -0.03233395144343376, 0.12175120413303375, 0.20448645949363708, 0.033653635531663895, 0.036875657737255096, -0.03577093407511711, 0.055181894451379776, 0.03586752712726593, 0.11046461760997772, -0.06632087379693985, -0.16496878862380981, 0.02876398339867592, -0.0462423600256443, 0.0013066435931250453, -0.042014990001916885, -0.12570802867412567, -0.1086263582110405, 0.02684708870947361, 0.09423097968101501, 0.0707985907793045, 0.04885169863700867, -0.00445618387311697, -0.0549992099404335, 0.01083214022219181, -0.04672570154070854, -0.0031326645985245705, -0.0045313118025660515, -0.05996432900428772, 0.10591308772563934, 0.04580316320061684, 0.013195166364312172, -0.12264937907457352, 0.007720597088336945, -0.05997198447585106, 0.038507070392370224, -0.04679808020591736, -0.06177712231874466, 0.007732959929853678, -0.008316947147250175, -0.015154432505369186, -0.1489349901676178, -0.07071062177419662, -0.013979886658489704, 0.06073075160384178, -0.019067084416747093, -0.018757810816168785, -0.029022667557001114, -0.006471632514148951, 0.04120193049311638, -0.044345010071992874, 0.024792714044451714, -0.04711172729730606, 0.07326512783765793, 0.008092458359897137, 0.08783336728811264, -0.1057761162519455, 0.05882770195603371, -0.04594249278306961, 0.01282562781125307, -0.025505878031253815, 0.03137888014316559, -0.06398193538188934, 0.009766844101250172, -0.13968680799007416, -0.07284742593765259, 0.011180357076227665, 0.024473343044519424, 0.07720314711332321, 0.20904408395290375, -0.01853577420115471, -0.04588489979505539, 0.1705055683851242, -0.040251679718494415, -0.18221750855445862, 0.1680222600698471, 0.02074066735804081, 0.020965948700904846, 0.059269703924655914, 0.10428105294704437, 0.11869517713785172, -0.18159203231334686, 0.08702846616506577, 0.09888768196105957, -0.07673437893390656, -0.10806943476200104, 0.07488318532705307, -0.00648963637650013, -0.21334414184093475, 0.03791050985455513, -0.027111513540148735, 0.012149574235081673, -0.08694496750831604, -0.05520949885249138, -0.03576591610908508, -0.034147556871175766, 0.10468030720949173, 0.028429806232452393, 0.07508731633424759, -0.027390122413635254, -0.020638711750507355, -0.11761348694562912, 0.05333720147609711, -0.017415734007954597, 0.015655485913157463, -0.08294367790222168, 0.10404244810342789, -0.06254001706838608, 0.04070710018277168, -0.1683342158794403, -0.0031250796746462584, -0.019500315189361572, 0.014816549606621265, 0.06223463639616966, 0.06820801645517349, 0.032956562936306, -0.01867438107728958, -0.041722141206264496, 0.0029256530106067657, 0.06810511648654938, -0.05668681859970093, -0.07341091334819794, -0.07399214804172516, 0.010550142265856266, -0.0514102540910244, -0.00949263945221901, -0.0464923158288002, 0.017334027215838432, -0.04201608896255493, 0.035999614745378494, -0.02693028748035431, 0.06188059598207474, 0.00450109364464879, 0.016852043569087982, -0.04745190590620041, 0.025605512782931328, 0.07984289526939392, -0.022727597504854202, -0.06882961839437485, 0.08858763426542282, -0.032246679067611694, 0.09731268882751465, 0.14566399157047272, -0.14103862643241882, -0.02613351121544838, -0.07057292014360428, -0.037366338074207306, 0.01844821870326996, -0.015124804340302944, -0.01749872788786888, 0.03853095695376396, 0.008647309616208076, 0.12412116676568985, -0.045333921909332275, -0.011946157552301884, 0.019473280757665634, -0.10426310449838638, 0.002465842990204692, 0.12170447409152985, 0.17780856788158417, -0.13458362221717834, 0.08415166288614273, 0.14342179894447327, -0.07477773725986481, 0.11713317781686783, 0.02080882340669632, -0.04978759214282036, -0.009597711265087128, 0.025872210040688515, -0.014069980010390282, 0.057379573583602905, -0.1987600177526474, -0.03955083340406418, 0.061460185796022415, 0.0044726659543812275, 0.07095925509929657, -0.10513266175985336, -0.03222614899277687, -0.0395081453025341, -0.0218595452606678, -0.031099554151296616, 0.10362101346254349, 0.005177213344722986, 0.12004508078098297, 0.029432611539959908, -0.02534410171210766, 0.04823952168226242, -0.01503507886081934, -0.1328832358121872, 0.20760612189769745, -0.05983410403132439, -0.19932623207569122, -0.0998506024479866, -0.17916317284107208, -0.14374208450317383, 0.019085410982370377, 0.10209660232067108, -0.12514853477478027, -0.0073418449610471725, -0.005839275661855936, 0.10917314141988754, -0.0525597482919693, -0.0021949768997728825, -0.045046497136354446, 0.03837507218122482, -0.05256994441151619, -0.10558441281318665, -0.037958357483148575, -0.040121641010046005, -0.06883370131254196, 0.12858273088932037, -0.139540433883667, 0.12289571017026901, 0.1462378203868866, -0.007136193104088306, 0.07320413738489151, 0.02208111435174942, 0.20878966152668, -0.06982756406068802, -0.019169015809893608, 0.22208619117736816, 0.07561036199331284, 0.0980035662651062, 0.13799865543842316, 0.03188544884324074, -0.0750327929854393, 0.0705859512090683, 0.005643982440233231, -0.08469849079847336, -0.23617897927761078, -0.12848663330078125, -0.07694460451602936, 0.09588225185871124, 0.08346521854400635, 0.0261433906853199, 0.08732320368289948, 0.10689783841371536, -0.02838071621954441, 0.01651388220489025, 0.01280298549681902, 0.09400468319654465, 0.08010101318359375, -0.03176765888929367, 0.10519613325595856, -0.061207737773656845, -0.10181625187397003, 0.08588559925556183, 0.029328003525733948, 0.15786334872245789, 0.05904197692871094, 0.007251848466694355, 0.08026912063360214, 0.11390351504087448, 0.10689401626586914, 0.10030122846364975, 0.0744827538728714, -0.02344490960240364, -0.013343908824026585, -0.03708670660853386, -0.024025732651352882, 0.018215307965874672, 0.06334563344717026, -0.11761031299829483, -0.054152924567461014, 0.002828955417498946, 0.05196576192975044, 0.11219647526741028, 0.08759093284606934, -0.20805829763412476, -0.014930039644241333, 0.04193361848592758, 0.010889316909015179, -0.08292181044816971, 0.07971265912055969, 0.012907082214951515, -0.16435745358467102, 0.03032618761062622, -0.041216108947992325, 0.15402741730213165, 0.02264496497809887, 0.04150593653321266, -0.03357824310660362, 0.004512555431574583, -0.005793473217636347, 0.09361256659030914, -0.3275532126426697, 0.24973861873149872, 0.023187242448329926, -0.028645051643252373, -0.09720170497894287, -0.021212074905633926, 0.052905838936567307, 0.15888971090316772, 0.15973085165023804, 0.020430168136954308, 0.03969646245241165, -0.04500764235854149, -0.024102438241243362, 0.0724121704697609, 0.11626141518354416, -0.05826518312096596, 0.026224015280604362, -0.027346251532435417, -0.01283000223338604, -0.05642872676253319, 0.018438057973980904, -0.1834453046321869, -0.10519678145647049, 0.060288578271865845, -0.0069648572243750095, -0.0036927780602127314, -0.0020725077483803034, -0.02707970328629017, -0.00042926930473186076, 0.16916194558143616, -0.013501135632395744, -0.05959136784076691, -0.11614364385604858, -0.017977455630898476, 0.04634838551282883, -0.11811577528715134, -0.011221585795283318, -0.04559096321463585, 0.048713307827711105, -0.0388278104364872, -0.1447570025920868, 0.04481888189911842, -0.09465926140546799, -0.008785762824118137, -0.014389462769031525, 0.1331477165222168, -0.0005547503242269158, 0.03021978586912155, 0.03459456190466881, -0.05136657878756523, -0.07869308441877365, -0.15782880783081055, 0.010748129338026047, -0.02597406506538391, 0.0241941399872303, 0.05754118412733078, -0.06471622735261917, -0.1062542051076889, -0.05206805840134621, -0.003521181410178542, 0.2396504282951355, 0.17049621045589447, -0.05301670730113983, 0.05780874192714691, 0.2272934764623642, -0.023504260927438736, -0.3676747679710388, -0.07074163854122162, -0.024439334869384766, -0.031149161979556084, -0.04270331561565399, -0.15474478900432587, 0.06451680511236191, -0.004757210612297058, -0.038262009620666504, 0.04414556175470352, -0.2665235102176666, -0.0973476991057396, 0.13681001961231232, 0.06629298627376556, 0.289301335811615, -0.10189051181077957, -0.07667621970176697, -0.10891404002904892, -0.26982584595680237, 0.15811491012573242, -0.11678100377321243, 0.08953472226858139, -0.06515932083129883, 0.12305986136198044, 0.0056763216853141785, -0.040796808898448944, 0.14100319147109985, 0.033894702792167664, 0.01098407618701458, -0.06311120837926865, -0.08536308258771896, 0.07211630046367645, -0.032510582357645035, 0.10315000265836716, -0.04010935127735138, 0.04093557596206665, -0.12779515981674194, -0.010413513518869877, -0.08438604325056076, 0.07952464371919632, -0.027474692091345787, -0.059343304485082626, -0.04577462002635002, -0.016797490417957306, 0.005885323043912649, -0.005269284825772047, 0.1270020455121994, -0.08203936368227005, 0.048248015344142914, 0.11634533852338791, 0.15275709331035614, -0.07938027381896973, 0.0035287272185087204, -0.006061789579689503, -0.03484298288822174, 0.11064424365758896, -0.18494735658168793, 0.0755034014582634, 0.11110140383243561, 0.030332118272781372, 0.09125154465436935, 0.05244886502623558, -0.009001456201076508, 0.03066830150783062, 0.08638566732406616, -0.16912420094013214, -0.05279529094696045, -0.06839842349290848, -0.03717958554625511, -0.017841672524809837, 0.09786974638700485, 0.13180288672447205, 0.01250543538480997, -0.045556407421827316, -0.01772082783281803, 0.01050668116658926, -0.09417737275362015, 0.08906951546669006, 0.08374224603176117, 0.05856380984187126, -0.1222219169139862, 0.0357387512922287, -0.0005453283665701747, -0.02199813723564148, -0.050610046833753586, 0.14453867077827454, -0.10858135670423508, -0.142354816198349, 0.0029143637511879206, 0.14740276336669922, -0.16368278861045837, -0.016322152689099312, -0.03748415410518646, -0.023007946088910103, 0.02629481442272663, 0.09797897934913635, 0.06697238981723785, -0.022746728733181953, 0.007644586265087128, -0.07335994392633438, -0.08401061594486237, 0.007280690595507622, 0.05966244265437126, 0.02015666291117668, -0.030044786632061005, -0.08127803355455399, -0.010044869035482407, 0.1778540313243866, -0.08939753472805023, -0.07205414026975632, -0.14171916246414185, 0.05242075398564339, -0.2437947541475296, -0.03011796437203884, -0.09012831747531891, -0.025804271921515465, -0.035722766071558, -0.07334195077419281, -0.09405630081892014, 0.009143001399934292, -0.11653699725866318, -0.011223099194467068, -0.006098062731325626, 0.06587323546409607, -0.07638724148273468, 0.006799674592912197, 0.09058410674333572, -0.046990539878606796, 0.09289390593767166, 0.09162427484989166, -0.0855226144194603, 0.04616754874587059, -0.17815285921096802, -0.07910487055778503, -0.009490522556006908, 0.03632534295320511, 0.09175318479537964, 0.005685850977897644, 0.025189783424139023, 0.016543466597795486, 0.06818836182355881, 0.03610333800315857, 0.061196863651275635, -0.09535708278417587, 0.046773191541433334, -0.1006476879119873, -0.11851580440998077, -0.06457788497209549, 0.0345192477107048, 0.04922158271074295, 0.12012014538049698, 0.07453212887048721, -0.053109124302864075, 0.10915368050336838, -0.0710027888417244, 0.013520771637558937, 0.018977804109454155, -0.08536062389612198, -0.05483345314860344, -0.08341467380523682, 0.044461123645305634, -0.012159482575953007, 0.15829773247241974, 0.02107110060751438, 0.09640779346227646, 0.009043890051543713, 0.04011381044983864, 0.05076264590024948, -0.03327145054936409, 0.07881728559732437, 0.023906633257865906, 0.023605501279234886, -0.014769062399864197, 0.09375561773777008, 0.02199537865817547, 0.02740161120891571, 0.13795717060565948, 0.0630459263920784, 0.0705915242433548, 0.066426120698452, -0.029714060947299004, 0.02435668744146824, -0.09576878696680069, -0.12339535355567932, 0.02787918411195278, 0.045040421187877655, -0.04476457089185715, 0.015313939191401005, 0.15645816922187805, -0.04746045544743538, 0.024748068302869797, -0.013315046206116676, -0.06670889258384705, -0.18354833126068115, -0.17070874571800232, -0.10415495932102203, -0.16315031051635742, 0.014123035594820976, -0.10409851372241974, 0.008965476416051388, 0.0418575182557106, 0.0938141718506813, -0.030188802629709244, 0.08217228204011917, -0.020567934960126877, -0.10376475006341934, 0.05088555067777634, -0.050102394074201584, 0.04305853694677353, 0.02304302342236042, 0.06391099840402603, -0.0025629003066569567, -0.035223282873630524, 0.040230974555015564, 0.048871785402297974, -0.0767286866903305, 0.029274282976984978, -0.12506181001663208, -0.08315417915582657, -0.05630742385983467, 0.06241529807448387, 0.01989346370100975, 0.23040249943733215, 0.006230921018868685, -0.024316295981407166, 0.013126598671078682, 0.2275223582983017, -0.05183093622326851, -0.06836336106061935, -0.1294861137866974, 0.2792561948299408, 0.018681496381759644, 0.0685243159532547, -0.048299361020326614, -0.020101485773921013, -0.048174940049648285, 0.3319846987724304, 0.1834018975496292, -0.028291044756770134, 0.011977785266935825, 0.02333681471645832, 0.02285665273666382, 0.088924840092659, 0.06748205423355103, 0.07022222876548767, 0.20085746049880981, -0.08313971012830734, -0.01854943111538887, -0.03267453983426094, -0.04353636875748634, -0.04882097244262695, 0.08965310454368591, 0.04940817877650261, -0.07534988224506378, -0.03727024048566818, 0.1539861410856247, -0.1630896031856537, 0.06910590082406998, -0.004765367601066828, -0.0841364711523056, -0.06972724944353104, 0.03491231054067612, 0.05387052148580551, 0.010792560875415802, 0.09969843924045563, -0.03914601355791092, -0.0390133261680603, 0.0042555853724479675, 0.002532040933147073, -0.14567139744758606, -0.06077144667506218, 0.0834619402885437, -0.07546508312225342, 0.15296700596809387, -0.004969928879290819, 0.08323027193546295, 0.1077609434723854, -0.009376386180520058, -0.08001671731472015, 0.06659182161092758, 0.0409373864531517, -0.07195068895816803, 0.014362093061208725, 0.08161051571369171, -0.02678992971777916, -0.029255080968141556, 0.018759652972221375, -0.06922974437475204, -0.0022611343301832676, -0.01324458047747612, 0.02579454332590103, -0.0948980376124382, 0.05631281062960625, -0.0996716320514679, 0.10978285223245621, 0.08356718719005585, -0.03276868909597397, 0.0026746774092316628, -0.07994098216295242, 0.053858570754528046, -0.015719201415777206, -0.10065185278654099, -0.06696339696645737, -0.14889883995056152, -0.020360050722956657, 0.06559576094150543, -0.0015228204429149628, -0.1650048941373825, 0.021708382293581963, -0.03299447149038315, 0.03371482342481613, -0.07058939337730408, 0.07333405315876007, 0.07827455550432205, 0.009545689448714256, -0.004318881779909134, -0.21829552948474884, -0.006325107533484697, 0.10028278082609177, -0.14469538629055023, -0.1250016838312149 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2899 - Precision: 0.3170 - Recall: 0.5261 - F1: 0.3956 - Accuracy: 0.8799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.2912 | 0.2752 | 0.4444 | 0.3400 | 0.8730 | | No log | 2.0 | 60 | 0.2772 | 0.4005 | 0.4589 | 0.4277 | 0.8911 | | No log | 3.0 | 90 | 0.2267 | 0.3642 | 0.5281 | 0.4311 | 0.9043 | | No log | 4.0 | 120 | 0.2129 | 0.3617 | 0.5455 | 0.4350 | 0.9140 | | No log | 5.0 | 150 | 0.2399 | 0.3797 | 0.5556 | 0.4511 | 0.9114 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27", "results": []}]}
token-classification
ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased\_token\_itr0\_0.0001\_all\_01\_03\_2022-04\_48\_27 ==================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2899 * Precision: 0.3170 * Recall: 0.5261 * F1: 0.3956 * Accuracy: 0.8799 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2698 - Precision: 0.3321 - Recall: 0.5265 - F1: 0.4073 - Accuracy: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3314 | 0.1627 | 0.3746 | 0.2269 | 0.8419 | | No log | 2.0 | 60 | 0.2957 | 0.2887 | 0.4841 | 0.3617 | 0.8592 | | No log | 3.0 | 90 | 0.2905 | 0.2429 | 0.5141 | 0.3299 | 0.8651 | | No log | 4.0 | 120 | 0.2759 | 0.3137 | 0.5565 | 0.4013 | 0.8787 | | No log | 5.0 | 150 | 0.2977 | 0.3116 | 0.5565 | 0.3995 | 0.8796 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25", "results": []}]}
token-classification
ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased\_token\_itr0\_0.0001\_all\_01\_03\_2022-14\_21\_25 ==================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2698 * Precision: 0.3321 * Recall: 0.5265 * F1: 0.4073 * Accuracy: 0.8942 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2741 - Precision: 0.1936 - Recall: 0.3243 - F1: 0.2424 - Accuracy: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3235 | 0.1062 | 0.2076 | 0.1405 | 0.8556 | | No log | 2.0 | 60 | 0.2713 | 0.1710 | 0.3080 | 0.2199 | 0.8872 | | No log | 3.0 | 90 | 0.3246 | 0.2010 | 0.3391 | 0.2524 | 0.8334 | | No log | 4.0 | 120 | 0.3008 | 0.2011 | 0.3685 | 0.2602 | 0.8459 | | No log | 5.0 | 150 | 0.2714 | 0.1780 | 0.3772 | 0.2418 | 0.8661 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10", "results": []}]}
token-classification
ali2066/bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased\_token\_itr0\_2e-05\_all\_01\_03\_2022-04\_40\_10 =================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2741 * Precision: 0.1936 * Recall: 0.3243 * F1: 0.2424 * Accuracy: 0.8764 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10753864049911499, 0.08037436753511429, -0.0019933083094656467, 0.12204345315694809, 0.18140123784542084, 0.020826464518904686, 0.10045167058706284, 0.11764311045408249, -0.11086838692426682, 0.014508368447422981, 0.12287639081478119, 0.18932697176933289, 0.0021036523394286633, 0.111867256462574, -0.05016259104013443, -0.24527451395988464, -0.008892051875591278, 0.05368825048208237, -0.08800558745861053, 0.13491669297218323, 0.09048761427402496, -0.14258861541748047, 0.07888129353523254, 0.010903511196374893, -0.23364801704883575, 0.017083460465073586, 0.02746341936290264, -0.06664733588695526, 0.14827939867973328, 0.01496864389628172, 0.13202108442783356, -0.004609104711562395, 0.08435963094234467, -0.16094544529914856, 0.008185305632650852, 0.057644058018922806, 0.013476102612912655, 0.09104271978139877, 0.05923585221171379, 0.003937891684472561, 0.09522878378629684, -0.08320257067680359, 0.04912765696644783, 0.01845603808760643, -0.11615590006113052, -0.24931874871253967, -0.08442077785730362, 0.02281157672405243, 0.06695187091827393, 0.09656354784965515, 0.007532346062362194, 0.15218573808670044, -0.09406672418117523, 0.08835279196500778, 0.23400132358074188, -0.2968176305294037, -0.061535052955150604, 0.03368733823299408, -0.001287309336476028, 0.060525767505168915, -0.10787413269281387, -0.026788797229528427, 0.05534350126981735, 0.0461646243929863, 0.14292700588703156, -0.0414690226316452, -0.1185973659157753, 0.02386360429227352, -0.1451696753501892, -0.02569561079144478, 0.11380389332771301, 0.02605256251990795, -0.03320121392607689, -0.026486175134778023, -0.06368161737918854, -0.16752712428569794, -0.041406597942113876, -0.016071734949946404, 0.051477428525686264, -0.038051147013902664, -0.0669454038143158, 0.016309630125761032, -0.10167881846427917, -0.06597086042165756, -0.07968751341104507, 0.15499185025691986, 0.04383775591850281, 0.021856173872947693, -0.03475571051239967, 0.10545775294303894, 0.007033583242446184, -0.12796221673488617, 0.030722592025995255, 0.0335623137652874, -0.006838527042418718, -0.049513813108205795, -0.06912039965391159, -0.04963924363255501, 0.010616211220622063, 0.11124978959560394, -0.04757634177803993, 0.045095112174749374, 0.03680498152971268, 0.04035058990120888, -0.1031075119972229, 0.1972542405128479, -0.04417083039879799, -0.009277076460421085, 0.015756821259856224, 0.029770389199256897, 0.00449313223361969, -0.00009347574814455584, -0.1131773516535759, 0.0005200852756388485, 0.11858409643173218, 0.018152786418795586, -0.07793314754962921, 0.06817751377820969, -0.04956464469432831, -0.02420787326991558, 0.0170604158192873, -0.09928306192159653, 0.038301315158605576, -0.009381359443068504, -0.08756978809833527, -0.014857079833745956, 0.016755394637584686, 0.011835689656436443, -0.02161882072687149, 0.12543118000030518, -0.09167774021625519, 0.04116104915738106, -0.10431070625782013, -0.10492155700922012, 0.013673395849764347, -0.0774671733379364, 0.03136439621448517, -0.09931746125221252, -0.14383172988891602, -0.005293686408549547, 0.05853328853845596, -0.021369216963648796, -0.05622860789299011, -0.028633151203393936, -0.06818969547748566, 0.004103114828467369, -0.02228950895369053, 0.15664881467819214, -0.05509620159864426, 0.10445694625377655, 0.04295739904046059, 0.06440753489732742, -0.04832245409488678, 0.05941133573651314, -0.10614841431379318, 0.005741914734244347, -0.1939363181591034, 0.02675219625234604, -0.052257660776376724, 0.0762862041592598, -0.09789430350065231, -0.11046694964170456, 0.030374813824892044, -0.01386824157088995, 0.0737597718834877, 0.08058151602745056, -0.15171603858470917, -0.07394618541002274, 0.14997456967830658, -0.06346351653337479, -0.10854742676019669, 0.10561156272888184, -0.0593809112906456, 0.034293193370103836, 0.07409972697496414, 0.14655916392803192, 0.06793807446956635, -0.06718068569898605, 0.026534799486398697, -0.0027119643054902554, 0.0457339845597744, -0.09681043028831482, 0.06298034638166428, 0.009297063574194908, -0.017046473920345306, 0.0362410768866539, -0.034106072038412094, 0.06603852659463882, -0.09525996446609497, -0.09335606545209885, -0.04472557082772255, -0.10235516726970673, 0.04699767008423805, 0.07667631655931473, 0.09107839316129684, -0.09030316770076752, -0.07246976345777512, 0.09054850786924362, 0.07468730211257935, -0.050058022141456604, 0.031226258724927902, -0.06111585348844528, 0.06181240454316139, -0.06198642775416374, -0.026785459369421005, -0.19482621550559998, -0.011955865658819675, 0.010227876715362072, -0.013750032521784306, 0.016295509412884712, 0.019756264984607697, 0.07051248848438263, 0.054567791521549225, -0.0521056205034256, -0.010145357809960842, -0.009181767702102661, -0.004457435104995966, -0.14391255378723145, -0.18775945901870728, -0.03520965203642845, -0.016607599332928658, 0.09630810469388962, -0.1849069446325302, 0.02846841886639595, -0.022618142887949944, 0.07418879121541977, 0.003044632263481617, -0.003964087925851345, -0.049519337713718414, 0.09193973243236542, -0.03017306886613369, -0.050148140639066696, 0.07775265723466873, -0.002071844646707177, -0.07592527568340302, -0.04547816142439842, -0.08185992389917374, 0.19706101715564728, 0.14105339348316193, -0.12278510630130768, -0.07666841894388199, 0.003618597751483321, -0.05674458667635918, -0.032268740236759186, -0.04052291810512543, 0.054045580327510834, 0.17736908793449402, -0.013018450699746609, 0.15440091490745544, -0.06687207520008087, -0.05445961654186249, 0.026615971699357033, -0.02846870943903923, 0.03771592304110527, 0.11115396022796631, 0.12946955859661102, -0.08221589028835297, 0.14414049685001373, 0.15941637754440308, -0.10364626348018646, 0.10166779905557632, -0.04563472792506218, -0.07263178378343582, -0.014021266251802444, -0.026219956576824188, 0.0025779285933822393, 0.09791702777147293, -0.1310688853263855, -0.007642888929694891, 0.023214714601635933, 0.022315550595521927, 0.019226515665650368, -0.22928369045257568, -0.03698035329580307, 0.02637023665010929, -0.031279221177101135, -0.0026766443625092506, -0.019856292754411697, 0.009198269806802273, 0.10475639253854752, 0.001885349047370255, -0.09315640479326248, 0.04630212113261223, 0.012295830994844437, -0.0735328197479248, 0.2174319326877594, -0.08511605113744736, -0.14261208474636078, -0.11613202095031738, -0.09025216847658157, -0.04341009259223938, 0.006515137385576963, 0.05904548242688179, -0.0973411276936531, -0.031103558838367462, -0.04163571819663048, 0.012397818267345428, -0.007478727027773857, 0.05218856409192085, 0.0002963090664707124, -0.004610819276422262, 0.08140648901462555, -0.10786794871091843, -0.007089327555149794, -0.05495279282331467, -0.06614825129508972, 0.046436965465545654, 0.051832061260938644, 0.10887669026851654, 0.16436579823493958, -0.031898390501737595, 0.006409264635294676, -0.026925547048449516, 0.2259872704744339, -0.05826576054096222, -0.03527597710490227, 0.13173644244670868, -0.002649009460583329, 0.05540434643626213, 0.10141117125749588, 0.07844148576259613, -0.0884462371468544, 0.004566065967082977, 0.03144414350390434, -0.03820732608437538, -0.22060705721378326, -0.04329230636358261, -0.05523783713579178, -0.04085381701588631, 0.09684115648269653, 0.03399847447872162, 0.04724472388625145, 0.07422271370887756, 0.054906558245420456, 0.09340383857488632, -0.06365135312080383, 0.054505035281181335, 0.11523215472698212, 0.05479764565825462, 0.12785732746124268, -0.046421345323324203, -0.07191701978445053, 0.031932953745126724, -0.006944115273654461, 0.2245846539735794, 0.007925943471491337, 0.11965426802635193, 0.051492784172296524, 0.20405922830104828, 0.006951733957976103, 0.0926145389676094, -0.006878443993628025, -0.047128695994615555, -0.010112510994076729, -0.03813498467206955, -0.038324132561683655, 0.011691519059240818, -0.06575985252857208, 0.05554516240954399, -0.10904411971569061, -0.02390877902507782, 0.04760483652353287, 0.2629401981830597, 0.024267949163913727, -0.3258773684501648, -0.0798947811126709, -0.006178584415465593, -0.03639255836606026, -0.019840970635414124, 0.020334526896476746, 0.07648318260908127, -0.091636523604393, 0.023236924782395363, -0.07607085257768631, 0.09576946496963501, -0.03439470753073692, 0.04049858823418617, 0.08365064859390259, 0.09398169070482254, 0.0162636861205101, 0.07820095866918564, -0.3123907148838043, 0.2648642659187317, 0.005912692751735449, 0.06656038016080856, -0.07914287596940994, 0.0030644533690065145, 0.03354955092072487, 0.06663612276315689, 0.05357126146554947, -0.013568581081926823, -0.03836224973201752, -0.2072814553976059, -0.053287871181964874, 0.03314616531133652, 0.07789620012044907, -0.019178614020347595, 0.08417423069477081, -0.03004324808716774, 0.0018129772506654263, 0.07537468522787094, -0.022779598832130432, -0.04347347840666771, -0.08282828330993652, -0.015305913053452969, 0.028031140565872192, -0.04772805795073509, -0.06004625931382179, -0.11577954143285751, -0.13220806419849396, 0.16061493754386902, -0.00707741966471076, -0.033303190022706985, -0.11828965693712234, 0.08242087066173553, 0.079961396753788, -0.086241215467453, 0.05336865782737732, 0.0018641811329871416, 0.05632437765598297, 0.039550501853227615, -0.08388454467058182, 0.11599814891815186, -0.06052682176232338, -0.15014980733394623, -0.057693783193826675, 0.09299443662166595, 0.03030409850180149, 0.061903417110443115, -0.014487668871879578, 0.016835719347000122, -0.03504838049411774, -0.09078077971935272, 0.018278174102306366, -0.026550356298685074, 0.07910948991775513, 0.007042316719889641, -0.054217997938394547, 0.011213849298655987, -0.059065334498882294, -0.026841359212994576, 0.18180303275585175, 0.2150801420211792, -0.10343334823846817, 0.016353826969861984, 0.0362330786883831, -0.06490830332040787, -0.19665801525115967, 0.04914064332842827, 0.05798149108886719, -0.0016992799937725067, 0.03509996086359024, -0.17492349445819855, 0.1596728265285492, 0.10934930294752121, -0.015080975368618965, 0.11350391060113907, -0.3208785653114319, -0.12585441768169403, 0.12880995869636536, 0.15671394765377045, 0.14404036104679108, -0.14113456010818481, -0.017466461285948753, -0.01817150227725506, -0.12481310218572617, 0.09836994111537933, -0.07840299606323242, 0.11399005353450775, -0.03502390533685684, 0.08777137100696564, -0.0004881212371401489, -0.06383460015058517, 0.11034728586673737, 0.0269167460501194, 0.10376793146133423, -0.056379273533821106, -0.0360894538462162, 0.042888376861810684, -0.03185877203941345, 0.008377378806471825, -0.06903617829084396, 0.029714662581682205, -0.08897075802087784, -0.017654642462730408, -0.08111444860696793, 0.047264665365219116, -0.026198575273156166, -0.05878997594118118, -0.037994369864463806, 0.02232714742422104, 0.04224638268351555, -0.021275881677865982, 0.13999256491661072, 0.035279761999845505, 0.1469488888978958, 0.11556249856948853, 0.05588364228606224, -0.0748925507068634, -0.08083369582891464, -0.015378417447209358, -0.01757459156215191, 0.06885217130184174, -0.1397414207458496, 0.03261387348175049, 0.14400209486484528, 0.02054639719426632, 0.11308672279119492, 0.08377280831336975, -0.014295586384832859, 0.005263150669634342, 0.06513314694166183, -0.15986189246177673, -0.06557798385620117, 0.007000046316534281, -0.058527737855911255, -0.09425844252109528, 0.06713097542524338, 0.07913223654031754, -0.0720510184764862, -0.0167522132396698, -0.006070380564779043, -0.005262172315269709, -0.0665988028049469, 0.21412810683250427, 0.06282304972410202, 0.04692050814628601, -0.11391153931617737, 0.06632539629936218, 0.06216466426849365, -0.07601682841777802, -0.010105784982442856, 0.0672469288110733, -0.08561617881059647, -0.039947230368852615, 0.1169852539896965, 0.1715960055589676, -0.07325229048728943, -0.043167468160390854, -0.1346459835767746, -0.11587618291378021, 0.08163129538297653, 0.1643989235162735, 0.12257587909698486, 0.01283210888504982, -0.05652898550033569, 0.00810227356851101, -0.12299137562513351, 0.07165659964084625, 0.03401597589254379, 0.0781589150428772, -0.14662866294384003, 0.16504673659801483, 0.011874731630086899, 0.05244697257876396, -0.02542581968009472, 0.029018884524703026, -0.09794651716947556, 0.018622737377882004, -0.12689374387264252, -0.029093334451317787, -0.02097257971763611, 0.006429497618228197, -0.003213833784684539, -0.064119853079319, -0.05840088799595833, 0.023435285314917564, -0.12485816329717636, -0.017842015251517296, 0.0367179736495018, 0.04388445243239403, -0.11633863300085068, -0.03921764716506004, 0.021766910329461098, -0.052169132977724075, 0.058279767632484436, 0.04799520596861839, 0.01629680208861828, 0.06674908101558685, -0.12527118623256683, -0.007515295408666134, 0.07923166453838348, 0.01002194918692112, 0.08082612603902817, -0.08464280515909195, -0.0020150812342762947, 0.010877085849642754, 0.07067061960697174, 0.01652146689593792, 0.08005230873823166, -0.15024434030056, -0.014967186376452446, -0.033825717866420746, -0.08130638301372528, -0.06439065933227539, 0.015844017267227173, 0.09723738580942154, 0.010148972272872925, 0.19683313369750977, -0.07170050591230392, 0.03627381473779678, -0.20496055483818054, -0.0033947962801903486, -0.025748806074261665, -0.11741337180137634, -0.13097810745239258, -0.05460900440812111, 0.06082415580749512, -0.04696857929229736, 0.14308609068393707, 0.032481271773576736, 0.05203012749552727, 0.029615076258778572, -0.023646658286452293, 0.01226873230189085, 0.026203006505966187, 0.21800853312015533, 0.039628367871046066, -0.03064773976802826, 0.07520021498203278, 0.06508754193782806, 0.09332408756017685, 0.11520575731992722, 0.1926977038383484, 0.15242703258991241, -0.008022362366318703, 0.09140145778656006, 0.015657689422369003, -0.05187614634633064, -0.16879579424858093, 0.03005940280854702, -0.058011382818222046, 0.09786411374807358, -0.021070465445518494, 0.2202903926372528, 0.058930378407239914, -0.16244280338287354, 0.04948170855641365, -0.05443214997649193, -0.08440247923135757, -0.10792803764343262, -0.0368177555501461, -0.08049845695495605, -0.14411458373069763, -0.0005514116492122412, -0.09656105935573578, 0.013731029815971851, 0.1252662092447281, 0.00529753603041172, -0.02532942406833172, 0.16113333404064178, 0.03202156722545624, 0.029685474932193756, 0.04448854923248291, 0.006667810957878828, -0.030761849135160446, -0.09482349455356598, -0.060203518718481064, -0.02643401362001896, -0.017361706122756004, 0.03724341094493866, -0.06504220515489578, -0.0673125833272934, 0.04285462573170662, -0.023339558392763138, -0.09247882664203644, 0.016687165945768356, 0.020591406151652336, 0.0632379800081253, 0.043902020901441574, 0.00580450939014554, 0.0223170667886734, -0.021549222990870476, 0.2078149914741516, -0.08250159025192261, -0.07351438701152802, -0.09007713943719864, 0.28699570894241333, 0.0469077043235302, -0.007942277006804943, 0.03186770901083946, -0.05720748007297516, -0.0014970172196626663, 0.25488388538360596, 0.1900767832994461, -0.08333189785480499, -0.011035752482712269, 0.001889277365989983, -0.016498373821377754, -0.025869786739349365, 0.12910574674606323, 0.14236053824424744, 0.047086767852306366, -0.10561665147542953, -0.048242535442113876, -0.06000329926609993, -0.010661478154361248, -0.05599406361579895, 0.059653639793395996, 0.036445919424295425, 0.0014646261697635055, -0.0424475222826004, 0.048869241029024124, -0.05296991765499115, -0.10256139934062958, 0.07833194732666016, -0.186362162232399, -0.1656768023967743, -0.010439040139317513, 0.11027620732784271, -0.000827491981908679, 0.05772924795746803, -0.022656504064798355, 0.006614584010094404, 0.06393419206142426, -0.017784567549824715, -0.0942571759223938, -0.09402424097061157, 0.10509172827005386, -0.11317084729671478, 0.19784416258335114, -0.03770403936505318, 0.07026701420545578, 0.12265949696302414, 0.07233794033527374, -0.08111102133989334, 0.053501129150390625, 0.034864917397499084, -0.09224028140306473, 0.032158151268959045, 0.08140061050653458, -0.0257705245167017, 0.05061124637722969, 0.024828284978866577, -0.11307968944311142, 0.01920534111559391, -0.08886896073818207, -0.03525250405073166, -0.04275282472372055, -0.05358562618494034, -0.054182399064302444, 0.12233369052410126, 0.2122705578804016, -0.021225200966000557, 0.011468418873846531, -0.08618035167455673, 0.010227033868432045, 0.05037512630224228, 0.008617517538368702, -0.08707303553819656, -0.22173883020877838, 0.01653476059436798, 0.059445008635520935, -0.026636086404323578, -0.2057279497385025, -0.08923748880624771, 0.004321022890508175, -0.07989397644996643, -0.09532781690359116, 0.07696764171123505, 0.0679180771112442, 0.055242620408535004, -0.05581109970808029, -0.08693154901266098, -0.08190497010946274, 0.1452728807926178, -0.15275844931602478, -0.08782590180635452 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7632 - Accuracy: 0.8263 - F1: 0.8871 - Precision: 0.8551 - Recall: 0.9215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 390 | 0.3986 | 0.8305 | 0.8903 | 0.8868 | 0.8938 | | 0.4561 | 2.0 | 780 | 0.4018 | 0.8439 | 0.9009 | 0.8805 | 0.9223 | | 0.3111 | 3.0 | 1170 | 0.4306 | 0.8354 | 0.8924 | 0.8974 | 0.8875 | | 0.1739 | 4.0 | 1560 | 0.5499 | 0.8378 | 0.9002 | 0.8547 | 0.9509 | | 0.1739 | 5.0 | 1950 | 0.6223 | 0.85 | 0.9052 | 0.8814 | 0.9303 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15", "results": []}]}
text-classification
ali2066/bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert\_base\_uncased\_itr0\_0.0001\_all\_01\_03\_2022-14\_08\_15 =============================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7632 * Accuracy: 0.8263 * F1: 0.8871 * Precision: 0.8551 * Recall: 0.9215 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 55, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10006141662597656, 0.06015331298112869, -0.0016768743516877294, 0.12048038095235825, 0.18813450634479523, 0.027831846848130226, 0.11483760923147202, 0.11931838095188141, -0.11153833568096161, 0.010031266137957573, 0.1279982477426529, 0.1856568306684494, 0.0050761220045387745, 0.07259073853492737, -0.054911717772483826, -0.25359582901000977, -0.014131300151348114, 0.04270533472299576, -0.08394505083560944, 0.1346752941608429, 0.08754555135965347, -0.13515473902225494, 0.08574844151735306, -0.000990945496596396, -0.2197129875421524, 0.02363911084830761, 0.02439187653362751, -0.0603552870452404, 0.15599344670772552, 0.025342943146824837, 0.13166826963424683, 0.0022472774144262075, 0.07987470924854279, -0.18114744126796722, 0.012374937534332275, 0.0532408207654953, 0.0017018445068970323, 0.08550804853439331, 0.06169192120432854, -0.015034649521112442, 0.13765975832939148, -0.09875067323446274, 0.0523068904876709, 0.024386649951338768, -0.12004146724939346, -0.21732816100120544, -0.07804691046476364, 0.004393455106765032, 0.06111807003617287, 0.11076129972934723, 0.0026708177756518126, 0.13564570248126984, -0.09218057990074158, 0.09872908890247345, 0.2317434847354889, -0.29830968379974365, -0.06568057090044022, 0.039951786398887634, 0.005633033812046051, 0.08888082206249237, -0.10801246762275696, -0.010586285032331944, 0.05370327830314636, 0.04429428651928902, 0.13429810106754303, -0.0424748957157135, -0.1124688908457756, 0.03398085758090019, -0.140920951962471, -0.025198644027113914, 0.12629856169223785, 0.025706660002470016, -0.031746793538331985, -0.027673771604895592, -0.058222055435180664, -0.14890696108341217, -0.03566214069724083, -0.002505397191271186, 0.04904545843601227, -0.03205007687211037, -0.07057391107082367, -0.009772083722054958, -0.10881678760051727, -0.06983215361833572, -0.07974416017532349, 0.14933933317661285, 0.0375913605093956, 0.017320554703474045, -0.035818930715322495, 0.10355334728956223, 0.023281197994947433, -0.1317593902349472, 0.029428385198116302, 0.03612488880753517, -0.00018146437651012093, -0.043622441589832306, -0.07586294412612915, -0.07670602202415466, 0.013533372431993484, 0.08579538762569427, -0.035462912172079086, 0.05565501004457474, 0.027064654976129532, 0.04210663214325905, -0.11536812037229538, 0.20389248430728912, -0.02878849022090435, -0.01829879730939865, 0.00953107699751854, 0.032341040670871735, 0.013389605097472668, -0.014506836421787739, -0.12694832682609558, -0.002065831795334816, 0.09350422024726868, 0.018338613212108612, -0.07509297877550125, 0.07119841128587723, -0.044250212609767914, -0.024629859253764153, -0.00234817061573267, -0.10120034217834473, 0.03811005502939224, -0.0011338290059939027, -0.08055821061134338, -0.01986866630613804, 0.025802049785852432, 0.013120973482728004, -0.030656618997454643, 0.12275576591491699, -0.08005847036838531, 0.04569253697991371, -0.1052219495177269, -0.11397331207990646, 0.010560590773820877, -0.07794159650802612, 0.025057770311832428, -0.09897022694349289, -0.15975843369960785, -0.013983331620693207, 0.06007615476846695, -0.02096989005804062, -0.04770084097981453, -0.0524592287838459, -0.07032684981822968, 0.01418185606598854, -0.014565843157470226, 0.16521769762039185, -0.05903013423085213, 0.10643330216407776, 0.03629470616579056, 0.05671690031886101, -0.0642765536904335, 0.0593264140188694, -0.09109367430210114, -0.004492554813623428, -0.17288333177566528, 0.046074897050857544, -0.04496738314628601, 0.08002328127622604, -0.08689932525157928, -0.10486432909965515, 0.021300574764609337, -0.003124968381598592, 0.07168979197740555, 0.08810999244451523, -0.1657872498035431, -0.07988841086626053, 0.14703214168548584, -0.05570128932595253, -0.11463029682636261, 0.11264891177415848, -0.06932114064693451, 0.039756376296281815, 0.0810406506061554, 0.1574609875679016, 0.07493672519922256, -0.0634264200925827, 0.038453638553619385, 0.005069531034678221, 0.05267220363020897, -0.09046094119548798, 0.06230023875832558, 0.0006019541178829968, -0.029304279014468193, 0.03433442860841751, -0.03307440131902695, 0.06533347070217133, -0.08880681544542313, -0.09807883948087692, -0.04806707426905632, -0.09900359064340591, 0.04960796982049942, 0.07881511002779007, 0.09153115004301071, -0.09849457442760468, -0.06959755718708038, 0.07454036921262741, 0.07130679488182068, -0.05931316688656807, 0.03555765375494957, -0.04719019681215286, 0.052200887352228165, -0.042119529098272324, -0.020056718960404396, -0.19323308765888214, -0.003290268126875162, 0.0032464463729411364, 0.01248013786971569, 0.0278842281550169, 0.025714263319969177, 0.07523047178983688, 0.05460340529680252, -0.06189041957259178, -0.005331122782081366, -0.011559929698705673, -0.007028908468782902, -0.14449618756771088, -0.20099058747291565, -0.018295226618647575, -0.01593059115111828, 0.11029121279716492, -0.20480187237262726, 0.035325199365615845, -0.024148056283593178, 0.05156213790178299, -0.0016326733166351914, -0.002300581429153681, -0.050607044249773026, 0.09267674386501312, -0.03786030039191246, -0.044811684638261795, 0.08234836161136627, 0.0010719457641243935, -0.09931915998458862, -0.04112963750958443, -0.09169553965330124, 0.18052032589912415, 0.14402055740356445, -0.14828921854496002, -0.06724970787763596, 0.003217491786926985, -0.04589806869626045, -0.025639263913035393, -0.04560340195894241, 0.050743840634822845, 0.20245815813541412, -0.01328759454190731, 0.16114620864391327, -0.06828700751066208, -0.04519668221473694, 0.019244113937020302, -0.027754997834563255, 0.038239024579524994, 0.1298702210187912, 0.11455709487199783, -0.07707764953374863, 0.13375122845172882, 0.15905900299549103, -0.11014798283576965, 0.1209876537322998, -0.0423019677400589, -0.06718441098928452, -0.008636499755084515, -0.020030267536640167, 0.004597839433699846, 0.08710279315710068, -0.15757273137569427, -0.017170092090964317, 0.015047929249703884, 0.0207737535238266, 0.021711207926273346, -0.22991862893104553, -0.04093644395470619, 0.03707672283053398, -0.041075244545936584, -0.007891734130680561, -0.028607793152332306, 0.0037603452801704407, 0.10785137116909027, -0.00003896306225215085, -0.08739656209945679, 0.04233181104063988, 0.0005591851659119129, -0.08234918117523193, 0.22345711290836334, -0.08423270285129547, -0.1449236422777176, -0.1294223666191101, -0.08766380697488785, -0.05655621737241745, 0.011558052152395248, 0.059727687388658524, -0.1063886433839798, -0.02674838714301586, -0.05561402812600136, 0.010098754428327084, -0.017866315320134163, 0.044800229370594025, -0.007909315638244152, 0.00006909410149091855, 0.06899678707122803, -0.11105155944824219, -0.009596994146704674, -0.05651170760393143, -0.07966498285531998, 0.043584708124399185, 0.038087066262960434, 0.11293985694646835, 0.1623384952545166, -0.028285132721066475, 0.0086588803678751, -0.029808031395077705, 0.20953477919101715, -0.05953431501984596, -0.038639336824417114, 0.1284269392490387, -0.0028604669496417046, 0.05242474749684334, 0.09879272431135178, 0.07921367883682251, -0.08582282811403275, 0.012411432340741158, 0.030471406877040863, -0.042179908603429794, -0.23831389844417572, -0.040219344198703766, -0.06411553174257278, -0.03653726354241371, 0.0905321016907692, 0.03545914590358734, 0.05003185570240021, 0.07161948084831238, 0.05220838263630867, 0.0923975482583046, -0.04516058415174484, 0.054838817566633224, 0.11492501944303513, 0.05289347097277641, 0.12757384777069092, -0.055978111922740936, -0.06603807210922241, 0.03698310628533363, -0.028481515124440193, 0.22650636732578278, 0.012847472913563251, 0.13587923347949982, 0.05141940712928772, 0.18921098113059998, -0.0007580057135783136, 0.08690957725048065, -0.005247138906270266, -0.04653005674481392, -0.010569591075181961, -0.04362907633185387, -0.04302727431058884, 0.015755679458379745, -0.07540842890739441, 0.06099684536457062, -0.11897607892751694, -0.021580414846539497, 0.04953344911336899, 0.2507859468460083, 0.022840626537799835, -0.31658244132995605, -0.07263977080583572, 0.007831012830138206, -0.029752155765891075, -0.018043825402855873, 0.020819226279854774, 0.09270194917917252, -0.09288663417100906, 0.03385059908032417, -0.07032540440559387, 0.10154750943183899, -0.03806903213262558, 0.04815422371029854, 0.05995237082242966, 0.08339167386293411, 0.005423906724900007, 0.08609550446271896, -0.3385409712791443, 0.2744321823120117, 0.007785283029079437, 0.07205014675855637, -0.08374333381652832, -0.0035155138466507196, 0.04518731310963631, 0.06963993608951569, 0.04836650192737579, -0.012951849959790707, -0.01922472193837166, -0.18728403747081757, -0.04350295662879944, 0.038796566426754, 0.09108131378889084, -0.022728970274329185, 0.08269669860601425, -0.03227301314473152, 0.003326738951727748, 0.07989058643579483, -0.004412584472447634, -0.04580359905958176, -0.09948841482400894, -0.021942012012004852, 0.03100747801363468, -0.056344013661146164, -0.05661953613162041, -0.1080283522605896, -0.1318480372428894, 0.16453681886196136, -0.023686250671744347, -0.028873957693576813, -0.11478012055158615, 0.07862833142280579, 0.06185503304004669, -0.08917338401079178, 0.04362077638506889, 0.003879025112837553, 0.047664690762758255, 0.03450844809412956, -0.08713919669389725, 0.10883025079965591, -0.05490633472800255, -0.14573787152767181, -0.057156533002853394, 0.09366991370916367, 0.028533557429909706, 0.06554961204528809, -0.013277932070195675, 0.014457709155976772, -0.04507482796907425, -0.096861831843853, 0.015814704820513725, -0.01969759538769722, 0.07654628902673721, 0.023194322362542152, -0.06168559566140175, 0.004162478726357222, -0.06338052451610565, -0.03742219880223274, 0.19860096275806427, 0.20925650000572205, -0.09912769496440887, 0.018944449722766876, 0.02806190215051174, -0.07476769387722015, -0.20182503759860992, 0.05384587123990059, 0.05346105620265007, 0.0035038848873227835, 0.03612758591771126, -0.18157510459423065, 0.14262469112873077, 0.09657159447669983, -0.00836770236492157, 0.10512838512659073, -0.3256816864013672, -0.13431929051876068, 0.12612242996692657, 0.1610277146100998, 0.15913152694702148, -0.15181119740009308, -0.025042271241545677, -0.03794991597533226, -0.10941475629806519, 0.09707347303628922, -0.10649557411670685, 0.12287645041942596, -0.030856579542160034, 0.08797969669103622, 0.002141635399311781, -0.05871308222413063, 0.12181399017572403, 0.01980936899781227, 0.10677474737167358, -0.06531982123851776, -0.03562798723578453, 0.0375652052462101, -0.03486555814743042, 0.004627187270671129, -0.10539451241493225, 0.0255361907184124, -0.10230391472578049, -0.019627690315246582, -0.07679464668035507, 0.04045896977186203, -0.031247373670339584, -0.056319039314985275, -0.034012190997600555, 0.008984451182186604, 0.04843927174806595, -0.014039216563105583, 0.1502251923084259, 0.012306674383580685, 0.15314194560050964, 0.10736531764268875, 0.07989727705717087, -0.06587006151676178, -0.05523127689957619, -0.01443327683955431, -0.013951173983514309, 0.06057605892419815, -0.15827694535255432, 0.030381731688976288, 0.13996033370494843, 0.020059218630194664, 0.12902522087097168, 0.0863414853811264, -0.008433082140982151, 0.00823960080742836, 0.06494399905204773, -0.1553323119878769, -0.08187410235404968, -0.007295326795428991, -0.05942597612738609, -0.1016998365521431, 0.058323416858911514, 0.08264970779418945, -0.06642048805952072, -0.0103176673874259, -0.011236054822802544, -0.007785755675286055, -0.06910638511180878, 0.20142999291419983, 0.06409057229757309, 0.04411182925105095, -0.11184035986661911, 0.07457242906093597, 0.06051487848162651, -0.07574029266834259, -0.0010546196717768908, 0.08025059103965759, -0.08124522119760513, -0.0451413132250309, 0.12492485344409943, 0.19960199296474457, -0.06696248799562454, -0.04302188381552696, -0.13543884456157684, -0.1270507425069809, 0.07787337154150009, 0.16663172841072083, 0.12039130926132202, 0.009896461851894855, -0.06637337058782578, 0.0047132596373558044, -0.11837185174226761, 0.07330591231584549, 0.03187279403209686, 0.0704832673072815, -0.13134795427322388, 0.1691066324710846, 0.013261515647172928, 0.04384642094373703, -0.022453123703598976, 0.023258673027157784, -0.09949291497468948, 0.020406533032655716, -0.14484064280986786, -0.0199443269520998, -0.010865253396332264, 0.0066932509653270245, -0.00411243736743927, -0.0620834119617939, -0.05633116513490677, 0.01749107800424099, -0.12350933998823166, -0.023005131632089615, 0.030788302421569824, 0.05299484357237816, -0.1166481152176857, -0.04405612125992775, 0.021427789703011513, -0.05627301707863808, 0.05326990410685539, 0.05377235263586044, 0.01065203920006752, 0.07372553646564484, -0.15395613014698029, 0.005130668170750141, 0.06997429579496384, 0.014695764519274235, 0.0657363012433052, -0.06995224952697754, -0.0018955005798488855, 0.00935444701462984, 0.07684896141290665, 0.025752238929271698, 0.08518589287996292, -0.1426972597837448, 0.002662152284756303, -0.035037748515605927, -0.09170481562614441, -0.06318221241235733, 0.03591931611299515, 0.08426028490066528, 0.013259539380669594, 0.19739435613155365, -0.08450090885162354, 0.03467831015586853, -0.20854327082633972, 0.002758065005764365, -0.019988130778074265, -0.12122182548046112, -0.140303373336792, -0.07679522037506104, 0.06474476307630539, -0.05095434561371803, 0.12943999469280243, 0.037372320890426636, 0.05038565397262573, 0.026881590485572815, -0.0037436787970364094, 0.026537185534834862, 0.020970571786165237, 0.22345547378063202, 0.0430276021361351, -0.03536878898739815, 0.07568242400884628, 0.0601445809006691, 0.10251452028751373, 0.13624955713748932, 0.20131367444992065, 0.1551072746515274, -0.016341255977749825, 0.10036369413137436, 0.017243627458810806, -0.047285184264183044, -0.14032454788684845, 0.028526095673441887, -0.047828976064920425, 0.10183319449424744, -0.02899356372654438, 0.22005537152290344, 0.06188665330410004, -0.17282423377037048, 0.05122339352965355, -0.05371418967843056, -0.09130393713712692, -0.11603093147277832, -0.04030726104974747, -0.08429896086454391, -0.1378311961889267, -0.0033585024066269398, -0.09926429390907288, 0.023426856845617294, 0.1157456636428833, 0.005843997001647949, -0.025429878383874893, 0.15354567766189575, 0.031890951097011566, 0.021449049934744835, 0.06292764842510223, -0.001214775606058538, -0.0220213383436203, -0.09893862903118134, -0.06180074065923691, -0.02385915070772171, -0.026696445420384407, 0.03156976029276848, -0.05508493632078171, -0.06240297853946686, 0.0417303703725338, -0.02901696413755417, -0.09995713829994202, 0.020217863842844963, 0.01931910403072834, 0.0724298432469368, 0.06451375037431717, 0.010652254335582256, 0.013076536357402802, -0.011628768406808376, 0.22663116455078125, -0.08528221398591995, -0.07805610448122025, -0.0757698267698288, 0.26915237307548523, 0.05062493681907654, -0.008946285583078861, 0.022836413234472275, -0.061135292053222656, 0.007753522135317326, 0.26575079560279846, 0.20582440495491028, -0.09379559755325317, -0.009064777754247189, -0.0006323031848296523, -0.0096636563539505, -0.005485833156853914, 0.12910917401313782, 0.13038358092308044, 0.04272576421499252, -0.10680833458900452, -0.04256496950984001, -0.04703086242079735, -0.007220455911010504, -0.05203815922141075, 0.07124624401330948, 0.03928510472178459, -0.005564000923186541, -0.035460811108350754, 0.054655756801366806, -0.05958011746406555, -0.09099182486534119, 0.07426897436380386, -0.19809310138225555, -0.15892259776592255, -0.0168721005320549, 0.11410259455442429, 0.0013288267655298114, 0.06253921240568161, -0.02080615982413292, 0.0064621577039361, 0.05524129420518875, -0.02111298032104969, -0.10500281304121017, -0.08479908853769302, 0.10218837857246399, -0.12281803041696548, 0.18999488651752472, -0.03916127234697342, 0.05792104825377464, 0.12440019100904465, 0.0782407820224762, -0.0648457258939743, 0.06484875828027725, 0.032107189297676086, -0.08690907061100006, 0.04224373400211334, 0.07438702881336212, -0.03404149040579796, 0.04000069200992584, 0.03360868990421295, -0.09439118206501007, 0.03477233275771141, -0.07494807243347168, -0.053970832377672195, -0.03770852088928223, -0.05344172567129135, -0.05951549485325813, 0.11913502961397171, 0.21791762113571167, -0.017888620495796204, 0.01725778914988041, -0.08188466727733612, -0.004096721298992634, 0.05029039457440376, 0.019798099994659424, -0.08719556033611298, -0.21647894382476807, 0.009022431448101997, 0.06952320039272308, -0.02269682288169861, -0.250521183013916, -0.09046579152345657, 0.003208242589607835, -0.0698595717549324, -0.09546135365962982, 0.07781384140253067, 0.08181166648864746, 0.050495393574237823, -0.05283985286951065, -0.09546337276697159, -0.07520323246717453, 0.1585012674331665, -0.14844080805778503, -0.09068839251995087 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2711 - Precision: 0.3373 - Recall: 0.5670 - F1: 0.4230 - Accuracy: 0.8943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3783 | 0.1833 | 0.3975 | 0.2509 | 0.8413 | | No log | 2.0 | 60 | 0.3021 | 0.3280 | 0.4820 | 0.3904 | 0.8876 | | No log | 3.0 | 90 | 0.3196 | 0.3504 | 0.5036 | 0.4133 | 0.8918 | | No log | 4.0 | 120 | 0.3645 | 0.3434 | 0.5306 | 0.4170 | 0.8759 | | No log | 5.0 | 150 | 0.4027 | 0.3217 | 0.5486 | 0.4056 | 0.8797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19", "results": []}]}
token-classification
ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_BERT\_token\_itr0\_0.0001\_all\_01\_03\_2022-15\_52\_19 ================================================================ This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2711 * Precision: 0.3373 * Recall: 0.5670 * F1: 0.4230 * Accuracy: 0.8943 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1059 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.1103 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 2.0 | 30 | 0.0842 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 3.0 | 45 | 0.0767 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 4.0 | 60 | 0.0754 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 5.0 | 75 | 0.0735 | 0.12 | 0.0135 | 0.0243 | 0.9772 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21", "results": []}]}
token-classification
ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_BERT\_token\_itr0\_0.0001\_editorials\_01\_03\_2022-15\_50\_21 ======================================================================= This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1059 * Precision: 0.0637 * Recall: 0.0080 * F1: 0.0141 * Accuracy: 0.9707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1801 - Precision: 0.6153 - Recall: 0.7301 - F1: 0.6678 - Accuracy: 0.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.2746 | 0.4586 | 0.5922 | 0.5169 | 0.9031 | | No log | 2.0 | 22 | 0.2223 | 0.5233 | 0.6181 | 0.5668 | 0.9148 | | No log | 3.0 | 33 | 0.2162 | 0.5335 | 0.6699 | 0.5940 | 0.9274 | | No log | 4.0 | 44 | 0.2053 | 0.5989 | 0.7055 | 0.6478 | 0.9237 | | No log | 5.0 | 55 | 0.2123 | 0.5671 | 0.7249 | 0.6364 | 0.9267 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47", "results": []}]}
token-classification
ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_BERT\_token\_itr0\_0.0001\_essays\_01\_03\_2022-15\_48\_47 =================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1801 * Precision: 0.6153 * Recall: 0.7301 * F1: 0.6678 * Accuracy: 0.9346 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6542 - Precision: 0.0092 - Recall: 0.0403 - F1: 0.0150 - Accuracy: 0.7291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.5856 | 0.0012 | 0.0125 | 0.0022 | 0.6950 | | No log | 2.0 | 20 | 0.5933 | 0.0 | 0.0 | 0.0 | 0.7282 | | No log | 3.0 | 30 | 0.5729 | 0.0051 | 0.025 | 0.0085 | 0.7155 | | No log | 4.0 | 40 | 0.6178 | 0.0029 | 0.0125 | 0.0047 | 0.7143 | | No log | 5.0 | 50 | 0.6707 | 0.0110 | 0.0375 | 0.0170 | 0.7178 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14", "results": []}]}
token-classification
ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_BERT\_token\_itr0\_0.0001\_webDiscourse\_01\_03\_2022-15\_47\_14 ========================================================================= This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6542 * Precision: 0.0092 * Recall: 0.0403 * F1: 0.0150 * Accuracy: 0.7291 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3343 - Precision: 0.1651 - Recall: 0.3039 - F1: 0.2140 - Accuracy: 0.8493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.4801 | 0.0352 | 0.0591 | 0.0441 | 0.7521 | | No log | 2.0 | 60 | 0.3795 | 0.0355 | 0.0795 | 0.0491 | 0.8020 | | No log | 3.0 | 90 | 0.3359 | 0.0591 | 0.1294 | 0.0812 | 0.8334 | | No log | 4.0 | 120 | 0.3205 | 0.0785 | 0.1534 | 0.1039 | 0.8486 | | No log | 5.0 | 150 | 0.3144 | 0.0853 | 0.1571 | 0.1105 | 0.8516 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47", "results": []}]}
token-classification
ali2066/correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_distilBERT\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_43\_47 ===================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3343 * Precision: 0.1651 * Recall: 0.3039 * F1: 0.2140 * Accuracy: 0.8493 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1206 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.1222 | 0.12 | 0.0139 | 0.0249 | 0.9736 | | No log | 2.0 | 30 | 0.1159 | 0.12 | 0.0139 | 0.0249 | 0.9736 | | No log | 3.0 | 45 | 0.1082 | 0.12 | 0.0139 | 0.0249 | 0.9736 | | No log | 4.0 | 60 | 0.1042 | 0.12 | 0.0139 | 0.0249 | 0.9736 | | No log | 5.0 | 75 | 0.1029 | 0.12 | 0.0139 | 0.0249 | 0.9736 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32", "results": []}]}
token-classification
ali2066/correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_distilBERT\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_42\_32 ============================================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1206 * Precision: 0.0637 * Recall: 0.0080 * F1: 0.0141 * Accuracy: 0.9707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Precision: 0.2769 - Recall: 0.4391 - F1: 0.3396 - Accuracy: 0.8878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.4573 | 0.0094 | 0.0027 | 0.0042 | 0.7702 | | No log | 2.0 | 22 | 0.3660 | 0.1706 | 0.3253 | 0.2239 | 0.8516 | | No log | 3.0 | 33 | 0.3096 | 0.2339 | 0.408 | 0.2974 | 0.8827 | | No log | 4.0 | 44 | 0.2868 | 0.2963 | 0.4693 | 0.3633 | 0.8928 | | No log | 5.0 | 55 | 0.2798 | 0.3141 | 0.48 | 0.3797 | 0.8960 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29", "results": []}]}
token-classification
ali2066/correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_distilBERT\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_41\_29 ======================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3097 * Precision: 0.2769 * Recall: 0.4391 * F1: 0.3396 * Accuracy: 0.8878 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5794 - Precision: 0.0094 - Recall: 0.0147 - F1: 0.0115 - Accuracy: 0.7156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.6319 | 0.08 | 0.0312 | 0.0449 | 0.6753 | | No log | 2.0 | 20 | 0.6265 | 0.0364 | 0.0312 | 0.0336 | 0.6764 | | No log | 3.0 | 30 | 0.6216 | 0.0351 | 0.0312 | 0.0331 | 0.6762 | | No log | 4.0 | 40 | 0.6193 | 0.0274 | 0.0312 | 0.0292 | 0.6759 | | No log | 5.0 | 50 | 0.6183 | 0.0222 | 0.0312 | 0.0260 | 0.6773 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24", "results": []}]}
token-classification
ali2066/correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
correct\_distilBERT\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_40\_24 ============================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5794 * Precision: 0.0094 * Recall: 0.0147 * F1: 0.0115 * Accuracy: 0.7156 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2876 - Precision: 0.2345 - Recall: 0.4281 - F1: 0.3030 - Accuracy: 0.8728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3907 | 0.0433 | 0.0824 | 0.0568 | 0.7626 | | No log | 2.0 | 60 | 0.3046 | 0.2302 | 0.4095 | 0.2947 | 0.8598 | | No log | 3.0 | 90 | 0.2945 | 0.2084 | 0.4095 | 0.2762 | 0.8668 | | No log | 4.0 | 120 | 0.2687 | 0.2847 | 0.4607 | 0.3519 | 0.8761 | | No log | 5.0 | 150 | 0.2643 | 0.2779 | 0.4444 | 0.3420 | 0.8788 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04", "results": []}]}
token-classification
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_36\_04 =========================================================================== This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2876 * Precision: 0.2345 * Recall: 0.4281 * F1: 0.3030 * Accuracy: 0.8728 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 49, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0952380895614624, 0.044036440551280975, -0.0016082123620435596, 0.11698907613754272, 0.21350468695163727, 0.02943940833210945, 0.1025138795375824, 0.1014835312962532, -0.12182898074388504, 0.025961419567465782, 0.12113579362630844, 0.1832786351442337, -0.0030703383963555098, 0.09688547998666763, -0.05556701496243477, -0.2743716835975647, -0.03052719309926033, 0.045981843024492264, -0.10305297374725342, 0.12545245885849, 0.08387984335422516, -0.1577286273241043, 0.07511057704687119, -0.0016509053530171514, -0.2676181495189667, 0.019590724259614944, 0.03423237428069115, -0.06043952703475952, 0.14759710431098938, 0.00943830143660307, 0.17363232374191284, -0.011987031437456608, 0.1051621213555336, -0.14447440207004547, 0.012298219837248325, 0.06186310946941376, 0.022960467264056206, 0.09010162949562073, 0.06334146112203598, -0.007549169939011335, 0.09506987780332565, -0.09507019817829132, 0.06539499014616013, 0.003103486727923155, -0.12513257563114166, -0.2132052630186081, -0.07136457413434982, -0.002085052663460374, 0.053780630230903625, 0.09798532724380493, -0.0042197792790830135, 0.17374707758426666, -0.1088271513581276, 0.09750399738550186, 0.21120037138462067, -0.2665243446826935, -0.08335934579372406, 0.055233679711818695, -0.00906183198094368, 0.07525855302810669, -0.12323935329914093, -0.02350618503987789, 0.05778595060110092, 0.05312470719218254, 0.12958413362503052, -0.034174755215644836, -0.12042219936847687, 0.025349890813231468, -0.1521894931793213, -0.0006019846769049764, 0.06528319418430328, 0.01627492345869541, -0.02065153233706951, -0.015569574199616909, -0.06616263836622238, -0.16424210369586945, -0.04118039831519127, -0.027683239430189133, 0.04010685533285141, -0.05730584263801575, -0.10778205841779709, 0.012057210318744183, -0.10123518854379654, -0.06198875606060028, -0.07641874253749847, 0.1809101104736328, 0.04406607523560524, 0.017658140510320663, -0.03639274835586548, 0.10814428329467773, -0.003348919562995434, -0.12874765694141388, 0.05691590532660484, 0.024434933438897133, -0.03782016038894653, -0.07123736292123795, -0.06982749700546265, -0.0997990146279335, 0.00012833482469432056, 0.08903595060110092, -0.04379228875041008, 0.04876143857836723, 0.041273217648267746, 0.03605876490473747, -0.08996519446372986, 0.2002016007900238, -0.050116948783397675, -0.017183683812618256, 0.004287381656467915, 0.04395374283194542, -0.017564810812473297, -0.0018934865947812796, -0.10746562480926514, 0.003688776632770896, 0.11974334716796875, 0.0032049454748630524, -0.07574886828660965, 0.06962595134973526, -0.03547770529985428, -0.021802717819809914, -0.03207997605204582, -0.09391369670629501, 0.04661700129508972, -0.01810879074037075, -0.09548810124397278, 0.004290449433028698, 0.007495227735489607, 0.012048051692545414, -0.009441312402486801, 0.166090726852417, -0.10330095887184143, 0.0498272143304348, -0.1193264052271843, -0.11999256908893585, -0.0013982293894514441, -0.0776621550321579, 0.02640019915997982, -0.10089195519685745, -0.12647922337055206, -0.020957479253411293, 0.05697371065616608, -0.035620737820863724, -0.037681736052036285, -0.040833212435245514, -0.07425465434789658, 0.005951599683612585, -0.010949499905109406, 0.17182503640651703, -0.04630051925778389, 0.11560122668743134, 0.05046966299414635, 0.07271167635917664, -0.04180130735039711, 0.04987984523177147, -0.09455662220716476, -0.001616872032172978, -0.21063469350337982, 0.04008080065250397, -0.056833136826753616, 0.08438174426555634, -0.07221242040395737, -0.11565542966127396, 0.01061136182397604, -0.0053452011197805405, 0.09168983995914459, 0.07677346467971802, -0.15574459731578827, -0.08274779468774796, 0.15119478106498718, -0.05555276572704315, -0.07717754691839218, 0.11664170771837234, -0.07357529550790787, 0.033337969332933426, 0.07508940994739532, 0.15109290182590485, 0.06376980990171432, -0.07922615855932236, 0.023416668176651, -0.030187727883458138, 0.03787150979042053, -0.06860329955816269, 0.033845916390419006, 0.025766002014279366, -0.007918855175375938, 0.0320846252143383, -0.015116957016289234, 0.07470791041851044, -0.11922331899404526, -0.08577512204647064, -0.04021341726183891, -0.10978709161281586, 0.05595320463180542, 0.08884918689727783, 0.10502464324235916, -0.09601657092571259, -0.07053463160991669, 0.09864025563001633, 0.06200094521045685, -0.04692395031452179, 0.015603672713041306, -0.05271952599287033, 0.059061866253614426, -0.0767902135848999, -0.03351907804608345, -0.20745894312858582, -0.04168904945254326, 0.0019729824271053076, 0.03754783049225807, 0.035803817212581635, 0.036847181618213654, 0.08709568530321121, 0.06258723884820938, -0.06264924257993698, -0.003439870895817876, -0.01522428821772337, -0.007044075056910515, -0.15164627134799957, -0.19300268590450287, -0.025256607681512833, -0.0200581606477499, 0.08781859278678894, -0.20405974984169006, 0.01960292086005211, -0.043502431362867355, 0.09305994212627411, 0.017027119174599648, -0.009177275002002716, -0.05504470318555832, 0.10782260447740555, -0.023087309673428535, -0.04909471794962883, 0.0668131560087204, -0.015085511840879917, -0.06336434930562973, -0.08089190721511841, -0.10096660256385803, 0.18621042370796204, 0.13892404735088348, -0.151669442653656, -0.10937488079071045, 0.015644345432519913, -0.06139355152845383, -0.022212862968444824, -0.057233456522226334, 0.0564904622733593, 0.18072649836540222, -0.01574549451470375, 0.15169773995876312, -0.052853431552648544, -0.04706889018416405, 0.021385572850704193, -0.03310905396938324, 0.04335913807153702, 0.10842389613389969, 0.13569805026054382, -0.08457112312316895, 0.1361512988805771, 0.1218692883849144, -0.13111263513565063, 0.13677334785461426, -0.025905638933181763, -0.07789324969053268, -0.018446670845150948, -0.030742309987545013, 0.007610428147017956, 0.10661071538925171, -0.10808677226305008, -0.01922493800520897, 0.0071347723715007305, 0.020305147394537926, 0.026112085208296776, -0.23135057091712952, -0.046915993094444275, 0.02424618974328041, -0.003096528584137559, 0.018515875563025475, -0.01951778493821621, 0.02580680325627327, 0.11866136640310287, 0.0020909635350108147, -0.07759678363800049, 0.024093760177493095, 0.00893546175211668, -0.06352781504392624, 0.2146356850862503, -0.06943210959434509, -0.11312001943588257, -0.1019912138581276, -0.07687869668006897, -0.04238303750753403, 0.013024810701608658, 0.03158364072442055, -0.12026584893465042, -0.021418938413262367, -0.02185477688908577, 0.03273407369852066, 0.0030455556698143482, 0.06268017739057541, -0.005181455984711647, 0.002387002110481262, 0.07124806940555573, -0.09937068074941635, -0.0005596545524895191, -0.07595739513635635, -0.07265695929527283, 0.05849755182862282, 0.06279446929693222, 0.12046454101800919, 0.16986700892448425, -0.04765129089355469, 0.005394987761974335, -0.024400215595960617, 0.23848678171634674, -0.0751553475856781, -0.03985968604683876, 0.09683617949485779, -0.018827078863978386, 0.04960450902581215, 0.10460381954908371, 0.08367177098989487, -0.09397482126951218, 0.015742994844913483, 0.0470423549413681, -0.04357099160552025, -0.20160119235515594, -0.038630712777376175, -0.05170169100165367, -0.04798796772956848, 0.09219147264957428, 0.02131497673690319, 0.04089008644223213, 0.07909292727708817, 0.06711464375257492, 0.09728001803159714, -0.07520143687725067, 0.05096640810370445, 0.08856416493654251, 0.053435731679201126, 0.13284629583358765, -0.04117075353860855, -0.10521731525659561, 0.02107597514986992, -0.024051981046795845, 0.23177176713943481, -0.0038389968685805798, 0.07269735634326935, 0.03901175409555435, 0.19265300035476685, 0.010800961405038834, 0.08711627125740051, 0.00300702010281384, -0.06744545698165894, 0.000320995255606249, -0.02838362194597721, -0.03612513840198517, 0.010060080327093601, -0.026500064879655838, 0.054114680737257004, -0.11174614727497101, -0.011367600411176682, 0.05662032961845398, 0.23012308776378632, 0.02408546395599842, -0.3223344087600708, -0.07357577234506607, -0.011025436222553253, -0.03599712625145912, -0.013542305678129196, 0.007855766452848911, 0.10567118972539902, -0.09833948314189911, 0.011641263961791992, -0.08281056582927704, 0.08809417486190796, -0.04271498695015907, 0.036696553230285645, 0.06772663444280624, 0.12630119919776917, -0.005529686342924833, 0.06417804211378098, -0.305855393409729, 0.27393829822540283, 0.009537872858345509, 0.08100421726703644, -0.07624920457601547, -0.007353424560278654, 0.036383580416440964, 0.03732066601514816, 0.032587770372629166, -0.020104434341192245, -0.04177025705575943, -0.22623340785503387, -0.030331812798976898, 0.0285630002617836, 0.12068957835435867, -0.0075541152618825436, 0.10377029329538345, -0.024200307205319405, 0.00005155575854587369, 0.08048006147146225, -0.04490114375948906, -0.04457297548651695, -0.0742047131061554, -0.02755388617515564, 0.010738343931734562, -0.07488889992237091, -0.048193786293268204, -0.12068187445402145, -0.1354958713054657, 0.1486193686723709, 0.013996468856930733, -0.016360098496079445, -0.1275208294391632, 0.12574636936187744, 0.0811011865735054, -0.08053231984376907, 0.04449211433529854, 0.011230092495679855, 0.05299266427755356, 0.03201989457011223, -0.06810819357633591, 0.11526092886924744, -0.05820934846997261, -0.152246356010437, -0.06424514949321747, 0.07927361130714417, 0.04208575561642647, 0.06544974446296692, -0.02301499992609024, 0.0229955967515707, -0.025375407189130783, -0.0903472900390625, 0.03937704116106033, -0.04006959870457649, 0.0644475445151329, 0.02948816865682602, -0.051256582140922546, -0.005753687117248774, -0.05698229372501373, -0.011369648389518261, 0.18660961091518402, 0.2201036661863327, -0.09734193980693817, -0.01712528057396412, 0.026125185191631317, -0.05946418642997742, -0.19808503985404968, 0.09593727439641953, 0.08573706448078156, 0.007431112229824066, 0.04530135169625282, -0.16281530261039734, 0.15490049123764038, 0.1000962182879448, -0.0013520345091819763, 0.10888125747442245, -0.30510765314102173, -0.1282355934381485, 0.10589848458766937, 0.1721881926059723, 0.13675452768802643, -0.13790705800056458, -0.0070046489126980305, -0.008709002286195755, -0.09763187915086746, 0.10359155386686325, -0.06426163762807846, 0.12145929038524628, -0.019056083634495735, 0.10903739184141159, 0.013593306764960289, -0.07166292518377304, 0.09361252933740616, 0.007082231342792511, 0.11645247042179108, -0.06414512544870377, -0.06102367490530014, 0.04334691911935806, -0.02508259378373623, -0.012173532508313656, -0.02399563230574131, 0.018605703487992287, -0.0673445612192154, -0.020576614886522293, -0.09741745889186859, 0.04260580241680145, -0.02326616272330284, -0.07246298342943192, -0.03844840079545975, 0.03469730541110039, 0.034943729639053345, -0.025639070197939873, 0.11715426295995712, 0.020161490887403488, 0.17447295784950256, 0.08593776077032089, 0.06346122175455093, -0.050561998039484024, -0.04841836541891098, 0.0034034322015941143, -0.010078824125230312, 0.06329295784235, -0.13016362488269806, 0.020914848893880844, 0.1553254872560501, 0.022595396265387535, 0.1142435371875763, 0.0921553373336792, -0.018760520964860916, 0.016071034595370293, 0.07624492049217224, -0.16313201189041138, -0.0652882531285286, 0.004153259098529816, -0.0857715979218483, -0.09250564128160477, 0.05332089588046074, 0.0799720510840416, -0.07481376081705093, -0.011270832270383835, -0.008530267514288425, -0.02374846674501896, -0.06649409234523773, 0.22630544006824493, 0.08077908307313919, 0.04372468218207359, -0.10051923245191574, 0.05768468976020813, 0.06488308310508728, -0.08738836646080017, -0.005134388338774443, 0.08041257411241531, -0.07681380212306976, -0.020639704540371895, 0.11760535091161728, 0.203256756067276, -0.07639540731906891, -0.0118074556812644, -0.14928030967712402, -0.10582452267408371, 0.0648043230175972, 0.18278199434280396, 0.11151919513940811, -0.0056063588708639145, -0.05881034582853317, 0.035694669932127, -0.15800076723098755, 0.07858650386333466, 0.049578793346881866, 0.08591622859239578, -0.15005116164684296, 0.20051398873329163, -0.00004556030035018921, 0.0442449189722538, -0.0340452641248703, 0.032208554446697235, -0.11947087198495865, 0.02182786725461483, -0.1101863905787468, -0.0576208233833313, -0.007169285323470831, -0.006640194449573755, -0.0015152629930526018, -0.07371584326028824, -0.059259410947561264, 0.005731922574341297, -0.1292037069797516, -0.015692725777626038, 0.04629449546337128, 0.01673985831439495, -0.10646671801805496, -0.041379284113645554, 0.020045820623636246, -0.046777401119470596, 0.04783070459961891, 0.049333520233631134, 0.022893687710165977, 0.07237260788679123, -0.1446196287870407, -0.013995609246194363, 0.07226084172725677, -0.00627199187874794, 0.09819990396499634, -0.05520399659872055, -0.0003193517040926963, -0.011192445643246174, 0.11059475690126419, 0.02390620857477188, 0.07886900007724762, -0.1395350992679596, 0.009412514045834541, -0.033310696482658386, -0.09444313496351242, -0.06931016594171524, 0.02054710127413273, 0.0772700086236, 0.012624329887330532, 0.18304604291915894, -0.08549670875072479, 0.05452527478337288, -0.21084682643413544, -0.012454807758331299, -0.02010815404355526, -0.11260063946247101, -0.09965618699789047, -0.05579297989606857, 0.07505887001752853, -0.052359987050294876, 0.11857812106609344, 0.050597503781318665, 0.06416036933660507, 0.031432848423719406, -0.02391139417886734, 0.004131124820560217, 0.03485950827598572, 0.19422318041324615, 0.04474707692861557, -0.04302285239100456, 0.05776410922408104, 0.08239096403121948, 0.1057816743850708, 0.11372319608926773, 0.21143266558647156, 0.14386913180351257, -0.02503117360174656, 0.08243376016616821, 0.028620216995477676, -0.05494459718465805, -0.16101951897144318, 0.024334531277418137, -0.07625152915716171, 0.08133033663034439, -0.032996710389852524, 0.19418784976005554, 0.06248319521546364, -0.1546187847852707, 0.046457160264253616, -0.06446539610624313, -0.10111140459775925, -0.09942598640918732, -0.017352033406496048, -0.08178842067718506, -0.13899432122707367, 0.01581418141722679, -0.10090053081512451, 0.012794038280844688, 0.12450805306434631, 0.014235005713999271, -0.024680081754922867, 0.1996651142835617, 0.04029490426182747, 0.04260535538196564, 0.056289855390787125, 0.012903129681944847, -0.01808467134833336, -0.09216059744358063, -0.059201039373874664, -0.047952424734830856, -0.015188978053629398, 0.03316569700837135, -0.07716135680675507, -0.09488082677125931, 0.03645538538694382, -0.009820656850934029, -0.10201095789670944, 0.02345420978963375, 0.02394774928689003, 0.06862156838178635, 0.02556866779923439, -0.007034864742308855, 0.017973750829696655, -0.03871352970600128, 0.22256594896316528, -0.08884022384881973, -0.0757046565413475, -0.10304200649261475, 0.2782719135284424, 0.035255976021289825, 0.004773607477545738, 0.018357792869210243, -0.06902781128883362, 0.010662268847227097, 0.24940909445285797, 0.1952691525220871, -0.10988516360521317, -0.005476735532283783, 0.0039602466858923435, -0.017206134274601936, -0.03663536161184311, 0.1355164498090744, 0.1272675096988678, 0.05333362892270088, -0.11245917528867722, -0.04331709444522858, -0.05917974188923836, -0.013946933671832085, -0.036999817937612534, 0.049192529171705246, 0.06006799265742302, 0.02137143537402153, -0.06052057817578316, 0.05811971798539162, -0.07162695378065109, -0.1113964319229126, 0.08550800383090973, -0.21034763753414154, -0.1716027557849884, -0.012736867181956768, 0.10872951149940491, -0.012623433023691177, 0.07159504294395447, -0.03009413741528988, -0.0026729621458798647, 0.03733649477362633, -0.024703802540898323, -0.07117537409067154, -0.09776511043310165, 0.09812222421169281, -0.10478959232568741, 0.17811942100524902, -0.04954991489648819, 0.06620125472545624, 0.12617163360118866, 0.06129801645874977, -0.06210533529520035, 0.04843083769083023, 0.045162759721279144, -0.11185432970523834, 0.022697674110531807, 0.12876395881175995, -0.03000810369849205, 0.05747333541512489, 0.03167731687426567, -0.14002926647663116, 0.033696822822093964, -0.10581860691308975, -0.03089076094329357, -0.04381171613931656, -0.04869960620999336, -0.05309348553419113, 0.12499596923589706, 0.23458817601203918, -0.006743243895471096, 0.032576922327280045, -0.08791431784629822, 0.00844732765108347, 0.0540543757379055, 0.053739435970783234, -0.1062634140253067, -0.2568429112434387, 0.009084660559892654, 0.07708041369915009, -0.04020215943455696, -0.2182934731245041, -0.09181743115186691, 0.009176265448331833, -0.07882224023342133, -0.08911658078432083, 0.08827919512987137, 0.07726947963237762, 0.062497880309820175, -0.050949808210134506, -0.10240047425031662, -0.08314218372106552, 0.15404361486434937, -0.1532345861196518, -0.08300840854644775 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1138 - Precision: 0.5788 - Recall: 0.4712 - F1: 0.5195 - Accuracy: 0.9688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.1316 | 0.04 | 0.0021 | 0.0040 | 0.9624 | | No log | 2.0 | 30 | 0.1016 | 0.6466 | 0.4688 | 0.5435 | 0.9767 | | No log | 3.0 | 45 | 0.0899 | 0.5873 | 0.4625 | 0.5175 | 0.9757 | | No log | 4.0 | 60 | 0.0849 | 0.5984 | 0.4813 | 0.5335 | 0.9761 | | No log | 5.0 | 75 | 0.0835 | 0.5984 | 0.4813 | 0.5335 | 0.9761 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51", "results": []}]}
token-classification
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_33\_51 ================================================================================== This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1138 * Precision: 0.5788 * Recall: 0.4712 * F1: 0.5195 * Accuracy: 0.9688 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 49, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0952380895614624, 0.044036440551280975, -0.0016082123620435596, 0.11698907613754272, 0.21350468695163727, 0.02943940833210945, 0.1025138795375824, 0.1014835312962532, -0.12182898074388504, 0.025961419567465782, 0.12113579362630844, 0.1832786351442337, -0.0030703383963555098, 0.09688547998666763, -0.05556701496243477, -0.2743716835975647, -0.03052719309926033, 0.045981843024492264, -0.10305297374725342, 0.12545245885849, 0.08387984335422516, -0.1577286273241043, 0.07511057704687119, -0.0016509053530171514, -0.2676181495189667, 0.019590724259614944, 0.03423237428069115, -0.06043952703475952, 0.14759710431098938, 0.00943830143660307, 0.17363232374191284, -0.011987031437456608, 0.1051621213555336, -0.14447440207004547, 0.012298219837248325, 0.06186310946941376, 0.022960467264056206, 0.09010162949562073, 0.06334146112203598, -0.007549169939011335, 0.09506987780332565, -0.09507019817829132, 0.06539499014616013, 0.003103486727923155, -0.12513257563114166, -0.2132052630186081, -0.07136457413434982, -0.002085052663460374, 0.053780630230903625, 0.09798532724380493, -0.0042197792790830135, 0.17374707758426666, -0.1088271513581276, 0.09750399738550186, 0.21120037138462067, -0.2665243446826935, -0.08335934579372406, 0.055233679711818695, -0.00906183198094368, 0.07525855302810669, -0.12323935329914093, -0.02350618503987789, 0.05778595060110092, 0.05312470719218254, 0.12958413362503052, -0.034174755215644836, -0.12042219936847687, 0.025349890813231468, -0.1521894931793213, -0.0006019846769049764, 0.06528319418430328, 0.01627492345869541, -0.02065153233706951, -0.015569574199616909, -0.06616263836622238, -0.16424210369586945, -0.04118039831519127, -0.027683239430189133, 0.04010685533285141, -0.05730584263801575, -0.10778205841779709, 0.012057210318744183, -0.10123518854379654, -0.06198875606060028, -0.07641874253749847, 0.1809101104736328, 0.04406607523560524, 0.017658140510320663, -0.03639274835586548, 0.10814428329467773, -0.003348919562995434, -0.12874765694141388, 0.05691590532660484, 0.024434933438897133, -0.03782016038894653, -0.07123736292123795, -0.06982749700546265, -0.0997990146279335, 0.00012833482469432056, 0.08903595060110092, -0.04379228875041008, 0.04876143857836723, 0.041273217648267746, 0.03605876490473747, -0.08996519446372986, 0.2002016007900238, -0.050116948783397675, -0.017183683812618256, 0.004287381656467915, 0.04395374283194542, -0.017564810812473297, -0.0018934865947812796, -0.10746562480926514, 0.003688776632770896, 0.11974334716796875, 0.0032049454748630524, -0.07574886828660965, 0.06962595134973526, -0.03547770529985428, -0.021802717819809914, -0.03207997605204582, -0.09391369670629501, 0.04661700129508972, -0.01810879074037075, -0.09548810124397278, 0.004290449433028698, 0.007495227735489607, 0.012048051692545414, -0.009441312402486801, 0.166090726852417, -0.10330095887184143, 0.0498272143304348, -0.1193264052271843, -0.11999256908893585, -0.0013982293894514441, -0.0776621550321579, 0.02640019915997982, -0.10089195519685745, -0.12647922337055206, -0.020957479253411293, 0.05697371065616608, -0.035620737820863724, -0.037681736052036285, -0.040833212435245514, -0.07425465434789658, 0.005951599683612585, -0.010949499905109406, 0.17182503640651703, -0.04630051925778389, 0.11560122668743134, 0.05046966299414635, 0.07271167635917664, -0.04180130735039711, 0.04987984523177147, -0.09455662220716476, -0.001616872032172978, -0.21063469350337982, 0.04008080065250397, -0.056833136826753616, 0.08438174426555634, -0.07221242040395737, -0.11565542966127396, 0.01061136182397604, -0.0053452011197805405, 0.09168983995914459, 0.07677346467971802, -0.15574459731578827, -0.08274779468774796, 0.15119478106498718, -0.05555276572704315, -0.07717754691839218, 0.11664170771837234, -0.07357529550790787, 0.033337969332933426, 0.07508940994739532, 0.15109290182590485, 0.06376980990171432, -0.07922615855932236, 0.023416668176651, -0.030187727883458138, 0.03787150979042053, -0.06860329955816269, 0.033845916390419006, 0.025766002014279366, -0.007918855175375938, 0.0320846252143383, -0.015116957016289234, 0.07470791041851044, -0.11922331899404526, -0.08577512204647064, -0.04021341726183891, -0.10978709161281586, 0.05595320463180542, 0.08884918689727783, 0.10502464324235916, -0.09601657092571259, -0.07053463160991669, 0.09864025563001633, 0.06200094521045685, -0.04692395031452179, 0.015603672713041306, -0.05271952599287033, 0.059061866253614426, -0.0767902135848999, -0.03351907804608345, -0.20745894312858582, -0.04168904945254326, 0.0019729824271053076, 0.03754783049225807, 0.035803817212581635, 0.036847181618213654, 0.08709568530321121, 0.06258723884820938, -0.06264924257993698, -0.003439870895817876, -0.01522428821772337, -0.007044075056910515, -0.15164627134799957, -0.19300268590450287, -0.025256607681512833, -0.0200581606477499, 0.08781859278678894, -0.20405974984169006, 0.01960292086005211, -0.043502431362867355, 0.09305994212627411, 0.017027119174599648, -0.009177275002002716, -0.05504470318555832, 0.10782260447740555, -0.023087309673428535, -0.04909471794962883, 0.0668131560087204, -0.015085511840879917, -0.06336434930562973, -0.08089190721511841, -0.10096660256385803, 0.18621042370796204, 0.13892404735088348, -0.151669442653656, -0.10937488079071045, 0.015644345432519913, -0.06139355152845383, -0.022212862968444824, -0.057233456522226334, 0.0564904622733593, 0.18072649836540222, -0.01574549451470375, 0.15169773995876312, -0.052853431552648544, -0.04706889018416405, 0.021385572850704193, -0.03310905396938324, 0.04335913807153702, 0.10842389613389969, 0.13569805026054382, -0.08457112312316895, 0.1361512988805771, 0.1218692883849144, -0.13111263513565063, 0.13677334785461426, -0.025905638933181763, -0.07789324969053268, -0.018446670845150948, -0.030742309987545013, 0.007610428147017956, 0.10661071538925171, -0.10808677226305008, -0.01922493800520897, 0.0071347723715007305, 0.020305147394537926, 0.026112085208296776, -0.23135057091712952, -0.046915993094444275, 0.02424618974328041, -0.003096528584137559, 0.018515875563025475, -0.01951778493821621, 0.02580680325627327, 0.11866136640310287, 0.0020909635350108147, -0.07759678363800049, 0.024093760177493095, 0.00893546175211668, -0.06352781504392624, 0.2146356850862503, -0.06943210959434509, -0.11312001943588257, -0.1019912138581276, -0.07687869668006897, -0.04238303750753403, 0.013024810701608658, 0.03158364072442055, -0.12026584893465042, -0.021418938413262367, -0.02185477688908577, 0.03273407369852066, 0.0030455556698143482, 0.06268017739057541, -0.005181455984711647, 0.002387002110481262, 0.07124806940555573, -0.09937068074941635, -0.0005596545524895191, -0.07595739513635635, -0.07265695929527283, 0.05849755182862282, 0.06279446929693222, 0.12046454101800919, 0.16986700892448425, -0.04765129089355469, 0.005394987761974335, -0.024400215595960617, 0.23848678171634674, -0.0751553475856781, -0.03985968604683876, 0.09683617949485779, -0.018827078863978386, 0.04960450902581215, 0.10460381954908371, 0.08367177098989487, -0.09397482126951218, 0.015742994844913483, 0.0470423549413681, -0.04357099160552025, -0.20160119235515594, -0.038630712777376175, -0.05170169100165367, -0.04798796772956848, 0.09219147264957428, 0.02131497673690319, 0.04089008644223213, 0.07909292727708817, 0.06711464375257492, 0.09728001803159714, -0.07520143687725067, 0.05096640810370445, 0.08856416493654251, 0.053435731679201126, 0.13284629583358765, -0.04117075353860855, -0.10521731525659561, 0.02107597514986992, -0.024051981046795845, 0.23177176713943481, -0.0038389968685805798, 0.07269735634326935, 0.03901175409555435, 0.19265300035476685, 0.010800961405038834, 0.08711627125740051, 0.00300702010281384, -0.06744545698165894, 0.000320995255606249, -0.02838362194597721, -0.03612513840198517, 0.010060080327093601, -0.026500064879655838, 0.054114680737257004, -0.11174614727497101, -0.011367600411176682, 0.05662032961845398, 0.23012308776378632, 0.02408546395599842, -0.3223344087600708, -0.07357577234506607, -0.011025436222553253, -0.03599712625145912, -0.013542305678129196, 0.007855766452848911, 0.10567118972539902, -0.09833948314189911, 0.011641263961791992, -0.08281056582927704, 0.08809417486190796, -0.04271498695015907, 0.036696553230285645, 0.06772663444280624, 0.12630119919776917, -0.005529686342924833, 0.06417804211378098, -0.305855393409729, 0.27393829822540283, 0.009537872858345509, 0.08100421726703644, -0.07624920457601547, -0.007353424560278654, 0.036383580416440964, 0.03732066601514816, 0.032587770372629166, -0.020104434341192245, -0.04177025705575943, -0.22623340785503387, -0.030331812798976898, 0.0285630002617836, 0.12068957835435867, -0.0075541152618825436, 0.10377029329538345, -0.024200307205319405, 0.00005155575854587369, 0.08048006147146225, -0.04490114375948906, -0.04457297548651695, -0.0742047131061554, -0.02755388617515564, 0.010738343931734562, -0.07488889992237091, -0.048193786293268204, -0.12068187445402145, -0.1354958713054657, 0.1486193686723709, 0.013996468856930733, -0.016360098496079445, -0.1275208294391632, 0.12574636936187744, 0.0811011865735054, -0.08053231984376907, 0.04449211433529854, 0.011230092495679855, 0.05299266427755356, 0.03201989457011223, -0.06810819357633591, 0.11526092886924744, -0.05820934846997261, -0.152246356010437, -0.06424514949321747, 0.07927361130714417, 0.04208575561642647, 0.06544974446296692, -0.02301499992609024, 0.0229955967515707, -0.025375407189130783, -0.0903472900390625, 0.03937704116106033, -0.04006959870457649, 0.0644475445151329, 0.02948816865682602, -0.051256582140922546, -0.005753687117248774, -0.05698229372501373, -0.011369648389518261, 0.18660961091518402, 0.2201036661863327, -0.09734193980693817, -0.01712528057396412, 0.026125185191631317, -0.05946418642997742, -0.19808503985404968, 0.09593727439641953, 0.08573706448078156, 0.007431112229824066, 0.04530135169625282, -0.16281530261039734, 0.15490049123764038, 0.1000962182879448, -0.0013520345091819763, 0.10888125747442245, -0.30510765314102173, -0.1282355934381485, 0.10589848458766937, 0.1721881926059723, 0.13675452768802643, -0.13790705800056458, -0.0070046489126980305, -0.008709002286195755, -0.09763187915086746, 0.10359155386686325, -0.06426163762807846, 0.12145929038524628, -0.019056083634495735, 0.10903739184141159, 0.013593306764960289, -0.07166292518377304, 0.09361252933740616, 0.007082231342792511, 0.11645247042179108, -0.06414512544870377, -0.06102367490530014, 0.04334691911935806, -0.02508259378373623, -0.012173532508313656, -0.02399563230574131, 0.018605703487992287, -0.0673445612192154, -0.020576614886522293, -0.09741745889186859, 0.04260580241680145, -0.02326616272330284, -0.07246298342943192, -0.03844840079545975, 0.03469730541110039, 0.034943729639053345, -0.025639070197939873, 0.11715426295995712, 0.020161490887403488, 0.17447295784950256, 0.08593776077032089, 0.06346122175455093, -0.050561998039484024, -0.04841836541891098, 0.0034034322015941143, -0.010078824125230312, 0.06329295784235, -0.13016362488269806, 0.020914848893880844, 0.1553254872560501, 0.022595396265387535, 0.1142435371875763, 0.0921553373336792, -0.018760520964860916, 0.016071034595370293, 0.07624492049217224, -0.16313201189041138, -0.0652882531285286, 0.004153259098529816, -0.0857715979218483, -0.09250564128160477, 0.05332089588046074, 0.0799720510840416, -0.07481376081705093, -0.011270832270383835, -0.008530267514288425, -0.02374846674501896, -0.06649409234523773, 0.22630544006824493, 0.08077908307313919, 0.04372468218207359, -0.10051923245191574, 0.05768468976020813, 0.06488308310508728, -0.08738836646080017, -0.005134388338774443, 0.08041257411241531, -0.07681380212306976, -0.020639704540371895, 0.11760535091161728, 0.203256756067276, -0.07639540731906891, -0.0118074556812644, -0.14928030967712402, -0.10582452267408371, 0.0648043230175972, 0.18278199434280396, 0.11151919513940811, -0.0056063588708639145, -0.05881034582853317, 0.035694669932127, -0.15800076723098755, 0.07858650386333466, 0.049578793346881866, 0.08591622859239578, -0.15005116164684296, 0.20051398873329163, -0.00004556030035018921, 0.0442449189722538, -0.0340452641248703, 0.032208554446697235, -0.11947087198495865, 0.02182786725461483, -0.1101863905787468, -0.0576208233833313, -0.007169285323470831, -0.006640194449573755, -0.0015152629930526018, -0.07371584326028824, -0.059259410947561264, 0.005731922574341297, -0.1292037069797516, -0.015692725777626038, 0.04629449546337128, 0.01673985831439495, -0.10646671801805496, -0.041379284113645554, 0.020045820623636246, -0.046777401119470596, 0.04783070459961891, 0.049333520233631134, 0.022893687710165977, 0.07237260788679123, -0.1446196287870407, -0.013995609246194363, 0.07226084172725677, -0.00627199187874794, 0.09819990396499634, -0.05520399659872055, -0.0003193517040926963, -0.011192445643246174, 0.11059475690126419, 0.02390620857477188, 0.07886900007724762, -0.1395350992679596, 0.009412514045834541, -0.033310696482658386, -0.09444313496351242, -0.06931016594171524, 0.02054710127413273, 0.0772700086236, 0.012624329887330532, 0.18304604291915894, -0.08549670875072479, 0.05452527478337288, -0.21084682643413544, -0.012454807758331299, -0.02010815404355526, -0.11260063946247101, -0.09965618699789047, -0.05579297989606857, 0.07505887001752853, -0.052359987050294876, 0.11857812106609344, 0.050597503781318665, 0.06416036933660507, 0.031432848423719406, -0.02391139417886734, 0.004131124820560217, 0.03485950827598572, 0.19422318041324615, 0.04474707692861557, -0.04302285239100456, 0.05776410922408104, 0.08239096403121948, 0.1057816743850708, 0.11372319608926773, 0.21143266558647156, 0.14386913180351257, -0.02503117360174656, 0.08243376016616821, 0.028620216995477676, -0.05494459718465805, -0.16101951897144318, 0.024334531277418137, -0.07625152915716171, 0.08133033663034439, -0.032996710389852524, 0.19418784976005554, 0.06248319521546364, -0.1546187847852707, 0.046457160264253616, -0.06446539610624313, -0.10111140459775925, -0.09942598640918732, -0.017352033406496048, -0.08178842067718506, -0.13899432122707367, 0.01581418141722679, -0.10090053081512451, 0.012794038280844688, 0.12450805306434631, 0.014235005713999271, -0.024680081754922867, 0.1996651142835617, 0.04029490426182747, 0.04260535538196564, 0.056289855390787125, 0.012903129681944847, -0.01808467134833336, -0.09216059744358063, -0.059201039373874664, -0.047952424734830856, -0.015188978053629398, 0.03316569700837135, -0.07716135680675507, -0.09488082677125931, 0.03645538538694382, -0.009820656850934029, -0.10201095789670944, 0.02345420978963375, 0.02394774928689003, 0.06862156838178635, 0.02556866779923439, -0.007034864742308855, 0.017973750829696655, -0.03871352970600128, 0.22256594896316528, -0.08884022384881973, -0.0757046565413475, -0.10304200649261475, 0.2782719135284424, 0.035255976021289825, 0.004773607477545738, 0.018357792869210243, -0.06902781128883362, 0.010662268847227097, 0.24940909445285797, 0.1952691525220871, -0.10988516360521317, -0.005476735532283783, 0.0039602466858923435, -0.017206134274601936, -0.03663536161184311, 0.1355164498090744, 0.1272675096988678, 0.05333362892270088, -0.11245917528867722, -0.04331709444522858, -0.05917974188923836, -0.013946933671832085, -0.036999817937612534, 0.049192529171705246, 0.06006799265742302, 0.02137143537402153, -0.06052057817578316, 0.05811971798539162, -0.07162695378065109, -0.1113964319229126, 0.08550800383090973, -0.21034763753414154, -0.1716027557849884, -0.012736867181956768, 0.10872951149940491, -0.012623433023691177, 0.07159504294395447, -0.03009413741528988, -0.0026729621458798647, 0.03733649477362633, -0.024703802540898323, -0.07117537409067154, -0.09776511043310165, 0.09812222421169281, -0.10478959232568741, 0.17811942100524902, -0.04954991489648819, 0.06620125472545624, 0.12617163360118866, 0.06129801645874977, -0.06210533529520035, 0.04843083769083023, 0.045162759721279144, -0.11185432970523834, 0.022697674110531807, 0.12876395881175995, -0.03000810369849205, 0.05747333541512489, 0.03167731687426567, -0.14002926647663116, 0.033696822822093964, -0.10581860691308975, -0.03089076094329357, -0.04381171613931656, -0.04869960620999336, -0.05309348553419113, 0.12499596923589706, 0.23458817601203918, -0.006743243895471096, 0.032576922327280045, -0.08791431784629822, 0.00844732765108347, 0.0540543757379055, 0.053739435970783234, -0.1062634140253067, -0.2568429112434387, 0.009084660559892654, 0.07708041369915009, -0.04020215943455696, -0.2182934731245041, -0.09181743115186691, 0.009176265448331833, -0.07882224023342133, -0.08911658078432083, 0.08827919512987137, 0.07726947963237762, 0.062497880309820175, -0.050949808210134506, -0.10240047425031662, -0.08314218372106552, 0.15404361486434937, -0.1532345861196518, -0.08300840854644775 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2663 - Precision: 0.3644 - Recall: 0.4985 - F1: 0.4210 - Accuracy: 0.8997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.5174 | 0.0120 | 0.0061 | 0.0081 | 0.6997 | | No log | 2.0 | 22 | 0.4029 | 0.1145 | 0.3098 | 0.1672 | 0.8265 | | No log | 3.0 | 33 | 0.3604 | 0.2539 | 0.4448 | 0.3233 | 0.8632 | | No log | 4.0 | 44 | 0.3449 | 0.2992 | 0.4755 | 0.3673 | 0.8704 | | No log | 5.0 | 55 | 0.3403 | 0.3340 | 0.4816 | 0.3945 | 0.8760 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16", "results": []}]}
token-classification
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_32\_16 ============================================================================== This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2663 * Precision: 0.3644 * Recall: 0.4985 * F1: 0.4210 * Accuracy: 0.8997 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 49, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0952380895614624, 0.044036440551280975, -0.0016082123620435596, 0.11698907613754272, 0.21350468695163727, 0.02943940833210945, 0.1025138795375824, 0.1014835312962532, -0.12182898074388504, 0.025961419567465782, 0.12113579362630844, 0.1832786351442337, -0.0030703383963555098, 0.09688547998666763, -0.05556701496243477, -0.2743716835975647, -0.03052719309926033, 0.045981843024492264, -0.10305297374725342, 0.12545245885849, 0.08387984335422516, -0.1577286273241043, 0.07511057704687119, -0.0016509053530171514, -0.2676181495189667, 0.019590724259614944, 0.03423237428069115, -0.06043952703475952, 0.14759710431098938, 0.00943830143660307, 0.17363232374191284, -0.011987031437456608, 0.1051621213555336, -0.14447440207004547, 0.012298219837248325, 0.06186310946941376, 0.022960467264056206, 0.09010162949562073, 0.06334146112203598, -0.007549169939011335, 0.09506987780332565, -0.09507019817829132, 0.06539499014616013, 0.003103486727923155, -0.12513257563114166, -0.2132052630186081, -0.07136457413434982, -0.002085052663460374, 0.053780630230903625, 0.09798532724380493, -0.0042197792790830135, 0.17374707758426666, -0.1088271513581276, 0.09750399738550186, 0.21120037138462067, -0.2665243446826935, -0.08335934579372406, 0.055233679711818695, -0.00906183198094368, 0.07525855302810669, -0.12323935329914093, -0.02350618503987789, 0.05778595060110092, 0.05312470719218254, 0.12958413362503052, -0.034174755215644836, -0.12042219936847687, 0.025349890813231468, -0.1521894931793213, -0.0006019846769049764, 0.06528319418430328, 0.01627492345869541, -0.02065153233706951, -0.015569574199616909, -0.06616263836622238, -0.16424210369586945, -0.04118039831519127, -0.027683239430189133, 0.04010685533285141, -0.05730584263801575, -0.10778205841779709, 0.012057210318744183, -0.10123518854379654, -0.06198875606060028, -0.07641874253749847, 0.1809101104736328, 0.04406607523560524, 0.017658140510320663, -0.03639274835586548, 0.10814428329467773, -0.003348919562995434, -0.12874765694141388, 0.05691590532660484, 0.024434933438897133, -0.03782016038894653, -0.07123736292123795, -0.06982749700546265, -0.0997990146279335, 0.00012833482469432056, 0.08903595060110092, -0.04379228875041008, 0.04876143857836723, 0.041273217648267746, 0.03605876490473747, -0.08996519446372986, 0.2002016007900238, -0.050116948783397675, -0.017183683812618256, 0.004287381656467915, 0.04395374283194542, -0.017564810812473297, -0.0018934865947812796, -0.10746562480926514, 0.003688776632770896, 0.11974334716796875, 0.0032049454748630524, -0.07574886828660965, 0.06962595134973526, -0.03547770529985428, -0.021802717819809914, -0.03207997605204582, -0.09391369670629501, 0.04661700129508972, -0.01810879074037075, -0.09548810124397278, 0.004290449433028698, 0.007495227735489607, 0.012048051692545414, -0.009441312402486801, 0.166090726852417, -0.10330095887184143, 0.0498272143304348, -0.1193264052271843, -0.11999256908893585, -0.0013982293894514441, -0.0776621550321579, 0.02640019915997982, -0.10089195519685745, -0.12647922337055206, -0.020957479253411293, 0.05697371065616608, -0.035620737820863724, -0.037681736052036285, -0.040833212435245514, -0.07425465434789658, 0.005951599683612585, -0.010949499905109406, 0.17182503640651703, -0.04630051925778389, 0.11560122668743134, 0.05046966299414635, 0.07271167635917664, -0.04180130735039711, 0.04987984523177147, -0.09455662220716476, -0.001616872032172978, -0.21063469350337982, 0.04008080065250397, -0.056833136826753616, 0.08438174426555634, -0.07221242040395737, -0.11565542966127396, 0.01061136182397604, -0.0053452011197805405, 0.09168983995914459, 0.07677346467971802, -0.15574459731578827, -0.08274779468774796, 0.15119478106498718, -0.05555276572704315, -0.07717754691839218, 0.11664170771837234, -0.07357529550790787, 0.033337969332933426, 0.07508940994739532, 0.15109290182590485, 0.06376980990171432, -0.07922615855932236, 0.023416668176651, -0.030187727883458138, 0.03787150979042053, -0.06860329955816269, 0.033845916390419006, 0.025766002014279366, -0.007918855175375938, 0.0320846252143383, -0.015116957016289234, 0.07470791041851044, -0.11922331899404526, -0.08577512204647064, -0.04021341726183891, -0.10978709161281586, 0.05595320463180542, 0.08884918689727783, 0.10502464324235916, -0.09601657092571259, -0.07053463160991669, 0.09864025563001633, 0.06200094521045685, -0.04692395031452179, 0.015603672713041306, -0.05271952599287033, 0.059061866253614426, -0.0767902135848999, -0.03351907804608345, -0.20745894312858582, -0.04168904945254326, 0.0019729824271053076, 0.03754783049225807, 0.035803817212581635, 0.036847181618213654, 0.08709568530321121, 0.06258723884820938, -0.06264924257993698, -0.003439870895817876, -0.01522428821772337, -0.007044075056910515, -0.15164627134799957, -0.19300268590450287, -0.025256607681512833, -0.0200581606477499, 0.08781859278678894, -0.20405974984169006, 0.01960292086005211, -0.043502431362867355, 0.09305994212627411, 0.017027119174599648, -0.009177275002002716, -0.05504470318555832, 0.10782260447740555, -0.023087309673428535, -0.04909471794962883, 0.0668131560087204, -0.015085511840879917, -0.06336434930562973, -0.08089190721511841, -0.10096660256385803, 0.18621042370796204, 0.13892404735088348, -0.151669442653656, -0.10937488079071045, 0.015644345432519913, -0.06139355152845383, -0.022212862968444824, -0.057233456522226334, 0.0564904622733593, 0.18072649836540222, -0.01574549451470375, 0.15169773995876312, -0.052853431552648544, -0.04706889018416405, 0.021385572850704193, -0.03310905396938324, 0.04335913807153702, 0.10842389613389969, 0.13569805026054382, -0.08457112312316895, 0.1361512988805771, 0.1218692883849144, -0.13111263513565063, 0.13677334785461426, -0.025905638933181763, -0.07789324969053268, -0.018446670845150948, -0.030742309987545013, 0.007610428147017956, 0.10661071538925171, -0.10808677226305008, -0.01922493800520897, 0.0071347723715007305, 0.020305147394537926, 0.026112085208296776, -0.23135057091712952, -0.046915993094444275, 0.02424618974328041, -0.003096528584137559, 0.018515875563025475, -0.01951778493821621, 0.02580680325627327, 0.11866136640310287, 0.0020909635350108147, -0.07759678363800049, 0.024093760177493095, 0.00893546175211668, -0.06352781504392624, 0.2146356850862503, -0.06943210959434509, -0.11312001943588257, -0.1019912138581276, -0.07687869668006897, -0.04238303750753403, 0.013024810701608658, 0.03158364072442055, -0.12026584893465042, -0.021418938413262367, -0.02185477688908577, 0.03273407369852066, 0.0030455556698143482, 0.06268017739057541, -0.005181455984711647, 0.002387002110481262, 0.07124806940555573, -0.09937068074941635, -0.0005596545524895191, -0.07595739513635635, -0.07265695929527283, 0.05849755182862282, 0.06279446929693222, 0.12046454101800919, 0.16986700892448425, -0.04765129089355469, 0.005394987761974335, -0.024400215595960617, 0.23848678171634674, -0.0751553475856781, -0.03985968604683876, 0.09683617949485779, -0.018827078863978386, 0.04960450902581215, 0.10460381954908371, 0.08367177098989487, -0.09397482126951218, 0.015742994844913483, 0.0470423549413681, -0.04357099160552025, -0.20160119235515594, -0.038630712777376175, -0.05170169100165367, -0.04798796772956848, 0.09219147264957428, 0.02131497673690319, 0.04089008644223213, 0.07909292727708817, 0.06711464375257492, 0.09728001803159714, -0.07520143687725067, 0.05096640810370445, 0.08856416493654251, 0.053435731679201126, 0.13284629583358765, -0.04117075353860855, -0.10521731525659561, 0.02107597514986992, -0.024051981046795845, 0.23177176713943481, -0.0038389968685805798, 0.07269735634326935, 0.03901175409555435, 0.19265300035476685, 0.010800961405038834, 0.08711627125740051, 0.00300702010281384, -0.06744545698165894, 0.000320995255606249, -0.02838362194597721, -0.03612513840198517, 0.010060080327093601, -0.026500064879655838, 0.054114680737257004, -0.11174614727497101, -0.011367600411176682, 0.05662032961845398, 0.23012308776378632, 0.02408546395599842, -0.3223344087600708, -0.07357577234506607, -0.011025436222553253, -0.03599712625145912, -0.013542305678129196, 0.007855766452848911, 0.10567118972539902, -0.09833948314189911, 0.011641263961791992, -0.08281056582927704, 0.08809417486190796, -0.04271498695015907, 0.036696553230285645, 0.06772663444280624, 0.12630119919776917, -0.005529686342924833, 0.06417804211378098, -0.305855393409729, 0.27393829822540283, 0.009537872858345509, 0.08100421726703644, -0.07624920457601547, -0.007353424560278654, 0.036383580416440964, 0.03732066601514816, 0.032587770372629166, -0.020104434341192245, -0.04177025705575943, -0.22623340785503387, -0.030331812798976898, 0.0285630002617836, 0.12068957835435867, -0.0075541152618825436, 0.10377029329538345, -0.024200307205319405, 0.00005155575854587369, 0.08048006147146225, -0.04490114375948906, -0.04457297548651695, -0.0742047131061554, -0.02755388617515564, 0.010738343931734562, -0.07488889992237091, -0.048193786293268204, -0.12068187445402145, -0.1354958713054657, 0.1486193686723709, 0.013996468856930733, -0.016360098496079445, -0.1275208294391632, 0.12574636936187744, 0.0811011865735054, -0.08053231984376907, 0.04449211433529854, 0.011230092495679855, 0.05299266427755356, 0.03201989457011223, -0.06810819357633591, 0.11526092886924744, -0.05820934846997261, -0.152246356010437, -0.06424514949321747, 0.07927361130714417, 0.04208575561642647, 0.06544974446296692, -0.02301499992609024, 0.0229955967515707, -0.025375407189130783, -0.0903472900390625, 0.03937704116106033, -0.04006959870457649, 0.0644475445151329, 0.02948816865682602, -0.051256582140922546, -0.005753687117248774, -0.05698229372501373, -0.011369648389518261, 0.18660961091518402, 0.2201036661863327, -0.09734193980693817, -0.01712528057396412, 0.026125185191631317, -0.05946418642997742, -0.19808503985404968, 0.09593727439641953, 0.08573706448078156, 0.007431112229824066, 0.04530135169625282, -0.16281530261039734, 0.15490049123764038, 0.1000962182879448, -0.0013520345091819763, 0.10888125747442245, -0.30510765314102173, -0.1282355934381485, 0.10589848458766937, 0.1721881926059723, 0.13675452768802643, -0.13790705800056458, -0.0070046489126980305, -0.008709002286195755, -0.09763187915086746, 0.10359155386686325, -0.06426163762807846, 0.12145929038524628, -0.019056083634495735, 0.10903739184141159, 0.013593306764960289, -0.07166292518377304, 0.09361252933740616, 0.007082231342792511, 0.11645247042179108, -0.06414512544870377, -0.06102367490530014, 0.04334691911935806, -0.02508259378373623, -0.012173532508313656, -0.02399563230574131, 0.018605703487992287, -0.0673445612192154, -0.020576614886522293, -0.09741745889186859, 0.04260580241680145, -0.02326616272330284, -0.07246298342943192, -0.03844840079545975, 0.03469730541110039, 0.034943729639053345, -0.025639070197939873, 0.11715426295995712, 0.020161490887403488, 0.17447295784950256, 0.08593776077032089, 0.06346122175455093, -0.050561998039484024, -0.04841836541891098, 0.0034034322015941143, -0.010078824125230312, 0.06329295784235, -0.13016362488269806, 0.020914848893880844, 0.1553254872560501, 0.022595396265387535, 0.1142435371875763, 0.0921553373336792, -0.018760520964860916, 0.016071034595370293, 0.07624492049217224, -0.16313201189041138, -0.0652882531285286, 0.004153259098529816, -0.0857715979218483, -0.09250564128160477, 0.05332089588046074, 0.0799720510840416, -0.07481376081705093, -0.011270832270383835, -0.008530267514288425, -0.02374846674501896, -0.06649409234523773, 0.22630544006824493, 0.08077908307313919, 0.04372468218207359, -0.10051923245191574, 0.05768468976020813, 0.06488308310508728, -0.08738836646080017, -0.005134388338774443, 0.08041257411241531, -0.07681380212306976, -0.020639704540371895, 0.11760535091161728, 0.203256756067276, -0.07639540731906891, -0.0118074556812644, -0.14928030967712402, -0.10582452267408371, 0.0648043230175972, 0.18278199434280396, 0.11151919513940811, -0.0056063588708639145, -0.05881034582853317, 0.035694669932127, -0.15800076723098755, 0.07858650386333466, 0.049578793346881866, 0.08591622859239578, -0.15005116164684296, 0.20051398873329163, -0.00004556030035018921, 0.0442449189722538, -0.0340452641248703, 0.032208554446697235, -0.11947087198495865, 0.02182786725461483, -0.1101863905787468, -0.0576208233833313, -0.007169285323470831, -0.006640194449573755, -0.0015152629930526018, -0.07371584326028824, -0.059259410947561264, 0.005731922574341297, -0.1292037069797516, -0.015692725777626038, 0.04629449546337128, 0.01673985831439495, -0.10646671801805496, -0.041379284113645554, 0.020045820623636246, -0.046777401119470596, 0.04783070459961891, 0.049333520233631134, 0.022893687710165977, 0.07237260788679123, -0.1446196287870407, -0.013995609246194363, 0.07226084172725677, -0.00627199187874794, 0.09819990396499634, -0.05520399659872055, -0.0003193517040926963, -0.011192445643246174, 0.11059475690126419, 0.02390620857477188, 0.07886900007724762, -0.1395350992679596, 0.009412514045834541, -0.033310696482658386, -0.09444313496351242, -0.06931016594171524, 0.02054710127413273, 0.0772700086236, 0.012624329887330532, 0.18304604291915894, -0.08549670875072479, 0.05452527478337288, -0.21084682643413544, -0.012454807758331299, -0.02010815404355526, -0.11260063946247101, -0.09965618699789047, -0.05579297989606857, 0.07505887001752853, -0.052359987050294876, 0.11857812106609344, 0.050597503781318665, 0.06416036933660507, 0.031432848423719406, -0.02391139417886734, 0.004131124820560217, 0.03485950827598572, 0.19422318041324615, 0.04474707692861557, -0.04302285239100456, 0.05776410922408104, 0.08239096403121948, 0.1057816743850708, 0.11372319608926773, 0.21143266558647156, 0.14386913180351257, -0.02503117360174656, 0.08243376016616821, 0.028620216995477676, -0.05494459718465805, -0.16101951897144318, 0.024334531277418137, -0.07625152915716171, 0.08133033663034439, -0.032996710389852524, 0.19418784976005554, 0.06248319521546364, -0.1546187847852707, 0.046457160264253616, -0.06446539610624313, -0.10111140459775925, -0.09942598640918732, -0.017352033406496048, -0.08178842067718506, -0.13899432122707367, 0.01581418141722679, -0.10090053081512451, 0.012794038280844688, 0.12450805306434631, 0.014235005713999271, -0.024680081754922867, 0.1996651142835617, 0.04029490426182747, 0.04260535538196564, 0.056289855390787125, 0.012903129681944847, -0.01808467134833336, -0.09216059744358063, -0.059201039373874664, -0.047952424734830856, -0.015188978053629398, 0.03316569700837135, -0.07716135680675507, -0.09488082677125931, 0.03645538538694382, -0.009820656850934029, -0.10201095789670944, 0.02345420978963375, 0.02394774928689003, 0.06862156838178635, 0.02556866779923439, -0.007034864742308855, 0.017973750829696655, -0.03871352970600128, 0.22256594896316528, -0.08884022384881973, -0.0757046565413475, -0.10304200649261475, 0.2782719135284424, 0.035255976021289825, 0.004773607477545738, 0.018357792869210243, -0.06902781128883362, 0.010662268847227097, 0.24940909445285797, 0.1952691525220871, -0.10988516360521317, -0.005476735532283783, 0.0039602466858923435, -0.017206134274601936, -0.03663536161184311, 0.1355164498090744, 0.1272675096988678, 0.05333362892270088, -0.11245917528867722, -0.04331709444522858, -0.05917974188923836, -0.013946933671832085, -0.036999817937612534, 0.049192529171705246, 0.06006799265742302, 0.02137143537402153, -0.06052057817578316, 0.05811971798539162, -0.07162695378065109, -0.1113964319229126, 0.08550800383090973, -0.21034763753414154, -0.1716027557849884, -0.012736867181956768, 0.10872951149940491, -0.012623433023691177, 0.07159504294395447, -0.03009413741528988, -0.0026729621458798647, 0.03733649477362633, -0.024703802540898323, -0.07117537409067154, -0.09776511043310165, 0.09812222421169281, -0.10478959232568741, 0.17811942100524902, -0.04954991489648819, 0.06620125472545624, 0.12617163360118866, 0.06129801645874977, -0.06210533529520035, 0.04843083769083023, 0.045162759721279144, -0.11185432970523834, 0.022697674110531807, 0.12876395881175995, -0.03000810369849205, 0.05747333541512489, 0.03167731687426567, -0.14002926647663116, 0.033696822822093964, -0.10581860691308975, -0.03089076094329357, -0.04381171613931656, -0.04869960620999336, -0.05309348553419113, 0.12499596923589706, 0.23458817601203918, -0.006743243895471096, 0.032576922327280045, -0.08791431784629822, 0.00844732765108347, 0.0540543757379055, 0.053739435970783234, -0.1062634140253067, -0.2568429112434387, 0.009084660559892654, 0.07708041369915009, -0.04020215943455696, -0.2182934731245041, -0.09181743115186691, 0.009176265448331833, -0.07882224023342133, -0.08911658078432083, 0.08827919512987137, 0.07726947963237762, 0.062497880309820175, -0.050949808210134506, -0.10240047425031662, -0.08314218372106552, 0.15404361486434937, -0.1532345861196518, -0.08300840854644775 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6169 - Precision: 0.0031 - Recall: 0.0357 - F1: 0.0057 - Accuracy: 0.6464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.6339 | 0.0116 | 0.0120 | 0.0118 | 0.6662 | | No log | 2.0 | 20 | 0.6182 | 0.0064 | 0.0120 | 0.0084 | 0.6688 | | No log | 3.0 | 30 | 0.6139 | 0.0029 | 0.0241 | 0.0052 | 0.6659 | | No log | 4.0 | 40 | 0.6172 | 0.0020 | 0.0241 | 0.0037 | 0.6622 | | No log | 5.0 | 50 | 0.6165 | 0.0019 | 0.0241 | 0.0036 | 0.6599 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39", "results": []}]}
token-classification
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
correct\_twitter\_RoBERTa\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_30\_39 ==================================================================================== This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6169 * Precision: 0.0031 * Recall: 0.0357 * F1: 0.0057 * Accuracy: 0.6464 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 49, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.0952380895614624, 0.044036440551280975, -0.0016082123620435596, 0.11698907613754272, 0.21350468695163727, 0.02943940833210945, 0.1025138795375824, 0.1014835312962532, -0.12182898074388504, 0.025961419567465782, 0.12113579362630844, 0.1832786351442337, -0.0030703383963555098, 0.09688547998666763, -0.05556701496243477, -0.2743716835975647, -0.03052719309926033, 0.045981843024492264, -0.10305297374725342, 0.12545245885849, 0.08387984335422516, -0.1577286273241043, 0.07511057704687119, -0.0016509053530171514, -0.2676181495189667, 0.019590724259614944, 0.03423237428069115, -0.06043952703475952, 0.14759710431098938, 0.00943830143660307, 0.17363232374191284, -0.011987031437456608, 0.1051621213555336, -0.14447440207004547, 0.012298219837248325, 0.06186310946941376, 0.022960467264056206, 0.09010162949562073, 0.06334146112203598, -0.007549169939011335, 0.09506987780332565, -0.09507019817829132, 0.06539499014616013, 0.003103486727923155, -0.12513257563114166, -0.2132052630186081, -0.07136457413434982, -0.002085052663460374, 0.053780630230903625, 0.09798532724380493, -0.0042197792790830135, 0.17374707758426666, -0.1088271513581276, 0.09750399738550186, 0.21120037138462067, -0.2665243446826935, -0.08335934579372406, 0.055233679711818695, -0.00906183198094368, 0.07525855302810669, -0.12323935329914093, -0.02350618503987789, 0.05778595060110092, 0.05312470719218254, 0.12958413362503052, -0.034174755215644836, -0.12042219936847687, 0.025349890813231468, -0.1521894931793213, -0.0006019846769049764, 0.06528319418430328, 0.01627492345869541, -0.02065153233706951, -0.015569574199616909, -0.06616263836622238, -0.16424210369586945, -0.04118039831519127, -0.027683239430189133, 0.04010685533285141, -0.05730584263801575, -0.10778205841779709, 0.012057210318744183, -0.10123518854379654, -0.06198875606060028, -0.07641874253749847, 0.1809101104736328, 0.04406607523560524, 0.017658140510320663, -0.03639274835586548, 0.10814428329467773, -0.003348919562995434, -0.12874765694141388, 0.05691590532660484, 0.024434933438897133, -0.03782016038894653, -0.07123736292123795, -0.06982749700546265, -0.0997990146279335, 0.00012833482469432056, 0.08903595060110092, -0.04379228875041008, 0.04876143857836723, 0.041273217648267746, 0.03605876490473747, -0.08996519446372986, 0.2002016007900238, -0.050116948783397675, -0.017183683812618256, 0.004287381656467915, 0.04395374283194542, -0.017564810812473297, -0.0018934865947812796, -0.10746562480926514, 0.003688776632770896, 0.11974334716796875, 0.0032049454748630524, -0.07574886828660965, 0.06962595134973526, -0.03547770529985428, -0.021802717819809914, -0.03207997605204582, -0.09391369670629501, 0.04661700129508972, -0.01810879074037075, -0.09548810124397278, 0.004290449433028698, 0.007495227735489607, 0.012048051692545414, -0.009441312402486801, 0.166090726852417, -0.10330095887184143, 0.0498272143304348, -0.1193264052271843, -0.11999256908893585, -0.0013982293894514441, -0.0776621550321579, 0.02640019915997982, -0.10089195519685745, -0.12647922337055206, -0.020957479253411293, 0.05697371065616608, -0.035620737820863724, -0.037681736052036285, -0.040833212435245514, -0.07425465434789658, 0.005951599683612585, -0.010949499905109406, 0.17182503640651703, -0.04630051925778389, 0.11560122668743134, 0.05046966299414635, 0.07271167635917664, -0.04180130735039711, 0.04987984523177147, -0.09455662220716476, -0.001616872032172978, -0.21063469350337982, 0.04008080065250397, -0.056833136826753616, 0.08438174426555634, -0.07221242040395737, -0.11565542966127396, 0.01061136182397604, -0.0053452011197805405, 0.09168983995914459, 0.07677346467971802, -0.15574459731578827, -0.08274779468774796, 0.15119478106498718, -0.05555276572704315, -0.07717754691839218, 0.11664170771837234, -0.07357529550790787, 0.033337969332933426, 0.07508940994739532, 0.15109290182590485, 0.06376980990171432, -0.07922615855932236, 0.023416668176651, -0.030187727883458138, 0.03787150979042053, -0.06860329955816269, 0.033845916390419006, 0.025766002014279366, -0.007918855175375938, 0.0320846252143383, -0.015116957016289234, 0.07470791041851044, -0.11922331899404526, -0.08577512204647064, -0.04021341726183891, -0.10978709161281586, 0.05595320463180542, 0.08884918689727783, 0.10502464324235916, -0.09601657092571259, -0.07053463160991669, 0.09864025563001633, 0.06200094521045685, -0.04692395031452179, 0.015603672713041306, -0.05271952599287033, 0.059061866253614426, -0.0767902135848999, -0.03351907804608345, -0.20745894312858582, -0.04168904945254326, 0.0019729824271053076, 0.03754783049225807, 0.035803817212581635, 0.036847181618213654, 0.08709568530321121, 0.06258723884820938, -0.06264924257993698, -0.003439870895817876, -0.01522428821772337, -0.007044075056910515, -0.15164627134799957, -0.19300268590450287, -0.025256607681512833, -0.0200581606477499, 0.08781859278678894, -0.20405974984169006, 0.01960292086005211, -0.043502431362867355, 0.09305994212627411, 0.017027119174599648, -0.009177275002002716, -0.05504470318555832, 0.10782260447740555, -0.023087309673428535, -0.04909471794962883, 0.0668131560087204, -0.015085511840879917, -0.06336434930562973, -0.08089190721511841, -0.10096660256385803, 0.18621042370796204, 0.13892404735088348, -0.151669442653656, -0.10937488079071045, 0.015644345432519913, -0.06139355152845383, -0.022212862968444824, -0.057233456522226334, 0.0564904622733593, 0.18072649836540222, -0.01574549451470375, 0.15169773995876312, -0.052853431552648544, -0.04706889018416405, 0.021385572850704193, -0.03310905396938324, 0.04335913807153702, 0.10842389613389969, 0.13569805026054382, -0.08457112312316895, 0.1361512988805771, 0.1218692883849144, -0.13111263513565063, 0.13677334785461426, -0.025905638933181763, -0.07789324969053268, -0.018446670845150948, -0.030742309987545013, 0.007610428147017956, 0.10661071538925171, -0.10808677226305008, -0.01922493800520897, 0.0071347723715007305, 0.020305147394537926, 0.026112085208296776, -0.23135057091712952, -0.046915993094444275, 0.02424618974328041, -0.003096528584137559, 0.018515875563025475, -0.01951778493821621, 0.02580680325627327, 0.11866136640310287, 0.0020909635350108147, -0.07759678363800049, 0.024093760177493095, 0.00893546175211668, -0.06352781504392624, 0.2146356850862503, -0.06943210959434509, -0.11312001943588257, -0.1019912138581276, -0.07687869668006897, -0.04238303750753403, 0.013024810701608658, 0.03158364072442055, -0.12026584893465042, -0.021418938413262367, -0.02185477688908577, 0.03273407369852066, 0.0030455556698143482, 0.06268017739057541, -0.005181455984711647, 0.002387002110481262, 0.07124806940555573, -0.09937068074941635, -0.0005596545524895191, -0.07595739513635635, -0.07265695929527283, 0.05849755182862282, 0.06279446929693222, 0.12046454101800919, 0.16986700892448425, -0.04765129089355469, 0.005394987761974335, -0.024400215595960617, 0.23848678171634674, -0.0751553475856781, -0.03985968604683876, 0.09683617949485779, -0.018827078863978386, 0.04960450902581215, 0.10460381954908371, 0.08367177098989487, -0.09397482126951218, 0.015742994844913483, 0.0470423549413681, -0.04357099160552025, -0.20160119235515594, -0.038630712777376175, -0.05170169100165367, -0.04798796772956848, 0.09219147264957428, 0.02131497673690319, 0.04089008644223213, 0.07909292727708817, 0.06711464375257492, 0.09728001803159714, -0.07520143687725067, 0.05096640810370445, 0.08856416493654251, 0.053435731679201126, 0.13284629583358765, -0.04117075353860855, -0.10521731525659561, 0.02107597514986992, -0.024051981046795845, 0.23177176713943481, -0.0038389968685805798, 0.07269735634326935, 0.03901175409555435, 0.19265300035476685, 0.010800961405038834, 0.08711627125740051, 0.00300702010281384, -0.06744545698165894, 0.000320995255606249, -0.02838362194597721, -0.03612513840198517, 0.010060080327093601, -0.026500064879655838, 0.054114680737257004, -0.11174614727497101, -0.011367600411176682, 0.05662032961845398, 0.23012308776378632, 0.02408546395599842, -0.3223344087600708, -0.07357577234506607, -0.011025436222553253, -0.03599712625145912, -0.013542305678129196, 0.007855766452848911, 0.10567118972539902, -0.09833948314189911, 0.011641263961791992, -0.08281056582927704, 0.08809417486190796, -0.04271498695015907, 0.036696553230285645, 0.06772663444280624, 0.12630119919776917, -0.005529686342924833, 0.06417804211378098, -0.305855393409729, 0.27393829822540283, 0.009537872858345509, 0.08100421726703644, -0.07624920457601547, -0.007353424560278654, 0.036383580416440964, 0.03732066601514816, 0.032587770372629166, -0.020104434341192245, -0.04177025705575943, -0.22623340785503387, -0.030331812798976898, 0.0285630002617836, 0.12068957835435867, -0.0075541152618825436, 0.10377029329538345, -0.024200307205319405, 0.00005155575854587369, 0.08048006147146225, -0.04490114375948906, -0.04457297548651695, -0.0742047131061554, -0.02755388617515564, 0.010738343931734562, -0.07488889992237091, -0.048193786293268204, -0.12068187445402145, -0.1354958713054657, 0.1486193686723709, 0.013996468856930733, -0.016360098496079445, -0.1275208294391632, 0.12574636936187744, 0.0811011865735054, -0.08053231984376907, 0.04449211433529854, 0.011230092495679855, 0.05299266427755356, 0.03201989457011223, -0.06810819357633591, 0.11526092886924744, -0.05820934846997261, -0.152246356010437, -0.06424514949321747, 0.07927361130714417, 0.04208575561642647, 0.06544974446296692, -0.02301499992609024, 0.0229955967515707, -0.025375407189130783, -0.0903472900390625, 0.03937704116106033, -0.04006959870457649, 0.0644475445151329, 0.02948816865682602, -0.051256582140922546, -0.005753687117248774, -0.05698229372501373, -0.011369648389518261, 0.18660961091518402, 0.2201036661863327, -0.09734193980693817, -0.01712528057396412, 0.026125185191631317, -0.05946418642997742, -0.19808503985404968, 0.09593727439641953, 0.08573706448078156, 0.007431112229824066, 0.04530135169625282, -0.16281530261039734, 0.15490049123764038, 0.1000962182879448, -0.0013520345091819763, 0.10888125747442245, -0.30510765314102173, -0.1282355934381485, 0.10589848458766937, 0.1721881926059723, 0.13675452768802643, -0.13790705800056458, -0.0070046489126980305, -0.008709002286195755, -0.09763187915086746, 0.10359155386686325, -0.06426163762807846, 0.12145929038524628, -0.019056083634495735, 0.10903739184141159, 0.013593306764960289, -0.07166292518377304, 0.09361252933740616, 0.007082231342792511, 0.11645247042179108, -0.06414512544870377, -0.06102367490530014, 0.04334691911935806, -0.02508259378373623, -0.012173532508313656, -0.02399563230574131, 0.018605703487992287, -0.0673445612192154, -0.020576614886522293, -0.09741745889186859, 0.04260580241680145, -0.02326616272330284, -0.07246298342943192, -0.03844840079545975, 0.03469730541110039, 0.034943729639053345, -0.025639070197939873, 0.11715426295995712, 0.020161490887403488, 0.17447295784950256, 0.08593776077032089, 0.06346122175455093, -0.050561998039484024, -0.04841836541891098, 0.0034034322015941143, -0.010078824125230312, 0.06329295784235, -0.13016362488269806, 0.020914848893880844, 0.1553254872560501, 0.022595396265387535, 0.1142435371875763, 0.0921553373336792, -0.018760520964860916, 0.016071034595370293, 0.07624492049217224, -0.16313201189041138, -0.0652882531285286, 0.004153259098529816, -0.0857715979218483, -0.09250564128160477, 0.05332089588046074, 0.0799720510840416, -0.07481376081705093, -0.011270832270383835, -0.008530267514288425, -0.02374846674501896, -0.06649409234523773, 0.22630544006824493, 0.08077908307313919, 0.04372468218207359, -0.10051923245191574, 0.05768468976020813, 0.06488308310508728, -0.08738836646080017, -0.005134388338774443, 0.08041257411241531, -0.07681380212306976, -0.020639704540371895, 0.11760535091161728, 0.203256756067276, -0.07639540731906891, -0.0118074556812644, -0.14928030967712402, -0.10582452267408371, 0.0648043230175972, 0.18278199434280396, 0.11151919513940811, -0.0056063588708639145, -0.05881034582853317, 0.035694669932127, -0.15800076723098755, 0.07858650386333466, 0.049578793346881866, 0.08591622859239578, -0.15005116164684296, 0.20051398873329163, -0.00004556030035018921, 0.0442449189722538, -0.0340452641248703, 0.032208554446697235, -0.11947087198495865, 0.02182786725461483, -0.1101863905787468, -0.0576208233833313, -0.007169285323470831, -0.006640194449573755, -0.0015152629930526018, -0.07371584326028824, -0.059259410947561264, 0.005731922574341297, -0.1292037069797516, -0.015692725777626038, 0.04629449546337128, 0.01673985831439495, -0.10646671801805496, -0.041379284113645554, 0.020045820623636246, -0.046777401119470596, 0.04783070459961891, 0.049333520233631134, 0.022893687710165977, 0.07237260788679123, -0.1446196287870407, -0.013995609246194363, 0.07226084172725677, -0.00627199187874794, 0.09819990396499634, -0.05520399659872055, -0.0003193517040926963, -0.011192445643246174, 0.11059475690126419, 0.02390620857477188, 0.07886900007724762, -0.1395350992679596, 0.009412514045834541, -0.033310696482658386, -0.09444313496351242, -0.06931016594171524, 0.02054710127413273, 0.0772700086236, 0.012624329887330532, 0.18304604291915894, -0.08549670875072479, 0.05452527478337288, -0.21084682643413544, -0.012454807758331299, -0.02010815404355526, -0.11260063946247101, -0.09965618699789047, -0.05579297989606857, 0.07505887001752853, -0.052359987050294876, 0.11857812106609344, 0.050597503781318665, 0.06416036933660507, 0.031432848423719406, -0.02391139417886734, 0.004131124820560217, 0.03485950827598572, 0.19422318041324615, 0.04474707692861557, -0.04302285239100456, 0.05776410922408104, 0.08239096403121948, 0.1057816743850708, 0.11372319608926773, 0.21143266558647156, 0.14386913180351257, -0.02503117360174656, 0.08243376016616821, 0.028620216995477676, -0.05494459718465805, -0.16101951897144318, 0.024334531277418137, -0.07625152915716171, 0.08133033663034439, -0.032996710389852524, 0.19418784976005554, 0.06248319521546364, -0.1546187847852707, 0.046457160264253616, -0.06446539610624313, -0.10111140459775925, -0.09942598640918732, -0.017352033406496048, -0.08178842067718506, -0.13899432122707367, 0.01581418141722679, -0.10090053081512451, 0.012794038280844688, 0.12450805306434631, 0.014235005713999271, -0.024680081754922867, 0.1996651142835617, 0.04029490426182747, 0.04260535538196564, 0.056289855390787125, 0.012903129681944847, -0.01808467134833336, -0.09216059744358063, -0.059201039373874664, -0.047952424734830856, -0.015188978053629398, 0.03316569700837135, -0.07716135680675507, -0.09488082677125931, 0.03645538538694382, -0.009820656850934029, -0.10201095789670944, 0.02345420978963375, 0.02394774928689003, 0.06862156838178635, 0.02556866779923439, -0.007034864742308855, 0.017973750829696655, -0.03871352970600128, 0.22256594896316528, -0.08884022384881973, -0.0757046565413475, -0.10304200649261475, 0.2782719135284424, 0.035255976021289825, 0.004773607477545738, 0.018357792869210243, -0.06902781128883362, 0.010662268847227097, 0.24940909445285797, 0.1952691525220871, -0.10988516360521317, -0.005476735532283783, 0.0039602466858923435, -0.017206134274601936, -0.03663536161184311, 0.1355164498090744, 0.1272675096988678, 0.05333362892270088, -0.11245917528867722, -0.04331709444522858, -0.05917974188923836, -0.013946933671832085, -0.036999817937612534, 0.049192529171705246, 0.06006799265742302, 0.02137143537402153, -0.06052057817578316, 0.05811971798539162, -0.07162695378065109, -0.1113964319229126, 0.08550800383090973, -0.21034763753414154, -0.1716027557849884, -0.012736867181956768, 0.10872951149940491, -0.012623433023691177, 0.07159504294395447, -0.03009413741528988, -0.0026729621458798647, 0.03733649477362633, -0.024703802540898323, -0.07117537409067154, -0.09776511043310165, 0.09812222421169281, -0.10478959232568741, 0.17811942100524902, -0.04954991489648819, 0.06620125472545624, 0.12617163360118866, 0.06129801645874977, -0.06210533529520035, 0.04843083769083023, 0.045162759721279144, -0.11185432970523834, 0.022697674110531807, 0.12876395881175995, -0.03000810369849205, 0.05747333541512489, 0.03167731687426567, -0.14002926647663116, 0.033696822822093964, -0.10581860691308975, -0.03089076094329357, -0.04381171613931656, -0.04869960620999336, -0.05309348553419113, 0.12499596923589706, 0.23458817601203918, -0.006743243895471096, 0.032576922327280045, -0.08791431784629822, 0.00844732765108347, 0.0540543757379055, 0.053739435970783234, -0.1062634140253067, -0.2568429112434387, 0.009084660559892654, 0.07708041369915009, -0.04020215943455696, -0.2182934731245041, -0.09181743115186691, 0.009176265448331833, -0.07882224023342133, -0.08911658078432083, 0.08827919512987137, 0.07726947963237762, 0.062497880309820175, -0.050949808210134506, -0.10240047425031662, -0.08314218372106552, 0.15404361486434937, -0.1532345861196518, -0.08300840854644775 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2811 - Precision: 0.3231 - Recall: 0.5151 - F1: 0.3971 - Accuracy: 0.8913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.2881 | 0.2089 | 0.3621 | 0.2650 | 0.8715 | | No log | 2.0 | 60 | 0.2500 | 0.2619 | 0.3842 | 0.3115 | 0.8845 | | No log | 3.0 | 90 | 0.2571 | 0.2327 | 0.4338 | 0.3030 | 0.8809 | | No log | 4.0 | 120 | 0.2479 | 0.3051 | 0.4761 | 0.3719 | 0.8949 | | No log | 5.0 | 150 | 0.2783 | 0.3287 | 0.4761 | 0.3889 | 0.8936 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_0.0001\_all\_01\_03\_2022-15\_22\_12 ============================================================= This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2811 * Precision: 0.3231 * Recall: 0.5151 * F1: 0.3971 * Accuracy: 0.8913 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1290 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0733 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 2.0 | 30 | 0.0732 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 3.0 | 45 | 0.0731 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 4.0 | 60 | 0.0716 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 5.0 | 75 | 0.0635 | 0.04 | 0.0055 | 0.0097 | 0.9861 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_0.0001\_editorials\_01\_03\_2022-15\_20\_12 ==================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1290 * Precision: 0.0637 * Recall: 0.0080 * F1: 0.0141 * Accuracy: 0.9707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1832 - Precision: 0.6138 - Recall: 0.7169 - F1: 0.6613 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.2740 | 0.4554 | 0.5460 | 0.4966 | 0.8943 | | No log | 2.0 | 22 | 0.2189 | 0.5470 | 0.6558 | 0.5965 | 0.9193 | | No log | 3.0 | 33 | 0.2039 | 0.5256 | 0.6706 | 0.5893 | 0.9198 | | No log | 4.0 | 44 | 0.2097 | 0.5401 | 0.6795 | 0.6018 | 0.9237 | | No log | 5.0 | 55 | 0.2255 | 0.6117 | 0.6825 | 0.6452 | 0.9223 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_0.0001\_essays\_01\_03\_2022-15\_18\_35 ================================================================ This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1832 * Precision: 0.6138 * Recall: 0.7169 * F1: 0.6613 * Accuracy: 0.9332 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5923 - Precision: 0.0039 - Recall: 0.0212 - F1: 0.0066 - Accuracy: 0.7084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.6673 | 0.0476 | 0.0128 | 0.0202 | 0.6652 | | No log | 2.0 | 20 | 0.6211 | 0.0 | 0.0 | 0.0 | 0.6707 | | No log | 3.0 | 30 | 0.6880 | 0.0038 | 0.0128 | 0.0058 | 0.6703 | | No log | 4.0 | 40 | 0.6566 | 0.0030 | 0.0128 | 0.0049 | 0.6690 | | No log | 5.0 | 50 | 0.6036 | 0.0 | 0.0 | 0.0 | 0.6868 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_0.0001\_webDiscourse\_01\_03\_2022-15\_16\_57 ====================================================================== This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5923 * Precision: 0.0039 * Recall: 0.0212 * F1: 0.0066 * Accuracy: 0.7084 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10964034497737885, 0.07606498152017593, -0.001878639799542725, 0.12491469830274582, 0.1838001310825348, 0.022915702313184738, 0.09991279244422913, 0.11431945860385895, -0.11300458759069443, 0.01477926503866911, 0.12751245498657227, 0.19224399328231812, 0.0018176479497924447, 0.09426400065422058, -0.05159754678606987, -0.24083247780799866, -0.010373629629611969, 0.049076177179813385, -0.08675725013017654, 0.13230374455451965, 0.091362863779068, -0.13960357010364532, 0.0794844925403595, 0.00774338748306036, -0.23039504885673523, 0.020446186885237694, 0.03026951290667057, -0.057696323841810226, 0.15054218471050262, 0.013044103980064392, 0.13363248109817505, -0.005405668169260025, 0.08610401302576065, -0.16383391618728638, 0.008501171134412289, 0.061782170087099075, 0.012638877145946026, 0.09063084423542023, 0.06278078258037567, 0.002136655617505312, 0.10135601460933685, -0.08476407825946808, 0.04676337167620659, 0.02037147432565689, -0.11634119600057602, -0.23744219541549683, -0.08905845135450363, 0.01338288001716137, 0.0628284215927124, 0.09587687999010086, 0.008947658352553844, 0.15100207924842834, -0.09624762088060379, 0.09140552580356598, 0.23483122885227203, -0.30391326546669006, -0.06139950454235077, 0.049148887395858765, -0.002125876024365425, 0.0717664286494255, -0.10474174469709396, -0.02307085692882538, 0.054938919842243195, 0.046099644154310226, 0.1437416672706604, -0.04084683209657669, -0.12571576237678528, 0.028963593766093254, -0.14632965624332428, -0.023577937856316566, 0.11169904470443726, 0.02681557834148407, -0.03575315698981285, -0.018373822793364525, -0.06306368857622147, -0.17236939072608948, -0.03783845156431198, -0.016965148970484734, 0.05376345291733742, -0.032419271767139435, -0.062102749943733215, 0.00657692039385438, -0.099279023706913, -0.07196379452943802, -0.08335904031991959, 0.153439000248909, 0.0447232648730278, 0.022602535784244537, -0.027150576934218407, 0.1065872460603714, 0.000803870614618063, -0.12287062406539917, 0.03180980682373047, 0.03784937784075737, -0.007941054180264473, -0.05117914825677872, -0.07359818369150162, -0.05571908503770828, 0.014072025194764137, 0.10081835836172104, -0.048984747380018234, 0.04638468846678734, 0.03779585659503937, 0.04278922453522682, -0.1122492253780365, 0.19376491010189056, -0.045438073575496674, -0.007199902553111315, 0.016113633289933205, 0.030136683955788612, 0.00248191156424582, -0.0016730729257687926, -0.11592374742031097, -0.0013114905450493097, 0.11425430327653885, 0.01842781901359558, -0.08246145397424698, 0.06927740573883057, -0.05113575980067253, -0.022085823118686676, 0.007310990244150162, -0.09915294498205185, 0.036756113171577454, -0.009535125456750393, -0.08834166079759598, -0.023360351100564003, 0.017954697832465172, 0.014770585112273693, -0.0249547827988863, 0.12021780759096146, -0.08912092447280884, 0.043812770396471024, -0.10722162574529648, -0.10748092085123062, 0.007039964199066162, -0.08610574156045914, 0.02624335326254368, -0.09577907621860504, -0.1511995494365692, -0.009859908372163773, 0.06007126718759537, -0.020399555563926697, -0.05592997372150421, -0.035057708621025085, -0.06850173324346542, 0.0004974919138476253, -0.019090548157691956, 0.16396266222000122, -0.05605791136622429, 0.10156446695327759, 0.03485339134931564, 0.06179186701774597, -0.056743841618299484, 0.05947870388627052, -0.09962322562932968, 0.006385026033967733, -0.18195396661758423, 0.030203387141227722, -0.05215204507112503, 0.07571335881948471, -0.09667667746543884, -0.10471774637699127, 0.026594044640660286, -0.013516728766262531, 0.07812145352363586, 0.07777440547943115, -0.1651950478553772, -0.06694241613149643, 0.14689978957176208, -0.054874345660209656, -0.1055862084031105, 0.10751690715551376, -0.0624934583902359, 0.03296474739909172, 0.07589017599821091, 0.15014831721782684, 0.07208478450775146, -0.06400610506534576, 0.035549066960811615, 0.004353930242359638, 0.04204032942652702, -0.09941023588180542, 0.06046935170888901, 0.0037036961875855923, -0.025267183780670166, 0.03692453354597092, -0.032562654465436935, 0.061795808374881744, -0.0959438607096672, -0.09563764929771423, -0.048312898725271225, -0.10690896213054657, 0.04267297685146332, 0.0751025527715683, 0.09127319604158401, -0.09331212937831879, -0.06710139662027359, 0.07948484271764755, 0.07482821494340897, -0.04867005720734596, 0.03350071981549263, -0.05528591200709343, 0.06239987537264824, -0.05832221731543541, -0.027208387851715088, -0.19749081134796143, -0.007693419232964516, 0.00975258368998766, -0.005358629394322634, 0.02323644421994686, 0.028250619769096375, 0.070320263504982, 0.0556466206908226, -0.0531761460006237, -0.004655718803405762, -0.006836998742073774, -0.003895225003361702, -0.1490902602672577, -0.19302619993686676, -0.03087233193218708, -0.01618938148021698, 0.09411861002445221, -0.19183145463466644, 0.028233341872692108, -0.027029074728488922, 0.0672493651509285, -0.0004488869453780353, -0.0037864046171307564, -0.05255354568362236, 0.0946822240948677, -0.031721487641334534, -0.05111032351851463, 0.08141130208969116, -0.0012043735478073359, -0.07952206581830978, -0.04911435395479202, -0.07785926759243011, 0.19052906334400177, 0.1368006318807602, -0.1324472278356552, -0.07601471245288849, 0.0019302694126963615, -0.05219796299934387, -0.030471768230199814, -0.041989050805568695, 0.06080838665366173, 0.18492883443832397, -0.014021366834640503, 0.15758980810642242, -0.06869066506624222, -0.04839298874139786, 0.021955523639917374, -0.030456610023975372, 0.04180069640278816, 0.11380131542682648, 0.12581633031368256, -0.08413219451904297, 0.1405041217803955, 0.15689362585544586, -0.11182006448507309, 0.10032828152179718, -0.046036966145038605, -0.07026369869709015, -0.014879119582474232, -0.019682275131344795, 0.0027514370158314705, 0.0921504944562912, -0.12968645989894867, -0.007658309768885374, 0.020340267568826675, 0.025925153866410255, 0.02053057961165905, -0.23252439498901367, -0.03754568099975586, 0.029104050248861313, -0.036621738225221634, 0.0025877421721816063, -0.022754406556487083, 0.006639436818659306, 0.10685593634843826, 0.0004489817365538329, -0.09645900875329971, 0.04559887945652008, 0.008847529999911785, -0.0731661468744278, 0.2164229154586792, -0.08605153858661652, -0.1295628547668457, -0.11715226620435715, -0.08502800017595291, -0.052758555859327316, 0.008610758930444717, 0.05334655940532684, -0.09680519998073578, -0.028625980019569397, -0.047179535031318665, 0.000051022114348597825, -0.010080611333251, 0.05020389333367348, -0.006901491433382034, -0.004284197930246592, 0.08344364166259766, -0.10942962765693665, -0.007279019802808762, -0.05736461654305458, -0.074509397149086, 0.0418497659265995, 0.05161488428711891, 0.1059826910495758, 0.16149768233299255, -0.033221933990716934, 0.0069833057932555676, -0.024006683379411697, 0.22504165768623352, -0.05198837071657181, -0.03889738768339157, 0.12661617994308472, -0.0026588106993585825, 0.057132869958877563, 0.09912868589162827, 0.07944373786449432, -0.08991066366434097, 0.004108097404241562, 0.03503100946545601, -0.038798753172159195, -0.22434338927268982, -0.04119211807847023, -0.05715041235089302, -0.04707757756114006, 0.09487087279558182, 0.034905508160591125, 0.05025700479745865, 0.0745578482747078, 0.058392398059368134, 0.09757376462221146, -0.06665274500846863, 0.05092468857765198, 0.10517618805170059, 0.05528341978788376, 0.12665022909641266, -0.04935145005583763, -0.06626217812299728, 0.03459310904145241, -0.007999766618013382, 0.23437462747097015, 0.009349341504275799, 0.12429975718259811, 0.05533597990870476, 0.2149461954832077, 0.003430610056966543, 0.09137443453073502, -0.01115878950804472, -0.046944327652454376, -0.011347158811986446, -0.038742296397686005, -0.03868058696389198, 0.011035377159714699, -0.06572724133729935, 0.05708451569080353, -0.10504776984453201, -0.0221075639128685, 0.04582681506872177, 0.2675783336162567, 0.021586962044239044, -0.322464257478714, -0.07056321203708649, -0.0054330043494701385, -0.03226521238684654, -0.019715316593647003, 0.021637070924043655, 0.08161602169275284, -0.08914581686258316, 0.019838988780975342, -0.0713391974568367, 0.09847349673509598, -0.03290972486138344, 0.04058456793427467, 0.07935617864131927, 0.09907324612140656, 0.014474226161837578, 0.08021567016839981, -0.3213280737400055, 0.2677963972091675, 0.007357749156653881, 0.06814897805452347, -0.07943430542945862, 0.001202318468131125, 0.038497358560562134, 0.07007444649934769, 0.05071735382080078, -0.011277851648628712, -0.035348694771528244, -0.2033219039440155, -0.04504551738500595, 0.030937720090150833, 0.08214200288057327, -0.017569100484251976, 0.07924304902553558, -0.03185476362705231, 0.004904418718069792, 0.07730679959058762, -0.01860608533024788, -0.04848702996969223, -0.08104487508535385, -0.02058979868888855, 0.035005953162908554, -0.05590042099356651, -0.058513298630714417, -0.10972082614898682, -0.1426781415939331, 0.1641920506954193, -0.009285780601203442, -0.027491426095366478, -0.11647728085517883, 0.08197678625583649, 0.07501312345266342, -0.0851130560040474, 0.05258528143167496, 0.0001052433653967455, 0.04727236181497574, 0.04182419925928116, -0.08201786130666733, 0.11376745998859406, -0.05688842758536339, -0.14603036642074585, -0.058846622705459595, 0.0879676565527916, 0.02930500917136669, 0.060051627457141876, -0.014387242496013641, 0.017060987651348114, -0.03745716065168381, -0.0936550423502922, 0.018067454919219017, -0.03081226535141468, 0.08240203559398651, 0.016270434483885765, -0.05770501494407654, 0.011202959343791008, -0.058074336498975754, -0.03217243775725365, 0.18650397658348083, 0.21763646602630615, -0.10574809461832047, 0.01309552974998951, 0.03445129469037056, -0.06839320808649063, -0.1975032389163971, 0.05190473794937134, 0.0578417032957077, -0.0010670741321519017, 0.040040627121925354, -0.1737011820077896, 0.1555875837802887, 0.10879670828580856, -0.014571801759302616, 0.1143094003200531, -0.3183187246322632, -0.12961576879024506, 0.13061556220054626, 0.16401612758636475, 0.1464780867099762, -0.14022140204906464, -0.0200918260961771, -0.022786671295762062, -0.11105762422084808, 0.09561139345169067, -0.09048769623041153, 0.1172502338886261, -0.03281891345977783, 0.08654911816120148, 0.00010054832819150761, -0.06206769123673439, 0.11573117971420288, 0.025737952440977097, 0.11114225536584854, -0.05959264561533928, -0.03276320919394493, 0.03984067589044571, -0.032419353723526, 0.008279616944491863, -0.07985791563987732, 0.03393111005425453, -0.08431295305490494, -0.01571386307477951, -0.07684417814016342, 0.04589080810546875, -0.025848397985100746, -0.0585157610476017, -0.04175638407468796, 0.01966436207294464, 0.04249317944049835, -0.021339988335967064, 0.13423074781894684, 0.030704328790307045, 0.1480465829372406, 0.11741326749324799, 0.057649001479148865, -0.07496209442615509, -0.0735631138086319, -0.012816733680665493, -0.015317773446440697, 0.06823498755693436, -0.1402030736207962, 0.03167329728603363, 0.14104269444942474, 0.01745929755270481, 0.11564337462186813, 0.08291707932949066, -0.01298463623970747, 0.0031724891159683466, 0.06191178038716316, -0.15621338784694672, -0.06627131253480911, 0.00707713607698679, -0.05922534689307213, -0.09033802151679993, 0.06713873893022537, 0.07689964771270752, -0.07090102136135101, -0.013293197378516197, -0.008668934926390648, -0.009092504158616066, -0.07302260398864746, 0.21128611266613007, 0.06663397699594498, 0.04601337015628815, -0.11288701742887497, 0.07150701433420181, 0.0636611208319664, -0.0715131089091301, -0.011218159459531307, 0.0633399561047554, -0.08699776232242584, -0.04163670912384987, 0.12725409865379333, 0.18585722148418427, -0.06331450492143631, -0.044545236974954605, -0.1328592747449875, -0.11665835976600647, 0.08199562132358551, 0.15987662971019745, 0.1249585822224617, 0.014479461126029491, -0.05999109894037247, 0.002116110874339938, -0.1188233494758606, 0.06961488723754883, 0.034133415669202805, 0.07737486809492111, -0.14649415016174316, 0.16813071072101593, 0.012217105366289616, 0.05197807028889656, -0.023522285744547844, 0.029479950666427612, -0.09644538909196854, 0.019373221322894096, -0.13160505890846252, -0.028361104428768158, -0.01599203795194626, 0.00910174660384655, -0.0006331196636892855, -0.06496421992778778, -0.05872900411486626, 0.025119297206401825, -0.12592554092407227, -0.019748583436012268, 0.0374700203537941, 0.04743490368127823, -0.11167412996292114, -0.042741790413856506, 0.019605381414294243, -0.04816853627562523, 0.05299053341150284, 0.04549496993422508, 0.014359482564032078, 0.06779380887746811, -0.13430239260196686, -0.0016660705441609025, 0.0728541761636734, 0.013686677441000938, 0.07782188057899475, -0.0781584084033966, -0.0009878571145236492, 0.010838785208761692, 0.07748936861753464, 0.01692194864153862, 0.08081521838903427, -0.14695048332214355, -0.01811063289642334, -0.03661949932575226, -0.0816163644194603, -0.06506536155939102, 0.018692070618271828, 0.098653145134449, 0.014636794105172157, 0.1985885202884674, -0.07317240536212921, 0.03189253434538841, -0.20495249330997467, -0.002505144104361534, -0.023796401917934418, -0.11909989267587662, -0.13650132715702057, -0.06395233422517776, 0.06185305118560791, -0.048165034502744675, 0.14175982773303986, 0.03717422112822533, 0.04486459866166115, 0.02487674169242382, -0.016180746257305145, 0.01694507896900177, 0.025251228362321854, 0.21890997886657715, 0.04202018678188324, -0.03035779297351837, 0.07127353549003601, 0.06417510658502579, 0.09287707507610321, 0.12048450857400894, 0.1910092979669571, 0.1537216454744339, -0.011111478321254253, 0.09270065277814865, 0.014505770988762379, -0.05747464299201965, -0.15379726886749268, 0.036745958030223846, -0.05692475289106369, 0.09398286044597626, -0.024586031213402748, 0.22368861734867096, 0.05687728524208069, -0.1668374240398407, 0.05322674289345741, -0.05276479944586754, -0.0876125767827034, -0.11273661255836487, -0.04245922341942787, -0.08300014585256577, -0.14015258848667145, -0.002078176708891988, -0.0924752727150917, 0.020236650481820107, 0.13358111679553986, 0.0042239027097821236, -0.023383893072605133, 0.1591811627149582, 0.023464959114789963, 0.02909465879201889, 0.04611917957663536, 0.001964585157111287, -0.028778769075870514, -0.09767024219036102, -0.06633742153644562, -0.024350309744477272, -0.023748883977532387, 0.03696025162935257, -0.06513164192438126, -0.06357760727405548, 0.04198996722698212, -0.02333589643239975, -0.09201109409332275, 0.01861635036766529, 0.01672007143497467, 0.06325117498636246, 0.05010344833135605, 0.007529384922236204, 0.02143975906074047, -0.01994219794869423, 0.20689433813095093, -0.08310674875974655, -0.0764525905251503, -0.084999680519104, 0.28106027841567993, 0.047463029623031616, -0.007926959544420242, 0.03001990355551243, -0.05533874034881592, 0.0071560535579919815, 0.25637879967689514, 0.19505389034748077, -0.09422516822814941, -0.012320807203650475, 0.0007128173019737005, -0.01759415864944458, -0.026464125141501427, 0.13346661627292633, 0.13837991654872894, 0.03533561900258064, -0.10623160004615784, -0.04318304732441902, -0.05771656706929207, -0.007359859999269247, -0.06002606078982353, 0.06144845485687256, 0.036784734576940536, 0.003625416662544012, -0.04181943088769913, 0.04637347534298897, -0.05213543772697449, -0.096314437687397, 0.08360225707292557, -0.17805162072181702, -0.16558900475502014, -0.013376928865909576, 0.11099448800086975, -0.0024702444206923246, 0.053881850093603134, -0.02724277786910534, 0.011630105786025524, 0.05639385059475899, -0.023593442514538765, -0.09340913593769073, -0.09601408243179321, 0.10594841837882996, -0.11090733855962753, 0.19842180609703064, -0.037603020668029785, 0.0707264393568039, 0.12371719628572464, 0.07215171307325363, -0.0779343992471695, 0.060163713991642, 0.03247923031449318, -0.09300083667039871, 0.03461647033691406, 0.074667789041996, -0.027855651453137398, 0.043720610439777374, 0.023368317633867264, -0.10472297668457031, 0.024040404707193375, -0.08269765973091125, -0.04181027039885521, -0.041947055608034134, -0.05475080758333206, -0.056970078498125076, 0.12334494292736053, 0.2102765589952469, -0.018167326226830482, 0.01639775186777115, -0.08883199095726013, 0.0058788578025996685, 0.05144723877310753, 0.008251111954450607, -0.08786468952894211, -0.2186792641878128, 0.019344164058566093, 0.06791325658559799, -0.029700595885515213, -0.21023087203502655, -0.0908651128411293, 0.004484436009079218, -0.08123216032981873, -0.093927301466465, 0.07650282979011536, 0.07197324931621552, 0.05624338984489441, -0.053839363157749176, -0.09921190142631531, -0.08337677270174026, 0.14507488906383514, -0.1499222218990326, -0.08997805416584015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3121 - Precision: 0.1204 - Recall: 0.2430 - F1: 0.1611 - Accuracy: 0.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.4480 | 0.0209 | 0.0223 | 0.0216 | 0.7794 | | No log | 2.0 | 60 | 0.3521 | 0.0559 | 0.1218 | 0.0767 | 0.8267 | | No log | 3.0 | 90 | 0.3177 | 0.1208 | 0.2504 | 0.1629 | 0.8487 | | No log | 4.0 | 120 | 0.3009 | 0.1296 | 0.2607 | 0.1731 | 0.8602 | | No log | 5.0 | 150 | 0.2988 | 0.1393 | 0.2693 | 0.1836 | 0.8599 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_1e-05\_all\_01\_03\_2022-15\_14\_04 ============================================================ This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3121 * Precision: 0.1204 * Recall: 0.2430 * F1: 0.1611 * Accuracy: 0.8538 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1194 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0877 | 0.12 | 0.0194 | 0.0333 | 0.9830 | | No log | 2.0 | 30 | 0.0806 | 0.12 | 0.0194 | 0.0333 | 0.9830 | | No log | 3.0 | 45 | 0.0758 | 0.12 | 0.0194 | 0.0333 | 0.9830 | | No log | 4.0 | 60 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 | | No log | 5.0 | 75 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_1e-05\_editorials\_01\_03\_2022-15\_12\_47 =================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1194 * Precision: 0.0637 * Recall: 0.0080 * F1: 0.0141 * Accuracy: 0.9707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3082 - Precision: 0.2796 - Recall: 0.4373 - F1: 0.3411 - Accuracy: 0.8887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.5018 | 0.0192 | 0.0060 | 0.0091 | 0.7370 | | No log | 2.0 | 22 | 0.4066 | 0.1541 | 0.2814 | 0.1992 | 0.8340 | | No log | 3.0 | 33 | 0.3525 | 0.1768 | 0.3234 | 0.2286 | 0.8612 | | No log | 4.0 | 44 | 0.3250 | 0.2171 | 0.3503 | 0.2680 | 0.8766 | | No log | 5.0 | 55 | 0.3160 | 0.2353 | 0.3713 | 0.2880 | 0.8801 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_1e-05\_essays\_01\_03\_2022-15\_11\_44 =============================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3082 * Precision: 0.2796 * Recall: 0.4373 * F1: 0.3411 * Accuracy: 0.8887 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5867 - Precision: 0.0119 - Recall: 0.0116 - F1: 0.0118 - Accuracy: 0.6976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.5730 | 0.0952 | 0.0270 | 0.0421 | 0.7381 | | No log | 2.0 | 20 | 0.5755 | 0.0213 | 0.0135 | 0.0165 | 0.7388 | | No log | 3.0 | 30 | 0.5635 | 0.0196 | 0.0135 | 0.016 | 0.7416 | | No log | 4.0 | 40 | 0.5549 | 0.0392 | 0.0270 | 0.032 | 0.7429 | | No log | 5.0 | 50 | 0.5530 | 0.0357 | 0.0270 | 0.0308 | 0.7438 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39", "results": []}]}
token-classification
ali2066/distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilBERT\_token\_itr0\_1e-05\_webDiscourse\_01\_03\_2022-15\_10\_39 ===================================================================== This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5867 * Precision: 0.0119 * Recall: 0.0116 * F1: 0.0118 * Accuracy: 0.6976 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10778860002756119, 0.08068027347326279, -0.0019912277348339558, 0.12253311276435852, 0.18217027187347412, 0.01565619744360447, 0.10381145030260086, 0.11539831012487411, -0.1166924312710762, 0.019979365170001984, 0.12624366581439972, 0.19117572903633118, -0.0012333329068496823, 0.12800829112529755, -0.055343396961688995, -0.25173091888427734, -0.00676547409966588, 0.05903971195220947, -0.07647360861301422, 0.13451839983463287, 0.09958050400018692, -0.14168573915958405, 0.0816231444478035, 0.012527969665825367, -0.24007979035377502, 0.008762762881815434, 0.019333064556121826, -0.06813951581716537, 0.14439740777015686, 0.013294154778122902, 0.13575655221939087, -0.005636407062411308, 0.08635827898979187, -0.1564597338438034, 0.005067731253802776, 0.05133612081408501, 0.01859608292579651, 0.08985215425491333, 0.051328063011169434, 0.00235803727991879, 0.10127215832471848, -0.08314195275306702, 0.05177589878439903, 0.01590537838637829, -0.1168014407157898, -0.2395005226135254, -0.08772502094507217, 0.03395910933613777, 0.0706666111946106, 0.10034015774726868, 0.007109332364052534, 0.1476338803768158, -0.09143336862325668, 0.09342385083436966, 0.22674152255058289, -0.2851739823818207, -0.061990153044462204, 0.03877175226807594, -0.0023002990055829287, 0.04751979559659958, -0.10734959691762924, -0.03942511975765228, 0.06041524559259415, 0.04880852252244949, 0.14520759880542755, -0.037069082260131836, -0.11867764592170715, 0.012997930869460106, -0.1473141461610794, -0.032308775931596756, 0.12438832223415375, 0.028344258666038513, -0.035553812980651855, -0.034989532083272934, -0.05802929401397705, -0.17015181481838226, -0.041250307112932205, -0.011203555390238762, 0.04424423724412918, -0.04127587005496025, -0.06626494973897934, 0.022792845964431763, -0.10185027867555618, -0.06347301602363586, -0.08299972116947174, 0.15031522512435913, 0.04584682360291481, 0.013152176514267921, -0.028591064736247063, 0.10844839364290237, 0.01314002089202404, -0.1265183389186859, 0.02615172415971756, 0.028901154175400734, 0.0006782609270885587, -0.060023125261068344, -0.06964389979839325, -0.03640108183026314, 0.0035645621828734875, 0.12354211509227753, -0.06511713564395905, 0.041892632842063904, 0.043377090245485306, 0.03987406566739082, -0.0988021194934845, 0.19699305295944214, -0.040478792041540146, 0.007059925701469183, 0.012530462816357613, 0.033851660788059235, -0.0006086048670113087, 0.005439952481538057, -0.11062806099653244, -0.0027242498472332954, 0.12489325553178787, 0.015043351799249649, -0.08146945387125015, 0.07351504266262054, -0.050107985734939575, -0.024015208706259727, 0.022560928016901016, -0.0983174741268158, 0.03587545454502106, -0.012931307777762413, -0.08847746253013611, -0.007891363464295864, 0.02188824862241745, 0.009507367387413979, -0.02293667383491993, 0.12532569468021393, -0.09073949605226517, 0.041648782789707184, -0.10197501629590988, -0.10105559229850769, 0.014163543470203876, -0.08512941002845764, 0.034675851464271545, -0.10592201352119446, -0.153751939535141, -0.013454675674438477, 0.054634589701890945, -0.016510896384716034, -0.05786874517798424, -0.03710774704813957, -0.07363471388816833, -0.00016577761562075466, -0.019633933901786804, 0.14001797139644623, -0.05430953577160835, 0.10916466265916824, 0.03979006037116051, 0.06599710136651993, -0.047269903123378754, 0.05923401936888695, -0.10615438222885132, 0.008308201096951962, -0.19921383261680603, 0.03412729501724243, -0.050596315413713455, 0.08316604793071747, -0.09510570764541626, -0.12113242596387863, 0.03270784765481949, -0.014170041307806969, 0.0749235451221466, 0.07927799969911575, -0.15157417953014374, -0.07148759812116623, 0.14905676245689392, -0.06591138988733292, -0.10850075632333755, 0.10814139991998672, -0.06177520379424095, 0.044050607830286026, 0.0741284191608429, 0.14824946224689484, 0.07481394708156586, -0.0727955624461174, 0.015785813331604004, -0.005692317616194487, 0.03935689851641655, -0.08937748521566391, 0.05333205312490463, 0.014340400695800781, -0.011640478856861591, 0.03743923082947731, -0.03007642924785614, 0.07098198682069778, -0.10144605487585068, -0.0894973948597908, -0.04549995809793472, -0.10307253152132034, 0.04669182747602463, 0.07724519073963165, 0.09424751996994019, -0.08835993707180023, -0.062401436269283295, 0.09388649463653564, 0.08212777227163315, -0.05402301996946335, 0.028054270893335342, -0.06253018975257874, 0.06602650135755539, -0.04813767597079277, -0.02929706685245037, -0.19818554818630219, -0.0027279574424028397, 0.009923946112394333, -0.009098287671804428, 0.016067756339907646, 0.009231087751686573, 0.06743951141834259, 0.05596340820193291, -0.049541402608156204, -0.015716485679149628, -0.010662772692739964, -0.0015913869719952345, -0.13972966372966766, -0.1815250962972641, -0.032741792500019073, -0.01744925044476986, 0.10237553715705872, -0.18533678352832794, 0.031178176403045654, -0.025111215189099312, 0.08340159803628922, 0.0032002944499254227, -0.005594281479716301, -0.047736987471580505, 0.09413835406303406, -0.03148844093084335, -0.053037531673908234, 0.07191286981105804, 0.006543915718793869, -0.07302507758140564, -0.05387777090072632, -0.08084066957235336, 0.18388235569000244, 0.1397487372159958, -0.12494473159313202, -0.08842577785253525, -0.0047775437124073505, -0.06182694807648659, -0.03256929665803909, -0.04050677269697189, 0.05626282840967178, 0.1704808920621872, -0.01815677434206009, 0.1547713428735733, -0.06752704828977585, -0.05457916483283043, 0.027917182072997093, -0.034346356987953186, 0.0343589186668396, 0.11054909229278564, 0.12100817263126373, -0.08942346274852753, 0.14480799436569214, 0.1526193767786026, -0.10610613971948624, 0.1044721007347107, -0.052814316004514694, -0.06900573521852493, -0.013559920713305473, -0.0192964356392622, -0.0005816941848024726, 0.09070780873298645, -0.11998406797647476, -0.0036244273651391268, 0.022631892934441566, 0.02618779055774212, 0.018328344449400902, -0.22607354819774628, -0.03406372293829918, 0.026426436379551888, -0.028537128120660782, -0.004115203861147165, -0.013606647960841656, 0.014285454526543617, 0.10200429707765579, 0.0017789009725674987, -0.09579735994338989, 0.0470007061958313, 0.015623368322849274, -0.07472475618124008, 0.2172153741121292, -0.09002439677715302, -0.1417253613471985, -0.1159181147813797, -0.08487287908792496, -0.03850405290722847, 0.009662597440183163, 0.05983056500554085, -0.09044534713029861, -0.028931695967912674, -0.04295407235622406, 0.008778911083936691, -0.0005995242390781641, 0.04999883472919464, 0.01484903134405613, 0.0021564180497080088, 0.0796574205160141, -0.10424068570137024, -0.008146846666932106, -0.054779041558504105, -0.05765604227781296, 0.05144650489091873, 0.039376240223646164, 0.105418361723423, 0.15852470695972443, -0.034461610019207, 0.008509882725775242, -0.03193711116909981, 0.23830987513065338, -0.0570007860660553, -0.035862889140844345, 0.13747434318065643, -0.0006083119660615921, 0.05596925690770149, 0.10410916805267334, 0.07235107570886612, -0.08978364616632462, 0.008592176251113415, 0.02630692906677723, -0.0347512811422348, -0.21330563724040985, -0.05164693295955658, -0.05310467258095741, -0.03440861403942108, 0.10406991839408875, 0.027457943186163902, 0.05155198648571968, 0.07665199786424637, 0.050400350242853165, 0.09895331412553787, -0.057783447206020355, 0.05941593274474144, 0.12201196700334549, 0.052055127918720245, 0.12275896221399307, -0.045286938548088074, -0.07479453086853027, 0.029394270852208138, -0.01064267847687006, 0.23474833369255066, 0.000267635885393247, 0.10828784108161926, 0.05352022498846054, 0.1977105736732483, 0.004691984038800001, 0.09326126426458359, -0.0049678790383040905, -0.044221315532922745, -0.008631108328700066, -0.03319001942873001, -0.041508886963129044, 0.010931642726063728, -0.06597860902547836, 0.05317488685250282, -0.11938078701496124, -0.011321067810058594, 0.04771680384874344, 0.26432979106903076, 0.023131202906370163, -0.335601806640625, -0.09137655049562454, -0.011348218657076359, -0.03624609112739563, -0.028121262788772583, 0.022053774446249008, 0.0718589499592781, -0.09560035914182663, 0.024831682443618774, -0.0730324387550354, 0.09328873455524445, -0.04081428423523903, 0.042701102793216705, 0.07868198305368423, 0.08870295435190201, 0.01824023202061653, 0.07787904888391495, -0.31981849670410156, 0.2677275538444519, -0.0008013053447939456, 0.07302354276180267, -0.07791102677583694, 0.0021527200005948544, 0.030023625120520592, 0.06814513355493546, 0.05664649233222008, -0.011938609182834625, -0.049857720732688904, -0.21360041201114655, -0.04641563445329666, 0.0259179025888443, 0.07885637134313583, -0.010766174644231796, 0.08595389872789383, -0.029753485694527626, 0.005887418985366821, 0.07452994585037231, -0.04611753672361374, -0.04486816003918648, -0.08232437074184418, -0.014162871986627579, 0.0282480176538229, -0.035167254507541656, -0.06006906181573868, -0.11270229518413544, -0.1331779807806015, 0.14826740324497223, -0.012040582485496998, -0.03853262588381767, -0.11696383357048035, 0.08334825187921524, 0.08901045471429825, -0.08679377287626266, 0.06136387959122658, 0.003835330717265606, 0.058014027774333954, 0.03918171301484108, -0.07603564858436584, 0.10757704824209213, -0.06282689422369003, -0.15543310344219208, -0.05269487202167511, 0.09024756401777267, 0.034196075052022934, 0.05856827646493912, -0.009693451225757599, 0.013556289486587048, -0.039585407823324203, -0.0938815176486969, 0.013919304125010967, -0.01975153386592865, 0.08797334134578705, 0.01747271418571472, -0.0571659654378891, 0.009917334653437138, -0.060356758534908295, -0.026728369295597076, 0.17992958426475525, 0.21882113814353943, -0.10356417298316956, 0.009584853425621986, 0.033836714923381805, -0.06339707970619202, -0.19243067502975464, 0.04216541349887848, 0.06622365117073059, 0.0011702016927301884, 0.025208374485373497, -0.17150376737117767, 0.14472255110740662, 0.10532265156507492, -0.013714680448174477, 0.10331794619560242, -0.31880873441696167, -0.1250954121351242, 0.13238675892353058, 0.14762581884860992, 0.13311024010181427, -0.13088081777095795, -0.013592306524515152, -0.014398462139070034, -0.12866242229938507, 0.09570468217134476, -0.05568557232618332, 0.11657947301864624, -0.03557422757148743, 0.09214015305042267, 0.001615077955648303, -0.0635623037815094, 0.10738716274499893, 0.037040889263153076, 0.10471386462450027, -0.056938961148262024, -0.038231901824474335, 0.02904665842652321, -0.03696632757782936, 0.017075102776288986, -0.0551484115421772, 0.03799660876393318, -0.09058448672294617, -0.016240477561950684, -0.0816069021821022, 0.04832606762647629, -0.025774680078029633, -0.057457417249679565, -0.042464204132556915, 0.027175432071089745, 0.046880900859832764, -0.01869133673608303, 0.1300540566444397, 0.03951914981007576, 0.144923135638237, 0.10925117880105972, 0.05350537970662117, -0.07484740763902664, -0.07211120426654816, -0.014755398035049438, -0.017319664359092712, 0.06585656851530075, -0.13452404737472534, 0.033757079392671585, 0.15067574381828308, 0.02202780917286873, 0.11813154071569443, 0.08521270006895065, -0.009686121717095375, 0.004177741706371307, 0.06181138753890991, -0.16134954988956451, -0.05650242790579796, 0.0038418283220380545, -0.05388123542070389, -0.09307511150836945, 0.06766953319311142, 0.08106774836778641, -0.07494506984949112, -0.01577398180961609, -0.009086205624043941, -0.004285311792045832, -0.06316661089658737, 0.2117079347372055, 0.06207556277513504, 0.047572534531354904, -0.11244770884513855, 0.06464031338691711, 0.0607474185526371, -0.07543385028839111, -0.006139606237411499, 0.06169920787215233, -0.09176664799451828, -0.03987856209278107, 0.1086156815290451, 0.16184072196483612, -0.0835287794470787, -0.043604690581560135, -0.13595698773860931, -0.12141162902116776, 0.08731050789356232, 0.16496510803699493, 0.125546395778656, 0.021473029628396034, -0.05700363591313362, 0.006485836114734411, -0.1338813304901123, 0.07252254337072372, 0.04786335676908493, 0.08067125827074051, -0.15495456755161285, 0.1721206158399582, 0.00552594056352973, 0.05465091019868851, -0.023992661386728287, 0.030398765578866005, -0.09938911348581314, 0.019129302352666855, -0.11637122929096222, -0.028302805498242378, -0.03036094270646572, 0.008309651166200638, 0.00019970528956037015, -0.05884110927581787, -0.04852689430117607, 0.024456067010760307, -0.12126519531011581, -0.014865751378238201, 0.03672740235924721, 0.05118432641029358, -0.11102790385484695, -0.04154796898365021, 0.020814603194594383, -0.05577285960316658, 0.06195281445980072, 0.05118526890873909, 0.014619878493249416, 0.05727674067020416, -0.119622603058815, -0.008841174654662609, 0.08482947200536728, 0.008723716251552105, 0.07732458412647247, -0.09476703405380249, 0.00019296655955258757, 0.013173368759453297, 0.06612077355384827, 0.01732512004673481, 0.06767257302999496, -0.1491333693265915, -0.012408136390149593, -0.031163588166236877, -0.07226859033107758, -0.07067370414733887, 0.016219986602663994, 0.09797032177448273, 0.009897217154502869, 0.19455376267433167, -0.07253468036651611, 0.034209683537483215, -0.1996827870607376, -0.004818717949092388, -0.024882815778255463, -0.11880327761173248, -0.13020196557044983, -0.057267606258392334, 0.0613701269030571, -0.043564364314079285, 0.1354210525751114, 0.026901384815573692, 0.04400284215807915, 0.027250299230217934, -0.026612497866153717, 0.004319637548178434, 0.02788645029067993, 0.21657633781433105, 0.031818825751543045, -0.03482942283153534, 0.07407794892787933, 0.059649981558322906, 0.09364176541566849, 0.11203131079673767, 0.18488933145999908, 0.15397246181964874, -0.0192700382322073, 0.08765044063329697, 0.017095597460865974, -0.04790453612804413, -0.1715254932641983, 0.03388212248682976, -0.05448004603385925, 0.09344136714935303, -0.02163499779999256, 0.20881368219852448, 0.05305306985974312, -0.16486774384975433, 0.04705330729484558, -0.05089118704199791, -0.08752259612083435, -0.09806171804666519, -0.03226463869214058, -0.08060217648744583, -0.14277291297912598, 0.0021965145133435726, -0.10096009820699692, 0.011366079561412334, 0.11392513662576675, 0.006470144726336002, -0.026870805770158768, 0.1585216373205185, 0.026487061753869057, 0.03024059534072876, 0.051489729434251785, 0.0019947418477386236, -0.03041200339794159, -0.10034609586000443, -0.06356950104236603, -0.023890795186161995, -0.014431176707148552, 0.039193131029605865, -0.06409415602684021, -0.0638824924826622, 0.038420792669057846, -0.020715011283755302, -0.08686067909002304, 0.017032379284501076, 0.02387135848402977, 0.06181953474879265, 0.04360667243599892, 0.003254934214055538, 0.020023111253976822, -0.020364416763186455, 0.20235857367515564, -0.0808679535984993, -0.0848400890827179, -0.1001770868897438, 0.28765323758125305, 0.05301970615983009, -0.010221130214631557, 0.03573925793170929, -0.05545473471283913, -0.0015314308693632483, 0.25319427251815796, 0.1761181652545929, -0.07551936060190201, -0.011659866198897362, 0.001563563826493919, -0.016905652359128, -0.027057737112045288, 0.1240062490105629, 0.14848525822162628, 0.04730034992098808, -0.10135693848133087, -0.048316918313503265, -0.06416845321655273, -0.00964710209518671, -0.055837374180555344, 0.04700614884495735, 0.03196971118450165, 0.001721260487101972, -0.040335074067115784, 0.050729285925626755, -0.0678473711013794, -0.09296028316020966, 0.07394842803478241, -0.18671411275863647, -0.16015352308750153, -0.006629839073866606, 0.10512832552194595, 0.0008593018865212798, 0.05458828806877136, -0.028277769684791565, 0.005723492242395878, 0.07415735721588135, -0.02394001930952072, -0.08197080343961716, -0.08234018087387085, 0.09655734896659851, -0.09558568149805069, 0.19083115458488464, -0.03867029771208763, 0.0784619078040123, 0.12392305582761765, 0.07174833863973618, -0.08345665782690048, 0.054093655198812485, 0.03291735425591469, -0.07840564846992493, 0.035385861992836, 0.08661612123250961, -0.025195499882102013, 0.0535137839615345, 0.023149022832512856, -0.12660685181617737, 0.018206622451543808, -0.0792446881532669, -0.03481019660830498, -0.04668750241398811, -0.05165095627307892, -0.04931771382689476, 0.1246492862701416, 0.2133176624774933, -0.02536364458501339, 0.011307014152407646, -0.07926616817712784, 0.015059257857501507, 0.05234965309500694, 0.0033908123150467873, -0.08399108797311783, -0.22708538174629211, 0.013785862363874912, 0.057186055928468704, -0.027453020215034485, -0.19137486815452576, -0.09207133948802948, 0.0020399903878569603, -0.08449861407279968, -0.09619127959012985, 0.08188775181770325, 0.061824310570955276, 0.055024467408657074, -0.05468939244747162, -0.06727954000234604, -0.0894060730934143, 0.1471198946237564, -0.15012776851654053, -0.0906490683555603 ]