sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
be6a661c7effb976d9a8042e5d55236132049883
# Dataset of reisen/レイセン (Touhou) This is the dataset of reisen/レイセン (Touhou), containing 227 images and their tags. The core tags of this character are `animal_ears, rabbit_ears, short_hair, red_eyes, blue_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 227 | 183.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/reisen_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 227 | 125.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/reisen_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 463 | 249.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/reisen_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 227 | 167.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/reisen_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 463 | 321.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/reisen_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/reisen_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 19 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, long_sleeves, red_necktie, solo, collared_shirt, white_shirt, black_jacket, rifle, pleated_skirt, looking_at_viewer, standing, bangs, pink_skirt, blazer, holding_gun, crescent_pin, open_mouth, smile, blush, hair_between_eyes, buttons, one-hour_drawing_challenge, simple_background | | 1 | 10 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, collared_shirt, long_sleeves, red_necktie, solo, white_shirt, blazer, pleated_skirt, looking_at_viewer, white_background, simple_background, cowboy_shot, open_mouth, rabbit_girl, rabbit_tail, black_jacket, crescent_pin, pink_skirt, bangs, closed_mouth, floppy_ears | | 2 | 8 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, blazer, necktie, purple_hair, skirt, solo, rabbit_tail, open_mouth | | 3 | 18 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, solo, blazer, necktie, skirt, black_thighhighs, smile, zettai_ryouiki, open_mouth | | 4 | 7 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, solo, bat_wings, dress, looking_at_viewer, short_sleeves, smile, wrist_cuffs, mob_cap, multiple_girls, open_mouth, puffy_sleeves | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | long_sleeves | red_necktie | solo | collared_shirt | white_shirt | black_jacket | rifle | pleated_skirt | looking_at_viewer | standing | bangs | pink_skirt | blazer | holding_gun | crescent_pin | open_mouth | smile | blush | hair_between_eyes | buttons | one-hour_drawing_challenge | simple_background | white_background | cowboy_shot | rabbit_girl | rabbit_tail | closed_mouth | floppy_ears | necktie | purple_hair | skirt | black_thighhighs | zettai_ryouiki | bat_wings | dress | short_sleeves | wrist_cuffs | mob_cap | multiple_girls | puffy_sleeves | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------------|:-------|:-----------------|:--------------|:---------------|:--------|:----------------|:--------------------|:-----------|:--------|:-------------|:---------|:--------------|:---------------|:-------------|:--------|:--------|:--------------------|:----------|:-----------------------------|:--------------------|:-------------------|:--------------|:--------------|:--------------|:---------------|:--------------|:----------|:--------------|:--------|:-------------------|:-----------------|:------------|:--------|:----------------|:--------------|:----------|:-----------------|:----------------| | 0 | 19 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | 1 | 10 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | X | X | | X | X | | X | X | X | | X | X | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | 2 | 8 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | X | | | | | | | | | | X | | | X | | | | | | | | | | X | | | X | X | X | | | | | | | | | | | 3 | 18 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | | | X | | | | | | | | | | X | | | X | X | | | | | | | | | | | | X | | X | X | X | | | | | | | | | 4 | 7 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | | | | | X | | | | | | | X | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X |
CyberHarem/reisen_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T01:04:59+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T02:34:41+00:00
f4c88694e2f4541bd571b6130c3e354b55d9da52
# Dataset of teireida_mai/丁礼田舞 (Touhou) This is the dataset of teireida_mai/丁礼田舞 (Touhou), containing 328 images and their tags. The core tags of this character are `green_hair, green_eyes, hat, black_headwear, bow, sidelocks, bangs, yellow_bow`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 328 | 271.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teireida_mai_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 328 | 193.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teireida_mai_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 653 | 357.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teireida_mai_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 328 | 252.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teireida_mai_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 653 | 457.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teireida_mai_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/teireida_mai_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 31 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | green_dress, short_hair_with_long_locks, 1girl, solo, waist_apron, black_socks, looking_at_viewer, tate_eboshi, full_body, green_footwear, bamboo, holding, frills, white_background, open_mouth, kneehighs, mary_janes, puffy_short_sleeves, simple_background, :d, white_apron, yellow_ribbon | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, bamboo, green_dress, looking_at_viewer, open_mouth, puffy_short_sleeves, short_hair_with_long_locks, solo, tate_eboshi, waist_apron, :d, frills, holding, simple_background, white_apron, green_background | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 2girls, brown_hair, frills, green_dress, puffy_short_sleeves, short_hair_with_long_locks, tate_eboshi, waist_apron, bamboo, pink_dress, holding, white_apron, grin, looking_at_viewer, solo_focus, star_(symbol) | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | green_dress | short_hair_with_long_locks | 1girl | solo | waist_apron | black_socks | looking_at_viewer | tate_eboshi | full_body | green_footwear | bamboo | holding | frills | white_background | open_mouth | kneehighs | mary_janes | puffy_short_sleeves | simple_background | :d | white_apron | yellow_ribbon | green_background | 2girls | brown_hair | pink_dress | grin | solo_focus | star_(symbol) | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------|:-----------------------------|:--------|:-------|:--------------|:--------------|:--------------------|:--------------|:------------|:-----------------|:---------|:----------|:---------|:-------------------|:-------------|:------------|:-------------|:----------------------|:--------------------|:-----|:--------------|:----------------|:-------------------|:---------|:-------------|:-------------|:-------|:-------------|:----------------| | 0 | 31 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | | X | X | | | X | X | X | | X | | | X | X | X | X | | X | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | | | X | | X | X | | | X | X | X | | | | | X | | | X | | | X | X | X | X | X | X |
CyberHarem/teireida_mai_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T01:05:05+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T02:20:44+00:00
3a9df689d5b5c4e8a623719c31f19a48b2ac2399
This dataset accompanies the following publication, please cite this publication if you use this dataset: Fischer, T. and Milford, M., 2020. Event-Based Visual Place Recognition With Ensembles of Temporal Windows. IEEE Robotics and Automation Letters, 5(4), pp.6924-6931. ```bibtex @article{fischer2020event, title={Event-Based Visual Place Recognition With Ensembles of Temporal Windows}, author={Fischer, Tobias and Milford, Michael}, journal={IEEE Robotics and Automation Letters}, volume={5}, number={4}, pages={6924--6931}, year={2020} } ``` The dataset contains five sequences of recordings. For each recording, a denoised `parquet` file is made available. The source files for these `parquet` files can be found on [Zenodo](https://zenodo.org/records/4302805). We also provide associated GPS information (`*.nmea`) files recorded using the consumer camera. Please see the [associated code repository](https://github.com/Tobias-Fischer/sparse-event-vpr) for more information.
TobiasRobotics/brisbane-event-vpr
[ "license:cc-by-nc-sa-4.0", "computer vision", "robotics", "event cameras", "region:us" ]
2024-01-15T01:11:21+00:00
{"license": "cc-by-nc-sa-4.0", "pretty_name": "Brisbane Event VPR", "tags": ["computer vision", "robotics", "event cameras"], "arxiv": 2006.02826}
2024-01-15T01:29:19+00:00
cce60cbe9eb7c609fd005e0e142b0ecf61aef4c2
Hiraishin/ujianjpj-test-prep
[ "license:apache-2.0", "region:us" ]
2024-01-15T01:17:07+00:00
{"license": "apache-2.0"}
2024-01-15T01:21:15+00:00
9d4066eebaed8b16a8df3fe9eb34e7e622417ea6
AlcNdr/AlcVoice
[ "license:unknown", "region:us" ]
2024-01-15T01:25:55+00:00
{"license": "unknown"}
2024-01-15T01:26:21+00:00
14eff720d98f9f8eb9655db51a90b6114c7c5a9e
Tsuinzues/estrelapolar
[ "license:openrail", "region:us" ]
2024-01-15T01:37:09+00:00
{"license": "openrail"}
2024-01-15T01:37:23+00:00
42b2718cedf0b94b350dcbfedb625e2f336ac0ee
zhaospei/scg-v2
[ "region:us" ]
2024-01-15T01:37:45+00:00
{}
2024-01-15T02:53:49+00:00
1f74aabd0dbf73179f914e77a26b2389516955bb
# Dataset Card for Evaluation run of NeuralNovel/Gecko-7B-v0.1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [NeuralNovel/Gecko-7B-v0.1](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_NeuralNovel__Gecko-7B-v0.1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-16T16:13:12.225780](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Gecko-7B-v0.1/blob/main/results_2024-01-16T16-13-12.225780.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6099096028262384, "acc_stderr": 0.03317410149444282, "acc_norm": 0.6143554464489048, "acc_norm_stderr": 0.03384780111199933, "mc1": 0.4638922888616891, "mc1_stderr": 0.017457800422268622, "mc2": 0.6260121840084173, "mc2_stderr": 0.015381860069987416 }, "harness|arc:challenge|25": { "acc": 0.5656996587030717, "acc_stderr": 0.014484703048857359, "acc_norm": 0.613481228668942, "acc_norm_stderr": 0.014230084761910478 }, "harness|hellaswag|10": { "acc": 0.6475801633140809, "acc_stderr": 0.004767475366689761, "acc_norm": 0.8335988846843259, "acc_norm_stderr": 0.0037167914663914794 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5851851851851851, "acc_stderr": 0.04256193767901408, "acc_norm": 0.5851851851851851, "acc_norm_stderr": 0.04256193767901408 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6052631578947368, "acc_stderr": 0.039777499346220734, "acc_norm": 0.6052631578947368, "acc_norm_stderr": 0.039777499346220734 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6566037735849056, "acc_stderr": 0.02922452646912479, "acc_norm": 0.6566037735849056, "acc_norm_stderr": 0.02922452646912479 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6736111111111112, "acc_stderr": 0.03921067198982266, "acc_norm": 0.6736111111111112, "acc_norm_stderr": 0.03921067198982266 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5895953757225434, "acc_stderr": 0.03750757044895537, "acc_norm": 0.5895953757225434, "acc_norm_stderr": 0.03750757044895537 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4411764705882353, "acc_stderr": 0.049406356306056595, "acc_norm": 0.4411764705882353, "acc_norm_stderr": 0.049406356306056595 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.49361702127659574, "acc_stderr": 0.032683358999363366, "acc_norm": 0.49361702127659574, "acc_norm_stderr": 0.032683358999363366 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.45614035087719296, "acc_stderr": 0.04685473041907789, "acc_norm": 0.45614035087719296, "acc_norm_stderr": 0.04685473041907789 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.593103448275862, "acc_stderr": 0.04093793981266236, "acc_norm": 0.593103448275862, "acc_norm_stderr": 0.04093793981266236 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.37037037037037035, "acc_stderr": 0.024870815251057093, "acc_norm": 0.37037037037037035, "acc_norm_stderr": 0.024870815251057093 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3968253968253968, "acc_stderr": 0.043758884927270605, "acc_norm": 0.3968253968253968, "acc_norm_stderr": 0.043758884927270605 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6612903225806451, "acc_stderr": 0.026923446059302844, "acc_norm": 0.6612903225806451, "acc_norm_stderr": 0.026923446059302844 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.47783251231527096, "acc_stderr": 0.03514528562175007, "acc_norm": 0.47783251231527096, "acc_norm_stderr": 0.03514528562175007 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.63, "acc_stderr": 0.04852365870939099, "acc_norm": 0.63, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7515151515151515, "acc_stderr": 0.03374402644139404, "acc_norm": 0.7515151515151515, "acc_norm_stderr": 0.03374402644139404 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7727272727272727, "acc_stderr": 0.029857515673386417, "acc_norm": 0.7727272727272727, "acc_norm_stderr": 0.029857515673386417 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8652849740932642, "acc_stderr": 0.024639789097709437, "acc_norm": 0.8652849740932642, "acc_norm_stderr": 0.024639789097709437 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5923076923076923, "acc_stderr": 0.024915243985987847, "acc_norm": 0.5923076923076923, "acc_norm_stderr": 0.024915243985987847 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.028820884666253255, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.028820884666253255 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6134453781512605, "acc_stderr": 0.03163145807552378, "acc_norm": 0.6134453781512605, "acc_norm_stderr": 0.03163145807552378 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.39072847682119205, "acc_stderr": 0.03983798306659806, "acc_norm": 0.39072847682119205, "acc_norm_stderr": 0.03983798306659806 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7944954128440367, "acc_stderr": 0.01732435232501601, "acc_norm": 0.7944954128440367, "acc_norm_stderr": 0.01732435232501601 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.46296296296296297, "acc_stderr": 0.03400603625538271, "acc_norm": 0.46296296296296297, "acc_norm_stderr": 0.03400603625538271 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7598039215686274, "acc_stderr": 0.02998373305591361, "acc_norm": 0.7598039215686274, "acc_norm_stderr": 0.02998373305591361 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7637130801687764, "acc_stderr": 0.027652153144159263, "acc_norm": 0.7637130801687764, "acc_norm_stderr": 0.027652153144159263 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6457399103139013, "acc_stderr": 0.03210062154134987, "acc_norm": 0.6457399103139013, "acc_norm_stderr": 0.03210062154134987 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7251908396946565, "acc_stderr": 0.039153454088478354, "acc_norm": 0.7251908396946565, "acc_norm_stderr": 0.039153454088478354 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6851851851851852, "acc_stderr": 0.04489931073591312, "acc_norm": 0.6851851851851852, "acc_norm_stderr": 0.04489931073591312 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7177914110429447, "acc_stderr": 0.03536117886664742, "acc_norm": 0.7177914110429447, "acc_norm_stderr": 0.03536117886664742 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.04726835553719099, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.04726835553719099 }, "harness|hendrycksTest-management|5": { "acc": 0.7378640776699029, "acc_stderr": 0.04354631077260595, "acc_norm": 0.7378640776699029, "acc_norm_stderr": 0.04354631077260595 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281348, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281348 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7867177522349936, "acc_stderr": 0.014648172749593517, "acc_norm": 0.7867177522349936, "acc_norm_stderr": 0.014648172749593517 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6878612716763006, "acc_stderr": 0.024946792225272314, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.024946792225272314 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.35083798882681566, "acc_stderr": 0.015961036675230963, "acc_norm": 0.35083798882681566, "acc_norm_stderr": 0.015961036675230963 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7189542483660131, "acc_stderr": 0.025738854797818733, "acc_norm": 0.7189542483660131, "acc_norm_stderr": 0.025738854797818733 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.662379421221865, "acc_stderr": 0.026858825879488544, "acc_norm": 0.662379421221865, "acc_norm_stderr": 0.026858825879488544 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6728395061728395, "acc_stderr": 0.026105673861409825, "acc_norm": 0.6728395061728395, "acc_norm_stderr": 0.026105673861409825 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46099290780141844, "acc_stderr": 0.02973659252642444, "acc_norm": 0.46099290780141844, "acc_norm_stderr": 0.02973659252642444 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.43089960886571055, "acc_stderr": 0.012647695889547235, "acc_norm": 0.43089960886571055, "acc_norm_stderr": 0.012647695889547235 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6176470588235294, "acc_stderr": 0.02952009569768776, "acc_norm": 0.6176470588235294, "acc_norm_stderr": 0.02952009569768776 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6225490196078431, "acc_stderr": 0.019610851474880283, "acc_norm": 0.6225490196078431, "acc_norm_stderr": 0.019610851474880283 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7, "acc_stderr": 0.04389311454644287, "acc_norm": 0.7, "acc_norm_stderr": 0.04389311454644287 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6979591836734694, "acc_stderr": 0.029393609319879804, "acc_norm": 0.6979591836734694, "acc_norm_stderr": 0.029393609319879804 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7860696517412935, "acc_stderr": 0.02899690969332891, "acc_norm": 0.7860696517412935, "acc_norm_stderr": 0.02899690969332891 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.83, "acc_stderr": 0.03775251680686371, "acc_norm": 0.83, "acc_norm_stderr": 0.03775251680686371 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333045, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8304093567251462, "acc_stderr": 0.02878210810540171, "acc_norm": 0.8304093567251462, "acc_norm_stderr": 0.02878210810540171 }, "harness|truthfulqa:mc|0": { "mc1": 0.4638922888616891, "mc1_stderr": 0.017457800422268622, "mc2": 0.6260121840084173, "mc2_stderr": 0.015381860069987416 }, "harness|winogrande|5": { "acc": 0.7758484609313339, "acc_stderr": 0.011720400740774094 }, "harness|gsm8k|5": { "acc": 0.41546626231993933, "acc_stderr": 0.013574222625031811 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_NeuralNovel__Gecko-7B-v0.1
[ "region:us" ]
2024-01-15T01:39:43+00:00
{"pretty_name": "Evaluation run of NeuralNovel/Gecko-7B-v0.1", "dataset_summary": "Dataset automatically created during the evaluation run of model [NeuralNovel/Gecko-7B-v0.1](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_NeuralNovel__Gecko-7B-v0.1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-16T16:13:12.225780](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Gecko-7B-v0.1/blob/main/results_2024-01-16T16-13-12.225780.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6099096028262384,\n \"acc_stderr\": 0.03317410149444282,\n \"acc_norm\": 0.6143554464489048,\n \"acc_norm_stderr\": 0.03384780111199933,\n \"mc1\": 0.4638922888616891,\n \"mc1_stderr\": 0.017457800422268622,\n \"mc2\": 0.6260121840084173,\n \"mc2_stderr\": 0.015381860069987416\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5656996587030717,\n \"acc_stderr\": 0.014484703048857359,\n \"acc_norm\": 0.613481228668942,\n \"acc_norm_stderr\": 0.014230084761910478\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6475801633140809,\n \"acc_stderr\": 0.004767475366689761,\n \"acc_norm\": 0.8335988846843259,\n \"acc_norm_stderr\": 0.0037167914663914794\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6052631578947368,\n \"acc_stderr\": 0.039777499346220734,\n \"acc_norm\": 0.6052631578947368,\n \"acc_norm_stderr\": 0.039777499346220734\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6566037735849056,\n \"acc_stderr\": 0.02922452646912479,\n \"acc_norm\": 0.6566037735849056,\n \"acc_norm_stderr\": 0.02922452646912479\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6736111111111112,\n \"acc_stderr\": 0.03921067198982266,\n \"acc_norm\": 0.6736111111111112,\n \"acc_norm_stderr\": 0.03921067198982266\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5895953757225434,\n \"acc_stderr\": 0.03750757044895537,\n \"acc_norm\": 0.5895953757225434,\n \"acc_norm_stderr\": 0.03750757044895537\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.049406356306056595,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.049406356306056595\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.49361702127659574,\n \"acc_stderr\": 0.032683358999363366,\n \"acc_norm\": 0.49361702127659574,\n \"acc_norm_stderr\": 0.032683358999363366\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.45614035087719296,\n \"acc_stderr\": 0.04685473041907789,\n \"acc_norm\": 0.45614035087719296,\n \"acc_norm_stderr\": 0.04685473041907789\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.593103448275862,\n \"acc_stderr\": 0.04093793981266236,\n \"acc_norm\": 0.593103448275862,\n \"acc_norm_stderr\": 0.04093793981266236\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.37037037037037035,\n \"acc_stderr\": 0.024870815251057093,\n \"acc_norm\": 0.37037037037037035,\n \"acc_norm_stderr\": 0.024870815251057093\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3968253968253968,\n \"acc_stderr\": 0.043758884927270605,\n \"acc_norm\": 0.3968253968253968,\n \"acc_norm_stderr\": 0.043758884927270605\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6612903225806451,\n \"acc_stderr\": 0.026923446059302844,\n \"acc_norm\": 0.6612903225806451,\n \"acc_norm_stderr\": 0.026923446059302844\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.47783251231527096,\n \"acc_stderr\": 0.03514528562175007,\n \"acc_norm\": 0.47783251231527096,\n \"acc_norm_stderr\": 0.03514528562175007\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7515151515151515,\n \"acc_stderr\": 0.03374402644139404,\n \"acc_norm\": 0.7515151515151515,\n \"acc_norm_stderr\": 0.03374402644139404\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7727272727272727,\n \"acc_stderr\": 0.029857515673386417,\n \"acc_norm\": 0.7727272727272727,\n \"acc_norm_stderr\": 0.029857515673386417\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8652849740932642,\n \"acc_stderr\": 0.024639789097709437,\n \"acc_norm\": 0.8652849740932642,\n \"acc_norm_stderr\": 0.024639789097709437\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5923076923076923,\n \"acc_stderr\": 0.024915243985987847,\n \"acc_norm\": 0.5923076923076923,\n \"acc_norm_stderr\": 0.024915243985987847\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.028820884666253255,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.028820884666253255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6134453781512605,\n \"acc_stderr\": 0.03163145807552378,\n \"acc_norm\": 0.6134453781512605,\n \"acc_norm_stderr\": 0.03163145807552378\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.39072847682119205,\n \"acc_stderr\": 0.03983798306659806,\n \"acc_norm\": 0.39072847682119205,\n \"acc_norm_stderr\": 0.03983798306659806\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7944954128440367,\n \"acc_stderr\": 0.01732435232501601,\n \"acc_norm\": 0.7944954128440367,\n \"acc_norm_stderr\": 0.01732435232501601\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.46296296296296297,\n \"acc_stderr\": 0.03400603625538271,\n \"acc_norm\": 0.46296296296296297,\n \"acc_norm_stderr\": 0.03400603625538271\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7598039215686274,\n \"acc_stderr\": 0.02998373305591361,\n \"acc_norm\": 0.7598039215686274,\n \"acc_norm_stderr\": 0.02998373305591361\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7637130801687764,\n \"acc_stderr\": 0.027652153144159263,\n \"acc_norm\": 0.7637130801687764,\n \"acc_norm_stderr\": 0.027652153144159263\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6457399103139013,\n \"acc_stderr\": 0.03210062154134987,\n \"acc_norm\": 0.6457399103139013,\n \"acc_norm_stderr\": 0.03210062154134987\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7251908396946565,\n \"acc_stderr\": 0.039153454088478354,\n \"acc_norm\": 0.7251908396946565,\n \"acc_norm_stderr\": 0.039153454088478354\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8099173553719008,\n \"acc_stderr\": 0.03581796951709282,\n \"acc_norm\": 0.8099173553719008,\n \"acc_norm_stderr\": 0.03581796951709282\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6851851851851852,\n \"acc_stderr\": 0.04489931073591312,\n \"acc_norm\": 0.6851851851851852,\n \"acc_norm_stderr\": 0.04489931073591312\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7177914110429447,\n \"acc_stderr\": 0.03536117886664742,\n \"acc_norm\": 0.7177914110429447,\n \"acc_norm_stderr\": 0.03536117886664742\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.04726835553719099,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.04726835553719099\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7378640776699029,\n \"acc_stderr\": 0.04354631077260595,\n \"acc_norm\": 0.7378640776699029,\n \"acc_norm_stderr\": 0.04354631077260595\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.021586494001281348,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.021586494001281348\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7867177522349936,\n \"acc_stderr\": 0.014648172749593517,\n \"acc_norm\": 0.7867177522349936,\n \"acc_norm_stderr\": 0.014648172749593517\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.024946792225272314,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.024946792225272314\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.35083798882681566,\n \"acc_stderr\": 0.015961036675230963,\n \"acc_norm\": 0.35083798882681566,\n \"acc_norm_stderr\": 0.015961036675230963\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7189542483660131,\n \"acc_stderr\": 0.025738854797818733,\n \"acc_norm\": 0.7189542483660131,\n \"acc_norm_stderr\": 0.025738854797818733\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.662379421221865,\n \"acc_stderr\": 0.026858825879488544,\n \"acc_norm\": 0.662379421221865,\n \"acc_norm_stderr\": 0.026858825879488544\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6728395061728395,\n \"acc_stderr\": 0.026105673861409825,\n \"acc_norm\": 0.6728395061728395,\n \"acc_norm_stderr\": 0.026105673861409825\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.46099290780141844,\n \"acc_stderr\": 0.02973659252642444,\n \"acc_norm\": 0.46099290780141844,\n \"acc_norm_stderr\": 0.02973659252642444\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.43089960886571055,\n \"acc_stderr\": 0.012647695889547235,\n \"acc_norm\": 0.43089960886571055,\n \"acc_norm_stderr\": 0.012647695889547235\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6176470588235294,\n \"acc_stderr\": 0.02952009569768776,\n \"acc_norm\": 0.6176470588235294,\n \"acc_norm_stderr\": 0.02952009569768776\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6225490196078431,\n \"acc_stderr\": 0.019610851474880283,\n \"acc_norm\": 0.6225490196078431,\n \"acc_norm_stderr\": 0.019610851474880283\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.04389311454644287,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.04389311454644287\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6979591836734694,\n \"acc_stderr\": 0.029393609319879804,\n \"acc_norm\": 0.6979591836734694,\n \"acc_norm_stderr\": 0.029393609319879804\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7860696517412935,\n \"acc_stderr\": 0.02899690969332891,\n \"acc_norm\": 0.7860696517412935,\n \"acc_norm_stderr\": 0.02899690969332891\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.03775251680686371,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.03775251680686371\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4638922888616891,\n \"mc1_stderr\": 0.017457800422268622,\n \"mc2\": 0.6260121840084173,\n \"mc2_stderr\": 0.015381860069987416\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7758484609313339,\n \"acc_stderr\": 0.011720400740774094\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.41546626231993933,\n \"acc_stderr\": 0.013574222625031811\n }\n}\n```", "repo_url": "https://huggingface.co/NeuralNovel/Gecko-7B-v0.1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|arc:challenge|25_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|arc:challenge|25_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|arc:challenge|25_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|gsm8k|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|gsm8k|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|gsm8k|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hellaswag|10_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hellaswag|10_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hellaswag|10_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T01-37-25.127753.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-16T02-41-01.393804.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-16T16-13-12.225780.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["**/details_harness|winogrande|5_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["**/details_harness|winogrande|5_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["**/details_harness|winogrande|5_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-16T16-13-12.225780.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_15T01_37_25.127753", "path": ["results_2024-01-15T01-37-25.127753.parquet"]}, {"split": "2024_01_16T02_41_01.393804", "path": ["results_2024-01-16T02-41-01.393804.parquet"]}, {"split": "2024_01_16T16_13_12.225780", "path": ["results_2024-01-16T16-13-12.225780.parquet"]}, {"split": "latest", "path": ["results_2024-01-16T16-13-12.225780.parquet"]}]}]}
2024-01-16T16:15:30+00:00
e463e76f3391a7212d7a7fbb3d3bbabf8e805c26
flowersfromthefuture/F01
[ "region:us" ]
2024-01-15T01:45:08+00:00
{}
2024-01-15T01:45:20+00:00
832a9d92a6727255a1fd21e2ad172c21f5b03f72
shokhjakhon/chat-koni-data
[ "size_categories:1K<n<10K", "language:ru", "license:apache-2.0", "region:us" ]
2024-01-15T01:45:10+00:00
{"language": ["ru"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "pretty_name": "law-data by uzlegalai"}
2024-01-15T01:50:15+00:00
2fc29e711cdba8b0b9651161670db0ac08db3a0d
sarahahatee/rhnd
[ "region:us" ]
2024-01-15T01:59:04+00:00
{}
2024-01-15T02:01:39+00:00
e9708be65e63256c155dd0bf3027204ed6e60506
Morning730/realisticVisionV51_v51VAE
[ "region:us" ]
2024-01-15T02:04:55+00:00
{}
2024-01-15T02:08:45+00:00
c2607a491c843839b30837a307ac7c7d1f5ca4d9
Navarro20/robin
[ "license:openrail", "region:us" ]
2024-01-15T02:10:04+00:00
{"license": "openrail"}
2024-01-15T02:10:52+00:00
999e51ff914ac831ea63560db9e797278b44a8a7
This is a dataset with explanations from ChatGPT for the correct and incorrect answers in CommonsenseQA. The explanations are generated by prompting ChatGPT with answer keys and in-context examples. We expect this dataset to be an useful source for understanding the commonsense reasoning ability of LLMs or training other LMs.
KomeijiForce/CommonsenseQA-Explained-by-ChatGPT
[ "task_categories:question-answering", "size_categories:10K<n<100K", "language:en", "region:us" ]
2024-01-15T02:13:59+00:00
{"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"]}
2024-01-15T02:19:22+00:00
4191a2e3641c8e0894850568d1f5ee8b8f3ba7f9
This is a dataset with explanations from ChatGPT for the correct and incorrect answers in ARC-Easy. The explanations are generated by prompting ChatGPT with answer keys and in-context examples. We expect this dataset to be an useful source for understanding the commonsense reasoning ability of LLMs or training other LMs.
KomeijiForce/ARC-Easy-Explained-by-ChatGPT
[ "task_categories:question-answering", "size_categories:1K<n<10K", "language:en", "region:us" ]
2024-01-15T02:22:18+00:00
{"language": ["en"], "size_categories": ["1K<n<10K"], "task_categories": ["question-answering"]}
2024-01-15T02:27:45+00:00
ef4ae17eacd1db833a4c63e08cc6b85eaf34c374
kevinliu0619/aaa123
[ "region:us" ]
2024-01-15T02:28:05+00:00
{}
2024-01-15T02:28:05+00:00
d90607dfedcf8e2a2cb562e75e5cd0f001bea8e2
This is a dataset with explanations from ChatGPT for the correct and incorrect answers in ARC Challenge. The explanations are generated by prompting ChatGPT with answer keys and in-context examples. We expect this dataset to be an useful source for understanding the commonsense reasoning ability of LLMs or training other LMs.
KomeijiForce/ARC-Challenge-Explained-by-ChatGPT
[ "task_categories:question-answering", "size_categories:1K<n<10K", "language:en", "region:us" ]
2024-01-15T02:28:36+00:00
{"language": ["en"], "size_categories": ["1K<n<10K"], "task_categories": ["question-answering"]}
2024-01-15T02:31:28+00:00
018d25f58895cf7acbb8698650d00db927a0a92c
# Dataset Card for Evaluation run of rombodawg/Everyone-Coder-4x7b-Base <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [rombodawg/Everyone-Coder-4x7b-Base](https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_rombodawg__Everyone-Coder-4x7b-Base", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-15T17:47:56.627468](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Everyone-Coder-4x7b-Base/blob/main/results_2024-01-15T17-47-56.627468.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6447898132540958, "acc_stderr": 0.031915985387073305, "acc_norm": 0.6461876134084575, "acc_norm_stderr": 0.03255592718009434, "mc1": 0.3390452876376989, "mc1_stderr": 0.016571797910626615, "mc2": 0.49160643723765735, "mc2_stderr": 0.015188709391608397 }, "harness|arc:challenge|25": { "acc": 0.6117747440273038, "acc_stderr": 0.014241614207414046, "acc_norm": 0.6450511945392492, "acc_norm_stderr": 0.013983036904094087 }, "harness|hellaswag|10": { "acc": 0.6623182632941645, "acc_stderr": 0.004719529099913131, "acc_norm": 0.8481378211511651, "acc_norm_stderr": 0.0035815378475817965 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6222222222222222, "acc_stderr": 0.04188307537595852, "acc_norm": 0.6222222222222222, "acc_norm_stderr": 0.04188307537595852 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6907894736842105, "acc_stderr": 0.037610708698674805, "acc_norm": 0.6907894736842105, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6981132075471698, "acc_stderr": 0.02825420034443866, "acc_norm": 0.6981132075471698, "acc_norm_stderr": 0.02825420034443866 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956911, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620332, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6358381502890174, "acc_stderr": 0.03669072477416907, "acc_norm": 0.6358381502890174, "acc_norm_stderr": 0.03669072477416907 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.39215686274509803, "acc_stderr": 0.04858083574266345, "acc_norm": 0.39215686274509803, "acc_norm_stderr": 0.04858083574266345 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932263, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932263 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5531914893617021, "acc_stderr": 0.0325005368436584, "acc_norm": 0.5531914893617021, "acc_norm_stderr": 0.0325005368436584 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4473684210526316, "acc_stderr": 0.04677473004491199, "acc_norm": 0.4473684210526316, "acc_norm_stderr": 0.04677473004491199 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5517241379310345, "acc_stderr": 0.04144311810878152, "acc_norm": 0.5517241379310345, "acc_norm_stderr": 0.04144311810878152 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.41534391534391535, "acc_stderr": 0.025379524910778408, "acc_norm": 0.41534391534391535, "acc_norm_stderr": 0.025379524910778408 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3888888888888889, "acc_stderr": 0.0436031486007746, "acc_norm": 0.3888888888888889, "acc_norm_stderr": 0.0436031486007746 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.29, "acc_stderr": 0.04560480215720684, "acc_norm": 0.29, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7580645161290323, "acc_stderr": 0.024362599693031096, "acc_norm": 0.7580645161290323, "acc_norm_stderr": 0.024362599693031096 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5172413793103449, "acc_stderr": 0.035158955511656986, "acc_norm": 0.5172413793103449, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.793939393939394, "acc_stderr": 0.031584153240477114, "acc_norm": 0.793939393939394, "acc_norm_stderr": 0.031584153240477114 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7828282828282829, "acc_stderr": 0.02937661648494563, "acc_norm": 0.7828282828282829, "acc_norm_stderr": 0.02937661648494563 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9015544041450777, "acc_stderr": 0.02150024957603346, "acc_norm": 0.9015544041450777, "acc_norm_stderr": 0.02150024957603346 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6461538461538462, "acc_stderr": 0.024243783994062153, "acc_norm": 0.6461538461538462, "acc_norm_stderr": 0.024243783994062153 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.36666666666666664, "acc_stderr": 0.029381620726465076, "acc_norm": 0.36666666666666664, "acc_norm_stderr": 0.029381620726465076 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.634453781512605, "acc_stderr": 0.031282177063684614, "acc_norm": 0.634453781512605, "acc_norm_stderr": 0.031282177063684614 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.31125827814569534, "acc_stderr": 0.03780445850526732, "acc_norm": 0.31125827814569534, "acc_norm_stderr": 0.03780445850526732 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8201834862385321, "acc_stderr": 0.01646534546739154, "acc_norm": 0.8201834862385321, "acc_norm_stderr": 0.01646534546739154 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5185185185185185, "acc_stderr": 0.03407632093854051, "acc_norm": 0.5185185185185185, "acc_norm_stderr": 0.03407632093854051 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7794117647058824, "acc_stderr": 0.02910225438967407, "acc_norm": 0.7794117647058824, "acc_norm_stderr": 0.02910225438967407 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7974683544303798, "acc_stderr": 0.026160568246601446, "acc_norm": 0.7974683544303798, "acc_norm_stderr": 0.026160568246601446 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057222, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057222 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7938931297709924, "acc_stderr": 0.03547771004159463, "acc_norm": 0.7938931297709924, "acc_norm_stderr": 0.03547771004159463 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8181818181818182, "acc_stderr": 0.03520893951097652, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.03520893951097652 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8055555555555556, "acc_stderr": 0.038260763248848646, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.038260763248848646 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7975460122699386, "acc_stderr": 0.031570650789119005, "acc_norm": 0.7975460122699386, "acc_norm_stderr": 0.031570650789119005 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5, "acc_stderr": 0.04745789978762494, "acc_norm": 0.5, "acc_norm_stderr": 0.04745789978762494 }, "harness|hendrycksTest-management|5": { "acc": 0.8349514563106796, "acc_stderr": 0.036756688322331886, "acc_norm": 0.8349514563106796, "acc_norm_stderr": 0.036756688322331886 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281382, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281382 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.73, "acc_stderr": 0.044619604333847394, "acc_norm": 0.73, "acc_norm_stderr": 0.044619604333847394 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8212005108556832, "acc_stderr": 0.013702643715368983, "acc_norm": 0.8212005108556832, "acc_norm_stderr": 0.013702643715368983 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7398843930635838, "acc_stderr": 0.023618678310069356, "acc_norm": 0.7398843930635838, "acc_norm_stderr": 0.023618678310069356 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3318435754189944, "acc_stderr": 0.015748421208187303, "acc_norm": 0.3318435754189944, "acc_norm_stderr": 0.015748421208187303 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7352941176470589, "acc_stderr": 0.02526169121972948, "acc_norm": 0.7352941176470589, "acc_norm_stderr": 0.02526169121972948 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.707395498392283, "acc_stderr": 0.025839898334877983, "acc_norm": 0.707395498392283, "acc_norm_stderr": 0.025839898334877983 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7561728395061729, "acc_stderr": 0.023891879541959603, "acc_norm": 0.7561728395061729, "acc_norm_stderr": 0.023891879541959603 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4858156028368794, "acc_stderr": 0.02981549448368206, "acc_norm": 0.4858156028368794, "acc_norm_stderr": 0.02981549448368206 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.45827900912646674, "acc_stderr": 0.01272570165695364, "acc_norm": 0.45827900912646674, "acc_norm_stderr": 0.01272570165695364 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6801470588235294, "acc_stderr": 0.02833295951403121, "acc_norm": 0.6801470588235294, "acc_norm_stderr": 0.02833295951403121 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.673202614379085, "acc_stderr": 0.01897542792050721, "acc_norm": 0.673202614379085, "acc_norm_stderr": 0.01897542792050721 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6454545454545455, "acc_stderr": 0.045820048415054174, "acc_norm": 0.6454545454545455, "acc_norm_stderr": 0.045820048415054174 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7551020408163265, "acc_stderr": 0.027529637440174923, "acc_norm": 0.7551020408163265, "acc_norm_stderr": 0.027529637440174923 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8258706467661692, "acc_stderr": 0.026814951200421603, "acc_norm": 0.8258706467661692, "acc_norm_stderr": 0.026814951200421603 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.91, "acc_stderr": 0.028762349126466136, "acc_norm": 0.91, "acc_norm_stderr": 0.028762349126466136 }, "harness|hendrycksTest-virology|5": { "acc": 0.5542168674698795, "acc_stderr": 0.03869543323472101, "acc_norm": 0.5542168674698795, "acc_norm_stderr": 0.03869543323472101 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.847953216374269, "acc_stderr": 0.027539122889061456, "acc_norm": 0.847953216374269, "acc_norm_stderr": 0.027539122889061456 }, "harness|truthfulqa:mc|0": { "mc1": 0.3390452876376989, "mc1_stderr": 0.016571797910626615, "mc2": 0.49160643723765735, "mc2_stderr": 0.015188709391608397 }, "harness|winogrande|5": { "acc": 0.7916337805840569, "acc_stderr": 0.011414554399987729 }, "harness|gsm8k|5": { "acc": 0.6345716451857468, "acc_stderr": 0.013264282030266635 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_rombodawg__Everyone-Coder-4x7b-Base
[ "region:us" ]
2024-01-15T02:39:40+00:00
{"pretty_name": "Evaluation run of rombodawg/Everyone-Coder-4x7b-Base", "dataset_summary": "Dataset automatically created during the evaluation run of model [rombodawg/Everyone-Coder-4x7b-Base](https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_rombodawg__Everyone-Coder-4x7b-Base\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-15T17:47:56.627468](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Everyone-Coder-4x7b-Base/blob/main/results_2024-01-15T17-47-56.627468.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6447898132540958,\n \"acc_stderr\": 0.031915985387073305,\n \"acc_norm\": 0.6461876134084575,\n \"acc_norm_stderr\": 0.03255592718009434,\n \"mc1\": 0.3390452876376989,\n \"mc1_stderr\": 0.016571797910626615,\n \"mc2\": 0.49160643723765735,\n \"mc2_stderr\": 0.015188709391608397\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6117747440273038,\n \"acc_stderr\": 0.014241614207414046,\n \"acc_norm\": 0.6450511945392492,\n \"acc_norm_stderr\": 0.013983036904094087\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6623182632941645,\n \"acc_stderr\": 0.004719529099913131,\n \"acc_norm\": 0.8481378211511651,\n \"acc_norm_stderr\": 0.0035815378475817965\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6222222222222222,\n \"acc_stderr\": 0.04188307537595852,\n \"acc_norm\": 0.6222222222222222,\n \"acc_norm_stderr\": 0.04188307537595852\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6907894736842105,\n \"acc_stderr\": 0.037610708698674805,\n \"acc_norm\": 0.6907894736842105,\n \"acc_norm_stderr\": 0.037610708698674805\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6981132075471698,\n \"acc_stderr\": 0.02825420034443866,\n \"acc_norm\": 0.6981132075471698,\n \"acc_norm_stderr\": 0.02825420034443866\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7638888888888888,\n \"acc_stderr\": 0.03551446610810826,\n \"acc_norm\": 0.7638888888888888,\n \"acc_norm_stderr\": 0.03551446610810826\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6358381502890174,\n \"acc_stderr\": 0.03669072477416907,\n \"acc_norm\": 0.6358381502890174,\n \"acc_norm_stderr\": 0.03669072477416907\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.39215686274509803,\n \"acc_stderr\": 0.04858083574266345,\n \"acc_norm\": 0.39215686274509803,\n \"acc_norm_stderr\": 0.04858083574266345\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932263,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932263\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5531914893617021,\n \"acc_stderr\": 0.0325005368436584,\n \"acc_norm\": 0.5531914893617021,\n \"acc_norm_stderr\": 0.0325005368436584\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4473684210526316,\n \"acc_stderr\": 0.04677473004491199,\n \"acc_norm\": 0.4473684210526316,\n \"acc_norm_stderr\": 0.04677473004491199\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878152,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878152\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.41534391534391535,\n \"acc_stderr\": 0.025379524910778408,\n \"acc_norm\": 0.41534391534391535,\n \"acc_norm_stderr\": 0.025379524910778408\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3888888888888889,\n \"acc_stderr\": 0.0436031486007746,\n \"acc_norm\": 0.3888888888888889,\n \"acc_norm_stderr\": 0.0436031486007746\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7580645161290323,\n \"acc_stderr\": 0.024362599693031096,\n \"acc_norm\": 0.7580645161290323,\n \"acc_norm_stderr\": 0.024362599693031096\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5172413793103449,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.5172413793103449,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.793939393939394,\n \"acc_stderr\": 0.031584153240477114,\n \"acc_norm\": 0.793939393939394,\n \"acc_norm_stderr\": 0.031584153240477114\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.02937661648494563,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.02937661648494563\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9015544041450777,\n \"acc_stderr\": 0.02150024957603346,\n \"acc_norm\": 0.9015544041450777,\n \"acc_norm_stderr\": 0.02150024957603346\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6461538461538462,\n \"acc_stderr\": 0.024243783994062153,\n \"acc_norm\": 0.6461538461538462,\n \"acc_norm_stderr\": 0.024243783994062153\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.36666666666666664,\n \"acc_stderr\": 0.029381620726465076,\n \"acc_norm\": 0.36666666666666664,\n \"acc_norm_stderr\": 0.029381620726465076\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.634453781512605,\n \"acc_stderr\": 0.031282177063684614,\n \"acc_norm\": 0.634453781512605,\n \"acc_norm_stderr\": 0.031282177063684614\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.31125827814569534,\n \"acc_stderr\": 0.03780445850526732,\n \"acc_norm\": 0.31125827814569534,\n \"acc_norm_stderr\": 0.03780445850526732\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8201834862385321,\n \"acc_stderr\": 0.01646534546739154,\n \"acc_norm\": 0.8201834862385321,\n \"acc_norm_stderr\": 0.01646534546739154\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5185185185185185,\n \"acc_stderr\": 0.03407632093854051,\n \"acc_norm\": 0.5185185185185185,\n \"acc_norm_stderr\": 0.03407632093854051\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7794117647058824,\n \"acc_stderr\": 0.02910225438967407,\n \"acc_norm\": 0.7794117647058824,\n \"acc_norm_stderr\": 0.02910225438967407\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601446,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601446\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6905829596412556,\n \"acc_stderr\": 0.03102441174057222,\n \"acc_norm\": 0.6905829596412556,\n \"acc_norm_stderr\": 0.03102441174057222\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159463,\n \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159463\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.03520893951097652,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.03520893951097652\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.038260763248848646,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.038260763248848646\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7975460122699386,\n \"acc_stderr\": 0.031570650789119005,\n \"acc_norm\": 0.7975460122699386,\n \"acc_norm_stderr\": 0.031570650789119005\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.04745789978762494,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.04745789978762494\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8349514563106796,\n \"acc_stderr\": 0.036756688322331886,\n \"acc_norm\": 0.8349514563106796,\n \"acc_norm_stderr\": 0.036756688322331886\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.021586494001281382,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.021586494001281382\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8212005108556832,\n \"acc_stderr\": 0.013702643715368983,\n \"acc_norm\": 0.8212005108556832,\n \"acc_norm_stderr\": 0.013702643715368983\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.023618678310069356,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.023618678310069356\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3318435754189944,\n \"acc_stderr\": 0.015748421208187303,\n \"acc_norm\": 0.3318435754189944,\n \"acc_norm_stderr\": 0.015748421208187303\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7352941176470589,\n \"acc_stderr\": 0.02526169121972948,\n \"acc_norm\": 0.7352941176470589,\n \"acc_norm_stderr\": 0.02526169121972948\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.025839898334877983,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.025839898334877983\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959603,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959603\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4858156028368794,\n \"acc_stderr\": 0.02981549448368206,\n \"acc_norm\": 0.4858156028368794,\n \"acc_norm_stderr\": 0.02981549448368206\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.45827900912646674,\n \"acc_stderr\": 0.01272570165695364,\n \"acc_norm\": 0.45827900912646674,\n \"acc_norm_stderr\": 0.01272570165695364\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6801470588235294,\n \"acc_stderr\": 0.02833295951403121,\n \"acc_norm\": 0.6801470588235294,\n \"acc_norm_stderr\": 0.02833295951403121\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.673202614379085,\n \"acc_stderr\": 0.01897542792050721,\n \"acc_norm\": 0.673202614379085,\n \"acc_norm_stderr\": 0.01897542792050721\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.045820048415054174,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.045820048415054174\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7551020408163265,\n \"acc_stderr\": 0.027529637440174923,\n \"acc_norm\": 0.7551020408163265,\n \"acc_norm_stderr\": 0.027529637440174923\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8258706467661692,\n \"acc_stderr\": 0.026814951200421603,\n \"acc_norm\": 0.8258706467661692,\n \"acc_norm_stderr\": 0.026814951200421603\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.91,\n \"acc_stderr\": 0.028762349126466136,\n \"acc_norm\": 0.91,\n \"acc_norm_stderr\": 0.028762349126466136\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5542168674698795,\n \"acc_stderr\": 0.03869543323472101,\n \"acc_norm\": 0.5542168674698795,\n \"acc_norm_stderr\": 0.03869543323472101\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.847953216374269,\n \"acc_stderr\": 0.027539122889061456,\n \"acc_norm\": 0.847953216374269,\n \"acc_norm_stderr\": 0.027539122889061456\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3390452876376989,\n \"mc1_stderr\": 0.016571797910626615,\n \"mc2\": 0.49160643723765735,\n \"mc2_stderr\": 0.015188709391608397\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7916337805840569,\n \"acc_stderr\": 0.011414554399987729\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6345716451857468,\n \"acc_stderr\": 0.013264282030266635\n }\n}\n```", "repo_url": "https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|arc:challenge|25_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|arc:challenge|25_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|gsm8k|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|gsm8k|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hellaswag|10_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hellaswag|10_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T02-37-27.677232.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T17-47-56.627468.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["**/details_harness|winogrande|5_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["**/details_harness|winogrande|5_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-15T17-47-56.627468.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_15T02_37_27.677232", "path": ["results_2024-01-15T02-37-27.677232.parquet"]}, {"split": "2024_01_15T17_47_56.627468", "path": ["results_2024-01-15T17-47-56.627468.parquet"]}, {"split": "latest", "path": ["results_2024-01-15T17-47-56.627468.parquet"]}]}]}
2024-01-15T17:50:34+00:00
e72481391a699d2e233a3ebac76444cf648888c6
# Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ericanzdu/dtest
[ "task_categories:token-classification", "task_categories:image-to-3d", "task_ids:language-modeling", "size_categories:1K<n<10K", "biology", "art", "region:us" ]
2024-01-15T02:39:56+00:00
{"size_categories": ["1K<n<10K"], "task_categories": ["token-classification", "image-to-3d"], "task_ids": ["language-modeling", "image-resize"], "tags": ["biology", "art"]}
2024-01-15T10:15:24+00:00
2c28f957aa40e766851ad7a3916367c3007d2724
# Dataset of kitashirakawa_chiyuri/北白河ちゆり (Touhou) This is the dataset of kitashirakawa_chiyuri/北白河ちゆり (Touhou), containing 151 images and their tags. The core tags of this character are `blonde_hair, twintails, hat, sailor_hat, yellow_eyes, white_headwear`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 151 | 130.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitashirakawa_chiyuri_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 151 | 86.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitashirakawa_chiyuri_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 299 | 171.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitashirakawa_chiyuri_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 151 | 118.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitashirakawa_chiyuri_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 299 | 225.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitashirakawa_chiyuri_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/kitashirakawa_chiyuri_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, blue_sailor_collar, solo, white_shorts, midriff, navel, smile, open_mouth | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 2girls, blue_sailor_collar, midriff, red_hair, short_hair, shorts, navel, folding_chair, smile | | 2 | 7 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, blue_sailor_collar, medium_hair, sailor_shirt, solo, white_shirt, bangs, blue_neckerchief, blush, upper_body, looking_at_viewer, simple_background, anchor_symbol, happy, white_background, closed_mouth, grin, puffy_short_sleeves | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, blue_sailor_collar, midriff, open_mouth, puffy_short_sleeves, sailor_shirt, solo, white_shirt, white_shorts, anchor_symbol, medium_hair, blue_neckerchief, navel, smile, stomach, blush, folding_chair, happy, looking_at_viewer | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blue_sailor_collar | solo | white_shorts | midriff | navel | smile | open_mouth | 2girls | red_hair | short_hair | shorts | folding_chair | medium_hair | sailor_shirt | white_shirt | bangs | blue_neckerchief | blush | upper_body | looking_at_viewer | simple_background | anchor_symbol | happy | white_background | closed_mouth | grin | puffy_short_sleeves | stomach | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------------|:-------|:---------------|:----------|:--------|:--------|:-------------|:---------|:-----------|:-------------|:---------|:----------------|:--------------|:---------------|:--------------|:--------|:-------------------|:--------|:-------------|:--------------------|:--------------------|:----------------|:--------|:-------------------|:---------------|:-------|:----------------------|:----------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | | X | | | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | 2 | 7 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | X | X | X | X | X | X | | | | | X | X | X | X | | X | X | | X | | X | X | | | | X | X |
CyberHarem/kitashirakawa_chiyuri_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T02:43:20+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T03:28:11+00:00
8179067022ed804338618bb9e666ddffff500e84
# Dataset Card for "python-github-code-instruct-filtered-5k" This fine dataset [tomekkorbak/python-github-code](https://huggingface.co/datasets/tomekkorbak/python-github-code), filtered by scores greater than 0.03. Feedback and additional columns generated through OpenAI and Cohere responses.
jtatman/python-github-code-instruct-filtered-5k
[ "task_categories:text-generation", "task_categories:question-answering", "task_categories:conversational", "size_categories:1K<n<10K", "language:en", "license:apache-2.0", "Python", "Code", "Github", "region:us" ]
2024-01-15T02:48:29+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation", "question-answering", "conversational"], "pretty_name": "github python filtered by score", "dataset_info": {"features": [{"name": "system", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23926332, "num_examples": 4502}], "download_size": 9549180, "dataset_size": 23926332}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["Python", "Code", "Github"]}
2024-01-15T03:16:03+00:00
4a20eb1780a3b180934bb7c1b836b647f8d723cb
# Dataset Card for Evaluation run of ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1](https://huggingface.co/ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_ewqr2130__alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-15T02:49:27.291692](https://huggingface.co/datasets/open-llm-leaderboard/details_ewqr2130__alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1/blob/main/results_2024-01-15T02-49-27.291692.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6032096253875614, "acc_stderr": 0.03321637816759657, "acc_norm": 0.6097201219482176, "acc_norm_stderr": 0.033909808173675136, "mc1": 0.27906976744186046, "mc1_stderr": 0.015702107090627904, "mc2": 0.40550458795616723, "mc2_stderr": 0.015282277248005289 }, "harness|arc:challenge|25": { "acc": 0.5614334470989761, "acc_stderr": 0.014500682618212865, "acc_norm": 0.6023890784982935, "acc_norm_stderr": 0.01430175222327954 }, "harness|hellaswag|10": { "acc": 0.6253734315873332, "acc_stderr": 0.00483037131784105, "acc_norm": 0.8228440549691296, "acc_norm_stderr": 0.003810203308901103 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04244633238353228, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04244633238353228 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.625, "acc_stderr": 0.039397364351956274, "acc_norm": 0.625, "acc_norm_stderr": 0.039397364351956274 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6641509433962264, "acc_stderr": 0.029067220146644826, "acc_norm": 0.6641509433962264, "acc_norm_stderr": 0.029067220146644826 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6805555555555556, "acc_stderr": 0.038990736873573344, "acc_norm": 0.6805555555555556, "acc_norm_stderr": 0.038990736873573344 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.4, "acc_stderr": 0.04923659639173309, "acc_norm": 0.4, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6184971098265896, "acc_stderr": 0.03703851193099521, "acc_norm": 0.6184971098265896, "acc_norm_stderr": 0.03703851193099521 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726366, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726366 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932261, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932261 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5446808510638298, "acc_stderr": 0.03255525359340355, "acc_norm": 0.5446808510638298, "acc_norm_stderr": 0.03255525359340355 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.40350877192982454, "acc_stderr": 0.046151869625837026, "acc_norm": 0.40350877192982454, "acc_norm_stderr": 0.046151869625837026 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5793103448275863, "acc_stderr": 0.04113914981189261, "acc_norm": 0.5793103448275863, "acc_norm_stderr": 0.04113914981189261 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3941798941798942, "acc_stderr": 0.025167982333894143, "acc_norm": 0.3941798941798942, "acc_norm_stderr": 0.025167982333894143 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.373015873015873, "acc_stderr": 0.04325506042017086, "acc_norm": 0.373015873015873, "acc_norm_stderr": 0.04325506042017086 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7225806451612903, "acc_stderr": 0.025470196835900055, "acc_norm": 0.7225806451612903, "acc_norm_stderr": 0.025470196835900055 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5172413793103449, "acc_stderr": 0.035158955511656986, "acc_norm": 0.5172413793103449, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.68, "acc_stderr": 0.04688261722621504, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7212121212121212, "acc_stderr": 0.035014387062967806, "acc_norm": 0.7212121212121212, "acc_norm_stderr": 0.035014387062967806 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7424242424242424, "acc_stderr": 0.03115626951964684, "acc_norm": 0.7424242424242424, "acc_norm_stderr": 0.03115626951964684 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8031088082901554, "acc_stderr": 0.028697873971860677, "acc_norm": 0.8031088082901554, "acc_norm_stderr": 0.028697873971860677 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5897435897435898, "acc_stderr": 0.0249393139069408, "acc_norm": 0.5897435897435898, "acc_norm_stderr": 0.0249393139069408 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3296296296296296, "acc_stderr": 0.028661201116524572, "acc_norm": 0.3296296296296296, "acc_norm_stderr": 0.028661201116524572 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6554621848739496, "acc_stderr": 0.030868682604121622, "acc_norm": 0.6554621848739496, "acc_norm_stderr": 0.030868682604121622 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.03822746937658753, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.03822746937658753 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8036697247706422, "acc_stderr": 0.017030719339154343, "acc_norm": 0.8036697247706422, "acc_norm_stderr": 0.017030719339154343 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4675925925925926, "acc_stderr": 0.03402801581358966, "acc_norm": 0.4675925925925926, "acc_norm_stderr": 0.03402801581358966 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7254901960784313, "acc_stderr": 0.03132179803083291, "acc_norm": 0.7254901960784313, "acc_norm_stderr": 0.03132179803083291 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7215189873417721, "acc_stderr": 0.029178682304842548, "acc_norm": 0.7215189873417721, "acc_norm_stderr": 0.029178682304842548 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6547085201793722, "acc_stderr": 0.03191100192835794, "acc_norm": 0.6547085201793722, "acc_norm_stderr": 0.03191100192835794 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.648854961832061, "acc_stderr": 0.04186445163013751, "acc_norm": 0.648854961832061, "acc_norm_stderr": 0.04186445163013751 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.036401182719909456, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.036401182719909456 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7685185185185185, "acc_stderr": 0.04077494709252626, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.04077494709252626 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7239263803680982, "acc_stderr": 0.035123852837050475, "acc_norm": 0.7239263803680982, "acc_norm_stderr": 0.035123852837050475 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4732142857142857, "acc_stderr": 0.047389751192741546, "acc_norm": 0.4732142857142857, "acc_norm_stderr": 0.047389751192741546 }, "harness|hendrycksTest-management|5": { "acc": 0.7572815533980582, "acc_stderr": 0.04245022486384495, "acc_norm": 0.7572815533980582, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8333333333333334, "acc_stderr": 0.024414947304543674, "acc_norm": 0.8333333333333334, "acc_norm_stderr": 0.024414947304543674 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7841634738186463, "acc_stderr": 0.01471168438613996, "acc_norm": 0.7841634738186463, "acc_norm_stderr": 0.01471168438613996 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7023121387283237, "acc_stderr": 0.024617055388676996, "acc_norm": 0.7023121387283237, "acc_norm_stderr": 0.024617055388676996 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3776536312849162, "acc_stderr": 0.016214148752136632, "acc_norm": 0.3776536312849162, "acc_norm_stderr": 0.016214148752136632 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6535947712418301, "acc_stderr": 0.02724561304721536, "acc_norm": 0.6535947712418301, "acc_norm_stderr": 0.02724561304721536 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6945337620578779, "acc_stderr": 0.026160584450140453, "acc_norm": 0.6945337620578779, "acc_norm_stderr": 0.026160584450140453 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6728395061728395, "acc_stderr": 0.026105673861409828, "acc_norm": 0.6728395061728395, "acc_norm_stderr": 0.026105673861409828 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.45390070921985815, "acc_stderr": 0.029700453247291467, "acc_norm": 0.45390070921985815, "acc_norm_stderr": 0.029700453247291467 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4211212516297262, "acc_stderr": 0.012610325733489905, "acc_norm": 0.4211212516297262, "acc_norm_stderr": 0.012610325733489905 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6066176470588235, "acc_stderr": 0.029674288281311155, "acc_norm": 0.6066176470588235, "acc_norm_stderr": 0.029674288281311155 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6127450980392157, "acc_stderr": 0.019706875804085637, "acc_norm": 0.6127450980392157, "acc_norm_stderr": 0.019706875804085637 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.5818181818181818, "acc_stderr": 0.04724577405731572, "acc_norm": 0.5818181818181818, "acc_norm_stderr": 0.04724577405731572 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6857142857142857, "acc_stderr": 0.029719329422417475, "acc_norm": 0.6857142857142857, "acc_norm_stderr": 0.029719329422417475 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8109452736318408, "acc_stderr": 0.02768691358801301, "acc_norm": 0.8109452736318408, "acc_norm_stderr": 0.02768691358801301 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.82, "acc_stderr": 0.03861229196653693, "acc_norm": 0.82, "acc_norm_stderr": 0.03861229196653693 }, "harness|hendrycksTest-virology|5": { "acc": 0.5120481927710844, "acc_stderr": 0.03891364495835817, "acc_norm": 0.5120481927710844, "acc_norm_stderr": 0.03891364495835817 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7953216374269005, "acc_stderr": 0.030944459778533214, "acc_norm": 0.7953216374269005, "acc_norm_stderr": 0.030944459778533214 }, "harness|truthfulqa:mc|0": { "mc1": 0.27906976744186046, "mc1_stderr": 0.015702107090627904, "mc2": 0.40550458795616723, "mc2_stderr": 0.015282277248005289 }, "harness|winogrande|5": { "acc": 0.771112865035517, "acc_stderr": 0.011807360224025405 }, "harness|gsm8k|5": { "acc": 0.2896133434420015, "acc_stderr": 0.012493927348659629 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_ewqr2130__alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1
[ "region:us" ]
2024-01-15T02:51:46+00:00
{"pretty_name": "Evaluation run of ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1", "dataset_summary": "Dataset automatically created during the evaluation run of model [ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1](https://huggingface.co/ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_ewqr2130__alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-15T02:49:27.291692](https://huggingface.co/datasets/open-llm-leaderboard/details_ewqr2130__alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1/blob/main/results_2024-01-15T02-49-27.291692.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6032096253875614,\n \"acc_stderr\": 0.03321637816759657,\n \"acc_norm\": 0.6097201219482176,\n \"acc_norm_stderr\": 0.033909808173675136,\n \"mc1\": 0.27906976744186046,\n \"mc1_stderr\": 0.015702107090627904,\n \"mc2\": 0.40550458795616723,\n \"mc2_stderr\": 0.015282277248005289\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5614334470989761,\n \"acc_stderr\": 0.014500682618212865,\n \"acc_norm\": 0.6023890784982935,\n \"acc_norm_stderr\": 0.01430175222327954\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6253734315873332,\n \"acc_stderr\": 0.00483037131784105,\n \"acc_norm\": 0.8228440549691296,\n \"acc_norm_stderr\": 0.003810203308901103\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353228,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353228\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.625,\n \"acc_stderr\": 0.039397364351956274,\n \"acc_norm\": 0.625,\n \"acc_norm_stderr\": 0.039397364351956274\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6641509433962264,\n \"acc_stderr\": 0.029067220146644826,\n \"acc_norm\": 0.6641509433962264,\n \"acc_norm_stderr\": 0.029067220146644826\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6805555555555556,\n \"acc_stderr\": 0.038990736873573344,\n \"acc_norm\": 0.6805555555555556,\n \"acc_norm_stderr\": 0.038990736873573344\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6184971098265896,\n \"acc_stderr\": 0.03703851193099521,\n \"acc_norm\": 0.6184971098265896,\n \"acc_norm_stderr\": 0.03703851193099521\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726366,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726366\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932261,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932261\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5446808510638298,\n \"acc_stderr\": 0.03255525359340355,\n \"acc_norm\": 0.5446808510638298,\n \"acc_norm_stderr\": 0.03255525359340355\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.40350877192982454,\n \"acc_stderr\": 0.046151869625837026,\n \"acc_norm\": 0.40350877192982454,\n \"acc_norm_stderr\": 0.046151869625837026\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5793103448275863,\n \"acc_stderr\": 0.04113914981189261,\n \"acc_norm\": 0.5793103448275863,\n \"acc_norm_stderr\": 0.04113914981189261\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3941798941798942,\n \"acc_stderr\": 0.025167982333894143,\n \"acc_norm\": 0.3941798941798942,\n \"acc_norm_stderr\": 0.025167982333894143\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.373015873015873,\n \"acc_stderr\": 0.04325506042017086,\n \"acc_norm\": 0.373015873015873,\n \"acc_norm_stderr\": 0.04325506042017086\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7225806451612903,\n \"acc_stderr\": 0.025470196835900055,\n \"acc_norm\": 0.7225806451612903,\n \"acc_norm_stderr\": 0.025470196835900055\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5172413793103449,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.5172413793103449,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7212121212121212,\n \"acc_stderr\": 0.035014387062967806,\n \"acc_norm\": 0.7212121212121212,\n \"acc_norm_stderr\": 0.035014387062967806\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7424242424242424,\n \"acc_stderr\": 0.03115626951964684,\n \"acc_norm\": 0.7424242424242424,\n \"acc_norm_stderr\": 0.03115626951964684\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8031088082901554,\n \"acc_stderr\": 0.028697873971860677,\n \"acc_norm\": 0.8031088082901554,\n \"acc_norm_stderr\": 0.028697873971860677\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5897435897435898,\n \"acc_stderr\": 0.0249393139069408,\n \"acc_norm\": 0.5897435897435898,\n \"acc_norm_stderr\": 0.0249393139069408\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3296296296296296,\n \"acc_stderr\": 0.028661201116524572,\n \"acc_norm\": 0.3296296296296296,\n \"acc_norm_stderr\": 0.028661201116524572\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6554621848739496,\n \"acc_stderr\": 0.030868682604121622,\n \"acc_norm\": 0.6554621848739496,\n \"acc_norm_stderr\": 0.030868682604121622\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.32450331125827814,\n \"acc_stderr\": 0.03822746937658753,\n \"acc_norm\": 0.32450331125827814,\n \"acc_norm_stderr\": 0.03822746937658753\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8036697247706422,\n \"acc_stderr\": 0.017030719339154343,\n \"acc_norm\": 0.8036697247706422,\n \"acc_norm_stderr\": 0.017030719339154343\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4675925925925926,\n \"acc_stderr\": 0.03402801581358966,\n \"acc_norm\": 0.4675925925925926,\n \"acc_norm_stderr\": 0.03402801581358966\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7254901960784313,\n \"acc_stderr\": 0.03132179803083291,\n \"acc_norm\": 0.7254901960784313,\n \"acc_norm_stderr\": 0.03132179803083291\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7215189873417721,\n \"acc_stderr\": 0.029178682304842548,\n \"acc_norm\": 0.7215189873417721,\n \"acc_norm_stderr\": 0.029178682304842548\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6547085201793722,\n \"acc_stderr\": 0.03191100192835794,\n \"acc_norm\": 0.6547085201793722,\n \"acc_norm_stderr\": 0.03191100192835794\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.648854961832061,\n \"acc_stderr\": 0.04186445163013751,\n \"acc_norm\": 0.648854961832061,\n \"acc_norm_stderr\": 0.04186445163013751\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.036401182719909456,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.036401182719909456\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252626,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252626\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7239263803680982,\n \"acc_stderr\": 0.035123852837050475,\n \"acc_norm\": 0.7239263803680982,\n \"acc_norm_stderr\": 0.035123852837050475\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4732142857142857,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.4732142857142857,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8333333333333334,\n \"acc_stderr\": 0.024414947304543674,\n \"acc_norm\": 0.8333333333333334,\n \"acc_norm_stderr\": 0.024414947304543674\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7841634738186463,\n \"acc_stderr\": 0.01471168438613996,\n \"acc_norm\": 0.7841634738186463,\n \"acc_norm_stderr\": 0.01471168438613996\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7023121387283237,\n \"acc_stderr\": 0.024617055388676996,\n \"acc_norm\": 0.7023121387283237,\n \"acc_norm_stderr\": 0.024617055388676996\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3776536312849162,\n \"acc_stderr\": 0.016214148752136632,\n \"acc_norm\": 0.3776536312849162,\n \"acc_norm_stderr\": 0.016214148752136632\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6535947712418301,\n \"acc_stderr\": 0.02724561304721536,\n \"acc_norm\": 0.6535947712418301,\n \"acc_norm_stderr\": 0.02724561304721536\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6945337620578779,\n \"acc_stderr\": 0.026160584450140453,\n \"acc_norm\": 0.6945337620578779,\n \"acc_norm_stderr\": 0.026160584450140453\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6728395061728395,\n \"acc_stderr\": 0.026105673861409828,\n \"acc_norm\": 0.6728395061728395,\n \"acc_norm_stderr\": 0.026105673861409828\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.45390070921985815,\n \"acc_stderr\": 0.029700453247291467,\n \"acc_norm\": 0.45390070921985815,\n \"acc_norm_stderr\": 0.029700453247291467\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4211212516297262,\n \"acc_stderr\": 0.012610325733489905,\n \"acc_norm\": 0.4211212516297262,\n \"acc_norm_stderr\": 0.012610325733489905\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6066176470588235,\n \"acc_stderr\": 0.029674288281311155,\n \"acc_norm\": 0.6066176470588235,\n \"acc_norm_stderr\": 0.029674288281311155\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6127450980392157,\n \"acc_stderr\": 0.019706875804085637,\n \"acc_norm\": 0.6127450980392157,\n \"acc_norm_stderr\": 0.019706875804085637\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.5818181818181818,\n \"acc_stderr\": 0.04724577405731572,\n \"acc_norm\": 0.5818181818181818,\n \"acc_norm_stderr\": 0.04724577405731572\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6857142857142857,\n \"acc_stderr\": 0.029719329422417475,\n \"acc_norm\": 0.6857142857142857,\n \"acc_norm_stderr\": 0.029719329422417475\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8109452736318408,\n \"acc_stderr\": 0.02768691358801301,\n \"acc_norm\": 0.8109452736318408,\n \"acc_norm_stderr\": 0.02768691358801301\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.03861229196653693,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.03861229196653693\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5120481927710844,\n \"acc_stderr\": 0.03891364495835817,\n \"acc_norm\": 0.5120481927710844,\n \"acc_norm_stderr\": 0.03891364495835817\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7953216374269005,\n \"acc_stderr\": 0.030944459778533214,\n \"acc_norm\": 0.7953216374269005,\n \"acc_norm_stderr\": 0.030944459778533214\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.27906976744186046,\n \"mc1_stderr\": 0.015702107090627904,\n \"mc2\": 0.40550458795616723,\n \"mc2_stderr\": 0.015282277248005289\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.771112865035517,\n \"acc_stderr\": 0.011807360224025405\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.2896133434420015,\n \"acc_stderr\": 0.012493927348659629\n }\n}\n```", "repo_url": "https://huggingface.co/ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|arc:challenge|25_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|gsm8k|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hellaswag|10_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T02-49-27.291692.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["**/details_harness|winogrande|5_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-15T02-49-27.291692.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_15T02_49_27.291692", "path": ["results_2024-01-15T02-49-27.291692.parquet"]}, {"split": "latest", "path": ["results_2024-01-15T02-49-27.291692.parquet"]}]}]}
2024-01-15T02:52:08+00:00
9bfc3588cba06f547a9cd4688800186fa8d542d5
Syma25/llama5.1
[ "region:us" ]
2024-01-15T03:01:09+00:00
{}
2024-01-15T03:03:44+00:00
b3b2ccf1d20c09b68d951b9615fc5a22999a8b4e
argmaxinc/librispeech-debug
[ "region:us" ]
2024-01-15T03:08:34+00:00
{}
2024-01-15T03:16:06+00:00
1e8c945ec30f813133744398a6819aa903c5b720
blackriderrx/mini-platypus-1
[ "region:us" ]
2024-01-15T03:08:56+00:00
{}
2024-01-15T03:08:56+00:00
297a3d4ebc1f9d2d265fd8b255e3d70ce7257511
TDK1st/Zz-L
[ "region:us" ]
2024-01-15T03:10:38+00:00
{}
2024-01-15T03:10:38+00:00
0c9ac1ca64444107f80a8a08bccb626bc96fa476
andersonbcdefg/MEDI-NQ-subset
[ "region:us" ]
2024-01-15T03:12:35+00:00
{"dataset_info": {"features": [{"name": "pos", "dtype": "string"}, {"name": "task_name", "dtype": "string"}, {"name": "neg", "dtype": "string"}, {"name": "query", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 72687459.72125435, "num_examples": 50000}], "download_size": 42277611, "dataset_size": 72687459.72125435}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T03:21:34+00:00
99062fec1c4512b005bb695a600f25b3ed440585
#reddit demo datasets
johncbertrand/reddit-demo
[ "region:us" ]
2024-01-15T03:13:06+00:00
{}
2024-01-15T18:23:09+00:00
e46bb0b428cbf86bd69f2a35c7df5cb5e5fb35e4
# Dataset of sariel/サリエル (Touhou) This is the dataset of sariel/サリエル (Touhou), containing 45 images and their tags. The core tags of this character are `long_hair, wings, multiple_wings, angel_wings, very_long_hair, blue_hair, red_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 45 | 42.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariel_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 45 | 29.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariel_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 73 | 44.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariel_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 45 | 39.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariel_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 73 | 56.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariel_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sariel_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, staff, closed_eyes, long_sleeves, blue_dress, smile | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, blue_dress, long_sleeves, solo, breasts, closed_mouth, feathered_wings, looking_at_viewer, smile, white_wings, wide_sleeves, holding, angel, bangs, blush, staff, white_shirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | staff | closed_eyes | long_sleeves | blue_dress | smile | breasts | closed_mouth | feathered_wings | looking_at_viewer | white_wings | wide_sleeves | holding | angel | bangs | blush | white_shirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------|:---------------|:-------------|:--------|:----------|:---------------|:------------------|:--------------------|:--------------|:---------------|:----------|:--------|:--------|:--------|:--------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | | | | | | | | | | | | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/sariel_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T03:19:21+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T03:48:53+00:00
2c16b9c01d714a79e0d061570afadf1aa51e0de8
# Dataset of satsuki_rin/冴月麟 (Touhou) This is the dataset of satsuki_rin/冴月麟 (Touhou), containing 10 images and their tags. The core tags of this character are `blonde_hair, ribbon, bow, hair_bow, short_hair, yellow_eyes, hair_ornament, hair_ribbon, red_bow, red_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 10 | 9.68 MiB | [Download](https://huggingface.co/datasets/CyberHarem/satsuki_rin_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 10 | 5.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/satsuki_rin_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 15 | 8.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/satsuki_rin_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 10 | 8.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/satsuki_rin_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 15 | 12.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/satsuki_rin_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/satsuki_rin_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, instrument, smile, long_sleeves, frills, skirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | instrument | smile | long_sleeves | frills | skirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------------|:--------|:---------------|:---------|:--------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X |
CyberHarem/satsuki_rin_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T03:19:21+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T03:23:57+00:00
06ba7ddbeb61dbfeb89e948c4ae2dc181ad8c558
argmaxinc/earnings22-debug
[ "region:us" ]
2024-01-15T03:19:47+00:00
{}
2024-01-15T03:29:13+00:00
ae93d58655cdce5ab325dd1647b46218c1f0e296
# Dataset of sakata_nemuno/坂田ネムノ (Touhou) This is the dataset of sakata_nemuno/坂田ネムノ (Touhou), containing 257 images and their tags. The core tags of this character are `long_hair, red_eyes, grey_hair, breasts, wavy_hair, very_long_hair, large_breasts, bangs`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 257 | 275.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakata_nemuno_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 257 | 173.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakata_nemuno_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 557 | 342.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakata_nemuno_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 257 | 251.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakata_nemuno_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 557 | 457.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakata_nemuno_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sakata_nemuno_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, bare_shoulders, detached_sleeves, looking_at_viewer, multicolored_dress, nata_(tool), single_strap, solo, holding_weapon, orange_dress, yellow_dress, collarbone, simple_background, barefoot, closed_mouth, full_body, white_background, blue_sleeves, cleaver, medium_breasts, smile, standing | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, barefoot, detached_sleeves, full_body, holding, looking_at_viewer, multicolored_dress, nata_(tool), single_strap, solo, bare_shoulders, open_mouth, weapon, blue_sleeves, smile, standing, yellow_dress | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | detached_sleeves | looking_at_viewer | multicolored_dress | nata_(tool) | single_strap | solo | holding_weapon | orange_dress | yellow_dress | collarbone | simple_background | barefoot | closed_mouth | full_body | white_background | blue_sleeves | cleaver | medium_breasts | smile | standing | holding | open_mouth | weapon | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:-------------------|:--------------------|:---------------------|:--------------|:---------------|:-------|:-----------------|:---------------|:---------------|:-------------|:--------------------|:-----------|:---------------|:------------|:-------------------|:---------------|:----------|:-----------------|:--------|:-----------|:----------|:-------------|:---------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | X | X | X | | | X | | | X | | X | | X | | | X | X | X | X | X |
CyberHarem/sakata_nemuno_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T03:20:43+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T04:30:01+00:00
ec12f14d2ebb762b314e1108f2869739ea6d3c42
Berzerker/neocr_dataset
[ "language:en", "region:us" ]
2024-01-15T03:21:15+00:00
{"language": ["en"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "output_json_dumpsed", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}]}
2024-01-18T01:03:25+00:00
f88ccaa0534bb4cee5563efa595a558fa3489994
andersonbcdefg/quora_triplets
[ "region:us" ]
2024-01-15T03:24:48+00:00
{"dataset_info": {"features": [{"name": "query", "dtype": "string"}, {"name": "pos", "dtype": "string"}, {"name": "neg", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 17575186, "num_examples": 101762}], "download_size": 10952253, "dataset_size": 17575186}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T03:47:25+00:00
04438b56d90500c083f3d42dd8fca604cd346f2b
Berzerker/wordart
[ "region:us" ]
2024-01-15T03:26:14+00:00
{}
2024-01-15T03:26:14+00:00
9df78a2d7045b1b5f7aac6e2acebd22a1567f369
iNeil77/commit-chronicle
[ "region:us" ]
2024-01-15T03:28:20+00:00
{"dataset_info": [{"config_name": "C", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1214269026.0285635, "num_examples": 309153}, {"name": "validation", "num_bytes": 220284785.83363256, "num_examples": 57970}, {"name": "test", "num_bytes": 148589006.99135485, "num_examples": 38340}], "download_size": 516619057, "dataset_size": 1583142818.853551}, {"config_name": "C++", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3262697231.9482107, "num_examples": 830683}, {"name": "validation", "num_bytes": 766516575.1115581, "num_examples": 201716}, {"name": "test", "num_bytes": 479503779.0820391, "num_examples": 123725}], "download_size": 1779547046, "dataset_size": 4508717586.141808}, {"config_name": "Go", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2639610249.9324474, "num_examples": 672045}, {"name": "validation", "num_bytes": 509022394.3687841, "num_examples": 133954}, {"name": "test", "num_bytes": 522034184.995527, "num_examples": 134699}], "download_size": 1392783035, "dataset_size": 3670666829.2967587}, {"config_name": "Objective-C", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 127717945.2224976, "num_examples": 32517}, {"name": "validation", "num_bytes": 4917172.897511136, "num_examples": 1294}, {"name": "test", "num_bytes": 29872823.836446613, "num_examples": 7708}], "download_size": 52374411, "dataset_size": 162507941.95645535}, {"config_name": "Python", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5224487604.251047, "num_examples": 1330155}, {"name": "validation", "num_bytes": 807734947.9240026, "num_examples": 212563}, {"name": "test", "num_bytes": 958895166.8964008, "num_examples": 247421}], "download_size": 2161676583, "dataset_size": 6991117719.07145}, {"config_name": "Ruby", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 714516644.312079, "num_examples": 181916}, {"name": "validation", "num_bytes": 151664764.05368194, "num_examples": 39912}, {"name": "test", "num_bytes": 129571629.38815771, "num_examples": 33433}], "download_size": 243994774, "dataset_size": 995753037.7539186}, {"config_name": "Rust", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 942800148.1493574, "num_examples": 240037}, {"name": "validation", "num_bytes": 230993126.81136546, "num_examples": 60788}, {"name": "test", "num_bytes": 175047461.6269829, "num_examples": 45167}], "download_size": 541549356, "dataset_size": 1348840736.5877059}, {"config_name": "Swift", "features": [{"name": "author", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "timezone", "dtype": "int64"}, {"name": "hash", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "mods", "list": [{"name": "change_type", "dtype": "string"}, {"name": "old_path", "dtype": "string"}, {"name": "new_path", "dtype": "string"}, {"name": "diff", "dtype": "string"}]}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "original_message", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 397776768.5968331, "num_examples": 101274}, {"name": "validation", "num_bytes": 107262008.79292645, "num_examples": 28227}, {"name": "test", "num_bytes": 34639763.81034767, "num_examples": 8938}], "download_size": 181314627, "dataset_size": 539678541.2001072}], "configs": [{"config_name": "C", "data_files": [{"split": "train", "path": "C/train-*"}, {"split": "validation", "path": "C/validation-*"}, {"split": "test", "path": "C/test-*"}]}, {"config_name": "C++", "data_files": [{"split": "train", "path": "C++/train-*"}, {"split": "validation", "path": "C++/validation-*"}, {"split": "test", "path": "C++/test-*"}]}, {"config_name": "Go", "data_files": [{"split": "train", "path": "Go/train-*"}, {"split": "validation", "path": "Go/validation-*"}, {"split": "test", "path": "Go/test-*"}]}, {"config_name": "Objective-C", "data_files": [{"split": "train", "path": "Objective-C/train-*"}, {"split": "validation", "path": "Objective-C/validation-*"}, {"split": "test", "path": "Objective-C/test-*"}]}, {"config_name": "Python", "data_files": [{"split": "train", "path": "Python/train-*"}, {"split": "validation", "path": "Python/validation-*"}, {"split": "test", "path": "Python/test-*"}]}, {"config_name": "Ruby", "data_files": [{"split": "train", "path": "Ruby/train-*"}, {"split": "validation", "path": "Ruby/validation-*"}, {"split": "test", "path": "Ruby/test-*"}]}, {"config_name": "Rust", "data_files": [{"split": "train", "path": "Rust/train-*"}, {"split": "validation", "path": "Rust/validation-*"}, {"split": "test", "path": "Rust/test-*"}]}, {"config_name": "Swift", "data_files": [{"split": "train", "path": "Swift/train-*"}, {"split": "validation", "path": "Swift/validation-*"}, {"split": "test", "path": "Swift/test-*"}]}]}
2024-01-15T03:44:42+00:00
6ac1f78030da5e63c0c5bce326091feb70ab6418
sdsadsada/Sisas
[ "region:us" ]
2024-01-15T03:31:59+00:00
{}
2024-01-15T03:37:37+00:00
9929c1bac59a13bde83bd536dc921123c0c02776
modelloosrvcc/Peppa
[ "license:openrail", "region:us" ]
2024-01-15T03:37:45+00:00
{"license": "openrail"}
2024-01-15T03:38:13+00:00
7223828f81316a5ff1bd3a1032ea7a4af196ac88
erikbtx/AUDIOERIKVOZPRONTO
[ "license:openrail", "region:us" ]
2024-01-15T03:38:54+00:00
{"license": "openrail"}
2024-01-15T03:39:26+00:00
3b744919b354e074dacf1a8e172d7457f5a3ce88
tqgminh/llava_instruct
[ "region:us" ]
2024-01-15T03:48:26+00:00
{}
2024-01-15T03:48:26+00:00
c13b946c3b8a1c41368346bcbd9a811ccebac8cc
ura-hcmut/vmlu_vi
[ "size_categories:1K<n<10K", "language:vi", "region:us" ]
2024-01-15T03:53:03+00:00
{"language": ["vi"], "size_categories": ["1K<n<10K"], "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "test.jsonl"}, {"split": "valid", "path": "valid.jsonl"}, {"split": "dev", "path": "dev.jsonl"}]}]}
2024-01-15T03:54:46+00:00
fbfa963979c8a030daf58c6f156d20a41fb80cec
Domenic091/VOCAL-APENAS2
[ "license:openrail", "region:us" ]
2024-01-15T03:53:55+00:00
{"license": "openrail"}
2024-01-15T03:54:07+00:00
74c6189302bacab7d3d53435819bb6af554f48eb
Singularity4-2/goblet
[ "region:us" ]
2024-01-15T03:58:15+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 8449447.0, "num_examples": 200}, {"name": "validation", "num_bytes": 965072.0, "num_examples": 23}], "download_size": 9419595, "dataset_size": 9414519.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-20T04:59:23+00:00
da85ba5da4d1fd76dc378c9cff9c9fe648206c11
llm-aes/asappp-1-2-instruct
[ "region:us" ]
2024-01-15T04:02:43+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29451763, "num_examples": 7166}], "download_size": 8644011, "dataset_size": 29451763}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T04:03:19+00:00
a4ce198c7fdc90b23af0ec718a68bf7894d887b6
lowres/eggy
[ "region:us" ]
2024-01-15T04:14:46+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 70619137.86519945, "num_examples": 138}], "download_size": 76957609, "dataset_size": 70619137.86519945}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T14:54:49+00:00
9e9d251270b2bde8338b3198aae6ccf7bc23b9e9
zedamangas/MiniNoia
[ "license:openrail", "region:us" ]
2024-01-15T04:17:25+00:00
{"license": "openrail"}
2024-01-15T04:22:44+00:00
794d3582ccf0c3ab4f7734a4027df58ad47fcbe1
iNeil77/the-vault-function
[ "region:us" ]
2024-01-15T04:19:17+00:00
{"dataset_info": [{"config_name": "c", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 1618612526, "num_examples": 381207}, {"name": "validation", "num_bytes": 118163214, "num_examples": 27525}, {"name": "test", "num_bytes": 82244493, "num_examples": 19122}], "download_size": 601549243, "dataset_size": 1819020233}, {"config_name": "cpp", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 1745583444, "num_examples": 410907}, {"name": "validation", "num_bytes": 85254767, "num_examples": 20011}, {"name": "test", "num_bytes": 71686667, "num_examples": 18169}], "download_size": 617392067, "dataset_size": 1902524878}, {"config_name": "go", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 3717971602, "num_examples": 1319547}, {"name": "validation", "num_bytes": 50699286, "num_examples": 19102}, {"name": "test", "num_bytes": 71810505, "num_examples": 25314}], "download_size": 1052043326, "dataset_size": 3840481393}, {"config_name": "python", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 8545493683, "num_examples": 1952110}, {"name": "validation", "num_bytes": 110572316, "num_examples": 30992}, {"name": "test", "num_bytes": 94502917, "num_examples": 21652}], "download_size": 2953145655, "dataset_size": 8750568916}, {"config_name": "ruby", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 358470286, "num_examples": 112574}, {"name": "validation", "num_bytes": 51183541, "num_examples": 17338}, {"name": "test", "num_bytes": 64582951, "num_examples": 19908}], "download_size": 157505004, "dataset_size": 474236778}, {"config_name": "rust", "features": [{"name": "hexsha", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "license", "sequence": "string"}, {"name": "language", "dtype": "string"}, {"name": "identifier", "dtype": "string"}, {"name": "return_type", "dtype": "string"}, {"name": "original_string", "dtype": "string"}, {"name": "original_docstring", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "code", "dtype": "string"}, {"name": "code_tokens", "sequence": "string"}, {"name": "short_docstring", "dtype": "string"}, {"name": "short_docstring_tokens", "sequence": "string"}, {"name": "comment", "sequence": "string"}, {"name": "parameters", "list": [{"name": "param", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "docstring_params", "struct": [{"name": "returns", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "raises", "list": [{"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "outlier_params", "list": [{"name": "identifier", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}, {"name": "default", "dtype": "string"}, {"name": "is_optional", "dtype": "bool"}]}, {"name": "others", "list": [{"name": "identifier", "dtype": "string"}, {"name": "docstring", "dtype": "string"}, {"name": "docstring_tokens", "sequence": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 730827968, "num_examples": 224015}, {"name": "validation", "num_bytes": 60404939, "num_examples": 16716}, {"name": "test", "num_bytes": 87319651, "num_examples": 23141}], "download_size": 279796696, "dataset_size": 878552558}], "configs": [{"config_name": "c", "data_files": [{"split": "train", "path": "c/train-*"}, {"split": "validation", "path": "c/validation-*"}, {"split": "test", "path": "c/test-*"}]}, {"config_name": "cpp", "data_files": [{"split": "train", "path": "cpp/train-*"}, {"split": "validation", "path": "cpp/validation-*"}, {"split": "test", "path": "cpp/test-*"}]}, {"config_name": "go", "data_files": [{"split": "train", "path": "go/train-*"}, {"split": "validation", "path": "go/validation-*"}, {"split": "test", "path": "go/test-*"}]}, {"config_name": "python", "data_files": [{"split": "train", "path": "python/train-*"}, {"split": "validation", "path": "python/validation-*"}, {"split": "test", "path": "python/test-*"}]}, {"config_name": "ruby", "data_files": [{"split": "train", "path": "ruby/train-*"}, {"split": "validation", "path": "ruby/validation-*"}, {"split": "test", "path": "ruby/test-*"}]}, {"config_name": "rust", "data_files": [{"split": "train", "path": "rust/train-*"}, {"split": "validation", "path": "rust/validation-*"}, {"split": "test", "path": "rust/test-*"}]}]}
2024-01-15T07:54:41+00:00
134be630da19d09ff1ae1675499690b3ba8ef17c
# Dataset of kotohime/ことひめ/小兎姫 (Touhou) This is the dataset of kotohime/ことひめ/小兎姫 (Touhou), containing 78 images and their tags. The core tags of this character are `long_hair, red_hair, red_eyes, bow, hair_bow`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 78 | 65.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kotohime_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 78 | 46.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kotohime_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 142 | 79.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kotohime_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 78 | 60.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kotohime_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 142 | 98.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kotohime_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/kotohime_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 20 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, kimono, solo, smile, ponytail, sash | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, long_sleeves, solo, wide_sleeves, bangs, looking_at_viewer, simple_background, smile, yellow_bow, closed_mouth, purple_kimono, white_background, white_kimono, obi, sidelocks | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | kimono | solo | smile | ponytail | sash | long_sleeves | wide_sleeves | bangs | looking_at_viewer | simple_background | yellow_bow | closed_mouth | purple_kimono | white_background | white_kimono | obi | sidelocks | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------|:-------|:--------|:-----------|:-------|:---------------|:---------------|:--------|:--------------------|:--------------------|:-------------|:---------------|:----------------|:-------------------|:---------------|:------|:------------| | 0 | 20 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | | | | | | | | | | | | | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/kotohime_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T04:21:32+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T04:48:09+00:00
37e53ba0e3cf7cb8e42d1e2f5deb3adc128206ff
# Dataset of luize/ルイズ (Touhou) This is the dataset of luize/ルイズ (Touhou), containing 90 images and their tags. The core tags of this character are `blonde_hair, hat, yellow_eyes, short_hair, ribbon, twintails, bow, white_headwear`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 90 | 54.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/luize_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 90 | 40.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/luize_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 130 | 66.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/luize_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 90 | 51.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/luize_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 130 | 82.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/luize_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/luize_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 17 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, purple_neckerchief, purple_sailor_collar, short_sleeves, solo, smile, sun_hat, white_shirt, white_skirt, hat_bow, bangs, purple_bow, closed_eyes, medium_hair, closed_mouth, full_body, happy, low_twintails, looking_at_viewer, blush, breasts, open_mouth, simple_background | | 1 | 14 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, solo, smile, dress, closed_eyes, simple_background, white_background, sailor_collar | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | purple_neckerchief | purple_sailor_collar | short_sleeves | solo | smile | sun_hat | white_shirt | white_skirt | hat_bow | bangs | purple_bow | closed_eyes | medium_hair | closed_mouth | full_body | happy | low_twintails | looking_at_viewer | blush | breasts | open_mouth | simple_background | dress | white_background | sailor_collar | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------------|:-----------------------|:----------------|:-------|:--------|:----------|:--------------|:--------------|:----------|:--------|:-------------|:--------------|:--------------|:---------------|:------------|:--------|:----------------|:--------------------|:--------|:----------|:-------------|:--------------------|:--------|:-------------------|:----------------| | 0 | 17 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | 1 | 14 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | | | | X | X | | | | | | | X | | | | | | | | | | X | X | X | X |
CyberHarem/luize_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T04:21:37+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T04:45:18+00:00
2215b3f793524d845673bb799434df63520f2393
vlad775/price
[ "region:us" ]
2024-01-15T04:35:27+00:00
{}
2024-01-15T04:37:32+00:00
6066e9c6f9e75e18f3625a551087bd44fe8a84e0
# Quirky Textbook Trove: Compact Excellence for Small Language Model Strange dataset is 100% AI-generated, a compilation aligned with the vision of the [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) and [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) research. This dataset features 2,7M synthetic textbooks, encapsulating 16GB of raw text data. The unique name reflects its unconventional synthesis methodology, its compact size, deduped, and its emphasis on clear, focused content. The dataset comprises text documents, each representing a tiny synthetic textbook. The source of this data is advanced open LLM-generated text, ensuring a high-quality, structured representation across a diverse range of subjects. ## Motivation The creation of the dataset is driven by the need for high-quality, efficient training data. By emulating the principles outlined in the paper, this dataset aims to contribute to the development of more efficient language models that can achieve remarkable performance with less data. ## Usage Researchers and AI practitioners can leverage this dataset for experiments in language model training, particularly those focused on the efficiency and efficacy of models trained on structured, high-quality data. ### Text Length Distribution The textbooks in this dataset exhibit the following characteristics in terms of text length (measured in characters): - **Mean**: 6,456.23 - **Standard Deviation**: 2,559.61 - **25th Percentile**: 4,831 - **Median (50th Percentile)**: 6,265 - **75th Percentile**: 8,048 These statistics indicate a varied range of text lengths, providing a comprehensive dataset suitable for diverse applications in language model training. ## Contribution Contributions to the dataset are encouraged and valued. Enhancements can range from adding new textbooks to optimizing existing content for better quality and diversity. ## Acknowledgments The development of this dataset was inspired by the groundbreaking work presented in the paper. I acknowledge the contribution of all the community members and the original authors (Microsoft Research) who have influenced this project. ### Disclaimer While every effort has been made to ensure the accuracy of the information contained within this dataset, please note that it is provided 'as is' and without any warranties. The use of the data is intended for research purposes only. You are advised to verify any information obtained from this dataset before acting upon it. ## Tiny Series Explore the possibilities and limitations of building Small Language Models with these tiny gems of data! - [TinyStories](https://arxiv.org/abs/2305.07759): The paper that sparked my interest in the journey of the tiny-* series. - [tiny-codes](https://huggingface.co/datasets/nampdn-ai/tiny-codes): Collection of 1.6M short and clear code snippets that can help LLM models learn how to reason. - [tiny-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-textbooks): 420k "things of internet" synthetic textbooks. - [tiny-code-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-code-textbooks): Collection of 207k code explanation synthetic textbooks. - [tiny-math-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-math-textbooks): Collection of 635k short math textbook on various mathematical topics. - [tiny-orca-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-orca-textbooks): Synthetic textbook to help model learn in-context on how it should perform task the right way. - [tiny-webtext](https://huggingface.co/datasets/nampdn-ai/tiny-webtext): A 6GB (4.5M records) variety of diverse webtext enriched with critical thinking methods to make unbiased English dataset. - [tiny-lessons](https://huggingface.co/datasets/nampdn-ai/tiny-lessons): Subset of tiny-textbooks dataset, various lessons about "things of internet" augmented in a bite-sized textbook Markdown format. - [tiny-bridgedict](https://huggingface.co/datasets/nampdn-ai/tiny-bridgedict): A dataset that links and transfers knowledge between English, Vietnamese, Chinese in a tiny multilingual models. ## Citation ``` @misc {nam_pham_2024, author = { {Nam Pham} }, title = { tiny-strange-textbooks (Revision 6f304f1) }, year = 2024, url = { https://huggingface.co/datasets/nampdn-ai/tiny-strange-textbooks }, doi = { 10.57967/hf/1612 }, publisher = { Hugging Face } } ```
nampdn-ai/tiny-strange-textbooks
[ "task_categories:text-generation", "size_categories:1M<n<10M", "language:en", "license:apache-2.0", "synthetic", "arxiv:2306.11644", "arxiv:2309.05463", "arxiv:2305.07759", "doi:10.57967/hf/1612", "region:us" ]
2024-01-15T04:39:00+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "task_categories": ["text-generation"], "pretty_name": "Tiny Strange Textbooks", "tags": ["synthetic"]}
2024-02-02T16:15:23+00:00
2706d5a2b37e52c240517d7c63caac7b522e96fb
manish2057/chatbot
[ "region:us" ]
2024-01-15T04:40:08+00:00
{}
2024-01-15T04:40:08+00:00
805f15e5a03238069398bf3596f658d48fd43281
# Dataset Card for "openhermes_binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jan-hq/openhermes_binarized
[ "region:us" ]
2024-01-15T04:46:54+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 309587583.1440632, "num_examples": 240402}, {"name": "test", "num_bytes": 3128044.855936845, "num_examples": 2429}], "download_size": 158388623, "dataset_size": 312715628.0}}
2024-01-15T04:48:45+00:00
cc841667724d8a6d6df8ee719f742e1e4dd95b1c
zedamangas/mczimvocal
[ "license:openrail", "region:us" ]
2024-01-15T04:50:14+00:00
{"license": "openrail"}
2024-01-15T05:37:50+00:00
2d2015f4b1dd52a3457158ed7e76a8156bbdbda3
zhihao406/TAMM-DATASET
[ "region:us" ]
2024-01-15T05:01:24+00:00
{}
2024-01-15T07:25:16+00:00
2b4b880b0d69d5a3ad7381d13dcf3bde914d9e65
NoahMartinezXiang/CREMA-D
[ "license:apache-2.0", "region:us" ]
2024-01-15T05:02:09+00:00
{"license": "apache-2.0"}
2024-01-19T14:49:16+00:00
58806e08bd61d0698b5eb3e799317e10cdb6a482
AsphyXIA/baarat-hin-v1
[ "license:mit", "region:us" ]
2024-01-15T05:05:51+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "src", "dtype": "string"}, {"name": "tgt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1758609731, "num_examples": 5062893}], "download_size": 935211726, "dataset_size": 1758609731}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T05:06:52+00:00
2015ac98e71260fc1c4325dcf790e6d5f725d36a
Sevll/hb
[ "license:apache-2.0", "region:us" ]
2024-01-15T05:06:07+00:00
{"license": "apache-2.0"}
2024-01-15T05:06:07+00:00
14a941854dfdedf7df3436ce6e96badd4b44fbc0
glitchy222222/test
[ "region:us" ]
2024-01-15T05:06:09+00:00
{}
2024-01-15T05:10:08+00:00
22ea4fa056d40a125811b02e13dc8910df17f19f
SoorajK1/Two_chunks-2893c985-e3c3-492c-865f-95d044e1a438
[ "region:us" ]
2024-01-15T05:11:17+00:00
{}
2024-01-15T05:11:20+00:00
5abeacf21c552b34c08501b19452eab8ad4cb06e
# Dataset Card for "dolphin_binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jan-hq/dolphin_binarized
[ "region:us" ]
2024-01-15T05:13:04+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1571862982.8863597, "num_examples": 882938}, {"name": "test", "num_bytes": 15878177.113640415, "num_examples": 8919}], "download_size": 856689595, "dataset_size": 1587741160.0}}
2024-01-15T06:24:10+00:00
aa030edf2d1a97e8cc31ee9b57cd6d2233f2d389
haisonle001/cmc_dedup
[ "region:us" ]
2024-01-15T05:13:18+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8266460422, "num_examples": 429350}], "download_size": 2814231645, "dataset_size": 8266460422}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T05:55:38+00:00
2f403a71e09b673fcc15387745d90dba10af54b8
jilp00/youtoks-transcripts-run01
[ "region:us" ]
2024-01-15T05:16:11+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7912963, "num_examples": 9358}], "download_size": 4134655, "dataset_size": 7912963}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T05:16:22+00:00
83fa3665302f983c9dddbafdb6539e5acf82f382
SoorajK1/Two_chunks-ed85502b-921b-4762-94d9-fe87677c46df
[ "region:us" ]
2024-01-15T05:16:38+00:00
{}
2024-01-15T05:16:41+00:00
a29511d72a28758e7b5b2797507388e57a54ef74
SoorajK1/Two_chunks-6d3abcb2-6ee7-4299-bb9c-0d2db9026305
[ "region:us" ]
2024-01-15T05:16:41+00:00
{}
2024-01-15T05:16:43+00:00
319ef48f3f8ee55f64c416a1ecb438ab9f91a5cf
SoorajK1/Two_chunks-5f11ee4a-70df-4d60-b702-109e24ea02eb
[ "region:us" ]
2024-01-15T05:16:51+00:00
{}
2024-01-15T05:16:53+00:00
0598372c3f6131ad877e7326fd91f5701ab65b77
maulinnasari/dataset_ext_20_mn
[ "region:us" ]
2024-01-15T05:19:01+00:00
{"dataset_info": {"features": [{"name": "document", "sequence": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 160065061, "num_examples": 44972}, {"name": "validation", "num_bytes": 19636553, "num_examples": 5622}, {"name": "test", "num_bytes": 19797897, "num_examples": 5622}], "download_size": 124783985, "dataset_size": 199499511}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T05:19:12+00:00
e755510595b55aec0f28182ca816f5e0c419b0b3
SoorajK1/Two_chunks-966fbceb-3587-4826-ada8-e63683c086b1
[ "region:us" ]
2024-01-15T05:19:12+00:00
{}
2024-01-15T05:19:14+00:00
cc38835304f173951942004d014231f1b95645ab
SoorajK1/Two_chunks-156bc30e-e7c6-4cf0-ad74-5090505a0463
[ "region:us" ]
2024-01-15T05:19:24+00:00
{}
2024-01-15T05:19:27+00:00
d32678464cb927d10725bde31398219db9bb42a2
# Dataset of elis (Touhou) This is the dataset of elis (Touhou), containing 108 images and their tags. The core tags of this character are `blonde_hair, bow, long_hair, wings, hair_bow, bat_wings, pointy_ears, facial_mark, red_bow, hair_ornament, red_eyes, hair_flower, ribbon`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 108 | 90.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elis_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 108 | 66.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elis_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 208 | 123.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elis_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 108 | 85.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elis_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 208 | 149.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elis_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/elis_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 26 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, star_(symbol), skirt, vest, wand, smile, flower | | 1 | 8 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, long_sleeves, red_skirt, solo, star_(symbol), white_shirt, looking_at_viewer, open_vest, red_bowtie, smile, black_vest, closed_mouth, flower, simple_background, long_skirt, white_background, bangs, collared_shirt, holding_wand, arms_behind_back, puffy_sleeves | | 2 | 8 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, red_bowtie, red_skirt, star_(symbol), white_shirt, black_vest, frilled_skirt, full_body, holding_wand, juliet_sleeves, looking_at_viewer, smile, solo, bangs, flower, open_mouth, open_vest, long_skirt, black_footwear, blush, fang, mary_janes, purple_eyes, buttons, chibi, one_eye_closed, puffy_long_sleeves, red_footwear | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | star_(symbol) | skirt | vest | wand | smile | flower | long_sleeves | red_skirt | white_shirt | looking_at_viewer | open_vest | red_bowtie | black_vest | closed_mouth | simple_background | long_skirt | white_background | bangs | collared_shirt | holding_wand | arms_behind_back | puffy_sleeves | frilled_skirt | full_body | juliet_sleeves | open_mouth | black_footwear | blush | fang | mary_janes | purple_eyes | buttons | chibi | one_eye_closed | puffy_long_sleeves | red_footwear | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------------|:--------|:-------|:-------|:--------|:---------|:---------------|:------------|:--------------|:--------------------|:------------|:-------------|:-------------|:---------------|:--------------------|:-------------|:-------------------|:--------|:-----------------|:---------------|:-------------------|:----------------|:----------------|:------------|:-----------------|:-------------|:-----------------|:--------|:-------|:-------------|:--------------|:----------|:--------|:-----------------|:---------------------|:---------------| | 0 | 26 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 8 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | 2 | 8 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | | | | X | X | | X | X | X | X | X | X | | | X | | X | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/elis_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T05:19:42+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T05:48:28+00:00
9ee635b81bf0dcaf517526d68ab2a41db7c2076d
# Dataset of sara/サラ (Touhou) This is the dataset of sara/サラ (Touhou), containing 58 images and their tags. The core tags of this character are `pink_hair, short_hair, pink_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 58 | 32.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sara_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 58 | 26.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sara_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 92 | 41.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sara_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 58 | 31.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sara_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 92 | 46.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sara_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sara_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 33 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, smile, red_dress, looking_at_viewer, one_side_up, short_sleeves, simple_background, bangs, full_body, open_mouth, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | red_dress | looking_at_viewer | one_side_up | short_sleeves | simple_background | bangs | full_body | open_mouth | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:------------|:--------------------|:--------------|:----------------|:--------------------|:--------|:------------|:-------------|:-------------------| | 0 | 33 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/sara_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T05:19:45+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T05:47:40+00:00
38ea21b177794c97f5db2f4bab731e4157a27f26
wessmetal/andrematos
[ "license:bsd", "region:us" ]
2024-01-15T05:28:20+00:00
{"license": "bsd"}
2024-01-15T05:29:01+00:00
ca9521d03c1b3c95d269f3267d834ba8c688cebf
presencesw/webglm_test
[ "region:us" ]
2024-01-15T05:29:37+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}, {"name": "len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 480967.01099153265, "num_examples": 186}, {"name": "validation", "num_bytes": 295057.992, "num_examples": 114}, {"name": "test", "num_bytes": 255117.03, "num_examples": 98}], "download_size": 1063212, "dataset_size": 1031142.0329915327}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:17:40+00:00
e9cf26b57168b10e90b1044e0c10f3c17107c474
SoorajK1/Two_chunks-743333a1-473d-4f61-8101-7917847e1838
[ "region:us" ]
2024-01-15T05:30:13+00:00
{}
2024-01-15T05:30:16+00:00
a917fc8816a8972444d89a3cf78a2f6b6312523c
SoorajK1/Two_chunks-dc59ac67-1a5c-41d9-936f-732b17a9c768
[ "region:us" ]
2024-01-15T05:31:03+00:00
{}
2024-01-15T05:31:06+00:00
cc70c44818e2947aee776a36e20df1871f2fe8b8
SoorajK1/two_chunks_1637_1638
[ "region:us" ]
2024-01-15T05:32:07+00:00
{}
2024-01-15T05:32:12+00:00
bffe1ceccea1737655719e13d7ccfac9ecf1508b
SoorajK1/two_chunks_1638_1639
[ "region:us" ]
2024-01-15T05:32:37+00:00
{}
2024-01-15T05:32:40+00:00
e01aa9cc275268b34b0f5b5b193026c78a0316cb
epinnock/commit-diffs
[ "region:us" ]
2024-01-15T05:37:09+00:00
{"dataset_info": {"features": [{"name": "commit", "dtype": "string"}, {"name": "old_file", "dtype": "string"}, {"name": "new_file", "dtype": "string"}, {"name": "old_contents", "dtype": "string"}, {"name": "new_contents", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "message", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "repos", "dtype": "string"}, {"name": "diff", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 336540826, "num_examples": 117081}], "download_size": 162155567, "dataset_size": 336540826}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T05:37:17+00:00
7082898e6ef351b58289c7de89b1dc440061a22a
pran1805/CompaniesData
[ "region:us" ]
2024-01-15T05:50:40+00:00
{}
2024-01-15T06:01:23+00:00
6e43b689582f7e93e8e1667d5fe8c3c51de27096
# Dataset Card for "oasst2_top1" * Top 1% conversations of https://huggingface.co/datasets/OpenAssistant/oasst2 * generated using https://github.com/blancsw/deep_4_all/blob/main/datasets/oasst/convert.py
g-ronimo/oasst2_top1
[ "license:apache-2.0", "region:us" ]
2024-01-15T05:54:05+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 24247056, "num_examples": 13757}], "download_size": 14029074, "dataset_size": 24247056}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T15:38:08+00:00
0cc818c08d23abbf02e0ac6dbe6fbd9dbb8a92f7
# Dataset Card for "oasst2_top1_fr-en-de-es-it" * Top 1% conversations of https://huggingface.co/datasets/OpenAssistant/oasst2 * language-filtered: fr, en, de, es, ita * generated using https://github.com/blancsw/deep_4_all/blob/main/datasets/oasst/convert.py
g-ronimo/oasst2_top1_fr-en-de-es-it
[ "license:apache-2.0", "region:us" ]
2024-01-15T05:56:21+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 18301524, "num_examples": 10746}], "download_size": 10477478, "dataset_size": 18301524}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T15:36:54+00:00
e75a4b3158b8ed9296db976269af640613a5ac05
alvwjy/tokenized_dataset
[ "region:us" ]
2024-01-15T05:59:30+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 6163554505, "num_examples": 691655}, {"name": "test", "num_bytes": 1548416383, "num_examples": 172914}], "download_size": 3102128888, "dataset_size": 7711970888}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:25:56+00:00
f27ae4338b712c5fa298ea9d6965273c884292db
openerotica/gorgon-lima-v0.1
[ "license:apache-2.0", "region:us" ]
2024-01-15T06:02:43+00:00
{"license": "apache-2.0"}
2024-01-15T18:31:43+00:00
716ee7d981b75bff1623790b8b8edf6075df3ea7
pran1805/CEO_Database
[ "region:us" ]
2024-01-15T06:05:25+00:00
{}
2024-01-15T09:04:04+00:00
b95d1592764cf8c71f2d756950d02c842a1b10fb
sjonas50/test
[ "license:creativeml-openrail-m", "region:us" ]
2024-01-15T06:05:30+00:00
{"license": "creativeml-openrail-m"}
2024-01-15T06:10:43+00:00
a1a2689323a8ca3f54fbc23142fbc00efa6b577f
Maaz911/llama_data_v1.0.0
[ "region:us" ]
2024-01-15T06:17:02+00:00
{}
2024-01-15T06:18:06+00:00
fa145046b6c8c2f52755be3404271ec97292103d
GGLS/mixed_math_data
[ "region:us" ]
2024-01-15T06:18:27+00:00
{}
2024-01-16T12:10:00+00:00
bbaf6cc5fd77d069a23b4433c832f81f4275a44d
dderr/tdataset
[ "task_categories:text-generation", "task_categories:question-answering", "task_categories:table-question-answering", "size_categories:10K<n<100K", "language:en", "license:cc-by-4.0", "SQL", "code", "NLP", "text-to-sql", "context-sql", "spider", "wikisql", "sqlglot", "region:us" ]
2024-01-15T06:24:28+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation", "question-answering", "table-question-answering", "test-categories"], "pretty_name": "sql-create-context", "tags": ["SQL", "code", "NLP", "text-to-sql", "context-sql", "spider", "wikisql", "sqlglot"]}
2024-01-15T06:39:32+00:00
5f3d9dc0a5bea1581c8c6b968444c4235df91965
wesley7137/physics_zephyrformat_SFT
[ "region:us" ]
2024-01-15T06:25:09+00:00
{}
2024-01-15T06:25:31+00:00
63e24d2125f0704568d4a25adf2a1247bd16f976
# Dataset Card for Evaluation run of deepseek-ai/deepseek-moe-16b-base <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [deepseek-ai/deepseek-moe-16b-base](https://huggingface.co/deepseek-ai/deepseek-moe-16b-base) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-15T06:33:48.729928](https://huggingface.co/datasets/open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base/blob/main/results_2024-01-15T06-33-48.729928.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.465522984657348, "acc_stderr": 0.034469796748715614, "acc_norm": 0.46990944729307677, "acc_norm_stderr": 0.03523647567293407, "mc1": 0.23745410036719705, "mc1_stderr": 0.014896277441041836, "mc2": 0.3607930335233562, "mc2_stderr": 0.01354653975819568 }, "harness|arc:challenge|25": { "acc": 0.49658703071672355, "acc_stderr": 0.014611050403244077, "acc_norm": 0.5324232081911263, "acc_norm_stderr": 0.014580637569995423 }, "harness|hellaswag|10": { "acc": 0.5957976498705437, "acc_stderr": 0.004897340793314379, "acc_norm": 0.7977494523003386, "acc_norm_stderr": 0.004008571431483689 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.27, "acc_stderr": 0.044619604333847415, "acc_norm": 0.27, "acc_norm_stderr": 0.044619604333847415 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.3925925925925926, "acc_stderr": 0.04218506215368879, "acc_norm": 0.3925925925925926, "acc_norm_stderr": 0.04218506215368879 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.4605263157894737, "acc_stderr": 0.04056242252249034, "acc_norm": 0.4605263157894737, "acc_norm_stderr": 0.04056242252249034 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.4716981132075472, "acc_stderr": 0.0307235352490061, "acc_norm": 0.4716981132075472, "acc_norm_stderr": 0.0307235352490061 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5347222222222222, "acc_stderr": 0.04171115858181618, "acc_norm": 0.5347222222222222, "acc_norm_stderr": 0.04171115858181618 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.37, "acc_stderr": 0.048523658709391, "acc_norm": 0.37, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.44, "acc_stderr": 0.04988876515698589, "acc_norm": 0.44, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.3930635838150289, "acc_stderr": 0.0372424959581773, "acc_norm": 0.3930635838150289, "acc_norm_stderr": 0.0372424959581773 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.27450980392156865, "acc_stderr": 0.04440521906179327, "acc_norm": 0.27450980392156865, "acc_norm_stderr": 0.04440521906179327 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.37446808510638296, "acc_stderr": 0.031639106653672915, "acc_norm": 0.37446808510638296, "acc_norm_stderr": 0.031639106653672915 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2719298245614035, "acc_stderr": 0.041857744240220554, "acc_norm": 0.2719298245614035, "acc_norm_stderr": 0.041857744240220554 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.4827586206896552, "acc_stderr": 0.04164188720169377, "acc_norm": 0.4827586206896552, "acc_norm_stderr": 0.04164188720169377 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.29365079365079366, "acc_stderr": 0.023456037383982022, "acc_norm": 0.29365079365079366, "acc_norm_stderr": 0.023456037383982022 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.30952380952380953, "acc_stderr": 0.04134913018303316, "acc_norm": 0.30952380952380953, "acc_norm_stderr": 0.04134913018303316 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.4870967741935484, "acc_stderr": 0.028434533152681855, "acc_norm": 0.4870967741935484, "acc_norm_stderr": 0.028434533152681855 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.2955665024630542, "acc_stderr": 0.032104944337514575, "acc_norm": 0.2955665024630542, "acc_norm_stderr": 0.032104944337514575 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.5393939393939394, "acc_stderr": 0.03892207016552012, "acc_norm": 0.5393939393939394, "acc_norm_stderr": 0.03892207016552012 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.5555555555555556, "acc_stderr": 0.03540294377095367, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.03540294377095367 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.616580310880829, "acc_stderr": 0.03508984236295341, "acc_norm": 0.616580310880829, "acc_norm_stderr": 0.03508984236295341 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.41025641025641024, "acc_stderr": 0.02493931390694078, "acc_norm": 0.41025641025641024, "acc_norm_stderr": 0.02493931390694078 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2518518518518518, "acc_stderr": 0.026466117538959912, "acc_norm": 0.2518518518518518, "acc_norm_stderr": 0.026466117538959912 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.4327731092436975, "acc_stderr": 0.03218358107742613, "acc_norm": 0.4327731092436975, "acc_norm_stderr": 0.03218358107742613 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.2582781456953642, "acc_stderr": 0.035737053147634576, "acc_norm": 0.2582781456953642, "acc_norm_stderr": 0.035737053147634576 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.6293577981651376, "acc_stderr": 0.02070745816435298, "acc_norm": 0.6293577981651376, "acc_norm_stderr": 0.02070745816435298 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.33796296296296297, "acc_stderr": 0.03225941352631295, "acc_norm": 0.33796296296296297, "acc_norm_stderr": 0.03225941352631295 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.5441176470588235, "acc_stderr": 0.03495624522015478, "acc_norm": 0.5441176470588235, "acc_norm_stderr": 0.03495624522015478 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6118143459915611, "acc_stderr": 0.031722950043323296, "acc_norm": 0.6118143459915611, "acc_norm_stderr": 0.031722950043323296 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5515695067264574, "acc_stderr": 0.03337883736255098, "acc_norm": 0.5515695067264574, "acc_norm_stderr": 0.03337883736255098 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5801526717557252, "acc_stderr": 0.043285772152629715, "acc_norm": 0.5801526717557252, "acc_norm_stderr": 0.043285772152629715 }, "harness|hendrycksTest-international_law|5": { "acc": 0.5537190082644629, "acc_stderr": 0.0453793517794788, "acc_norm": 0.5537190082644629, "acc_norm_stderr": 0.0453793517794788 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.5092592592592593, "acc_stderr": 0.04832853553437056, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.04832853553437056 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.5337423312883436, "acc_stderr": 0.03919415545048411, "acc_norm": 0.5337423312883436, "acc_norm_stderr": 0.03919415545048411 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.375, "acc_stderr": 0.04595091388086298, "acc_norm": 0.375, "acc_norm_stderr": 0.04595091388086298 }, "harness|hendrycksTest-management|5": { "acc": 0.6407766990291263, "acc_stderr": 0.04750458399041694, "acc_norm": 0.6407766990291263, "acc_norm_stderr": 0.04750458399041694 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7435897435897436, "acc_stderr": 0.02860595370200425, "acc_norm": 0.7435897435897436, "acc_norm_stderr": 0.02860595370200425 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.49, "acc_stderr": 0.05024183937956911, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.6436781609195402, "acc_stderr": 0.0171258537627559, "acc_norm": 0.6436781609195402, "acc_norm_stderr": 0.0171258537627559 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.47398843930635837, "acc_stderr": 0.02688264343402289, "acc_norm": 0.47398843930635837, "acc_norm_stderr": 0.02688264343402289 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5522875816993464, "acc_stderr": 0.02847293847803353, "acc_norm": 0.5522875816993464, "acc_norm_stderr": 0.02847293847803353 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5241157556270096, "acc_stderr": 0.028365041542564577, "acc_norm": 0.5241157556270096, "acc_norm_stderr": 0.028365041542564577 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5030864197530864, "acc_stderr": 0.02782021415859437, "acc_norm": 0.5030864197530864, "acc_norm_stderr": 0.02782021415859437 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.32269503546099293, "acc_stderr": 0.027889139300534785, "acc_norm": 0.32269503546099293, "acc_norm_stderr": 0.027889139300534785 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3494132985658409, "acc_stderr": 0.012177306252786698, "acc_norm": 0.3494132985658409, "acc_norm_stderr": 0.012177306252786698 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.3897058823529412, "acc_stderr": 0.029624663581159703, "acc_norm": 0.3897058823529412, "acc_norm_stderr": 0.029624663581159703 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.44281045751633985, "acc_stderr": 0.020095083154577347, "acc_norm": 0.44281045751633985, "acc_norm_stderr": 0.020095083154577347 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.509090909090909, "acc_stderr": 0.04788339768702861, "acc_norm": 0.509090909090909, "acc_norm_stderr": 0.04788339768702861 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5265306122448979, "acc_stderr": 0.03196412734523272, "acc_norm": 0.5265306122448979, "acc_norm_stderr": 0.03196412734523272 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6567164179104478, "acc_stderr": 0.03357379665433431, "acc_norm": 0.6567164179104478, "acc_norm_stderr": 0.03357379665433431 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.68, "acc_stderr": 0.04688261722621504, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-virology|5": { "acc": 0.42168674698795183, "acc_stderr": 0.03844453181770917, "acc_norm": 0.42168674698795183, "acc_norm_stderr": 0.03844453181770917 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.6783625730994152, "acc_stderr": 0.03582529442573122, "acc_norm": 0.6783625730994152, "acc_norm_stderr": 0.03582529442573122 }, "harness|truthfulqa:mc|0": { "mc1": 0.23745410036719705, "mc1_stderr": 0.014896277441041836, "mc2": 0.3607930335233562, "mc2_stderr": 0.01354653975819568 }, "harness|winogrande|5": { "acc": 0.7371744277821626, "acc_stderr": 0.012370922527262006 }, "harness|gsm8k|5": { "acc": 0.1728582259287339, "acc_stderr": 0.01041543224620057 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base
[ "region:us" ]
2024-01-15T06:35:55+00:00
{"pretty_name": "Evaluation run of deepseek-ai/deepseek-moe-16b-base", "dataset_summary": "Dataset automatically created during the evaluation run of model [deepseek-ai/deepseek-moe-16b-base](https://huggingface.co/deepseek-ai/deepseek-moe-16b-base) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-15T06:33:48.729928](https://huggingface.co/datasets/open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base/blob/main/results_2024-01-15T06-33-48.729928.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.465522984657348,\n \"acc_stderr\": 0.034469796748715614,\n \"acc_norm\": 0.46990944729307677,\n \"acc_norm_stderr\": 0.03523647567293407,\n \"mc1\": 0.23745410036719705,\n \"mc1_stderr\": 0.014896277441041836,\n \"mc2\": 0.3607930335233562,\n \"mc2_stderr\": 0.01354653975819568\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.49658703071672355,\n \"acc_stderr\": 0.014611050403244077,\n \"acc_norm\": 0.5324232081911263,\n \"acc_norm_stderr\": 0.014580637569995423\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5957976498705437,\n \"acc_stderr\": 0.004897340793314379,\n \"acc_norm\": 0.7977494523003386,\n \"acc_norm_stderr\": 0.004008571431483689\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.044619604333847415,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.044619604333847415\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.3925925925925926,\n \"acc_stderr\": 0.04218506215368879,\n \"acc_norm\": 0.3925925925925926,\n \"acc_norm_stderr\": 0.04218506215368879\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.4605263157894737,\n \"acc_stderr\": 0.04056242252249034,\n \"acc_norm\": 0.4605263157894737,\n \"acc_norm_stderr\": 0.04056242252249034\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.4716981132075472,\n \"acc_stderr\": 0.0307235352490061,\n \"acc_norm\": 0.4716981132075472,\n \"acc_norm_stderr\": 0.0307235352490061\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5347222222222222,\n \"acc_stderr\": 0.04171115858181618,\n \"acc_norm\": 0.5347222222222222,\n \"acc_norm_stderr\": 0.04171115858181618\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.3930635838150289,\n \"acc_stderr\": 0.0372424959581773,\n \"acc_norm\": 0.3930635838150289,\n \"acc_norm_stderr\": 0.0372424959581773\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.27450980392156865,\n \"acc_stderr\": 0.04440521906179327,\n \"acc_norm\": 0.27450980392156865,\n \"acc_norm_stderr\": 0.04440521906179327\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.37446808510638296,\n \"acc_stderr\": 0.031639106653672915,\n \"acc_norm\": 0.37446808510638296,\n \"acc_norm_stderr\": 0.031639106653672915\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2719298245614035,\n \"acc_stderr\": 0.041857744240220554,\n \"acc_norm\": 0.2719298245614035,\n \"acc_norm_stderr\": 0.041857744240220554\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.04164188720169377,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.04164188720169377\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.29365079365079366,\n \"acc_stderr\": 0.023456037383982022,\n \"acc_norm\": 0.29365079365079366,\n \"acc_norm_stderr\": 0.023456037383982022\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.30952380952380953,\n \"acc_stderr\": 0.04134913018303316,\n \"acc_norm\": 0.30952380952380953,\n \"acc_norm_stderr\": 0.04134913018303316\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.4870967741935484,\n \"acc_stderr\": 0.028434533152681855,\n \"acc_norm\": 0.4870967741935484,\n \"acc_norm_stderr\": 0.028434533152681855\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.2955665024630542,\n \"acc_stderr\": 0.032104944337514575,\n \"acc_norm\": 0.2955665024630542,\n \"acc_norm_stderr\": 0.032104944337514575\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.5393939393939394,\n \"acc_stderr\": 0.03892207016552012,\n \"acc_norm\": 0.5393939393939394,\n \"acc_norm_stderr\": 0.03892207016552012\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.03540294377095367,\n \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.03540294377095367\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.616580310880829,\n \"acc_stderr\": 0.03508984236295341,\n \"acc_norm\": 0.616580310880829,\n \"acc_norm_stderr\": 0.03508984236295341\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.41025641025641024,\n \"acc_stderr\": 0.02493931390694078,\n \"acc_norm\": 0.41025641025641024,\n \"acc_norm_stderr\": 0.02493931390694078\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2518518518518518,\n \"acc_stderr\": 0.026466117538959912,\n \"acc_norm\": 0.2518518518518518,\n \"acc_norm_stderr\": 0.026466117538959912\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.4327731092436975,\n \"acc_stderr\": 0.03218358107742613,\n \"acc_norm\": 0.4327731092436975,\n \"acc_norm_stderr\": 0.03218358107742613\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2582781456953642,\n \"acc_stderr\": 0.035737053147634576,\n \"acc_norm\": 0.2582781456953642,\n \"acc_norm_stderr\": 0.035737053147634576\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.6293577981651376,\n \"acc_stderr\": 0.02070745816435298,\n \"acc_norm\": 0.6293577981651376,\n \"acc_norm_stderr\": 0.02070745816435298\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.33796296296296297,\n \"acc_stderr\": 0.03225941352631295,\n \"acc_norm\": 0.33796296296296297,\n \"acc_norm_stderr\": 0.03225941352631295\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.5441176470588235,\n \"acc_stderr\": 0.03495624522015478,\n \"acc_norm\": 0.5441176470588235,\n \"acc_norm_stderr\": 0.03495624522015478\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6118143459915611,\n \"acc_stderr\": 0.031722950043323296,\n \"acc_norm\": 0.6118143459915611,\n \"acc_norm_stderr\": 0.031722950043323296\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5515695067264574,\n \"acc_stderr\": 0.03337883736255098,\n \"acc_norm\": 0.5515695067264574,\n \"acc_norm_stderr\": 0.03337883736255098\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5801526717557252,\n \"acc_stderr\": 0.043285772152629715,\n \"acc_norm\": 0.5801526717557252,\n \"acc_norm_stderr\": 0.043285772152629715\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.5537190082644629,\n \"acc_stderr\": 0.0453793517794788,\n \"acc_norm\": 0.5537190082644629,\n \"acc_norm_stderr\": 0.0453793517794788\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.5092592592592593,\n \"acc_stderr\": 0.04832853553437056,\n \"acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.04832853553437056\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.5337423312883436,\n \"acc_stderr\": 0.03919415545048411,\n \"acc_norm\": 0.5337423312883436,\n \"acc_norm_stderr\": 0.03919415545048411\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.375,\n \"acc_stderr\": 0.04595091388086298,\n \"acc_norm\": 0.375,\n \"acc_norm_stderr\": 0.04595091388086298\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6407766990291263,\n \"acc_stderr\": 0.04750458399041694,\n \"acc_norm\": 0.6407766990291263,\n \"acc_norm_stderr\": 0.04750458399041694\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7435897435897436,\n \"acc_stderr\": 0.02860595370200425,\n \"acc_norm\": 0.7435897435897436,\n \"acc_norm_stderr\": 0.02860595370200425\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.6436781609195402,\n \"acc_stderr\": 0.0171258537627559,\n \"acc_norm\": 0.6436781609195402,\n \"acc_norm_stderr\": 0.0171258537627559\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.47398843930635837,\n \"acc_stderr\": 0.02688264343402289,\n \"acc_norm\": 0.47398843930635837,\n \"acc_norm_stderr\": 0.02688264343402289\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5522875816993464,\n \"acc_stderr\": 0.02847293847803353,\n \"acc_norm\": 0.5522875816993464,\n \"acc_norm_stderr\": 0.02847293847803353\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5241157556270096,\n \"acc_stderr\": 0.028365041542564577,\n \"acc_norm\": 0.5241157556270096,\n \"acc_norm_stderr\": 0.028365041542564577\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5030864197530864,\n \"acc_stderr\": 0.02782021415859437,\n \"acc_norm\": 0.5030864197530864,\n \"acc_norm_stderr\": 0.02782021415859437\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.32269503546099293,\n \"acc_stderr\": 0.027889139300534785,\n \"acc_norm\": 0.32269503546099293,\n \"acc_norm_stderr\": 0.027889139300534785\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3494132985658409,\n \"acc_stderr\": 0.012177306252786698,\n \"acc_norm\": 0.3494132985658409,\n \"acc_norm_stderr\": 0.012177306252786698\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.3897058823529412,\n \"acc_stderr\": 0.029624663581159703,\n \"acc_norm\": 0.3897058823529412,\n \"acc_norm_stderr\": 0.029624663581159703\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.44281045751633985,\n \"acc_stderr\": 0.020095083154577347,\n \"acc_norm\": 0.44281045751633985,\n \"acc_norm_stderr\": 0.020095083154577347\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.509090909090909,\n \"acc_stderr\": 0.04788339768702861,\n \"acc_norm\": 0.509090909090909,\n \"acc_norm_stderr\": 0.04788339768702861\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5265306122448979,\n \"acc_stderr\": 0.03196412734523272,\n \"acc_norm\": 0.5265306122448979,\n \"acc_norm_stderr\": 0.03196412734523272\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6567164179104478,\n \"acc_stderr\": 0.03357379665433431,\n \"acc_norm\": 0.6567164179104478,\n \"acc_norm_stderr\": 0.03357379665433431\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.42168674698795183,\n \"acc_stderr\": 0.03844453181770917,\n \"acc_norm\": 0.42168674698795183,\n \"acc_norm_stderr\": 0.03844453181770917\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.6783625730994152,\n \"acc_stderr\": 0.03582529442573122,\n \"acc_norm\": 0.6783625730994152,\n \"acc_norm_stderr\": 0.03582529442573122\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.23745410036719705,\n \"mc1_stderr\": 0.014896277441041836,\n \"mc2\": 0.3607930335233562,\n \"mc2_stderr\": 0.01354653975819568\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7371744277821626,\n \"acc_stderr\": 0.012370922527262006\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.1728582259287339,\n \"acc_stderr\": 0.01041543224620057\n }\n}\n```", "repo_url": "https://huggingface.co/deepseek-ai/deepseek-moe-16b-base", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|arc:challenge|25_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|gsm8k|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hellaswag|10_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-15T06-33-48.729928.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["**/details_harness|winogrande|5_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-15T06-33-48.729928.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_15T06_33_48.729928", "path": ["results_2024-01-15T06-33-48.729928.parquet"]}, {"split": "latest", "path": ["results_2024-01-15T06-33-48.729928.parquet"]}]}]}
2024-01-15T06:36:22+00:00
ac07080f11c15b38c1a5cdc02b0be856bd3abb80
[ { "id": "0", "translation": { "es": "8a - 4b + 16c + 12d", "pt": "Para factorizar la expresión (8a - 4b + 16c + 12d), primero agrupemos los términos de manera adecuada. La expresión se puede reorganizar en dos grupos: (8a - 4b) + (16c + 12d). Ahora, en cada grupo, factorizamos los términos comunes: Grupo 1: Factor común de (4) en (8a - 4b): 4(2a - b) . Grupo 2: Factor común de (4) en (16c + 12d): 4(4c + 3d). Finalmente, podemos escribir la expresión factorizada como la suma de los dos grupos factorizados: 4(2a - b) + 4(4c + 3d) " } }, { "id": "1", "translation": { "es": "7x^2 + 11x^3 - 4x^5 + 3x^4 - x^8", "pt": "Para factorizar la expresión (7x^2 + 11x^3 - 4x^5 + 3x^4 - x^8), primero ordenemos los términos en orden descendente según las potencias de (x): -x^8 - 4x^5 + 3x^4 + 11x^3 + 7x^2. Ahora, identifiquemos el factor común. En este caso, el factor común es (x^2). Factorizamos (x^2) de cada término: x^2(-x^6 - 4x^3 + 3x^2 + 11x + 7). Entonces, la expresión factorizada es (x^2(-x^6 - 4x^3 + 3x^2 + 11x + 7))." } }, { "id": "2", "translation": { "es": "9x^3 - 6x^2 + 12x^5 - 18x^7", "pt": "Para factorizar la expresión (9x^3 - 6x^2 + 12x^5 - 18x^7), primero ordenemos los términos en orden descendente según las potencias de (x): -18x^7 + 12x^5 + 9x^3 - 6x^2. Ahora, identifiquemos el factor común. En este caso, el factor común es (3x^2). Factorizamos (3x^2) de cada término: 3x^2(-6x^5 + 4x^3 + 3x - 2). Entonces, la expresión factorizada es (3x^2(-6x^5 + 4x^3 + 3x - 2))." } }, { "id": "3", "translation": { "es": "5x+5y", "pt": "La expresión (5x + 5y) ya está factorizada en términos de primer grado. Sin embargo, si deseas factorizar el término común, puedes hacerlo de la siguiente manera: 5x + 5y. Factor común: (5). 5(x + y). Entonces, la expresión factorizada es (5(x + y))." } }, { "id": "4", "translation": { "es": "-6a-9b-3c", "pt": "El proceso de factorización de la expresión (-6a - 9b - 3c): Agrupamos los términos: (-6a - 9b) - 3c. En el primer grupo, factorizamos el común factor (-3) de (-6a - 9b): -3(2a + 3b) - 3c. Ahora, podemos factorizar el común factor (-3) del primer grupo: -3(2a + 3b + c). Por lo tanto, la expresión (-6a - 9b - 3c) factoriza como (-3(2a + 3b + c))." } }, { "id": "5", "translation": { "es": "x^2 + 2x", "pt": "Para factorizar la expresión (x^2 + 2x). Vamos a realizar el proceso de factorización paso a paso. Factor común: Primero, observamos si hay algún factor común en ambos términos. En este caso, (x) es un factor común. x(x + 2). Verificación: Podemos verificar si hemos factorizado correctamente multiplicando los factores para asegurarnos de que obtenemos la expresión original. x(x + 2) = x^2 + 2x. La expresión original es igual a la factorización, por lo que hemos factorizado correctamente. Entonces, la factorización de (x^2 + 2x) es (x(x + 2))." } }, { "id": "6", "translation": { "es": "4x^2 - 12x", "pt": "Para factorizar la expresión (4x^2 - 12x), primero identificamos el factor común. En este caso, el factor común es (4x). Ahora, factorizamos (4x) de cada término: 4x(x - 3). Entonces, la expresión factorizada es (4x(x - 3))." } }, { "id": "7", "translation": { "es": "2x^2 + 6xy + 4y^2", "pt": "Para factorizar la expresión (2x^2 + 6xy + 4y^2), primero identificamos el factor común. En este caso, el factor común es (2). Ahora, factorizamos (2) de cada término: 2(x^2 + 3xy + 2y^2). Luego, observamos que (x^2 + 3xy + 2y^2) es una expresión cuadrática perfecta llamada cuadrado de un binomio. Por lo tanto, factorizamos esta expresión como sigue: (x + y)^2. Finalmente, la expresión factorizada es (2(x + y)^2)." } }, { "id": "8", "translation": { "es": "x^2 - 9", "pt": "Para factorizar la expresión (x^2 - 9), primero observamos que es una diferencia de cuadrados. Por lo tanto, podemos factorizarla como sigue: x^2 - 9 = (x + 3)(x - 3). Aquí, (x + 3) y (x - 3) son los dos factores binomiales que, al multiplicarlos, nos dan la expresión original." } }, { "id": "9", "translation": { "es": "4x^2 - 25", "pt": "Para factorizar la expresión (4x^2 - 25), primero observamos que es una diferencia de cuadrados. Por lo tanto, podemos factorizarla como sigue: 4x^2 - 25 = (2x + 5)(2x - 5). Aquí, (2x + 5) y (2x - 5) son los dos factores binomiales que, al multiplicarlos, nos dan la expresión original." } }, { "id": "10", "translation": { "es": "x^3 - 8", "pt": "Para factorizar la expresión (x^3 - 8), primero observamos que es un cubo perfecto. Por lo tanto, podemos factorizarla como sigue: x^3 - 8 = (x - 2)(x^2 + 2x + 4). Aquí, (x - 2) es el factor binomial y (x^2 + 2x + 4) es el factor trinomial que, al multiplicarlos, nos dan la expresión original." } }, { "id": "11", "translation": { "es": "27x^3 + 8", "pt": "Para factorizar la expresión (27x^3 + 8), primero observamos que es una suma de cubos. Por lo tanto, podemos factorizarla como sigue: 27x^3 + 8 = (3x + 2)(9x^2 - 6x + 4). Aquí, (3x + 2) es el factor binomial y (9x^2 - 6x + 4) es el factor trinomial que, al multiplicarlos, nos dan la expresión original." } }, { "id": "12", "translation": { "es": "8x^2 - 6x", "pt": "Para factorizar la expresión (8x^2 - 6x), primero observamos que el coeficiente del primer término es 8 y el coeficiente del segundo término es -6. Buscando dos números que multiplicados den 8 y sumados den -6, encontramos que los números son 8 y -1. Por lo tanto, podemos factorizar la expresión de la siguiente manera: 8x^2 - 6x = 8x^2 - 8x + 2x - 6. Ahora, podemos agrupar los términos: (8x^2 - 8x) + (2x - 6). Factoremos cada grupo: 8x(x - 1) + 2(x - 3). (x - 1) es un factor común en ambos términos, por lo tanto, factorizamos (x - 1) de ambos términos: (x - 1)(8x + 2). Finalmente, la expresión factorizada es (x - 1)(8x + 2)." } }, { "id": "13", "translation": { "es": "12x^2 - 15x - 18", "pt": "Para factorizar la expresión (12x^2 - 15x - 18), primero ordenamos los términos en orden descendente según las potencias de (x): 12x^2 - 15x - 18. Ahora, buscamos dos números que multiplicados den -18 y sumados den -15. Los números que cumplen estas condiciones son 9 y -2. Por lo tanto, podemos factorizar la expresión de la siguiente manera: 12x^2 - 15x - 18 = 12x^2 + 9x - 24x - 18. Ahora, podemos agrupar los términos: (12x^2 + 9x) - (24x + 18). Factoremos cada grupo: 3x(4x + 3) - 6(4x + 3). (4x + 3) es un factor común en ambos términos, por lo tanto, factorizamos (4x + 3) de ambos términos: (4x + 3)(3x - 6). Finalmente, la expresión factorizada es (4x + 3)(3x - 6)." } }, { "id": "14", "translation": { "es": "x^3 - 2x^2 - 4x + 8", "pt": "Para factorizar la expresión (x^3 - 2x^2 - 4x + 8), primero agrupamos los términos de manera adecuada. La expresión se puede reorganizar en dos grupos: (x^3 - 2x^2) - (4x - 8). Ahora, en cada grupo, factorizamos los términos comunes: Grupo 1: Factor común de (x^2) en (x^3 - 2x^2): x^2(x - 2). Grupo 2: Factor común de (4) en (4x - 8): 4(x - 2). Finalmente, podemos escribir la expresión factorizada como la suma de los dos grupos factorizados: x^2(x - 2) - 4(x - 2)." } }, { "id": "15", "translation": { "es": "4x + 8y - 12z", "pt": "Para factorizar la expresión (4x + 8y - 12z), primero debemos encontrar el factor común de los términos. En este caso, el factor común es (4). Luego, factorizamos el término común de cada uno de los términos: 4(x + 2y - 3z). Por lo tanto, la expresión factorizada es (4(x + 2y - 3z))." } }, { "id": "16", "translation": { "es": "10a - 15b + 20c", "pt": "Para factorizar la expresión (10a - 15b + 20c), primero debemos encontrar el factor común de los términos. En este caso, el factor común es (5). Luego, factorizamos el término común de cada uno de los términos: 5(2a - 3b + 4c). Por lo tanto, la expresión factorizada es (5(2a - 3b + 4c))." } }, { "id": "17", "translation": { "es": "12x^2 + 18x^3 - 24x^4", "pt": "Para factorizar la expresión (12x^2 + 18x^3 - 24x^4), primero debemos encontrar el factor común de los términos. En este caso, el factor común es (6x^2). Luego, factorizamos el término común de cada uno de los términos: 6x^2(2 + 3x - 4x^2). Por lo tanto, la expresión factorizada es (6x^2(2 + 3x - 4x^2))." } }, { "id": "18", "translation": { "es": "8a^3 - 12a^2 + 16a", "pt": "Para factorizar la expresión (8a^3 - 12a^2 + 16a), primero debemos encontrar el factor común de los términos. En este caso, el factor común es (4a). Luego, factorizamos el término común de cada uno de los términos: 4a(2a^2 - 3a + 4). Por lo tanto, la expresión factorizada es (4a(2a^2 - 3a + 4))." } }, { "id": "19", "translation": { "es": "10x^2 - 15x", "pt": "Para factorizar la expresión (10x^2 - 15x), primero identifiquemos el factor común: 5x. Factorizamos 5x de cada término: 5x(2x - 3). Entonces, la expresión factorizada es (5x(2x - 3))." } }, { "id": "20", "translation": { "es": "8y^3 + 12y^2 - 4y", "pt": "Para factorizar la expresión (8y^3 + 12y^2 - 4y), primero identifiquemos el factor común: 4y. Factorizamos 4y de cada término: 4y(2y^2 + 3y - 1). Entonces, la expresión factorizada es (4y(2y^2 + 3y - 1))." } }, { "id": "21", "translation": { "es": "14a^3 - 21a^2 + 7a", "pt": "Para factorizar la expresión (14a^3 - 21a^2 + 7a), primero identifiquemos el factor común: 7a. Factorizamos 7a de cada término: 7a(2a^2 - 3a + 1). Entonces, la expresión factorizada es (7a(2a^2 - 3a + 1))." } }, { "id": "22", "translation": { "es": "9x^2 + 12xy + 4y^2", "pt": "Para factorizar la expresión (9x^2 + 12xy + 4y^2), primero ordenemos los términos de manera adecuada. La expresión se puede reorganizar en tres grupos: (9x^2 + 12xy) + (4y^2). Ahora, en cada grupo, factorizamos los términos comunes: Grupo 1: Factor común de (3x) en (9x^2 + 12xy): 3x(3x + 4y). Grupo 2: Factor común de (4) en (4y^2): 4y^2. Finalmente, podemos escribir la expresión factorizada como la suma de los dos grupos factorizados: 3x(3x + 4y) + 4y^2." } }, { "id": "23", "translation": { "es": "3(x^2 + 2x + 1) - 4(2x^2 - 3x + 5)", "pt": "Para factorizar esta expresión, empezaremos extrayendo el factor común más grande de cada término. En este caso, el factor común es (x). 3(x^2 + 2x + 1) - 4(2x^2 - 3x + 5). Factorizando el factor común, obtenemos: 3(x(x + 2 + 1)) - 4(2x(x - 3/2 + 5/2)). Expandiendo los términos, tenemos: 3(x(x + 3)) - 4(2x(x + 11/2)). Ahora, podemos simplificar la expresión combinando los términos semejantes: 3x(x + 3) - 8x(x + 11/2). Finalmente, la expresión factorizada es: 3x(x + 3) - 8x(x + 11/2)." } }, { "id": "24", "translation": { "es": "7x^2y^3 + 14x^3y^4 - 21xy^5", "pt": "Para factorizar esta expresión, primero buscamos el factor común más grande de todos los términos. En este caso, el factor común es (xy^2). 7x^2y^3 + 14x^3y^4 - 21xy^5. Factorizando el factor común, obtenemos: xy^2(7xy + 14x^2y^2 - 21y^3). Ahora, podemos factorizar aún más el término dentro del paréntesis extrayendo el factor común (7y). xy^2(7xy + 14x^2y^2 - 21y^3). Factoreando el factor común, tenemos: xy^2(7y(x + 2xy^2 - 3y^2)). Por último, podemos simplificar la expresión combinando los términos semejantes: xy^2(7y(x - 3y^2 + 2xy^2)). Finalmente, la expresión factorizada es: xy^2(7y(x - 3y^2 + 2xy^2))." } }, { "id": "25", "translation": { "es": "-2x^2 + 8x + 6", "pt": "Para factorizar esta expresión, empezaremos extrayendo el factor común más grande de cada término. En este caso, el factor común es (2). -2x^2 + 8x + 6. Factorizando el factor común, obtenemos: 2(-x^2 + 4x + 3). Ahora, podemos factorizar aún más el término dentro del paréntesis extrayendo el factor común (x - 1). 2(-(x^2 - 4x - 3)). Por último, podemos simplificar la expresión combinando los términos semejantes: 2(-(x - 1)(x - 3)). Finalmente, la expresión factorizada es: 2(x - 1)(x - 3)." } }, { "id": "26", "translation": { "es": "3x^3 - 9x^2 - 12x", "pt": "Para factorizar esta expresión, empezaremos extrayendo el factor común más grande de cada término. En este caso, el factor común es (3x). 3x^3 - 9x^2 - 12x. Factorizando el factor común, obtenemos: 3x(x^2 - 3x - 4). Ahora, podemos factorizar aún más el término dentro del paréntesis extrayendo el factor común (x + 1). 3x((x^2 - 3x - 4)). Por último, podemos simplificar la expresión combinando los términos semejantes: 3x(x + 1)(x - 4). Finalmente, la expresión factorizada es: 3x(x + 1)(x - 4)." } }, { "id": "27", "translation": { "es": "2x^2 + 3xy - 5y^2", "pt": "Para factorizar esta expresión, empezaremos extrayendo el factor común más grande de cada término. En este caso, no hay un factor común obvio. Por lo tanto, podemos intentar factorizar por agrupación. 2x^2 + 3xy - 5y^2. Agrupando los dos primeros términos y los dos últimos términos, obtenemos: (2x^2 + 3xy) - (5y^2). Ahora, podemos factorizar cada grupo. 2x^2 + 3xy = x(2x + 3y). 5y^2 = 5y(y). Finalmente, la expresión factorizada es: x(2x + 3y) - 5y(y)." } }, { "id": "28", "translation": { "es": "3x^2 - 9x + 6", "pt": "Para factorizar la expresión (3x^2 - 9x + 6), primero verificamos si se puede extraer un factor común. En este caso, el factor común es (3): 3(x^2 - 3x + 2). Luego, factorizamos el polinomio cuadrático (x^2 - 3x + 2): (x - 1)(x - 2). Por lo tanto, la expresión factorizada es 3(x - 1)(x - 2)." } }, { "id": "29", "translation": { "es": "2a^2 - 8a + 6", "pt": "Para factorizar la expresión (2a^2 - 8a + 6), primero verificamos si se puede extraer un factor común. En este caso, el factor común es (2): 2(a^2 - 4a + 3). Luego, factorizamos el polinomio cuadrático (a^2 - 4a + 3): (a - 1)(a - 3). Por lo tanto, la expresión factorizada es 2(a - 1)(a - 3)." } }, { "id": "30", "translation": { "es": "4x^2 + 12x + 9", "pt": "Para factorizar la expresión (4x^2 + 12x + 9), primero verificamos si se puede extraer un factor común. En este caso, el factor común es (1): 1(4x^2 + 12x + 9). Luego, factorizamos el polinomio cuadrático (4x^2 + 12x + 9): (2x + 3)(2x + 3). Por lo tanto, la expresión factorizada es (2x + 3)^2." } }, { "id": "31", "translation": { "es": "x^2 - 5x - 14", "pt": "Para factorizar la expresión (x^2 - 5x - 14), primero verificamos si se puede extraer un factor común. En este caso, no hay un factor común. Por lo tanto, factorizamos el polinomio cuadrático (x^2 - 5x - 14): (x - 7)(x + 2). Por lo tanto, la expresión factorizada es (x - 7)(x + 2)." } }, { "id": "32", "translation": { "es": "2x^2 + 5x + 3", "pt": "Para factorizar la expresión (2x^2 + 5x + 3), primero verificamos si se puede extraer un factor común. En este caso, no hay un factor común. Por lo tanto, factorizamos el polinomio cuadrático (2x^2 + 5x + 3): (2x + 3)(x + 1). Por lo tanto, la expresión factorizada es (2x + 3)(x + 1)." } }, { "id": "33", "translation": { "es": "3x^2 - 4x - 7", "pt": "Para factorizar la expresión (3x^2 - 4x - 7), primero verificamos si se puede extraer un factor común. En este caso, no hay un factor común. Por lo tanto, factorizamos el polinomio cuadrático (3x^2 - 4x - 7): (3x + 1)(x - 7). Por lo tanto, la expresión factorizada es (3x + 1)(x - 7)." } }, { "id": "34", "translation": { "es": "4x^2 + 9x + 5", "pt": "Para factorizar la expresión (4x^2 + 9x + 5), primero verificamos si se puede extraer un factor común. En este caso, no hay un factor común. Por lo tanto, factorizamos el polinomio cuadrático (4x^2 + 9x + 5): (4x + 5)(x + 1). Por lo tanto, la expresión factorizada es (4x + 5)(x + 1)." } }, { "id": "35", "translation": { "es": "3x^2 - 12x + 12", "pt": "Para factorizar la expresión (3x^2 - 12x + 12), primero sacamos el factor común (3) de todos los términos: 3(x^2 - 4x + 4). Ahora, reconocemos que la expresión dentro del paréntesis es un cuadrado perfecto: (x - 2)^2. Entonces, la expresión factorizada es 3(x - 2)^2." } }, { "id": "36", "translation": { "es": "2x(x - 1) + 3(x - 1)", "pt": "Para factorizar la expresión (2x(x - 1) + 3(x - 1)), primero identificamos el factor común en ambos términos: (x - 1). Factorizamos (x - 1) de la expresión: (x - 1)(2x + 3). Por lo tanto, la expresión factorizada es ((x - 1)(2x + 3))." } }, { "id": "37", "translation": { "es": "p^2 + 4pq + 4q^2", "pt": "Para factorizar la expresión (p^2 + 4pq + 4q^2), primero identifiquemos el factor común. En este caso, el factor común es (p + 2q). Factorizamos (p + 2q) de la expresión: (p + 2q)(p + 2q). Por lo tanto, la expresión factorizada es ((p + 2q)(p + 2q))." } }, { "id": "38", "translation": { "es": "p^2 + 4pq + 4q^2", "pt": "Para factorizar la expresión (p^2 + 4pq + 4q^2), primero identifiquemos el factor común. En este caso, el factor común es (p + 2q). Factorizamos (p + 2q) de la expresión: (p + 2q)(p + 2q). Por lo tanto, la expresión factorizada es ((p + 2q)(p + 2q))." } }, { "id": "39", "translation": { "es": "10x^2 + 20x + 10", "pt": "Para factorizar la expresión (10x^2 + 20x + 10), primero identifiquemos el factor común. En este caso, el factor común es (10). Factorizamos (10) de cada término: 10(x^2 + 2x + 1). Ahora, factorizamos el trinomio cuadrado(x^2 + 2x + 1) utilizando la fórmula de la suma de dos cuadrados: (x + 1)^2. Entonces, la expresión factorizada es (10(x + 1)^2)." } }, { "id": "40", "translation": { "es": "9x^2 - 25", "pt": "Para factorizar la expresión (9x^2 - 25), primero identifiquemos el factor común. En este caso, el factor común es (1). Entonces, la expresión ya está factorizada en términos de primer grado." } }, { "id": "41", "translation": { "es": "4x^2 - 9y^2", "pt": "Para factorizar la expresión (4x^2 - 9y^2), primero identifiquemos el factor común. En este caso, el factor común es (1). Entonces, la expresión ya está factorizada en términos de primer grado." } }, { "id": "42", "translation": { "es": "12x^3 - 18x^2 + 6x", "pt": "Para factorizar la expresión (12x^3 - 18x^2 + 6x), primero identifiquemos el factor común. En este caso, el factor común es (6x). Factorizamos (6x) de cada término: 6x(2x^2 - 3x + 1). Ahora, factorizamos el trinomio cuadrado(2x^2 - 3x + 1) utilizando la fórmula de la factorización de x^2 + bx + c: (2x - 1)(x - 1). Entonces, la expresión factorizada es (6x(2x - 1)(x - 1))." } }, { "id": "43", "translation": { "es": "10x^2-20x+30", "pt": "Para factorizar la expresión (10x^2 - 20x + 30), primero identificamos el factor común: 10. Factorizamos 10 de cada término: 10(x^2 - 2x + 3). Ahora, necesitamos factorizar el trinomio cuadrático (x^2 - 2x + 3). Podemos usar el método del cuadrado perfecto para factorizarlo: (x - 1)^2. Por lo tanto, la expresión factorizada es 10(x - 1)^2." } }, { "id": "44", "translation": { "es": "12x^3-9x^2+6x", "pt": "Para factorizar la expresión (12x^3 - 9x^2 + 6x), primero identificamos el factor común: 3x. Factorizamos 3x de cada término: 3x(4x^2 - 3x + 2). Ahora, factorizamos el trinomio cuadrático (4x^2 - 3x + 2) usando el método de la factorización: (2x - 1)(2x - 2). Por lo tanto, la expresión factorizada es 3x(2x - 1)(2x - 2)." } }, { "id": "45", "translation": { "es": "15x^4-20x^3+10x^2", "pt": "Para factorizar la expresión (15x^4 - 20x^3 + 10x^2), primero identificamos el factor común: 5x^2. Factorizamos 5x^2 de cada término: 5x^2(3x^2 - 4x + 2). Ahora, factorizamos el trinomio cuadrático (3x^2 - 4x + 2) usando el método de la factorización: (3x - 2)(x - 1). Por lo tanto, la expresión factorizada es 5x^2(3x - 2)(x - 1)." } }, { "id": "46", "translation": { "es": "2x^3-8x^2+6x", "pt": "Para factorizar la expresión (2x^3 - 8x^2 + 6x), primero identificamos el factor común: 2x. Factorizamos 2x de cada término: 2x(x^2 - 4x + 3). Ahora, factorizamos el trinomio cuadrático (x^2 - 4x + 3) usando el método de la factorización: (x - 1)(x - 3). Por lo tanto, la expresión factorizada es 2x(x - 1)(x - 3)." } }, { "id": "47", "translation": { "es": "12x^2 - 16x + 20x^3 - 28x^4", "pt": "Para factorizar la expresión (12x^2 - 16x + 20x^3 - 28x^4), primero ordenemos los términos en orden descendente según las potencias de (x): -28x^4 + 20x^3 + 12x^2 - 16x. Ahora, identifiquemos el factor común. En este caso, el factor común es (4x). Factorizamos (4x) de cada término: 4x(-7x^3 + 5x^2 + 3x - 4). Entonces, la expresión factorizada es (4x(-7x^3 + 5x^2 + 3x - 4))." } }, { "id": "48", "translation": { "es": "14x^2y^3 - 21xy^2 + 7xy - 14xy^4", "pt": "Para factorizar la expresión (14x^2y^3 - 21xy^2 + 7xy - 14xy^4), primero ordenemos los términos en orden descendente según las potencias de (x) y (y): -14xy^4 + 14x^2y^3 - 21xy^2 + 7xy. Ahora, identifiquemos el factor común. En este caso, el factor común es (7xy). Factorizamos (7xy) de cada término: 7xy(-2y^3 + 2x^2 - 3y + 1). Entonces, la expresión factorizada es (7xy(-2y^3 + 2x^2 - 3y + 1))." } }, { "id": "49", "translation": { "es": "8x^3 - 4x^2 + 12x - 6", "pt": "Para factorizar la expresión (8x^3 - 4x^2 + 12x - 6), primero ordenemos los términos en orden descendente según las potencias de (x): 8x^3 - 4x^2 + 12x - 6. Ahora, identifiquemos el factor común. En este caso, el factor común es (2). Factorizamos (2) de cada término: 2(4x^3 - 2x^2 + 6x - 3). Entonces, la expresión factorizada es (2(4x^3 - 2x^2 + 6x - 3))." } }, { "id": "50", "translation": { "es": "10x^2y^3 - 20xy + 30xy^2 - 15xy^4", "pt": "Para factorizar la expresión (10x^2y^3 - 20xy + 30xy^2 - 15xy^4), primero ordenemos los términos en orden descendente según las potencias de (x) y (y): -15xy^4 + 10x^2y^3 + 30xy^2 - 20xy. Ahora, identifiquemos el factor común. En este caso, el factor común es (5xy). Factorizamos (5xy) de cada término: 5xy(-3y^3 + 2x^2 + 6y - 4). Entonces, la expresión factorizada es (5xy(-3y^3 + 2x^2 + 6y - 4))." } } ]
spongebob01/formulas
[ "region:us" ]
2024-01-15T06:37:14+00:00
{}
2024-01-15T08:00:49+00:00
11320541b712538d54744c764b71a3985df14204
Cgk1000/funniRVCdatasetformodels
[ "license:openrail", "region:us" ]
2024-01-15T06:44:37+00:00
{"license": "openrail"}
2024-01-15T06:45:07+00:00
b9ab3628a2b4e26b269638669ea553036887d4fd
maulinnasari/dataset_ext_75_mn
[ "region:us" ]
2024-01-15T06:44:42+00:00
{"dataset_info": {"features": [{"name": "document", "sequence": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 422166589, "num_examples": 44972}, {"name": "validation", "num_bytes": 51569079, "num_examples": 5622}, {"name": "test", "num_bytes": 52113083, "num_examples": 5622}], "download_size": 309012659, "dataset_size": 525848751}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:44:56+00:00
9f62e4473ef9bd94f2763d20076f1e4e89c2ed07
maulinnasari/dataset_ext_50_mn
[ "region:us" ]
2024-01-15T06:47:25+00:00
{"dataset_info": {"features": [{"name": "document", "sequence": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 297808585, "num_examples": 44972}, {"name": "validation", "num_bytes": 36387952, "num_examples": 5622}, {"name": "test", "num_bytes": 36752761, "num_examples": 5622}], "download_size": 222818544, "dataset_size": 370949298}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:47:36+00:00
3f8d2414fb5e60ddba1ea4711b6684d0a536cf04
maulinnasari/dataset_ext_25_mn
[ "region:us" ]
2024-01-15T06:49:18+00:00
{"dataset_info": {"features": [{"name": "document", "sequence": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 182738113, "num_examples": 44972}, {"name": "validation", "num_bytes": 22402143, "num_examples": 5622}, {"name": "test", "num_bytes": 22597567, "num_examples": 5622}], "download_size": 141206629, "dataset_size": 227737823}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:49:24+00:00
fd9e7255f3faabea05c229dc8e3be52cd3ee0232
maulinnasari/dataset_ext_15_mn
[ "region:us" ]
2024-01-15T06:50:25+00:00
{"dataset_info": {"features": [{"name": "document", "sequence": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 138378746, "num_examples": 44972}, {"name": "validation", "num_bytes": 16994675, "num_examples": 5622}, {"name": "test", "num_bytes": 17112258, "num_examples": 5622}], "download_size": 109003001, "dataset_size": 172485679}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T06:50:31+00:00
142320106c8c57e12dd1443713c9091300a0e5c3
Gincy/finet.csv
[ "region:us" ]
2024-01-15T06:50:52+00:00
{}
2024-01-15T06:50:54+00:00
0675c0c424f1dcd175c89226730998d572c13fe0
blackriderrx/mini-platypus-2
[ "region:us" ]
2024-01-15T06:55:44+00:00
{}
2024-01-15T06:55:44+00:00
f4d51ac8744bd766ba4b56a9dd6e39f03500a088
manishiitg/chat-instruct-hi-v2
[ "region:us" ]
2024-01-15T07:01:56+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1393655848.7799177, "num_examples": 262916}], "download_size": 665296003, "dataset_size": 1393655848.7799177}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T07:02:49+00:00
949f623121d6d516a613456e7b9a9596f5493554
danielheart/stable-diffusion
[ "license:unknown", "region:us" ]
2024-01-15T07:04:54+00:00
{"license": "unknown"}
2024-01-15T07:04:54+00:00