sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
749b5f97bfa32e21caa639d871acdd22e84e37eb
AI-Golden/aigolden-model
[ "license:apache-2.0", "region:us" ]
2024-01-14T13:30:57+00:00
{"license": "apache-2.0"}
2024-01-14T13:35:21+00:00
3e4f8c55c55d908fcdc3a3a118126cabce6e3b09
# Dataset of stremitelny/ストレミテルヌイ/神速 (Azur Lane) This is the dataset of stremitelny/ストレミテルヌイ/神速 (Azur Lane), containing 15 images and their tags. The core tags of this character are `red_eyes, white_hair, long_hair, hair_between_eyes, bangs, antenna_hair, hat, ahoge, very_long_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 15 | 22.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stremitelny_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 15 | 13.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stremitelny_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 38 | 28.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stremitelny_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 15 | 20.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stremitelny_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 38 | 41.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stremitelny_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/stremitelny_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, long_sleeves, looking_at_viewer, blush, open_mouth, white_coat, :d, black_pantyhose, fur-trimmed_coat, simple_background, white_background, white_headwear | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | long_sleeves | looking_at_viewer | blush | open_mouth | white_coat | :d | black_pantyhose | fur-trimmed_coat | simple_background | white_background | white_headwear | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:--------------------|:--------|:-------------|:-------------|:-----|:------------------|:-------------------|:--------------------|:-------------------|:-----------------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/stremitelny_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T13:31:03+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T13:35:33+00:00
60cc109811fd4dc6960ed95028b5c9f697894c47
# Dataset of stanly/スタンリー/斯坦利 (Azur Lane) This is the dataset of stanly/スタンリー/斯坦利 (Azur Lane), containing 15 images and their tags. The core tags of this character are `long_hair, purple_eyes, pink_hair, headband, hair_between_eyes, hairband, bangs, pink_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 15 | 14.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stanly_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 15 | 9.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stanly_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 34 | 17.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stanly_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 15 | 12.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stanly_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 34 | 21.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stanly_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/stanly_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------| | 0 | 15 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, jacket, solo, smile, blush, single_thighhigh, necktie, white_background, simple_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | jacket | solo | smile | blush | single_thighhigh | necktie | white_background | simple_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:---------|:-------|:--------|:--------|:-------------------|:----------|:-------------------|:--------------------| | 0 | 15 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X |
CyberHarem/stanly_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T13:31:06+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T13:34:59+00:00
214063b0119eca7586d7308d3a28046e3b7a452a
spellingdragon/common_voice_9_zh-TW_simple-whisper-large-v3
[ "region:us" ]
2024-01-14T13:31:13+00:00
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "labels", "sequence": "int64"}, {"name": "input_length", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 24016183040.0, "num_examples": 15629}, {"name": "test", "num_bytes": 14978536672, "num_examples": 9747}], "download_size": 5997112102, "dataset_size": 38994719712.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T13:38:23+00:00
991405bf65275118be77348f1d62af69210e6011
Sussyb/Querogoza
[ "region:us" ]
2024-01-14T13:34:56+00:00
{}
2024-01-14T14:18:41+00:00
4efb8da236046b1043272931e15f8450e75d205c
# Downloading this Options Dataset This document will guide you through the steps to download the Merval options dataset from Hugging Face Datasets. To start, you'll need to install Hugging Face's `datasets` library if you haven't done so already. You can do this using the following pip command: ```python !pip install datasets ``` Here's the Python code to load the Merval equity dataset from Hugging Face Datasets and convert it into a pandas DataFrame: ```python from datasets import load_dataset import pandas as pd id = "gauss314/opciones" data = load_dataset(id) df = pd.DataFrame(data['train'][:]) ```
gauss314/opciones
[ "task_categories:tabular-classification", "task_categories:tabular-regression", "license:apache-2.0", "Merval", "options", "region:us" ]
2024-01-14T13:38:42+00:00
{"license": "apache-2.0", "task_categories": ["tabular-classification", "tabular-regression"], "pretty_name": "Merval historical options data, for deep learning and machine learning tests", "tags": ["Merval", "options"]}
2024-01-14T13:46:43+00:00
a57e4b4f7cb4cf05e08b45946620572875aa88b3
# Dataset of bearn/ベアルン/贝亚恩 (Azur Lane) This is the dataset of bearn/ベアルン/贝亚恩 (Azur Lane), containing 13 images and their tags. The core tags of this character are `bangs, breasts, small_breasts, multicolored_hair, short_hair, horns, black_hair, glasses, grey_hair, blunt_bangs, grey_eyes, purple_hair, streaked_hair, two-tone_hair, blue_eyes, hairband`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 13 | 14.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bearn_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 13 | 8.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bearn_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 23 | 14.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bearn_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 13 | 12.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bearn_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 23 | 20.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bearn_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/bearn_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, monocle, bare_shoulders, holding, simple_background, black_gloves, blush, closed_mouth, covered_navel, long_sleeves, thighhighs, dress, full_body, jacket, off_shoulder, swimsuit, thigh_boots, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | monocle | bare_shoulders | holding | simple_background | black_gloves | blush | closed_mouth | covered_navel | long_sleeves | thighhighs | dress | full_body | jacket | off_shoulder | swimsuit | thigh_boots | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:----------|:-----------------|:----------|:--------------------|:---------------|:--------|:---------------|:----------------|:---------------|:-------------|:--------|:------------|:---------|:---------------|:-----------|:--------------|:-------------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/bearn_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T13:46:10+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T13:49:14+00:00
769b1b78c9dd7814175057cb4e9b759a0664e1e3
# Dataset Card for Evaluation run of FelixChao/MathDolphin-7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [FelixChao/MathDolphin-7B](https://huggingface.co/FelixChao/MathDolphin-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_FelixChao__MathDolphin-7B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T13:48:07.624647](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__MathDolphin-7B/blob/main/results_2024-01-14T13-48-07.624647.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.65315875756261, "acc_stderr": 0.03196302131707709, "acc_norm": 0.6538202133223454, "acc_norm_stderr": 0.03261743110455684, "mc1": 0.3708690330477356, "mc1_stderr": 0.01690969358024882, "mc2": 0.5291514968771067, "mc2_stderr": 0.015285199336849235 }, "harness|arc:challenge|25": { "acc": 0.6279863481228669, "acc_stderr": 0.014124597881844461, "acc_norm": 0.658703071672355, "acc_norm_stderr": 0.01385583128749773 }, "harness|hellaswag|10": { "acc": 0.6622186815375424, "acc_stderr": 0.004719870074967248, "acc_norm": 0.8549093806014738, "acc_norm_stderr": 0.0035147239847366034 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.04725815626252606, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252606 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.04232073695151589, "acc_norm": 0.6, "acc_norm_stderr": 0.04232073695151589 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.75, "acc_stderr": 0.03523807393012047, "acc_norm": 0.75, "acc_norm_stderr": 0.03523807393012047 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.59, "acc_stderr": 0.049431107042371025, "acc_norm": 0.59, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.02783491252754407, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.02783491252754407 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.45, "acc_stderr": 0.049999999999999996, "acc_norm": 0.45, "acc_norm_stderr": 0.049999999999999996 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6358381502890174, "acc_stderr": 0.03669072477416907, "acc_norm": 0.6358381502890174, "acc_norm_stderr": 0.03669072477416907 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.048786087144669955, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.048786087144669955 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.042923469599092816, "acc_norm": 0.76, "acc_norm_stderr": 0.042923469599092816 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5787234042553191, "acc_stderr": 0.03227834510146268, "acc_norm": 0.5787234042553191, "acc_norm_stderr": 0.03227834510146268 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5586206896551724, "acc_stderr": 0.04137931034482757, "acc_norm": 0.5586206896551724, "acc_norm_stderr": 0.04137931034482757 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.42592592592592593, "acc_stderr": 0.025467149045469553, "acc_norm": 0.42592592592592593, "acc_norm_stderr": 0.025467149045469553 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.47619047619047616, "acc_stderr": 0.04467062628403273, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7774193548387097, "acc_stderr": 0.023664216671642514, "acc_norm": 0.7774193548387097, "acc_norm_stderr": 0.023664216671642514 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5172413793103449, "acc_stderr": 0.035158955511656986, "acc_norm": 0.5172413793103449, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03346409881055953, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03346409881055953 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7777777777777778, "acc_stderr": 0.02962022787479049, "acc_norm": 0.7777777777777778, "acc_norm_stderr": 0.02962022787479049 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9222797927461139, "acc_stderr": 0.019321805557223168, "acc_norm": 0.9222797927461139, "acc_norm_stderr": 0.019321805557223168 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6692307692307692, "acc_stderr": 0.023854795680971118, "acc_norm": 0.6692307692307692, "acc_norm_stderr": 0.023854795680971118 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.028742040903948482, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.028742040903948482 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6932773109243697, "acc_stderr": 0.029953823891887034, "acc_norm": 0.6932773109243697, "acc_norm_stderr": 0.029953823891887034 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8495412844036697, "acc_stderr": 0.015328563932669237, "acc_norm": 0.8495412844036697, "acc_norm_stderr": 0.015328563932669237 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5, "acc_stderr": 0.034099716973523674, "acc_norm": 0.5, "acc_norm_stderr": 0.034099716973523674 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8284313725490197, "acc_stderr": 0.02646056956124064, "acc_norm": 0.8284313725490197, "acc_norm_stderr": 0.02646056956124064 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.810126582278481, "acc_stderr": 0.02553010046023349, "acc_norm": 0.810126582278481, "acc_norm_stderr": 0.02553010046023349 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7130044843049327, "acc_stderr": 0.03036037971029195, "acc_norm": 0.7130044843049327, "acc_norm_stderr": 0.03036037971029195 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8015267175572519, "acc_stderr": 0.03498149385462472, "acc_norm": 0.8015267175572519, "acc_norm_stderr": 0.03498149385462472 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7851239669421488, "acc_stderr": 0.037494924487096966, "acc_norm": 0.7851239669421488, "acc_norm_stderr": 0.037494924487096966 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8055555555555556, "acc_stderr": 0.038260763248848646, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.038260763248848646 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7914110429447853, "acc_stderr": 0.03192193448934724, "acc_norm": 0.7914110429447853, "acc_norm_stderr": 0.03192193448934724 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5089285714285714, "acc_stderr": 0.04745033255489123, "acc_norm": 0.5089285714285714, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281372, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281372 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8275862068965517, "acc_stderr": 0.013507943909371803, "acc_norm": 0.8275862068965517, "acc_norm_stderr": 0.013507943909371803 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7514450867052023, "acc_stderr": 0.023267528432100174, "acc_norm": 0.7514450867052023, "acc_norm_stderr": 0.023267528432100174 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3854748603351955, "acc_stderr": 0.01627792703963819, "acc_norm": 0.3854748603351955, "acc_norm_stderr": 0.01627792703963819 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7418300653594772, "acc_stderr": 0.025058503316958143, "acc_norm": 0.7418300653594772, "acc_norm_stderr": 0.025058503316958143 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7234726688102894, "acc_stderr": 0.025403832978179604, "acc_norm": 0.7234726688102894, "acc_norm_stderr": 0.025403832978179604 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7685185185185185, "acc_stderr": 0.023468429832451152, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.023468429832451152 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.49645390070921985, "acc_stderr": 0.02982674915328092, "acc_norm": 0.49645390070921985, "acc_norm_stderr": 0.02982674915328092 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.47392438070404175, "acc_stderr": 0.012752858346533133, "acc_norm": 0.47392438070404175, "acc_norm_stderr": 0.012752858346533133 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6838235294117647, "acc_stderr": 0.028245687391462937, "acc_norm": 0.6838235294117647, "acc_norm_stderr": 0.028245687391462937 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6813725490196079, "acc_stderr": 0.01885008469646872, "acc_norm": 0.6813725490196079, "acc_norm_stderr": 0.01885008469646872 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8606965174129353, "acc_stderr": 0.024484487162913973, "acc_norm": 0.8606965174129353, "acc_norm_stderr": 0.024484487162913973 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.88, "acc_stderr": 0.03265986323710906, "acc_norm": 0.88, "acc_norm_stderr": 0.03265986323710906 }, "harness|hendrycksTest-virology|5": { "acc": 0.5421686746987951, "acc_stderr": 0.0387862677100236, "acc_norm": 0.5421686746987951, "acc_norm_stderr": 0.0387862677100236 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.029547741687640044, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.029547741687640044 }, "harness|truthfulqa:mc|0": { "mc1": 0.3708690330477356, "mc1_stderr": 0.01690969358024882, "mc2": 0.5291514968771067, "mc2_stderr": 0.015285199336849235 }, "harness|winogrande|5": { "acc": 0.8121546961325967, "acc_stderr": 0.010977481103435091 }, "harness|gsm8k|5": { "acc": 0.6785443517816527, "acc_stderr": 0.012864471384836703 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_FelixChao__MathDolphin-7B
[ "region:us" ]
2024-01-14T13:50:28+00:00
{"pretty_name": "Evaluation run of FelixChao/MathDolphin-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [FelixChao/MathDolphin-7B](https://huggingface.co/FelixChao/MathDolphin-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_FelixChao__MathDolphin-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T13:48:07.624647](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__MathDolphin-7B/blob/main/results_2024-01-14T13-48-07.624647.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.65315875756261,\n \"acc_stderr\": 0.03196302131707709,\n \"acc_norm\": 0.6538202133223454,\n \"acc_norm_stderr\": 0.03261743110455684,\n \"mc1\": 0.3708690330477356,\n \"mc1_stderr\": 0.01690969358024882,\n \"mc2\": 0.5291514968771067,\n \"mc2_stderr\": 0.015285199336849235\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6279863481228669,\n \"acc_stderr\": 0.014124597881844461,\n \"acc_norm\": 0.658703071672355,\n \"acc_norm_stderr\": 0.01385583128749773\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6622186815375424,\n \"acc_stderr\": 0.004719870074967248,\n \"acc_norm\": 0.8549093806014738,\n \"acc_norm_stderr\": 0.0035147239847366034\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252606,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252606\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.03523807393012047,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.03523807393012047\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7132075471698113,\n \"acc_stderr\": 0.02783491252754407,\n \"acc_norm\": 0.7132075471698113,\n \"acc_norm_stderr\": 0.02783491252754407\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7638888888888888,\n \"acc_stderr\": 0.03551446610810826,\n \"acc_norm\": 0.7638888888888888,\n \"acc_norm_stderr\": 0.03551446610810826\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.049999999999999996,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.049999999999999996\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6358381502890174,\n \"acc_stderr\": 0.03669072477416907,\n \"acc_norm\": 0.6358381502890174,\n \"acc_norm_stderr\": 0.03669072477416907\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.048786087144669955,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.048786087144669955\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5787234042553191,\n \"acc_stderr\": 0.03227834510146268,\n \"acc_norm\": 0.5787234042553191,\n \"acc_norm_stderr\": 0.03227834510146268\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482757,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482757\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42592592592592593,\n \"acc_stderr\": 0.025467149045469553,\n \"acc_norm\": 0.42592592592592593,\n \"acc_norm_stderr\": 0.025467149045469553\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.47619047619047616,\n \"acc_stderr\": 0.04467062628403273,\n \"acc_norm\": 0.47619047619047616,\n \"acc_norm_stderr\": 0.04467062628403273\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7774193548387097,\n \"acc_stderr\": 0.023664216671642514,\n \"acc_norm\": 0.7774193548387097,\n \"acc_norm_stderr\": 0.023664216671642514\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5172413793103449,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.5172413793103449,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03346409881055953,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03346409881055953\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.02962022787479049,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.02962022787479049\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9222797927461139,\n \"acc_stderr\": 0.019321805557223168,\n \"acc_norm\": 0.9222797927461139,\n \"acc_norm_stderr\": 0.019321805557223168\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6692307692307692,\n \"acc_stderr\": 0.023854795680971118,\n \"acc_norm\": 0.6692307692307692,\n \"acc_norm_stderr\": 0.023854795680971118\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.028742040903948482,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.028742040903948482\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6932773109243697,\n \"acc_stderr\": 0.029953823891887034,\n \"acc_norm\": 0.6932773109243697,\n \"acc_norm_stderr\": 0.029953823891887034\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669237,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669237\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.034099716973523674,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.034099716973523674\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8284313725490197,\n \"acc_stderr\": 0.02646056956124064,\n \"acc_norm\": 0.8284313725490197,\n \"acc_norm_stderr\": 0.02646056956124064\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.810126582278481,\n \"acc_stderr\": 0.02553010046023349,\n \"acc_norm\": 0.810126582278481,\n \"acc_norm_stderr\": 0.02553010046023349\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7130044843049327,\n \"acc_stderr\": 0.03036037971029195,\n \"acc_norm\": 0.7130044843049327,\n \"acc_norm_stderr\": 0.03036037971029195\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.03498149385462472,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.03498149385462472\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7851239669421488,\n \"acc_stderr\": 0.037494924487096966,\n \"acc_norm\": 0.7851239669421488,\n \"acc_norm_stderr\": 0.037494924487096966\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.038260763248848646,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.038260763248848646\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7914110429447853,\n \"acc_stderr\": 0.03192193448934724,\n \"acc_norm\": 0.7914110429447853,\n \"acc_norm_stderr\": 0.03192193448934724\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5089285714285714,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.5089285714285714,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.021586494001281372,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.021586494001281372\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8275862068965517,\n \"acc_stderr\": 0.013507943909371803,\n \"acc_norm\": 0.8275862068965517,\n \"acc_norm_stderr\": 0.013507943909371803\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7514450867052023,\n \"acc_stderr\": 0.023267528432100174,\n \"acc_norm\": 0.7514450867052023,\n \"acc_norm_stderr\": 0.023267528432100174\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3854748603351955,\n \"acc_stderr\": 0.01627792703963819,\n \"acc_norm\": 0.3854748603351955,\n \"acc_norm_stderr\": 0.01627792703963819\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7418300653594772,\n \"acc_stderr\": 0.025058503316958143,\n \"acc_norm\": 0.7418300653594772,\n \"acc_norm_stderr\": 0.025058503316958143\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7234726688102894,\n \"acc_stderr\": 0.025403832978179604,\n \"acc_norm\": 0.7234726688102894,\n \"acc_norm_stderr\": 0.025403832978179604\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.023468429832451152,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.023468429832451152\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.49645390070921985,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.49645390070921985,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.47392438070404175,\n \"acc_stderr\": 0.012752858346533133,\n \"acc_norm\": 0.47392438070404175,\n \"acc_norm_stderr\": 0.012752858346533133\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6838235294117647,\n \"acc_stderr\": 0.028245687391462937,\n \"acc_norm\": 0.6838235294117647,\n \"acc_norm_stderr\": 0.028245687391462937\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6813725490196079,\n \"acc_stderr\": 0.01885008469646872,\n \"acc_norm\": 0.6813725490196079,\n \"acc_norm_stderr\": 0.01885008469646872\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8606965174129353,\n \"acc_stderr\": 0.024484487162913973,\n \"acc_norm\": 0.8606965174129353,\n \"acc_norm_stderr\": 0.024484487162913973\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.88,\n \"acc_stderr\": 0.03265986323710906,\n \"acc_norm\": 0.88,\n \"acc_norm_stderr\": 0.03265986323710906\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5421686746987951,\n \"acc_stderr\": 0.0387862677100236,\n \"acc_norm\": 0.5421686746987951,\n \"acc_norm_stderr\": 0.0387862677100236\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640044,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640044\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3708690330477356,\n \"mc1_stderr\": 0.01690969358024882,\n \"mc2\": 0.5291514968771067,\n \"mc2_stderr\": 0.015285199336849235\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8121546961325967,\n \"acc_stderr\": 0.010977481103435091\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6785443517816527,\n \"acc_stderr\": 0.012864471384836703\n }\n}\n```", "repo_url": "https://huggingface.co/FelixChao/MathDolphin-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|arc:challenge|25_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|gsm8k|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hellaswag|10_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T13-48-07.624647.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["**/details_harness|winogrande|5_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T13-48-07.624647.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T13_48_07.624647", "path": ["results_2024-01-14T13-48-07.624647.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T13-48-07.624647.parquet"]}]}]}
2024-01-14T13:50:49+00:00
6740f433dd642d55cb44d91d69d09bd4f0bb3e5a
# Dataset of asuka/飛鳥/飞鸟 (Azur Lane) This is the dataset of asuka/飛鳥/飞鸟 (Azur Lane), containing 368 images and their tags. The core tags of this character are `breasts, ponytail, brown_eyes, ribbon, large_breasts, hair_ribbon, black_hair, brown_hair, white_ribbon`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 368 | 446.06 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asuka_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 368 | 270.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asuka_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 875 | 566.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asuka_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 368 | 396.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asuka_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 875 | 781.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asuka_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/asuka_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, cleavage, open_mouth, :d, blush, striped_bikini, navel, red_scarf, simple_background, white_background | | 1 | 10 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, navel, solo, striped_bikini, cleavage, front-tie_top, looking_at_viewer, blush, side-tie_bikini_bottom, multicolored_stripes, open_mouth, red_scarf, white_background, smile, multicolored_clothes, simple_background | | 2 | 9 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | cleavage, looking_at_viewer, 1girl, cloud, day, open_mouth, outdoors, solo, blue_sky, beach, navel, side-tie_bikini_bottom, smile, ocean, striped_bikini, blush, long_hair | | 3 | 30 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | school_uniform, 1girl, solo, sweater_vest, black_thighhighs, dual_wielding, plaid_skirt, red_scarf, katana, necktie, smile, looking_at_viewer, blush | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | cleavage | open_mouth | :d | blush | striped_bikini | navel | red_scarf | simple_background | white_background | front-tie_top | side-tie_bikini_bottom | multicolored_stripes | smile | multicolored_clothes | cloud | day | outdoors | blue_sky | beach | ocean | long_hair | school_uniform | sweater_vest | black_thighhighs | dual_wielding | plaid_skirt | katana | necktie | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:-----------|:-------------|:-----|:--------|:-----------------|:--------|:------------|:--------------------|:-------------------|:----------------|:-------------------------|:-----------------------|:--------|:-----------------------|:--------|:------|:-----------|:-----------|:--------|:--------|:------------|:-----------------|:---------------|:-------------------|:----------------|:--------------|:---------|:----------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | 1 | 10 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | 2 | 9 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | X | X | | X | X | X | | | | | X | | X | | X | X | X | X | X | X | X | | | | | | | | | 3 | 30 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | X | | | | X | | | X | | | | | | X | | | | | | | | | X | X | X | X | X | X | X |
CyberHarem/asuka_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T13:51:17+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T15:01:19+00:00
ec1757bb78afdf083e9175c125081462387cb460
ouasdg/pedia
[ "region:us" ]
2024-01-14T13:52:38+00:00
{}
2024-02-16T03:48:42+00:00
93206bbb22295ec1bbb26b67ceb3b225cb2387b9
longevity-genie/all_pubmed
[ "license:apache-2.0", "region:us" ]
2024-01-14T13:58:20+00:00
{"license": "apache-2.0"}
2024-01-14T13:58:20+00:00
f8c198f1bb9a37e9c683b9a6f96d37fa5de91e79
# Dataset Card - **Homepage: https://kaistai.github.io/prometheus-vision/** - **Repository: https://github.com/kaistAI/prometheus-vision** - **Paper: https://arxiv.org/abs/2401.06591** - **Point of Contact: [email protected]** ### Dataset summary Perception Collection is the first multi-modal feedback dataset that could be used to train an evaluator VLM. Perception Collection includes 15K fine-grained criteria that determine the crucial aspect for each instance. ![plot](./perception_collection.JPG) ### Languages English ## Dataset Structure * image: The path of the images used for training, consisting of images from the MMMU dataset and COCO 2017 train dataset. * instruction: The input that is given to the evaluator VLM. It includes the instruction & response to evaluate, the reference answer, the score rubric. * output: The output that the evaluator VLM should generate. It includes the feedback and score decision divided by a phrase ```[RESULT]```. * orig```_```instruction: The instruction to be evaluated. Note that this differs with the instruction that includes all the components. * orig```_```response: The response to be evaluated. * orig```_```reference```_```answer: A reference answer to the orig```_```instruction. * orig```_```criteria: The score criteria used to evaluate the orig```_``` response. * orig```_```score1```_```description: A description of when to give a score of 1 to the orig```_```response. * orig```_```score2```_```description: A description of when to give a score of 2 to the orig```_```response. * orig```_```score3```_```description: A description of when to give a score of 3 to the orig```_```response. * orig```_```score4```_```description: A description of when to give a score of 4 to the orig```_```response. * orig```_```score5```_```description: A description of when to give a score of 5 to the orig```_```response. * orig```_```feedback: A feedback that critiques the orig```_```response. * orig```_```score: An integer between 1 and 5 given to the orig```_```response. In our paper, we trained the input using the following prompt format (already processed in the 'instruction'): ``` ###Task Description: An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, image and a score rubric representing an evaluation criterion is given. 1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general. 2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric. 3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\" 4. Please do not generate any other opening, closing, and explanations. ###The instruction to evaluate: {orig_instruction} ###Response to evaluate: {orig_response} ###Reference Answer (Score 5): {orig_reference_answer} ###Score Rubrics: [{orig_criteria}] Score 1: {orig_score1_description} Score 2: {orig_score2_description} Score 3: {orig_score3_description} Score 4: {orig_score4_description} Score 5: {orig_score5_description} ###Feedback: ``` ### Data Splits | name | train | |-------------------|------:| |Perception-Collection|150,108| ### Citation Information If you find the following dataset helpful, please consider citing our paper! ```bibtex @misc{lee2024prometheusvision, title={Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained Evaluation}, author={Seongyun Lee and Seungone Kim and Sue Hyun Park and Geewook Kim and Minjoon Seo}, year={2024}, eprint={2401.06591}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kaist-ai/Perception-Collection
[ "task_categories:visual-question-answering", "task_categories:text2text-generation", "task_categories:image-to-text", "size_categories:100K<n<1M", "language:en", "license:cc-by-4.0", "arxiv:2401.06591", "region:us" ]
2024-01-14T14:05:16+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["visual-question-answering", "text2text-generation", "image-to-text"]}
2024-01-15T12:52:11+00:00
1c00677a300f564902947cd649714b7cfb8fa6f1
nirdrang/anthro-ai
[ "license:apache-2.0", "region:us" ]
2024-01-14T14:06:33+00:00
{"license": "apache-2.0"}
2024-02-05T14:53:37+00:00
288a3244f0e58d97a7b3cc9f33ff420dfebb6588
# Dataset of constellation/コンステレーション/星座 (Azur Lane) This is the dataset of constellation/コンステレーション/星座 (Azur Lane), containing 15 images and their tags. The core tags of this character are `long_hair, blue_hair, breasts, large_breasts, very_long_hair, animal_ears, hair_between_eyes, blue_eyes, bangs, fake_animal_ears, purple_eyes, rabbit_ears`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 15 | 23.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/constellation_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 15 | 11.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/constellation_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 37 | 24.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/constellation_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 15 | 20.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/constellation_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 37 | 35.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/constellation_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/constellation_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, playboy_bunny, solo, wrist_cuffs, bare_shoulders, thigh_strap, white_leotard, white_pantyhose, cleavage, detached_collar, official_alternate_costume, strapless_leotard, full_body, navel_cutout, simple_background, smile, blush, bowtie, closed_mouth, highleg_leotard, holding, light_blue_hair, sitting, standing | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, bare_shoulders, halo, looking_at_viewer, solo, white_dress, full_body, no_shoes, sideboob, elbow_gloves, from_side, simple_background, white_background, ass, blush, cleavage, feet, knee_up, legs, light_blue_hair, parted_lips, sitting, stirrup_legwear, toes, white_gloves, white_thighhighs | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | playboy_bunny | solo | wrist_cuffs | bare_shoulders | thigh_strap | white_leotard | white_pantyhose | cleavage | detached_collar | official_alternate_costume | strapless_leotard | full_body | navel_cutout | simple_background | smile | blush | bowtie | closed_mouth | highleg_leotard | holding | light_blue_hair | sitting | standing | halo | white_dress | no_shoes | sideboob | elbow_gloves | from_side | white_background | ass | feet | knee_up | legs | parted_lips | stirrup_legwear | toes | white_gloves | white_thighhighs | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:----------------|:-------|:--------------|:-----------------|:--------------|:----------------|:------------------|:-----------|:------------------|:-----------------------------|:--------------------|:------------|:---------------|:--------------------|:--------|:--------|:---------|:---------------|:------------------|:----------|:------------------|:----------|:-----------|:-------|:--------------|:-----------|:-----------|:---------------|:------------|:-------------------|:------|:-------|:----------|:-------|:--------------|:------------------|:-------|:---------------|:-------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | | X | | | | X | | | | X | | X | | X | | | | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/constellation_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:07:46+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:11:35+00:00
a54ac9aab90f371085615a38026d4681fa128b0b
# Dataset of eagle/イーグル/鹰 (Azur Lane) This is the dataset of eagle/イーグル/鹰 (Azur Lane), containing 10 images and their tags. The core tags of this character are `breasts, bangs, large_breasts, long_hair, hairband, grey_hair, yellow_eyes, braid`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 10 | 14.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eagle_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 10 | 7.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eagle_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 24 | 16.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eagle_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 10 | 12.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eagle_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 24 | 24.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eagle_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/eagle_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, cleavage, looking_at_viewer, solo, black_bra, black_pantyhose, closed_mouth, pencil_skirt, white_shirt, black_skirt, holding, necklace, bra_peek, collarbone, miniskirt, sitting | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | looking_at_viewer | solo | black_bra | black_pantyhose | closed_mouth | pencil_skirt | white_shirt | black_skirt | holding | necklace | bra_peek | collarbone | miniskirt | sitting | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:--------------------|:-------|:------------|:------------------|:---------------|:---------------|:--------------|:--------------|:----------|:-----------|:-----------|:-------------|:------------|:----------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/eagle_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:07:53+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:11:12+00:00
cf9ee7fe2837dc9340f7647f3c07c46a5656a8d5
# Dataset of curlew/カーリュー/杓鹬 (Azur Lane) This is the dataset of curlew/カーリュー/杓鹬 (Azur Lane), containing 10 images and their tags. The core tags of this character are `bangs, blue_eyes, braid, breasts, long_hair, purple_hair, large_breasts, bow, hair_bow, maid_headdress, single_braid, sidelocks`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 10 | 13.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/curlew_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 10 | 9.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/curlew_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 17 | 14.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/curlew_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 10 | 12.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/curlew_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 17 | 17.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/curlew_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/curlew_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | looking_at_viewer, juliet_sleeves, maid_apron, frills, 1girl, cannon, full_body, holding, machinery, parted_lips, rigging, shoes, sitting, turret, white_apron, 2girls, black_dress, black_footwear, chair, cleavage, flower, indoors, petals, solo_focus | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | looking_at_viewer | juliet_sleeves | maid_apron | frills | 1girl | cannon | full_body | holding | machinery | parted_lips | rigging | shoes | sitting | turret | white_apron | 2girls | black_dress | black_footwear | chair | cleavage | flower | indoors | petals | solo_focus | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------|:-----------------|:-------------|:---------|:--------|:---------|:------------|:----------|:------------|:--------------|:----------|:--------|:----------|:---------|:--------------|:---------|:--------------|:-----------------|:--------|:-----------|:---------|:----------|:---------|:-------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/curlew_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:07:55+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:12:03+00:00
ac7fb05c8b23d90217daefac02dec435d9994358
# Dataset Card - **Homepage: https://kaistai.github.io/prometheus-vision/** - **Repository: https://github.com/kaistAI/prometheus-vision** - **Paper: https://arxiv.org/abs/2401.06591** - **Point of Contact: [email protected]** ### Dataset summary Perception-Bench is a benchmark for evaluating the long-form response of a VLM (Vision Language Model) across various domains of images, and it is a held-out test set of the [Perception-Collection](https://huggingface.co/datasets/kaist-ai/Perception-Collection) ![plot](./perception_collection.JPG) ### Languages English ## Dataset Structure * image: The path of the images used for training, consisting of images from the MMMU dataset and COCO 2017 train dataset. * instruction: The input that is given to the evaluator VLM. It includes the instruction & response to evaluate, the reference answer, the score rubric. * orig```_```instruction: The instruction to be evaluated. Note that this differs with the instruction that includes all the components. * orig```_```reference```_```answer: A reference answer to the orig```_```instruction. * orig```_```criteria: The score criteria used to evaluate the orig```_``` response. * orig```_```score1```_```description: A description of when to give a score of 1 to the orig```_```response. * orig```_```score2```_```description: A description of when to give a score of 2 to the orig```_```response. * orig```_```score3```_```description: A description of when to give a score of 3 to the orig```_```response. * orig```_```score4```_```description: A description of when to give a score of 4 to the orig```_```response. * orig```_```score5```_```description: A description of when to give a score of 5 to the orig```_```response. ### Data Splits | name | test | |-------------------|------:| |Perception-Bench|500| ### Citation Information If you find the following benchmark helpful, please consider citing our paper! ```bibtex @misc{lee2024prometheusvision, title={Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained Evaluation}, author={Seongyun Lee and Seungone Kim and Sue Hyun Park and Geewook Kim and Minjoon Seo}, year={2024}, eprint={2401.06591}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kaist-ai/Perception-Bench
[ "task_categories:visual-question-answering", "task_categories:text2text-generation", "task_categories:image-to-text", "size_categories:n<1K", "language:en", "license:cc-by-4.0", "arxiv:2401.06591", "region:us" ]
2024-01-14T14:09:06+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["n<1K"], "task_categories": ["visual-question-answering", "text2text-generation", "image-to-text"]}
2024-01-15T14:25:01+00:00
1aee537a81dc6e338938d914e066d4beb580b897
Alignment-Lab-AI/asd
[ "region:us" ]
2024-01-14T14:11:10+00:00
{}
2024-01-14T17:16:37+00:00
b91ad2a422ff9a892c355640a8987e774813d36f
Idor980/pantheon-data-sample
[ "region:us" ]
2024-01-14T14:20:27+00:00
{}
2024-01-19T11:04:56+00:00
6b50b29008545fb4d4c5729e00da18a196b6d2fd
# Dataset Card for Evaluation run of PSanni/MPOMixtral-8x7B-Instruct-v0.1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [PSanni/MPOMixtral-8x7B-Instruct-v0.1](https://huggingface.co/PSanni/MPOMixtral-8x7B-Instruct-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_PSanni__MPOMixtral-8x7B-Instruct-v0.1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T14:23:30.207507](https://huggingface.co/datasets/open-llm-leaderboard/details_PSanni__MPOMixtral-8x7B-Instruct-v0.1/blob/main/results_2024-01-14T14-23-30.207507.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7021378898937154, "acc_stderr": 0.03050401556178155, "acc_norm": 0.7057392541812927, "acc_norm_stderr": 0.031097861836160572, "mc1": 0.5152998776009792, "mc1_stderr": 0.017495304473187902, "mc2": 0.665216588266765, "mc2_stderr": 0.014619883028401507 }, "harness|arc:challenge|25": { "acc": 0.6800341296928327, "acc_stderr": 0.013631345807016193, "acc_norm": 0.7098976109215017, "acc_norm_stderr": 0.013261573677520764 }, "harness|hellaswag|10": { "acc": 0.690300736904999, "acc_stderr": 0.004614246282055377, "acc_norm": 0.8795060744871539, "acc_norm_stderr": 0.0032487292211528865 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6888888888888889, "acc_stderr": 0.0399926287661772, "acc_norm": 0.6888888888888889, "acc_norm_stderr": 0.0399926287661772 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7960526315789473, "acc_stderr": 0.0327900040631005, "acc_norm": 0.7960526315789473, "acc_norm_stderr": 0.0327900040631005 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7622641509433963, "acc_stderr": 0.02619980880756193, "acc_norm": 0.7622641509433963, "acc_norm_stderr": 0.02619980880756193 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8055555555555556, "acc_stderr": 0.03309615177059006, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.03309615177059006 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.62, "acc_stderr": 0.04878317312145633, "acc_norm": 0.62, "acc_norm_stderr": 0.04878317312145633 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7398843930635838, "acc_stderr": 0.033450369167889904, "acc_norm": 0.7398843930635838, "acc_norm_stderr": 0.033450369167889904 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.04913595201274498, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.04913595201274498 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6851063829787234, "acc_stderr": 0.03036358219723817, "acc_norm": 0.6851063829787234, "acc_norm_stderr": 0.03036358219723817 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5877192982456141, "acc_stderr": 0.04630653203366596, "acc_norm": 0.5877192982456141, "acc_norm_stderr": 0.04630653203366596 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6275862068965518, "acc_stderr": 0.04028731532947558, "acc_norm": 0.6275862068965518, "acc_norm_stderr": 0.04028731532947558 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.47354497354497355, "acc_stderr": 0.025715239811346758, "acc_norm": 0.47354497354497355, "acc_norm_stderr": 0.025715239811346758 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.47619047619047616, "acc_stderr": 0.04467062628403273, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.42, "acc_stderr": 0.049604496374885836, "acc_norm": 0.42, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8387096774193549, "acc_stderr": 0.020923327006423294, "acc_norm": 0.8387096774193549, "acc_norm_stderr": 0.020923327006423294 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5960591133004927, "acc_stderr": 0.03452453903822033, "acc_norm": 0.5960591133004927, "acc_norm_stderr": 0.03452453903822033 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7818181818181819, "acc_stderr": 0.03225078108306289, "acc_norm": 0.7818181818181819, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8585858585858586, "acc_stderr": 0.024825909793343336, "acc_norm": 0.8585858585858586, "acc_norm_stderr": 0.024825909793343336 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9585492227979274, "acc_stderr": 0.01438543285747646, "acc_norm": 0.9585492227979274, "acc_norm_stderr": 0.01438543285747646 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.7205128205128205, "acc_stderr": 0.022752388839776823, "acc_norm": 0.7205128205128205, "acc_norm_stderr": 0.022752388839776823 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.4, "acc_stderr": 0.029869605095316908, "acc_norm": 0.4, "acc_norm_stderr": 0.029869605095316908 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.773109243697479, "acc_stderr": 0.027205371538279472, "acc_norm": 0.773109243697479, "acc_norm_stderr": 0.027205371538279472 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4768211920529801, "acc_stderr": 0.04078093859163083, "acc_norm": 0.4768211920529801, "acc_norm_stderr": 0.04078093859163083 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8715596330275229, "acc_stderr": 0.014344977542914318, "acc_norm": 0.8715596330275229, "acc_norm_stderr": 0.014344977542914318 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5740740740740741, "acc_stderr": 0.033723432716530624, "acc_norm": 0.5740740740740741, "acc_norm_stderr": 0.033723432716530624 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8529411764705882, "acc_stderr": 0.02485747808025045, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.02485747808025045 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8776371308016878, "acc_stderr": 0.02133174182974679, "acc_norm": 0.8776371308016878, "acc_norm_stderr": 0.02133174182974679 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7040358744394619, "acc_stderr": 0.030636591348699813, "acc_norm": 0.7040358744394619, "acc_norm_stderr": 0.030636591348699813 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8015267175572519, "acc_stderr": 0.0349814938546247, "acc_norm": 0.8015267175572519, "acc_norm_stderr": 0.0349814938546247 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8842975206611571, "acc_stderr": 0.02919980245562281, "acc_norm": 0.8842975206611571, "acc_norm_stderr": 0.02919980245562281 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8148148148148148, "acc_stderr": 0.03755265865037182, "acc_norm": 0.8148148148148148, "acc_norm_stderr": 0.03755265865037182 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.803680981595092, "acc_stderr": 0.031207970394709218, "acc_norm": 0.803680981595092, "acc_norm_stderr": 0.031207970394709218 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5089285714285714, "acc_stderr": 0.04745033255489123, "acc_norm": 0.5089285714285714, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.8543689320388349, "acc_stderr": 0.034926064766237906, "acc_norm": 0.8543689320388349, "acc_norm_stderr": 0.034926064766237906 }, "harness|hendrycksTest-marketing|5": { "acc": 0.905982905982906, "acc_stderr": 0.019119892798924974, "acc_norm": 0.905982905982906, "acc_norm_stderr": 0.019119892798924974 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.77, "acc_stderr": 0.04229525846816506, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8722860791826309, "acc_stderr": 0.011935626313999878, "acc_norm": 0.8722860791826309, "acc_norm_stderr": 0.011935626313999878 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.791907514450867, "acc_stderr": 0.021855255263421795, "acc_norm": 0.791907514450867, "acc_norm_stderr": 0.021855255263421795 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4558659217877095, "acc_stderr": 0.01665722942458631, "acc_norm": 0.4558659217877095, "acc_norm_stderr": 0.01665722942458631 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8006535947712419, "acc_stderr": 0.02287581699346408, "acc_norm": 0.8006535947712419, "acc_norm_stderr": 0.02287581699346408 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7845659163987139, "acc_stderr": 0.023350225475471442, "acc_norm": 0.7845659163987139, "acc_norm_stderr": 0.023350225475471442 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8240740740740741, "acc_stderr": 0.021185893615225153, "acc_norm": 0.8240740740740741, "acc_norm_stderr": 0.021185893615225153 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5106382978723404, "acc_stderr": 0.02982074719142244, "acc_norm": 0.5106382978723404, "acc_norm_stderr": 0.02982074719142244 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5443285528031291, "acc_stderr": 0.012719949543032226, "acc_norm": 0.5443285528031291, "acc_norm_stderr": 0.012719949543032226 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7867647058823529, "acc_stderr": 0.024880971512294254, "acc_norm": 0.7867647058823529, "acc_norm_stderr": 0.024880971512294254 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.7647058823529411, "acc_stderr": 0.01716058723504635, "acc_norm": 0.7647058823529411, "acc_norm_stderr": 0.01716058723504635 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.043091187099464585, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.043091187099464585 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7836734693877551, "acc_stderr": 0.026358916334904028, "acc_norm": 0.7836734693877551, "acc_norm_stderr": 0.026358916334904028 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8756218905472637, "acc_stderr": 0.023335401790166323, "acc_norm": 0.8756218905472637, "acc_norm_stderr": 0.023335401790166323 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.89, "acc_stderr": 0.03144660377352203, "acc_norm": 0.89, "acc_norm_stderr": 0.03144660377352203 }, "harness|hendrycksTest-virology|5": { "acc": 0.5180722891566265, "acc_stderr": 0.03889951252827216, "acc_norm": 0.5180722891566265, "acc_norm_stderr": 0.03889951252827216 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8654970760233918, "acc_stderr": 0.026168221344662297, "acc_norm": 0.8654970760233918, "acc_norm_stderr": 0.026168221344662297 }, "harness|truthfulqa:mc|0": { "mc1": 0.5152998776009792, "mc1_stderr": 0.017495304473187902, "mc2": 0.665216588266765, "mc2_stderr": 0.014619883028401507 }, "harness|winogrande|5": { "acc": 0.8255722178374112, "acc_stderr": 0.010665187902498428 }, "harness|gsm8k|5": { "acc": 0.5852918877937832, "acc_stderr": 0.013570623842304504 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_PSanni__MPOMixtral-8x7B-Instruct-v0.1
[ "region:us" ]
2024-01-14T14:25:44+00:00
{"pretty_name": "Evaluation run of PSanni/MPOMixtral-8x7B-Instruct-v0.1", "dataset_summary": "Dataset automatically created during the evaluation run of model [PSanni/MPOMixtral-8x7B-Instruct-v0.1](https://huggingface.co/PSanni/MPOMixtral-8x7B-Instruct-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_PSanni__MPOMixtral-8x7B-Instruct-v0.1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T14:23:30.207507](https://huggingface.co/datasets/open-llm-leaderboard/details_PSanni__MPOMixtral-8x7B-Instruct-v0.1/blob/main/results_2024-01-14T14-23-30.207507.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7021378898937154,\n \"acc_stderr\": 0.03050401556178155,\n \"acc_norm\": 0.7057392541812927,\n \"acc_norm_stderr\": 0.031097861836160572,\n \"mc1\": 0.5152998776009792,\n \"mc1_stderr\": 0.017495304473187902,\n \"mc2\": 0.665216588266765,\n \"mc2_stderr\": 0.014619883028401507\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6800341296928327,\n \"acc_stderr\": 0.013631345807016193,\n \"acc_norm\": 0.7098976109215017,\n \"acc_norm_stderr\": 0.013261573677520764\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.690300736904999,\n \"acc_stderr\": 0.004614246282055377,\n \"acc_norm\": 0.8795060744871539,\n \"acc_norm_stderr\": 0.0032487292211528865\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695236,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695236\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6888888888888889,\n \"acc_stderr\": 0.0399926287661772,\n \"acc_norm\": 0.6888888888888889,\n \"acc_norm_stderr\": 0.0399926287661772\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7960526315789473,\n \"acc_stderr\": 0.0327900040631005,\n \"acc_norm\": 0.7960526315789473,\n \"acc_norm_stderr\": 0.0327900040631005\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7622641509433963,\n \"acc_stderr\": 0.02619980880756193,\n \"acc_norm\": 0.7622641509433963,\n \"acc_norm_stderr\": 0.02619980880756193\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.03309615177059006,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.03309615177059006\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.04878317312145633,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.04878317312145633\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.033450369167889904,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.033450369167889904\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6851063829787234,\n \"acc_stderr\": 0.03036358219723817,\n \"acc_norm\": 0.6851063829787234,\n \"acc_norm_stderr\": 0.03036358219723817\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5877192982456141,\n \"acc_stderr\": 0.04630653203366596,\n \"acc_norm\": 0.5877192982456141,\n \"acc_norm_stderr\": 0.04630653203366596\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6275862068965518,\n \"acc_stderr\": 0.04028731532947558,\n \"acc_norm\": 0.6275862068965518,\n \"acc_norm_stderr\": 0.04028731532947558\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.47354497354497355,\n \"acc_stderr\": 0.025715239811346758,\n \"acc_norm\": 0.47354497354497355,\n \"acc_norm_stderr\": 0.025715239811346758\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.47619047619047616,\n \"acc_stderr\": 0.04467062628403273,\n \"acc_norm\": 0.47619047619047616,\n \"acc_norm_stderr\": 0.04467062628403273\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8387096774193549,\n \"acc_stderr\": 0.020923327006423294,\n \"acc_norm\": 0.8387096774193549,\n \"acc_norm_stderr\": 0.020923327006423294\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5960591133004927,\n \"acc_stderr\": 0.03452453903822033,\n \"acc_norm\": 0.5960591133004927,\n \"acc_norm_stderr\": 0.03452453903822033\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7818181818181819,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.7818181818181819,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8585858585858586,\n \"acc_stderr\": 0.024825909793343336,\n \"acc_norm\": 0.8585858585858586,\n \"acc_norm_stderr\": 0.024825909793343336\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9585492227979274,\n \"acc_stderr\": 0.01438543285747646,\n \"acc_norm\": 0.9585492227979274,\n \"acc_norm_stderr\": 0.01438543285747646\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.7205128205128205,\n \"acc_stderr\": 0.022752388839776823,\n \"acc_norm\": 0.7205128205128205,\n \"acc_norm_stderr\": 0.022752388839776823\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.029869605095316908,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.029869605095316908\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.773109243697479,\n \"acc_stderr\": 0.027205371538279472,\n \"acc_norm\": 0.773109243697479,\n \"acc_norm_stderr\": 0.027205371538279472\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.4768211920529801,\n \"acc_stderr\": 0.04078093859163083,\n \"acc_norm\": 0.4768211920529801,\n \"acc_norm_stderr\": 0.04078093859163083\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8715596330275229,\n \"acc_stderr\": 0.014344977542914318,\n \"acc_norm\": 0.8715596330275229,\n \"acc_norm_stderr\": 0.014344977542914318\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5740740740740741,\n \"acc_stderr\": 0.033723432716530624,\n \"acc_norm\": 0.5740740740740741,\n \"acc_norm_stderr\": 0.033723432716530624\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.02485747808025045,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.02485747808025045\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8776371308016878,\n \"acc_stderr\": 0.02133174182974679,\n \"acc_norm\": 0.8776371308016878,\n \"acc_norm_stderr\": 0.02133174182974679\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7040358744394619,\n \"acc_stderr\": 0.030636591348699813,\n \"acc_norm\": 0.7040358744394619,\n \"acc_norm_stderr\": 0.030636591348699813\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.0349814938546247,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.0349814938546247\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8842975206611571,\n \"acc_stderr\": 0.02919980245562281,\n \"acc_norm\": 0.8842975206611571,\n \"acc_norm_stderr\": 0.02919980245562281\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8148148148148148,\n \"acc_stderr\": 0.03755265865037182,\n \"acc_norm\": 0.8148148148148148,\n \"acc_norm_stderr\": 0.03755265865037182\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.803680981595092,\n \"acc_stderr\": 0.031207970394709218,\n \"acc_norm\": 0.803680981595092,\n \"acc_norm_stderr\": 0.031207970394709218\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5089285714285714,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.5089285714285714,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8543689320388349,\n \"acc_stderr\": 0.034926064766237906,\n \"acc_norm\": 0.8543689320388349,\n \"acc_norm_stderr\": 0.034926064766237906\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.905982905982906,\n \"acc_stderr\": 0.019119892798924974,\n \"acc_norm\": 0.905982905982906,\n \"acc_norm_stderr\": 0.019119892798924974\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8722860791826309,\n \"acc_stderr\": 0.011935626313999878,\n \"acc_norm\": 0.8722860791826309,\n \"acc_norm_stderr\": 0.011935626313999878\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.791907514450867,\n \"acc_stderr\": 0.021855255263421795,\n \"acc_norm\": 0.791907514450867,\n \"acc_norm_stderr\": 0.021855255263421795\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4558659217877095,\n \"acc_stderr\": 0.01665722942458631,\n \"acc_norm\": 0.4558659217877095,\n \"acc_norm_stderr\": 0.01665722942458631\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8006535947712419,\n \"acc_stderr\": 0.02287581699346408,\n \"acc_norm\": 0.8006535947712419,\n \"acc_norm_stderr\": 0.02287581699346408\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7845659163987139,\n \"acc_stderr\": 0.023350225475471442,\n \"acc_norm\": 0.7845659163987139,\n \"acc_norm_stderr\": 0.023350225475471442\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8240740740740741,\n \"acc_stderr\": 0.021185893615225153,\n \"acc_norm\": 0.8240740740740741,\n \"acc_norm_stderr\": 0.021185893615225153\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5106382978723404,\n \"acc_stderr\": 0.02982074719142244,\n \"acc_norm\": 0.5106382978723404,\n \"acc_norm_stderr\": 0.02982074719142244\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5443285528031291,\n \"acc_stderr\": 0.012719949543032226,\n \"acc_norm\": 0.5443285528031291,\n \"acc_norm_stderr\": 0.012719949543032226\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7867647058823529,\n \"acc_stderr\": 0.024880971512294254,\n \"acc_norm\": 0.7867647058823529,\n \"acc_norm_stderr\": 0.024880971512294254\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.01716058723504635,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.01716058723504635\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7836734693877551,\n \"acc_stderr\": 0.026358916334904028,\n \"acc_norm\": 0.7836734693877551,\n \"acc_norm_stderr\": 0.026358916334904028\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8756218905472637,\n \"acc_stderr\": 0.023335401790166323,\n \"acc_norm\": 0.8756218905472637,\n \"acc_norm_stderr\": 0.023335401790166323\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5180722891566265,\n \"acc_stderr\": 0.03889951252827216,\n \"acc_norm\": 0.5180722891566265,\n \"acc_norm_stderr\": 0.03889951252827216\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8654970760233918,\n \"acc_stderr\": 0.026168221344662297,\n \"acc_norm\": 0.8654970760233918,\n \"acc_norm_stderr\": 0.026168221344662297\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5152998776009792,\n \"mc1_stderr\": 0.017495304473187902,\n \"mc2\": 0.665216588266765,\n \"mc2_stderr\": 0.014619883028401507\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8255722178374112,\n \"acc_stderr\": 0.010665187902498428\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5852918877937832,\n \"acc_stderr\": 0.013570623842304504\n }\n}\n```", "repo_url": "https://huggingface.co/PSanni/MPOMixtral-8x7B-Instruct-v0.1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|arc:challenge|25_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|gsm8k|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hellaswag|10_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T14-23-30.207507.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["**/details_harness|winogrande|5_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T14-23-30.207507.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T14_23_30.207507", "path": ["results_2024-01-14T14-23-30.207507.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T14-23-30.207507.parquet"]}]}]}
2024-01-14T14:26:04+00:00
b4bf7622fe19b0699aac7cd8af752c81ce098e2d
fuyu-quant/ibl-regression-ver1-mix
[ "region:us" ]
2024-01-14T14:27:00+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 43540321, "num_examples": 30000}, {"name": "test", "num_bytes": 1455799, "num_examples": 1000}], "download_size": 23195654, "dataset_size": 44996120}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T14:43:04+00:00
61a82414fa150f2923ad3515473e79681797fbe2
This repository contains importance matrix datasets for use with the improved quantization methods recently added to `llama.cpp`. The importance matrix has been computed using `wiki.train.raw` as training data. Hope the file names are self-explanatory. To use, after cloning this repo, for e.g. Mixtral-8x7B and `Q4_K_M` quantization, use ``` ./quantize --imatrix path_to_repo/mixtral-8x7b.imatrix path_to_model ggml-model-q4k-m.gguf Q4_K_M ```
ikawrakow/imatrix-from-wiki-train
[ "license:apache-2.0", "region:us" ]
2024-01-14T14:27:02+00:00
{"license": "apache-2.0"}
2024-01-14T15:11:22+00:00
2f2332989ebc1a0b262f84f3366d91590b0f9849
# Dataset of radford/ラドフォード/拉德福特 (Azur Lane) This is the dataset of radford/ラドフォード/拉德福特 (Azur Lane), containing 16 images and their tags. The core tags of this character are `pink_hair, blue_eyes, long_hair, ribbon, bow, hair_bow, hair_ribbon, ponytail, symbol-shaped_pupils`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 16 | 14.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/radford_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 16 | 9.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/radford_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 34 | 20.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/radford_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 16 | 13.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/radford_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 34 | 26.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/radford_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/radford_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | looking_at_viewer, 1girl, blush, solo, skirt, lollipop, navel, midriff, smile, belt, open_mouth, heart, holding, simple_background, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | looking_at_viewer | 1girl | blush | solo | skirt | lollipop | navel | midriff | smile | belt | open_mouth | heart | holding | simple_background | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------|:--------|:--------|:-------|:--------|:-----------|:--------|:----------|:--------|:-------|:-------------|:--------|:----------|:--------------------|:-------------------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/radford_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:29:21+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:32:56+00:00
373dab56a041184b72b88335a003956b41b294a5
# Dataset of san_jacinto/サン・ジャシント/圣哈辛托 (Azur Lane) This is the dataset of san_jacinto/サン・ジャシント/圣哈辛托 (Azur Lane), containing 17 images and their tags. The core tags of this character are `breasts, large_breasts, purple_eyes, bangs, short_hair, white_hair, animal_ears, fake_animal_ears, rabbit_ears, bow, tail`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 17 | 26.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/san_jacinto_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 17 | 13.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/san_jacinto_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 38 | 26.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/san_jacinto_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 17 | 22.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/san_jacinto_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 38 | 40.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/san_jacinto_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/san_jacinto_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 17 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, smile, bare_shoulders, playboy_bunny, black_leotard, pantyhose, blush, sideboob, sitting, closed_mouth, detached_collar, wrist_cuffs | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | smile | bare_shoulders | playboy_bunny | black_leotard | pantyhose | blush | sideboob | sitting | closed_mouth | detached_collar | wrist_cuffs | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:--------|:-----------------|:----------------|:----------------|:------------|:--------|:-----------|:----------|:---------------|:------------------|:--------------| | 0 | 17 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/san_jacinto_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:29:30+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:33:13+00:00
38a071912aeb70389c5b62757756046b4f46851e
fuyu-quant/ibl-regression-ver1-linear
[ "region:us" ]
2024-01-14T14:30:08+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 41345573, "num_examples": 30000}, {"name": "test", "num_bytes": 1379006, "num_examples": 1000}], "download_size": 22480074, "dataset_size": 42724579}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T14:30:13+00:00
c4c544b37075b7019e39b8ba2d1ad3e439dc0eb6
talrid/CodeContests_valid_and_test_AlphaCodium
[ "license:apache-2.0", "region:us" ]
2024-01-14T14:30:52+00:00
{"license": "apache-2.0"}
2024-01-14T14:33:15+00:00
0c7376e8d184f3c613ccb70c2548c4d031aa21c7
olemeyer/mnt-instruct-2
[ "region:us" ]
2024-01-14T14:30:55+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 974888583, "num_examples": 579298}], "download_size": 533437374, "dataset_size": 974888583}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T14:31:21+00:00
15f59839236255155a8d12d20082d10cb5a5711b
# Dataset of carabiniere/カラビニエーレ/龙骑兵 (Azur Lane) This is the dataset of carabiniere/カラビニエーレ/龙骑兵 (Azur Lane), containing 12 images and their tags. The core tags of this character are `blonde_hair, purple_eyes, breasts, bangs, curly_hair, hair_between_eyes, hat, short_hair, hairband`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 12 | 16.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/carabiniere_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 12 | 9.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/carabiniere_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 26 | 18.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/carabiniere_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 12 | 14.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/carabiniere_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 26 | 26.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/carabiniere_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/carabiniere_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, blush, flower, white_dress, holding, solo_focus, umbrella | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, epaulettes, long_sleeves, white_gloves, garter_straps, saber_(weapon), solo, chick, closed_mouth, holding, looking_at_viewer, multicolored_cape, sheathed, single_thighhigh, animal_on_head, belt, bicorne, black_cape, black_headwear, black_jacket, black_skirt, blue_headwear, cannon, full_body, gun, knee_boots, turret, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | blush | flower | white_dress | holding | solo_focus | umbrella | epaulettes | long_sleeves | white_gloves | garter_straps | saber_(weapon) | solo | chick | closed_mouth | multicolored_cape | sheathed | single_thighhigh | animal_on_head | belt | bicorne | black_cape | black_headwear | black_jacket | black_skirt | blue_headwear | cannon | full_body | gun | knee_boots | turret | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:--------|:---------|:--------------|:----------|:-------------|:-----------|:-------------|:---------------|:---------------|:----------------|:-----------------|:-------|:--------|:---------------|:--------------------|:-----------|:-------------------|:-----------------|:-------|:----------|:-------------|:-----------------|:---------------|:--------------|:----------------|:---------|:------------|:------|:-------------|:---------|:-------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/carabiniere_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:38:57+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:43:14+00:00
439cff26ab630484a5fa7c5386f76ba6dc273175
valerievloef/Thesis_BERT
[ "license:apache-2.0", "region:us" ]
2024-01-14T14:44:22+00:00
{"license": "apache-2.0"}
2024-01-14T14:45:21+00:00
d28172e01deff440b9bc4846a17bd21f7a25b6c3
fuyu-quant/ibl-regression-ver1-branch
[ "region:us" ]
2024-01-14T14:44:44+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42612428, "num_examples": 30000}, {"name": "test", "num_bytes": 1419385, "num_examples": 1000}], "download_size": 20886073, "dataset_size": 44031813}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T14:44:48+00:00
9c39c927c1896cf4ad92cf46f05dada5739a887b
fuyu-quant/ibl-regression-ver1-all
[ "region:us" ]
2024-01-14T14:46:54+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42499380, "num_examples": 30000}, {"name": "test", "num_bytes": 1416656, "num_examples": 1000}], "download_size": 22409238, "dataset_size": 43916036}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T14:46:58+00:00
561f491efe3dd67e079e7a318f65f50712fce8c8
# Dataset Card for Evaluation run of andysalerno/openchat-nectar-0.5 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [andysalerno/openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_andysalerno__openchat-nectar-0.5", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T14:46:05.051264](https://huggingface.co/datasets/open-llm-leaderboard/details_andysalerno__openchat-nectar-0.5/blob/main/results_2024-01-14T14-46-05.051264.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.656162636449764, "acc_stderr": 0.03183140048341385, "acc_norm": 0.6568859855566402, "acc_norm_stderr": 0.03248609595939316, "mc1": 0.3574051407588739, "mc1_stderr": 0.01677659967672941, "mc2": 0.5215263336816769, "mc2_stderr": 0.015319650015486606 }, "harness|arc:challenge|25": { "acc": 0.6305460750853242, "acc_stderr": 0.014104578366491892, "acc_norm": 0.6672354948805461, "acc_norm_stderr": 0.013769863046192309 }, "harness|hellaswag|10": { "acc": 0.6392152957578172, "acc_stderr": 0.004792467255899766, "acc_norm": 0.835291774546903, "acc_norm_stderr": 0.003701589571274316 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6518518518518519, "acc_stderr": 0.041153246103369526, "acc_norm": 0.6518518518518519, "acc_norm_stderr": 0.041153246103369526 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6907894736842105, "acc_stderr": 0.037610708698674805, "acc_norm": 0.6907894736842105, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7056603773584905, "acc_stderr": 0.02804918631569525, "acc_norm": 0.7056603773584905, "acc_norm_stderr": 0.02804918631569525 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.51, "acc_stderr": 0.05024183937956912, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6705202312138728, "acc_stderr": 0.03583901754736412, "acc_norm": 0.6705202312138728, "acc_norm_stderr": 0.03583901754736412 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.39215686274509803, "acc_stderr": 0.04858083574266345, "acc_norm": 0.39215686274509803, "acc_norm_stderr": 0.04858083574266345 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5957446808510638, "acc_stderr": 0.032081157507886836, "acc_norm": 0.5957446808510638, "acc_norm_stderr": 0.032081157507886836 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4649122807017544, "acc_stderr": 0.04692008381368909, "acc_norm": 0.4649122807017544, "acc_norm_stderr": 0.04692008381368909 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5862068965517241, "acc_stderr": 0.04104269211806232, "acc_norm": 0.5862068965517241, "acc_norm_stderr": 0.04104269211806232 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.42063492063492064, "acc_stderr": 0.025424835086924, "acc_norm": 0.42063492063492064, "acc_norm_stderr": 0.025424835086924 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5238095238095238, "acc_stderr": 0.04467062628403273, "acc_norm": 0.5238095238095238, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.27, "acc_stderr": 0.044619604333847394, "acc_norm": 0.27, "acc_norm_stderr": 0.044619604333847394 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7870967741935484, "acc_stderr": 0.02328766512726854, "acc_norm": 0.7870967741935484, "acc_norm_stderr": 0.02328766512726854 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.73, "acc_stderr": 0.044619604333847394, "acc_norm": 0.73, "acc_norm_stderr": 0.044619604333847394 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.031922715695483016, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.031922715695483016 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7828282828282829, "acc_stderr": 0.029376616484945627, "acc_norm": 0.7828282828282829, "acc_norm_stderr": 0.029376616484945627 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8963730569948186, "acc_stderr": 0.02199531196364424, "acc_norm": 0.8963730569948186, "acc_norm_stderr": 0.02199531196364424 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6794871794871795, "acc_stderr": 0.02366129639396428, "acc_norm": 0.6794871794871795, "acc_norm_stderr": 0.02366129639396428 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3851851851851852, "acc_stderr": 0.02967090612463088, "acc_norm": 0.3851851851851852, "acc_norm_stderr": 0.02967090612463088 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6932773109243697, "acc_stderr": 0.02995382389188704, "acc_norm": 0.6932773109243697, "acc_norm_stderr": 0.02995382389188704 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.03879687024073327, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.03879687024073327 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8532110091743119, "acc_stderr": 0.015173141845126255, "acc_norm": 0.8532110091743119, "acc_norm_stderr": 0.015173141845126255 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5138888888888888, "acc_stderr": 0.03408655867977749, "acc_norm": 0.5138888888888888, "acc_norm_stderr": 0.03408655867977749 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.02584501798692692, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.02584501798692692 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579647, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579647 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7040358744394619, "acc_stderr": 0.030636591348699824, "acc_norm": 0.7040358744394619, "acc_norm_stderr": 0.030636591348699824 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7709923664122137, "acc_stderr": 0.036853466317118506, "acc_norm": 0.7709923664122137, "acc_norm_stderr": 0.036853466317118506 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.03640118271990947, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.03640118271990947 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7685185185185185, "acc_stderr": 0.04077494709252627, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.04077494709252627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.047268355537191, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.047268355537191 }, "harness|hendrycksTest-management|5": { "acc": 0.8155339805825242, "acc_stderr": 0.03840423627288276, "acc_norm": 0.8155339805825242, "acc_norm_stderr": 0.03840423627288276 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8888888888888888, "acc_stderr": 0.020588491316092375, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.020588491316092375 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.78, "acc_stderr": 0.04163331998932262, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932262 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8339719029374202, "acc_stderr": 0.013306478243066302, "acc_norm": 0.8339719029374202, "acc_norm_stderr": 0.013306478243066302 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7543352601156069, "acc_stderr": 0.023176298203992, "acc_norm": 0.7543352601156069, "acc_norm_stderr": 0.023176298203992 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.27039106145251396, "acc_stderr": 0.01485499393801009, "acc_norm": 0.27039106145251396, "acc_norm_stderr": 0.01485499393801009 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7549019607843137, "acc_stderr": 0.02463004897982478, "acc_norm": 0.7549019607843137, "acc_norm_stderr": 0.02463004897982478 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7561728395061729, "acc_stderr": 0.023891879541959603, "acc_norm": 0.7561728395061729, "acc_norm_stderr": 0.023891879541959603 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.475177304964539, "acc_stderr": 0.02979071924382972, "acc_norm": 0.475177304964539, "acc_norm_stderr": 0.02979071924382972 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4934810951760104, "acc_stderr": 0.012769150688867503, "acc_norm": 0.4934810951760104, "acc_norm_stderr": 0.012769150688867503 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7279411764705882, "acc_stderr": 0.02703304115168146, "acc_norm": 0.7279411764705882, "acc_norm_stderr": 0.02703304115168146 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6797385620915033, "acc_stderr": 0.018875682938069443, "acc_norm": 0.6797385620915033, "acc_norm_stderr": 0.018875682938069443 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7551020408163265, "acc_stderr": 0.02752963744017493, "acc_norm": 0.7551020408163265, "acc_norm_stderr": 0.02752963744017493 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578337, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578337 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.03487350880197768, "acc_norm": 0.86, "acc_norm_stderr": 0.03487350880197768 }, "harness|hendrycksTest-virology|5": { "acc": 0.5301204819277109, "acc_stderr": 0.03885425420866767, "acc_norm": 0.5301204819277109, "acc_norm_stderr": 0.03885425420866767 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.02917088550072767, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.02917088550072767 }, "harness|truthfulqa:mc|0": { "mc1": 0.3574051407588739, "mc1_stderr": 0.01677659967672941, "mc2": 0.5215263336816769, "mc2_stderr": 0.015319650015486606 }, "harness|winogrande|5": { "acc": 0.8208366219415943, "acc_stderr": 0.010777949156047986 }, "harness|gsm8k|5": { "acc": 0.6815769522365428, "acc_stderr": 0.012832225723075413 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_andysalerno__openchat-nectar-0.5
[ "region:us" ]
2024-01-14T14:48:31+00:00
{"pretty_name": "Evaluation run of andysalerno/openchat-nectar-0.5", "dataset_summary": "Dataset automatically created during the evaluation run of model [andysalerno/openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_andysalerno__openchat-nectar-0.5\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T14:46:05.051264](https://huggingface.co/datasets/open-llm-leaderboard/details_andysalerno__openchat-nectar-0.5/blob/main/results_2024-01-14T14-46-05.051264.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.656162636449764,\n \"acc_stderr\": 0.03183140048341385,\n \"acc_norm\": 0.6568859855566402,\n \"acc_norm_stderr\": 0.03248609595939316,\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.01677659967672941,\n \"mc2\": 0.5215263336816769,\n \"mc2_stderr\": 0.015319650015486606\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6305460750853242,\n \"acc_stderr\": 0.014104578366491892,\n \"acc_norm\": 0.6672354948805461,\n \"acc_norm_stderr\": 0.013769863046192309\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6392152957578172,\n \"acc_stderr\": 0.004792467255899766,\n \"acc_norm\": 0.835291774546903,\n \"acc_norm_stderr\": 0.003701589571274316\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6518518518518519,\n \"acc_stderr\": 0.041153246103369526,\n \"acc_norm\": 0.6518518518518519,\n \"acc_norm_stderr\": 0.041153246103369526\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6907894736842105,\n \"acc_stderr\": 0.037610708698674805,\n \"acc_norm\": 0.6907894736842105,\n \"acc_norm_stderr\": 0.037610708698674805\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7056603773584905,\n \"acc_stderr\": 0.02804918631569525,\n \"acc_norm\": 0.7056603773584905,\n \"acc_norm_stderr\": 0.02804918631569525\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6705202312138728,\n \"acc_stderr\": 0.03583901754736412,\n \"acc_norm\": 0.6705202312138728,\n \"acc_norm_stderr\": 0.03583901754736412\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.39215686274509803,\n \"acc_stderr\": 0.04858083574266345,\n \"acc_norm\": 0.39215686274509803,\n \"acc_norm_stderr\": 0.04858083574266345\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5957446808510638,\n \"acc_stderr\": 0.032081157507886836,\n \"acc_norm\": 0.5957446808510638,\n \"acc_norm_stderr\": 0.032081157507886836\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.04692008381368909,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.04692008381368909\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5862068965517241,\n \"acc_stderr\": 0.04104269211806232,\n \"acc_norm\": 0.5862068965517241,\n \"acc_norm_stderr\": 0.04104269211806232\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42063492063492064,\n \"acc_stderr\": 0.025424835086924,\n \"acc_norm\": 0.42063492063492064,\n \"acc_norm_stderr\": 0.025424835086924\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5238095238095238,\n \"acc_stderr\": 0.04467062628403273,\n \"acc_norm\": 0.5238095238095238,\n \"acc_norm_stderr\": 0.04467062628403273\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7870967741935484,\n \"acc_stderr\": 0.02328766512726854,\n \"acc_norm\": 0.7870967741935484,\n \"acc_norm_stderr\": 0.02328766512726854\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.035179450386910616,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.035179450386910616\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.031922715695483016,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.031922715695483016\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.029376616484945627,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.029376616484945627\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8963730569948186,\n \"acc_stderr\": 0.02199531196364424,\n \"acc_norm\": 0.8963730569948186,\n \"acc_norm_stderr\": 0.02199531196364424\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6794871794871795,\n \"acc_stderr\": 0.02366129639396428,\n \"acc_norm\": 0.6794871794871795,\n \"acc_norm_stderr\": 0.02366129639396428\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3851851851851852,\n \"acc_stderr\": 0.02967090612463088,\n \"acc_norm\": 0.3851851851851852,\n \"acc_norm_stderr\": 0.02967090612463088\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6932773109243697,\n \"acc_stderr\": 0.02995382389188704,\n \"acc_norm\": 0.6932773109243697,\n \"acc_norm_stderr\": 0.02995382389188704\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.03879687024073327,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.03879687024073327\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8532110091743119,\n \"acc_stderr\": 0.015173141845126255,\n \"acc_norm\": 0.8532110091743119,\n \"acc_norm_stderr\": 0.015173141845126255\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5138888888888888,\n \"acc_stderr\": 0.03408655867977749,\n \"acc_norm\": 0.5138888888888888,\n \"acc_norm_stderr\": 0.03408655867977749\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.02584501798692692,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.02584501798692692\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579647,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579647\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7040358744394619,\n \"acc_stderr\": 0.030636591348699824,\n \"acc_norm\": 0.7040358744394619,\n \"acc_norm_stderr\": 0.030636591348699824\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990947,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990947\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.047268355537191,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.047268355537191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8155339805825242,\n \"acc_stderr\": 0.03840423627288276,\n \"acc_norm\": 0.8155339805825242,\n \"acc_norm_stderr\": 0.03840423627288276\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092375,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092375\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932262,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932262\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8339719029374202,\n \"acc_stderr\": 0.013306478243066302,\n \"acc_norm\": 0.8339719029374202,\n \"acc_norm_stderr\": 0.013306478243066302\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7543352601156069,\n \"acc_stderr\": 0.023176298203992,\n \"acc_norm\": 0.7543352601156069,\n \"acc_norm_stderr\": 0.023176298203992\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.27039106145251396,\n \"acc_stderr\": 0.01485499393801009,\n \"acc_norm\": 0.27039106145251396,\n \"acc_norm_stderr\": 0.01485499393801009\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7549019607843137,\n \"acc_stderr\": 0.02463004897982478,\n \"acc_norm\": 0.7549019607843137,\n \"acc_norm_stderr\": 0.02463004897982478\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7106109324758842,\n \"acc_stderr\": 0.025755865922632945,\n \"acc_norm\": 0.7106109324758842,\n \"acc_norm_stderr\": 0.025755865922632945\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959603,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959603\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.475177304964539,\n \"acc_stderr\": 0.02979071924382972,\n \"acc_norm\": 0.475177304964539,\n \"acc_norm_stderr\": 0.02979071924382972\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4934810951760104,\n \"acc_stderr\": 0.012769150688867503,\n \"acc_norm\": 0.4934810951760104,\n \"acc_norm_stderr\": 0.012769150688867503\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7279411764705882,\n \"acc_stderr\": 0.02703304115168146,\n \"acc_norm\": 0.7279411764705882,\n \"acc_norm_stderr\": 0.02703304115168146\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6797385620915033,\n \"acc_stderr\": 0.018875682938069443,\n \"acc_norm\": 0.6797385620915033,\n \"acc_norm_stderr\": 0.018875682938069443\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7551020408163265,\n \"acc_stderr\": 0.02752963744017493,\n \"acc_norm\": 0.7551020408163265,\n \"acc_norm_stderr\": 0.02752963744017493\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578337,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578337\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.03487350880197768,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.03487350880197768\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5301204819277109,\n \"acc_stderr\": 0.03885425420866767,\n \"acc_norm\": 0.5301204819277109,\n \"acc_norm_stderr\": 0.03885425420866767\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.02917088550072767,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.02917088550072767\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.01677659967672941,\n \"mc2\": 0.5215263336816769,\n \"mc2_stderr\": 0.015319650015486606\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8208366219415943,\n \"acc_stderr\": 0.010777949156047986\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6815769522365428,\n \"acc_stderr\": 0.012832225723075413\n }\n}\n```", "repo_url": "https://huggingface.co/andysalerno/openchat-nectar-0.5", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|arc:challenge|25_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|gsm8k|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hellaswag|10_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T14-46-05.051264.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["**/details_harness|winogrande|5_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T14-46-05.051264.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T14_46_05.051264", "path": ["results_2024-01-14T14-46-05.051264.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T14-46-05.051264.parquet"]}]}]}
2024-01-14T14:48:51+00:00
c37608c53cc555b1e99338add587d3c105a597d2
AoZhang/nextchat-annotation
[ "region:us" ]
2024-01-14T14:48:47+00:00
{}
2024-01-24T07:09:11+00:00
a770c37d5f32150de99ea297d2d1e9448298c809
# Dataset of magdeburg/マクデブルク/马格德堡 (Azur Lane) This is the dataset of magdeburg/マクデブルク/马格德堡 (Azur Lane), containing 15 images and their tags. The core tags of this character are `black_hair, horns, long_hair, breasts, multicolored_hair, red_eyes, bangs, hair_between_eyes, red_hair, large_breasts, very_long_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 15 | 20.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/magdeburg_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 15 | 12.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/magdeburg_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 35 | 25.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/magdeburg_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 15 | 18.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/magdeburg_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 35 | 35.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/magdeburg_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/magdeburg_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 15 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, navel, open_mouth, smile, looking_at_viewer, black_bikini, blush, nail_polish, thighhighs, cleavage, cloud, o-ring_bikini, outdoors, see-through, sky, tied_shirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | navel | open_mouth | smile | looking_at_viewer | black_bikini | blush | nail_polish | thighhighs | cleavage | cloud | o-ring_bikini | outdoors | see-through | sky | tied_shirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:-------------|:--------|:--------------------|:---------------|:--------|:--------------|:-------------|:-----------|:--------|:----------------|:-----------|:--------------|:------|:-------------| | 0 | 15 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/magdeburg_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:51:17+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:55:01+00:00
28f622caad074d9730f577b24a82fec5e03cdd62
# Dataset of andrea_doria/アンドレア・ドーリア/安德烈亚·多利亚 (Azur Lane) This is the dataset of andrea_doria/アンドレア・ドーリア/安德烈亚·多利亚 (Azur Lane), containing 11 images and their tags. The core tags of this character are `breasts, drill_hair, large_breasts, long_hair, bangs, ahoge, yellow_eyes, brown_eyes, very_long_hair, brown_hair, hair_intakes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 11 | 18.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/andrea_doria_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 11 | 9.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/andrea_doria_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 31 | 22.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/andrea_doria_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 11 | 15.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/andrea_doria_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 31 | 34.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/andrea_doria_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/andrea_doria_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, long_sleeves, looking_at_viewer, smile, cleavage, blush, solo, closed_mouth, green_dress, black_pantyhose, indoors, standing, window | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | long_sleeves | looking_at_viewer | smile | cleavage | blush | solo | closed_mouth | green_dress | black_pantyhose | indoors | standing | window | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------------------|:--------|:-----------|:--------|:-------|:---------------|:--------------|:------------------|:----------|:-----------|:---------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/andrea_doria_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:51:19+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:55:18+00:00
f19283a231f8c2adcea48920a32fa26a7620596d
# Dataset of z26/Z26 (Azur Lane) This is the dataset of z26/Z26 (Azur Lane), containing 13 images and their tags. The core tags of this character are `long_hair, pink_hair, purple_eyes, very_long_hair, twintails, bangs, hair_between_eyes, hair_ornament, hat, black_headwear, mask_on_head, sidelocks, breasts, fang, peaked_cap, small_breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 13 | 15.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/z26_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 13 | 9.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/z26_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 32 | 19.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/z26_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 13 | 14.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/z26_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 32 | 27.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/z26_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/z26_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, bare_shoulders, looking_at_viewer, sleep_mask, solo, black_shirt, collarbone, short_sleeves, simple_background, white_background, holding, off-shoulder_shirt, short_shorts, :d, blush, crop_top, full_body, hairclip, navel, no_shoes, open_mouth, stuffed_toy, white_socks | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, black_skirt, looking_at_viewer, midriff, miniskirt, navel, solo, boots, capelet, hair_flaps, pleated_skirt, red_gloves, suspender_skirt, ahoge, closed_mouth, full_body, simple_background, socks, v-shaped_eyebrows, white_background, armpits, black_shirt, buttons, crop_top_overhang, frown, outstretched_arm, revealing_clothes, sleeveless_shirt, stomach, thigh_strap, thighs, undershirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | looking_at_viewer | sleep_mask | solo | black_shirt | collarbone | short_sleeves | simple_background | white_background | holding | off-shoulder_shirt | short_shorts | :d | blush | crop_top | full_body | hairclip | navel | no_shoes | open_mouth | stuffed_toy | white_socks | black_skirt | midriff | miniskirt | boots | capelet | hair_flaps | pleated_skirt | red_gloves | suspender_skirt | ahoge | closed_mouth | socks | v-shaped_eyebrows | armpits | buttons | crop_top_overhang | frown | outstretched_arm | revealing_clothes | sleeveless_shirt | stomach | thigh_strap | thighs | undershirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:--------------------|:-------------|:-------|:--------------|:-------------|:----------------|:--------------------|:-------------------|:----------|:---------------------|:---------------|:-----|:--------|:-----------|:------------|:-----------|:--------|:-----------|:-------------|:--------------|:--------------|:--------------|:----------|:------------|:--------|:----------|:-------------|:----------------|:-------------|:------------------|:--------|:---------------|:--------|:--------------------|:----------|:----------|:--------------------|:--------|:-------------------|:--------------------|:-------------------|:----------|:--------------|:---------|:-------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | | X | | X | X | | | X | X | | | | | | | X | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/z26_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T14:51:19+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T14:55:27+00:00
26aad0b206850c4bdc5613a05ea1545fa4c964bb
Navvye/TrialTSV
[ "license:mit", "region:us" ]
2024-01-14T14:57:11+00:00
{"license": "mit"}
2024-01-14T14:57:47+00:00
8e72de89ef59e9a969fcea910c6806080dc33881
icewiny/blur_cn
[ "license:mit", "region:us" ]
2024-01-14T15:00:36+00:00
{"license": "mit"}
2024-01-14T15:00:36+00:00
9e48ba6b3eda5d1715621a299d7d9ab7140d8068
# Promoter Sequences for Various plant species The data in this dataset has the promoter sequences for **241 different plant species** and has been used for the pretraining step of [`Florabert`](https://huggingface.co/Gurveer05/FloraBERT). It has been created by processing the raw fasta files and the gff3 / gff files from [`Ensembl`](https://plants.ensembl.org/) and [`Refseq`](https://www.ncbi.nlm.nih.gov/refseq/). *samtools* and *bedtools* have been used to extract the promoter sequences from these that are 1kb upstream of the sequence. The data has been split into train and test data (90-10 split). In all, there are ~ 10 million sequences across the split files. The steps followed to obtain this data are available in this [`Github Repository`](https://github.com/gurveervirk/florabert).
Gurveer05/plant-promoter-sequences
[ "size_categories:10M<n<100M", "biology", "region:us" ]
2024-01-14T15:03:50+00:00
{"size_categories": ["10M<n<100M"], "tags": ["biology"]}
2024-01-14T17:26:56+00:00
6f3fb8fcd91ea065cafa081377328757f91641e2
# Dataset of friedrich_eckoldt/Z16 (Azur Lane) This is the dataset of friedrich_eckoldt/Z16 (Azur Lane), containing 11 images and their tags. The core tags of this character are `black_hair, multicolored_hair, red_eyes, streaked_hair, bangs, breasts, long_hair, white_hair, horns, x-shaped_pupils, symbol-shaped_pupils, two-tone_hair, hair_between_eyes, v-shaped_eyebrows`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 11 | 15.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/friedrich_eckoldt_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 11 | 8.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/friedrich_eckoldt_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 26 | 17.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/friedrich_eckoldt_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 11 | 12.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/friedrich_eckoldt_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 26 | 26.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/friedrich_eckoldt_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/friedrich_eckoldt_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, navel, black_jacket, bare_shoulders, crop_top, long_sleeves, midriff, stomach, black_thighhighs, iron_cross, off_shoulder, standing, thigh_strap, white_panties, cowboy_shot, open_mouth, red_gloves, simple_background, skindentation, thighs, white_shirt, :d, black_footwear, black_gloves, full_body, open_jacket, sharp_teeth, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | navel | black_jacket | bare_shoulders | crop_top | long_sleeves | midriff | stomach | black_thighhighs | iron_cross | off_shoulder | standing | thigh_strap | white_panties | cowboy_shot | open_mouth | red_gloves | simple_background | skindentation | thighs | white_shirt | :d | black_footwear | black_gloves | full_body | open_jacket | sharp_teeth | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:--------|:---------------|:-----------------|:-----------|:---------------|:----------|:----------|:-------------------|:-------------|:---------------|:-----------|:--------------|:----------------|:--------------|:-------------|:-------------|:--------------------|:----------------|:---------|:--------------|:-----|:-----------------|:---------------|:------------|:--------------|:--------------|:-------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/friedrich_eckoldt_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T15:08:50+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T15:11:51+00:00
e56367f7062e03b7ad7c3e9dc5d05d85eb5bd5f8
modelloosrvcc/WukongMico
[ "license:openrail", "region:us" ]
2024-01-14T15:11:11+00:00
{"license": "openrail"}
2024-01-14T15:11:57+00:00
f168c18bea3933d013832f904b7558f877993d2b
sayalishankar/requireddataset
[ "region:us" ]
2024-01-14T15:18:32+00:00
{}
2024-01-14T15:21:23+00:00
9958f85a0ed801a4a28f3c205b7b910a34b2da27
RamazanTM/EngRussPretrain
[ "license:openrail", "region:us" ]
2024-01-14T15:18:58+00:00
{"license": "openrail"}
2024-01-14T15:35:25+00:00
155539f0708c88ca3d1554453ee7d95a900abf85
# Dataset of louisville/ルイビル/路易斯维尔 (Azur Lane) This is the dataset of louisville/ルイビル/路易斯维尔 (Azur Lane), containing 18 images and their tags. The core tags of this character are `breasts, long_hair, hair_over_one_eye, large_breasts, blue_eyes, braid, bow, animal_ears, fake_animal_ears, hair_ornament, rabbit_ears, pink_hair, huge_breasts, very_long_hair, blue_bow, purple_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 18 | 28.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louisville_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 18 | 16.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louisville_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 46 | 35.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louisville_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 18 | 25.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louisville_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 46 | 51.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louisville_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/louisville_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | bare_shoulders, bowtie, cleavage, detached_collar, playboy_bunny, 1girl, looking_at_viewer, white_gloves, blue_leotard, solo, blush, white_pantyhose, official_alternate_costume, strapless_leotard, holding_tray, breast_rest | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, cleavage, long_sleeves, solo, dress, looking_at_viewer, white_gloves, white_thighhighs, blush, frills, garter_straps, simple_background, white_background, bangs, clothes_lift, full_body, lifted_by_self, skirt, smile, white_panties | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | bare_shoulders | bowtie | cleavage | detached_collar | playboy_bunny | 1girl | looking_at_viewer | white_gloves | blue_leotard | solo | blush | white_pantyhose | official_alternate_costume | strapless_leotard | holding_tray | breast_rest | long_sleeves | dress | white_thighhighs | frills | garter_straps | simple_background | white_background | bangs | clothes_lift | full_body | lifted_by_self | skirt | smile | white_panties | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------|:---------|:-----------|:------------------|:----------------|:--------|:--------------------|:---------------|:---------------|:-------|:--------|:------------------|:-----------------------------|:--------------------|:---------------|:--------------|:---------------|:--------|:-------------------|:---------|:----------------|:--------------------|:-------------------|:--------|:---------------|:------------|:-----------------|:--------|:--------|:----------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | | | X | | | X | X | X | | X | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/louisville_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T15:29:53+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T15:34:10+00:00
aadc3836f337cb17823e07dd83cb7d3773af9903
# Dataset of matchless/マッチレス/无敌 (Azur Lane) This is the dataset of matchless/マッチレス/无敌 (Azur Lane), containing 16 images and their tags. The core tags of this character are `purple_hair, hat, purple_eyes, short_hair, bangs, breasts, beret, black_headwear, ribbon, hair_ornament, rabbit_hair_ornament`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 16 | 18.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matchless_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 16 | 10.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matchless_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 35 | 22.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matchless_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 16 | 16.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matchless_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 35 | 29.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matchless_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/matchless_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, bare_shoulders, blush, white_dress, looking_at_viewer, smile, solo, choker, collarbone, pink_bow, white_footwear, bag, holding_food, ice_cream_cone, lifebuoy, shoes, tongue_out, bench, bird, brick_floor, closed_mouth, military_hat, off_shoulder, sitting, torpedo_tubes | | 1 | 9 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, looking_at_viewer, solo, bare_shoulders, black_gloves, blush, smile, open_mouth, sleeveless_shirt, pink_skirt, star_(symbol), white_shirt, kneehighs, white_socks, ;d, full_body, mole, one_eye_closed | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | blush | white_dress | looking_at_viewer | smile | solo | choker | collarbone | pink_bow | white_footwear | bag | holding_food | ice_cream_cone | lifebuoy | shoes | tongue_out | bench | bird | brick_floor | closed_mouth | military_hat | off_shoulder | sitting | torpedo_tubes | black_gloves | open_mouth | sleeveless_shirt | pink_skirt | star_(symbol) | white_shirt | kneehighs | white_socks | ;d | full_body | mole | one_eye_closed | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:--------|:--------------|:--------------------|:--------|:-------|:---------|:-------------|:-----------|:-----------------|:------|:---------------|:-----------------|:-----------|:--------|:-------------|:--------|:-------|:--------------|:---------------|:---------------|:---------------|:----------|:----------------|:---------------|:-------------|:-------------------|:-------------|:----------------|:--------------|:------------|:--------------|:-----|:------------|:-------|:-----------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | 1 | 9 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/matchless_azurlane
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T15:30:03+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T15:33:31+00:00
e0b052512c0312b3a1ee43bf1700168a8c607c13
valerievloef/Thesis_BERT_part
[ "license:apache-2.0", "region:us" ]
2024-01-14T15:34:16+00:00
{"license": "apache-2.0"}
2024-01-14T15:34:51+00:00
3531d9a7a8a01c1619b297a509fb9485b37d80ae
This is a unfiltered dataset of images scraped from the internet for the Detective Conan character Masumi Sera
234bcn/masumi_sera_images
[ "language:en", "region:us" ]
2024-01-14T15:41:22+00:00
{"language": ["en"], "pretty_name": "Masumi Sera Dataset for AI"}
2024-01-15T18:38:20+00:00
6341b7a2621088af05364a7a711c811b422e4b96
mydesigns82/shiba
[ "license:mit", "region:us" ]
2024-01-14T15:41:38+00:00
{"license": "mit"}
2024-01-14T15:47:52+00:00
3d1bfe3ed7a68e99e2780155b14d38956b76d5ea
# Dataset Card for "real-toxicity-prompts_first_5K" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Leogrin/real-toxicity-prompts_first_5K
[ "region:us" ]
2024-01-14T15:48:57+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "begin", "dtype": "int64"}, {"name": "end", "dtype": "int64"}, {"name": "challenging", "dtype": "bool"}, {"name": "prompt", "struct": [{"name": "text", "dtype": "string"}, {"name": "profanity", "dtype": "float64"}, {"name": "sexually_explicit", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "flirtation", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "toxicity", "dtype": "float64"}]}, {"name": "continuation", "struct": [{"name": "text", "dtype": "string"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "toxicity", "dtype": "float64"}, {"name": "profanity", "dtype": "float64"}, {"name": "sexually_explicit", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "flirtation", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}]}], "splits": [{"name": "train", "num_bytes": 1701249, "num_examples": 5000}], "download_size": 1566036, "dataset_size": 1701249}}
2024-01-14T15:48:59+00:00
60c898ac22737376ba892d481d9a728ea8fafd49
hojzas/test
[ "license:apache-2.0", "region:us" ]
2024-01-14T15:49:59+00:00
{"license": "apache-2.0"}
2024-01-14T15:49:59+00:00
5e830fb2119498b53299c76b814f2fe82ee601ff
hojzas/autotrain-data-test
[ "license:apache-2.0", "region:us" ]
2024-01-14T15:50:58+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "autotrain_text", "dtype": "string"}, {"name": "autotrain_label", "dtype": {"class_label": {"names": {"0": "negative", "1": "positive"}}}}], "splits": [{"name": "train", "num_bytes": 167, "num_examples": 6}, {"name": "validation", "num_bytes": 52, "num_examples": 2}], "download_size": 3117, "dataset_size": 219}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-14T15:54:34+00:00
3892020f4cf0f9f3beb54f50a1cc771774bb9d1a
supundhananjaya/MonoGeoDepth-dataset
[ "region:us" ]
2024-01-14T16:00:34+00:00
{}
2024-01-14T16:00:34+00:00
1e0846f979f3900068fffebbfa681ccaaf165aea
EllieS/pubmedqa_dpo_data
[ "region:us" ]
2024-01-14T16:01:00+00:00
{}
2024-01-16T04:29:02+00:00
0d7215891cccba2036f851aee05b2a1a8ed76e9f
cmolinier/pokemon_diamond_ost_mid_tkn
[ "region:us" ]
2024-01-14T16:01:50+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15970638, "num_examples": 592}], "download_size": 2228577, "dataset_size": 15970638}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T16:06:33+00:00
dfccbf5d5206330d074a0d31e1a564b68bf6a4eb
# DeliData This is a README that outlines key fields and characteristics of the DeliData corpus. For full description of how we collected DeliData, as well as possible applications, please refer to the original paper [link](#citation). # Data Fields ###### group_id Unique identifier of the group chat ###### message_id Message identifier. System messages will have an id of -1, however all participant messages' ids are unique. ###### message_type INITIAL - indicating the cards presented and aliases of participants; SUBMIT - indicating that a participant has pressed the Submit Solution button MESSAGE - noting a chat entry ###### origin The alias of the participant who submitted a message/solution ###### original_text Original text as said in the collected conversation; For INITIAL type, contains the list of participants and cards presented. For SUBMIT type, contains the cards submitted ###### clean_text Normalised message, with applied tokenisation, and masking of special tokens. Special tokens are considered solution mentions, which are masked with < CARD > and participant mentions which are masked with < MENTION > ###### annotation_type A record from the first level of DeliAnnotation. Can be Probing, Non-probing deliberation, or None. For more details, please refer to the DeliData paper. ###### annotation_target A record from the second level of DeliAnnotation. Can be Moderation, Reasoning, Solution, Agree, or Disagree. For more details, please refer to the DeliData paper. ###### annotation_additional A record from the third level of DeliAnnotation. Can be partial_solution, complete_solution, specific_referee, solution_summary, or consider_opposite. For more details, please refer to the DeliData paper. ###### team_performance An approximation of team performance, based on user submissions, and solution mentions. Range [0-1], where 1 indicates each participant selecting the correct solution. ###### performance_change Change of performance based compared to the previous utterance ###### sol_tracker_message Extracted solution from the current message ###### sol_tracker_all Up-to-date "state-of-mind" for each of the participants, i.e. an approximation of what each participant think the correct solution is at given timestep. This is based on initial solutions, submitted solutions, and solution mentions. team_performance value is calculated based on this column ### Citation **DeliData A dataset for deliberation in multi-party problem solving (https://delibot.xyz/delidata)** @article{karadzhov2023delidata, title={DeliData: A dataset for deliberation in multi-party problem solving}, author={Karadzhov, Georgi and Stafford, Tom and Vlachos, Andreas}, journal={Proceedings of the ACM on Human-Computer Interaction}, volume={7}, number={CSCW2}, pages={1--25}, year={2023}, publisher={ACM New York, NY, USA} }
gkaradzhov/DeliData
[ "license:cc-by-4.0", "region:us" ]
2024-01-14T16:08:40+00:00
{"license": "cc-by-4.0"}
2024-01-14T16:10:42+00:00
0354f80bb4095c3e18800966ad1b6a296cfcc530
model: https://huggingface.co/sentence-transformers/clip-ViT-L-14 # 1.71GB
teamtom/25000_word_emb_large
[ "license:apache-2.0", "region:us" ]
2024-01-14T16:10:20+00:00
{"license": "apache-2.0"}
2024-01-14T16:12:52+00:00
9b60961400df84d2e0ac0015d34b0679cb53bb1a
YigitKoca/MMLU_EN_1
[ "region:us" ]
2024-01-14T16:10:34+00:00
{}
2024-01-14T16:16:10+00:00
3403562f12c2649f36539e093aef7eb37c59314f
GalDude33/Splats
[ "region:us" ]
2024-01-14T16:10:36+00:00
{}
2024-01-14T16:18:50+00:00
6efa9ce2552dc2d550d6bca8fa8329f9515dff54
Andongne/repo_despina
[ "region:us" ]
2024-01-14T16:13:44+00:00
{}
2024-01-14T16:13:44+00:00
abe125a775a4f8d861497973dba3904581020460
Andongne/despina
[ "region:us" ]
2024-01-14T16:14:05+00:00
{}
2024-01-14T17:07:05+00:00
e15cafc333c59626d359a2c10516ae667e43c6ff
zhanjun/cfff_qianyi
[ "region:us" ]
2024-01-14T16:19:14+00:00
{}
2024-01-14T17:35:07+00:00
06a8818ab1c008a02ce8e6f140f6372bc74707c8
yeager89/mikasa
[ "region:us" ]
2024-01-14T16:23:47+00:00
{}
2024-01-14T16:26:46+00:00
d4f20ff2896edaf78b384691615f3b083f27a18d
# Promoter Sequences for Maize NAM lines The data in this dataset has the promoter sequences for **26 Maize NAM lines** and has been used for the finetuning step of [`Florabert`](https://huggingface.co/Gurveer05/FloraBERT). It has been created by processing the raw fasta files and the gff3 files from [`MaizeGDB`](https://www.maizegdb.org/) for the 26 NAM lines. *samtools* and *bedtools* have been used to extract the promoter sequences from these that are 1kb upstream of the sequence. The data has been split into train and test data (70-30 split). In all, there are ~ 1 million sequences across the files. The steps followed to obtain this data are available in this [`Github Repository`](https://github.com/gurveervirk/florabert).
Gurveer05/maize-promoter-sequences
[ "size_categories:1M<n<10M", "biology", "region:us" ]
2024-01-14T16:24:21+00:00
{"size_categories": ["1M<n<10M"], "tags": ["biology"]}
2024-01-14T17:13:53+00:00
531f2de26dada8bcc16f1f3f049baf3cae916dff
# A classics data set for use with mistral-7b-v0.1 This dataset was used for a fine-tune of Mistral 7b base model. It contains 1,640 Q/A pairs on Greek & Roman history. The dataset was generated via Mixtral-8x7b Instruct v01, run over 512 token-length chunks of vol's 2&3 of Will Durants' 13 vol **Story of Civilization** (*Life of Greece* and *Caesar & Christ*). Training data was formatted with [INST] and [/INST] delimiting instructions: ```bash {"text": "Q: \"Why did many Greeks come to resent Rome's 'liberation' and 'peacekeeping' efforts, such as forbidding class war and interfering in disputes, despite Rome having given Greece freedom from previous conflicts?\"\nA: Many Greeks came to resent Rome's \"liberation\" and \"peacekeeping\" efforts due to several reasons. First, after the Romans had given Greece freedom...(blah blah blah)...interfering in their domestic affairs, and ultimately"} ```
wmmarcellino/mistral-7b-v0.1-GreeceRome-v0.1
[ "language:en", "license:apache-2.0", "region:us" ]
2024-01-14T16:25:18+00:00
{"language": ["en"], "license": "apache-2.0"}
2024-01-14T16:29:07+00:00
a7a7aafc319d1aaebcd6b6deb1c8c1477f770dcd
Symfomany/datasllm
[ "license:apache-2.0", "region:us" ]
2024-01-14T16:27:31+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "nom", "dtype": "string"}, {"name": "reconnaitre", "dtype": "string"}, {"name": "important", "dtype": "string"}, {"name": "prevention", "dtype": "string"}, {"name": "lutter", "dtype": "string"}, {"name": "traitement", "dtype": "string"}, {"name": "chat_sample", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 108814, "num_examples": 19}], "download_size": 96525, "dataset_size": 108814}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T11:11:46+00:00
34620ebdf88d4cdb6c109ce36b4f790504638da7
bhargavi909/Gene_expressions_UCI
[ "region:us" ]
2024-01-14T16:35:45+00:00
{}
2024-01-14T16:35:45+00:00
2c0e7cc90901e2f969e9aee695ac4a484ef0e1c4
Atipico1/popQA_preprocessed_unans
[ "region:us" ]
2024-01-14T16:43:27+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "subj", "dtype": "string"}, {"name": "prop", "dtype": "string"}, {"name": "obj", "dtype": "string"}, {"name": "subj_id", "dtype": "int64"}, {"name": "prop_id", "dtype": "int64"}, {"name": "obj_id", "dtype": "int64"}, {"name": "s_aliases", "dtype": "string"}, {"name": "o_aliases", "dtype": "string"}, {"name": "s_uri", "dtype": "string"}, {"name": "o_uri", "dtype": "string"}, {"name": "s_wiki_title", "dtype": "string"}, {"name": "o_wiki_title", "dtype": "string"}, {"name": "s_pop", "dtype": "int64"}, {"name": "o_pop", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "ctxs", "list": [{"name": "hasanswer", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "score", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "title", "dtype": "string"}]}, {"name": "query_embedding", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 100743049, "num_examples": 10000}, {"name": "test", "num_bytes": 42959579, "num_examples": 4267}], "download_size": 81183565, "dataset_size": 143702628}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T16:43:45+00:00
1d7ac5906a82d28d43ee632508000e8661b185cb
paulparas/code-review
[ "region:us" ]
2024-01-14T16:43:59+00:00
{}
2024-01-14T16:43:59+00:00
a721f15f217cb8cccb302a2cab0232077d7db836
Jungliana/classical-music-abc
[ "region:us" ]
2024-01-14T16:45:33+00:00
{}
2024-01-14T16:49:25+00:00
9b7bc762ce9d9b7747ec37995e2f9267f91885eb
Vitorbr2009/ds-voz-afauna
[ "license:openrail", "region:us" ]
2024-01-14T16:51:06+00:00
{"license": "openrail"}
2024-01-14T16:52:02+00:00
5e4e0fbe391f887c2df1eea061426ec5dc84d9f3
ganoot/ut-courses
[ "region:us" ]
2024-01-14T16:55:45+00:00
{}
2024-01-14T16:59:49+00:00
1a47923fb183e14b2674f79c54d0ab1cf223a2e0
To watch a video on how this dataset was created, watch the following videos: Are words free?: * https://youtu.be/Utg_D-yQB_E?si=FKp_QZ4PbKesiDrn Replacing Chatgpt 3.5 turbo workflows with Openchat: * https://youtu.be/DNKepnKuZns?si=bleufaiGdwGdrueK
russellbal/dictionary-openchat-3.5-0106
[ "license:wtfpl", "region:us" ]
2024-01-14T17:02:26+00:00
{"license": "wtfpl"}
2024-01-14T18:00:23+00:00
8c09f93f609bda3b2f1e93ed27fb9996b52cb250
Carlosgg14/gokublack
[ "license:openrail", "region:us" ]
2024-01-14T17:05:46+00:00
{"license": "openrail"}
2024-01-14T17:07:08+00:00
42150099223f14cf78c039bdd1e80e85da97cc04
# Alpaca Hindi Small This is a synthesized dataset created by translation of alpaca dataset from English to Hindi language.
QuantumMik/alpaca_hindi_small
[ "task_categories:question-answering", "task_categories:text-generation", "size_categories:1K<n<10K", "language:hi", "license:apache-2.0", "region:us" ]
2024-01-14T17:06:44+00:00
{"language": ["hi"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering", "text-generation"]}
2024-01-16T16:02:58+00:00
5ab29f75b16751b2725bddb6c6f57f6327b7746e
epinnock/software-architecture-instructions
[ "region:us" ]
2024-01-14T17:20:08+00:00
{"dataset_info": {"features": [{"name": "instructions", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24799, "num_examples": 210}], "download_size": 10040, "dataset_size": 24799}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T17:22:57+00:00
649e30f1ec53be5822239f86f98b244cdbfdc414
pouya-haghi/imagenet-2k
[ "region:us" ]
2024-01-14T17:20:40+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 86120502.0, "num_examples": 2048}], "download_size": 86073892, "dataset_size": 86120502.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T17:20:54+00:00
7f4e1788c0add94483c53185193c582bb1c2c4c2
# Dataset Card for Evaluation run of Felladrin/Llama-68M-Chat-v1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Felladrin/Llama-68M-Chat-v1](https://huggingface.co/Felladrin/Llama-68M-Chat-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Felladrin__Llama-68M-Chat-v1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T17:25:12.605913](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Llama-68M-Chat-v1/blob/main/results_2024-01-14T17-25-12.605913.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.2518558528274769, "acc_stderr": 0.030387282193610175, "acc_norm": 0.25203959947439164, "acc_norm_stderr": 0.031196164528136557, "mc1": 0.2741738066095471, "mc1_stderr": 0.015616518497219376, "mc2": 0.4726841055154348, "mc2_stderr": 0.015727848850119193 }, "harness|arc:challenge|25": { "acc": 0.1885665529010239, "acc_stderr": 0.011430897647675815, "acc_norm": 0.23293515358361774, "acc_norm_stderr": 0.012352507042617405 }, "harness|hellaswag|10": { "acc": 0.27693686516630156, "acc_stderr": 0.004465704810893541, "acc_norm": 0.28271260705038836, "acc_norm_stderr": 0.004493975527386726 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.27, "acc_stderr": 0.04461960433384741, "acc_norm": 0.27, "acc_norm_stderr": 0.04461960433384741 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.22962962962962963, "acc_stderr": 0.03633384414073461, "acc_norm": 0.22962962962962963, "acc_norm_stderr": 0.03633384414073461 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.17763157894736842, "acc_stderr": 0.031103182383123398, "acc_norm": 0.17763157894736842, "acc_norm_stderr": 0.031103182383123398 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.17, "acc_stderr": 0.0377525168068637, "acc_norm": 0.17, "acc_norm_stderr": 0.0377525168068637 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.21132075471698114, "acc_stderr": 0.025125766484827845, "acc_norm": 0.21132075471698114, "acc_norm_stderr": 0.025125766484827845 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2152777777777778, "acc_stderr": 0.03437079344106135, "acc_norm": 0.2152777777777778, "acc_norm_stderr": 0.03437079344106135 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.23, "acc_stderr": 0.042295258468165065, "acc_norm": 0.23, "acc_norm_stderr": 0.042295258468165065 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.23, "acc_stderr": 0.042295258468165065, "acc_norm": 0.23, "acc_norm_stderr": 0.042295258468165065 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.30057803468208094, "acc_stderr": 0.03496101481191181, "acc_norm": 0.30057803468208094, "acc_norm_stderr": 0.03496101481191181 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.21568627450980393, "acc_stderr": 0.04092563958237654, "acc_norm": 0.21568627450980393, "acc_norm_stderr": 0.04092563958237654 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.19, "acc_stderr": 0.039427724440366234, "acc_norm": 0.19, "acc_norm_stderr": 0.039427724440366234 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.1829787234042553, "acc_stderr": 0.025276041000449966, "acc_norm": 0.1829787234042553, "acc_norm_stderr": 0.025276041000449966 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.21929824561403508, "acc_stderr": 0.03892431106518754, "acc_norm": 0.21929824561403508, "acc_norm_stderr": 0.03892431106518754 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.20689655172413793, "acc_stderr": 0.03375672449560554, "acc_norm": 0.20689655172413793, "acc_norm_stderr": 0.03375672449560554 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.25925925925925924, "acc_stderr": 0.022569897074918417, "acc_norm": 0.25925925925925924, "acc_norm_stderr": 0.022569897074918417 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.15079365079365079, "acc_stderr": 0.03200686497287392, "acc_norm": 0.15079365079365079, "acc_norm_stderr": 0.03200686497287392 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.3161290322580645, "acc_stderr": 0.02645087448904277, "acc_norm": 0.3161290322580645, "acc_norm_stderr": 0.02645087448904277 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.26108374384236455, "acc_stderr": 0.030903796952114468, "acc_norm": 0.26108374384236455, "acc_norm_stderr": 0.030903796952114468 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.17, "acc_stderr": 0.0377525168068637, "acc_norm": 0.17, "acc_norm_stderr": 0.0377525168068637 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.2545454545454545, "acc_stderr": 0.03401506715249039, "acc_norm": 0.2545454545454545, "acc_norm_stderr": 0.03401506715249039 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.3383838383838384, "acc_stderr": 0.03371124142626302, "acc_norm": 0.3383838383838384, "acc_norm_stderr": 0.03371124142626302 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.33678756476683935, "acc_stderr": 0.03410780251836184, "acc_norm": 0.33678756476683935, "acc_norm_stderr": 0.03410780251836184 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.34102564102564104, "acc_stderr": 0.02403548967633507, "acc_norm": 0.34102564102564104, "acc_norm_stderr": 0.02403548967633507 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.26296296296296295, "acc_stderr": 0.026842057873833706, "acc_norm": 0.26296296296296295, "acc_norm_stderr": 0.026842057873833706 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.3445378151260504, "acc_stderr": 0.030868682604121633, "acc_norm": 0.3445378151260504, "acc_norm_stderr": 0.030868682604121633 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33774834437086093, "acc_stderr": 0.03861557546255169, "acc_norm": 0.33774834437086093, "acc_norm_stderr": 0.03861557546255169 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.23853211009174313, "acc_stderr": 0.01827257581023187, "acc_norm": 0.23853211009174313, "acc_norm_stderr": 0.01827257581023187 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4722222222222222, "acc_stderr": 0.0340470532865388, "acc_norm": 0.4722222222222222, "acc_norm_stderr": 0.0340470532865388 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.24509803921568626, "acc_stderr": 0.030190282453501947, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.030190282453501947 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.2489451476793249, "acc_stderr": 0.028146970599422644, "acc_norm": 0.2489451476793249, "acc_norm_stderr": 0.028146970599422644 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.21076233183856502, "acc_stderr": 0.027373095500540193, "acc_norm": 0.21076233183856502, "acc_norm_stderr": 0.027373095500540193 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.25190839694656486, "acc_stderr": 0.03807387116306086, "acc_norm": 0.25190839694656486, "acc_norm_stderr": 0.03807387116306086 }, "harness|hendrycksTest-international_law|5": { "acc": 0.24793388429752067, "acc_stderr": 0.03941897526516303, "acc_norm": 0.24793388429752067, "acc_norm_stderr": 0.03941897526516303 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.18518518518518517, "acc_stderr": 0.03755265865037181, "acc_norm": 0.18518518518518517, "acc_norm_stderr": 0.03755265865037181 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.2331288343558282, "acc_stderr": 0.033220157957767414, "acc_norm": 0.2331288343558282, "acc_norm_stderr": 0.033220157957767414 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.1875, "acc_stderr": 0.0370468111477387, "acc_norm": 0.1875, "acc_norm_stderr": 0.0370468111477387 }, "harness|hendrycksTest-management|5": { "acc": 0.22330097087378642, "acc_stderr": 0.04123553189891431, "acc_norm": 0.22330097087378642, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.19658119658119658, "acc_stderr": 0.02603538609895129, "acc_norm": 0.19658119658119658, "acc_norm_stderr": 0.02603538609895129 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.2835249042145594, "acc_stderr": 0.01611731816683228, "acc_norm": 0.2835249042145594, "acc_norm_stderr": 0.01611731816683228 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.24855491329479767, "acc_stderr": 0.023267528432100174, "acc_norm": 0.24855491329479767, "acc_norm_stderr": 0.023267528432100174 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.24134078212290502, "acc_stderr": 0.014310999547961438, "acc_norm": 0.24134078212290502, "acc_norm_stderr": 0.014310999547961438 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.22549019607843138, "acc_stderr": 0.023929155517351298, "acc_norm": 0.22549019607843138, "acc_norm_stderr": 0.023929155517351298 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.2990353697749196, "acc_stderr": 0.026003301117885135, "acc_norm": 0.2990353697749196, "acc_norm_stderr": 0.026003301117885135 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.24691358024691357, "acc_stderr": 0.02399350170904211, "acc_norm": 0.24691358024691357, "acc_norm_stderr": 0.02399350170904211 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2553191489361702, "acc_stderr": 0.02601199293090201, "acc_norm": 0.2553191489361702, "acc_norm_stderr": 0.02601199293090201 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.24511082138200782, "acc_stderr": 0.010986307870045517, "acc_norm": 0.24511082138200782, "acc_norm_stderr": 0.010986307870045517 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4117647058823529, "acc_stderr": 0.029896163033125478, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.029896163033125478 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.2549019607843137, "acc_stderr": 0.017630827375148383, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.017630827375148383 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.2, "acc_stderr": 0.03831305140884603, "acc_norm": 0.2, "acc_norm_stderr": 0.03831305140884603 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.23673469387755103, "acc_stderr": 0.02721283588407316, "acc_norm": 0.23673469387755103, "acc_norm_stderr": 0.02721283588407316 }, "harness|hendrycksTest-sociology|5": { "acc": 0.23880597014925373, "acc_stderr": 0.030147775935409224, "acc_norm": 0.23880597014925373, "acc_norm_stderr": 0.030147775935409224 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.26, "acc_stderr": 0.04408440022768079, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-virology|5": { "acc": 0.25301204819277107, "acc_stderr": 0.033844291552331346, "acc_norm": 0.25301204819277107, "acc_norm_stderr": 0.033844291552331346 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.21052631578947367, "acc_stderr": 0.0312678171466318, "acc_norm": 0.21052631578947367, "acc_norm_stderr": 0.0312678171466318 }, "harness|truthfulqa:mc|0": { "mc1": 0.2741738066095471, "mc1_stderr": 0.015616518497219376, "mc2": 0.4726841055154348, "mc2_stderr": 0.015727848850119193 }, "harness|winogrande|5": { "acc": 0.5430149960536701, "acc_stderr": 0.01400038676159829 }, "harness|gsm8k|5": { "acc": 0.0, "acc_stderr": 0.0 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Felladrin__Llama-68M-Chat-v1
[ "region:us" ]
2024-01-14T17:27:02+00:00
{"pretty_name": "Evaluation run of Felladrin/Llama-68M-Chat-v1", "dataset_summary": "Dataset automatically created during the evaluation run of model [Felladrin/Llama-68M-Chat-v1](https://huggingface.co/Felladrin/Llama-68M-Chat-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Felladrin__Llama-68M-Chat-v1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T17:25:12.605913](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Llama-68M-Chat-v1/blob/main/results_2024-01-14T17-25-12.605913.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.2518558528274769,\n \"acc_stderr\": 0.030387282193610175,\n \"acc_norm\": 0.25203959947439164,\n \"acc_norm_stderr\": 0.031196164528136557,\n \"mc1\": 0.2741738066095471,\n \"mc1_stderr\": 0.015616518497219376,\n \"mc2\": 0.4726841055154348,\n \"mc2_stderr\": 0.015727848850119193\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.1885665529010239,\n \"acc_stderr\": 0.011430897647675815,\n \"acc_norm\": 0.23293515358361774,\n \"acc_norm_stderr\": 0.012352507042617405\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.27693686516630156,\n \"acc_stderr\": 0.004465704810893541,\n \"acc_norm\": 0.28271260705038836,\n \"acc_norm_stderr\": 0.004493975527386726\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.04461960433384741,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.04461960433384741\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.22962962962962963,\n \"acc_stderr\": 0.03633384414073461,\n \"acc_norm\": 0.22962962962962963,\n \"acc_norm_stderr\": 0.03633384414073461\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.17763157894736842,\n \"acc_stderr\": 0.031103182383123398,\n \"acc_norm\": 0.17763157894736842,\n \"acc_norm_stderr\": 0.031103182383123398\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.17,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.17,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.21132075471698114,\n \"acc_stderr\": 0.025125766484827845,\n \"acc_norm\": 0.21132075471698114,\n \"acc_norm_stderr\": 0.025125766484827845\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2152777777777778,\n \"acc_stderr\": 0.03437079344106135,\n \"acc_norm\": 0.2152777777777778,\n \"acc_norm_stderr\": 0.03437079344106135\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.042295258468165065,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.042295258468165065\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.042295258468165065,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.042295258468165065\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.30057803468208094,\n \"acc_stderr\": 0.03496101481191181,\n \"acc_norm\": 0.30057803468208094,\n \"acc_norm_stderr\": 0.03496101481191181\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.21568627450980393,\n \"acc_stderr\": 0.04092563958237654,\n \"acc_norm\": 0.21568627450980393,\n \"acc_norm_stderr\": 0.04092563958237654\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.1829787234042553,\n \"acc_stderr\": 0.025276041000449966,\n \"acc_norm\": 0.1829787234042553,\n \"acc_norm_stderr\": 0.025276041000449966\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.21929824561403508,\n \"acc_stderr\": 0.03892431106518754,\n \"acc_norm\": 0.21929824561403508,\n \"acc_norm_stderr\": 0.03892431106518754\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.20689655172413793,\n \"acc_stderr\": 0.03375672449560554,\n \"acc_norm\": 0.20689655172413793,\n \"acc_norm_stderr\": 0.03375672449560554\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.25925925925925924,\n \"acc_stderr\": 0.022569897074918417,\n \"acc_norm\": 0.25925925925925924,\n \"acc_norm_stderr\": 0.022569897074918417\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.15079365079365079,\n \"acc_stderr\": 0.03200686497287392,\n \"acc_norm\": 0.15079365079365079,\n \"acc_norm_stderr\": 0.03200686497287392\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.3161290322580645,\n \"acc_stderr\": 0.02645087448904277,\n \"acc_norm\": 0.3161290322580645,\n \"acc_norm_stderr\": 0.02645087448904277\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.26108374384236455,\n \"acc_stderr\": 0.030903796952114468,\n \"acc_norm\": 0.26108374384236455,\n \"acc_norm_stderr\": 0.030903796952114468\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.17,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.17,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.2545454545454545,\n \"acc_stderr\": 0.03401506715249039,\n \"acc_norm\": 0.2545454545454545,\n \"acc_norm_stderr\": 0.03401506715249039\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.3383838383838384,\n \"acc_stderr\": 0.03371124142626302,\n \"acc_norm\": 0.3383838383838384,\n \"acc_norm_stderr\": 0.03371124142626302\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.33678756476683935,\n \"acc_stderr\": 0.03410780251836184,\n \"acc_norm\": 0.33678756476683935,\n \"acc_norm_stderr\": 0.03410780251836184\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.34102564102564104,\n \"acc_stderr\": 0.02403548967633507,\n \"acc_norm\": 0.34102564102564104,\n \"acc_norm_stderr\": 0.02403548967633507\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.26296296296296295,\n \"acc_stderr\": 0.026842057873833706,\n \"acc_norm\": 0.26296296296296295,\n \"acc_norm_stderr\": 0.026842057873833706\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.3445378151260504,\n \"acc_stderr\": 0.030868682604121633,\n \"acc_norm\": 0.3445378151260504,\n \"acc_norm_stderr\": 0.030868682604121633\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.03861557546255169,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.03861557546255169\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.23853211009174313,\n \"acc_stderr\": 0.01827257581023187,\n \"acc_norm\": 0.23853211009174313,\n \"acc_norm_stderr\": 0.01827257581023187\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4722222222222222,\n \"acc_stderr\": 0.0340470532865388,\n \"acc_norm\": 0.4722222222222222,\n \"acc_norm_stderr\": 0.0340470532865388\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.030190282453501947,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.030190282453501947\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.2489451476793249,\n \"acc_stderr\": 0.028146970599422644,\n \"acc_norm\": 0.2489451476793249,\n \"acc_norm_stderr\": 0.028146970599422644\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.21076233183856502,\n \"acc_stderr\": 0.027373095500540193,\n \"acc_norm\": 0.21076233183856502,\n \"acc_norm_stderr\": 0.027373095500540193\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.25190839694656486,\n \"acc_stderr\": 0.03807387116306086,\n \"acc_norm\": 0.25190839694656486,\n \"acc_norm_stderr\": 0.03807387116306086\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.24793388429752067,\n \"acc_stderr\": 0.03941897526516303,\n \"acc_norm\": 0.24793388429752067,\n \"acc_norm_stderr\": 0.03941897526516303\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.18518518518518517,\n \"acc_stderr\": 0.03755265865037181,\n \"acc_norm\": 0.18518518518518517,\n \"acc_norm_stderr\": 0.03755265865037181\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.2331288343558282,\n \"acc_stderr\": 0.033220157957767414,\n \"acc_norm\": 0.2331288343558282,\n \"acc_norm_stderr\": 0.033220157957767414\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.1875,\n \"acc_stderr\": 0.0370468111477387,\n \"acc_norm\": 0.1875,\n \"acc_norm_stderr\": 0.0370468111477387\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.22330097087378642,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.22330097087378642,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.19658119658119658,\n \"acc_stderr\": 0.02603538609895129,\n \"acc_norm\": 0.19658119658119658,\n \"acc_norm_stderr\": 0.02603538609895129\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.2835249042145594,\n \"acc_stderr\": 0.01611731816683228,\n \"acc_norm\": 0.2835249042145594,\n \"acc_norm_stderr\": 0.01611731816683228\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.24855491329479767,\n \"acc_stderr\": 0.023267528432100174,\n \"acc_norm\": 0.24855491329479767,\n \"acc_norm_stderr\": 0.023267528432100174\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.24134078212290502,\n \"acc_stderr\": 0.014310999547961438,\n \"acc_norm\": 0.24134078212290502,\n \"acc_norm_stderr\": 0.014310999547961438\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.023929155517351298,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.023929155517351298\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.2990353697749196,\n \"acc_stderr\": 0.026003301117885135,\n \"acc_norm\": 0.2990353697749196,\n \"acc_norm_stderr\": 0.026003301117885135\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.24691358024691357,\n \"acc_stderr\": 0.02399350170904211,\n \"acc_norm\": 0.24691358024691357,\n \"acc_norm_stderr\": 0.02399350170904211\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2553191489361702,\n \"acc_stderr\": 0.02601199293090201,\n \"acc_norm\": 0.2553191489361702,\n \"acc_norm_stderr\": 0.02601199293090201\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.24511082138200782,\n \"acc_stderr\": 0.010986307870045517,\n \"acc_norm\": 0.24511082138200782,\n \"acc_norm_stderr\": 0.010986307870045517\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.029896163033125478,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.029896163033125478\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.017630827375148383,\n \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.017630827375148383\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.03831305140884603,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.03831305140884603\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.23673469387755103,\n \"acc_stderr\": 0.02721283588407316,\n \"acc_norm\": 0.23673469387755103,\n \"acc_norm_stderr\": 0.02721283588407316\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.23880597014925373,\n \"acc_stderr\": 0.030147775935409224,\n \"acc_norm\": 0.23880597014925373,\n \"acc_norm_stderr\": 0.030147775935409224\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768079,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768079\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.25301204819277107,\n \"acc_stderr\": 0.033844291552331346,\n \"acc_norm\": 0.25301204819277107,\n \"acc_norm_stderr\": 0.033844291552331346\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.21052631578947367,\n \"acc_stderr\": 0.0312678171466318,\n \"acc_norm\": 0.21052631578947367,\n \"acc_norm_stderr\": 0.0312678171466318\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2741738066095471,\n \"mc1_stderr\": 0.015616518497219376,\n \"mc2\": 0.4726841055154348,\n \"mc2_stderr\": 0.015727848850119193\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5430149960536701,\n \"acc_stderr\": 0.01400038676159829\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n }\n}\n```", "repo_url": "https://huggingface.co/Felladrin/Llama-68M-Chat-v1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-25-12.605913.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["**/details_harness|winogrande|5_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T17-25-12.605913.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T17_25_12.605913", "path": ["results_2024-01-14T17-25-12.605913.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T17-25-12.605913.parquet"]}]}]}
2024-01-14T17:27:23+00:00
be9393c81659b176efda35dfa5291d38920ff500
# Dataset Card for Evaluation run of AA051611/limb <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [AA051611/limb](https://huggingface.co/AA051611/limb) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_AA051611__limb", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T17:31:13.154923](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051611__limb/blob/main/results_2024-01-14T17-31-13.154923.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7173948628205344, "acc_stderr": 0.029795425890422344, "acc_norm": 0.7228232912878558, "acc_norm_stderr": 0.030359217292974663, "mc1": 0.3990208078335373, "mc1_stderr": 0.017142825728496767, "mc2": 0.5836669238966421, "mc2_stderr": 0.01521191071011394 }, "harness|arc:challenge|25": { "acc": 0.5921501706484642, "acc_stderr": 0.014361097288449712, "acc_norm": 0.6348122866894198, "acc_norm_stderr": 0.0140702655192688 }, "harness|hellaswag|10": { "acc": 0.6357299342760406, "acc_stderr": 0.0048024139199326675, "acc_norm": 0.8307110137422824, "acc_norm_stderr": 0.0037424055874098806 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6814814814814815, "acc_stderr": 0.04024778401977108, "acc_norm": 0.6814814814814815, "acc_norm_stderr": 0.04024778401977108 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8157894736842105, "acc_stderr": 0.0315469804508223, "acc_norm": 0.8157894736842105, "acc_norm_stderr": 0.0315469804508223 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.77, "acc_stderr": 0.04229525846816505, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816505 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7849056603773585, "acc_stderr": 0.025288394502891363, "acc_norm": 0.7849056603773585, "acc_norm_stderr": 0.025288394502891363 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8055555555555556, "acc_stderr": 0.03309615177059007, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.03309615177059007 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.45, "acc_stderr": 0.04999999999999999, "acc_norm": 0.45, "acc_norm_stderr": 0.04999999999999999 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6936416184971098, "acc_stderr": 0.0351494255126744, "acc_norm": 0.6936416184971098, "acc_norm_stderr": 0.0351494255126744 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.43137254901960786, "acc_stderr": 0.04928099597287533, "acc_norm": 0.43137254901960786, "acc_norm_stderr": 0.04928099597287533 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.81, "acc_stderr": 0.03942772444036624, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036624 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.723404255319149, "acc_stderr": 0.029241883869628813, "acc_norm": 0.723404255319149, "acc_norm_stderr": 0.029241883869628813 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5964912280701754, "acc_stderr": 0.04615186962583707, "acc_norm": 0.5964912280701754, "acc_norm_stderr": 0.04615186962583707 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7034482758620689, "acc_stderr": 0.03806142687309992, "acc_norm": 0.7034482758620689, "acc_norm_stderr": 0.03806142687309992 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.626984126984127, "acc_stderr": 0.02490699045899257, "acc_norm": 0.626984126984127, "acc_norm_stderr": 0.02490699045899257 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5, "acc_stderr": 0.04472135954999579, "acc_norm": 0.5, "acc_norm_stderr": 0.04472135954999579 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8451612903225807, "acc_stderr": 0.020579287326583227, "acc_norm": 0.8451612903225807, "acc_norm_stderr": 0.020579287326583227 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5517241379310345, "acc_stderr": 0.034991131376767445, "acc_norm": 0.5517241379310345, "acc_norm_stderr": 0.034991131376767445 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.78, "acc_stderr": 0.04163331998932261, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932261 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8363636363636363, "acc_stderr": 0.02888787239548795, "acc_norm": 0.8363636363636363, "acc_norm_stderr": 0.02888787239548795 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9141414141414141, "acc_stderr": 0.019960225563172885, "acc_norm": 0.9141414141414141, "acc_norm_stderr": 0.019960225563172885 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9326424870466321, "acc_stderr": 0.018088393839078898, "acc_norm": 0.9326424870466321, "acc_norm_stderr": 0.018088393839078898 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.764102564102564, "acc_stderr": 0.021525965407408726, "acc_norm": 0.764102564102564, "acc_norm_stderr": 0.021525965407408726 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.4111111111111111, "acc_stderr": 0.029999923508706682, "acc_norm": 0.4111111111111111, "acc_norm_stderr": 0.029999923508706682 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7899159663865546, "acc_stderr": 0.026461398717471874, "acc_norm": 0.7899159663865546, "acc_norm_stderr": 0.026461398717471874 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.45695364238410596, "acc_stderr": 0.04067325174247443, "acc_norm": 0.45695364238410596, "acc_norm_stderr": 0.04067325174247443 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8880733944954129, "acc_stderr": 0.013517352714958792, "acc_norm": 0.8880733944954129, "acc_norm_stderr": 0.013517352714958792 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6342592592592593, "acc_stderr": 0.03284738857647206, "acc_norm": 0.6342592592592593, "acc_norm_stderr": 0.03284738857647206 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8921568627450981, "acc_stderr": 0.021770522281368394, "acc_norm": 0.8921568627450981, "acc_norm_stderr": 0.021770522281368394 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8818565400843882, "acc_stderr": 0.02101105265987846, "acc_norm": 0.8818565400843882, "acc_norm_stderr": 0.02101105265987846 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7399103139013453, "acc_stderr": 0.029442495585857476, "acc_norm": 0.7399103139013453, "acc_norm_stderr": 0.029442495585857476 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8396946564885496, "acc_stderr": 0.032178294207446306, "acc_norm": 0.8396946564885496, "acc_norm_stderr": 0.032178294207446306 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8842975206611571, "acc_stderr": 0.0291998024556228, "acc_norm": 0.8842975206611571, "acc_norm_stderr": 0.0291998024556228 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8425925925925926, "acc_stderr": 0.03520703990517963, "acc_norm": 0.8425925925925926, "acc_norm_stderr": 0.03520703990517963 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8098159509202454, "acc_stderr": 0.03083349114628123, "acc_norm": 0.8098159509202454, "acc_norm_stderr": 0.03083349114628123 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5446428571428571, "acc_stderr": 0.04726835553719098, "acc_norm": 0.5446428571428571, "acc_norm_stderr": 0.04726835553719098 }, "harness|hendrycksTest-management|5": { "acc": 0.8737864077669902, "acc_stderr": 0.03288180278808628, "acc_norm": 0.8737864077669902, "acc_norm_stderr": 0.03288180278808628 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9188034188034188, "acc_stderr": 0.017893784904018543, "acc_norm": 0.9188034188034188, "acc_norm_stderr": 0.017893784904018543 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.85, "acc_stderr": 0.035887028128263714, "acc_norm": 0.85, "acc_norm_stderr": 0.035887028128263714 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.896551724137931, "acc_stderr": 0.0108904525446915, "acc_norm": 0.896551724137931, "acc_norm_stderr": 0.0108904525446915 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7514450867052023, "acc_stderr": 0.02326752843210017, "acc_norm": 0.7514450867052023, "acc_norm_stderr": 0.02326752843210017 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.42569832402234636, "acc_stderr": 0.016536829648997112, "acc_norm": 0.42569832402234636, "acc_norm_stderr": 0.016536829648997112 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8169934640522876, "acc_stderr": 0.022140767512880973, "acc_norm": 0.8169934640522876, "acc_norm_stderr": 0.022140767512880973 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7813504823151125, "acc_stderr": 0.02347558141786111, "acc_norm": 0.7813504823151125, "acc_norm_stderr": 0.02347558141786111 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8117283950617284, "acc_stderr": 0.02175186606081587, "acc_norm": 0.8117283950617284, "acc_norm_stderr": 0.02175186606081587 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5283687943262412, "acc_stderr": 0.029779450957303062, "acc_norm": 0.5283687943262412, "acc_norm_stderr": 0.029779450957303062 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.529986962190352, "acc_stderr": 0.012747248967079058, "acc_norm": 0.529986962190352, "acc_norm_stderr": 0.012747248967079058 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7647058823529411, "acc_stderr": 0.025767252010855946, "acc_norm": 0.7647058823529411, "acc_norm_stderr": 0.025767252010855946 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.7630718954248366, "acc_stderr": 0.01720166216978978, "acc_norm": 0.7630718954248366, "acc_norm_stderr": 0.01720166216978978 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7363636363636363, "acc_stderr": 0.04220224692971987, "acc_norm": 0.7363636363636363, "acc_norm_stderr": 0.04220224692971987 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7836734693877551, "acc_stderr": 0.026358916334904028, "acc_norm": 0.7836734693877551, "acc_norm_stderr": 0.026358916334904028 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8706467661691543, "acc_stderr": 0.023729830881018526, "acc_norm": 0.8706467661691543, "acc_norm_stderr": 0.023729830881018526 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.95, "acc_stderr": 0.021904291355759033, "acc_norm": 0.95, "acc_norm_stderr": 0.021904291355759033 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587953, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8771929824561403, "acc_stderr": 0.02517298435015577, "acc_norm": 0.8771929824561403, "acc_norm_stderr": 0.02517298435015577 }, "harness|truthfulqa:mc|0": { "mc1": 0.3990208078335373, "mc1_stderr": 0.017142825728496767, "mc2": 0.5836669238966421, "mc2_stderr": 0.01521191071011394 }, "harness|winogrande|5": { "acc": 0.797947908445146, "acc_stderr": 0.01128501375404745 }, "harness|gsm8k|5": { "acc": 0.55420773313116, "acc_stderr": 0.013691305174506698 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_AA051611__limb
[ "region:us" ]
2024-01-14T17:33:21+00:00
{"pretty_name": "Evaluation run of AA051611/limb", "dataset_summary": "Dataset automatically created during the evaluation run of model [AA051611/limb](https://huggingface.co/AA051611/limb) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_AA051611__limb\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T17:31:13.154923](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051611__limb/blob/main/results_2024-01-14T17-31-13.154923.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7173948628205344,\n \"acc_stderr\": 0.029795425890422344,\n \"acc_norm\": 0.7228232912878558,\n \"acc_norm_stderr\": 0.030359217292974663,\n \"mc1\": 0.3990208078335373,\n \"mc1_stderr\": 0.017142825728496767,\n \"mc2\": 0.5836669238966421,\n \"mc2_stderr\": 0.01521191071011394\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5921501706484642,\n \"acc_stderr\": 0.014361097288449712,\n \"acc_norm\": 0.6348122866894198,\n \"acc_norm_stderr\": 0.0140702655192688\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6357299342760406,\n \"acc_stderr\": 0.0048024139199326675,\n \"acc_norm\": 0.8307110137422824,\n \"acc_norm_stderr\": 0.0037424055874098806\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6814814814814815,\n \"acc_stderr\": 0.04024778401977108,\n \"acc_norm\": 0.6814814814814815,\n \"acc_norm_stderr\": 0.04024778401977108\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8157894736842105,\n \"acc_stderr\": 0.0315469804508223,\n \"acc_norm\": 0.8157894736842105,\n \"acc_norm_stderr\": 0.0315469804508223\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7849056603773585,\n \"acc_stderr\": 0.025288394502891363,\n \"acc_norm\": 0.7849056603773585,\n \"acc_norm_stderr\": 0.025288394502891363\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.03309615177059007,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.03309615177059007\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.04999999999999999,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.04999999999999999\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6936416184971098,\n \"acc_stderr\": 0.0351494255126744,\n \"acc_norm\": 0.6936416184971098,\n \"acc_norm_stderr\": 0.0351494255126744\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.43137254901960786,\n \"acc_stderr\": 0.04928099597287533,\n \"acc_norm\": 0.43137254901960786,\n \"acc_norm_stderr\": 0.04928099597287533\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036624,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036624\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.723404255319149,\n \"acc_stderr\": 0.029241883869628813,\n \"acc_norm\": 0.723404255319149,\n \"acc_norm_stderr\": 0.029241883869628813\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5964912280701754,\n \"acc_stderr\": 0.04615186962583707,\n \"acc_norm\": 0.5964912280701754,\n \"acc_norm_stderr\": 0.04615186962583707\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7034482758620689,\n \"acc_stderr\": 0.03806142687309992,\n \"acc_norm\": 0.7034482758620689,\n \"acc_norm_stderr\": 0.03806142687309992\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.626984126984127,\n \"acc_stderr\": 0.02490699045899257,\n \"acc_norm\": 0.626984126984127,\n \"acc_norm_stderr\": 0.02490699045899257\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.04472135954999579,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.04472135954999579\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8451612903225807,\n \"acc_stderr\": 0.020579287326583227,\n \"acc_norm\": 0.8451612903225807,\n \"acc_norm_stderr\": 0.020579287326583227\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.034991131376767445,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.034991131376767445\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932261,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932261\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8363636363636363,\n \"acc_stderr\": 0.02888787239548795,\n \"acc_norm\": 0.8363636363636363,\n \"acc_norm_stderr\": 0.02888787239548795\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9141414141414141,\n \"acc_stderr\": 0.019960225563172885,\n \"acc_norm\": 0.9141414141414141,\n \"acc_norm_stderr\": 0.019960225563172885\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9326424870466321,\n \"acc_stderr\": 0.018088393839078898,\n \"acc_norm\": 0.9326424870466321,\n \"acc_norm_stderr\": 0.018088393839078898\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.764102564102564,\n \"acc_stderr\": 0.021525965407408726,\n \"acc_norm\": 0.764102564102564,\n \"acc_norm_stderr\": 0.021525965407408726\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.4111111111111111,\n \"acc_stderr\": 0.029999923508706682,\n \"acc_norm\": 0.4111111111111111,\n \"acc_norm_stderr\": 0.029999923508706682\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7899159663865546,\n \"acc_stderr\": 0.026461398717471874,\n \"acc_norm\": 0.7899159663865546,\n \"acc_norm_stderr\": 0.026461398717471874\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.45695364238410596,\n \"acc_stderr\": 0.04067325174247443,\n \"acc_norm\": 0.45695364238410596,\n \"acc_norm_stderr\": 0.04067325174247443\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8880733944954129,\n \"acc_stderr\": 0.013517352714958792,\n \"acc_norm\": 0.8880733944954129,\n \"acc_norm_stderr\": 0.013517352714958792\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6342592592592593,\n \"acc_stderr\": 0.03284738857647206,\n \"acc_norm\": 0.6342592592592593,\n \"acc_norm_stderr\": 0.03284738857647206\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8921568627450981,\n \"acc_stderr\": 0.021770522281368394,\n \"acc_norm\": 0.8921568627450981,\n \"acc_norm_stderr\": 0.021770522281368394\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8818565400843882,\n \"acc_stderr\": 0.02101105265987846,\n \"acc_norm\": 0.8818565400843882,\n \"acc_norm_stderr\": 0.02101105265987846\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7399103139013453,\n \"acc_stderr\": 0.029442495585857476,\n \"acc_norm\": 0.7399103139013453,\n \"acc_norm_stderr\": 0.029442495585857476\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8396946564885496,\n \"acc_stderr\": 0.032178294207446306,\n \"acc_norm\": 0.8396946564885496,\n \"acc_norm_stderr\": 0.032178294207446306\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8842975206611571,\n \"acc_stderr\": 0.0291998024556228,\n \"acc_norm\": 0.8842975206611571,\n \"acc_norm_stderr\": 0.0291998024556228\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8425925925925926,\n \"acc_stderr\": 0.03520703990517963,\n \"acc_norm\": 0.8425925925925926,\n \"acc_norm_stderr\": 0.03520703990517963\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8098159509202454,\n \"acc_stderr\": 0.03083349114628123,\n \"acc_norm\": 0.8098159509202454,\n \"acc_norm_stderr\": 0.03083349114628123\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5446428571428571,\n \"acc_stderr\": 0.04726835553719098,\n \"acc_norm\": 0.5446428571428571,\n \"acc_norm_stderr\": 0.04726835553719098\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8737864077669902,\n \"acc_stderr\": 0.03288180278808628,\n \"acc_norm\": 0.8737864077669902,\n \"acc_norm_stderr\": 0.03288180278808628\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9188034188034188,\n \"acc_stderr\": 0.017893784904018543,\n \"acc_norm\": 0.9188034188034188,\n \"acc_norm_stderr\": 0.017893784904018543\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.035887028128263714,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.035887028128263714\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.896551724137931,\n \"acc_stderr\": 0.0108904525446915,\n \"acc_norm\": 0.896551724137931,\n \"acc_norm_stderr\": 0.0108904525446915\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7514450867052023,\n \"acc_stderr\": 0.02326752843210017,\n \"acc_norm\": 0.7514450867052023,\n \"acc_norm_stderr\": 0.02326752843210017\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.42569832402234636,\n \"acc_stderr\": 0.016536829648997112,\n \"acc_norm\": 0.42569832402234636,\n \"acc_norm_stderr\": 0.016536829648997112\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8169934640522876,\n \"acc_stderr\": 0.022140767512880973,\n \"acc_norm\": 0.8169934640522876,\n \"acc_norm_stderr\": 0.022140767512880973\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7813504823151125,\n \"acc_stderr\": 0.02347558141786111,\n \"acc_norm\": 0.7813504823151125,\n \"acc_norm_stderr\": 0.02347558141786111\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8117283950617284,\n \"acc_stderr\": 0.02175186606081587,\n \"acc_norm\": 0.8117283950617284,\n \"acc_norm_stderr\": 0.02175186606081587\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5283687943262412,\n \"acc_stderr\": 0.029779450957303062,\n \"acc_norm\": 0.5283687943262412,\n \"acc_norm_stderr\": 0.029779450957303062\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.529986962190352,\n \"acc_stderr\": 0.012747248967079058,\n \"acc_norm\": 0.529986962190352,\n \"acc_norm_stderr\": 0.012747248967079058\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.025767252010855946,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.025767252010855946\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.7630718954248366,\n \"acc_stderr\": 0.01720166216978978,\n \"acc_norm\": 0.7630718954248366,\n \"acc_norm_stderr\": 0.01720166216978978\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7363636363636363,\n \"acc_stderr\": 0.04220224692971987,\n \"acc_norm\": 0.7363636363636363,\n \"acc_norm_stderr\": 0.04220224692971987\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7836734693877551,\n \"acc_stderr\": 0.026358916334904028,\n \"acc_norm\": 0.7836734693877551,\n \"acc_norm_stderr\": 0.026358916334904028\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8706467661691543,\n \"acc_stderr\": 0.023729830881018526,\n \"acc_norm\": 0.8706467661691543,\n \"acc_norm_stderr\": 0.023729830881018526\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.95,\n \"acc_stderr\": 0.021904291355759033,\n \"acc_norm\": 0.95,\n \"acc_norm_stderr\": 0.021904291355759033\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8771929824561403,\n \"acc_stderr\": 0.02517298435015577,\n \"acc_norm\": 0.8771929824561403,\n \"acc_norm_stderr\": 0.02517298435015577\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3990208078335373,\n \"mc1_stderr\": 0.017142825728496767,\n \"mc2\": 0.5836669238966421,\n \"mc2_stderr\": 0.01521191071011394\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.797947908445146,\n \"acc_stderr\": 0.01128501375404745\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.55420773313116,\n \"acc_stderr\": 0.013691305174506698\n }\n}\n```", "repo_url": "https://huggingface.co/AA051611/limb", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-31-13.154923.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["**/details_harness|winogrande|5_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T17-31-13.154923.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T17_31_13.154923", "path": ["results_2024-01-14T17-31-13.154923.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T17-31-13.154923.parquet"]}]}]}
2024-01-14T17:33:43+00:00
c1f99028e9de05cfae47d6ae5865ebd7b2c742c0
rjds0207/pabloalboran
[ "region:us" ]
2024-01-14T17:36:48+00:00
{}
2024-01-14T17:37:47+00:00
460e7a581b5b8d02abc21e39d09c0cb8103c837b
# Promoter Sequences and Corresponding Gene Expression data for Maize NAM lines The data in this dataset has the promoter sequences and the corresponding gene expression data as TPM values for **26 Maize NAM lines** and has been used for the finetuning step *(for the downstream task of gene expression prediction)* of [`Florabert`](https://huggingface.co/Gurveer05/FloraBERT). The data has been split into train, test and eval data (70-20-10 split). In all, there are ~ 7,00,000 entries across the files. The steps followed to obtain this data are available in this [`Github Repository`](https://github.com/gurveervirk/florabert). The labels correspond to the TPM values for the various tissues in the order: [ 'tassel', 'base', 'anther', 'middle', 'ear', 'shoot', 'tip', 'root' ]. The sequences that have been used are the promoter sequences for genes of Maize NAM lines that have at least 1 TPM value for a tissue > 1.
Gurveer05/maize-nam-gene-expression-data
[ "size_categories:100K<n<1M", "biology", "DNA", "Gene Expression", "region:us" ]
2024-01-14T17:37:20+00:00
{"size_categories": ["100K<n<1M"], "tags": ["biology", "DNA", "Gene Expression"]}
2024-01-14T18:19:05+00:00
2288120a7c13ff4ab40cf6de8e5a2e237c723f3d
# Dataset Card for Evaluation run of huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down](https://huggingface.co/huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_huangyt__Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T17:36:45.221009](https://huggingface.co/datasets/open-llm-leaderboard/details_huangyt__Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down/blob/main/results_2024-01-14T17-36-45.221009.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6355178040599482, "acc_stderr": 0.03241610229663876, "acc_norm": 0.641571442422577, "acc_norm_stderr": 0.033065020971592085, "mc1": 0.3047735618115055, "mc1_stderr": 0.016114124156882452, "mc2": 0.45435317672164416, "mc2_stderr": 0.014528686611193308 }, "harness|arc:challenge|25": { "acc": 0.5665529010238908, "acc_stderr": 0.014481376224558902, "acc_norm": 0.6126279863481229, "acc_norm_stderr": 0.014235872487909872 }, "harness|hellaswag|10": { "acc": 0.6271659032065325, "acc_stderr": 0.004825702533920412, "acc_norm": 0.8319059948217487, "acc_norm_stderr": 0.0037318549570309373 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6148148148148148, "acc_stderr": 0.04203921040156279, "acc_norm": 0.6148148148148148, "acc_norm_stderr": 0.04203921040156279 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6842105263157895, "acc_stderr": 0.0378272898086547, "acc_norm": 0.6842105263157895, "acc_norm_stderr": 0.0378272898086547 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6792452830188679, "acc_stderr": 0.02872750295788027, "acc_norm": 0.6792452830188679, "acc_norm_stderr": 0.02872750295788027 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7013888888888888, "acc_stderr": 0.03827052357950756, "acc_norm": 0.7013888888888888, "acc_norm_stderr": 0.03827052357950756 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.51, "acc_stderr": 0.05024183937956912, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.653179190751445, "acc_stderr": 0.036291466701596636, "acc_norm": 0.653179190751445, "acc_norm_stderr": 0.036291466701596636 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107223, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107223 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.8, "acc_stderr": 0.04020151261036845, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.574468085106383, "acc_stderr": 0.03232146916224468, "acc_norm": 0.574468085106383, "acc_norm_stderr": 0.03232146916224468 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4649122807017544, "acc_stderr": 0.04692008381368909, "acc_norm": 0.4649122807017544, "acc_norm_stderr": 0.04692008381368909 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5379310344827586, "acc_stderr": 0.04154659671707548, "acc_norm": 0.5379310344827586, "acc_norm_stderr": 0.04154659671707548 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.43386243386243384, "acc_stderr": 0.025525034382474884, "acc_norm": 0.43386243386243384, "acc_norm_stderr": 0.025525034382474884 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4603174603174603, "acc_stderr": 0.04458029125470973, "acc_norm": 0.4603174603174603, "acc_norm_stderr": 0.04458029125470973 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7451612903225806, "acc_stderr": 0.024790118459332208, "acc_norm": 0.7451612903225806, "acc_norm_stderr": 0.024790118459332208 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5221674876847291, "acc_stderr": 0.035145285621750094, "acc_norm": 0.5221674876847291, "acc_norm_stderr": 0.035145285621750094 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.65, "acc_stderr": 0.04793724854411019, "acc_norm": 0.65, "acc_norm_stderr": 0.04793724854411019 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7818181818181819, "acc_stderr": 0.03225078108306289, "acc_norm": 0.7818181818181819, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7676767676767676, "acc_stderr": 0.03008862949021749, "acc_norm": 0.7676767676767676, "acc_norm_stderr": 0.03008862949021749 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8601036269430051, "acc_stderr": 0.025033870583015184, "acc_norm": 0.8601036269430051, "acc_norm_stderr": 0.025033870583015184 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6282051282051282, "acc_stderr": 0.024503472557110936, "acc_norm": 0.6282051282051282, "acc_norm_stderr": 0.024503472557110936 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.36666666666666664, "acc_stderr": 0.029381620726465076, "acc_norm": 0.36666666666666664, "acc_norm_stderr": 0.029381620726465076 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6596638655462185, "acc_stderr": 0.030778057422931673, "acc_norm": 0.6596638655462185, "acc_norm_stderr": 0.030778057422931673 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3509933774834437, "acc_stderr": 0.03896981964257375, "acc_norm": 0.3509933774834437, "acc_norm_stderr": 0.03896981964257375 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8348623853211009, "acc_stderr": 0.015919557829976044, "acc_norm": 0.8348623853211009, "acc_norm_stderr": 0.015919557829976044 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5092592592592593, "acc_stderr": 0.034093869469927006, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7843137254901961, "acc_stderr": 0.02886743144984932, "acc_norm": 0.7843137254901961, "acc_norm_stderr": 0.02886743144984932 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7974683544303798, "acc_stderr": 0.026160568246601453, "acc_norm": 0.7974683544303798, "acc_norm_stderr": 0.026160568246601453 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6771300448430493, "acc_stderr": 0.031381476375754995, "acc_norm": 0.6771300448430493, "acc_norm_stderr": 0.031381476375754995 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7709923664122137, "acc_stderr": 0.036853466317118506, "acc_norm": 0.7709923664122137, "acc_norm_stderr": 0.036853466317118506 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7685185185185185, "acc_stderr": 0.04077494709252627, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.04077494709252627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.8349514563106796, "acc_stderr": 0.036756688322331886, "acc_norm": 0.8349514563106796, "acc_norm_stderr": 0.036756688322331886 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8547008547008547, "acc_stderr": 0.023086635086841407, "acc_norm": 0.8547008547008547, "acc_norm_stderr": 0.023086635086841407 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8186462324393359, "acc_stderr": 0.013778693778464085, "acc_norm": 0.8186462324393359, "acc_norm_stderr": 0.013778693778464085 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7341040462427746, "acc_stderr": 0.02378620325550829, "acc_norm": 0.7341040462427746, "acc_norm_stderr": 0.02378620325550829 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.38212290502793295, "acc_stderr": 0.016251139711570762, "acc_norm": 0.38212290502793295, "acc_norm_stderr": 0.016251139711570762 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.761437908496732, "acc_stderr": 0.024404394928087873, "acc_norm": 0.761437908496732, "acc_norm_stderr": 0.024404394928087873 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7170418006430869, "acc_stderr": 0.025583062489984813, "acc_norm": 0.7170418006430869, "acc_norm_stderr": 0.025583062489984813 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7438271604938271, "acc_stderr": 0.024288533637726095, "acc_norm": 0.7438271604938271, "acc_norm_stderr": 0.024288533637726095 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.48936170212765956, "acc_stderr": 0.029820747191422473, "acc_norm": 0.48936170212765956, "acc_norm_stderr": 0.029820747191422473 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.46870925684485004, "acc_stderr": 0.012745204626083143, "acc_norm": 0.46870925684485004, "acc_norm_stderr": 0.012745204626083143 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6801470588235294, "acc_stderr": 0.02833295951403121, "acc_norm": 0.6801470588235294, "acc_norm_stderr": 0.02833295951403121 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6633986928104575, "acc_stderr": 0.019117213911495155, "acc_norm": 0.6633986928104575, "acc_norm_stderr": 0.019117213911495155 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6545454545454545, "acc_stderr": 0.04554619617541054, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.04554619617541054 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.689795918367347, "acc_stderr": 0.029613459872484378, "acc_norm": 0.689795918367347, "acc_norm_stderr": 0.029613459872484378 }, "harness|hendrycksTest-sociology|5": { "acc": 0.835820895522388, "acc_stderr": 0.026193923544454132, "acc_norm": 0.835820895522388, "acc_norm_stderr": 0.026193923544454132 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.88, "acc_stderr": 0.03265986323710905, "acc_norm": 0.88, "acc_norm_stderr": 0.03265986323710905 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699122, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699122 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.02954774168764004, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.02954774168764004 }, "harness|truthfulqa:mc|0": { "mc1": 0.3047735618115055, "mc1_stderr": 0.016114124156882452, "mc2": 0.45435317672164416, "mc2_stderr": 0.014528686611193308 }, "harness|winogrande|5": { "acc": 0.7734806629834254, "acc_stderr": 0.011764149054698332 }, "harness|gsm8k|5": { "acc": 0.3912054586808188, "acc_stderr": 0.0134425024027943 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_huangyt__Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down
[ "region:us" ]
2024-01-14T17:39:04+00:00
{"pretty_name": "Evaluation run of huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down", "dataset_summary": "Dataset automatically created during the evaluation run of model [huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down](https://huggingface.co/huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_huangyt__Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T17:36:45.221009](https://huggingface.co/datasets/open-llm-leaderboard/details_huangyt__Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down/blob/main/results_2024-01-14T17-36-45.221009.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6355178040599482,\n \"acc_stderr\": 0.03241610229663876,\n \"acc_norm\": 0.641571442422577,\n \"acc_norm_stderr\": 0.033065020971592085,\n \"mc1\": 0.3047735618115055,\n \"mc1_stderr\": 0.016114124156882452,\n \"mc2\": 0.45435317672164416,\n \"mc2_stderr\": 0.014528686611193308\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5665529010238908,\n \"acc_stderr\": 0.014481376224558902,\n \"acc_norm\": 0.6126279863481229,\n \"acc_norm_stderr\": 0.014235872487909872\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6271659032065325,\n \"acc_stderr\": 0.004825702533920412,\n \"acc_norm\": 0.8319059948217487,\n \"acc_norm_stderr\": 0.0037318549570309373\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6148148148148148,\n \"acc_stderr\": 0.04203921040156279,\n \"acc_norm\": 0.6148148148148148,\n \"acc_norm_stderr\": 0.04203921040156279\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6842105263157895,\n \"acc_stderr\": 0.0378272898086547,\n \"acc_norm\": 0.6842105263157895,\n \"acc_norm_stderr\": 0.0378272898086547\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6792452830188679,\n \"acc_stderr\": 0.02872750295788027,\n \"acc_norm\": 0.6792452830188679,\n \"acc_norm_stderr\": 0.02872750295788027\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7013888888888888,\n \"acc_stderr\": 0.03827052357950756,\n \"acc_norm\": 0.7013888888888888,\n \"acc_norm_stderr\": 0.03827052357950756\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.653179190751445,\n \"acc_stderr\": 0.036291466701596636,\n \"acc_norm\": 0.653179190751445,\n \"acc_norm_stderr\": 0.036291466701596636\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.574468085106383,\n \"acc_stderr\": 0.03232146916224468,\n \"acc_norm\": 0.574468085106383,\n \"acc_norm_stderr\": 0.03232146916224468\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.04692008381368909,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.04692008381368909\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5379310344827586,\n \"acc_stderr\": 0.04154659671707548,\n \"acc_norm\": 0.5379310344827586,\n \"acc_norm_stderr\": 0.04154659671707548\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.43386243386243384,\n \"acc_stderr\": 0.025525034382474884,\n \"acc_norm\": 0.43386243386243384,\n \"acc_norm_stderr\": 0.025525034382474884\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4603174603174603,\n \"acc_stderr\": 0.04458029125470973,\n \"acc_norm\": 0.4603174603174603,\n \"acc_norm_stderr\": 0.04458029125470973\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7451612903225806,\n \"acc_stderr\": 0.024790118459332208,\n \"acc_norm\": 0.7451612903225806,\n \"acc_norm_stderr\": 0.024790118459332208\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5221674876847291,\n \"acc_stderr\": 0.035145285621750094,\n \"acc_norm\": 0.5221674876847291,\n \"acc_norm_stderr\": 0.035145285621750094\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.04793724854411019,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.04793724854411019\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7818181818181819,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.7818181818181819,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7676767676767676,\n \"acc_stderr\": 0.03008862949021749,\n \"acc_norm\": 0.7676767676767676,\n \"acc_norm_stderr\": 0.03008862949021749\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8601036269430051,\n \"acc_stderr\": 0.025033870583015184,\n \"acc_norm\": 0.8601036269430051,\n \"acc_norm_stderr\": 0.025033870583015184\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6282051282051282,\n \"acc_stderr\": 0.024503472557110936,\n \"acc_norm\": 0.6282051282051282,\n \"acc_norm_stderr\": 0.024503472557110936\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.36666666666666664,\n \"acc_stderr\": 0.029381620726465076,\n \"acc_norm\": 0.36666666666666664,\n \"acc_norm_stderr\": 0.029381620726465076\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6596638655462185,\n \"acc_stderr\": 0.030778057422931673,\n \"acc_norm\": 0.6596638655462185,\n \"acc_norm_stderr\": 0.030778057422931673\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3509933774834437,\n \"acc_stderr\": 0.03896981964257375,\n \"acc_norm\": 0.3509933774834437,\n \"acc_norm_stderr\": 0.03896981964257375\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8348623853211009,\n \"acc_stderr\": 0.015919557829976044,\n \"acc_norm\": 0.8348623853211009,\n \"acc_norm_stderr\": 0.015919557829976044\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5092592592592593,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7843137254901961,\n \"acc_stderr\": 0.02886743144984932,\n \"acc_norm\": 0.7843137254901961,\n \"acc_norm_stderr\": 0.02886743144984932\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601453,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601453\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6771300448430493,\n \"acc_stderr\": 0.031381476375754995,\n \"acc_norm\": 0.6771300448430493,\n \"acc_norm_stderr\": 0.031381476375754995\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8099173553719008,\n \"acc_stderr\": 0.03581796951709282,\n \"acc_norm\": 0.8099173553719008,\n \"acc_norm_stderr\": 0.03581796951709282\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.48214285714285715,\n \"acc_stderr\": 0.047427623612430116,\n \"acc_norm\": 0.48214285714285715,\n \"acc_norm_stderr\": 0.047427623612430116\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8349514563106796,\n \"acc_stderr\": 0.036756688322331886,\n \"acc_norm\": 0.8349514563106796,\n \"acc_norm_stderr\": 0.036756688322331886\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8547008547008547,\n \"acc_stderr\": 0.023086635086841407,\n \"acc_norm\": 0.8547008547008547,\n \"acc_norm_stderr\": 0.023086635086841407\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8186462324393359,\n \"acc_stderr\": 0.013778693778464085,\n \"acc_norm\": 0.8186462324393359,\n \"acc_norm_stderr\": 0.013778693778464085\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7341040462427746,\n \"acc_stderr\": 0.02378620325550829,\n \"acc_norm\": 0.7341040462427746,\n \"acc_norm_stderr\": 0.02378620325550829\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.38212290502793295,\n \"acc_stderr\": 0.016251139711570762,\n \"acc_norm\": 0.38212290502793295,\n \"acc_norm_stderr\": 0.016251139711570762\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.761437908496732,\n \"acc_stderr\": 0.024404394928087873,\n \"acc_norm\": 0.761437908496732,\n \"acc_norm_stderr\": 0.024404394928087873\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7170418006430869,\n \"acc_stderr\": 0.025583062489984813,\n \"acc_norm\": 0.7170418006430869,\n \"acc_norm_stderr\": 0.025583062489984813\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7438271604938271,\n \"acc_stderr\": 0.024288533637726095,\n \"acc_norm\": 0.7438271604938271,\n \"acc_norm_stderr\": 0.024288533637726095\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48936170212765956,\n \"acc_stderr\": 0.029820747191422473,\n \"acc_norm\": 0.48936170212765956,\n \"acc_norm_stderr\": 0.029820747191422473\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46870925684485004,\n \"acc_stderr\": 0.012745204626083143,\n \"acc_norm\": 0.46870925684485004,\n \"acc_norm_stderr\": 0.012745204626083143\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6801470588235294,\n \"acc_stderr\": 0.02833295951403121,\n \"acc_norm\": 0.6801470588235294,\n \"acc_norm_stderr\": 0.02833295951403121\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6633986928104575,\n \"acc_stderr\": 0.019117213911495155,\n \"acc_norm\": 0.6633986928104575,\n \"acc_norm_stderr\": 0.019117213911495155\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.689795918367347,\n \"acc_stderr\": 0.029613459872484378,\n \"acc_norm\": 0.689795918367347,\n \"acc_norm_stderr\": 0.029613459872484378\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.835820895522388,\n \"acc_stderr\": 0.026193923544454132,\n \"acc_norm\": 0.835820895522388,\n \"acc_norm_stderr\": 0.026193923544454132\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.88,\n \"acc_stderr\": 0.03265986323710905,\n \"acc_norm\": 0.88,\n \"acc_norm_stderr\": 0.03265986323710905\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699122,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699122\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.02954774168764004,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.02954774168764004\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3047735618115055,\n \"mc1_stderr\": 0.016114124156882452,\n \"mc2\": 0.45435317672164416,\n \"mc2_stderr\": 0.014528686611193308\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7734806629834254,\n \"acc_stderr\": 0.011764149054698332\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3912054586808188,\n \"acc_stderr\": 0.0134425024027943\n }\n}\n```", "repo_url": "https://huggingface.co/huangyt/Mistral-7B-v0.1-Open-Platypus_2.5w-r16-gate_up_down", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T17-36-45.221009.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["**/details_harness|winogrande|5_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T17-36-45.221009.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T17_36_45.221009", "path": ["results_2024-01-14T17-36-45.221009.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T17-36-45.221009.parquet"]}]}]}
2024-01-14T17:39:25+00:00
9c948bc3d783828325b229931cdb5515e49b147c
jmaczan/TORGO-very-small
[ "task_categories:automatic-speech-recognition", "size_categories:n<1K", "language:en", "license:other", "dysarthria", "region:us" ]
2024-01-14T17:46:05+00:00
{"language": ["en"], "license": "other", "size_categories": ["n<1K"], "task_categories": ["automatic-speech-recognition"], "pretty_name": "TORGO very small", "license_name": "torgo-dataset-license", "license_link": "https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html", "tags": ["dysarthria"]}
2024-01-16T19:40:04+00:00
20d4a4c3794e790a0284d5351568452194cd0dee
Abhinav-B/finetune_llama_wikisql
[ "region:us" ]
2024-01-14T17:47:16+00:00
{"dataset_info": {"features": [{"name": "formatted_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1530908, "num_examples": 10000}], "download_size": 703398, "dataset_size": 1530908}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T22:22:53+00:00
784ffbf7862cb01c0639299db556d1bc107c87ce
guanxiongsun/got10k
[ "region:us" ]
2024-01-14T17:50:56+00:00
{}
2024-01-14T17:50:56+00:00
91447063a2898086efb844ba9aa08c025dda13fe
epinnock/software-architecture-instructions-preference
[ "region:us" ]
2024-01-14T17:52:57+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "generation_model", "sequence": "string"}, {"name": "generation_prompt", "list": {"list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}}, {"name": "raw_generation_responses", "sequence": "string"}, {"name": "generations", "sequence": "string"}, {"name": "labelling_model", "dtype": "string"}, {"name": "labelling_prompt", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "raw_labelling_response", "dtype": "string"}, {"name": "rating", "sequence": "float64"}, {"name": "rationale", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 1356546, "num_examples": 50}], "download_size": 558838, "dataset_size": 1356546}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T17:52:58+00:00
48aa3e48df21521082ae8033b5d1124d34eec6c4
pedromigurasdev/llama_2_jose_antorcha
[ "license:apache-2.0", "region:us" ]
2024-01-14T17:54:14+00:00
{"license": "apache-2.0"}
2024-01-14T17:54:35+00:00
18adf4ae3967299e56c115831cdd45d0edb0c2dc
ayoubkirouane/Orca-Direct-Preference-Optimization
[ "region:us" ]
2024-01-14T17:59:37+00:00
{"dataset_info": {"features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}, {"name": "prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 35914686, "num_examples": 12859}], "download_size": 19539812, "dataset_size": 35914686}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T17:59:50+00:00
de6dde6e078864329bdff2c1903f3145ffa0f13e
jilp00/youtoks-transcripts-Stanford-CS25-Transformers-United
[ "region:us" ]
2024-01-14T18:02:36+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1159306, "num_examples": 1390}], "download_size": 619585, "dataset_size": 1159306}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T18:02:38+00:00
eeb114a404f3a53cea7d07926cc1bd6f0eef7668
jilp00/youtoks-transformers
[ "region:us" ]
2024-01-14T18:03:32+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int64"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2092099, "num_examples": 1390}], "download_size": 1025873, "dataset_size": 2092099}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T18:03:35+00:00
85c6d3e1ba23b2fe67b062ca7cc0c6ed8ae6666c
# Dataset Card for Evaluation run of one-man-army/UNA-34Beagles-32K-bf16-v1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [one-man-army/UNA-34Beagles-32K-bf16-v1](https://huggingface.co/one-man-army/UNA-34Beagles-32K-bf16-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_one-man-army__UNA-34Beagles-32K-bf16-v1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T18:01:24.840782](https://huggingface.co/datasets/open-llm-leaderboard/details_one-man-army__UNA-34Beagles-32K-bf16-v1/blob/main/results_2024-01-14T18-01-24.840782.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7603825099190668, "acc_stderr": 0.028403734149400593, "acc_norm": 0.7656218376316938, "acc_norm_stderr": 0.02893068310994367, "mc1": 0.5887392900856793, "mc1_stderr": 0.01722562708366087, "mc2": 0.7354905615781797, "mc2_stderr": 0.014104277111112697 }, "harness|arc:challenge|25": { "acc": 0.7047781569965871, "acc_stderr": 0.01332975029338232, "acc_norm": 0.735494880546075, "acc_norm_stderr": 0.012889272949313368 }, "harness|hellaswag|10": { "acc": 0.6716789484166501, "acc_stderr": 0.004686425851253278, "acc_norm": 0.85929097789285, "acc_norm_stderr": 0.00347010499020439 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.49, "acc_stderr": 0.05024183937956911, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7481481481481481, "acc_stderr": 0.03749850709174021, "acc_norm": 0.7481481481481481, "acc_norm_stderr": 0.03749850709174021 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8552631578947368, "acc_stderr": 0.028631951845930384, "acc_norm": 0.8552631578947368, "acc_norm_stderr": 0.028631951845930384 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.77, "acc_stderr": 0.04229525846816505, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816505 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8150943396226416, "acc_stderr": 0.023893351834464317, "acc_norm": 0.8150943396226416, "acc_norm_stderr": 0.023893351834464317 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8680555555555556, "acc_stderr": 0.02830096838204443, "acc_norm": 0.8680555555555556, "acc_norm_stderr": 0.02830096838204443 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.64, "acc_stderr": 0.048241815132442176, "acc_norm": 0.64, "acc_norm_stderr": 0.048241815132442176 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7398843930635838, "acc_stderr": 0.03345036916788992, "acc_norm": 0.7398843930635838, "acc_norm_stderr": 0.03345036916788992 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5588235294117647, "acc_stderr": 0.049406356306056595, "acc_norm": 0.5588235294117647, "acc_norm_stderr": 0.049406356306056595 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.82, "acc_stderr": 0.03861229196653695, "acc_norm": 0.82, "acc_norm_stderr": 0.03861229196653695 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7914893617021277, "acc_stderr": 0.02655698211783874, "acc_norm": 0.7914893617021277, "acc_norm_stderr": 0.02655698211783874 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5877192982456141, "acc_stderr": 0.04630653203366596, "acc_norm": 0.5877192982456141, "acc_norm_stderr": 0.04630653203366596 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7448275862068966, "acc_stderr": 0.03632984052707842, "acc_norm": 0.7448275862068966, "acc_norm_stderr": 0.03632984052707842 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.7142857142857143, "acc_stderr": 0.02326651221373058, "acc_norm": 0.7142857142857143, "acc_norm_stderr": 0.02326651221373058 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5873015873015873, "acc_stderr": 0.04403438954768176, "acc_norm": 0.5873015873015873, "acc_norm_stderr": 0.04403438954768176 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.9096774193548387, "acc_stderr": 0.016306570644488323, "acc_norm": 0.9096774193548387, "acc_norm_stderr": 0.016306570644488323 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.6305418719211823, "acc_stderr": 0.033959703819985726, "acc_norm": 0.6305418719211823, "acc_norm_stderr": 0.033959703819985726 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.81, "acc_stderr": 0.03942772444036623, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036623 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8666666666666667, "acc_stderr": 0.026544435312706463, "acc_norm": 0.8666666666666667, "acc_norm_stderr": 0.026544435312706463 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9191919191919192, "acc_stderr": 0.019417681889724536, "acc_norm": 0.9191919191919192, "acc_norm_stderr": 0.019417681889724536 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9585492227979274, "acc_stderr": 0.01438543285747644, "acc_norm": 0.9585492227979274, "acc_norm_stderr": 0.01438543285747644 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8179487179487179, "acc_stderr": 0.019565236782930893, "acc_norm": 0.8179487179487179, "acc_norm_stderr": 0.019565236782930893 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.45185185185185184, "acc_stderr": 0.030343862998512623, "acc_norm": 0.45185185185185184, "acc_norm_stderr": 0.030343862998512623 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8445378151260504, "acc_stderr": 0.023536818625398897, "acc_norm": 0.8445378151260504, "acc_norm_stderr": 0.023536818625398897 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4768211920529801, "acc_stderr": 0.04078093859163083, "acc_norm": 0.4768211920529801, "acc_norm_stderr": 0.04078093859163083 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9211009174311927, "acc_stderr": 0.0115581981137696, "acc_norm": 0.9211009174311927, "acc_norm_stderr": 0.0115581981137696 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6805555555555556, "acc_stderr": 0.03179876342176851, "acc_norm": 0.6805555555555556, "acc_norm_stderr": 0.03179876342176851 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9117647058823529, "acc_stderr": 0.019907399791316945, "acc_norm": 0.9117647058823529, "acc_norm_stderr": 0.019907399791316945 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.01888975055095671, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.01888975055095671 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7847533632286996, "acc_stderr": 0.02758406660220827, "acc_norm": 0.7847533632286996, "acc_norm_stderr": 0.02758406660220827 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8702290076335878, "acc_stderr": 0.029473649496907065, "acc_norm": 0.8702290076335878, "acc_norm_stderr": 0.029473649496907065 }, "harness|hendrycksTest-international_law|5": { "acc": 0.9008264462809917, "acc_stderr": 0.027285246312758957, "acc_norm": 0.9008264462809917, "acc_norm_stderr": 0.027285246312758957 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8981481481481481, "acc_stderr": 0.029239272675632748, "acc_norm": 0.8981481481481481, "acc_norm_stderr": 0.029239272675632748 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8650306748466258, "acc_stderr": 0.026845765054553838, "acc_norm": 0.8650306748466258, "acc_norm_stderr": 0.026845765054553838 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5357142857142857, "acc_stderr": 0.04733667890053756, "acc_norm": 0.5357142857142857, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.8543689320388349, "acc_stderr": 0.034926064766237906, "acc_norm": 0.8543689320388349, "acc_norm_stderr": 0.034926064766237906 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9444444444444444, "acc_stderr": 0.015006312806446912, "acc_norm": 0.9444444444444444, "acc_norm_stderr": 0.015006312806446912 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.9, "acc_stderr": 0.030151134457776334, "acc_norm": 0.9, "acc_norm_stderr": 0.030151134457776334 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9042145593869731, "acc_stderr": 0.010524031079055831, "acc_norm": 0.9042145593869731, "acc_norm_stderr": 0.010524031079055831 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8121387283236994, "acc_stderr": 0.021029269752423203, "acc_norm": 0.8121387283236994, "acc_norm_stderr": 0.021029269752423203 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.7854748603351955, "acc_stderr": 0.013728923407828855, "acc_norm": 0.7854748603351955, "acc_norm_stderr": 0.013728923407828855 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8496732026143791, "acc_stderr": 0.020464175124332625, "acc_norm": 0.8496732026143791, "acc_norm_stderr": 0.020464175124332625 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8102893890675241, "acc_stderr": 0.022268196258783228, "acc_norm": 0.8102893890675241, "acc_norm_stderr": 0.022268196258783228 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8672839506172839, "acc_stderr": 0.018877353839571842, "acc_norm": 0.8672839506172839, "acc_norm_stderr": 0.018877353839571842 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6276595744680851, "acc_stderr": 0.02883892147125145, "acc_norm": 0.6276595744680851, "acc_norm_stderr": 0.02883892147125145 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5788787483702738, "acc_stderr": 0.012610325733489905, "acc_norm": 0.5788787483702738, "acc_norm_stderr": 0.012610325733489905 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8198529411764706, "acc_stderr": 0.02334516361654485, "acc_norm": 0.8198529411764706, "acc_norm_stderr": 0.02334516361654485 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.815359477124183, "acc_stderr": 0.015697029240757776, "acc_norm": 0.815359477124183, "acc_norm_stderr": 0.015697029240757776 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7363636363636363, "acc_stderr": 0.04220224692971987, "acc_norm": 0.7363636363636363, "acc_norm_stderr": 0.04220224692971987 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8163265306122449, "acc_stderr": 0.02478907133200765, "acc_norm": 0.8163265306122449, "acc_norm_stderr": 0.02478907133200765 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8855721393034826, "acc_stderr": 0.022509345325101706, "acc_norm": 0.8855721393034826, "acc_norm_stderr": 0.022509345325101706 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.89, "acc_stderr": 0.03144660377352203, "acc_norm": 0.89, "acc_norm_stderr": 0.03144660377352203 }, "harness|hendrycksTest-virology|5": { "acc": 0.572289156626506, "acc_stderr": 0.038515976837185335, "acc_norm": 0.572289156626506, "acc_norm_stderr": 0.038515976837185335 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8947368421052632, "acc_stderr": 0.023537557657892567, "acc_norm": 0.8947368421052632, "acc_norm_stderr": 0.023537557657892567 }, "harness|truthfulqa:mc|0": { "mc1": 0.5887392900856793, "mc1_stderr": 0.01722562708366087, "mc2": 0.7354905615781797, "mc2_stderr": 0.014104277111112697 }, "harness|winogrande|5": { "acc": 0.829518547750592, "acc_stderr": 0.0105690211228259 }, "harness|gsm8k|5": { "acc": 0.6004548900682335, "acc_stderr": 0.013491660298815985 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_one-man-army__UNA-34Beagles-32K-bf16-v1
[ "region:us" ]
2024-01-14T18:03:41+00:00
{"pretty_name": "Evaluation run of one-man-army/UNA-34Beagles-32K-bf16-v1", "dataset_summary": "Dataset automatically created during the evaluation run of model [one-man-army/UNA-34Beagles-32K-bf16-v1](https://huggingface.co/one-man-army/UNA-34Beagles-32K-bf16-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_one-man-army__UNA-34Beagles-32K-bf16-v1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T18:01:24.840782](https://huggingface.co/datasets/open-llm-leaderboard/details_one-man-army__UNA-34Beagles-32K-bf16-v1/blob/main/results_2024-01-14T18-01-24.840782.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7603825099190668,\n \"acc_stderr\": 0.028403734149400593,\n \"acc_norm\": 0.7656218376316938,\n \"acc_norm_stderr\": 0.02893068310994367,\n \"mc1\": 0.5887392900856793,\n \"mc1_stderr\": 0.01722562708366087,\n \"mc2\": 0.7354905615781797,\n \"mc2_stderr\": 0.014104277111112697\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.7047781569965871,\n \"acc_stderr\": 0.01332975029338232,\n \"acc_norm\": 0.735494880546075,\n \"acc_norm_stderr\": 0.012889272949313368\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6716789484166501,\n \"acc_stderr\": 0.004686425851253278,\n \"acc_norm\": 0.85929097789285,\n \"acc_norm_stderr\": 0.00347010499020439\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7481481481481481,\n \"acc_stderr\": 0.03749850709174021,\n \"acc_norm\": 0.7481481481481481,\n \"acc_norm_stderr\": 0.03749850709174021\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8552631578947368,\n \"acc_stderr\": 0.028631951845930384,\n \"acc_norm\": 0.8552631578947368,\n \"acc_norm_stderr\": 0.028631951845930384\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8150943396226416,\n \"acc_stderr\": 0.023893351834464317,\n \"acc_norm\": 0.8150943396226416,\n \"acc_norm_stderr\": 0.023893351834464317\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8680555555555556,\n \"acc_stderr\": 0.02830096838204443,\n \"acc_norm\": 0.8680555555555556,\n \"acc_norm_stderr\": 0.02830096838204443\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.03345036916788992,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.03345036916788992\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5588235294117647,\n \"acc_stderr\": 0.049406356306056595,\n \"acc_norm\": 0.5588235294117647,\n \"acc_norm_stderr\": 0.049406356306056595\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.03861229196653695,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.03861229196653695\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7914893617021277,\n \"acc_stderr\": 0.02655698211783874,\n \"acc_norm\": 0.7914893617021277,\n \"acc_norm_stderr\": 0.02655698211783874\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5877192982456141,\n \"acc_stderr\": 0.04630653203366596,\n \"acc_norm\": 0.5877192982456141,\n \"acc_norm_stderr\": 0.04630653203366596\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7448275862068966,\n \"acc_stderr\": 0.03632984052707842,\n \"acc_norm\": 0.7448275862068966,\n \"acc_norm_stderr\": 0.03632984052707842\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.02326651221373058,\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.02326651221373058\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5873015873015873,\n \"acc_stderr\": 0.04403438954768176,\n \"acc_norm\": 0.5873015873015873,\n \"acc_norm_stderr\": 0.04403438954768176\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9096774193548387,\n \"acc_stderr\": 0.016306570644488323,\n \"acc_norm\": 0.9096774193548387,\n \"acc_norm_stderr\": 0.016306570644488323\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.6305418719211823,\n \"acc_stderr\": 0.033959703819985726,\n \"acc_norm\": 0.6305418719211823,\n \"acc_norm_stderr\": 0.033959703819985726\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036623,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036623\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8666666666666667,\n \"acc_stderr\": 0.026544435312706463,\n \"acc_norm\": 0.8666666666666667,\n \"acc_norm_stderr\": 0.026544435312706463\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9191919191919192,\n \"acc_stderr\": 0.019417681889724536,\n \"acc_norm\": 0.9191919191919192,\n \"acc_norm_stderr\": 0.019417681889724536\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9585492227979274,\n \"acc_stderr\": 0.01438543285747644,\n \"acc_norm\": 0.9585492227979274,\n \"acc_norm_stderr\": 0.01438543285747644\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8179487179487179,\n \"acc_stderr\": 0.019565236782930893,\n \"acc_norm\": 0.8179487179487179,\n \"acc_norm_stderr\": 0.019565236782930893\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.45185185185185184,\n \"acc_stderr\": 0.030343862998512623,\n \"acc_norm\": 0.45185185185185184,\n \"acc_norm_stderr\": 0.030343862998512623\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8445378151260504,\n \"acc_stderr\": 0.023536818625398897,\n \"acc_norm\": 0.8445378151260504,\n \"acc_norm_stderr\": 0.023536818625398897\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.4768211920529801,\n \"acc_stderr\": 0.04078093859163083,\n \"acc_norm\": 0.4768211920529801,\n \"acc_norm_stderr\": 0.04078093859163083\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9211009174311927,\n \"acc_stderr\": 0.0115581981137696,\n \"acc_norm\": 0.9211009174311927,\n \"acc_norm_stderr\": 0.0115581981137696\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6805555555555556,\n \"acc_stderr\": 0.03179876342176851,\n \"acc_norm\": 0.6805555555555556,\n \"acc_norm_stderr\": 0.03179876342176851\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9117647058823529,\n \"acc_stderr\": 0.019907399791316945,\n \"acc_norm\": 0.9117647058823529,\n \"acc_norm_stderr\": 0.019907399791316945\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.01888975055095671,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.01888975055095671\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7847533632286996,\n \"acc_stderr\": 0.02758406660220827,\n \"acc_norm\": 0.7847533632286996,\n \"acc_norm_stderr\": 0.02758406660220827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8702290076335878,\n \"acc_stderr\": 0.029473649496907065,\n \"acc_norm\": 0.8702290076335878,\n \"acc_norm_stderr\": 0.029473649496907065\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.9008264462809917,\n \"acc_stderr\": 0.027285246312758957,\n \"acc_norm\": 0.9008264462809917,\n \"acc_norm_stderr\": 0.027285246312758957\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8981481481481481,\n \"acc_stderr\": 0.029239272675632748,\n \"acc_norm\": 0.8981481481481481,\n \"acc_norm_stderr\": 0.029239272675632748\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8650306748466258,\n \"acc_stderr\": 0.026845765054553838,\n \"acc_norm\": 0.8650306748466258,\n \"acc_norm_stderr\": 0.026845765054553838\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8543689320388349,\n \"acc_stderr\": 0.034926064766237906,\n \"acc_norm\": 0.8543689320388349,\n \"acc_norm_stderr\": 0.034926064766237906\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9444444444444444,\n \"acc_stderr\": 0.015006312806446912,\n \"acc_norm\": 0.9444444444444444,\n \"acc_norm_stderr\": 0.015006312806446912\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.030151134457776334,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.030151134457776334\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9042145593869731,\n \"acc_stderr\": 0.010524031079055831,\n \"acc_norm\": 0.9042145593869731,\n \"acc_norm_stderr\": 0.010524031079055831\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8121387283236994,\n \"acc_stderr\": 0.021029269752423203,\n \"acc_norm\": 0.8121387283236994,\n \"acc_norm_stderr\": 0.021029269752423203\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.7854748603351955,\n \"acc_stderr\": 0.013728923407828855,\n \"acc_norm\": 0.7854748603351955,\n \"acc_norm_stderr\": 0.013728923407828855\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8496732026143791,\n \"acc_stderr\": 0.020464175124332625,\n \"acc_norm\": 0.8496732026143791,\n \"acc_norm_stderr\": 0.020464175124332625\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8102893890675241,\n \"acc_stderr\": 0.022268196258783228,\n \"acc_norm\": 0.8102893890675241,\n \"acc_norm_stderr\": 0.022268196258783228\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8672839506172839,\n \"acc_stderr\": 0.018877353839571842,\n \"acc_norm\": 0.8672839506172839,\n \"acc_norm_stderr\": 0.018877353839571842\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6276595744680851,\n \"acc_stderr\": 0.02883892147125145,\n \"acc_norm\": 0.6276595744680851,\n \"acc_norm_stderr\": 0.02883892147125145\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5788787483702738,\n \"acc_stderr\": 0.012610325733489905,\n \"acc_norm\": 0.5788787483702738,\n \"acc_norm_stderr\": 0.012610325733489905\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8198529411764706,\n \"acc_stderr\": 0.02334516361654485,\n \"acc_norm\": 0.8198529411764706,\n \"acc_norm_stderr\": 0.02334516361654485\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.815359477124183,\n \"acc_stderr\": 0.015697029240757776,\n \"acc_norm\": 0.815359477124183,\n \"acc_norm_stderr\": 0.015697029240757776\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7363636363636363,\n \"acc_stderr\": 0.04220224692971987,\n \"acc_norm\": 0.7363636363636363,\n \"acc_norm_stderr\": 0.04220224692971987\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8163265306122449,\n \"acc_stderr\": 0.02478907133200765,\n \"acc_norm\": 0.8163265306122449,\n \"acc_norm_stderr\": 0.02478907133200765\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8855721393034826,\n \"acc_stderr\": 0.022509345325101706,\n \"acc_norm\": 0.8855721393034826,\n \"acc_norm_stderr\": 0.022509345325101706\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.572289156626506,\n \"acc_stderr\": 0.038515976837185335,\n \"acc_norm\": 0.572289156626506,\n \"acc_norm_stderr\": 0.038515976837185335\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8947368421052632,\n \"acc_stderr\": 0.023537557657892567,\n \"acc_norm\": 0.8947368421052632,\n \"acc_norm_stderr\": 0.023537557657892567\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5887392900856793,\n \"mc1_stderr\": 0.01722562708366087,\n \"mc2\": 0.7354905615781797,\n \"mc2_stderr\": 0.014104277111112697\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.829518547750592,\n \"acc_stderr\": 0.0105690211228259\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6004548900682335,\n \"acc_stderr\": 0.013491660298815985\n }\n}\n```", "repo_url": "https://huggingface.co/one-man-army/UNA-34Beagles-32K-bf16-v1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-01-24.840782.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["**/details_harness|winogrande|5_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T18-01-24.840782.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T18_01_24.840782", "path": ["results_2024-01-14T18-01-24.840782.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T18-01-24.840782.parquet"]}]}]}
2024-01-14T18:04:02+00:00
307f1064e6d6046dc2d5fbb81185cf6700ff7630
Obreyer/freddy
[ "license:openrail", "region:us" ]
2024-01-14T18:07:39+00:00
{"license": "openrail"}
2024-01-14T18:09:47+00:00
5ed262282cbe1119ce881f0e8b25206c205e9345
# Dataset Card for Evaluation run of argilla/distilabeled-Marcoro14-7B-slerp-full <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T18:07:10.931926](https://huggingface.co/datasets/open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full/blob/main/results_2024-01-14T18-07-10.931926.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6579983930115316, "acc_stderr": 0.031959390460197495, "acc_norm": 0.6579231845624166, "acc_norm_stderr": 0.03261951935121804, "mc1": 0.48225214198286415, "mc1_stderr": 0.017492470843075363, "mc2": 0.6421417472476668, "mc2_stderr": 0.015159369575596757 }, "harness|arc:challenge|25": { "acc": 0.6783276450511946, "acc_stderr": 0.013650488084494166, "acc_norm": 0.7064846416382252, "acc_norm_stderr": 0.01330725044494111 }, "harness|hellaswag|10": { "acc": 0.6974706233817964, "acc_stderr": 0.004584144014654942, "acc_norm": 0.8755228042222665, "acc_norm_stderr": 0.0032945048075552286 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6814814814814815, "acc_stderr": 0.04024778401977108, "acc_norm": 0.6814814814814815, "acc_norm_stderr": 0.04024778401977108 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6973684210526315, "acc_stderr": 0.037385206761196686, "acc_norm": 0.6973684210526315, "acc_norm_stderr": 0.037385206761196686 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.63, "acc_stderr": 0.048523658709391, "acc_norm": 0.63, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7283018867924528, "acc_stderr": 0.027377706624670713, "acc_norm": 0.7283018867924528, "acc_norm_stderr": 0.027377706624670713 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7777777777777778, "acc_stderr": 0.03476590104304134, "acc_norm": 0.7777777777777778, "acc_norm_stderr": 0.03476590104304134 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620333, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6647398843930635, "acc_stderr": 0.03599586301247077, "acc_norm": 0.6647398843930635, "acc_norm_stderr": 0.03599586301247077 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4411764705882353, "acc_stderr": 0.049406356306056595, "acc_norm": 0.4411764705882353, "acc_norm_stderr": 0.049406356306056595 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932262, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932262 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5914893617021276, "acc_stderr": 0.032134180267015755, "acc_norm": 0.5914893617021276, "acc_norm_stderr": 0.032134180267015755 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5517241379310345, "acc_stderr": 0.04144311810878152, "acc_norm": 0.5517241379310345, "acc_norm_stderr": 0.04144311810878152 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.43386243386243384, "acc_stderr": 0.02552503438247489, "acc_norm": 0.43386243386243384, "acc_norm_stderr": 0.02552503438247489 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4365079365079365, "acc_stderr": 0.04435932892851466, "acc_norm": 0.4365079365079365, "acc_norm_stderr": 0.04435932892851466 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03346409881055953, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03346409881055953 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.797979797979798, "acc_stderr": 0.02860620428922987, "acc_norm": 0.797979797979798, "acc_norm_stderr": 0.02860620428922987 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.02098685459328974, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.02098685459328974 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6743589743589744, "acc_stderr": 0.02375966576741229, "acc_norm": 0.6743589743589744, "acc_norm_stderr": 0.02375966576741229 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.35185185185185186, "acc_stderr": 0.029116617606083008, "acc_norm": 0.35185185185185186, "acc_norm_stderr": 0.029116617606083008 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6764705882352942, "acc_stderr": 0.030388353551886786, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.030388353551886786 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8532110091743119, "acc_stderr": 0.015173141845126243, "acc_norm": 0.8532110091743119, "acc_norm_stderr": 0.015173141845126243 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5370370370370371, "acc_stderr": 0.03400603625538271, "acc_norm": 0.5370370370370371, "acc_norm_stderr": 0.03400603625538271 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8578431372549019, "acc_stderr": 0.0245098039215686, "acc_norm": 0.8578431372549019, "acc_norm_stderr": 0.0245098039215686 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7974683544303798, "acc_stderr": 0.026160568246601443, "acc_norm": 0.7974683544303798, "acc_norm_stderr": 0.026160568246601443 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6995515695067265, "acc_stderr": 0.03076935200822914, "acc_norm": 0.6995515695067265, "acc_norm_stderr": 0.03076935200822914 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7862595419847328, "acc_stderr": 0.0359546161177469, "acc_norm": 0.7862595419847328, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228732, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228732 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7870370370370371, "acc_stderr": 0.0395783547198098, "acc_norm": 0.7870370370370371, "acc_norm_stderr": 0.0395783547198098 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7607361963190185, "acc_stderr": 0.033519538795212696, "acc_norm": 0.7607361963190185, "acc_norm_stderr": 0.033519538795212696 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.047268355537191, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.047268355537191 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8888888888888888, "acc_stderr": 0.020588491316092368, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.020588491316092368 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8288633461047255, "acc_stderr": 0.013468201614066307, "acc_norm": 0.8288633461047255, "acc_norm_stderr": 0.013468201614066307 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7456647398843931, "acc_stderr": 0.023445826276545543, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.023445826276545543 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.44581005586592176, "acc_stderr": 0.016623998513333103, "acc_norm": 0.44581005586592176, "acc_norm_stderr": 0.016623998513333103 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7189542483660131, "acc_stderr": 0.025738854797818737, "acc_norm": 0.7189542483660131, "acc_norm_stderr": 0.025738854797818737 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7561728395061729, "acc_stderr": 0.023891879541959603, "acc_norm": 0.7561728395061729, "acc_norm_stderr": 0.023891879541959603 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5283687943262412, "acc_stderr": 0.02977945095730305, "acc_norm": 0.5283687943262412, "acc_norm_stderr": 0.02977945095730305 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4654498044328553, "acc_stderr": 0.012739711554045699, "acc_norm": 0.4654498044328553, "acc_norm_stderr": 0.012739711554045699 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6875, "acc_stderr": 0.02815637344037142, "acc_norm": 0.6875, "acc_norm_stderr": 0.02815637344037142 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.684640522875817, "acc_stderr": 0.01879808628488689, "acc_norm": 0.684640522875817, "acc_norm_stderr": 0.01879808628488689 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6909090909090909, "acc_stderr": 0.044262946482000985, "acc_norm": 0.6909090909090909, "acc_norm_stderr": 0.044262946482000985 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7387755102040816, "acc_stderr": 0.028123429335142783, "acc_norm": 0.7387755102040816, "acc_norm_stderr": 0.028123429335142783 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.02587064676616914, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.02587064676616914 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.0358870281282637, "acc_norm": 0.85, "acc_norm_stderr": 0.0358870281282637 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699122, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699122 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.027966785859160893, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.027966785859160893 }, "harness|truthfulqa:mc|0": { "mc1": 0.48225214198286415, "mc1_stderr": 0.017492470843075363, "mc2": 0.6421417472476668, "mc2_stderr": 0.015159369575596757 }, "harness|winogrande|5": { "acc": 0.8200473559589582, "acc_stderr": 0.01079646868806868 }, "harness|gsm8k|5": { "acc": 0.7065959059893859, "acc_stderr": 0.01254183081546149 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full
[ "region:us" ]
2024-01-14T18:09:48+00:00
{"pretty_name": "Evaluation run of argilla/distilabeled-Marcoro14-7B-slerp-full", "dataset_summary": "Dataset automatically created during the evaluation run of model [argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T18:07:10.931926](https://huggingface.co/datasets/open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full/blob/main/results_2024-01-14T18-07-10.931926.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6579983930115316,\n \"acc_stderr\": 0.031959390460197495,\n \"acc_norm\": 0.6579231845624166,\n \"acc_norm_stderr\": 0.03261951935121804,\n \"mc1\": 0.48225214198286415,\n \"mc1_stderr\": 0.017492470843075363,\n \"mc2\": 0.6421417472476668,\n \"mc2_stderr\": 0.015159369575596757\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6783276450511946,\n \"acc_stderr\": 0.013650488084494166,\n \"acc_norm\": 0.7064846416382252,\n \"acc_norm_stderr\": 0.01330725044494111\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6974706233817964,\n \"acc_stderr\": 0.004584144014654942,\n \"acc_norm\": 0.8755228042222665,\n \"acc_norm_stderr\": 0.0032945048075552286\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6814814814814815,\n \"acc_stderr\": 0.04024778401977108,\n \"acc_norm\": 0.6814814814814815,\n \"acc_norm_stderr\": 0.04024778401977108\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.037385206761196686,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.037385206761196686\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7283018867924528,\n \"acc_stderr\": 0.027377706624670713,\n \"acc_norm\": 0.7283018867924528,\n \"acc_norm_stderr\": 0.027377706624670713\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.03476590104304134,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.03476590104304134\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6647398843930635,\n \"acc_stderr\": 0.03599586301247077,\n \"acc_norm\": 0.6647398843930635,\n \"acc_norm_stderr\": 0.03599586301247077\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.049406356306056595,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.049406356306056595\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932262,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932262\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5914893617021276,\n \"acc_stderr\": 0.032134180267015755,\n \"acc_norm\": 0.5914893617021276,\n \"acc_norm_stderr\": 0.032134180267015755\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878152,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878152\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.43386243386243384,\n \"acc_stderr\": 0.02552503438247489,\n \"acc_norm\": 0.43386243386243384,\n \"acc_norm_stderr\": 0.02552503438247489\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4365079365079365,\n \"acc_stderr\": 0.04435932892851466,\n \"acc_norm\": 0.4365079365079365,\n \"acc_norm_stderr\": 0.04435932892851466\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03346409881055953,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03346409881055953\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.797979797979798,\n \"acc_stderr\": 0.02860620428922987,\n \"acc_norm\": 0.797979797979798,\n \"acc_norm_stderr\": 0.02860620428922987\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.02098685459328974,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.02098685459328974\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6743589743589744,\n \"acc_stderr\": 0.02375966576741229,\n \"acc_norm\": 0.6743589743589744,\n \"acc_norm_stderr\": 0.02375966576741229\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.35185185185185186,\n \"acc_stderr\": 0.029116617606083008,\n \"acc_norm\": 0.35185185185185186,\n \"acc_norm_stderr\": 0.029116617606083008\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.030388353551886786,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.030388353551886786\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8532110091743119,\n \"acc_stderr\": 0.015173141845126243,\n \"acc_norm\": 0.8532110091743119,\n \"acc_norm_stderr\": 0.015173141845126243\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5370370370370371,\n \"acc_stderr\": 0.03400603625538271,\n \"acc_norm\": 0.5370370370370371,\n \"acc_norm_stderr\": 0.03400603625538271\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8578431372549019,\n \"acc_stderr\": 0.0245098039215686,\n \"acc_norm\": 0.8578431372549019,\n \"acc_norm_stderr\": 0.0245098039215686\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601443,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601443\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6995515695067265,\n \"acc_stderr\": 0.03076935200822914,\n \"acc_norm\": 0.6995515695067265,\n \"acc_norm_stderr\": 0.03076935200822914\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7870370370370371,\n \"acc_stderr\": 0.0395783547198098,\n \"acc_norm\": 0.7870370370370371,\n \"acc_norm_stderr\": 0.0395783547198098\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7607361963190185,\n \"acc_stderr\": 0.033519538795212696,\n \"acc_norm\": 0.7607361963190185,\n \"acc_norm_stderr\": 0.033519538795212696\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.047268355537191,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.047268355537191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092368,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092368\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8288633461047255,\n \"acc_stderr\": 0.013468201614066307,\n \"acc_norm\": 0.8288633461047255,\n \"acc_norm_stderr\": 0.013468201614066307\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.023445826276545543,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.023445826276545543\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.44581005586592176,\n \"acc_stderr\": 0.016623998513333103,\n \"acc_norm\": 0.44581005586592176,\n \"acc_norm_stderr\": 0.016623998513333103\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7189542483660131,\n \"acc_stderr\": 0.025738854797818737,\n \"acc_norm\": 0.7189542483660131,\n \"acc_norm_stderr\": 0.025738854797818737\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7106109324758842,\n \"acc_stderr\": 0.025755865922632945,\n \"acc_norm\": 0.7106109324758842,\n \"acc_norm_stderr\": 0.025755865922632945\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959603,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959603\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5283687943262412,\n \"acc_stderr\": 0.02977945095730305,\n \"acc_norm\": 0.5283687943262412,\n \"acc_norm_stderr\": 0.02977945095730305\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4654498044328553,\n \"acc_stderr\": 0.012739711554045699,\n \"acc_norm\": 0.4654498044328553,\n \"acc_norm_stderr\": 0.012739711554045699\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.02815637344037142,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.02815637344037142\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.684640522875817,\n \"acc_stderr\": 0.01879808628488689,\n \"acc_norm\": 0.684640522875817,\n \"acc_norm_stderr\": 0.01879808628488689\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7387755102040816,\n \"acc_stderr\": 0.028123429335142783,\n \"acc_norm\": 0.7387755102040816,\n \"acc_norm_stderr\": 0.028123429335142783\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.02587064676616914,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.02587064676616914\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.0358870281282637,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.0358870281282637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699122,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699122\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.027966785859160893,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.027966785859160893\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.48225214198286415,\n \"mc1_stderr\": 0.017492470843075363,\n \"mc2\": 0.6421417472476668,\n \"mc2_stderr\": 0.015159369575596757\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8200473559589582,\n \"acc_stderr\": 0.01079646868806868\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7065959059893859,\n \"acc_stderr\": 0.01254183081546149\n }\n}\n```", "repo_url": "https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-07-10.931926.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["**/details_harness|winogrande|5_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T18-07-10.931926.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T18_07_10.931926", "path": ["results_2024-01-14T18-07-10.931926.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T18-07-10.931926.parquet"]}]}]}
2024-01-14T18:10:29+00:00
123b70c682105d53e7b0e1a2189024d33ad7275d
kpriyanshu256/semeval-mono-test
[ "region:us" ]
2024-01-14T18:13:21+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 83230306, "num_examples": 34272}], "download_size": 44874416, "dataset_size": 83230306}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T18:13:52+00:00
e64140fdb4ff594925f72eb9b0e02494f898df3f
kpriyanshu256/semeval-multi-test
[ "region:us" ]
2024-01-14T18:14:05+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 99468808, "num_examples": 42378}], "download_size": 58558248, "dataset_size": 99468808}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T18:14:09+00:00
3274306bdf24458b4177af6935ccfe807a4751f7
kpriyanshu256/semeval-b-test
[ "region:us" ]
2024-01-14T18:14:19+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 43138311, "num_examples": 18000}], "download_size": 22358559, "dataset_size": 43138311}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T18:14:21+00:00
9a3a0b22c4adb6c7b19c1c4f82113e9793f743d5
Tsuinzues/cristianotorreao
[ "license:openrail", "region:us" ]
2024-01-14T18:14:36+00:00
{"license": "openrail"}
2024-01-14T18:14:49+00:00
e7d09ab28922fc32dde9eec300c655ec5a5140da
# Dataset Card for Evaluation run of kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models](https://huggingface.co/kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_kz919__mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T18:15:50.698529](https://huggingface.co/datasets/open-llm-leaderboard/details_kz919__mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models/blob/main/results_2024-01-14T18-15-50.698529.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.26648871501929594, "acc_stderr": 0.03093030883128489, "acc_norm": 0.2677809133729311, "acc_norm_stderr": 0.03175527446298885, "mc1": 0.2521419828641371, "mc1_stderr": 0.015201522246299953, "mc2": 0.4880571743853537, "mc2_stderr": 0.0172850771661607 }, "harness|arc:challenge|25": { "acc": 0.20819112627986347, "acc_stderr": 0.011864866118448064, "acc_norm": 0.2551194539249147, "acc_norm_stderr": 0.012739038695202105 }, "harness|hellaswag|10": { "acc": 0.25692093208524197, "acc_stderr": 0.004360424536145122, "acc_norm": 0.2552280422226648, "acc_norm_stderr": 0.004350982826580604 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.21, "acc_stderr": 0.040936018074033256, "acc_norm": 0.21, "acc_norm_stderr": 0.040936018074033256 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.22962962962962963, "acc_stderr": 0.03633384414073461, "acc_norm": 0.22962962962962963, "acc_norm_stderr": 0.03633384414073461 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.34868421052631576, "acc_stderr": 0.03878139888797611, "acc_norm": 0.34868421052631576, "acc_norm_stderr": 0.03878139888797611 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.2, "acc_stderr": 0.04020151261036844, "acc_norm": 0.2, "acc_norm_stderr": 0.04020151261036844 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.2981132075471698, "acc_stderr": 0.02815283794249386, "acc_norm": 0.2981132075471698, "acc_norm_stderr": 0.02815283794249386 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.32947976878612717, "acc_stderr": 0.03583901754736411, "acc_norm": 0.32947976878612717, "acc_norm_stderr": 0.03583901754736411 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.37254901960784315, "acc_stderr": 0.04810840148082633, "acc_norm": 0.37254901960784315, "acc_norm_stderr": 0.04810840148082633 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.18, "acc_stderr": 0.03861229196653694, "acc_norm": 0.18, "acc_norm_stderr": 0.03861229196653694 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.23829787234042554, "acc_stderr": 0.027851252973889774, "acc_norm": 0.23829787234042554, "acc_norm_stderr": 0.027851252973889774 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.24561403508771928, "acc_stderr": 0.04049339297748141, "acc_norm": 0.24561403508771928, "acc_norm_stderr": 0.04049339297748141 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.2689655172413793, "acc_stderr": 0.036951833116502325, "acc_norm": 0.2689655172413793, "acc_norm_stderr": 0.036951833116502325 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2619047619047619, "acc_stderr": 0.022644212615525218, "acc_norm": 0.2619047619047619, "acc_norm_stderr": 0.022644212615525218 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2857142857142857, "acc_stderr": 0.04040610178208841, "acc_norm": 0.2857142857142857, "acc_norm_stderr": 0.04040610178208841 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.18, "acc_stderr": 0.03861229196653694, "acc_norm": 0.18, "acc_norm_stderr": 0.03861229196653694 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.31290322580645163, "acc_stderr": 0.026377567028645854, "acc_norm": 0.31290322580645163, "acc_norm_stderr": 0.026377567028645854 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.270935960591133, "acc_stderr": 0.031270907132976984, "acc_norm": 0.270935960591133, "acc_norm_stderr": 0.031270907132976984 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.17, "acc_stderr": 0.0377525168068637, "acc_norm": 0.17, "acc_norm_stderr": 0.0377525168068637 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.2545454545454545, "acc_stderr": 0.03401506715249039, "acc_norm": 0.2545454545454545, "acc_norm_stderr": 0.03401506715249039 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.35353535353535354, "acc_stderr": 0.03406086723547153, "acc_norm": 0.35353535353535354, "acc_norm_stderr": 0.03406086723547153 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.35233160621761656, "acc_stderr": 0.03447478286414359, "acc_norm": 0.35233160621761656, "acc_norm_stderr": 0.03447478286414359 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.3435897435897436, "acc_stderr": 0.02407869658063547, "acc_norm": 0.3435897435897436, "acc_norm_stderr": 0.02407869658063547 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.26296296296296295, "acc_stderr": 0.026842057873833706, "acc_norm": 0.26296296296296295, "acc_norm_stderr": 0.026842057873833706 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.35294117647058826, "acc_stderr": 0.031041941304059285, "acc_norm": 0.35294117647058826, "acc_norm_stderr": 0.031041941304059285 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.03822746937658754, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.03822746937658754 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3559633027522936, "acc_stderr": 0.020528559278244218, "acc_norm": 0.3559633027522936, "acc_norm_stderr": 0.020528559278244218 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4444444444444444, "acc_stderr": 0.03388857118502325, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.03388857118502325 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25, "acc_stderr": 0.03039153369274154, "acc_norm": 0.25, "acc_norm_stderr": 0.03039153369274154 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.20675105485232068, "acc_stderr": 0.026361651668389104, "acc_norm": 0.20675105485232068, "acc_norm_stderr": 0.026361651668389104 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.12556053811659193, "acc_stderr": 0.02223898546932376, "acc_norm": 0.12556053811659193, "acc_norm_stderr": 0.02223898546932376 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2824427480916031, "acc_stderr": 0.03948406125768361, "acc_norm": 0.2824427480916031, "acc_norm_stderr": 0.03948406125768361 }, "harness|hendrycksTest-international_law|5": { "acc": 0.14049586776859505, "acc_stderr": 0.03172233426002161, "acc_norm": 0.14049586776859505, "acc_norm_stderr": 0.03172233426002161 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.2222222222222222, "acc_stderr": 0.040191074725573483, "acc_norm": 0.2222222222222222, "acc_norm_stderr": 0.040191074725573483 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.2392638036809816, "acc_stderr": 0.033519538795212696, "acc_norm": 0.2392638036809816, "acc_norm_stderr": 0.033519538795212696 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.15178571428571427, "acc_stderr": 0.03405702838185694, "acc_norm": 0.15178571428571427, "acc_norm_stderr": 0.03405702838185694 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.19230769230769232, "acc_stderr": 0.025819233256483706, "acc_norm": 0.19230769230769232, "acc_norm_stderr": 0.025819233256483706 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.26, "acc_stderr": 0.04408440022768078, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.20561941251596424, "acc_stderr": 0.014452500456785825, "acc_norm": 0.20561941251596424, "acc_norm_stderr": 0.014452500456785825 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.21965317919075145, "acc_stderr": 0.022289638852617904, "acc_norm": 0.21965317919075145, "acc_norm_stderr": 0.022289638852617904 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.27262569832402234, "acc_stderr": 0.014893391735249588, "acc_norm": 0.27262569832402234, "acc_norm_stderr": 0.014893391735249588 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.3006535947712418, "acc_stderr": 0.02625605383571896, "acc_norm": 0.3006535947712418, "acc_norm_stderr": 0.02625605383571896 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.24758842443729903, "acc_stderr": 0.024513879973621967, "acc_norm": 0.24758842443729903, "acc_norm_stderr": 0.024513879973621967 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.22530864197530864, "acc_stderr": 0.023246202647819746, "acc_norm": 0.22530864197530864, "acc_norm_stderr": 0.023246202647819746 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.25177304964539005, "acc_stderr": 0.0258921511567094, "acc_norm": 0.25177304964539005, "acc_norm_stderr": 0.0258921511567094 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.23859191655801826, "acc_stderr": 0.010885929742002221, "acc_norm": 0.23859191655801826, "acc_norm_stderr": 0.010885929742002221 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4375, "acc_stderr": 0.030134614954403924, "acc_norm": 0.4375, "acc_norm_stderr": 0.030134614954403924 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.21405228758169934, "acc_stderr": 0.01659342966232903, "acc_norm": 0.21405228758169934, "acc_norm_stderr": 0.01659342966232903 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.24545454545454545, "acc_stderr": 0.041220665028782834, "acc_norm": 0.24545454545454545, "acc_norm_stderr": 0.041220665028782834 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.39591836734693875, "acc_stderr": 0.03130802899065686, "acc_norm": 0.39591836734693875, "acc_norm_stderr": 0.03130802899065686 }, "harness|hendrycksTest-sociology|5": { "acc": 0.263681592039801, "acc_stderr": 0.03115715086935556, "acc_norm": 0.263681592039801, "acc_norm_stderr": 0.03115715086935556 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.22, "acc_stderr": 0.041633319989322674, "acc_norm": 0.22, "acc_norm_stderr": 0.041633319989322674 }, "harness|hendrycksTest-virology|5": { "acc": 0.21084337349397592, "acc_stderr": 0.03175554786629921, "acc_norm": 0.21084337349397592, "acc_norm_stderr": 0.03175554786629921 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.17543859649122806, "acc_stderr": 0.029170885500727654, "acc_norm": 0.17543859649122806, "acc_norm_stderr": 0.029170885500727654 }, "harness|truthfulqa:mc|0": { "mc1": 0.2521419828641371, "mc1_stderr": 0.015201522246299953, "mc2": 0.4880571743853537, "mc2_stderr": 0.0172850771661607 }, "harness|winogrande|5": { "acc": 0.5019731649565904, "acc_stderr": 0.014052376259225636 }, "harness|gsm8k|5": { "acc": 0.0, "acc_stderr": 0.0 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_kz919__mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models
[ "region:us" ]
2024-01-14T18:18:11+00:00
{"pretty_name": "Evaluation run of kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models", "dataset_summary": "Dataset automatically created during the evaluation run of model [kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models](https://huggingface.co/kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_kz919__mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T18:15:50.698529](https://huggingface.co/datasets/open-llm-leaderboard/details_kz919__mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models/blob/main/results_2024-01-14T18-15-50.698529.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.26648871501929594,\n \"acc_stderr\": 0.03093030883128489,\n \"acc_norm\": 0.2677809133729311,\n \"acc_norm_stderr\": 0.03175527446298885,\n \"mc1\": 0.2521419828641371,\n \"mc1_stderr\": 0.015201522246299953,\n \"mc2\": 0.4880571743853537,\n \"mc2_stderr\": 0.0172850771661607\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.20819112627986347,\n \"acc_stderr\": 0.011864866118448064,\n \"acc_norm\": 0.2551194539249147,\n \"acc_norm_stderr\": 0.012739038695202105\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.25692093208524197,\n \"acc_stderr\": 0.004360424536145122,\n \"acc_norm\": 0.2552280422226648,\n \"acc_norm_stderr\": 0.004350982826580604\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.21,\n \"acc_stderr\": 0.040936018074033256,\n \"acc_norm\": 0.21,\n \"acc_norm_stderr\": 0.040936018074033256\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.22962962962962963,\n \"acc_stderr\": 0.03633384414073461,\n \"acc_norm\": 0.22962962962962963,\n \"acc_norm_stderr\": 0.03633384414073461\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.34868421052631576,\n \"acc_stderr\": 0.03878139888797611,\n \"acc_norm\": 0.34868421052631576,\n \"acc_norm_stderr\": 0.03878139888797611\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.04020151261036844,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.04020151261036844\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.2981132075471698,\n \"acc_stderr\": 0.02815283794249386,\n \"acc_norm\": 0.2981132075471698,\n \"acc_norm_stderr\": 0.02815283794249386\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.32947976878612717,\n \"acc_stderr\": 0.03583901754736411,\n \"acc_norm\": 0.32947976878612717,\n \"acc_norm_stderr\": 0.03583901754736411\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.37254901960784315,\n \"acc_stderr\": 0.04810840148082633,\n \"acc_norm\": 0.37254901960784315,\n \"acc_norm_stderr\": 0.04810840148082633\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.18,\n \"acc_stderr\": 0.03861229196653694,\n \"acc_norm\": 0.18,\n \"acc_norm_stderr\": 0.03861229196653694\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.23829787234042554,\n \"acc_stderr\": 0.027851252973889774,\n \"acc_norm\": 0.23829787234042554,\n \"acc_norm_stderr\": 0.027851252973889774\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.24561403508771928,\n \"acc_stderr\": 0.04049339297748141,\n \"acc_norm\": 0.24561403508771928,\n \"acc_norm_stderr\": 0.04049339297748141\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.2689655172413793,\n \"acc_stderr\": 0.036951833116502325,\n \"acc_norm\": 0.2689655172413793,\n \"acc_norm_stderr\": 0.036951833116502325\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2619047619047619,\n \"acc_stderr\": 0.022644212615525218,\n \"acc_norm\": 0.2619047619047619,\n \"acc_norm_stderr\": 0.022644212615525218\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.04040610178208841,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.04040610178208841\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.18,\n \"acc_stderr\": 0.03861229196653694,\n \"acc_norm\": 0.18,\n \"acc_norm_stderr\": 0.03861229196653694\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.31290322580645163,\n \"acc_stderr\": 0.026377567028645854,\n \"acc_norm\": 0.31290322580645163,\n \"acc_norm_stderr\": 0.026377567028645854\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.270935960591133,\n \"acc_stderr\": 0.031270907132976984,\n \"acc_norm\": 0.270935960591133,\n \"acc_norm_stderr\": 0.031270907132976984\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.17,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.17,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.2545454545454545,\n \"acc_stderr\": 0.03401506715249039,\n \"acc_norm\": 0.2545454545454545,\n \"acc_norm_stderr\": 0.03401506715249039\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.35353535353535354,\n \"acc_stderr\": 0.03406086723547153,\n \"acc_norm\": 0.35353535353535354,\n \"acc_norm_stderr\": 0.03406086723547153\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.35233160621761656,\n \"acc_stderr\": 0.03447478286414359,\n \"acc_norm\": 0.35233160621761656,\n \"acc_norm_stderr\": 0.03447478286414359\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.3435897435897436,\n \"acc_stderr\": 0.02407869658063547,\n \"acc_norm\": 0.3435897435897436,\n \"acc_norm_stderr\": 0.02407869658063547\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.26296296296296295,\n \"acc_stderr\": 0.026842057873833706,\n \"acc_norm\": 0.26296296296296295,\n \"acc_norm_stderr\": 0.026842057873833706\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.35294117647058826,\n \"acc_stderr\": 0.031041941304059285,\n \"acc_norm\": 0.35294117647058826,\n \"acc_norm_stderr\": 0.031041941304059285\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.32450331125827814,\n \"acc_stderr\": 0.03822746937658754,\n \"acc_norm\": 0.32450331125827814,\n \"acc_norm_stderr\": 0.03822746937658754\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3559633027522936,\n \"acc_stderr\": 0.020528559278244218,\n \"acc_norm\": 0.3559633027522936,\n \"acc_norm_stderr\": 0.020528559278244218\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.03388857118502325,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.03388857118502325\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03039153369274154,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03039153369274154\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.20675105485232068,\n \"acc_stderr\": 0.026361651668389104,\n \"acc_norm\": 0.20675105485232068,\n \"acc_norm_stderr\": 0.026361651668389104\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.12556053811659193,\n \"acc_stderr\": 0.02223898546932376,\n \"acc_norm\": 0.12556053811659193,\n \"acc_norm_stderr\": 0.02223898546932376\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2824427480916031,\n \"acc_stderr\": 0.03948406125768361,\n \"acc_norm\": 0.2824427480916031,\n \"acc_norm_stderr\": 0.03948406125768361\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.14049586776859505,\n \"acc_stderr\": 0.03172233426002161,\n \"acc_norm\": 0.14049586776859505,\n \"acc_norm_stderr\": 0.03172233426002161\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.040191074725573483,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.040191074725573483\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.2392638036809816,\n \"acc_stderr\": 0.033519538795212696,\n \"acc_norm\": 0.2392638036809816,\n \"acc_norm_stderr\": 0.033519538795212696\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.15178571428571427,\n \"acc_stderr\": 0.03405702838185694,\n \"acc_norm\": 0.15178571428571427,\n \"acc_norm_stderr\": 0.03405702838185694\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.19230769230769232,\n \"acc_stderr\": 0.025819233256483706,\n \"acc_norm\": 0.19230769230769232,\n \"acc_norm_stderr\": 0.025819233256483706\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.20561941251596424,\n \"acc_stderr\": 0.014452500456785825,\n \"acc_norm\": 0.20561941251596424,\n \"acc_norm_stderr\": 0.014452500456785825\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.21965317919075145,\n \"acc_stderr\": 0.022289638852617904,\n \"acc_norm\": 0.21965317919075145,\n \"acc_norm_stderr\": 0.022289638852617904\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.27262569832402234,\n \"acc_stderr\": 0.014893391735249588,\n \"acc_norm\": 0.27262569832402234,\n \"acc_norm_stderr\": 0.014893391735249588\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.3006535947712418,\n \"acc_stderr\": 0.02625605383571896,\n \"acc_norm\": 0.3006535947712418,\n \"acc_norm_stderr\": 0.02625605383571896\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.24758842443729903,\n \"acc_stderr\": 0.024513879973621967,\n \"acc_norm\": 0.24758842443729903,\n \"acc_norm_stderr\": 0.024513879973621967\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.22530864197530864,\n \"acc_stderr\": 0.023246202647819746,\n \"acc_norm\": 0.22530864197530864,\n \"acc_norm_stderr\": 0.023246202647819746\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.25177304964539005,\n \"acc_stderr\": 0.0258921511567094,\n \"acc_norm\": 0.25177304964539005,\n \"acc_norm_stderr\": 0.0258921511567094\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.23859191655801826,\n \"acc_stderr\": 0.010885929742002221,\n \"acc_norm\": 0.23859191655801826,\n \"acc_norm_stderr\": 0.010885929742002221\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.030134614954403924,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.030134614954403924\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.21405228758169934,\n \"acc_stderr\": 0.01659342966232903,\n \"acc_norm\": 0.21405228758169934,\n \"acc_norm_stderr\": 0.01659342966232903\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.24545454545454545,\n \"acc_stderr\": 0.041220665028782834,\n \"acc_norm\": 0.24545454545454545,\n \"acc_norm_stderr\": 0.041220665028782834\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.39591836734693875,\n \"acc_stderr\": 0.03130802899065686,\n \"acc_norm\": 0.39591836734693875,\n \"acc_norm_stderr\": 0.03130802899065686\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.263681592039801,\n \"acc_stderr\": 0.03115715086935556,\n \"acc_norm\": 0.263681592039801,\n \"acc_norm_stderr\": 0.03115715086935556\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.041633319989322674,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.041633319989322674\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.21084337349397592,\n \"acc_stderr\": 0.03175554786629921,\n \"acc_norm\": 0.21084337349397592,\n \"acc_norm_stderr\": 0.03175554786629921\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.17543859649122806,\n \"acc_stderr\": 0.029170885500727654,\n \"acc_norm\": 0.17543859649122806,\n \"acc_norm_stderr\": 0.029170885500727654\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2521419828641371,\n \"mc1_stderr\": 0.015201522246299953,\n \"mc2\": 0.4880571743853537,\n \"mc2_stderr\": 0.0172850771661607\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5019731649565904,\n \"acc_stderr\": 0.014052376259225636\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n }\n}\n```", "repo_url": "https://huggingface.co/kz919/mistral-7b-dpo-open-orca-flan-50k-synthetic-5-models", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T18-15-50.698529.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["**/details_harness|winogrande|5_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T18-15-50.698529.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T18_15_50.698529", "path": ["results_2024-01-14T18-15-50.698529.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T18-15-50.698529.parquet"]}]}]}
2024-01-14T18:18:33+00:00
c36ac7830c728036ccbefc84aeecee825f46b466
DAVIX08BR/IAdaVO
[ "region:us" ]
2024-01-14T18:28:15+00:00
{}
2024-01-14T18:43:13+00:00
ce9c69275447db56a874020f8d95dfa55690073a
Vitorbr2009/voz-afauna-treinada
[ "license:openrail", "region:us" ]
2024-01-14T18:32:30+00:00
{"license": "openrail"}
2024-01-14T18:33:22+00:00
e7c6cec85137b039b0d570ba42feeb34e1706a43
runes/3D
[ "license:cc", "region:us" ]
2024-01-14T18:32:36+00:00
{"license": "cc"}
2024-01-14T19:54:50+00:00