File size: 5,995 Bytes
85cadd4 0daf931 266dc3e 90b6add 266dc3e 90b6add 5347ebe 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add 266dc3e 90b6add |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
dataset_info:
features:
- name: image
dtype: image
- name: bboxes
sequence:
sequence: float64
- name: category_id
sequence: int64
- name: segmentation
sequence:
sequence:
sequence: float64
- name: area
sequence: float64
- name: pdf_cells
list:
list:
- name: bbox
sequence: float64
- name: font
struct:
- name: color
sequence: int64
- name: name
dtype: string
- name: size
dtype: float64
- name: text
dtype: string
- name: metadata
struct:
- name: coco_height
dtype: int64
- name: coco_width
dtype: int64
- name: collection
dtype: string
- name: doc_category
dtype: string
- name: image_id
dtype: int64
- name: num_pages
dtype: int64
- name: original_filename
dtype: string
- name: original_height
dtype: float64
- name: original_width
dtype: float64
- name: page_hash
dtype: string
- name: page_no
dtype: int64
- name: pdf
dtype: binary
- name: modalities
sequence: string
splits:
- name: train
num_bytes: 35626146180.25
num_examples: 69375
- name: validation
num_bytes: 3090589267.941
num_examples: 6489
- name: test
num_bytes: 2529339432.131
num_examples: 4999
download_size: 39770621829
dataset_size: 41246074880.322
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for DocLayNet v1.2
## Dataset Description
- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
- **Repository:** https://github.com/DS4SD/DocLayNet
- **Paper:** https://doi.org/10.1145/3534678.3539043
### Dataset Summary
This dataset is an extention of the [original DocLayNet dataset](https://github.com/DS4SD/DocLayNet) which embeds the PDF files of the document images inside a binary column.
DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
## Dataset Structure
This dataset is structured differently from the other repository [ds4sd/DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet), as this one includes the content (PDF cells) of the detections, and abandons the COCO format.
* `image`: page PIL image.
* `bboxes`: a list of layout bounding boxes.
* `category_id`: a list of class ids corresponding to the bounding boxes.
* `segmentation`: a list of layout segmentation polygons.
* `area`: Area of the bboxes.
* `pdf_cells`: a list of lists corresponding to `bbox`. Each list contains the PDF cells (content) inside the bbox.
* `metadata`: page and document metadetails.
* `pdf`: Binary blob with the original PDF image.
Bounding boxes classes / categories:
```
1: Caption
2: Footnote
3: Formula
4: List-item
5: Page-footer
6: Page-header
7: Picture
8: Section-header
9: Table
10: Text
11: Title
```
The `["metadata"]["doc_category"]` field uses one of the following constants:
```
* financial_reports,
* scientific_articles,
* laws_and_regulations,
* government_tenders,
* manuals,
* patents
```
### Data Splits
The dataset provides three splits
- `train`
- `val`
- `test`
## Dataset Creation
### Annotations
#### Annotation process
The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
#### Who are the annotators?
Annotations are crowdsourced.
## Additional Information
### Dataset Curators
The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [[email protected]](mailto:[email protected]).
Curators:
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
### Licensing Information
License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
### Citation Information
```bib
@article{doclaynet2022,
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
doi = {10.1145/3534678.353904},
url = {https://doi.org/10.1145/3534678.3539043},
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
year = {2022},
isbn = {9781450393850},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages = {3743–3751},
numpages = {9},
location = {Washington DC, USA},
series = {KDD '22}
}
```
|