Update README.md
Browse files
README.md
CHANGED
@@ -79,3 +79,117 @@ configs:
|
|
79 |
- split: test
|
80 |
path: data/test-*
|
81 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
- split: test
|
80 |
path: data/test-*
|
81 |
---
|
82 |
+
# Dataset Card for Docling-DocLayNet dataset
|
83 |
+
|
84 |
+
## Dataset Description
|
85 |
+
|
86 |
+
- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
|
87 |
+
- **Repository:** https://github.com/DS4SD/DocLayNet
|
88 |
+
- **Paper:** https://doi.org/10.1145/3534678.3539043
|
89 |
+
|
90 |
+
|
91 |
+
### Dataset Summary
|
92 |
+
|
93 |
+
This dataset is an extention of the [original DocLayNet dataset](https://github.com/DS4SD/DocLayNet) which embeds the PDF files of the document images inside a binary column.
|
94 |
+
|
95 |
+
DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
|
96 |
+
|
97 |
+
1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
|
98 |
+
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
|
99 |
+
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
|
100 |
+
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
|
101 |
+
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
|
102 |
+
|
103 |
+
|
104 |
+
## Dataset Structure
|
105 |
+
|
106 |
+
### Data Fields
|
107 |
+
|
108 |
+
* image: PIL image of all pages, resized to square 1025 x 1025px.
|
109 |
+
* bboxes: Bounding-box annotations in COCO format for each PNG image.
|
110 |
+
* category_id: integer representations of the segmentation labels (see below).
|
111 |
+
* segmentation:
|
112 |
+
* area:
|
113 |
+
* pdf_cells:
|
114 |
+
* metadata:
|
115 |
+
* pdf: Binary blob with the original PDF image.
|
116 |
+
|
117 |
+
|
118 |
+
This is the mapping between the labels and the `category_id`:
|
119 |
+
|
120 |
+
```
|
121 |
+
1: "caption"
|
122 |
+
2: "footnote"
|
123 |
+
3: "formula"
|
124 |
+
4: "list_item"
|
125 |
+
5: "page_footer"
|
126 |
+
6: "page_header"
|
127 |
+
7: "picture"
|
128 |
+
8: "section_header"
|
129 |
+
9: "table"
|
130 |
+
10: "text"
|
131 |
+
11: "title"
|
132 |
+
```
|
133 |
+
|
134 |
+
The COCO image record are defined like this example
|
135 |
+
|
136 |
+
```js
|
137 |
+
...
|
138 |
+
{
|
139 |
+
"id": 1,
|
140 |
+
"width": 1025,
|
141 |
+
"height": 1025,
|
142 |
+
"file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",
|
143 |
+
|
144 |
+
// Custom fields:
|
145 |
+
"doc_category": "financial_reports" // high-level document category
|
146 |
+
"collection": "ann_reports_00_04_fancy", // sub-collection name
|
147 |
+
"doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
|
148 |
+
"page_no": 9, // page number in original document
|
149 |
+
"precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
|
150 |
+
},
|
151 |
+
...
|
152 |
+
```
|
153 |
+
|
154 |
+
The `doc_category` field uses one of the following constants:
|
155 |
+
|
156 |
+
```
|
157 |
+
financial_reports,
|
158 |
+
scientific_articles,
|
159 |
+
laws_and_regulations,
|
160 |
+
government_tenders,
|
161 |
+
manuals,
|
162 |
+
patents
|
163 |
+
```
|
164 |
+
|
165 |
+
### Data Splits
|
166 |
+
|
167 |
+
The dataset provides three splits
|
168 |
+
- `train`
|
169 |
+
- `val`
|
170 |
+
- `test`
|
171 |
+
|
172 |
+
|
173 |
+
## Additional Information
|
174 |
+
|
175 |
+
### Citation Information
|
176 |
+
|
177 |
+
"DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis" (KDD 2022).
|
178 |
+
|
179 |
+
Birgit Pfitzmann ([email protected])
|
180 |
+
Christoph Auer ([email protected])
|
181 |
+
Michele Dolfi ([email protected])
|
182 |
+
Ahmed Nassar ([email protected])
|
183 |
+
Peter Staar ([email protected])
|
184 |
+
|
185 |
+
ArXiv link: https://arxiv.org/abs/2206.01062
|
186 |
+
|
187 |
+
```bib
|
188 |
+
@article{doclaynet2022,
|
189 |
+
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},
|
190 |
+
doi = {10.1145/3534678.353904},
|
191 |
+
url = {https://arxiv.org/abs/2206.01062},
|
192 |
+
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
|
193 |
+
year = {2022}
|
194 |
+
}
|
195 |
+
```
|