nlivathinos commited on
Commit
90b6add
·
verified ·
1 Parent(s): 266dc3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -60
README.md CHANGED
@@ -103,65 +103,45 @@ DocLayNet provides page-by-page layout segmentation ground-truth using bounding-
103
 
104
  ## Dataset Structure
105
 
106
- ### Data Fields
107
 
108
- * image: PIL image of all pages, resized to square 1025 x 1025px.
109
- * bboxes: Bounding-box annotations in COCO format for each PNG image.
110
- * category_id: integer representations of the segmentation labels (see below).
111
- * segmentation:
112
- * area:
113
- * pdf_cells:
114
- * metadata:
115
- * pdf: Binary blob with the original PDF image.
116
 
117
-
118
- This is the mapping between the labels and the `category_id`:
119
 
120
  ```
121
- 1: "caption"
122
- 2: "footnote"
123
- 3: "formula"
124
- 4: "list_item"
125
- 5: "page_footer"
126
- 6: "page_header"
127
- 7: "picture"
128
- 8: "section_header"
129
- 9: "table"
130
- 10: "text"
131
- 11: "title"
132
  ```
133
 
134
- The COCO image record are defined like this example
135
-
136
- ```js
137
- ...
138
- {
139
- "id": 1,
140
- "width": 1025,
141
- "height": 1025,
142
- "file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",
143
-
144
- // Custom fields:
145
- "doc_category": "financial_reports" // high-level document category
146
- "collection": "ann_reports_00_04_fancy", // sub-collection name
147
- "doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
148
- "page_no": 9, // page number in original document
149
- "precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
150
- },
151
- ...
152
- ```
153
 
154
- The `doc_category` field uses one of the following constants:
155
 
156
  ```
157
- financial_reports,
158
- scientific_articles,
159
- laws_and_regulations,
160
- government_tenders,
161
- manuals,
162
- patents
163
  ```
164
 
 
165
  ### Data Splits
166
 
167
  The dataset provides three splits
@@ -169,27 +149,55 @@ The dataset provides three splits
169
  - `val`
170
  - `test`
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
  ## Additional Information
174
 
175
- ### Citation Information
 
 
 
 
 
 
 
 
 
176
 
177
- "DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis" (KDD 2022).
178
 
179
- Birgit Pfitzmann (bpf@zurich.ibm.com)
180
- Christoph Auer ([email protected])
181
- Michele Dolfi ([email protected])
182
- Ahmed Nassar ([email protected])
183
- Peter Staar ([email protected])
184
 
185
- ArXiv link: https://arxiv.org/abs/2206.01062
186
 
187
  ```bib
188
  @article{doclaynet2022,
189
- title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},
190
  doi = {10.1145/3534678.353904},
191
- url = {https://arxiv.org/abs/2206.01062},
192
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
193
- year = {2022}
 
 
 
 
 
 
 
 
194
  }
195
- ```
 
103
 
104
  ## Dataset Structure
105
 
106
+ This dataset is structured differently from the other repository [ds4sd/DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet), as this one includes the content (PDF cells) of the detections, and abandons the COCO format.
107
 
108
+ * `image`: page PIL image.
109
+ * `bboxes`: a list of layout bounding boxes.
110
+ * `category_id`: a list of class ids corresponding to the bounding boxes.
111
+ * `segmentation`: a list of layout segmentation polygons.
112
+ * `pdf_cells`: a list of lists corresponding to `bbox`. Each list contains the PDF cells (content) inside the bbox.
113
+ * `metadata`: page and document metadetails.
114
+ * `pdf`: Binary blob with the original PDF image.
 
115
 
116
+ Bounding boxes classes / categories:
 
117
 
118
  ```
119
+ 1: Caption
120
+ 2: Footnote
121
+ 3: Formula
122
+ 4: List-item
123
+ 5: Page-footer
124
+ 6: Page-header
125
+ 7: Picture
126
+ 8: Section-header
127
+ 9: Table
128
+ 10: Text
129
+ 11: Title
130
  ```
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ The `["metadata"]["doc_category"]` field uses one of the following constants:
134
 
135
  ```
136
+ * financial_reports,
137
+ * scientific_articles,
138
+ * laws_and_regulations,
139
+ * government_tenders,
140
+ * manuals,
141
+ * patents
142
  ```
143
 
144
+
145
  ### Data Splits
146
 
147
  The dataset provides three splits
 
149
  - `val`
150
  - `test`
151
 
152
+ ## Dataset Creation
153
+
154
+ ### Annotations
155
+
156
+ #### Annotation process
157
+
158
+ The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
159
+
160
+
161
+ #### Who are the annotators?
162
+
163
+ Annotations are crowdsourced.
164
+
165
 
166
  ## Additional Information
167
 
168
+ ### Dataset Curators
169
+
170
+ The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
171
+ You can contact us at [[email protected]](mailto:[email protected]).
172
+
173
+ Curators:
174
+ - Christoph Auer, [@cau-git](https://github.com/cau-git)
175
+ - Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
176
+ - Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
177
+ - Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
178
 
179
+ ### Licensing Information
180
 
181
+ License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
182
+
183
+
184
+ ### Citation Information
 
185
 
 
186
 
187
  ```bib
188
  @article{doclaynet2022,
189
+ title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
190
  doi = {10.1145/3534678.353904},
191
+ url = {https://doi.org/10.1145/3534678.3539043},
192
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
193
+ year = {2022},
194
+ isbn = {9781450393850},
195
+ publisher = {Association for Computing Machinery},
196
+ address = {New York, NY, USA},
197
+ booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
198
+ pages = {3743–3751},
199
+ numpages = {9},
200
+ location = {Washington DC, USA},
201
+ series = {KDD '22}
202
  }
203
+ ```